
How to do Proofs
Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl)

Koen Jacobs
KU Leuven
Belgium

koen.jacobs@cs.kuleuven.be

Andreas Nuyts
KU Leuven
Belgium

andreas.nuyts@cs.kuleuven.be

Dominique Devriese
Vrije Universiteit Brussel

Belgium
dominique.devriese@vub.be

Abstract
Dependently-typed languages are great for stating and prov-
ing properties of pure functions. We can reason about them
modularly (state and prove their properties independently
of other functions) and non-intrusively (without modifying
their implementation). But what if we are interested in prop-
erties about the results of e�ectful computations? Ideally, we
could keep on stating and proving them just as nicely.

This pearl shows we can. We formalise a way to lift a prop-
erty about values to a property about e�ectful computations
producing such values, and we demonstrate that we need not
make any sacri�ces when reasoning about them. In addition
to this modular and non-intrusive reasoning, our approach
o�ers independence of the underlying monad and allows for
readable proofs whose structure follows that of the code.

1 Some Pseudo-Proofs about E�ects
Imagine that we are developing a Monopoly game where
players frequently throw a pair of dice. A single die roll is at
most six, and the game rules sometimes rely on the fact that
a pair of dice can never be greater than twelve.

In a dependently-typed language, we can prove such facts.
That is, if natural numbers x and y are not greater than 6,
we can prove that x + y is not greater than 12. To do this,
we de�ne a function, say sumOfBound6IsBound12, of type
{x : N}→ x 6 6 → {y : N}→ y 6 6 → x + y 6 12, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
TyDe 2019, August 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

takes proofs that x 6 61 and y 6 6, and returns a proof that
x + y 6 12.2
However, in our Monopoly implementation, we are not

interested in this property for individual rolls, but as a prop-
erty over the results of the e�ectful operation twoDice, which
is implemented in terms of an underlying operation die:

die : IO N
die = . . .

twoDice : IO N
twoDice = do x ← die

y ← die
return (x + y)

That is, we are interested in proving that twoDice returns,
upon execution, a natural number not greater than 12.

An intrusive solution We can of course reimplement die
and make it return not just a natural number n but also a
proof that n is bounded by 6.3 Likewise, we can reimplement
twoDice – with the help of the sumOfBound6IsBound12 func-
tion – so that it returns a natural number n and a proof that
n is bounded by 12:4

die : IO (Σ[n ∈ N] n 6 6)
die = . . .

twoDice : IO (Σ[n ∈ N] n 6 12)
twoDice =

do (x N , px x 6 6) ← die IO (Σ[n ∈ N] n6 6)

(y N , py x 6 6) ← die IO (Σ[n ∈ N] n6 6)

return ((x + y) N

, (sumOfBound6IsBound12 px py) x + y 6 12)

1The type constructor 6 maps natural numbers a and b to the type
a 6 b representing the proposition that a is at most b. Following the Curry-
Howard correspondence [12], the type a 6 b is inhabited if this proposition
is true, and its inhabitants represent proofs of the proposition.
2All code samples that appear here, are written in the dependently-typed
functional programming language Agda [11]. The Agda �les can be found
at h�ps://github.com/scaup/agda-li�prop
3That is, upon execution, die will return a pair in which the �rst component
is a natural number, and the second component a proof that the �rst compo-
nent is not greater than 6. More concisely, it will return a pair of the form
(n , p) where n : N and p : n 6 6. Such pairs are exactly the inhabitants of
the type Σ[n ∈ N] n 6 6.
4To aid the reader, we sometimes annotate functions and variables with
their type like this . These superscripts are not part of the code.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/scaup/agda-liftprop

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

This approach is referred to as strong speci�cation [13];
the type IO (Σ[n ∈ N] n 6 12) of this reimplemented
twoDice captures the desired property about the function’s
result by making it return a proof along with the result. The
function itself needs to be modi�ed to return this proof and
so the proof of the property is baked into the new implemen-
tation.

However, modifying the original code to use strong speci-
�cation is not always desirable. For one, the code becomes
more verbose, unnecessarily so for readers who do not care
about the property. Also, we run the risk of introducing new
bugs, simply because we have to modify the original code to
return the extra proof. Furthermore, proving several prop-
erties about a single function is only possible by including
them all in the original de�nition.
Because of these downsides, we would prefer to avoid

reimplementing die and twoDice. Instead, we would like
to leave their original versions of type IO N untouched
and prove their properties extrinsically, in a separate de�ni-
tion.5Let us imagine what such a solution could look like.

Dreaming up a be�er solution Of course, we cannot sim-
ply write twoDice 6 12 as λ a→ a 6 12 is a predicate6on N,
not IO N. This suggests that what we need is an operator,
say Li�, which takes a predicate on N, say λ a → a 6 12,
and returns the desired, lifted predicate on IO N. That is, for
an ioa : IO A, the type Li� P ioa encodes the proposition
that ioa returns – upon execution – an a : A that satis�es P .
But even if we had such a Li� operator, how would we

prove such a proposition? More concretely, given an inhab-
itant dieBound6 of type Li� (λ a → a 6 6) die, how can
we prove Li� (λ a → a 6 12) twoDice? One way to think
about this is that intuitively, Li� (λ a → a 6 6) die is true
because die could be reimplemented as a computation of
type IO (Σ[n ∈ N] n 6 6). Analogously, Li� (λ a →
a 6 12) twoDice is true intuitively because twoDice could be
reimplemented at type IO (Σ[n ∈ N] n 6 12). Perhaps,
even though Lift is obviously not a monad, it would be nice
if we could write a proof of Li� (λ a→ a 6 12) twoDice in a
form of do-notation, where we essentially replicate this hypo-
thetical reimplementation, only now in terms of dieBound6.
dieBound6 : Li� (λ a→ a 6 6) die IO N

dieBound6 = . . .

twoDiceBound12 : Li� (λ a→ a 6 12) twoDice IO N

twoDiceBound12 =
do (x N , px x 6 6) ← dieBound6 Li� (λ a→ a6 6) die

5Completely analogous to the pure case, we de�ned sumOfBound6IsBound12
extrinsically instead some intrinsic speci�cation of addition, which would
have the type Σ[n ∈ N] n 6 6 → Σ[n ∈ N] n 6 6 → Σ[n ∈

N] n 6 12.
6A predicate, say P , on a type A is a function of type A→ Set. That is, for
each inhabitant of A, it returns a type P a. For example, the predicate λ a→
a 6 12 on N takes a natural number n, and maps it to the proposition
n 6 12.

(y N , py y 6 6) ← dieBound6 Li� (λ a→ a6 6) die

return (x + y , sumOfBound6IsBound12 px py)

Ideally, the proof twoDiceBound12 should not depend on
the precise implementation of die, nor on that of dieBound6.
For example, we should also be able to write the following:

twoTimes : IO N→ IO N
twoTimes die = do x ← die

y ← die
return (x + y)

dieBound6twoTimesBound12 :
(die : IO N) → Li� (λ a→ a 6 6) die→
Li� (λ a→ a 6 12) (twoTimes die)

dieBound6twoTimesBound12 die dieBound6 =
do (x , px) ← dieBound6
(y , py) ← dieBound6
return (x + y , sumOfBound6IsBound12 px py)

This modularity is important to accommodate situations
where die and dieBound6 are implemented independently
and abstractly by another party, in some other module; in
such a scenario, changes to the internals of die : IO N or
dieBound6 : Li� (λ n → n 6 6) die should not a�ect the
validity of the proof twoDiceBound12.

In principle, the above pseudo-proof also does not really
depend on the fact that we are in the IOmonad. For example,
why shouldn’t we be able to use the same approach for
computations in the List monad:

twoTimesList : List N→ List N
twoTimesList dieList = do x ← dieList

y ← dieList
return (x + y)

dieBound6twoTimesListBound12 :
(dieList : List N) → Li� (λ a→ a 6 6) dieList →
Li� (λ a→ a 6 12) (twoTimesList dieList)

dieBound6twoTimesListBound12 dieList dieListBound6 =
do (x , px) ← dieListBound6
(y , py) ← dieListBound6
return (x + y , sumOfBound6IsBound12 px py)

Although the meaning of Li� changes for this other monad,
the intuitive reasoning does not change, so why should the
proofs?

