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Abstract Robotic grasping is still challenging due to limitations in perception and control,
especially when the CAD models of objects are unknown. Although some grasp planning
approaches using computer vision have been proposed, these methods can be seen as open-
loop grasp planning methods and are often not robust enough. In this paper, a novel grasp
planning method combining CNN-based quality prediction and closed-loop control (CNNB-
CL) is proposed for a vacuum gripper. A large-scale dataset is generated for CNN training,
which contains more than 2.3 million synthetic grasps and their grasp qualities evaluated
by grasp simulations with 3D models. Unlike other neural networks which predict grasp
success by assigning a binary value or grasp quality level by assigning an integer value, the
proposed CNN predicts the grasp quality via a linear regression architecture. Additionally,
the method adjusts the grasp strategies and detects the optimal grasp based on feedback
from a force-torque sensor. Various simulations and physical experiments prove that the
CNNB-CL method is robust for random noise disturbance in observation and compatible
with different depth cameras and vacuum grippers. The proposed method finds the optimal
grasp from 2,000 candidates within 300 ms and achieves a 92.18% average success rate for
different vacuum grippers, which outperforms the state-of-the-art methods regarding success
rate and robustness.

Keywords Random picking · Unknown object · force-torque sensor · Closed-loop grasp
planning · Vacuum gripper

1 Introduction

Grasping is a core task that often needs to be performed by robotic systems. However, it is
still challenging due to limitations in perception and control. Many aspects, such as collision
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avoidance, objects mass distribution, grasp region constraints and object deformation [17],
need to be considered when planning for a successful grasp.

Grasp planning of unknown objects is even more challenging than that of a predefined
object. One of the commonly adopted approaches is to plan the grasping movement for
unknown objects based on geometric analysis. For instance, it is possible to extract primitive
shapes of unknown objects, and to consider them as simplified geometries, such as cubes,
cylinders, cones, for grasp planning [34,49,13]. However, primitive shape extraction is a
complex process and does not work well for more complex-shaped objects. A probabilistic-
framework-based grasp planning model is proposed by Dong et al. [7], which is able to
plan high-accuracy grasps for unknown objects under random perturbations. Nevertheless, a
pre-segmentation of the objects is demanded, which is often not straightforward when many
objects are stacked to each other.

An alternative approach is to train a neural network to evaluate grasp qualities for grasp
candidates. In recent research, deep learning has been widely used to improve robotic grasp
performance, especially for grasp pose detection and manipulation [29,18,41]. These meth-
ods usually adopt neural networks to detect potentially successful grasp poses. The adopted
algorithms often use inputs such as depth images [29], RGB-D images [16] or 3D point
clouds [37,28], and output a binary value to predict grasp success or an integer value to in-
dicate the level of grasp quality. These methods are able to detect a set of good-quality grasp
poses, but are often unable to define the optimal one. The output of neural networks is always
influenced by the noise on the used input data, which can fail to find a grasp position. In this
case, no grasp plan can be made for the robot, resulting in the need for human intervention.
Furthermore, many state-of-the-art methods merely based on neural network evaluation are
open-loop grasp planning methods, which cannot detect the real-time grasp status and ad-
just grasp strategies to keep a stable performance in practical applications. Thus, feedback
information has to be taken into account for grasp planning.

To improve the robustness of the proposed grasp planning method with different setups,
a CNN-based linear regression architecture instead of a classification architecture is used to
estimate the grasp quality in this work. This CNN is trained by a large dataset consisting
of synthetic point clouds, grasp poses and their grasp qualities. Considering the wide use of
vacuum grippers for fast picking solutions, the method was evaluated for a vacuum gripper.
In addition, a closed-loop grasp planning algorithm is presented, which detects the optimal
grasp and monitors the grasp status based on the point clouds from the depth camera as well
as feedback from the 6-DOF force-torque sensor.

The main contributions of the proposed method are:

1) A large-scale grasp dataset is built by grasp simulations with 3D models to train
the neural network, which contains 2.3 M synthetic grasp examples and their corre-
sponding grasp qualities. Unlike many existing datasets generated by manual labels
or only working well for a specific size of gripper, the proposed dataset is extensive
and contains grasp examples for different sizes of grippers. Random disturbances are
implemented to simulate the use of physical depth cameras. The dataset can be uti-
lized to train neural networks for any size of vacuum gripper with a round suction
cup.

2) The CNNB-CL grasp planning method is proposed for vacuum grippers. Compared
with other CNN-based methods that output an integer value to predict grasp success
[29,37,28], the proposed neural network is a linear regression architecture and out-
puts a higher-resolution grasp quality. Furthermore, the CNNB-CL method utilizes
the force-torque wrench of the gripper to build the closed-loop controlling strategies
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and find the optimal grasp. In addition, the CNNB-CL method is compatible with
both cameras with different noise levels as well as various sizes of grippers.

3) In order to measure the difficulty of grasp planning, the complexities of the set of
objects for random picking are defined from Level 1 to Level 9 according to the ob-
jects’ shapes and distributions in Section 4.2. The robustness and generalizability of
the CNNB-CL method are explored at Level 1 to Level 6. It keeps a good perfor-
mance under the condition that several unknown objects with ”medium-complexity”
shapes are stacked onto each other in a ”multi-layer” clutter. A universal picking
solution is developed for vacuum-gripper-based picking systems.

The remainder of the paper is organized as follows: Section 2 discusses related work.
In Section 3, the CNNB-CL method is introduced, and its different substeps are discussed
in detail. Section 4 presents a set of practical experiments to validate and benchmark the
performance of the proposed grasp planning method. Finally, Section 5 summarizes and
concludes the performed work.

2 Related Work

Recent research on robotic grasping mainly engages on the grasp quality evaluation with
unified metric and grasp detection in dense clutter. Current grasp pose detection methods
can be divided into three categories according to their basic frameworks: analytic methods,
empirical methods and synthetic methods.

Analytic methods can be divided into two research lines. One of them is to plan grasps
according to physical analyses of 3D models. The main idea of this research line is as fol-
lows: collect 3D models of objects and evaluate grasp qualities for each 3D model with phys-
ical principles in random perspectives, and then match input scenes, such as point clouds or
RGB-D images, to the pre-analyzed 3D model database and plan the highest quality grasp
according to the pre-analyzed instances. There are two critical steps in these analytic meth-
ods: 3D model analysis and 3D object registration. In the past decade, many 3D model
analysis approaches have been proposed, including caging [42], force closure [40], Grasp
Wrench Space (GWS) [12,4] and Task Wrench Space (TWS) [11]. Furthermore, some re-
searchers developed simulators, for example, GraspIt! [33], OpenGRASP [46] or SynGrasp
[32], to provide open-source platforms for dexterous grasp simulations based on physical
principles. These simulators often evaluate grasp quality and select the preferred grasp by
maximizing the grasp quality. As for the task of 3D object registration, geometric similarity
and texture features are used to match real-world objects to predefined 3D objects in the
database [5,3,44,20]. The limitations of these methods have to be noted, although a high-
quality grasp can be found. Firstly, 3D registration is a time-consuming operation, and it
is not easy to achieve real-time grasp planning. Secondly, physical robotic grasps rely on
a pre-analyzed 3D model database, so it is not a feasible solution to deal with unknown
objects that are not defined in the pre-analyzed database.

