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Abstract

The winning machine learning methods of the M5 Accuracy competition demonstrated high lev-

els of forecast accuracy compared to the top-performing benchmarks in the history of the M-

competitions. Yet, large-scale adoption is hampered due to the significant computational require-

ments to model, tune, and train these state-of-the-art algorithms. To overcome this major issue,

we discuss the potential of transfer learning (TL) to reduce the computational effort in hierarchical

forecasting and provide proof of concept that TL can be applied on M5 top-performing methods.

We demonstrate our easy-to-use TL framework on the recursive store level LightGBM models

of the M5 winning method and attain similar levels of forecast accuracy with roughly 25% less

training time. Our findings provide evidence for a novel application of TL to facilitate practical

applicability of the M5 winning methods in large-scale settings with hierarchically structured data.

Keywords: M5 Accuracy Competition, Computational Requirements, Transfer Learning,

LightGBM, Hierarchical Forecasting

1. The rise of machine learning in recent M-competitions

For a long time, simple statistical models such as exponential smoothing dominated the field

of forecasting and were the default in commercial software packages (Fildes et al., 2019). These

univariate models are easy to compute and were historically able to achieve similar levels of fore-

cast accuracy to more complex methods (Makridakis et al., 2020a). This observation from the

first forecasting competition by Makridakis and Hibon (1979) was reconfirmed in the first three

M-competitions (Makridakis et al., 1982, 1993; Makridakis and Hibon, 2000). The M3 winning

model, for instance, combined linear regression with simple exponential smoothing with drift (As-

simakopoulos and Nikolopoulos, 2000). Although simple by design, it outperformed the more so-

phisticated methods in the M3 competition as well as every model in the NN3 competition, which

was organized nearly a decade later to promote the use of machine learning (ML) for forecasting

(Crone et al., 2011; Hyndman, 2020).

This changed in 2015, when ML methods started to dominate multiple large-scale forecasting

competitions (e.g., the Rossmann Store Sales competition,2 the Wikipedia Web Traffic Time Se-

ries Forecasting competition,3 the Corporación Favorita Grocery Sales Forecasting competition,4

etc.). Bojer and Meldgaard (2021) attribute this sudden rise of ML to multiple innovations in
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the field, such as embedded layers (Guo and Berkhahn, 2016), long short-term memory models

(Hochreiter and Schmidhuber, 1997) and the launch of well-performing Gradient Boosting Decision

Tree (GBDT) methods (Chen and Guestrin, 2016; Ke et al., 2017). The latter build a large set of

decision trees sequentially, so that each consecutive decision tree improves upon the errors made

by the previous ones (Friedman, 2001; Ke et al., 2017).

The M4 (early 2018) was the first M-competition where sophisticated methods substantially

outperformed simpler statistical models by combining ML with statistical features (Makridakis

et al., 2018a, 2020a). The top-performing methods of M4, however, are rather complex to im-

plement (Makridakis et al., 2020b). Simpler and more straightforward ML implementations that

are easier to model and tune in turn performed rather poorly in M4. This was different in the

most recent M5 Accuracy competition, when relatively straightforward ML models improved the

forecast accuracy of the benchmarks up to roughly 20% (Makridakis et al., 2020b). It was the first

M-competition where pure ML methods achieved superior results compared to simple statistical

and more sophisticated methods. The winning method produced sales forecasts using an equal

weighted combination (ensemble) of pure Light Gradient Boosting Machine (LightGBM) models,

which is an implementation of GBDT. It is striking that almost all of the M5 top 50 performing

methods made use of LightGBM (only the method at the third place was solely based on neural

networks, also a ML-based method). This is likely because LightGBM models perform well without

extensive data preprocessing or hyperparameter tuning and are easy to use. This is highlighted by

the fact that an undergraduate student with little experience in the field of forecasting won the M5.

In addition, LightGBM models can easily exploit cross-series information by learning across differ-

ent time series. 45 of the top 50 performing methods trained LightGBM models per group of time

series that belong to the same store/category/department. This is known as cross-learning and

has shown to be effective in the M4, the M5 and other forecasting competitions (Makridakis et al.,

2020b; Bojer and Meldgaard, 2021). All these characteristics make LightGBM a well-performing

and easy-to-adopt forecasting method for practical purposes.