Overview It turns out that we can in fact implement the
Li� operator sketched above, and in the next section, we
explain how. Moreover, we can provide convenient abstrac-
tions to work with lifted properties, and we can even allow
formal proofs that resemble the above pseudo-code quite
closely. In §3, we will demonstrate this framework on some
more elaborate examples. In §4, we broaden our view to ap-
plicative and arbitrary functors, zoom in on a particular kind
of functors classi�ed by an important property related to

2

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

Li�, and prove some properties about List functions that we
introduced in §3.2. Afterwards, in §5, we will see that our
framework provides not only an elegant way to prove lifted
properties, but also an interesting way to make use of these
properties. Finally, we conclude in §6, where we summarise
the advantages and limitations of our approach, and lay out
some related and future work.

Remark Although this paper’s subtitle is ‘Practically prov-
ing properties about e�ectful programs results’, we do not
claim that our approach supports proving all such proper-
ties. Particularly, when a program’s result depends on the
behavior of e�ectful operations, proving properties about
this result will require other techniques for reasoning about
the behavior of those e�ects. We encounter such an example
in §3.1.
Note also that this paper is speci�cally about extrinsic or

retroactive proofs. In otherwords, wewant to keep proofs like
dieBound6twoTimesBound12 separate from the implementa-
tion of twoTimes because of the advantages described before:
twoTimes does not need to be modi�ed, it remains readable
to non-experts and we can easily formulate and prove many
separate properties about it. The �ip side of the choice for ex-
trinsic proofs is a certain amount of repetition: dieBound6two-
TimesBound12 repeats some of the structure of the underly-
ing program twoTimes. However, this code duplication is not
the same as that which is widely discouraged in software
engineering courses, as there is no risk for inconsistencies be-
tween twoTimes and dieBound6twoTimesBound12. Any such
inconsistency will be reliably detected and reported by the
type-checker.

2 How Does It Work?
In this section, we formalise the notations from §1: the mean-
ing of Li� (§2.1) and of the corresponding do-notation (§2.2).

2.1 Lifting a Predicate
So how can we de�ne this hypothetical Li� operator? Con-
sider, for example, a list of natural numbers dieList =

[1 , 2 , 3 , 4 , 5 , 6]. How can we encode the fact that
every element in dieList is not greater than 6? Notice, again,
that dieList could just as well have been implemented to be
of type List (Σ[n ∈ N] n 6 6):78

dieListWithProofs : List (Σ[n ∈ N] n 6 6)
dieListWithProofs =
[(1 , p16 16 6) , (2 , p26 2 6 6) , (3 , p36 3 6 6)

, (4 , p46 4 6 6) , (5 , p56 5 6 6) , (6 , p66 6 6 6)]

This dieListWithProofs : List (Σ[n ∈ N] n 6 6) cor-
responds to dieList in the sense that executing dieListWith-
7When the implementation of a term of a speci�c type is irrelevant and
distracting, we give it a generic name together with its type in superscript
like this .
8For clarity, we use a Haskell inspired pseudo syntax to denote lists.

Proofs and then forgetting the returned proofs, is equiva-
lent to the original dieList. More formally, we can show
that fmap proj1 dieListWithProofs (i.e. executing dieListWith-
Proofs and using proj1 : Σ[n ∈ N] n 6 6→ N to forget the
proof) is equal to the original dieList.9

dieListProofsCorr : fmap proj1 dieListWithProofs ≡ dieList
dieListProofsCorr = re�

We can prove this equality using re� because fmap proj1
dieListWithProofs simply reduces to dieList. Intuitively, we
can think of dieListWithProofs as a witness to the fact that
every result of dieList is indeed at most 6.

Generalising this example, we can de�ne the proposition
Li� P fa as follows, for an arbitrary functor, say F , a type A,
a predicate P on A, and a functorial value fa : F A:
record Li� (P : Predicate A) (fa : F A) : Set where

�eld witness : F (Σ A P)
corresponds : fa ≡ fmap proj1 witness

Li� P fa is a record type with two �elds: witness of type
F (Σ A P) and corresponds: a proof of equality between fa
and fmap proj1 witness.

Coming back to our example, we now have the following:
dieListBound6 : Li� (λ a→ a 6 6) dieList
dieListBound6 =

record {witness = dieListWithProofs
; corresponds = dieListProofsCorr}

Intuitively, the meaning of Li� is slightly di�erent for
di�erent functors. To get a better feel for the full generality
of Li�, let us consider some more examples.
For an IO-operation choosePassword : IO String, a proof

that Li� (λ s → length s > 20) choosePassword expresses
that choosePassword will only produce passwords of length
> 20. For a non-deterministic operation range : N→ N→
List N in the List monad, we can implement ∀ {n m}→ Li�
(λ x → (n 6 x)) (range n m) and ∀ {n m}→ Li� (λ x →
(x 6 m)) (range n m), to formalise that every element
in range n m is between n and m. Considering a stateful
implementation of Euclid’s algorithm, gcd : N → N →
State N N, we could implement Li� (λ d → (Divisible d n)
× (Divisible d m)) (gcd n m), encoding the fact that, for
arbitrary s : N, we have Divisible (evalState (gcd n m) s) n
and Divisible (evalState (gcd n m) s) m.
In general, if we think of a functorial values fa : F A as

a container storing values of type A, then Li� P fa encodes
the proposition that every value inside this container sat-
is�es P . If we think of a monadic value ma : M A as the
encoding of an e�ectful computation that gives output in A,
then Li� P ma encodes the proposition that every output
will satisfy P .
9Actually, we have proj1 : Σ A P → A for all types A and predicates P on
A. That is, �xing some A and P , proj1 is just the function λ {(a , p) → a}
discarding the second component of each pair.

3

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

2.2 Binding Proofs
But let us consider again the operation twoDice : IO N from
the introduction. Now that we can lift properties, let us at-
tempt to prove twoDiceBound12. We can do this by manually
implementing the witness and corresponds �elds:

twoDiceBound12 : Li� (λ a→ a 6 12) twoDice
twoDiceBound12 = record {witness = aWitness;

corresponds = aCorresponds}
where
aWitness : IO (Σ[n ∈ N] n 6 12)
aWitness =
do (x , px) ← (witness dieBound6) IO (Σ[n ∈ N] n6 6)

(y , py) ← witness dieBound6
return (x + y , sumOfBound6IsBound12 px py)

aCorresponds : twoDice ≡ fmap proj1 witness
aCorresponds = ???

While the candidate witness is easy, the corresponds �eld is
a bit tricky. We have a good intuition for why the latter must
be so, but formalising this intuition requires no less than 34
lines of code, that we show in appendix A. This manual proof
consists of 7 equational reasoning steps, of which 5 tedious
applications of the monad laws. Moreover, we have the same
burden of proof when proving Li� (λ a → a 6 6) die and
again for the lower level implementations for which we need
to prove some lifted properties. In sum, manually proving
these corresponds �elds is not a viable strategy.
A better alternative is to de�ne operators that work di-

rectly with these lifted properties. Enter the lifted operators,
returnL , _>>=L_ and _>>L_.