Another line of research on analytic methods attempts to extract primitive shapes of
objects, and considers them as simplified geometries, like cubes, cylinders, cones, to plan
grasps [34,49,13]. This approach does not rely on any database and is able to plan grasps
for unknown objects. However, the high-quality grasp for a primitive shape is often not
the same as that for a real object, hence this strategy cannot always execute the successful
grasp. Additionally, Herzog et al. proposed a shape-template-based algorithm for unknown
object grasping [15]. This algorithm is able to plan grasps for unknown objects by finding
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the best matching object shape templates associated with previously demonstrated grasps
and achieves a 75.3% average success rate.

Empirical methods use Deep Learning to develop a model and learn grasp principles.
The model inputs robotic observation, and assigns a binary value to predict grasp success or
an integer value to indicate the grasp quality level. Typically, developing a neural network to
learn grasp principles is considered as a classification model and trained by plenty of grasps
with a label of success or failure. Normally, grasp labels are marked manually in RGB-D
images and point clouds [18,10,24,8]. For example, Lenz et al. created the Cornell Grasp
Dataset consisting of 1,035 RGB-D images of 280 different objects with manual labels [25].
A recent research work extended the Cornell Grasp dataset to 51 K grasp examples and
trained a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model
[23]. Researchers also attempted to develop a model with another approach: Reinforcement
Learning. This approach collects grasp examples by physical robotic trials that detect and
confirm whether the grasp was successful or failed with various sensors, such as a depth
camera, a multi-axis force sensor or a haptic sensor [39,36,26,43,2]. The neural network
learns grasp principles from thousands of physical grasp trials and is able to detect robust
grasps for unknown objects. Recent research by Dasari et al. reveals that video frames can
also be used for neural network training [9]. The main disadvantage is that tedious collec-
tions of grasps are needed for empirical methods no matter what kind of framework de-
scribed above is used. For instance, Levine et al. ran two months of physical trials with 14
robots to collect 800 K grasp examples [27]. Although several benchmarks of grasp datasets
are available online, most of them are merely compatible with antipodal grippers or similar
ones. As a result, new grasp examples have to be re-collected if a neural network is to be
developed for a different gripper.

Synthetic methods can be seen as combining analytic methods and empirical methods,
which develop neural network models to detect robust grasps from robotic observations di-
rectly. In comparison with empirical methods, synthetic methods reduce the time required
for dataset collection. Unlike empirical methods mentioned above that collect grasp ex-
amples by physical trials or human labels, synthetic methods collect grasp examples by
grasping 3D models in simulation. A suitable method to evaluate the robustness of virtual
grasps is critical for synthetic methods. Typically, a virtual gripper is defined to grasp 3D
models from different perspectives. The robustness of each grasp is evaluated to mark a la-
bel for the grasp example, which is a similar process in analytic methods. For each grasp
example, a corresponding point cloud [37,28] or depth image [29,31,35,38] is generated
by rendering the 3D model. Berk Calli et al. released YCB grasp benchmarks [6], in which
reconstructed 3D meshes and real RGB-D images sampled by physical depth images from
different perspectives are included. Although a robust synthetic method does not require a
precise segmentation of the objects [37], the latest research indicated that pre-segmentation
and task-constraints improve both the accuracy and the robustness of the grasp planning
algorithm [41].

In this paper, the research work builds upon the synthetic methods by using a large-
scale dataset to train a CNN-based linear regression architecture for grasp quality prediction.
Various experiments were implemented to explore the robustness and generalizability of
the proposed grasp planning method (Section 4). Finally, a universal picking solution is
developed, which is compatible with different vacuum grippers and depth cameras.
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Fig. 1 Overview of the closed-loop grasp planning method.

3 Method

3.1 System Overview

Given a 3D point cloud from a depth camera as well as a gripper configuration, the grasp
planning problem is to select a set of grasp candidates, then evaluate their grasp qualities and
find a robust grasp to pick the object. In this paper, only vacuum-gripper-based grasping is
considered, and the problem is simplified by replacing the circular model of the vacuum cup
with a polygon approximation to analyze and quantify the related grasp quality. As shown
in Fig. 1, the CNNB-CL grasp planning method can be divided into two phases: an offline
and an online phase. Three major substeps are included: grasp simulation, neural network
training and grasp execution.

Coordinate Systems. In this paper, four coordinate systems are used to evaluate the
grasp quality and select the optimal grasp, named Camera Coordinate System (CCS), World
Coordinate System (WCS), Robot Coordinate System (RCS) and Gripper Coordinate Sys-
tem (GCS) respectively. The details of these coordinate systems are shown in Fig. 2.

Grasp Simulation. The primary task of the grasp simulation is to synthesize grasp ex-
amples using a virtual gripper and 3D meshes of objects, digitize grasp qualities by numer-
ical values and record the grasps with point clouds. The grasp simulation is mainly imple-
mented in GCS, because any grasp trial of random picking in WCS can be converted into
the grasp trial along with the vertical direction in GCS.

Given a specified 3D model O , the random pose of the object in GCS is described as
PPPO (x,y,z,α,β ,γ), where (x,y,z) and (α,β ,γ) specify the position and rotation of the 3D
model respectively.

Given a virtual gripper G , MG is a set of parameters of the gripper. The virtual grasp trial
is implemented from the vertical direction. The grasp quality is defined by q=Q(PPPO ,MG )∈
R, considering the pose of object PPPO and physical properties of the gripper MG , like the
coefficient of friction µ between the vacuum gripper and the object, and the maximum
vacuum force |FFFV |.
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Fig. 2 Coordinate systems for grasp planning. Red, green and blue lines are the x, y, z axis of the used
coordinate systems respectively. Note: Camera Coordinate System (CCS), World Coordinate System (WCS),
Robot Coordinate System (RCS) and Gripper Coordinate System (GCS).

A virtual camera is deployed for robotic observation. Each grasp example is recorded
by rendering a local point cloud P ∈ R3×N with N points. The details of Grasp simulation
will be provided in Section 3.2.

Neural Network Training. The function of the neural network is to replace the grasp
metric Q(PPPO ,MG ) by q̂ = QΘ(P), where Θ defines the parameters of the used neural net-
work. This replacement is necessary since the grasp quality prediction with a neural network
QΘ is much faster than a traditional mathematical solution Q(PPPO ,MG ) for a physical grasp
trial, which will be described in Section 3.3.

Grasp Execution. According to the definitions above, the grasp quality of a real-world
object cluster can be evaluated by random sampling a set of sub point clouds and predicted
by the neural network QΘ. Let MF be a set of feedback parameters from various sensors.
The final grasp is defined as ggg f ∈C, in which C is a set of grasp candidates evaluated by QΘ.
The final grasp is selected with comprehensive strategies taking QΘ and MF into account.
The feedback is also utilized to optimize the grasp trail and robotic motions during the actual
grasping. The details of the feedback-based optimization will be presented in Section 3.4.

