On the Logical Geometry of Geometric Angles

Hans Smessaert and Lorenz Demey

Abstract

In this paper we provide an analysis of the logical relations within the conceptual or lexical field of angles in 2D geometry. The basic tripartition into acute/right/obtuse angles is extended in two steps: first zero and straight angles are added, and secondly reflex and full angles are added, in both cases extending the logical space of angles. Within the framework of Logical Geometry, the resulting partitions of these logical spaces yield bitstring semantics of increasing complexity. These bitstring analyses allow a straightforward account of the Aristotelian relations between angular concepts. In addition, also relational concepts such as complementary and supplementary angles receive a natural bitstring analysis.

Mathematics Subject Classification (2010). Primary 03A10, 51M04; Secondary $03 \mathrm{~B} 80,03 \mathrm{G} 05,51 \mathrm{M} 20$.
Keywords. Aristotelian relations, bitstring semantics, Logical Geometry, acute/right/obtuse angle, zero/straight angle, reflex/full angle, complementary/supplementary angles.

1. Introduction

In this paper we will investigate the conceptual or lexical field of angles in 2D geometry. A well-known mathematical reference work reports the following basic definitions and properties of angles:

Given two intersecting lines or line segments, the amount of rotation about the point of intersection (the vertex) required to bring one into correspondence with the other is called the angle α between them. Angles are usually measured in degrees (denoted as ${ }^{\circ}$), radians (denoted rad, or without a

[^0]

Figure 1. (a-b-c) Acute, right and obtuse angles in regular polygons (d-e-f) Acute, right and obtuse angles in triangles (g) Schopenhauer's Euler diagram for the basic tripartition of the logical space of angles.
unit), or sometimes gradians (denoted grad). ${ }^{1}$ One full rotation [...] corresponds to 360° [...]. Half a full rotation is called a straight angle, and a quarter of a full rotation is called a right angle. An angle less than a right angle is called an acute angle, and an angle greater than a right angle is called an obtuse angle. [21, p. 78, our emphases]
The acute, right and obtuse angles constitute a very natural basic constellation. First of all, they characterise the interior angles of the sequence of regular polygons in Figures 1(a-b-c): the angles of the triangle in Figure 1(a) are acute, those of the square in Figure 1(b) are right, and those of any other regular polygon with more than four angles - such as the pentagon in Figure 1(c) - are obtuse. Secondly, the acute, right and obtuse angles at the bottom left in Figures 1(d-e-f) also yield the three-way classification of triangles into acute, right and obtuse triangles respectively [21, p. 3023]. The basic intuition that these three types of angles constitute a natural tripartition of the 'logical space' of angles already inspired the 19th-century philosopher Arthur Schopenhauer to draw an Euler diagram as in Figure 1(g) [17, p. 66]. Schopenhauer's diagram has recently been discussed in more technical terms (cf. [4, p. 196, Figure 6] and [12, p. 118, Figure 9]), which provided the impetus for the more elaborate analysis of the logical space of geometric angles to be developed here. Finally, this fundamental tripartition of acute, right and obtuse angles also has natural links with topics from contemporary research on spatial logic, such as qualitative spatial reasoning [16] and the logical formalization of elementary geometry [1].

Our analysis is developed in the framework of Logical Geometry, and makes use of the so-called Aristotelian relations. In their most general form, these relations can be defined in the mathematical setting of Boolean algebra $[3,4]$:

[^1]Definition 1.1. Let $\mathbb{B}=\langle B, \wedge, \vee, \neg, \top, \perp\rangle$ be an arbitrary Boolean algebra [7]. Two elements $x, y \in B$ are said to be

\mathbb{B}-contradictory	iff	$x \wedge y=\perp$	and
\mathbb{B}-contrary	iff	$x \wedge y=\perp=\top$,	
\mathbb{B}-subcontrary	iff	$x \wedge y \neq \perp$	and
$x \vee y \neq \top$,			
in \mathbb{B}-subalternation	iff	$\neg x \vee y=\top$	and
$x \vee \neg y \neq \top$.			

As a first special case of Definition 1.1, we take \mathbb{B} to be a Boolean algebra of statements. The top and bottom elements of such a Boolean algebra are resp. the tautological and self-contradictory statements, while the algebraic operations of meet, join and complement correspond to the logical operations of resp. conjunction, disjunction and negation:

Definition 1.2. Let $\mathbb{B}=\langle B, \wedge, \vee, \neg, \top, \perp\rangle$ be a Boolean algebra of statements. Two statements $P, Q \in B$ are said to be

\mathbb{B}-contradictory	iff	$P \wedge Q=\perp$	and
\mathbb{B}-contrary	iff	$P \wedge Q=Q=\top$,	
\mathbb{B}-subcontrary	iff	$P \wedge Q \neq \perp$	and
$P \vee Q \neq \top$,			
in \mathbb{B}-subalternation	iff	$\neg P \vee Q=\top$	and
	$P \vee \neg Q \neq \top$,		

We thus find that two statements P and Q are contradictory in this Boolean algebra iff $P \wedge Q=\perp$ and $P \vee Q=\top$, i.e. iff the conjunction of P and Q is self-contradictory, while the disjunction of P and Q is tautological. The first part means exactly that P and Q cannot be true together, while the second part means that P and Q cannot be false together. We have thus obtained the 'familiar' definition of contradiction for statements (in terms of being able to be true/false together). Similarly, P and Q are said to be (i) contrary iff they cannot be true together but can be false together, (ii) subcontrary iff they can be true together but cannot be false together, and (iii) in subalternation if P entails Q but Q does not entail P.

As a second special case of Definition 1.1, we take \mathbb{B} to be a Boolean algebra of sets. The top and bottom elements of such a Boolean algebra are resp. the entire domain of discourse D and the empty set \emptyset, while the algebraic operations of meet, join and complement correspond to the set-theoretical operations of resp. intersection, union and complementation (with respect to D):

Definition 1.3. Let $\mathbb{B}=\langle B, \cap, \cup, \backslash, D, \emptyset\rangle$ be a Boolean algebra of sets. Two sets $X, Y \in B$ are said to be

$$
\begin{array}{lllll}
\mathbb{B} \text {-contradictory } & \text { iff } & X \cap Y=\emptyset & \text { and } & X \cup Y=D, \\
\mathbb{B} \text {-contrary } & \text { iff } & X \cap Y=\emptyset & \text { and } & X \cup Y \neq D, \\
\mathbb{B} \text {-subcontrary } & \text { iff } & X \cap Y \neq \emptyset & \text { and } & X \cup Y=D, \\
\text { in } \mathbb{B} \text {-subalternation } & \text { iff } & X \subseteq Y & \text { and } & X \nsupseteq Y .
\end{array}
$$