Let us begin with the easiest one, returnL . For an a : A, and
a proof of P a, the returnL operator proves Li� P (return a):

returnL : ((a , p) : Σ A P) → Li� P (return a)
returnL (a , p) =

record {witness = return (a , p);
corresponds = . . . return a ≡ fmap proj1 (return (a , p)) }

We leave out the exact implementation for the corresponds
�eld; it just boils down to the left unit monad law.
The lifted bind operator _>>=L_ is more interesting. Con-

sider an ma : M A and f : A → M B. If we have a proof
of Li� P ma (for some predicate P over A), and if we know
that for each (a , p) : Σ A P , we can prove Li� Q (f a)
(for some predicate Q over B), then _>>=L_ states that also
Li� Q (ma >>= f):

>>=L : Li� P ma→ (((a , p) : Σ A P) → Li� Q (f a)) →
Li� Q (ma >>= f)

lp >>=L �p =
record {witness = (witness lp) >>= (witness ◦ �p);

corresponds = . . .}

A proof of the corresponds �eld is fairly long and technical.
It boils down to the use of monadic laws, combined with the
correspondences from lp and �p.
And of course we also have _>>L_ as a special case of

>>=L:
_>>L _ : Li� P ma→ Li� Q mb→ Li� Q (ma >> mb)
lPma >>L lQmb = lPma >>=L λ → lQmb

Now that we have de�ned these lifted operators, we can
write down a concise proof for Li� (λ a→ a 6 12) twoDice:
twoDiceBound12 : Li� (λ a→ a 6 12) twoDice
twoDiceBound12 =

dieBound6 Li� (λ a→ a6 6) die >>=L λ (x , px) →
dieBound6 Li� (λ a→ a6 6) die >>=L λ (y , py) →
returnL (x + y , sumOfBound6IsBound12 px py)

The corresponds �eld is now completely taken care of by
our lifted operators! Notice also that the outline of our full
proof is identical to that of the witness �eld in our �rst at-
tempt; a programmer can just use these lifted operators, and
pretend that he/she is doing a retroactive proof by strong
speci�cation.

But can’t we make this a bit more readable still? Instead of
writing out the _>>=L_ operator, can’t we just do it? The do-
notation desugars recursively to expressions with _>>=_ and
>> as described in [2]. It was developed with the classical
monadic _>>=_ and _>>_ operators in mind to restructure
monadic compositions using these operators, making them
more readable.

In Agda however, it is fully up to us which _>>=_ and _>>_
we want to have in scope. By locally renaming _>>=L_ to
>>=, we can reuse the do-notation to structure our proof
more easily. We have the following:10

open import Monads hiding (return; _>>=_; _>>_)
open import Li�Operators

renaming (returnL to return;
>>=L to _>>= _; _>>L_ to _>>_)

twoDiceBound12 : Li� (λ a→ a 6 12) twoDice
twoDiceBound12 =

do (x , px) ← dieBound6 Li� (λ a→ a6 6) die

(y , py) ← dieBound6 Li� (λ a→ a6 6) die

return (x + y , sumOfBound6IsBound12 px py)

In other words, our pseudo-proofs from the introduction
have been valid formal ones all along!

3 Some More Elaborate Examples
So our framework can tackle the property Li� (λ a →
a 6 12) twoDice. But does it also work for bigger, more
realistic examples? To appreciate its generality, and to see
how we could use it in practice, let us have a look at some
more elaborate examples.
10For consistency, we rename our returnL operator to return as well here.

4

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

3.1 Tree Relabelling
Our �rst example is the stateful tree relabelling function
from Hutton and Fulger [7]. Consider a straightforward Tree
data type:
data Tree (A : Set) : Set where

leaf : (a : A) → Tree A
node : Tree A→ Tree A→ Tree A

Now consider the relabel function, which walks over the
tree and replaces all node values with freshly-generated
numbers:
relabel : Tree A→ State N (Tree N)
relabel (leaf a) = do n ← fresh

return (leaf n)
relabel (node l r) = do l′ ← relabel l

r ′ ← relabel r
return (node l′ r ′)

Here, we have de�ned fresh as follows:
fresh : State N N
fresh = do n ← get

modify suc
return n

The aim of this function is to relabel a tree with unique
labels while leaving its shape unchanged. To establish that
it ful�ls this objective, we prove the following two lifted
propositions:

Isomorphic Li� (λ t ′ → t ′ � t) (relabel t) That is,
given some input tree t : Tree A, any resulting tree
should be isomorphic to it, where isomorphism is im-
plemented in the obvious way:
data � : Tree A→ Tree B→ Set where

leafISO : leaf a � leaf b
nodesISO : tal � tbl → tar � tbr →
node tal tar � node tbl tbr

No duplicates Li� NoDups (relabel t) where NoDups is
a predicate on Tree N such that NoDups tree encodes
the property that tree : Tree N contains no duplicate
values. That is, any tree resulting from relabel t does
not contain duplicates.

Let us consider the isomorphism property.While it is often
overlooked in the literature for being too trivial, formalis-
ing our intuition for it is not. In appendix B, we showcase
an elementary but awkward proof to illustrate this. In our
framework, however, it is a breeze:11

relabel� : (t : Tree A) → Li� (λ t ′→ t � t ′) (relabel t)
relabel� (leaf a) = do (n ,) ← nothing2Prove fresh

return (leaf n , leafISO)
relabel� (node l r) =

11From here on, we leave the renaming of our lifted operators implicit.

do (l′ Tree N , pl�l′ l � l′) ← relabel� l
(r ′ Tree N , pr�r ′ r � r′) ← relabel� r
return (node l′ r ′ , nodesISO pl�l′ pr�r ′)

The above uses a simple helper function nothing2Prove of
type (fa : F A) → Li� (λ a→ >) (fa), which proves a trivial
predicate for the result of an arbitrary computation fa : F A.
The predicate (λ a→ >) is always satis�ed as > is the unit
type with single inhabitant �.
Now for the no-duplicates property... Although we can

state this property using Li�, we cannot prove it with our
lifted bind operators as our induction hypothesis is not
strong enough. Indeed, given trees l′ : Tree N and r ′ : Tree N
that satisfyNoDups, it is generally not the case that node l′ r ′
satis�es NoDups.
Of course, we could strengthen our hypothesis by also

proving that the resulting tree is appropriately bounded with
respect to the initial and �nal state. However, such a strength-
ened hypothesis cannot be expressed as a lifted property, as
it does not merely refer to the computational output, but also
to the computation’s e�ect on the state. Since Li� and our
lifted operators are de�ned over arbitrary functor/monad,
this naturally falls outside the scope of our approach. In §6,
we brie�y come back to this problem statement, and dis-
cuss how we can solve it by explicitly supporting the State
monad.

3.2 n-Queens
A second larger example that we look at is a simple solver
for the n-queens problem. Given a natural number n : N,
the problem is to �nd all con�gurations of n queens on a
chessboard of size n for which no two queens are attacking
each other. As in standard chess, two queens attack each
other if and only if they are on the same column, row, or
diagonal.
We de�ne a List computation queenCon�gs of type N→

N→ List QConfig. Given a chessboard of size n : N and an
amount of queens k : N, queenCon�gs n k : List QConfig
returns a list of k-sized queen con�gurations. We represent
queen con�gurations as lists of natural numbers, i.e. we write
QConfig for List N. The encoding is depicted in Figure 1:
queens are placed in the k leftmost columns and the ith
number in the list represents the row number for the queen
in column i-1.
As can be seen in Figure 1, our encoding as List N is

quite loose. That is, many terms of type List N represent
queen con�gurations that are actually illegal. On the �ip side
however, we can now �rst focus on de�ning our algorithm,
instead of being forced to simultaneously prove a strong
speci�cation about it.