3.2 Grasp Simulation: Generating a Large-Scale Dataset

The dataset is composed of a set of evaluated grasps, in which each grasp contains a local
point cloud P and its grasp quality q = Q(PPPO ,MG ) as shown in Fig. 3.

In the dataset, each grasp example consists of a robotic observation recording by PO and
its grasp quality q. The rest of Section 3.2 will explain how the robotic observation PO is
sampled and the corresponding grasp quality q is evaluated.
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Fig. 3 A grasp candidate in the dataset.

Algorithm 1 Basic Observation Rendering

Input: 3D model O , grasp center ccc, virtual gripper G , virtual camera C
Output: observation PO

Steps:
1.1: PPPO = RandomPose(O)
1.2: PPPcam = Set(PPPO ,ccc,PPPG )
1.3: Msl = Set(C ,G )
1.4: for msl ∈Msl do
1.5: ppp(x,y,z) = Intersection(msl ,O)
1.6: end for
1.7: Porg =Desample(Collect(ppp))
1.8: PO = Disturb(Porg)

Observation. The observation of the object is generated based on the 3D model, which
is rendered by the virtual camera with random noise.

Algorithm 1 describes the steps to generate a basic observation. Step 1.1 deploys a 3D
model O with a random pose PPPO in the WCS and grasps the upper surface of the object with
the virtual gripper G from the vertical direction. Step 1.2 sets the pose of the virtual depth
camera PPPcam according to the object pose PPPO , the gripper pose PPPG , and the grasp center ccc.
Step 1.3 defines a set of structured lights Msl for the virtual camera in a grid space. The scope
of the grid space is determined by both the camera resolution and the gripper size. Step 1.4
to Step 1.6 generate the point cloud by projecting the lights towards the object surface and
estimating the cross points. Step 1.7 collects cross points and desamples the point cloud.
The final step implements the random noises for point clouds, which simulates the case for
the physical depth camera.

Fig. 4 presents the results of 3D model rendering and point cloud generation. To improve
the neural network learning efficiency, only the desampled 11× 11 point cloud around the
gripper, instead of the whole observation, is taken as grasp candidate [25].

Grasp Quality. A vacuum gripper picks up an object due to an air pressure differential
between the suction cup and atmosphere that sticks the object surface on the cup. A tight
contact is necessary for a high-quality grasp to avoid air flowing into the suction cup and
reducing the air pressure differential.
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(a) (b)

Fig. 4 Example of grasp candidate. (a) A 3D object grasped by the virtual gripper. (b) The point cloud
rendered by the virtual camera.

(a) (b) (c)

Fig. 5 Grasp quality evaluation based on GWS. (a) The conical spring model with an octagon bottom. (b)
The forces and torques of the contact model. (c) The conical spring model for the grasp candidate.

Generally, if the objects surface is airtight and no gap exists between the perimeter of
the cup and the surface, the gripper will generate the maximum vacuum force, and the grasp
will be considered as a high-quality grasp. Hence, analyzing the distortion of the suction
cup and the contact seal during the grasp becomes essential for grasp quality evaluation.

In this paper, the contact seal is analyzed and the grasp quality is evaluated by simpli-
fying the suction cup into a conical spring system with an octagon bottom. The vertices of
the octagon are defined as v1, v2, , v8 as shown in Fig. 5. In the GCS, the forces and torques
are analyzed based on GWS. The GWS is defined by a set of forces and torques, including
the approaching force FFFz, the vacuum force FFFV , the frictional forces FFFx, FFFy, the torsional
friction TTT z and the elastic restoring torques TTT x, TTT y. The feasibility of it is evaluated under
quasi-static conditions [30].

Specifically, the suction cup exerts a normal force FFFN = FFFz +FFFV along the grasp di-
rection due to the approaching force FFFz and vacuum force FFFV . The normal force is decom-
posed into a set of sub normal forces and assigned to each vertex of the octagon, named
FFFN = ∑wi fff Ni

, i=1, 2, ,8 [30]. It is noteworthy that sub normal forces fff Ni
are not always

equal unless the suction cup contacts an absolutely flat surface from the vertical direction,
which is not the case for a general grasp. Therefore, the weight values wi are different and
are mainly influenced by the flatness for the contact surface, coefficient of friction µ and the
physical limitation of the gripper.

For the whole octagon, the GWS matrix is defined as G ∈ R6×8, in which each column
is a GWS vector [| fff xi

|, | fff yi
|, | fff zi

|, |τττxi |, |τττyi |, |τττzi |]T [18,30] for a vertex from the octagon
computed by Equation 1.
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{
fff xi

= wi fff N ·nnnxi +µ fff zi
·nnnxi

fff yi
= wi fff N ·nnnyi +µ fff zi

·nnnyi

(1)

In the ideal case, the GWS vector should be ΛΛΛ = [0,0, |FFFN |,0,0,0]T , which means that
the vacuum gripper contacts with a flat surface. Definitely, it is not the case for a gen-
eral grasp trial. For a general grasp candidate, the GWS vector is calculated by G ·W =
[|FFFx|, |FFFy|, |FFFz|, |TTT x|, |TTT y|, |TTT z|]T , where W = [w1,w2, ...,wi, ...,w8]. Then, the Euclidean Dis-
tance between G ·W and ΛΛΛ is defined as the robustness of the grasp. A simple method to
assign the weight values w1,w2, ...,w8 is to calculate the angles between the grasp center and
vertices, and assign the weight values according to the angles. However, this method only
considers the ideal case in the simulation but ignores some uncertainties and contingencies
of the contact surface for a physical grasp trial. In this paper, the weight values are assigned
regarding the physical limitations of the vacuum gripper, and the minimum of the Euclidean
Distance is defined as the grasp quality, named q = min||G ·W −ΛΛΛ || [30].

In details, the value of G ·W is limited by several physical parameters of both the suction
cup and 3D object, which include the constant of elastic limit k=0.003 for the suction cup,
the coefficient of friction µ=0.5 on the contact surface, the approaching force |FFFz|=10.0 N
and the maximum vacuum force |FFFV |=25.0 N. The limitations of the G ·W are described as
follows [18,30]: 

∑wi = 1√
3 |FFFx| ≤ µ|FFFN |√
3
∣∣FFFy
∣∣≤ µ|FFFN |

|FFFz| ≥ |FFFV |√
2 |TTT x| ≤ πrk√
2
∣∣TTT y
∣∣≤ πrk√

3 |TTT z| ≤ µr|FFFN |

(2)

All the limitations above can be converted into the limitations of wi via the grasp matrix
G. The minimization of ||G ·W −ΛΛΛ || subjecting to limitations of wi is solved by Quadratic
Programing (QP). This step is repeated many times with different octagon models, and the
average value q̄ is calculated as the grasp quality for each grasp.