Despite their ease of use, these top-performing LightGBM methods come with significantly more

computational requirements to model, tune and train the algorithms compared to commonly used

statistical methods (Makridakis et al., 2020a, 2018b). The computational burden mainly stems

from the fact that these methods need to train multiple ML models for each store, category or

department from scratch, even though evident similarities such as seasonality or promotional effects

exist throughout the hierarchical structure of the time series – especially between closely related

time series. We believe this high computational burden may hinder the adoption of these ML

methods in retail settings with thousands of products and dozens of stores (Seaman, 2018). In this

article we therefore introduce the potential of transfer learning (TL) to reduce the computational

requirements in hierarchical forecasting and propose an easy-to-use TL framework to reduce the

training time of the M5 top-performing models. Based on the hierarchical structure of the dataset,

our TL framework trains a handful of general ML models from scratch, and uses TL to reuse

model parameters of pretrained ML models for similar stores, categories or departments to train

the tree-based models more efficiently. We illustrate this idea on the recursive store level LightGBM

models of the M5 winning method and attain similar levels of forecast accuracy with roughly 25%

less training time. We also discuss a number of limitations of the TL framework and propose

further research to address these. With our work we aim to demonstrate how TL can facilitate the

applicability of the M5 top-performing models in settings with hierarchically structured data.
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2. Forecast accuracy versus computational requirements

Before the advent of ML, the computational requirements of sales forecasting received little

attention due to the longstanding belief that simple statistical forecasting models could perform

equally well as more sophisticated methods (Makridakis et al., 2020b) and the improved accessi-

bility of computational power (Waldrop, 2016). With recent advances in ML, there is evidence

that ‘simple’ ML methods can outperform statistical models. However, substantial computational

power is required to achieve this high level of forecast accuracy in large-scale settings.

Makridakis et al. (2018b) compare eight statistical methods with eight families of popular

ML methods on the M3 dataset. Not surprisingly, they find that to achieve the same level of

forecast accuracy, ML methods require significantly more computational requirements in terms of

training and prediction time than traditional statistical methods. Spiliotis et al. (2020) make a

similar comparison and include different ML methods like GBDT and more sophisticated statistical

methods to forecast the daily sales demand of a major retail company in Greece. They report that

ML requires, on average, 4.25 times longer computation times than statistical methods. Note,

however, that these results refer to ML methods using local models, i.e., methods that train one

model per time series. Recently, globally trained ML models, which train one model per group

of time series, have also started to achieve competitive results (Smyl, 2020; Januschowski et al.,

2020; Bandara et al., 2020). Global models have the advantage that they require fewer models

overall, enabling a potential reduction in computational requirements (Makridakis et al., 2020b).

Spiliotis et al. (2020) showcase a set of global ML models with only one third of the computational

requirements of their statistical benchmarks. This, however, cannot be generalized to all global

models, especially not to the global methods that won the most recent forecasting competitions

(Bojer and Meldgaard, 2021). The top-three global methods of the M4 competition, for example,

required on average 10 to 35 times more computation time than popular benchmarks such as ETS

and autoARIMA (Makridakis et al., 2020a).

The computational requirements of the top-performing LightGBM methods in the M5 Accuracy

competition cannot be neglected either. These methods train multiple ML models with thousands

of decision trees and a wide variety of input features (e.g., past sales data, explanatory variables

and rolling statistics). For example, the M5 global random forest benchmark, which trains a

single model with 500 decision trees (Makridakis et al., 2020b) requires only a fraction of the total

computation time of the 660,000 decision trees that are trained under the M5 winning method.

The popularity of these computationally demanding methods can, most likely, be attributed to the

excellent performance of a particular LightGBM method, whose code was shared during the M5,

using a Kaggle notebook.5 The latter became one of the most examined and influential LightGBM

methods of M5. It is an implementation of the Recursive Store Level LightGBM model (RSLLM)

that groups the time series of the product-store level per store and trains one pure LightGBM

model per store. It is called recursive as the models use their own, previously made, sales forecasts

as input features to make prediction for later timestamps. The M5 winning method used this

notebook (with minor adjustments) in an ensemble of five other implementations of this notebook

by adjusting the hyperparameters, the (recursive) features and the group of time series each model

was trained on. As in most submissions, these groups of time series were organized using the

hierarchical structure of the time series to enable cross-learning (Makridakis et al., 2020b). The

winning method trained two models per store, two per store-category and two per store-department,

5https://www.kaggle.com/kyakovlev/m5-three-shades-of-dark-darker-magic
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resulting in an ensemble of six pure LightGBM models per forecast. This required training 220

different LightGBM models to cover the 10 stores, 30 store-categories, and 70 store-departments

of the M5 limited dataset, which includes 3,049 different products.

It is worth noting that before training any definitive model, an experimental phase takes place

where different model architectures (i.e., ensembles, recursive vs. non-recursive forecasting, ...),

input features and hyperparameters are tested. The computational cost of this modeling and

tuning step largely depends on the total training time of the forecasting models as it iteratively

retrains the models with small differences in model architecture, features and hyperparameters

(Januschowski et al., 2020). Using different hyperparameters per model is often beneficial (and

was empirically tested on the M5 dataset),6 but is computationally expensive. Remark that the

winning method (which did not tune most of the hyperparameters, as the 210 LightGBM models

share the exact same hyperparameters) already requires substantial training times.