We �rst de�ne a function areNotAttackinд as follows.
Given a queen con�guration, say qs : QConfig, and the
candidate row of a new rightmost queen, say q : N, qs

5

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

0 1 2 3 4 5 6 7 8
0

2
3

5

1

4

6
7
8

Q

Q

Q

Q

0 1 2 3 4 5 6 7 8
0
1

3
4
5

8

2

6
7

Q

Q

Q

Q

Q

Q

Q

Q

Figure 1. Two chessboards of size 6, represented by lists
[0 , 5 , 3 , 2] and [5 , 1 , 3 , 8 , 4 , 3 , 4 , 0]. The ith
number in the list represents the row number for the queen
in column i-1.

areNotA�acking q will evaluate to a boolean encoding what
its name implies:
areNotAttackinд : QConfig→ N→ Bool

qs areNotA�acking q =
upwardDiagonal qCoordinate
< fmap upwardDiagonal qsCoordinates &&

downwardDiagonal qCoordinate <
fmap downwardDiagonal qsCoordinates &&

row qCoordinate < fmap row qsCoordinates
where
qsCoordinates : List (N × N)
qsCoordinates = toCoordinates qs
qCoordinate : N × N
qCoordinate = length qs , q

Herein, we have used the toCoordinates function de�ned
as follows:
toCoordinates : List N→ List (N × N)
toCoordinates qs = zip (range 0 (length qs - 1)) qs
Additionally, we have also used the following functions
upwardDiagonal, downwardDiagonal, and row:
upwardDiagonal : N × N→ N
upwardDiagonal (x , y) = x + y

downwardDiagonal : N × N→ Z
downwardDiagonal (x , y) = x - y
row : N × N→ N
row (x , y) = y

These de�nitions are easily veri�ed by glancing at Figure 2.
Notice that the encoding already enforces that no two queens
reside in the same column.
To �nd valid con�gurations, we can now simply recurse

on the amount of queens we place leftmost on the board.
queenCon�gs : N→ N→ List QConfig
queenCon�gs n zero = return []

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 11
4 5 6 7 8 9 10 11 12
5 6 7 8 9 10 11 12 13
6 7 8 9 10 11 12 13 14
7 8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8
-1 0 1 2 3 4 5 6 7
-2 -1 0 1 2 3 4 5 6
-3 -2 -1 0 1 2 3 4 5
-4 -3 -2 -1 0 1 2 3 4
-5 -4 -3 -2 -1 0 1 2 3
-6 -5 -4 -3 -2 -1 0 1 2
-7 -6 -5 -4 -3 -2 -1 0 1
-8 -7 -6 -5 -4 -3 -2 -1 0

Figure 2. The downward diagonals are easily identi�ed by
summing the coordinates (left). The upward diagonals can
be determined by their subtraction (right).

queenCon�gs n (suc k) =
do qs QConfig ← queenCon�gs n k

q N ← �lter (λ q→ qs areNotA�acking q)
(range 0 (n - 1))

return (qs ++ [q])

Let us now prove that every obtained con�guration solves
the n-queens problem, i.e. that it is both �tting and peaceful:

Fitting A con�guration is �tting if every element in it
is actually smaller than n, that is, each queen actually
�ts on the board. For example, the list [0 , 6 , 3 , 2]
from Figure 1 is not �tting as the queen in the second
column falls outside the board.

Peaceful A con�guration is peaceful, if no two queens
are in the same column, row or diagonal. For example,
the list [0 , 6 , 3 , 2] from Figure 1 is not peaceful
as the queens from the third and fourth column are
attacking each other.

For a board of size n, the fact that a con�guration �ts the
board is formalised as a predicate Li� (λ q→ q 6 n - 1) on
QConfig which we denote as Fi�ing n. We can then prove
that every obtained con�guration in queenCon�gs n k : List
QConfig �ts, that is, we prove Li� (Fi�ing n) (queenCon�gs
n k):
queenCon�gsFit : (n : N) → (k : N) →

Li� (Fi�ing n) (queensCon�gs n k)
queenCon�gsFit n zero =

return ([] QConfig , emptyCon�gFits Fi�ing n [])

queenCon�gsFit n (suc k) = do
(qs QConfig , qsFit Fi�ing qs) ← queenCon�gsFit n k
(q N , qFit q 6 n - 1) ←

�lterPreserves (f : A→ Bool) → Li� P as→ Li� P (�lter f as)

(λ q→ qs areNotA�acking q)
(rangeUpBound 0 (n - 1)) Li� (λ r → (r 6 n - 1)) (range 0 (n - 1))

return (qs ++ [q] , (qsFit ++L [qFit]L) Fi�ing (qs ++ [q]))

Here, we have the function �lterPreserves encoding the
fact that lifted properties on lists are preserved upon �ltering.

6

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

The preserved property in this scenario is indeed the fact
that every element in range 0 (n - 1) is smaller than n, which
is encoded by the function rangeUpBound. We �nally have
to prove Fi�ing (qs ++ [q]). Remember now, that we de�ned
Fi�ing n as Li� (λ q → q 6 n - 1). So to prove Li� (λ q →
q 6 n - 1) (qs ++ [q]), we used the operator ++L of
type Li� P xs → Li� P ys → Li� P (xs ++ ys) where xs
is instantiated by qs and ys by [q], and the []L operator of
type P a→ Li� P [a] where a is instantiated by q.
The peacefulness of a con�guration is formalised in the

following predicate:

Peaceful : Predicate (QConfig)
Peaceful qs =

NoDups (fmap upwardDiagonal coordinates) ×
NoDups (fmap downwardDiagonal coordinates) ×
NoDups (fmap row coordinates)
where coordinates = toCoordinates qs

We also implement an addPeacefully function of the fol-
lowing type:

(qs : QConfig) → (q : N) → Peaceful qs→
(qs areNotA�acking q ≡ true) → Peaceful (qs ++ [q])

Its implementation is unimportant here, so we omit it.
A proof that every obtained con�guration in queenCon�gs n k

satis�es Peaceful is now feasible:

queenCon�gsPeaceful : (n : N) → (k : N) →
Li� Peaceful (queenCon�gs n k)

queenCon�gsPeaceful n zero =
return ([] QConfig , emptyCon�gPeaceful Peaceful [])

queenCon�gsPeaceful n (suc k) = do
(qs QConfig , qsP Peaceful qs) ← queensCon�gsPeaceful n k
(q N , qsNAq qs areNotA�acking q ≡ true) ←

�lterNew (f : A→ Bool) → (as : List A) → Li� (λ a→ f a ≡ true) (�lter f as)

(λ q→ qs areNotA�acking q)
(range 0 (n - 1))

return ((qs ++ [q]) , addPeacefully qs q qsP qsNAq)

Here, we have used the property �lterNew, de�ned so that
�lterNew f as proves that �lter f as satis�es Li� (λ a →
f a ≡ true).

Gradual proving Note that we have split up validity of
a con�guration into two separate predicates Fi�ing n and
Peaceful. This was quite handy, as we could focus on prov-
ing these weaker properties in isolation of each other. The
contrast of our approach to the alternative in absence of
Li� is stark; we would have to implement queenCon�gs to
be of type (n : N) → N → List (ValidQCon�g) where
ValidQCon�g already fully speci�es a valid con�guration. In
addition to the disadvantages mentioned before, we would
have been forced to implement the speci�cations of ValidQ-
Con�g all at once.

In order for this to work, we have made the implicit as-
sumption that we can easily combine both these properties
afterwards to prove the validity of our algorithm:
Valid : N→ Predicate QConfig
Valid n = Fi�ing n ∧ Peaceful

queenCon�gsValid : (n : N) → (k : N) →
Li� (Valid n) (queenCon�gs n k)

queenCon�gsValid n k =
(queenCon�gsFit n k) ,L (queenCon�gsPeaceful n k)

The above uses a predicate conjunction operator _∧_, where
P1 ∧ P2 represents the conjunction predicate λ a→ P1 a ×
P2 a. Additionally, we use a ,L operator de�ned of type
Li� P as List A → Li� Q as→ Li� (P ∧ Q) as. Interestingly,
this ,L is less trivial than one might expect. We come back
to this in §4.3.

4 Completing the Picture
Up until this point, we have only talked about properties
of monadic computations12. In this section, we complete
our story to cover more ground. In §4.1, we will broaden
our point of view by illustrating that our framework �ts just
as nicely in the context of applicative functors. In §4.2, we
generalise further to arbitrary functors. Afterwards, in §4.3,
we illustrate the need to zoom in on a particular class of
functors for which we can sensibly implement ,L as we
have seen for List in §3.2. Lastly, in §4.4, we will focus in on
the List functor, and some of the List-speci�c properties that
we used in §3.2.