Dataset Augmentation. To increase the diversity and robustness of the dataset, some
dataset augmentation methods are implemented. On the one hand, the object is rotated
several times when a grasp center is selected. Correspondingly, the grasp qualities are re-
evaluated and the point clouds are re-rendered to generate more grasp examples. The object’s
rotation aims to simulate the uncertain pose of object in a dense clutter where many objects
are randomly stacked onto each other. On the other hand, the radius of the virtual vacuum
gripper is also changed from 10 mm to 30 mm (10 mm< r <30 mm) to improve the dataset
diversity. Additionally, the coefficient of the disturbing factor σ is also set to simulate the
random noise of the physical depth camera.

Several benchmarks are available for the research on robot manipulation, like 3DNet
[48], KIT object database [19], YCB benchmarks [6], Cornell Grasping [25] etc, which
provide various 3D mesh models, laser scans and RGB-D images. In this paper, over 2.3
M grasp candidates are generated based on 30 high-resolution 3D mesh models from YCB
benchmarks with 40 hours. Specifically, the 3D models that usually cannot be grasped by
vacuum gripper are excluded in YCB benchmarks, including, for example, chains, ropes,
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Fig. 6 Architecture of the selected neural network.

sponges, etc. The disturbing factor σ of the robotic observation is changed from 1% to 7%
to improve the robustness of the trained neural network.

3.3 Neural Network Training

The task of the neural network is to define a function QΘ(P) to predict the grasp quality
when the observation P in the GCS is given.

The grasp quality prediction is defined as a linear regression structure and solved with
CNN. Over 30 networks were trained with similar architectures but different combinations
of convolutional filters to find the optimal solution. The final architecture of the grasp quality
prediction network is illustrated in Fig. 6, which is a 7-layer light-weighted CNN model.

As mentioned in the previous sub section, the point cloud around the coordinate (x,y,z)
is encoded into three channels respectively. The CNN takes the 11× 11 point cloud array,
and outputs a real number to predict the grasp quality. The purpose of CNN training is to
minimize the differential of the predicted value q̂ and the real grasp quality q evaluated by
GWS. The proposed CNN structure is combined with two sub structures. The first part is
a 2D CNN structure. This part re-maps the input data into 64 channels and uses 2 ResNet
units [14] to extract key information from the point cloud. The second part is a 1D CNN
structure, which uses two layers of CNN units to descend the dimensions of the data. The
performance of the network will be discussed in Section 4.1.

The Mean Squared Error (MSE) loss function is defined in Equation 3 to train the neural
network. The parameters are optimized via an Adam optimizer [22].

L(q,QΘ(P)) =
1
n

n

∑
i=1

(qi−QΘ(Pi))
2 (3)

Adam optimizer computes individual adaptive learning rates for different parameters
from estimates of first and second moments of the gradients. The magnitudes of Adam
parameter updates are invariant to the rescaling of the gradient, and the parameters often
require little tuning for the fine-tuning of a network [22].

Typically, there are six parameters to define an Adam optimizer, and three of them often
need to be adjusted considering the target network and used dataset, named: a learning rate
l, two exponential decay rates β1 and β2. The values of β1 and β2 should be near to 1.0. In
detail, the three parameters above are determined by the following steps:
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1) Define a CNN architecture, adjust the learning rate l to train the CNN until the loss
function of the CNN keeps a stable status without overfitting after 100 epochs. The
value of 0.0005 is provisionally selected for the learning rate l.

2) Adjust the values of β1 and β2 to get a better training result. Notably, the values of
β2 too close to 1 might lead to instabilities in training[22]. In this paper, the values
of β1 and β2 are set as 0.9 and 0.999 respectively.

3) To better fit the proposed CNN architecture with different parameters for the further
fine-tuning, the learning rate is initialized using multi-step gradient descent with an
initial learning rate of 0.0005 and decreasing rate of 0.5.

3.4 Grasp Execution

Robotic grasp planning is a comprehensive task. Predicting the grasp quality plays an es-
sential role in grasp planning. However, a successful grasp in the real world does not only
depend on the surface flatness of the object, but also depends on the interaction of the objects
with each other, especially when the distribution of objects is dense. Actually, the informa-
tion acquired from observations is limited in the practical grasp. Analyzing grasp feedback
from other sensors and adjusting the grasp strategies to build a closed-loop grasping method
becomes necessary. For instance, the force-torque wrench of the gripper is a strong reference
to detect a successful grasp. In addition, it can also be utilized to adjust the grasp strategy,
approaching force and robotic speed.

The force-torque wrench feedback improves grasp performances from two aspects: ad-
justing the grasp strategies and robotic motion.

On the one hand, three grasp strategies for the grasp candidate selection are listed with
priority below:

1) The grasp that is nearest to the cluster center.
2) The grasp that has the highest position in Z-direction.
3) A grasp that is randomly selected in the top k candidates.

The main idea of the grasp candidate selection is to find the top 10 high-quality grasps
via neural network and decide the final grasp ggg f with one of the three principles above
according to the feedback of the previous grasp. When a failed grasp is detected, the grasp
principle will be switched in the subsequent grasp trial.

On the other hand, the robotic motion is adjusted based on the real-time force-torque
feedback during the grasping. First, a threshold of the approaching force FFFN is defined. The
robot adjusts the desired pose and avoids a badly-supported grasp when approaching to an
object (Fig. 7(b)). Second, the grasp success can be detected in a similar way as described
above. Once a failed grasp trial is detected, the grasp strategy will be switched in the subse-
quent grasp trial. Third, the robotic motion is adjusted to optimize the grasp performance. It
is an effective way to avoid a failed grasp when the grasp is executed on an air-leak contact
surface (Fig. 7(a)), or the object is heavy. Let VVV R = [vx,vy,vz] be the desired speed of the
robot along with the x, y and z axis in the RCS, and the vector [ fgx, fgy, fgz,τx,τy,τz] is the
force-torque wrench of the gripper base in the RCS. The robotic speed is adjusted according
to τgx, τgy and fgz. Assuming that the force-torque wrench is restricted with τ

re f
gx , τ

re f
gy and

f re f
gz , the robotic speed is adjusted by Equation 4 to avoid a failed grasp during robotic mov-

ing, where k1, k2 and k3 are the constants to re-scale the controlling factors for the speeds
vx, vy and vz. In the physical grasping, k1, k2, k3, τ

re f
gx , τ

re f
gy and f re f

gz are set as 0.3, 0.3, 0.05,
0.3 N·m, 0.3 N·m and 9.0 N respectively, and the they should be adjusted according to the
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(a)

Object 2

Leaky 

grasp region

Object 1

Object 2

Object 3

(b)

Object 1

Fig. 7 Examples of bad grasps. (a) A leaky grasp region where air can flow into the vacuum gripper via a
hole. (b) A badly-supported grasp. Note: the badly-supported grasp exists no matter what kind of gripper is
used.

properties of the objects and setups to get a better performance. Specifically, τ
re f
gx , τ

re f
gy and

f re f
gz are adjusted considering the average weight of objects, and k1, k2 and k3 are modified

based on the minimum/maximum robotic speed to make sure that objects do not fall during
the grasping and moving steps.