The high computational requirements to model, tune and train different forecasting models

is especially relevant for large-scale retail applications with thousands of products and dozens of

stores. Scaling their forecast methods is one of the major forecasting challenges mentioned by

retailers due to the computational requirements (Fildes et al., 2019). Walmart, for example, needs

to make over a billion unique forecasts a day to stay operational in the US alone. This number

even exceeds one trillion if unique sales forecasts per product and per region of Walmart’s online

marketplace are included in the calculation (Seaman, 2018). Scaling the M5 winning method

to Walmart’s 10,500 stores7 would result in 231,000 LightGBM models (excl. their online sales

forecasts, any long term forecasts and the fact that Walmart may offer over 200,000 products in

one store instead of only 3,049). To put into perspective, training one RSLLM of the winning

method on 3,049 time series takes roughly 10-20 minutes using a state-of-the-art e 11K server

(without GPU). In addition to that, most retailers retrain their models from scratch when new

data or products come in to ensure the highest possible level of forecast accuracy. This raises the

question whether the incremental benefit in forecast accuracy justifies the additional costs of these

computational expensive forecasting models (Makridakis et al., 2020b).

3. Transfer learning to reduce computational efforts

We study how transfer learning (TL) can reduce the computational burden of training the M5

top-performing ML methods without compromising on forecast performance. We briefly introduce

the concept of TL in this section. Section 4 formally describes our TL framework that can be used

when data is organized in a hierarchical structure. Section 5 illustrates how TL speeds up training

time in the family of LightGBM models that is used by most M5 top-performing methods.

At its most basic, TL facilitates the learning of a new task (i.e., a target task) by utilizing

knowledge from another task that has already been explored (i.e., a source task; Torrey and

Shavlik, 2010). TL is an intuitive concept that comes naturally to us, humans, when we need

to learn a new task. A tennis player, for example, who is learning how to play ping-pong will

automatically exploit their expertise in tennis (the source) to speed up their training in ping-pong

(the target). In ML, however, TL does not come naturally. It is an explicit design decision that is

used to transfer parameters from pretrained source models to untrained target models that exhibit

similarities in their structure. Such an approach is known as the parameter-transfer approach

6https://www.kaggle.com/kyakovlev/m5-three-shades-of-dark-darker-magic
7https://corporate.walmart.com/our-story/our-locations (accessed 15 July 2021)

4



(Pan and Yang, 2009), and is typically used when data collection is impossible or expensive (Afrin

et al., 2018; Taylor and Stone, 2009; Fang et al., 2019). Karb et al. (2020), for instance, use TL to

produce ML sales forecasts for a newly launched product that lacks the historical data required for

training. They pretrain a neural network on similar products for which they have sufficient data

and use this pretrained model as a starting point to forecast new product sales. TL is also useful

when moving or collecting certain data is prohibited by privacy barriers or regulations, such as

the General Data Protection Regulation (GDPR). By transferring the pretrained models, insights

from valuable data sources can be reused without exposing the raw data itself (Hirt et al., 2020).

Transfer learning is also used in reinforcement learning, which requires multiple episodes (such

as simulation or real-life experiments) that can be very expensive due to the sheer volume needed.

For example, training AlphaGo – the algorithm famous for being the first to beat the best GO

player in the world – required simulating over 30 million games, which at the time (early 2016)

cost roughly 25 million dollars in computation power (Silver et al., 2016; Gibney, 2017). TL thus

shows promise to reduce the amount of episodes by reusing knowledge from pretrained models on

related problems (Taylor and Stone, 2009; Finn et al., 2017).

The computational burden of the M5-winning LightGBM methods stems from the large number

of models that are trained from scratch, i.e., multiple models for each store, category, or depart-

ment. Given the natural similarity between hierarchically structured time series, we believe that

not all models need to be fully trained. Product sales in retail are often driven by similar input

features such as promotions, holidays, weather forecasts and more, and thus may be correlated.