4.1 Simplifying twoDice and relabel - Applicative
Functors

Throughout this pearl, we have con�ned ourselves tomonadic
computations. Sadly, this presentation is incomplete as it’s
often a good idea to use applicative functors [10] to de�ne
e�ectful computations.

Indeed, twoDice and relabel can be nicely rephrased in this
applicative style.
twoDice : IO N
twoDice = L die + die M

relabel : Tree A→ State N (Tree N)
relabel (leaf a) = L leaf fresh M
relabel (node l r) = L node (relabel l) (relabel r) M

Here – in order make code a bit more readable – we have
used Agda’s built-in idiom bracket notation (proposed by
McBride and Paterson [10]). Intuitively, the idiom brackets
denote function application lifted to e�ectful computation.
Formally, we have ([3]) that L e a1 . . an M desugares to
pure e ~ a1 ~ . . ~ an .13

12That is, computations that are composed using _>>=_ and return.
13Note that L genericDie + genericDie M should be interpreted as
L + genericDie genericDie M for the purpose of this desugaring.

7

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

Ideally, we could now prove the lifted properties just as
easily:
twoDiceBound12 : Li� (λ a→ a 6 12) twoDice
twoDiceBound12 =

L sumOfBound6IsBound12 dieBound6 dieBound6 M

relabel� : (t : Tree A) → Li� (λ t ′→ t � t ′) (relabel t)
relabel� (leaf a) =

L (λ → leafISO) (nothing2Prove fresh) M
relabel� (node l r) = L nodesISO (relabel� l) (relabel� r) M

Luckily we can! To make the above proofs formal, we �rst
lift the operators of the applicative functor class. The lifted
operator for pure is almost identical to the one return; we
have pureL of type ∀ {x : X }→ (p : P x) → Li� P (pure x)14.
More interesting is the _~_ operator.
The _~L_ operator, is easily explained by analogy with the

pure case, as depicted in Figure 3. Consider some function
f : X → Y , an x : X , a predicate P on X , and a predicate
Q on Y . Now suppose that x satis�es some predicate P on
X , and suppose that f satis�es P Z⇒ Q where Z⇒ is
de�ned as follows.

Z⇒ : Predicate X → Predicate Y → Predicate (X → Y)
(P Z⇒ Q) f = ∀ {x : X }→ P x → Q (f x)

That is, suppose that f maps inputs satisfying P to outputs
satisfying Q. It is trivial now to prove that the application of
f to x satis�es Q.
The operator _~L_ gives us the same in the impure con-

text of an applicative functor F . There, we have a particular
instance of _~_ to encode application of an e�ectful function
af : F (X → Y) to an e�ectful argument ax : F X . Analo-
gously now, if ax satis�es Li� P and af satis�es Li� (P Z⇒
Q), we can now use _~L_ to prove that af ~ ax satis�es
Li� Q. This is summarised in Figure 3.

The actual implementation of _~L_ is straightforward but
tedious; the witness implementation is as expected and the
proof of the corresponds �eld is a long and tedious application
of the applicative laws.

With _~L_ and pureL in scope as _~_ and pure respectively,
we can recycle the bracket notation as demonstrated above.15

4.2 Simplifying relabel - General Functors
Consider again the de�nition of relabel. In the �rst case
(leaf a), we do not fully use the _~_ operator as indeed, we
could have used fmap instead.
relabel : Tree A→ State N (Tree N)
relabel (leaf a) = fmap leaf fresh
relabel (node l r) = L node (relabel l) (relabel r) M

14The slight di�erence being that we let the initial x be inferred for us
automatically.
15Again, we rely on the fact that the bracket notation – the implementation
of it in Agda – is just syntax sugaring that gets desugared before type
checking.

Luckily, we also have a lifted version of fmap, fmapL of
type (P Z⇒ Q) f → Li� P af → Li� Q (fmap f af). So in
the context of a functor F ; types A and B; predicates P on
A and Q on B; a functorial value fa : F A; and a function
f : A → B, if we can prove (P Z⇒ Q) f and Li� P af , we
can conclude Li� Q (fmap f af). With this in mind, we have
the following proof.
relabel� : (t : Tree A) → Li� (λ t ′→ t � t ′) (relabel t)
relabel� (leaf a) =

fmapL (λ → leafISO) (nothing2Prove fresh)
relabel� (node l r) =

L nodesISO (relabel� l) (relabel� r) M

4.3 Combining Properties - Pullback Preserving
Functors

Consider again the strategy that we used in §3.2. In order
to prove that every obtained con�guration in queensCon�gs
was valid, we separately proved them to be both Fi�ing and
Peaceful. Remember how we have then used the operator
,L to combine these two into a proof of the combined
property Valid n = Fi�ing n ∧ Peaceful:
Valid : N→ QConfig→ Set
Valid n = Fi�ing n ∧ Peaceful

queenCon�gsValid : (n : N) → (k : N) →
Li� (Valid n) (queenCon�gs n k)

queenCon�gsValid n k =
(queenCon�gsFit n k) ,L (queenCon�gsPeaceful n k)

Crucial for this to work is the operator ,L : {fa : F A}→
Li� P fa→ Li� Q fa→ Li� (P ∧ Q) fa. Ideally, we would
hope that such an operator exists for an arbitrary functor F .
Sadly however, it is far from obvious how we can implement
the general case.

If we restrict ourselves to pullback-preserving functors, we
have such a ,L operator. Examples of such functors include
List,Writer,Maybe, State and all other polynomial functors
(also called container functors [1, 5]). Moreover, beside the
existence of ,L , we have that pullback-preserving functors
and only those have ,L operators that behave universally.
Universal behaviour of an operator ,L characterises that
uncurry ,L : Li� P fa × Li� Q fa→ Li� (P ∧ Q) fa

is inverse to the canonical map
splitL : Li� (P ∧ Q) fa→ Li� P fa × Li� Q fa
splitL faPQ = applyL proj1 faPQ , applyL proj2 faPQ

where we used applyL of type ({a : A} → P a → Q a) →
Li� P fa → Li� Q fa. We prove both these statements in
appendix C.

Not all functors preserve pullbacks though. In appendix C,
we prove that the continuation monad,M X = (X → R) →
R, for instance, does not. While this excludes the possibility
that for continuations, there exists a well-behaved ,L , we

8

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

Application Proof about application
Pure setting _$_ : (X → Y) → X → Y (λ H p→ H p) : (P Z⇒ Q) f X → Y → P x X → Q (f x)

Applicative _~_ : F (X → Y) → F X → F Y _~L_ : Li� (P Z⇒ Q) af F (X → Y) → Li� P ax F X → Li� Q (af ~ ax)

Figure 3. The lifted applicative bind operator (_~L_) generalises pure function predicate application, just like the applicative
bind (_~_) generalises regular function application.

have not disproven its mere existence. For continuations, we
can – under the assumption that P and Q are decidable and
R is inhabited – construct said operator (which can be seen
in the git repository) but the general case remains unclear.

To deal with this complication, we make the ,L operator
available in a type class PullbackPreserving that we imple-
ment for monads like List, Writer etc..

4.4 Proving Our Low-Level Properties about List
Up until this section, we have only proven functor-independent
lifted properties. In §3.2 however, we have assumed a lot of
properties about everyday List functions, whose validness
actually relies upon the structure of List itself.
Ideally, the proofs of these assumptions should of course

be just as concise and readable. In this section, we show that
this is indeed the case.

We begin by assuming three operators that directly corre-
spond to the constructors of the List data type. First of all,
note that for the empty list [], it is trivial to prove []L : Li� P []
where P an arbitrary predicate. Moreover, it is easy to im-
plement ::L : (P a) → Li� P xs → Li� P (a :: xs). And
�nally, we also have invertP-cons of type Li� P (x :: xs) →
P x × (Li� P xs). However easy they are implemented,
their proofs are a bit verbose, and we leave them out here.
Given these primitive implementations speci�c to List, we
can easily derive our interesting properties.