V ′R =VR ·

1− k1(|τgy|abs− τ
re f
gy )

1− k2(|τgx|abs− τ
re f
gx )

1− k3(| fgz|abs− f re f
gz )

 (4)

Algorithm 2 is followed for the closed-loop grasp planning. Step 2.1 implements all
procedures for the point cloud P to reduce the disturbances for grasp planning in the sub-
sequent steps, including background removing, voxelizing, cluster segmentation, etc. The
point cloud is transferred from CCS to WCS. While a recent study reports that background
removing is unnecessary to evaluate grasp quality for an antipodal gripper [35], it is still
meaningful for a vacuum gripper. Otherwise, the flat table will often be believed as the most
feasible grasp region. The cluster segmentation is beneficial to deal with a large cluster. As-
suming 2,000 grasp candidates are randomly sampled for a large cluster with 80 cm×80 cm,
the average distance between each candidate is about 1.8 cm. If the input scene is segmented
into two or more sub-clusters and each cluster contains several objects, it is unnecessary to
evaluate the grasp quality for all sub-clusters. As a result, the average distance between each
candidate will be closer, and the grasp quality can be improved. Step 2.2 samples a list of
grasp candidates S from the point cloud. 2,000 grasp candidates are typically sampled for
a physical grasp trail. Step 2.4 crops out a sub point cloud for each grasp candidate gggP and
transfers it to GCS, then desamples the sub point cloud into 11× 11 points and encodes
data into a 3-channel matrix. In this step, the leaky grasp regions are excluded from grasp
candidates as shown in Fig. 7 (a). Step 2.5 and Step 2.6 predict the quality value q̂ for each
grasp sub point cloud P via the selected neural network QΘ. Nevertheless, a deviation often
exists between the predicted value q̂ and the real grasp quality q. An average smooth filter is
used for the grasp quality prediction to improve the accuracy, which means that the quality
of each grasp is calculated by itself as well as its neighbors. Step 2.8 to Step 2.10 list the top
10 high-quality grasp candidates and select the final grasp ggg f based on the 3 principles de-
scribed earlier and the feedback from previous grasp trials. Step 2.11 generates the real-time
robotic controlling parameters MR in RCS, and executes the physical grasp. The feedback
MF is used to adjust the robotic motion when the gripper picks up the object.
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Algorithm 2 Grasp Planning

Input: point cloud P, feedback information MF , gripper configuration G , neural network QΘ

Output: final grasp ggg f , robotic motion MR

Initialization: Q = /0
Steps:

2.1: P′ = Preprocess(P)
2.2: S = Sample(P′)
2.3: for all gggP ∈ S do
2.4: P = Transfer(Crop(P′,gggP,G ))
2.5: q̂ = QΘ(P)
2.6: Q = Q∪ q̂
2.7: end for
2.8: Q′ = Rank(Smooth(Q))
2.9: C = Top10(Q′)
2.10: ggg f = Select(C,MF )
2.11: MR = Execute(ggg f ,MF )

4 Grasping Experiments

This section describes extensive experiments to evaluate the performance of the proposed
CNNB-CL grasp planning method both during the simulation and on a physical robot. A
computer running on Ubuntu OS was used in the experiments, which consists of a multi-
kernels 3.5 GHz Intel Core i9-9920X CPU, 64 GB of system dynamic memory (DRAM),
and two Nvidia GeForce RTX 2080Ti graphics cards. The robotic system is depicted in Fig.
8. It is composed of a 4-DOF FANUC Delta robot (M-2iA 3SL), a 6-DOF force-torque
sensor (Robotiq FT 300), a vacuum gripper (piGRIP Configurable suction cup), a depth
camera (Microsoft Kinect Version 2) and a PC. The average distance between the depth
camera and the work platform is 1,000 mm. The vacuum gripper is controlled via a robot
controller that interacts with the PC by Socket Messaging. The depth camera and the 6-DOF
force-torque sensor communicate with the PC via ROS nodes. The algorithm is programmed
in Python. Due to the physical limitation of the 4-DOF robot, the vacuum gripper direction
is always in the vertical direction.

4.1 Performance in Simulation

In this paper, the 2.3 M synthetic grasp examples were divided into two parts: 91% were
used to train neural networks, and the remainder was utilized for tests.

Over 30 networks were trained with similar architectures but different kernel sizes and
channel widths to find an optimal network structure based on the 7-layer light-weighted
CNN. The channels of 7-layer CNN are defined by c×[16,16,32,32,32,32,16],c= 1,2,4,8,
in which c is a constant factor to change the width of the proposed CNN. The kernel sizes of
2D CNN are set as 3×3, 5×5 and 7×7. Each CNN structure was trained over 200 epochs
and tested by 200 K synthetic point clouds.

The grasp qualities of the test set changes from 2.0 to 7.5 with an average value of 3.6.
The errors between the predicted quality values q̂ and the standard quality values q were
compared. Both the absolute error and the relative error were calculated for neural network
assessments by the following equations:

absolute error = |q̂−q|abs (5)
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6-DOF force sensorDepth

camera

Vacuum gripper

Fig. 8 Robotic setup for the experiments.

relative error =
|q̂−q|abs

q
(6)

Fig. 9 presents the performances of the neural networks trained over 200 epochs. The
training results indicate that the proposed CNN keeps a large average error when the kernel
size is larger than 3× 3 due to the low resolution of the 11× 11 input point cloud. When
the kernel size is 3× 3, the CNN results in low relative errors (12%-18%). Hence, it is
unnecessary to increase the resolution of the input point cloud with longer time cost in the
real-world grasp. Furthermore, when the channel factor c is larger than four, the relative
errors do not significantly decrease. The time consumption of the CNNs in Fig. 9 has no
noticeable difference, as most of the time is spent on the grasp candidate sampling if the
CNN structure is not very deep.

Then, the depth of the proposed CNN was increased by integrating more ResNet units.
Table 1 records the absolute errors, relative errors and time consumption of the proposed
CNN architectures with 2, 3, 4 and 5 ResNet units respectively. It reveals that the prediction
errors of the CNNs do not dramatically decrease with over 2 ResNet units, which means that
a 7-layer light-weighted CNN with 2 ResNet units is competent enough to predict the grasp
quality for an 11× 11 point cloud. In contrast, the time consumption is longer causing by
the deeper structure, which is not good for the practical fast-picking application. In addition,
a point cloud with a higher resolution often performs a better performance on the error of
the grasp quality evaluation but consumes a longer time. For instance, a 7-layer CNN with
18×18 point cloud spent over 1.00 s to evaluate 2,000 grasp candidates during the tests. As
a result, the final architecture of the proposed CNN is defined with c=4, a 3×3 kernel and 2
ResNet units as shown in Fig. 6.

The robustness of the proposed neural network was validated by point clouds with dif-
ferent noise levels. Over 6,000 synthetic point clouds with grasp qualities q ranging from 2.0
to 7.2 were selected. The grasp quality q and the predicted quality q̂ were compared when
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Fig. 9 Results of the neural networks training. Note: Green bars indicate the chosen architecture.