A central notion in the framework of Logical Geometry is that of a bitstring, i.e. a sequence of values 1 or 0 , such as 100 or 01011 [6]. Bitstrings are said to belong to a level depending on the number of 1-bits they contain. For example, 100 is a level 1 (L1) bitstring, 01010 is a L2 bitstring, and so
on. Bitstrings provide a compact way of representing the semantics of the expressions in a given logical fragment or lexical field, and allow us to study the logical relations holding between these expressions in terms of their bitstring representations. In particular, Aristotelian relations can straightforwardly be defined in terms of bitstrings. Hence, as a third and final special case of Definition 1.1, we can take \mathbb{B} to be a Boolean algebra of bitstrings of length n, i.e. $\{0,1\}^{n}$. The top and bottom elements of such a Boolean algebra are resp. $\mathbf{1}_{n}$ and $\mathbf{0}_{n}$, i.e. the bitstrings $1 \cdots 1$ and $0 \cdots 0$, exclusively consisting of n values 1 or 0 , respectively. The algebraic operations of meet, join and complement then correspond to the logical operations of resp. conjunction, disjunction and negation, applied bitwise, i.e. bit position by bit position:

Definition 1.4. Let $\mathbb{B}=\left\langle B, \wedge, \vee, \neg, \mathbf{1}_{n}, \mathbf{0}_{n}\right\rangle$ be a Boolean algebra $\{0,1\}^{n}$ of bitstrings of length n. Two bitstrings b_{1} and $b_{2} \in B$ are said to be

\mathbb{B}-contradictory	iff	$b_{1} \wedge b_{2}=\mathbf{0}_{n}$	and	$b_{1} \vee b_{2}=\mathbf{1}_{n}$,
\mathbb{B}-contrary	iff	$b_{1} \wedge b_{2}=\mathbf{0}_{n}$	and	$b_{1} \vee b_{2} \neq \mathbf{1}_{n}$,
\mathbb{B}-subcontrary	iff	$b_{1} \wedge b_{2} \neq \mathbf{0}_{n}$	and	$b_{1} \vee b_{2}=\mathbf{1}_{n}$,
in \mathbb{B}-subalternation	iff	$b_{1} \wedge b_{2}=b_{1}$	and	$b_{1} \vee b_{2} \neq b_{1}$.

In the present paper, Boolean algebras consisting of sets (cf. Definition 1.3) and of bitstrings (cf. Definition 1.4) will play a crucial role in the analysis of the logical space of geometric angles.

The paper consists of two main parts, followed by a brief conclusion. In Section 2 the basic classification of angles into acute, right and obtuse angles is given a bitstring analysis and the Aristotelian relations between these concepts are captured in a JSB hexagon (§ 2.1). Subsequently, the logical space of angles is extended in two steps, first by adding zero and straight angles (§2.2) and secondly by adding reflex and full angles (§2.3), thus stepwise increasing the complexity of the bitstring analysis as well. In Section 3, various logical relations between angles - such as complementarity (§ 3.1), supplementarity (§3.2) and counter-supplementarity (§ 3.3) - are discussed, and given an analysis in terms of mirroring or flipping operations on bitstrings. By way of conclusion, Section 4 recasts the results of this paper in terms of decreasing bitstring complexity, and briefly points to a possible connection with the notion of Duality in the realm of quantification.

2. Aristotelian relations between angular predicates

2.1. Acute, right and obtuse angles

In the most basic case, the logical space of angles is restricted to the open interval $\mathcal{A}_{1}:=\left\{\alpha \mid 0^{\circ}<\alpha<180^{\circ}\right\}$. The language \mathcal{L}_{A} to describe this logical space contains one-place predicates P - such as acute, right, oblique, obtuse - and individual constant symbols s such as a, b, \ldots as the labels for angles. These expressions are interpreted in \mathcal{A}_{1} by means of the interpretation function $\llbracket \cdot \rrbracket_{1}: \mathcal{L}_{A} \rightarrow \mathcal{A}_{1}$. In particular, one-place predicates P in \mathcal{L}_{A} denote subsets of \mathcal{A}_{1} - for all $P \in \mathcal{L}_{A}: \llbracket P \rrbracket_{1} \subseteq \mathcal{A}_{1}$ - whereas the constant symbols
s in \mathcal{L}_{A} denote elements of $\mathcal{A}_{1}-$ for all $s \in \mathcal{L}_{A}: \llbracket s \rrbracket_{1} \in \mathcal{A}_{1}$. Well-formed formulae of \mathcal{L}_{A} are of the form $P(s)$ where for all $P, s \in \mathcal{L}_{A}: \llbracket P(s) \rrbracket_{1}=1$ iff $\llbracket s \rrbracket_{1} \in \llbracket P \rrbracket_{1}$. The three basic angular predicates are defined as follows [21, pp. 28, 2054, 2568]:

$$
\begin{array}{ll}
\llbracket \text { acute }_{1} & :=\left\{\alpha \in \mathcal{A}_{1} \mid 0^{\circ}<\alpha<90^{\circ}\right\} \\
\llbracket \text { right } \rrbracket_{1} & :=\left\{90^{\circ}\right\} \\
\llbracket \text { obtuse } \rrbracket_{1} & :=\left\{\alpha \in \mathcal{A}_{1} \mid 90^{\circ}<\alpha<180^{\circ}\right\}
\end{array}
$$

The predicate oblique is then defined as acute or obtuse, in other words, as the negation of the predicate right. We can hence define the three negative counterparts of the above basic predicates as follows:

$$
\begin{array}{ll}
\llbracket \text { non_acute } \rrbracket_{1} & :=\mathcal{A}_{1} \backslash \llbracket \text { acute } \rrbracket_{1} \\
& =\left\{\alpha \in \mathcal{A}_{1} \mid 90^{\circ} \leq \alpha<180^{\circ}\right\} \\
\llbracket \text { non_right } \rrbracket_{1}=\llbracket \text { oblique } \rrbracket_{1} & :=\mathcal{A}_{1} \backslash \llbracket r i g h t \rrbracket_{1} \\
& =\left\{\alpha \in \mathcal{A}_{1} \mid \alpha \neq 90^{\circ}\right\} \\
\llbracket \text { non_obtuse }_{1} & :=\mathcal{A}_{1} \backslash \llbracket \text { obtuse } \rrbracket_{1} \\
& =\left\{\alpha \in \mathcal{A}_{1} \mid 0^{\circ}<\alpha \leq 90^{\circ}\right\}
\end{array}
$$

We can now take these six predicates together to define the fragment

$$
\mathcal{F}_{1}:=\{\text { acute, right, obtuse, non_acute, oblique, non_obtuse }\}
$$

In order to characterise the Aristotelian relations between the predicates in this fragment, we provide a bitstring analysis by defining the partition induced by the fragment [6, Definition 5].