Consider a typical implementation of the �lter function:

�lter : {A : Set}→ (A→ Bool) → List A→ List A
�lter f [] = []
�lter f (x :: xs) with f x =? true
�lter f (x :: xs) | yes = x :: �lter f xs
�lter f (x :: xs) | no = �lter f xs

With the []L and ::L operators, it is easy to prove, for
instance, that every element in the resulting �ltered list sat-
is�es the �ltered predicate:

�lterNew : (f : A→ Bool) → (as : List A) →
Li� (λ a→ f a ≡ true) (�lter f as)

�lterNew f [] = []L
�lterNew f (x :: as) with f x =? true
�lterNew f (x :: as) | yes p = p ::L �lterNew f as
�lterNew f (x :: as) | no ¬p = �lterNew f as

Now consider a typical range function as de�ned below.

range : N→ N→ List N
range zero zero = [0]
range (suc n) zero = []
range zero (suc m) = range zero m ++ [suc m]
range (suc n) (suc m) = fmap suc (range n m)

Proving that the resulting list is bounded below by the �rst
argument is just as easy:16

rangeDownBound :
(d : N) → (u : N) → Li� (λ x → d 6 x) (range d u)

rangeDownBound zero zero = [p00 0 6 0]L

rangeDownBound (suc n) zero = []L
rangeDownBound zero (suc m) =

rangeDownBound zero m ++L [pzsn 0 6 suc n]L

rangeDownBound (suc n) (suc m) =
fmapL imp {a : N}→ n6 a→ suc n6 suc a

(rangeDownBound n m)

The above uses a lemma for combining a lifted property
proofs when appending lists:

++L : Li� P xs→ Li� P ys→ Li� P (xs ++ ys)
++L {xs = []} Li� P [] ysP Li� P ys = ysP
++L {xs = a :: as}aasP Li� P (a :: as) ysP
with invertP-cons aasP
++L {xs = a :: as}aasP ysP
| pa P a , asP Li� P as = pa ::L (asP ++L ysP)

Finally, for Lists, we can also prove the ,L operator
discussed earlier:

,L : Li� P as→ Li� Q as→ Li� (P ∧ Q) as
,L {as = []} Li� P [] Li� Q [] = []L
,L {as = x :: xs}xxsP Li� P (x :: xs) xxsQ Li� Q (x :: xs)

with invertP-cons xxsP | invertP-cons xxsQ
,L {as = x :: xs}xxsP xxsQ
| px P x , xsP Li� P xs | qx Q x , xsQ Li� Q xs =

(px , qx) ::L (xsP ,L xsQ)

The use of invertP-cons in the last two examples is still a
bit suboptimal. Ideally, we would like to reuse the pattern
matching syntax on lifted property proofs, rewriting ++L
to something like the following:

16Here, we have []L the singleton operator of type P a→ Li� P [a]. As []
is easily implemented by λ a→ a :: [], we have []L trivially implemented
as λ pa→ pa ::L []L .

9

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

++L : Li� P xs→ Li� P ys→ Li� P (xs ++ ys)
++L {xs = xs} xsP ysP by indListL xsP
++L {xs = []} []L

Li� P [] ysP = ysP
++L {xs = a :: as}px P a ::L asP Li� P as ysP =
pa ::L (asP ++L ysP)

Unfortunately, such a rephrasing would require a generalisa-
tion of Agda’s pattern matching along the lines of Epigram’s
induction by syntax [9].

5 Feeding Proofs to Programs
The above examples demonstrate how we can use Li� to
prove lifted properties about existing programs. But what if
we want to rely on such lifted properties when implementing
other programs?
Imagine, for example, that we want to spice up our mo-

nopoly implementation with a new chance card. The card
says the player is �ned for speeding, that is, he/she has to
pay an amount of 1000 / (13 - n), where n is the number of
pips he/she throws. A naive implementation might look like
this:

�ne : IO N
�ne = fmap amount twoDice where

amount : N→ N
amount n = case (n 6? 12) of
λ {(yes p n6 12) → (1000 div (13 - n , easy 13 - n . 0));
(no ¬p ¬ (n6 12)) → ??}where

div : N→ (Σ[n ∈ N] n . 0) → N
n div (d , p) = . . .

Here, we have de�ned an amount function from N to N,
taking the outcome of a throw and mapping it to a �ne. To
avoid a division by zero, we do a case split to decide whether
the roll is greater than 12 or not. However, the case that
the roll is greater than 12 is spurious. Rather than returning
an arbitrary result, it would be better to rule out the case
explicitly. This will also prevent us from forgetting about
this assumption in the future.17
So how can we use the proof twoDiceBound12 of type

Li� (λ n → n 6 12) twoDice to rule out the spurious case
above. Given this proof, it should in fact su�ce to de�ne
amount of type Σ[n ∈ N] n 6 12 → N. To do this, we
de�ne a restricted fmap operator, fmapR , formalising the
intuition that, when applying fmap with a function f : A→
B and a value fa : F A for which we have a proof of Li� P fa,
we can always assume that when de�ning f a, a satis�es P .
That is, it is enough to de�ne f as a function of type Σ A P →
B:

fmapR : {fa : F A}→ (Σ A P → B) → (Li� P fa) → F B
fmapR f R lp = fmap f R (witness lp)

17Imagine, for example, that we introduce a new rule that you can roll the
dice again if you roll doubles the �rst time (same number on each die).

Using fmapR , we now have the following:

�ne : IO N
�ne = fmapR amountR twoDiceBounded12 where

amountR : Σ[n ∈ N] n 6 12 → N
amountR (n , p) = 1000 div (13 - n , easy 13 - n . 0)

It is in fact easy to prove that this new implementation
of �ne is equal to the old one. Intuitively, this is because for
d : N and p : n 6 12, we have that amount d is equal to
amountR (d , p). In general, it is easily proven formally that
fmap f A→ B fa F A equals fmap f R

Σ A P → B lp Li� P fa if f
agrees with f R on P .18

We have an analogous operator for _~_.

~R : {ax : F X }→ F (Σ X P → Y) → Li� P ax → F Y
f R ~R axP = f R ~ witness axP

So given an applicative value ax : F X for which we have
a proof axP of Li� P ax, it is enough to have f R of type
F (Σ X P → Y) instead of F (X → Y).

And �nally, the analogous operator for _>>=_.

>>=R : {ma : M A}→
(Li� P ma) → (Σ A P → M B) → M B

lp >>=R f R = witness lp >>= f R

That is, given a monadic value ma : M A and a proof of
Li� P ma, when binding ma with a function f : A→ M B,
it is enough to de�ne f a given that a satis�es P . That is, it
is enougth to de�ne f of type Σ A P → M B.

6 Conclusion
In summary, this paper shows a nice way to express and
prove lifted properties of e�ectful code. In general, we can
express any property related to the results of an e�ectful
computation, and prove it with our lifted operators provided
that it holds independently of the speci�c functor/applica-
tive/monad in use.
The properties can be formulated extrinsically (no need

to modify the original code). The proofs are readable and
easy to understand, and can be composed modularly. No
language modi�cations are needed and in fact, the core of
our framework is very small; it consists only of Li�, _>>=L_,
returnL , pureL , _~L_ and fmapL .
Moreover, we can easily reuse existing notation to struc-

ture compositions with _>>=L_ (do-notation), and _~L_ to-
gether with pureL (idiom brackets) due to the �exible nature
of their implementation in Agda. That is, both do-notation
and idiom brackets are desugared before type checking, and
so, we can easily experiment with operators whose types do
not adhere to the prior intent of the syntax. Furthermore,
the examples in this pearl provide a clear case for the virtues
of said �exibility.