Table 1 Performances of the proposed CNNs with different ResNet units.

ResNet unit 2 3 4 5

Depth of CNN 7 9 11 13
Absolute error 1.01 0.97 0.91 0.90

Relative error(%) 12.05 11.02 10.21 10.07
Time consumption (ms) 260 270 360 970

the random noise level was changed from 1% to 9% as presented in Fig. 10. In this figure,
the grasp qualities are ranked by ascending order based on their standard quality values q,
then the predicted grasp quality values q̂ under different noise levels are separately fitted by
a 5-degree polynomial curve fitting. It is clear that the prediction values q̂ increase with an
increasing noise level, which reveals that the noisy disturbance has a negative influence on
the grasp quality prediction. However, each fitted curve is monotonically increasing when σ

is less than 9%. In other words, if the noise level is stable, the neural network always ranked
the grasp qualities in the correct order, unless the noise level is quite serious. As a result, the
proposed neural network has strong robustness against point cloud disturbance and is com-
patible with depth cameras with different noise levels. It is worth noting that the random
noises were implemented on the desampled 11×11 point cloud instead of the original point
cloud. If the same disturbance is implemented on the original point cloud, a better result can
be expected because desampling can be considered as a smooth filter that is able to smooth
the noise disturbance. The robustness and applicability of the proposed neural network will
be further evaluated by experiments on a physical robot, as presented in Section 4.2.
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Fig. 10 Grasp quality predictions under different noise levels for synthetic grasps.

4.2 Performance on Physical Robot

The challenges of random picking mainly come from two aspects: the complexity and dis-
tribution of objects. Fig. 11(a)-(c) list some objects used in the following tests, which are
separated into three categories according to the complexity of their shapes:

1) Basic: Objects with rigid bodies, primitive geometries (e.g. cylinders, cuboids, spheres)
and smooth surfaces. No deformation happens during the grasp.

2) Regular: Objects with rigid bodies, varied geometries and rough surfaces. No rele-
vant deformation happens during the grasp.

3) Complex: Objects with complex geometries that are difficult to find any sub simpli-
fied shape and rugged surfaces. Deformation can happen during the grasp (e.g. chain,
USB cable).

Fig. 11(d)-(f) present three sets of objects in different levels of distribution. They are
classified into three categories according to the average distance between the objects with
each other in the clutter:

1) Independent: No object contacts with others in the clutter. The clutter stays on a solid
and flat platform.

2) Single-layer: Objects contact with each other, but no overlap or only slight overlaps
exist between each other. The clutter stays on a solid and flat platform.

3) Multi-layer: Objects are stacked onto each other in a dense clutter, and the clutter
could be supported on a soft platform. Both cases could lead to a failed grasp due to
the absence of the supporting force as shown in Fig. 7.

Therefore, the complexity of random picking within this paper is divided into nine lev-
els from the easiest task to the most challenging one, according to the complexity and dis-
tribution of objects as shown in Table 2. This complexity metric is defined based on the
assumption that the gripper’s size and payload are suitable to grasp the objects, because the
complexity metric is expected to evaluate the performance of the grasp planning method
rather than that of the gripper. If the sizes and weights of objects are taken into account to
define the complexity metric, it will not be fair to evaluate the performance of the grasp plan-
ning method. The following tests are implemented at Levels 1 to Level 6, because grasping
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Examples for the objects’ complexities and distributions. (a) A set of objects with basic shapes. (b) A
set of objects with regular shapes. (c) A set of objects with complex shapes. (d) A set of objects in independent
distribution. (e) A set of objects in single-layer contact. (f) A set of objects in multi-layer contact.

Table 2 The complexity levels of objects’ sets.

Comp.

Level Dist.
Independent Single-layer Multi-layer

Basic 1 2 3
Typical 4 5 6

Adversarial 7 8 9

Note 1: Comp. is the abbreviation of Complexity of object.
Note 2: Dist. is the abbreviation of Distribution of object(s).

an object with complex shape (at Levels 7 to Level 9) is rather difficult, and it is not the use
case for a vacuum gripper.

The used dense clutter is illustrated in Fig. 12, in which objects are randomly selected
and poured on the table [37].

An example of the grasp quality prediction for physical grasp is shown in Fig. 13. The
yellow points mark low-quality grasp regions, and the blue points show the objects surfaces
with high grasp quality that are often located in flat regions.

For the physical grasp, the approaching force FFFz of the vacuum gripper is set as 9.00 N.
Fig. 14 shows a physical grasp example and the data from the 6-DOF force-torque sensor.
The progress of the grasp is divided into four phases, and the changes of forces and torques
are obvious, which give real-time feedback to improve both the grasp efficiency and success
rate. In addition, the feedback is also utilized to detect the real grasp quality and optimize
robotic parameters, such as moving speed, moving route and acceleration etc.

The grasp quality for a vacuum gripper mainly depends on the flatness of the object sur-
face. However, the flatness of the grasp candidate does not only depend on the flatness of the
object surface, but also depends on the performance of the depth camera during the physical
grasp. One important criterion to evaluate the depth camera performance is the Root-Mean-
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(a) (b)

Fig. 12 Dense clutter for experiments. (a) Part of objects used for the following tests. (b) Pouring the box
contents on the working platform.

(b)(a)

High-quality

region

Low -quality

region

Fig. 13 An example of grasp quality prediction for a real-world dense clutter. (a) The RGB image of the
dense clutter. (b) Grasp qualities predicted by the proposed neural network.

Square Deviation (RMSD) at a certain distance. Previous research work concluded that the
RMSD of Kinect V2 at 1,000 mm is about 1.5 mm [47]. To further evaluate the applicabil-
ity and robustness of the proposed neural network, 5,000 grasp candidates were selected in
physical robotic grasps. The grasp qualities are predicted with variable RMSDs to simulate
point clouds from different depth cameras. Fig. 15 illustrates the results of the grasp qual-
ity predictions as RMSD ε is increasing. Considering that the standard grasp quality q in
physical grasp cannot be computed as that in simulation, the grasp candidates are ranked by
ascending order based on the grasp qualities when RMSD is 1.5 mm, which are the most
similar predicted value q̂ with the standard grasp quality q. In this figure, the performances
of grasp quality prediction are visualized via a 4-degree polynomial curve fitting separately.
It is clear that each fitted curve is monotonically increasing when ε ≤6.5 mm, which proves
that the proposed neural network is robust enough to predict grasp quality for physical tri-
als. Actually, plenty of research reveals that the RMSDs of common structured-light-based
depth cameras, like Kinect V1/V2 [47], ASUS Xtion Pro [45] and Intel RealSense [21], are
lower than 6.0 mm at 1,000 mm and much lower at a closer distance, which implies that the
proposed neural network is high-generalizability and compatible with different real-world
depth cameras.