Intuitively speaking, we get the "basic" tripartition —— with the node for the central reference point of 90° and the two intervals to the left and to the right for $0^{\circ}<\alpha<90^{\circ}$ and $90^{\circ}<\alpha<180^{\circ}$ respectively. ${ }^{2}$ Technically speaking, the partition induced by \mathcal{F}_{1} is defined as

$$
\Pi\left(\mathcal{F}_{1}\right):=\{\text { acute, right, obtuse }\}
$$

and the corresponding bitstring mapping β_{1} yields the following bitstrings of length three for the fragment \mathcal{F}_{1} :

$$
\begin{array}{llll}
\beta_{1}(\text { acute }) & =100 & \beta_{1}(\text { non_acute }) & =011 \\
\beta_{1}(\text { right }) & =010 & \beta_{1}(\text { oblique }) & =101 \\
\beta_{1}(\text { obtuse }) & =001 & \beta_{1}(\text { non_obtuse }) & =110
\end{array}
$$

Applying Definition 1.3 to the Boolean algebra of sets for (denotations of) angular predicates, or equivalently, Definition 1.4 to the Boolean algebra of bitstrings of length 3, gives rise to the standard hexagon in Figure 2(a), which belongs to the Aristotelian family of Jacoby-Sesmat-Blanché (JSB) hexagons $[2,9,18]$. More specifically, since the three pairwise contrary elements acute (100), right (010) and obtuse (001) are jointly exhaustive i.e. $100 \vee 010 \vee 001=111$ - this diagram belongs to the Boolean subfamily of strong JSB hexagons [15]. Using the coding conventions in Figure 2(c), we can observe (i) three diagonals for the contradiction relations, (ii) an upside down triangle for the contrariety relations between the three L1 predicates

[^2]

Figure 2. (a) Jacoby-Sesmat-Blanché hexagon for \mathcal{F}_{1} (b) Kite structure for the primitively lexicalised subfragment of \mathcal{F}_{1} (c) Coding conventions for the Aristotelian relations.
acute, right and obtuse, (iii) an upright triangle for the subcontrariety relations between the three L2 predicates non_acute, oblique, and non_obtuse, and (iv) six arrows along the edges of the hexagon for the subalternation relations from the L1 to the L2 elements.

Notice that the L2 angular predicate oblique is the only negative predicate which itself receives a simple, non-compound lexicalisation. On the basis of similar linguistic observations of lexicalisation patterns, Seuren and Jaspers [10, 19] have proposed a so-called 'kite' structure, which reduces the JSB hexagon by eliminating the 'non-natural' elements at the top and the bottom right of the hexagon. Applying this strategy to the hexagon of angular predicates in Figure 2(a) yields the kite structure in Figure 2(b). ${ }^{3}$

2.2. Adding zero and straight angles

In a first, minimal move of extending the logical space of angles, we close the interval \mathcal{A}_{1} by including its extreme values 0° and 180°. We thus define the new logical space as the closed interval $\mathcal{A}_{2}:=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 180^{\circ}\right\}$ and the interpretation function $\llbracket \cdot \rrbracket_{2}: \mathcal{L}_{A} \rightarrow \mathcal{A}_{2}$. Two extra one-place predicates are added to the language \mathcal{L}_{A}, namely zero and straight [21, p. 2869], thus yielding the following five basic angular predicates:

$$
\begin{array}{ll}
\llbracket \text { zero } \rrbracket_{2} & :=\left\{0^{\circ}\right\} \\
\llbracket \text { acute } \rrbracket_{2} & :=\left\{\alpha \in \mathcal{A}_{2} \mid 0^{\circ}<\alpha<90^{\circ}\right\} \\
\llbracket \text { right } \rrbracket_{2} & :=\left\{90^{\circ}\right\} \\
\llbracket \text { obtuse } \rrbracket_{2} & :=\left\{\alpha \in \mathcal{A}_{2} \mid 90^{\circ}<\alpha<180^{\circ}\right\} \\
\llbracket \text { straight } \rrbracket_{2} & :=\left\{180^{\circ}\right\}
\end{array}
$$

We can then again define their negative counterparts as follows:

[^3]\[

$$
\begin{array}{ll}
\llbracket \text { non_zero } \rrbracket_{2} & :=\mathcal{A}_{2} \backslash \llbracket \text { zero } \rrbracket_{2} \\
& =\left\{\alpha \in \mathcal{A}_{2} \mid 0^{\circ}<\alpha \leq 180^{\circ}\right\} \\
\llbracket \text { non_acute } \rrbracket_{2} & :=\mathcal{A}_{2} \backslash \llbracket \text { acute } \rrbracket_{2} \\
& =\left\{\alpha \in \mathcal{A}_{2} \mid \alpha=0^{\circ} \text { or } 90^{\circ} \leq \alpha \leq 180^{\circ}\right\} \\
\llbracket \text { non_right } \rrbracket_{2} & :=\mathcal{A}_{2} \backslash \llbracket \text { right } \rrbracket_{2} \\
& =\left\{\alpha \in \mathcal{A}_{2} \mid \alpha \neq 90^{\circ}\right\} \\
\llbracket \text { non_obtuse } \rrbracket_{2} & :=\mathcal{A}_{2} \backslash \llbracket \text { obtuse } \rrbracket_{2} \\
& =\left\{\alpha \in \mathcal{A}_{2} \mid 0^{\circ} \leq \alpha \leq 90^{\circ} \text { or } \alpha=180^{\circ}\right\} \\
\llbracket \text { non_straight } \rrbracket_{2} & :=\mathcal{A}_{2} \backslash \llbracket \text { straight } \rrbracket_{2} \\
& =\left\{\alpha \in \mathcal{A}_{2} \mid \alpha<180^{\circ}\right\}
\end{array}
$$
\]

We can now take these ten predicates together to define the fragment

$$
\begin{aligned}
\mathcal{F}_{2}:=\left\{\begin{array}{l}
\text { zero, acute, right, obtuse, straight, non_zero, } \\
\\
\\
\text { non_acute, non_right, non_obtuse, non_straight }\}
\end{array}\right.
\end{aligned}
$$

In order to provide a bitstring analysis, we define the partition induced by the fragment. Intuitively speaking, the original basic tripartition - is turned into a five-partition $\bullet \bullet$ by adding two nodes at the left and right extremes for the extreme values of 0° and 180°. Technically speaking, the partition induced by \mathcal{F}_{2} is defined as

$$
\Pi\left(\mathcal{F}_{2}\right):=\{\text { zero, acute, right, obtuse, straight }\}
$$

and the corresponding bitstring mapping β_{2} yields the following bitstrings of length five for the fragment \mathcal{F}_{2} :

$\beta_{2}($ zero $)$	$=10000$	$\beta_{2}($ non_zero $)$	$=01111$
$\beta_{2}($ acute $)$	$=01000$	$\beta_{2}($ non_acute $)$	$=10111$
$\beta_{2}($ right $)$	$=00100$	$\beta_{2}($ non_right $)$	$=11011$
$\beta_{2}($ obtuse $)$	$=00010$	$\beta_{2}($ non_obtuse $)$	$=11101$
$\beta_{2}($ straight $)$	$=00001$	$\beta_{2}($ non_straight $)$	$=11110$

A first remark concerns the interpretation of the predicate acute, which is often used in a broader way than defined above, namely as smaller than 90°, but possibly 0°. This situation obviously resembles the distinction drawn between so-called one-sided and two-sided readings of quantifiers and modal operators [8], for instance one-sided some and perhaps even all versus twosided some but not all, or similarly one-sided possible and perhaps even necessary versus two-sided possible but not necessary (i.e. contingent). In other words, we should distinguish between one-sided acute $_{1}$ and two-sided acute ${ }_{2}$, which receive distinct bitstring representations, resp. as L2 and L1 elements:

$$
\beta_{2}\left(\text { acute }_{1}\right)=11000 \quad \beta_{2}\left(\text { acute }_{2}\right)=01000
$$

A second question concerns the interpretation of the predicate oblique. In the basic logical space \mathcal{A}_{1} of $\S 2.1$ it was equal to the disjunction of acute and obtuse, and also to the negation of right. In the more elaborate logical space \mathcal{A}_{2} that we are considering now, the former, disjunctive characterisation - namely acute or obtuse - still seems to make sense, whereas the latter, negative characterisation does not. In particular, the two extreme predicates zero and straight are typically understood as falling under non_oblique. Put

Figure 3. (a) Contrariety and subcontrariety relations in \mathcal{F}_{2} (b) Subalternation relations in \mathcal{F}_{2}.
differently, the predicate non_oblique is equivalent to the three-way disjunction zero or right or straight and thus gets represented as a L3 bitstring:

$$
\beta_{2}(\text { oblique })=01010 \quad \beta_{2}(\text { non_oblique })=10101
$$

Notice that oblique is still a L2 predicate, but now relative to a more fine-grained logical space, i.e. with respect to bitstrings of length 5 instead of length 3.