18That is, if for all (a , p) : Σ A P we have that f a equals f R (a , p).
10

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

As we have explained, our approach is limited to proper-
ties that can be phrased in terms of the results of e�ectful
operations. Moreover – con�ning ourselves to the lifted op-
erators – we can only prove properties independent of the
speci�c functor in use. We expect that supporting more ex-
pressive properties is possible however, by focusing in on a
speci�c (class of) underlying monads/functors. We already
demonstrated the feasibility of this for the List functor; by
merely implementing some basic primitive properties cor-
respoding to the data constructors, we were able to obtain
nice and intuitive proofs about your everyday List functions.
More elaborately, we show in the git repository how can
take Swierstra’s Hoare State monad for writing witnesses
of lifted properties (over State) that are quanti�ed over the
initial and �nal state variable and prove the no-duplicates
property extrinsically. In the future, it could be interesting
to extend the approach to more speci�c properties. The idea
would be to use strongly-speci�ed witnesses that testify for
these more expressive properties and require an appropriate
correspondence to the underlying code.
Of course, not all properties regarding e�ectful compu-

tations concern themselves merely with the results of that
computation; think interestingOperation : IO > for exam-
ple. In such cases, the programmer should use a di�erent
approach, like equational reasoning [6, 7].

6.1 Related Work
Equational reasoning The tree relabelling problem is of-
ten used in literature to showcase the use of equational rea-
soning to prove general properties about e�ectful compu-
tations [7]. So too is the n-queens problem [6]. We note
however that the general objective in this setting is quite
di�erent from what we do here; one proves a desired prop-
erty about a given e�ectful computation by arguing that it is
contextually equivalent to a more naive computation, clearly
satisfying said property. This is done by chaining together a
link of equalities; hence the name ‘equational reasoning’.
A narrow version of said practice can be found in the

framework presented in this paper though. We prove that
computations satisfy speci�cations with regard to their re-
sult, and we do this by implementing a strongly speci�ed ver-
sion. Arguing that forgetting about this speci�cation gives
us back the original computation, is now done completely
under the hood, formally encapsulated in our lifted oper-
ators. Moreover, the program that will be run is still the
original one, untouched by our extrinsic proofs, so that our
technique has no runtime cost (other than the one involved
in migrating to a dependently typed functional language).

Ornaments A key idea in the development of our frame-
work is the way in whichwe de�ne Li�; we demand an intrin-
sic, strongly speci�ed version of our original computation
together with a proof that forgetting about this speci�cation,
we obtain the original computation.

Of course, the practice of decorating structures is remi-
niscent of ornaments [8]. However, we believe that the the-
ory of ornaments does not provide an alternative to our
techniques, for two reasons. First, the goal of ornaments is
di�erent. We are ultimately interested in the ability to ex-
press and prove properties of e�ectful code (such as twoDice)
extrinsically, as we did in twoDiceBound12 : Li� (λ a →
a 6 12) twoDice IO N . Ornamentation libraries, on the
other hand, are often designed to combine an extrinsic proof
like twoDiceBound12 with the underlying implementation
twoDice into an intrinsically correct implementation.
Secondly, the results in the ornament literature simply

do not seem to be applicable in our setting. Our Li� opera-
tor is designed to reason about forgetful maps of the form
proj1 : Σ A P → A. We like to point out that, since it
is possible in dependent type theory to de�ne the inverse
image of a function, any function f : B → A factors as
B � Σ(x : A) д−1(x) → A. Thus, we essentially consider all
functions. Ornaments, on the other hand, consider only a
restricted class of functions which can be seen as forgetting
ornaments19. Alternatively, one might try to apply the the-
ory of ornaments not to the result type but to the monad
at hand, but then we would obtain results regarding e�ect
speci�cations ignoring the result of a computation, which
sounds interesting but is quite the opposite of the current
paper’s subject.

A Manual Proof
cumbersomeProof : twoDice ≡ fmap proj1 aWitness
cumbersomeProof =

begin
(do x ← die

y ← die
return (x + y))

≡ 〈 cong (�ip _>>= _) (corresponds dieBound6) 〉
(do x ← fmap proj1 (witness dieBound6)

y ← die
return (x + y))

≡ 〈 fmap-bind 〉

(do (x , px) ← witness dieBound6
y ← die
return (x + y))

≡ 〈 cong (_>>=_ (witness dieBound6))
(funext λ → cong (�ip _>>= _)

(corresponds dieBound6)) 〉
(do (x , px) ← witness dieBound6

y ← fmap proj1 (witness dieBound6)
return (x + y))

≡ 〈 cong (_>>=_) (funext λ → fmap-bind) 〉

(do (x , px) ← witness dieBound6
(y , py) ← witness dieBound6
return (x + y))

19Dagand [4] characterizes them as functions between indexed inductive
types (viewed as indexed W-types) that arise from cartesian natural trans-
formations between their generating indexed polynomial functors.

11

TyDe 2019, August 2019, Berlin, Germany Koen Jacobs, Andreas Nuyts, and Dominique Devriese

≡ 〈 cong (_>>=_) (funext λ a→ cong (_>>=_)
(funext λ → sym (fmap-return proj1))) 〉

(do (x , px) ← witness dieBound6
(y , py) ← witness dieBound6
fmap (proj1 {B = λ n→ n 6 12 })

(return (x + y , sumOfBound6IsBound12 px py)))
≡ 〈 cong (_>>=_) (funext λ → sym (fmap-move-bind)) 〉

(do (x , px) ← witness dieBound6
fmap (proj1 {B = λ n→ n 6 12 })

do (y , py) ← witness dieBound6
return (x + y , sumOfBound6IsBound12 px py))

≡ 〈 sym (fmap-move-bind) 〉

fmap proj1 (do (x , px) ← witness dieBound6
(y , py) ← witness dieBound6
return (x + y , sumOfBound6IsBound12 px py)) �

Here, we have used the following helper functions.

fmap-bind g f mx :
(fmap f mx) >>= g ≡ mx >>= (g ◦ f)

fmap-return f a :
fmap f (return a) ≡ return (f a)

fmap-move-bind f ma g :
(fmap g (ma >>= f)) ≡ (ma >>= (fmap g ◦ f))

B Manual Proof relabel

relabel� : (t : Tree A) → (n : N) → evalState (relabel t) n � t
relabel� (leaf a) n = leafISO
relabel� (node l r) n =
nodesISO (relabel� l n) (relabel� r (execState (relabel l) n))

However small, the above proof is quite awkward as it
needs to take into account the particular details of State
binding that are totally void in our intuitive understanding
of the property.

C On Pullback Preservation
In this appendix, we show that a well-behaved operator
,L exists for a given functor F if and only if F preserves
pullbacks.

Moreover, we show that the continuation monad M X =
(X → R) → R does not preserve pullbacks.20

C.1 De�nitions
Because this paper is not about formalizing category theory
in type theory, we use the following down-to-earth de�nition
of a pullback:

20Throughout the section, we assume uniqueness of identity proofs.

De�nition C.1. A (propositionally) commutative diagram

T A

B C

p1

p2 f

g

is called a pullback square (and T is called the pullback of
A

f
−→ C

д
←− B) if T is isomorphic to the type

Σ[a ∈ A] Σ[b ∈ B] Σ[c ∈ C] (f a ≡ c) × (g b ≡ c)

with the maps p1 : T → A and p2 : T → B corresponding to
the appropriate projections from this type of quintuples.

De�nition C.2. A functor F preserves pullbacks if it maps
any pullback square as in de�nition C.1 to a new diagram

F T F A

F B F C

fmap p1

fmap p2 fmap f

fmap g

that is also a pullback square.

C.2 Combining Properties Requires Pullback
Preservation

We seek to prove the following:

Proposition C.3. The function splitL (§4.3) is an isomor-
phism if and only if F preserves pullbacks.