Fig. 16 demonstrates the success rates of physical grasping at Level 6 when grippers
sizes are changed. Each gripper was mounted on the robot and tried to grasp 10 dense clut-
ters (100 objects totally) as shown in Fig. 12. Then the success rate r was counted by the
following criterion, where Nsg is the number of successful grasps and Nt is the total number
of trials:

Success rate =
Nsg

Nt
×100% (7)
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Fig. 14 A physical grasp example and the feedback from the 6-DOF force-torque sensor. (a) A physical
grasp. (b) Forces and torques during the grasping. Note: Grasp is divided into 4 phases as show in the sub
figure(b), the robot moves towards the object in the time slot t0-t1, approaches the optimal grasp candidate in
t1-t2, lifts up the object in t2-t3, and then puts down it in t3-t4.

For the grippers with a radius of 18 mm to 27 mm, the same set of objects were used to
implement the tests. As shown in Fig. 16, the success rates stay at a good level with a 92.18%
average success rate. Consequently, the CNNB-CL grasp planning method can be applied
with different sizes of grippers and keep a stable performance. In most cases, a failed grasp
typically could be followed by a successful one and the work platform could be emptied,
because the system can detect the failed grasp by the feedback and adjust the grasp priority
as mentioned in Section 3.4.

4.3 Performance on Benchmark Experiments

In this section, the benchmark experiments were implemented aiming to evaluate the effi-
ciency of the CNNB-CL grasp planning method.

Table 3 lists some basic information of four state-of-the-art methods [29,37,28,30] and
the CNNB-CL method. Considering the similarities between these algorithms and the pro-
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Fig. 15 Grasp quality predictions under different 3D camera noise (RMSD) levels for physical grasps.

Fig. 16 Average success rates for physical grasps with different sizes of grippers and multiple clutters at
Level 6.

posed method in this paper, the PointNet-GPD and Dex-Net 3.0 were selected for the com-
parison experiments. In addition, the commercial Pickit system (Fig. 17) was also used for
the subsequent tests, which can provide picking solutions for random picking of unknown
objects with jaw grippers and vacuum grippers. Notably, the objects were manually selected
to make sure they can be grasped successfully by the vacuum gripper and jaw gripper used
in the tests.

The success rate is a fundamental criterion to evaluate the performances of grasp plan-
ning methods in the benchmark experiments. The Dex-Net 3.0 and Pickit [1] were selected
for the tests with object(s) at Level 1 to Level 6.

Table 4 presents the success rates and time consumption of the Dex-Net 3.0, Pickit,
7-layer CNN (CNNB-CL without feedback loop) and full-functional CNNB-CL method
with a radius of 20 mm vacuum gripper for the random picking at Level 1 to Level 6. It
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Table 3 Basic information of 4 state-of-the-art methods and the CNNB-CL.

Method Dataset Neural network Gripper Input Output Programming

Dex-Net 2.0 6.3 M CNN, Jaw Depth 0, 1 Python,
classification gripper image Tensorflow

Dex-Net 3.0 2.8 M CNN, Vacuum Depth Probability from Python,
classification gripper image CNN and GMM Tensorflow

GPD 340 K CNN Jaw Point 0, 1 C++,
classification gripper cloud Caffe

PointNet-GPD 300 K CNN Jaw Point 0, 1, 2 Python,
classification gripper cloud Pytorch

CNNB-CL 2.3 M CNN, Vacuum Point Real Python,
linear regression gripper cloud number Pytorch

Note: GMM is the abbreviation of Gaussian Mixture Model.

reveals that the Pickit achieves high success rates at Level 1 to Level 4. Hence, the Pickit is
able to provide robust solutions for the picking tasks, like bin picking for the basic objects
and random picking on the conveyor belt. However, the success rates of the Pickit show a
relevant decrease at Level 5 and Level 6.

The Dex-Net 3.0 performs high success rates at Levels 1, 2, 4 and 5. But it reports lower
success rates at Level 3 and Level 6, causing by the failed grasp trials for badly-supported
objects. In addition, the robotic speed has to be slow during the tests, otherwise failed grasp
often occurs when the object is heavy or the grasp position is far away from the mass center
of the object. Because the open-loop control of Dex-Net 3.0 cannot predict and detect a
failed grasp when the gripper is moving. These performances conclude that the Dex-Net 3.0
has a reliable neural network to predict the grasp quality via robotic observation. However,
it is not robust enough when objects are stacked onto each other due to the limitations of the
open-loop grasp strategy. Notably, the time consumption of the Dex-Net 3.0 is not recorded
in Table 3, because it ran on the CUP instead of the GPU in the tests due to the compatibility
of the used python packages and PC. It is unfair to compare its time consumption with the
CNNB-CL running on the GPU.

Fig. 18 presents three typically failed grasp trials for the Pick-it, which can be summa-
rized below that also exist in the Dex-Net 3.0:

1) The Pickit often fails to find graspable regions for the objects at Level 5 and Level 6,
especially for the dense clutters as shown in Fig. 18 (a), (b), (d) and (e). Specifically,
the Pickit system grasps an unknown object by estimating the geometric center of
the object and selecting a feasible grasp region near the center of the object. This
strategy works well for objects with basic shapes. However, it is less competent to
find a feasible grasp region when the shape of the object becomes more complex.

2) Badly-supported grasps are unable to be detected merely by the observations and
open-loop control strategy as shown in Fig. 18 (c) and (f), since the Pickit cannot
detect and adjust the approaching force during grasping based on the open-loop con-
trolling strategy.

The CNNB-CL detects the optimal grasp from 2,000 candidates within 300 ms. Fur-
thermore, the 7-layer CNN has similar success rates with the Dex-Net 3.0 at Levels 1, 2,
4 and 5, which indicates that the proposed 7-layer light-weighted CNN can find a feasible
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Fig. 17 Hardware of the Pickit [1].

Table 4 Performances of the Dex-Net 3.0, Pickit and CNNB-CL method at Level 1 to Level 6.

Performance
Level 1 2 3 4 5 6

Success rate (%)

Dex-Net 3.0 100.00 999999...000111 94.34 999888...000444 92.59 87.72
Pickit 100.00 98.04 95.24 97.09 90.91 85.47

7-layer CNN 100.00 98.04 95.24 97.09 93.46 86.21
CNNB-CL 111000000...000000 98.04 999777...000999 999888...000444 999444...333444 999333...444666

Time (ms)

Dex-Net 3.0 - - - - - -
Pickit 320 330 340 330 380 450

7-layer CNN 222333666 256 222555777 250 252 222555555
CNNB-CL 238 222555555 261 222444555 222555111 260

grasp region based on robotic perception. Compared with the 7-layer CNN, the Dex-Net 3.0
has higher success rates owing to a more extensive training dataset and the optimization for
the grasp quality prediction based on a Gaussian Mixture Model (GMM). Nevertheless, the
poor performances of them at Level 3 and Level 6 report that the fully vision-based grasp
planning method is not good at picking in dense clutter.

In contrast, the full-function CNNB-CL with the closed-loop controlling strategy keeps
a stable performance success rate at Level 1 to Level 6. As a result, the feedback loop of the
CNNB-CL significantly improves the grasp performance.