At this point, we can again apply Definitions 1.3 and 1.4 to the angular predicates in the fragment \mathcal{F}_{2} and their corresponding bitstrings of length 5 to build the decagonal diagrams for the Aristotelian relations in Figure 3. For the sake of visual clarity, we omit the five diagonals for the five contradiction relations. In Figure 3(a), both the ten relations of contrariety between the five L1 predicates and the ten relations of subcontrariety between the five L4 predicates are visualised by means of a pentagon with an inscribed pentagonal star. ${ }^{4}$ In Figure 3(b), by contrast, the twenty arrows represent the subalternation relations from each of the five L1 predicates to the four L4 predicates that it is not contradictory with.

Observe, finally, that the original fragment

$$
\mathcal{F}_{1}=\{\text { acute, right, obtuse, non_acute, non_right, non_obtuse }\}
$$

is a subfragment of \mathcal{F}_{2}, and still yields a JSB hexagon inside the decagon. However, since the three pairwise contrary elements acute (01000), right (00100) and obtuse (00010) are no longer jointly exhaustive, we now get a weak JSB hexagon, rather than a strong one [15]. ${ }^{5}$

[^4]
2.3. Adding reflex and full angles

In a second move, the logical space of angles is extended more radically, i.e. it is 'doubled' by including the angles between 180° and 360°. We thus define the new logical space $\mathcal{A}_{3}:=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$ and the interpretation function $\llbracket \cdot \rrbracket_{3}: \mathcal{L}_{A} \rightarrow \mathcal{A}_{3}$. Again two extra one-place predicates are added to the language \mathcal{L}_{A}, namely reflex and full [21, pp. 1117, 2514] - see Figures 3(a-b-c-d) below - thus yielding the following seven angular predicates:

$$
\begin{array}{ll}
\llbracket \text { zero } \rrbracket_{3} & :=\left\{0^{\circ}\right\} \\
\llbracket \text { acute } \rrbracket_{3} & :=\left\{\alpha \in \mathcal{A}_{3} \mid 0^{\circ}<\alpha<90^{\circ}\right\} \\
\llbracket \text { right } \rrbracket_{3} & :=\left\{90^{\circ}\right\} \\
\llbracket \text { obtuse } \rrbracket_{3} & :=\left\{\alpha \in \mathcal{A}_{3} \mid 90^{\circ}<\alpha<180^{\circ}\right\} \\
\llbracket \text { straight } \rrbracket_{3} & :=\left\{180^{\circ}\right\} \\
\llbracket \text { reflex } \rrbracket_{3} & :=\left\{\alpha \in \mathcal{A}_{3} \mid 180^{\circ}<\alpha<360^{\circ}\right\} \\
\llbracket \text { ful } \rrbracket_{3} & :=\left\{360^{\circ}\right\}
\end{array}
$$

We can now take these seven predicates together with their seven negative counterparts to define the fragment

$$
\begin{aligned}
& \mathcal{F}_{3}:=\quad\{\quad \text { zero, acute, right, obtuse, straight, reflex, full, } \\
& \text { non_zero, non_acute, non_right, non_obtuse, } \\
& \text { non_straight, non_reflex, non_full \} }
\end{aligned}
$$

In order to provide a bitstring analysis, we define the partition induced by the fragment. Intuitively speaking, the five-partition $\bullet \bullet$ from $\S 2.2$ is turned into a seven-partition by adding an interval and a node to the right:
$\bullet \bullet$. Technically speaking, the partition induced by \mathcal{F}_{3} is defined as

$$
\Pi\left(\mathcal{F}_{3}\right):=\{\text { zero, acute, right, obtuse, straight, reflex, full }\}
$$

and the corresponding bitstring mapping β_{3} yields the following bitstrings of length seven for the fragment \mathcal{F}_{3} :

$\beta_{3}($ zero $)$	$=1000000$	β_{3} (non_zero)	$=0111111$
$\beta_{3}($ acute $)$	$=0100000$	β_{3} (non_acute)	$=1011111$
$\beta_{3}($ right $)$	$=0010000$	β_{3} (non_right $)$	$=1101111$
$\beta_{3}($ obtuse $)$	$=0001000$	β_{3} (non_obtuse)	$=1110111$
$\beta_{3}($ straight $)$	$=0000100$	$\beta_{3}($ non_straight $)$	$=1111011$
$\beta_{3}($ reflex $)$	$=0000010$	$\beta_{3}($ non_reflex $)$	$=1111101$
$\beta_{3}($ full $)$	$=0000001$	β_{3} (non_full)	$=1111110$

At first sight, the above analysis also allows a straightforward generalisation for the two higher-level predicates oblique and non_oblique. In particular, oblique would correspond to the three-way disjunction acute or obtuse or reflex and its negation non_oblique to the four-way disjunction zero or right or straight or full:

$$
\beta_{3}(\text { oblique })=0101010 \quad \beta_{3}(\text { non_oblique })=1010101
$$

However, an angle of 270° - as represented in Figure 4(b) - classifies as reflex according to the above definition, and hence as oblique. This seems to run into conflict with the fundamental connection between the angles of 90° and 270°, which we will turn to in more detail in Section 3. We therefore

Figure 4. (a) Reflex, counter-obtuse angle (b) Reflex, counter-right angle (c) Reflex, counter-acute angle (d) Full angle.
propose an alternative analysis, which turns the five-partition $\bullet \bullet$ from $\S 2.2$ into a nine-partition $\bullet \bullet \bullet$ by copying the four left-most components of the former, i.e. •- , and rotating them around the 180° node, i.e. - - In this way, two nodes are added, namely for 270° and for 360°, and two intervals for $180^{\circ}<\alpha<270^{\circ}$ and $270^{\circ}<\alpha<360^{\circ}$ respectively. In other words, the denotation of the predicate reflex is split into three subareas, for which we introduce the new names counter_obtuse, counter_right and counter_acute - or c_obtuse, c_right and c_acute for short - which are represented in Figures 4(a-b-c) respectively, and which are defined as follows:

$$
\begin{array}{ll}
\llbracket \text { zero } \rrbracket_{3} & =\left\{0^{\circ}\right\} \\
\llbracket \text { acute } \rrbracket_{3} & =\left\{\alpha \in \mathcal{A}_{3} \mid 0^{\circ}<\alpha<90^{\circ}\right\} \\
\llbracket \text { right } \rrbracket_{3} & =\left\{90^{\circ}\right\} \\
\llbracket \text { obtuse } \rrbracket_{3} & =\left\{\alpha \in \mathcal{A}_{3} \mid 90^{\circ}<\alpha<180^{\circ}\right\} \\
\llbracket \text { straight } \rrbracket_{3} & =\left\{180^{\circ}\right\} \\
\llbracket c_{1} \text { _obtuse } \rrbracket_{3} & :=\left\{\alpha \in \mathcal{A}_{3} \mid 180^{\circ}<\alpha<270^{\circ}\right\} \\
\llbracket \text { c_right } \rrbracket_{3} & :=\left\{270^{\circ}\right\} \\
\llbracket \text { c_acute }_{3} & :=\left\{\alpha \in \mathcal{A}_{3} \mid 270^{\circ}<\alpha<360^{\circ}\right\} \\
\llbracket \text { full } \rrbracket_{3} & =\left\{360^{\circ}\right\}
\end{array}
$$