Mukherjee et al. (2018) use a similar idea to forecast tens-of-thousands of products from Flip-

kart, India’s largest e-retailer. To cope with the scale and diversity of the time series, they start

by training a single global neural network over all time series. They then transfer the (trained)

model parameters to each category of (relatively similar) products, and further train the model

parameters per category, which we call fine-tuning. Although the reduction in computational re-

quirements is not examined, this should require less training time than training all models from

scratch. Thus far, little is known as to how this approach can be extended to GBDT methods or

how TL impacts the forecast accuracy. A number of papers have shown that a suboptimal selection

of hyperparameters (Nikolopoulos and Petropoulos, 2018) or forecasting models (Petropoulos and

Grushka-Cockayne, 2021; Ashouri et al., 2019) have only a negligible effect on the forecast accuracy

in an out-of-sample test. As a result, reusing model parameters of related forecasting models, even

if they are not completely similar, seems to be a viable approach without leading to a substantial

accuracy loss.

To reduce the computational burden of LightGBM methods, we propose a TL framework that

trains a subset of representative source models and transfers the (trained) model parameters to the

target models, which are then fine-tuned rather than fully trained from scratch. Given that model

training is a major bottleneck (re. computational requirements) of LightGBM implementations, a

reduction in the number of models that need to be trained will result in training time reductions.

For the ease of the reader, from here on the term ‘training a model’ refers to fully training a

model from scratch without transferring any model parameters. Remark that model parameters

are in sharp contrast to hyperparameters as the hyperparameters are typically set manually during

modeling, while model parameters are automatically estimated during training. To the best of our

knowledge, our study is the first to apply TL on GBDT methods with the objective to speed up

training time while achieving similar levels of forecast accuracy.
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4. Transfer Learning framework

4.1. Preliminary matters

To formalize our TL framework, we introduce the following notation. Let Li, i ∈ [1,m] be

the ith level of a hierarchical data structure with a total of m levels, where L1 is the highest and

most aggregated level (such as the total unit sales), L2 the first level of disaggregation (e.g., sales

per state), and Lm the lowest and most disaggregated level (e.g., sales per product-store level).

At its lowest level, the data structure contains nm time series, which – following the hierarchical

structure – can be aggregated into ni time series at each aggregation level Li. Note that ni ≥ ni−1;

i.e., the number of time series generally decreases in the level of aggregation. We define a node as

any aggregated time series in the hierarchy. When two or more nodes of level Li are contained by

the same node at Li−1, the latter is described as the parent of the former. In general, nodes that

are contained by the same node at any given (higher) level, are said to share a common ancestor.

In absence of any data grouping, producing forecasts for the ni time series at level Li requires

training one LightGBM model for each time series. Most LightGBM implementations exploit

cross-series information by learning across groups of time series. This way, one LightGBM model

is trained per group of time series. These groups of related time series are naturally found by

grouping the time series based on common ancestor nodes. We denote g, with g ∈ [0, i], the level

upon which the time series are grouped, relative to the level of the forecasted time series, Li.

Here, g = 0 indicates no grouping (i.e., one LightGBM model per time series), g = 1 indicates

grouping per parent node, g = 2 grouping per grand-parent node, etc. By grouping the time

series at level g, producing forecasts for the ni time series of Li, requires training one LightGBM

model for each of the ni−g nodes of level Li−g. Thus, the number of LightGBM models required

to produce the forecasts for the time series of Li decreases in g. A conclusive answer to determine

the optimal value of g is yet to be found as different grouping strategies have successfully been

applied on the M5 and other large-scale datasets (Makridakis et al., 2020b; Mukherjee et al., 2018;

Bojer and Meldgaard, 2021). Choosing higher grouping levels benefits cross-learning and typically

reduces the overall computational requirements (Makridakis et al., 2020b). Nevertheless, pooling

more time series increases the model complexity as it often results in the inclusion of more input

features, model parameters, and training data, and potentially deteriorates the forecast accuracy

by including highly diverse time series within the same model (Mukherjee et al., 2018).

4.2. TL approach

Our TL framework is based upon a similar concept of grouping time series. However, rather

than training one model per group of time series with grouping level, g, we define a higher-

level grouping, g′, which we use in conjunction with the lower level grouping, g. Specifically, we

create one source model per grouping g′ and one target model per grouping g. By only training

source models from scratch, and copying these trained model parameters to the target models,

our methodology effectively increases the grouping level. Yet, as we discuss next, we do so while

keeping the number of features, model parameters and training data constant.