Then, the robustness of the CNNB-CL method was compared with PointNet-GPD.
Grasp candidates at Level 6 were evaluated with the PointNet-GPD when the RMSD (ε)
of the depth camera is changed from 1.5 mm to 4.5 mm. The outputs with ε=1.5 mm are
believed as the standard reference, and the Error is defined as follows to evaluate the per-
formance of PointNet-GPD:

Error = p̂− p̂ε=1.5 (8)

In Equation 8, p̂ is the output of PointNet-GPD, which is an integer value changing from
0 to 2 to indicate the grasp quality level of the candidate by ascending order. According to the
equation above, the possible Errors are -2, -1, 0, 1 and 2. The higher Error means the worse
prediction. Table 5 lists the results of grasp quality predictions for the 1,000 grasp candidates
in the tests. In this table, the number of grasp candidate(s) under different levels of errors are
counted. It shows that the output of PointNet-GPD cannot keep the same value for the same
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(a) (b) (c)

(d) (e) (f)

Fig. 18 Failed grasps for the Pickit. (a), (d) A failed grasp at Level 4. (b), (e) A failed grasp at Level 6. (c), (f)
A badly-supported grasp at Level 5. Note: Red points in the sub figure (a)-(c) mark the grasp central points
proposed by the Pickit system.

Table 5 Performances of PointNet-GPD under different noise levels.

Error

Num. ε (mm)
1.5 2.5 3.5 4.5

-2 0 4 8 16
-1 4 15 32 50
0 1000 962 903 720
1 3 13 47 85
2 0 6 10 29

Note: Num. is the abbreviation of Number of grasp candidate(s).

grasp candidate with the increasing of RMSD. Especially when ε ≥1.5 mm, more and more
results are predicted with Error >0. In other words, many low-quality grasp candidates are
evaluated as high-quality candidates under higher RMSD. For the grasp candidates with the
same output, it is impossible to detect which one is better than others by PointNet-GPD,
which implies that the low-quality grasp candidates with Error >0 are believed as good
as the real high-quality grasp candidates and maybe lead to failed grasps. Actually, it is
a common problem for the grasp pose detection algorithms based on linear classification
models. Nevertheless, the CNNB-CL method is robust enough to detect the optimal grasp
with ε ≤6.5 mm as presented in Section 4.2.

4.4 Summary and Limitations

In summary, the CNNB-CL grasp planning method is a universal and reliable solution for
unknown object picking with a vacuum gripper.

In computer simulations with more than 6.0K synthetic point clouds and over 3,000
physical grasp trials, the CNNB-CL grasp planning method is robust enough to withstand
different noise levels. The proposed grasp planning method is compatible with different



24 Hui Zhang *, 1, 2 et al.

(a) (b) (c)

Fig. 19 The challenging objects for the CNNB-CL. (a) Complex objects at Level 7 to Level 9. (b) Light-
weighted objects. (c) Black objects.

vacuum grippers and depth cameras. It achieves a success rate of over 90% for random
picking tasks in dense clutters, which makes it work well in different setups. Compared with
the state-of-the-art methods Dex-Net 3.0 and PointNet-GPD, the CNNB-CL grasp planning
method has the advantages regarding the success rate and robustness for random picking of
unknown objects at Level 3 to Level 6, especially at Level 6 when unknown objects with
more complex shapes are stacked onto each other in a ”multi-layer” clutter.

In the benchmark experiments, the higher success rate of the CNNB-CL method at Level
6 proves that grasp pose detection merely based on robotic observation is not reliable enough
for picking in dense clutter as some additional information is helpful for grasp planning
but difficult to be acquired via visual perception. In this case, increasing the complexity of
neural networks makes less sense. Multi-sensor fusion and closed-loop control is a practical
solution to improve the grasp performance.

Nevertheless, the limitations of the CNNB-CL have to be mentioned. Fig. 19 lists three
major limitations of the CNNB-CL. First, the CNNB-CL is challenging to grasp complex
objects at Level 7 to Level 9 due to the limitation of the vacuum gripper. Second, the CNNB-
CL detects a successful/failed grasp and adjust the grasp strategies according to the real-time
force-torque wrench of the gripper base. The detection is difficult for light-weighted objects,
such as envelopes, newspapers and small carton boxes, due to the inertia of the robotic
motion. Third, the proposed method does not work well for objects with a black surface in
the physical grasp trails. Unlike a laser scanner or binocular depth camera, the depth camera
in the tests (Kinect V2) generates depth image and point cloud based on the reflection of
the near-infrared structured light, which is easy to be absorbed by a black surface. This
limitation was also reported by Morrison et al. [35].

5 Conclusions

In this paper, a novel CNNB-CL grasp planning method is proposed, which integrates a
CNN model to predict grasp quality and several sensors to develop the closed-loop grasp
strategies. The CNN model is trained by a large-scale dataset, in which more than 2.3 M
synthetic point clouds are generated, and their grasp qualities are evaluated by a unified
grasp metric.

The design of the CNN model shows that some ideas from typical CNN structures for
2D image processing are also feasible to 3D point cloud processing. Over 6,000 simula-
tions and more than 3,000 physical trials have been implemented, which reveal that the
CNNB-CL grasp planning method is robust against random noise disturbance on the depth
measurements and compatible with different sizes of vacuum grippers, which achieves over
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90% success rates with different grippers for the random picking tasks at Level 1 to Level 6.
Additionally, experiments also show that the CNNB-CL method outperforms the state-of-
the-art methods regarding the robustness and success rate.

There are two main reasons that contribute to a better performance of the CNNB-CL
method than other benchmark grasping methods. First, the proposed 7-layer light-weighted
CNN is well-trained owing to two aspects. On the one hand, over 2.3 M synthetic grasp ex-
amples are generated with different gripper sizes and random noises, which is an exhaustive
dataset to fit the cases for random physical grasp trials. On the other hand, the 7-layer CNN
is robust enough to learn the grasp principles for a vacuum gripper from an 11×11 point
cloud, while its architecture is relatively concise. Second, the success rate of the proposed
7-layer CNN approach has been further improved by adding a force-torque feedback loop.
For example, the force-torque feedback makes it easy to deal with a badly-supported grasp
existing in an over-stacked clutter and to avoid the object falling during the grasping, which
often lead to failed grasps with other benchmark methods. Furthermore, three strategies are
available to decide the final grasp pose for a grasp trial. Once a failed grasp trial is detected,
the grasp strategy can be switched in the subsequent grasp trial until a successful grasp trial
is detected.

Future research includes the application and fine-tuning of the presented approach to
specific use cases, such as highly mixed post parcels and waste streams. In order to further
extend the application field of the proposed method to random picking of unknown objects
at clutter complexity Levels 7 to Level 9, grasp metrics for more dexterous vacuum grippers
will be explored. Additionally, it is also considered to propose more measurable and objec-
tive metrics to classify objects and clusters , which will be used to define the complexities
of objects’ collections from Level 1 to Level 9.
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