The alternative fragment

$$
\begin{aligned}
\mathcal{F}_{3}^{\prime}:=\left\{\begin{array}{l}
\text { zero, acute, right, obtuse, straight, } c_{-} \text {obtuse, } c_{-} \text {right, } \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { non_acute, full, nobtuse, non_zero, non_acutraight, non_c_obtuse, non_right, } \\
\text { non_c_acute, non_full }\}
\end{array}\right.
\end{aligned}
$$

induces the partition

$$
\begin{aligned}
& \Pi\left(\mathcal{F}_{3}^{\prime}\right):=\quad\{\quad \text { zero, acute, right, obtuse, straight, } \\
& \text { c_obtuse, c_right, c_acute, full \} }
\end{aligned}
$$

and the corresponding bitstring mapping β_{3}^{\prime} yields the following bitstrings of length nine for the fragment \mathcal{F}_{3}^{\prime} :

$\beta_{3}^{\prime}($ zero $)$	$=100000000$	$\beta_{3}^{\prime}($ non_zero $)$	$=011111111$
$\beta_{3}^{\prime}($ acute $)$	$=010000000$	$\beta_{3}^{\prime}($ non_acute $)$	$=101111111$
$\beta_{3}^{\prime}($ right $)$	$=00100000$	$\beta_{3}^{\prime}($ non_right $)$	$=110111111$
$\beta_{3}^{\prime}($ obtuse $)$	$=00010000$	$\beta_{3}^{\prime}($ non_obtuse $)$	$=111011111$
$\beta_{3}^{\prime}($ straight $)$	$=000010000$	$\beta_{3}^{\prime}($ non_straight $)$	$=111101111$
$\beta_{3}^{\prime}($ c_obtuse $)$	$=000001000$	$\beta_{3}^{\prime}($ non_c_obtuse $)$	$=111110111$
$\beta_{3}^{\prime}($ c_right $)$	$=000000100$	$\beta_{3}^{\prime}($ non_c_right $)$	$=111111011$
$\beta_{3}^{\prime}($ c_acute $)$	$=000000010$	$\beta_{3}^{\prime}($ non_c_acute $)$	$=11111101$
$\beta_{3}^{\prime}($ full $)$	$=000000001$	$\beta_{3}^{\prime}($ non_full $)$	$=111111110$

On this more fine-grained analysis, reflex corresponds to the three-way disjunction c_{-}obtuse or c_right or c_acute:

$$
\beta_{3}^{\prime}(\text { reflex })=000001110 \quad \beta_{3}^{\prime}(\text { non_reflex })=111110001
$$

More importantly, oblique now gets a very natural interpretation as the four-way disjunction acute or obtuse or c_obtuse or c_acute and its negation non_oblique the equally straightforward analysis as the five-way disjunction zero or right or straight or c_right or full:
$\beta_{3}^{\prime}($ oblique $)=010101010 \quad \beta_{3}^{\prime}($ non_oblique $)=101010101$
At this point, we could, once again, apply Definitions 1.3 and 1.4 to the angular predicates in the fragments \mathcal{F}_{3} and \mathcal{F}_{3}^{\prime} and their corresponding bitstrings of lengths 7 and 9 , in order to build the Aristotelian diagrams that extend the hexagon and decagon in Figures 2 and 3. However, in view of the considerable graphical complexity of these tetra-decagonal and octadecagonal diagrams, we will refrain from doing so here.

3. Complementarity and supplementarity relations between angles and angular predicates

In Section 2, we progressively introduced a whole series of one-place predicates of the language \mathcal{L}_{A}, describing properties of individual angles, and yielding an ever more refined classification of angles. The bitstring semantics assigned to fragments of these predicates naturally leads to the characterisation of the Aristotelian relations between these angular properties. In this section, we move from properties of individual angles to relations between angles. Hence, we will add several two-place predicates to the language \mathcal{L}_{A}.

3.1. Complementary angles

The first angular relation to be analysed is that of complementarity: two angles are said to be complementary iff they add up to 90° [21, p. 482]. More formally, for $i=1,2,3$:

$$
\llbracket \text { complementary } \rrbracket_{i}:=\left\{(\alpha, \beta) \in \mathcal{A}_{i} \times \mathcal{A}_{i} \mid \alpha+\beta=90^{\circ}\right\}
$$

In other words, for $i=1,2,3$ and for all $a, b \in \mathcal{L}_{A}$:

$$
\llbracket \operatorname{complementary}(a, b) \rrbracket_{i}=1 \text { iff } \llbracket a \rrbracket_{i}+\llbracket b \rrbracket_{i}=90^{\circ}
$$

This complementarity relation is symmetric, i.e. for $i=1,2,3$ and for all $\alpha, \beta \in \mathcal{A}_{i}$:

$$
(\alpha, \beta) \in \llbracket \text { complementary } \rrbracket_{i} \text { iff }(\beta, \alpha) \in \llbracket \text { complementary } \rrbracket_{i}
$$

We can now type-shift [14] the complementarity relation from a twoplace first-order predicate - i.e. a relation between two angles $\alpha, \beta \in \mathcal{A}_{i}$ - to a two-place second-order predicate complementary ${ }^{2}$ - i.e. a relation between two sets of angles $\Gamma, \Delta \subseteq \mathcal{A}_{i}$. For $i=1,2,3$, \llbracket complementary $^{2} \rrbracket_{i}:=$

$$
\left\{(\Gamma, \Delta) \in \wp\left(\mathcal{A}_{i}\right) \times \wp\left(\mathcal{A}_{i}\right) \mid \exists \alpha \in \Gamma, \exists \beta \in \Delta:(\alpha, \beta) \in \llbracket \text { complementary } \rrbracket_{i}\right\}
$$

Thus, for $i=1,2,3$ and for all $P, Q \in \mathcal{L}_{A}: \llbracket \operatorname{complementary}^{2}(P, Q) \rrbracket_{i}=1 \mathrm{iff}$

$$
\exists \llbracket a \rrbracket_{i} \in \llbracket P \rrbracket_{i}, \exists \llbracket b \rrbracket_{i} \in \llbracket Q \rrbracket_{i}: \llbracket c o m p l e m e n t a r y(a, b) \rrbracket_{i}=1
$$

In virtue of the symmetry of the first-order complementary relation, also the second-order complementary ${ }^{2}$ relation is symmetric, i.e. for $i=1,2,3$ and for all $\Gamma, \Delta \subseteq \mathcal{A}_{i}$:

$$
(\Gamma, \Delta) \in \llbracket \text { complementary }^{2} \rrbracket_{i} \text { iff }(\Delta, \Gamma) \in \llbracket \text { complementary }^{2} \rrbracket_{i}
$$