Denote T as the target models that group time series of Li with grouping level g at level Li−g,

and effectively produce forecasts at Li. The models T are the models that our TL framework

wants to obtain with less computational efforts. While traditional GBDT methods would fully

train ni−g models, our TL framework, instead, performs a higher level grouping, where we group

the time series at level g′ > g with common ancestors at level Li−g′ . The source models G are

trained for each grouping g′. Once models G are trained at grouping level g′, the model parameters
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are copied to all target models T at grouping level g, which are further fine-tuned without the

need for wholesale training. As such, only ni−g′ models are fully trained, whereas ni−g models are

fine-tuned. To minimize the total computational requirements of our TL framework, all the model

parameters from the trained source models G are transferred to the target models T and no new

features or new model parameters are introduced when fine-tuning these models. As a result, all

input features and hyperparameters that are used to train the source models G will also be used

by the target models T . As we primarily focus on the forecast accuracy of the target models T ,

we need to make sure that the target models T (with grouping level g) use the optimized features

and hyperparameters for grouping level g. That means that we also train the source models G with

the optimized features and hyperparameters for grouping level g, even though these models group

at level g′. In addition to that, as the source models G use the same optimized hyperparameters

of grouping level g, they should also be trained on a similar sized dataset of grouping level g. This

is because the optimized hyperparameters of GBDT methods depend on the size of the training

dataset (e.g., min data in leaf for regularization). Given that ni−g ≥ ni−g′ , we therefore select a

subset of the available time series of level g′. This can easily be achieved, for example, by sampling

random training data of level Li at the higher level grouping g′.

Note that our TL framework does not increase the training data per model, nor the number

of features or hyperparameters, compared to traditional pooling approaches. As a result, it trains

ni−g′ similar-sized models instead of ni−g, thus reducing the computational requirements by a

factor of ni−g/ni−g′ . Without further fine-tuning, this may come at the expense of a reduced

forecast accuracy due to having dropped data or using the optimized features and hyperparameters

for grouping level g instead of grouping level g′. For instance, applied to the M5 data, if g defines

a grouping of time series at store level and g′ at state level, then we define one source model G per

state, which we train only with features available at store level. As store characteristics (e.g., store

ID, store location, etc.) are a fixed value for models that only pool time series at the store level,

store characteristics are input feature without any variance and are thus redundant. Therefore,

these features are not included at grouping level g, and thereby not included at grouping level g′ to

train G. As a result of this, the source models G, which are trained per state, cannot differentiate

the sales from one store to the sales in another store, and fail, e.g., to learn specific patterns that

only apply to one store.

To alleviate this potentially reduced forecast accuracy, we further fine-tune each target model T
by adjusting a subset of the pretrained model parameters. We therefore only adjust these prespec-

ified parameters using the time series of level Li which share the same ancestor at grouping level

g while keeping the remaining pretrained model parameters fixed. Different fine-tuning strategies

have been proposed for tree-based models, such that the adjusted models are capable of learning

the specific patterns at grouping level g (Segev et al., 2016; Fang et al., 2019; Son et al., 2015).

Two important parameters in tree-based forecasting models are the splitting criteria to classify the

data based on feature values (defining the nodes of the decision tree), and the prediction value of

the data points in each class (constituting the leaves in the decision tree). As optimizing the nodes

of decision trees is the most time-consuming operation of training tree-based methods (Ke et al.,

2017), we adjust the latter.

Since fine-tuning only adjusts a subset of the model parameters, this step requires less training

data compared to the data that would be needed to train all model parameters entirely. The

reason for this is that fine-tuning is less likely to overfit the training data. This results in efficient

training times as the computational requirements depend on the amount of training data used and

the number of parameters that are fine-tuned.
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The total computational requirements to train the TL framework largely depend on the hierar-

chical structure of the time series and the need for fine-tuning the target models. In the case of the

M5 dataset, for example, we have ten stores and three states. If g is the store level (with ni−g = 10

stores) and g′ the state level (with ni−g′ = 3 states), then, without taking the computational

cost of fine-tuning into account, we reduce the total computational requirements with a factor of

ni−g/ni−g′ = 10/3 = 3.33 (i.e., 70% reduction in training time). The TL framework can reach

even higher reductions in training time, when there are for example more stores per state. We do

note that the fine-tuning step also requires computation time. However, by only fine-tuning the

predictions of the leaves of the decision trees using few training data, we can still adjust the target

models T to learn specific patterns, without recalculating the most time-consuming operations,

namely the nodes of the decision trees. This should allow similar levels of forecast accuracy, while

still benefiting from a substantial reduction in training time.

Remark, however, that the training time is only one component of the total computational cost

of implementing forecasting methods. The two other components are: (1) the experimental phase

to find adequate models and (2) the prediction phase to produce the forecasts (Januschowski et al.,

2020). Our TL framework focuses on reducing the total training time while keeping the computa-

tional cost of (1) and (2) the same. The computational cost of (2) remains similar as the target

models produced by the TL framework are identical in the model architecture, input features and

hyperparameters compared to the forecasting models we want to replicate. As a consequence,

producing forecasts with similar-sized GBDT models take equally long. The computational re-

quirements during (1), however, may vary. The computational cost of (1) largely depends on the

total number of models with different model architectures, features and hyperparameters that need

to be trained and compared. Our TL framework keeps the number of model architectures and input

features constant, but may slightly increase the total number of hyperparameters. Depending on

the fine-tuning strategy, it may require an additional hyperparameter that needs to be optimized.