Proof. If we de�ne P as the inverse image of f and Q as that
of g, then A � Σ C P and B � Σ C Q. Then T will be
the pullback of f and g if and only if T � Σ C (P ∧ Q).
If we apply to this diagram the functor F and observe that
F (Σ X R) � Σ (F X) (Li� R),21 then we can write the result
up to isomorphism as:

Σ(F C)(Li� (P ∧Q)) Σ(F C)(Li� P)

Σ(F C)(Li� Q) F C .

proj1
proj1

Now this diagram is a pullback square if and only if Σ (F C)
(Li� (P ∧ Q)) is isomorphic to Σ (F C) (Li� P ∧ Li� Q)
in a manner compatible with the canonical maps to Σ (F C)
(Li� P) and Σ (F C) (Li� Q). In other words, we require that
Li� (P ∧ Q) fc be isomorphic to Li� P fc × Li� Q fc in
a manner compatible with the projections to Li� P fc and
Li� Q fc. This compatibility criterion equivalently says that
one side of the isomorphism is given by splitL . This proves
the proposition. �

21In the right hand type of this isomorphism, the corresponds �eld of the
second component can be de�ned / pattern matched against using the
re�exivity constructor of the identity type, �xing the �rst component of
type F X and leaving only the witness �eld of type F (Σ X R) as actual
information.

12

How to do Proofs: Practically Proving Properties about E�ectful Programs’ Results (Functional Pearl) TyDe 2019, August 2019, Berlin, Germany

C.3 The Continuation Monad Does not Preserve
Pullbacks

In this section, we consider the functorM X = (X → R) →
R, and show via proposition C.3 that it does not preserve
pullbacks. In other words, we will show that Li� (P ∧

Q) ma M A is not necessarily isomorphic to Li� P ma ×
Li� Q ma. As a warm-up, let us consider what Li� even
means for the continuation monad.
A value ma : M A is a computation that pretends to pro-

duce an output of type A but in fact grabs the continuation
of type A→ R (a computation containing a hole of type A
and producing an overall result of type R) and manipulates
it to produce some result of type R. A pure computation will
simply feed a value of type A to the continuation; in general,
ma may call the continuation zero or multiple times and
combine the results.
If we have a value ma : M A and a function f : A → B,

then fmap f ma : M B will take a continuation k : B →
R, compose it with f and feed the result to ma. A value
ma : M A satis�es Li� P if it arises by applying fmap proj1 :
M (Σ A P) → M A to some computation of type M (Σ A P).
In other words, a proof of Li� P ma indicates that, even
though ma takes a continuation of type A→ R, it will only
invoke this computation on values a : A for which it can
prove P a.
A remarkable phenomenon arises when P happens to be

a proof-relevant predicate: a type family that for some val-
ues a : A may contain more than a single element. In this
case, Li� P also becomes proof-relevant, but in a blown-up
manner. Indeed, ma : M A takes continuations of type A→
R, whereas a computation of typeM (Σ A P) takes continua-
tions of type Σ A P → R. The latter type of continuations is
much bigger, as it contains continuations that distinguish be-
tween proofs of P a. Hence, a witness thatma : M A satis�es
Li� P needs to respect the behaviour ofma on continuations
that ignore the proof of P a, but can behave arbitrarily on
those that don’t. The result is that the number of witnesses
corresponding to a single ma can become enormous.
In fact, we can consider the dullest instance of a proof-

relevant predicate and argue with a simple cardinality argu-
ment that M cannot preserve pullbacks. We take A = >
(the unit type), R = Bool and P = Q = λ → Bool.
Then we have Σ (M >) (Li� (P ∧ Q)) � M (Σ > (P ∧
Q)) � M (Bool × Bool) and

Σ (M >) (Li� P × Li� Q)
↪→ Σ (M >) (Li� P) × Σ (M >) (Li� Q)
� M Bool × M Bool

where ↪→ denotes an injection. Thus, if M were to preserve
pullbacks, then M (Bool × Bool) should have lower cardi-
nality than M Bool × M Bool. However, the cardinality of
the former type is 222·2 = 216, whereas the latter type has
cardinality 222 · 222 = 28 and this is not even a conservative
estimate.

Acknowledgments
This work was funded in part by Internal Funds KU Leuven
grant C14/18/064.

Andreas Nuyts holds a Ph.D. Fellowship from the Research
Foundation - Flanders (FWO).

References
[1] Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. 2005.

Containers: Constructing strictly positive types. Theor. Comput. Sci.
342, 1 (2005), 3–27. h�ps://doi.org/10.1016/j.tcs.2005.06.002

[2] Agda Developers. 2019. Syntactic Sugar - Do notation - Agda 2.6.0 doc-
umentation. h�ps://agda.readthedocs.io/en/v2.6.0/language/syntactic-
sugar.html#do-notation. (Accessed on 05/14/2019).

[3] Agda Developers. 2019. Syntactic Sugar - Idiom brackets - Agda
2.6.0 documentation. h�ps://agda.readthedocs.io/en/v2.6.0/language/
syntactic-sugar.html#idiom-brackets. (Accessed on 05/14/2019).

[4] Pierre-Évariste Dagand. 2017. The essence of ornaments. J. Funct.
Program. 27 (2017). h�ps://doi.org/10.1017/S0956796816000356

[5] Nicola Gambino and Martin Hyland. 2003. Wellfounded Trees and
Dependent Polynomial Functors. In Types for Proofs and Programs,
International Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003,
Revised Selected Papers. 210–225. h�ps://doi.org/10.1007/978-3-540-
24849-1_14

[6] Jeremy Gibbons and Ralf Hinze. 2011. Just Do It: Simple Monadic
Equational Reasoning. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’11). ACM, New
York, NY, USA, 2–14. h�ps://doi.org/10.1145/2034773.2034777

[7] Graham Hutton and Diana Fulger. 2008. Reasoning about e�ects:
Seeing the wood through the trees. In Pre-proceedings of the Ninth
Symposium on Trends in Functional Programming.

[8] Conor McBride. 2010. Ornamental algebras, algebraic ornaments.
(2010).

[9] Conor McBride and James McKinna. 2004. The view from the left.
Journal of Functional Programming 14, 1 (2004), 69111. h�ps://doi.org/
10.1017/S0956796803004829

[10] Conor McBride and Ross Paterson. 2008. Applicative programming
with e�ects. Journal of functional programming 18, 1 (2008), 1–13.
h�ps://doi.org/10.1017/S0956796807006326

[11] U. Norell. 2007. Towards a Practical Programming Language Based on
Dependent Type Theory. Ph.D. Dissertation. Chalmers.

[12] Morten Heine Sørensen and Pawel Urzyczyn. 2006. Lectures on the
Curry-Howard isomorphism. Vol. 149. Elsevier.

[13] Wouter Swierstra. 2009. A Hoare logic for the state monad. In Interna-
tional Conference on Theorem Proving in Higher Order Logics. Springer,
440–451. h�ps://doi.org/10.1007/978-3-642-03359-9_30

13

https://doi.org/10.1016/j.tcs.2005.06.002
https://agda.readthedocs.io/en/v2.6.0/language/syntactic-sugar.html#do-notation
https://agda.readthedocs.io/en/v2.6.0/language/syntactic-sugar.html#do-notation
https://agda.readthedocs.io/en/v2.6.0/language/syntactic-sugar.html#idiom-brackets
https://agda.readthedocs.io/en/v2.6.0/language/syntactic-sugar.html#idiom-brackets
https://doi.org/10.1017/S0956796816000356
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1145/2034773.2034777
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1007/978-3-642-03359-9_30

	Abstract
	1 Some Pseudo-Proofs about Effects
	2 How Does It Work?
	2.1 Lifting a Predicate
	2.2 Binding Proofs

	3 Some More Elaborate Examples
	3.1 Tree Relabelling
	3.2 n-Queens

	4 Completing the Picture
	4.1 Simplifying `=́"8000 twoDice and `=́"8000 relabel - Applicative Functors
	4.2 Simplifying `=́"8000 relabel - General Functors
	4.3 Combining Properties - Pullback Preserving Functors
	4.4 Proving Our Low-Level Properties about `=́"8000 List

	5 Feeding Proofs to Programs
	6 Conclusion
	6.1 Related Work

	A Manual Proof
	B Manual Proof `=́"8000 relabel
	C On Pullback Preservation
	C.1 Definitions
	C.2 Combining Properties Requires Pullback Preservation
	C.3 The Continuation Monad Does not Preserve Pullbacks

	Acknowledgments
	References