In the most basic case - described in § 2.1 - the logical space of angles is restricted to $\mathcal{A}_{1}=\left\{\alpha \mid 0^{\circ}<\alpha<180^{\circ}\right\}$. In this scenario, there is only one type of complementarity, namely that between two acute angles. In other words, \llbracket complementary $(a, b) \rrbracket_{1}=1$ only if $\llbracket \operatorname{acute}(a) \rrbracket_{1}=1$ and $\llbracket \operatorname{acute}(b) \rrbracket_{1}=1$. Or put in second-order terms:

$$
\llbracket \text { complementary }{ }^{2} \rrbracket_{1}=\left\{\left(\llbracket \text { acute } \rrbracket_{1}, \llbracket \text { acute } \rrbracket_{1}\right)\right\}
$$

Extending the logical space of angles to $\mathcal{A}_{2}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 180^{\circ}\right\}$, as in § 2.2 , however, three scenarios arise: if \llbracket complementary $(a, b) \rrbracket_{2}=1$, then:

$$
\begin{array}{r}
\text { either } \quad \llbracket \text { zero }(a) \rrbracket_{2}=1 \quad \text { and } \quad \llbracket \operatorname{right}(b) \rrbracket_{2}=1, \\
\text { or } \llbracket \operatorname{acute}(a) \rrbracket_{2}=1 \quad \text { and } \quad \llbracket \operatorname{acute}(b) \rrbracket_{2}=1, \\
\text { or } \quad \llbracket \operatorname{right}(a) \rrbracket_{2}=1 \\
\text { and } \quad \llbracket \text { zero }(b) \rrbracket_{2}=1 .
\end{array}
$$

Or equivalently, in second-order terms:

$$
\begin{aligned}
\llbracket \text { complementary } \rrbracket_{2} \rrbracket_{2}=\{ & \left(\llbracket \text { zero } \rrbracket_{2}, \llbracket r i g h t \rrbracket_{2}\right),\left(\llbracket \text { acute } \rrbracket_{2}, \llbracket \text { acute } \rrbracket_{2}\right), \\
& \left.\left(\llbracket \text { right } \rrbracket_{2}, \llbracket \text { zero } \rrbracket_{2}\right)\right\}
\end{aligned}
$$

Notice that extending the logical space of angles to $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$, as in $\S 2.3$, does not add any extra complexity. In other words, exactly the same three scenarios arise as with \mathcal{A}_{2} :
\llbracket complementary ${ }^{2} \rrbracket_{3}=\left\{\left(\llbracket\right.\right.$ zero $\rrbracket_{3}, \llbracket$ right $\left.\rrbracket_{3}\right),\left(\llbracket\right.$ acute $\rrbracket_{3}, \llbracket$ acute $\left.\rrbracket_{3}\right)$,

$$
\left.\left(\llbracket r i g h t \rrbracket_{3}, \llbracket \text { zero } \rrbracket_{3}\right)\right\}
$$

3.2. Supplementary angles

The second angular relation to be analysed is that of supplementarity: two angles are said to be supplementary iff they add up to 180° [21, p. 2897]. More formally, for $i=1,2,3$:

$$
\llbracket \text { supplementary } \rrbracket_{i}:=\left\{(\alpha, \beta) \in \mathcal{A}_{i} \times \mathcal{A}_{i} \mid \alpha+\beta=180^{\circ}\right\}
$$

In other words, for $i=1,2,3$ and for all $a, b \in \mathcal{L}_{A}$:

$$
\llbracket \operatorname{supplementary}(a, b) \rrbracket_{i}=1 \text { iff } \llbracket a \rrbracket_{i}+\llbracket b \rrbracket_{i}=180^{\circ}
$$

This supplementarity relation is again symmetric, i.e. for $i=1,2,3$ and for all $\alpha, \beta \in \mathcal{A}_{i}$:

$$
(\alpha, \beta) \in \llbracket \text { supplementary } \rrbracket_{i} \text { iff }(\beta, \alpha) \in \llbracket \text { supplementary } \rrbracket_{i}
$$

As with the complementarity relation in § 3.1, we can now type-shift the supplementarity relation from a two-place first-order relation between two angles $\alpha, \beta \in \mathcal{A}_{i}$ to a two-place second-order supplementary ${ }^{2}$ relation between two sets of angles $\Gamma, \Delta \subseteq \mathcal{A}_{i}$. For $i=1,2,3$, \llbracket supplementary $^{2} \rrbracket_{i}:=$

$$
\left\{(\Gamma, \Delta) \in \wp\left(\mathcal{A}_{i}\right) \times \wp\left(\mathcal{A}_{i}\right) \mid \exists \alpha \in \Gamma, \exists \beta \in \Delta:(\alpha, \beta) \in \llbracket \text { supplementary } \rrbracket_{i}\right\}
$$

Thus, for $i=1,2,3$ and for all $P, Q \in \mathcal{L}_{A}: \llbracket$ supplementary $^{2}(P, Q) \rrbracket_{i}=1 \mathrm{iff}$

$$
\exists \llbracket a \rrbracket_{i} \in \llbracket P \rrbracket_{i}, \exists \llbracket b \rrbracket_{i} \in \llbracket Q \rrbracket_{i}: \llbracket \text { supplementary }(a, b) \rrbracket_{i}=1
$$

In virtue of the symmetry of the first-order supplementary relation, also the second-order supplementary ${ }^{2}$ relation is symmetric, i.e. for $i=1,2,3$ and for all $\Gamma, \Delta \subseteq \mathcal{A}_{i}$:

$$
(\Gamma, \Delta) \in \llbracket \text { supplementary }^{2} \rrbracket_{i} \text { iff }(\Delta, \Gamma) \in \llbracket \text { supplementary }^{2} \rrbracket_{i}
$$

In the logical space $\mathcal{A}_{1}=\left\{\alpha \mid 0^{\circ}<\alpha<180^{\circ}\right\}$, three types of supplementarity arise: if \llbracket supplementary $(a, b) \rrbracket_{1}=1$ then:

$$
\begin{aligned}
\text { either } & \llbracket \text { acute }(a) \rrbracket_{1}=1 & \text { and } & \llbracket \text { obtuse }(b) \rrbracket_{1}=1, \\
\text { or } & \llbracket \text { right }(a) \rrbracket_{1}=1 & \text { and } & \llbracket \text { right }(b) \rrbracket_{1}=1, \\
\text { or } & \llbracket \text { obtuse }(a) \rrbracket_{1}=1 & \text { and } & \llbracket \text { acute }(b) \rrbracket_{1}=1 .
\end{aligned}
$$

In terms of the second-order supplementary ${ }^{2}$ relation this yields:

$$
\begin{aligned}
& \llbracket \text { supplementary }^{2} \rrbracket_{1}=\left\{\left(\llbracket a c u t e \rrbracket_{1}, \llbracket \text { obtuse } \rrbracket_{1}\right),\left(\llbracket r i g h t \rrbracket_{1}, \llbracket r i g h t \rrbracket_{1}\right),\right. \\
& \left.\left(\llbracket o b t u s e \rrbracket_{1}, \llbracket a c u t e \rrbracket_{1}\right)\right\}
\end{aligned}
$$