As we show later in our numerical illustration, this additional hyperparameter can be optimized

independently of the other model variations, which significantly reduces the total number of model

variations.8 Moreover, if the number of hyperparameters stays the same, the lower training time of

the TL framework even decreases the computational requirements of (1) as it improves the speed of

retraining models with different model architectures, features and hyperparameters. Finally, note

that the experimental phase is typically a one-time investment, while retraining GBDT methods

happens periodically when new data or products come in.

5. Numerical illustration

We illustrate the effectiveness of the TL framework on the Recursive Store Level LightGBM

models (RSLLMs) of the M5-winning method. We do so by replicating this RSLLMs implementa-

tion with our TL framework. Section 5.2 compares the forecast accuracy and the training time of

these RSLLMs against the application of our TL framework.

8As a numerical illustration: optimizing 10 hyperparameters with 10 different values dependent of each other
gives a total of 1010 model variations, but only 100 variations when optimized independently.

8



5.1. Training the RSLLMs and our TL framework

The RSLLMs are trained using the code files of the M5 winning method,9 and the M5 publicly

available dataset.10 Following the data structure of the M5 dataset, the most disaggregated level

of the dataset is level L12, where n12 includes 30, 490 different time series of (at most) 1,941 days

of sales (roughly 5.3 years). The RSLLMs group the time series at the product-store level L12 per

common ancestor at the store level L3, such that the grouping level g = 9. We train one LightGBM

model per store or ten LightGBM models in total as n12−9 = 10. These RSLLMs then produce

sales forecasts at the product-store level L12, which can be aggregated to obtain sales forecasts for

every level of the hierarchy.

Our TL framework tries to replicate these RSLLMs (given their optimized input features,

hyperparameters, grouping level g, etc.) with reduced computational requirements by grouping

the time series of level L12 at a higher level g′, using the hierarchy in the data. We set g′ = 10,

i.e., we group at the level of the state, and train one source model G per state, using the same

code, features and hyperparameters of the RSLLMs. This results in n12−10 = 3 source models G,

i.e., one per state. As the hyperparameters of the RSLLMs are optimized for the average amount

of training data per store, and we reuse these same hyperparameters to train the RSLLMs per

state, we randomly sample training data such that the amount of training data sampled per state

is equal to the amount of training data per store. Note that the total number of training instances

per store in the M5 dataset is different as not all products are introduced at the same time in each

store. By simply taking the average amount of training data per store in each state, we successfully

eliminate the three-to-four-fold increase in training data (as each state covers three to four stores).

We could stop here, and use the trained source models G directly as the store models by

transferring all the model parameters. However, using these models without any fine-tuning as

the target models T , could potentially result in reduced forecast accuracy as only sales patterns

that are similar across all stores in each state are learned. Therefore, we fine-tune these target

models T to capture the unique sales patterns per store. While the original RSLLMs use 5.3 years

of training days per time series, we fine-tune the target models per store using only one year of

store-specific training data. This still provides training data for every day of the year. We fine-tune

using the refit function, which is the only available prebuilt LightGBM function that is capable

of adjusting pretrained LightGBM models. The refit function keeps the nodes of the decision

trees fixed, but recalculates the prediction of every leaf with the latest store-specific training data.

The refit function does not fully replace the pretrained predictions, but calculates a weighted

average between the pretrained and the newly computed prediction values. These weights are

determined using one additional hyperparameter, i.e., the decay rate.11 A decay rate close to 1.0

places more weight on the pretrained prediction values of the leaves of the source models, while a

decay rate close to 0.0 focuses mostly on the newly computed prediction values, which are computed

using the latest store-specific training data. The STRUT fine-tuning strategy of Segev et al. (2016)

suggests to only use the store-specific training data for the computation of the prediction values,

if enough training data is available. This translates to a decay rate equal to 0.0, which means that

only the newly computed prediction values of the leaves are used, and the pretrained prediction

values of the source models are overwritten.

To validate this suggestion empirically, we select the optimal value for the decay rate using a

9https://github.com/Mcompetitions/M5-methods
10https://www.kaggle.com/c/m5-forecasting-accuracy
11https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.Booster.html
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time-based cross-validation (CV) strategy that is similar to the one of the winning method.12 This

CV strategy uses the last four months of the M5 training data as four out-of-sample validation

sets of 28 days each, which we label CV1 to CV4 (see Figure 1). The decay rate that returns the

best forecast accuracy on average for CV1 to CV4, is used to predict the sales of the M5 test set.