Moving to the logical space $\mathcal{A}_{2}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 180^{\circ}\right\}$, however, supplementarity shows up in five different shapes: if $\llbracket \operatorname{supplementary}(a, b) \rrbracket_{2}=$ 1 then:

$$
\begin{array}{rrrr}
\text { either } & \llbracket \text { zero }(a) \rrbracket_{2} & =1 & \text { and } \\
\text { or } & \llbracket \text { straight }(b) \rrbracket_{2} & =1, \\
\text { or } & \llbracket \operatorname{acighte}(a) \rrbracket_{2} & =1 & \text { and } \\
\text { or } & \llbracket \text { obtuse }(b) \rrbracket_{2} & =1, \\
\text { or } & \llbracket \text { obtuse }(a) \rrbracket_{2} & =1 & \text { and } \\
\text { or } & \llbracket \text { straight }(a) \rrbracket_{2} & =1 & \text { and } \\
\text { oright }(b) \rrbracket_{2} & =1, \\
\llbracket \text { acute }(b) \rrbracket_{2} & =1, \\
& \llbracket \text { zero }(b) \rrbracket_{2} & =1 .
\end{array}
$$

These five scenarios straightforwardly correspond to the five pairs of angular predicates in the denotation of the second-order supplementary ${ }^{2}$ relation:

$$
\left.\begin{array}{rlrl}
\llbracket \text { supplementary }^{2} \rrbracket_{2}=\{ & \left(\llbracket \text { zero } \rrbracket_{2}, \llbracket \text { straight } \rrbracket_{2}\right), & \left(\llbracket \text { acute } \rrbracket_{2}, \llbracket \text { obtuse } \rrbracket_{2}\right), \\
& \left(\llbracket \text { straight } \rrbracket_{2}, \llbracket \text { zero } \rrbracket_{2}\right), & \left(\llbracket \text { obtuse } \rrbracket_{2}, \llbracket \text { acute } \rrbracket_{2}\right), \\
& \left(\llbracket \text { right } \rrbracket_{2}, \llbracket \text { right } \rrbracket_{2}\right),
\end{array}\right\}
$$

As was the case with the complementary ${ }^{2}$ relation at the end of $\S 3.1$, extending the logical space of angles from \mathcal{A}_{2} to $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$ does not add any extra complexity. In other words, exactly the same five pairs of angular predicates constitute the denotation of the supplementary ${ }^{2}$ relation as with \mathcal{A}_{2} :

$$
\begin{aligned}
\llbracket \text { supplementary }^{2} \rrbracket_{3}=\{ & \left(\llbracket \text { zero } \rrbracket_{3}, \llbracket \text { straight } \rrbracket_{3}\right), & \left(\llbracket \text { acute } \rrbracket_{3}, \llbracket \text { obtuse } \rrbracket_{3}\right), \\
& \left(\llbracket \text { straight } \rrbracket_{3}, \llbracket \text { zero } \rrbracket_{3}\right), & \left(\llbracket \text { obtuse } \rrbracket_{3}, \llbracket \text { acute } \rrbracket_{3}\right), \\
& \left(\llbracket \text { right } \rrbracket_{3}, \llbracket \text { right } \rrbracket_{3}\right) & \}
\end{aligned}
$$

This second-order relationship of supplementarity can now be connected to the bitstring analysis provided for the one-place predicates in Section 2. The basic intuition is that any bitstring can be 'flipped', i.e. reversed from left to right: flipping 100, for instance, yields 001, and flipping 1100 yields 0011. Using $[\beta(X)]_{i}$ to denote the i-th position in the bitstring $\beta(X)$ of first-order predicates X in \mathcal{L}_{A}, we can define ϕ as the fipping operation on bitstrings in the following way: for all bitstrings $\beta(X)$ and $\beta(Y)$ of length n : $\phi(\beta(X))=$ $\beta(Y)$ iff for all $1 \leq i \leq n,[\beta(Y)]_{i}=[\beta(X)]_{n+1-i}$. Applying the flipping operation ϕ to the six non-trivial bitstrings of length 3 , for instance, yields the following picture:

$$
\begin{aligned}
& \phi(100)=001 \quad \phi(110)=011 \\
& \phi(010)=010 \quad \phi(101)=101 \\
& \phi(001)=100 \quad \phi(011)=110
\end{aligned}
$$

Observe that the flipping operation ϕ is an involution, or self-inverse function: for all bitstrings $\beta(X)$ and $\beta(Y)$ of length $n: \phi(\phi(\beta(X)))=\beta(X)$, or equivalently $\phi(\beta(X))=\beta(Y) \Leftrightarrow \phi(\beta(Y))=\beta(X)$. Observe, furthermore, that in the case of symmetric bitstrings - i.e. bitstrings where $[\beta(X)]_{i}=$ $[\beta(X)]_{n+1-i}$ for all $1 \leq i \leq n$ - the ϕ-operation maps a bitstring onto itself. With the above bitstrings of length 3 , for instance, this is the case for $\phi(010)=010$ and $\phi(101)=101$.
More importantly, a straightforward connection can now be established between the second-order supplementary ${ }^{2}$-relation between two angular predicates X and Y and the flipping operation on their bitstrings counterparts $\beta(X)$ and $\beta(Y)$. More precisely, for $i=1,2$ we have: ${ }^{6}$

$$
\llbracket \text { supplementary }^{2}(X, Y) \rrbracket_{i}=1 \Leftrightarrow \phi\left(\beta_{i}(X)\right)=\beta_{i}(Y)
$$

In the smallest logical space $\mathcal{A}_{1}=\left\{\alpha \mid 0^{\circ}<\alpha<180^{\circ}\right\}$, this equivalence first of all holds for the supplementary ${ }^{2}$ relations - henceforth abbreviated as suppl ${ }^{2}$ - between the L1 predicates described above:

$$
\begin{aligned}
\llbracket \text { suppl }^{2}(\text { acute }, \text { obtuse }) \rrbracket_{1}=1 & \Leftrightarrow & \phi\left(\beta_{1}(\text { acute })\right) & =\beta_{1}(\text { obtuse }) \\
& \Leftrightarrow & \phi(100) & =001 \\
\llbracket \text { suppl }^{2}(\text { right }, \text { right }) \rrbracket_{1}=1 & \Leftrightarrow & \phi\left(\beta_{1}(\text { right })\right) & =\beta_{1}(\text { right }) \\
& \Leftrightarrow & \phi(010) & =010
\end{aligned}
$$

Completely analogously, we get the equivalence for the extra supplementary ${ }^{2}$ relations between the negative L2 counterpart predicates:

$$
\begin{array}{rllrl}
\llbracket s^{\prime} u p l^{2}\left(n_{_} \text {acute, } n_{_} \text {obtuse }\right) \rrbracket_{1}=1 & \Leftrightarrow & \phi\left(\beta_{1}\left(n_{_} a c u t e\right)\right) & =\beta_{1}\left(n_{_} \text {obtuse }\right) \\
& \Leftrightarrow & \phi(011) & =110 \\
\llbracket \operatorname{suppl}^{2}\left(n_{-} r i g h t, n_{_} r i g h t\right) \rrbracket_{1}=1 & \Leftrightarrow & \phi\left(\beta_{1}\left(n_{_} r i g h t\right)\right) & =\beta_{1}\left(n_{-} r i g h t\right) \\
& \Leftrightarrow & \phi(101) & =101
\end{array}
$$