Note that we optimize the decay rate independently of the other parameters as we simply reuse

the model architecture, input features and hyperparameters of the RSLLMs. The results of this

CV strategy show that the best performing decay rate is indeed equal to 0.0.

Figure 1: Visualization of the cross-validation (CV) strategy to determine the decay rate. The time-based CV
strategy divides the M5 training data in four separate training sets and four different 28-days out-of-sample validation
sets, which we label CV1 to CV4. The decay rate that gives the best forecast accuracy on average for CV1 to CV4,
is used to predict the sales of the M5 28-days test set.

5.2. Results

Figure 2 visualizes the training time and the forecast accuracy of the RSLLMs, as well as the

results of the TL framework with and without fine-tuning for the M5 test set. The training times

are measured on a local server with two 24 Core CPUs and 256 GB RAM. The forecast accuracy

is measured by the weighted root mean squared scaled error (WRMSSE), the M5 official forecast

accuracy metric. As the training of GBDT models are faced with stochasticity, we train the models

using five different random seed values.

Figure 2 shows how the application of the TL framework achieves similar levels of forecast

accuracy compared to the RSLLMs, while reducing training times by 23.16% to 26.35%. The

forecast accuracy of the source models (i.e., TL framework without fine-tuning per store) is on

average 4.98% lower than the RSLLMs and the TL framework with fine-tuning. Fine-tuning

the source models to identify store-specific sales patterns is thus important to obtain comparable

forecast accuracy to the RSLLMs. Without fine-tuning the TL framework training times can be

reduced by roughly 70%. If a small reduction in forecast accuracy is acceptable (on the order of

5% in this example), substantial larger reductions in training times can be achieved.

Figure 3 visualizes the WRMSSE on the test set for each of the 12 hierarchical levels, using

different random seed values. We find that the TL framework outperforms the RSLLMs at the

more aggregate levels (i.e., level 1, level 2, ...), but slightly underperforms at the more disaggregate

levels (i.e., level 9, level 10, ...). On average, the TL framework never outperforms the RSLLMs

by more than 4.78%, and never underperforms more than 0.95%. Without fine-tuning, however,

the source models consistently underperform at most up to 10% at each hierarchical level.

12https://www.kaggle.com/c/m5-forecasting-accuracy/discussion/163684
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The results above are also consistent for CV1, CV2, CV3 and CV4 with a decay rate of 0.0.

As we used these out-of-sample test sets to validate the value of the decay rate, we decided to not

report the results in the paper to have a more ‘correct’ evaluation.

6. Conclusions, limitations, discussion and the future

The M5 Accuracy competition was an important milestone for the use of ML in forecasting.

It was the first M-competition where pure ML methods outperformed simple statistical methods.

Despite their relatively straightforward implementation, they do require substantial computation

power. We demonstrate how transfer learning (TL) can be applied in hierarchical forecasting

to reduce the training time of LightGBM forecasting models, without negatively impacting the

forecast accuracy. Our TL framework requires little tuning or coding: It makes use of the hierarchy

in the time series, a prebuilt fine-tuning function and the exact same code files of the M5 top-

performing methods. Our results indicate that for the M5 limited dataset, a reduction of roughly

25% in training time can be achieved, without affecting the forecast accuracy. We conjecture that

even higher reductions in training time can be achieved for settings with thousands of products and

dozens of stores in numerous states. Without the fine-tuning step, training times can be reduced

by 70%, yet, at the expense of a small reduction in forecast accuracy.

Our TL framework keeps the computational cost of the prediction phase constant, and does

not increase the total number of model architectures, input features and hyperparameters as the

decay rate can be set to 0.0. Therefore, the computational cost of the experimental phase re-

mains the same, and can even be reduced as our TL framework reduces the speed of retraining

models with different model variations. The latter holds only true if retailers optimize the model

architecture, input features, and hyperparameters directly with the TL framework. Moreover, the

TL framework can be extended to other ML methods such as neural networks (e.g., Mukherjee

et al., 2018), and is not limited to hierarchical time series. As an example, the winning method

of the Corporación Favorita Grocery Sales Forecasting13 competition combined multiple neural

networks and LightGBM models to forecast the sales of thousands of products in 54 Ecuadorian

grocery stores for the next 16 days. Different models were used to forecast each day of the forecast

horizon. In this case, instead of grouping time series based on the hierarchy, our TL framework

can train source models G that include multiple days of the forecast horizon, e.g., forecasting four

days instead of one, to reduce the total number of models that need to be fully trained.

A reduced training time not only facilitates the practical application to put these models into

production, it also comes with financial savings. Assuming that each RSLLM covers roughly

3,000 products per store/region, and each model (with additional optimizations) can be trained

in 10 minutes on a 32 CPU machine with 32GB RAM (available on Google Cloud at a rate of

$0.791488 per hour).14 A large retailer with 1,000 stores (as a comparison, Walmart has 10,500

stores,15 and Tesco currently operates 4,673 stores)16 each selling 100,000 products (Nikolopoulos

and Petropoulos, 2018) that retrains its models every two weeks (26 times per year), requires to

train 26× 1, 000× 100, 000/3, 000 = 866, 666 models per year. If this retailer would implement an

ensemble of similar sized LightGBM models, such as the M5 winning method, it would need to

13https://www.kaggle.com/c/favorita-grocery-sales-forecasting
14https://cloud.google.com/compute/all-pricing E2 high-CPU machine types us-central1 (accessed 15 July 2021)
15https://corporate.walmart.com/our-story/our-locations (accessed 15 July 2021)
16https://www.statista.com/statistics/238667/tesco-plc-number-of-outlets-worldwide/ (accessed 15 July 2021)
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Figure 2: Results of the numerical illustration for the M5 test set. The transfer learning (TL) framework replicates
similar levels of forecast accuracy (as measured by the weighted root mean squared scaled error (WRMSSE)) to the
recursive store level LightGBM models (RSLLMs) with roughly 25% less training time. The TL framework without
fine-tuning (source models) achieves roughly 70% lower training times, at the expense of a 4.98% lower forecast
accuracy. Each model is calculated five times with varying random seed values.

Figure 3: Comparison of the forecast accuracy per hierarchical level. The recursive store level LightGBM models
(R), the transfer learning framework (TL), and the transfer learning framework without fine-tuning (source models
denoted as (S)) are compared for each of the 12 hierarchical levels of the M5 test set. Each model is calculated five
times with varying random seed values. The forecast accuracy is measured with the weighted root mean squared
scaled error (WRMSSE). The (TL) outperforms the (R) at the aggregated levels, but slightly underperforms at the
more disaggregated hierarchical levels. The source models (S) systematically underperform.
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train 5,199,996 models per year,17 i.e., 866,666 training hours at a total annual cost of $685,956.

A reduction of 25% training time would result in $171,489 annual savings. In the case of an online

retailer, the savings could be even more substantial as these may offer over 100 million products

in a wide variety of regions (Seaman, 2018).

Despite the positive results reported in the paper, we acknowledge some limitations and poten-

tial improvements of the TL framework that require further research. One limitation is that there

is no theoretical guarantee that our implementation of the framework reaches acceptable levels

of forecast accuracy. While the refit function succeeds in fine-tuning the target models T in

our numerical illustration, its ability to adjust existing model parameters is limited as the refit

function cannot recalculate any nodes of a decision tree. This may hinder the target models G to

learn any specific patterns at grouping level g, if the time series at g′ are too dissimilar from the

ones at grouping level g. We believe that this inability also causes the under- and outperformance

when comparing the forecast accuracy per hierarchical level. One solution could be to only group

time series by g′, if they show enough similarity, using advanced clustering-based ensemble models

(Godahewa et al., 2020). Another possibility is to test different fine-tuning strategies that are ca-

pable of fine-tuning a subset of the nodes. These strategies already exist today (Segev et al., 2016;

Fang et al., 2019; Son et al., 2015), but are not yet prebuilt into the LightGBM package. Other

improvements may be realized by replacing the random sampling procedure to reduce the total

amount of training data of the source models with a more sophisticated sampling approach (e.g.,

the row and column selection algorithm of Ali and Yaman, 2013). Such an approach could help

selecting a smaller and more informative set of training instances to further improve the forecast

accuracy and to decrease the computational requirements.

Another limitation is the lack of software optimizations of the refit function. Additional

experiments show that the refit function is relatively inefficient regarding training times. Ineffi-

cient training times, together with the lack of other software optimizations (such as not supporting

.bin files for faster loading times18 or using three times more RAM memory during our numerical

illustration), suggest that the refit function is not as optimized as training LightGBM models

from scratch. Therefore, optimizing the refit function appears as a promising area of future

research, given its potential to further reduce the training time of the TL framework and even im-

prove our results further. Note that we used the latest version of the LightGBM package (version

2.3.1.) that was available during the M5 Accuracy competition.

With our paper we hope to draw the attention of researchers and practitioners to the importance

of computational efficiency of forecasting methods, especially if they are intended to be used

for hundreds of stores and thousands of products. We believe that this would help the forecast

community and commercial software packages to fully embrace the state-of-the-art and leverage

the potential of these models for implementation in practice.
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