[^5]Moving from the logical space \mathcal{A}_{1} to $\mathcal{A}_{2}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 180^{\circ}\right\}$, the complexity of the bitstring semantics increases from length 3 to length 5 . Again, the equivalence between the supplementary ${ }^{2}$ relation between angular predicates and the flipping operation ϕ on the corresponding bitstrings holds, first of all, for the L1 predicates described above:

$$
\begin{aligned}
\llbracket \text { suppl }^{2}(\text { zero, straight }) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}(\text { zero })\right) & =\beta_{2}(\text { straight }) \\
& \Leftrightarrow & \phi(10000) & =00001 \\
\llbracket \text { suppl }^{2}(\text { acute, obtuse }) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}(\text { acute })\right) & =\beta_{2}(\text { obtuse }) \\
& \Leftrightarrow & \phi(01000) & =00010 \\
\llbracket \text { suppl }^{2}(\text { right, right }) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}(\text { right })\right) & =\beta_{2}(\text { right }) \\
& \Leftrightarrow & \phi(00100) & =00100
\end{aligned}
$$

Secondly, we get the equivalence for the extra supplementary ${ }^{2}$ relations between the negative counterpart predicates. However, with bitstrings of length 5 , the latter are L 4 predicates:

$$
\begin{array}{rllrl}
\llbracket \operatorname{suppl}^{2}\left(n_{-} \text {zero, } n_{_} \text {straight }\right) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}\left(n_{_} \text {zero }\right)\right) & =\beta_{2}\left(n_{-} \text {straight }\right) \\
& \Leftrightarrow & \phi(0111) & =11110 \\
\llbracket \operatorname{suppl}^{2}\left(n_{_} \text {acute, } n_{_} \text {obtuse }\right) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}\left(n_{_} a c u t e\right)\right) & =\beta_{2}\left(n_{_} \text {obtuse }\right) \\
& \Leftrightarrow & \phi(10111) & =11101 \\
\llbracket \operatorname{suppl}^{2}\left(n_{-} \text {right, } n _ \text {right }\right) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}\left(n_{-} \text {right }\right)\right) & =\beta_{2}\left(n_{-} \text {right }\right) \\
& \Leftrightarrow & \phi(11011) & =11011
\end{array}
$$

Notice that the identical pairs (right, right) and (non_right,non_right) of the supplementary ${ }^{2}$ relation perfectly match the fact that the ϕ-operation maps the respective symmetric bitstrings onto themselves. Exactly the same situation holds in the case of the disjunctive L2 predicate obliq(ue) and its negative L3 counterpart n (on)_obliq(ue):

$$
\begin{array}{rllrll}
\llbracket \text { suppl }^{2}(\text { obliq, obliq }) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}(\text { obliq })\right) & =\beta_{2}(\text { obliq }) \\
& \Leftrightarrow & \phi(01010) & =01010 \\
\llbracket \text { suppl }^{2}\left(n_{_} \text {obliq, } n_{_} \text {obliq }\right) \rrbracket_{2}=1 & \Leftrightarrow & \phi\left(\beta_{2}\left(n_{-} o b l i q\right)\right) & =\beta_{2}\left(n_{-} o b l i q\right) \\
& \Leftrightarrow & \phi(10101) & =10101
\end{array}
$$

It is important to stress that the equivalence between the supplementary ${ }^{2}$ relation between angular predicates and the flipping operation ϕ on the corresponding bitstrings no longer holds when moving to the most complex logical space $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$. In the latter case, the complexity of the bitstring semantics increases to length 7 or 9 , and the corresponding flipping operation ϕ concerns all seven or nine bit positions. The range of application of the supplementary ${ }^{2}$ relation, by contrast, is restricted to $0^{\circ} \leq \alpha \leq 180^{\circ}$, i.e. to the first five bit positions in bitstrings of length 7 or 9 . In the next subsection, however, we introduce a new relation between angular predicates which allows us to restore the equivalence with the flipping operation on bitstrings in \mathcal{A}_{3}.

3.3. Counter-supplementary angles

Remember from § 2.3 that the semantic analysis of the most complex logical space $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$ was presented in two steps. In particular, we argued in favour of replacing the original seven-partition $\Pi\left(\mathcal{F}_{3}\right)$ which naturally arises from the standard definitions of reflex and full angles - with the nine-partition $\Pi\left(\mathcal{F}_{3}^{\prime}\right)$. The crucial modification involved the subdivision of the denotation of the predicate reflex into three subareas: (i) c (ounter)_obtuse for $180^{\circ}<\alpha<270^{\circ}$, (ii) c(ounter)_right for $\alpha=270^{\circ}$, and (iii) c (ounter)_acute for $270^{\circ}<\alpha<360^{\circ}$. The primary motivation for this modification concerned the problematic position of an angle of 270° with respect to the entailment relation between the predicates reflex and oblique.

In this subsection we will provide a second argument, by presenting an analysis which aims to do justice to the fundamental connection between the angles of 90° and 270°. The key purpose of this proposal is precisely to generalise the concept of supplementarity defined in § 3.2 for the logical space \mathcal{A}_{2} to the most complex logical space \mathcal{A}_{3}. In order to do so, we define the new relation of counter-supplementarity or c-supplementarity. Two angles are said to be counter-supplementary, or c-supplementary for short, iff they add up to 360°. More formally, for $i=1,2,3$:

$$
\llbracket c \text {-supplementary } \rrbracket_{i}:=\left\{(\alpha, \beta) \in \mathcal{A}_{i} \times \mathcal{A}_{i} \mid \alpha+\beta=360^{\circ}\right\}
$$

In other words, for $i=1,2,3$ and for all $a, b \in \mathcal{L}_{A}$:

$$
\llbracket c \text {-supplementary }(a, b) \rrbracket_{i}=1 \text { iff } \llbracket a \rrbracket_{i}+\llbracket b \rrbracket_{i}=360^{\circ}
$$

This c-supplementarity relation is again symmetric, i.e. for $i=1,2,3$ and for all $\alpha, \beta \in \mathcal{A}_{i}$:

$$
(\alpha, \beta) \in \llbracket c \text {-supplementary } \rrbracket_{i} \text { iff }(\beta, \alpha) \in \llbracket c \text {-supplementary } \rrbracket_{i}
$$

As with the complementarity relation in $\S 3.1$ and the supplementarity relation in § 3.2, we can now type-shift the c-supplementarity relation from a twoplace first-order relation between two angles $\alpha, \beta \in \mathcal{A}_{i}$ to a two-place secondorder c-suppl(ementary $)^{2}$ relation between two sets of angles $\Gamma, \Delta \subseteq \mathcal{A}_{i}$. For $i=1,2,3, \llbracket c$-supplementary ${ }^{2} \rrbracket_{i}:=$

$$
\left\{(\Gamma, \Delta) \in \wp\left(\mathcal{A}_{i}\right) \times \wp\left(\mathcal{A}_{i}\right) \mid \exists \alpha \in \Gamma, \exists \beta \in \Delta:(\alpha, \beta) \in \llbracket c \text {-supplementary } \rrbracket_{i}\right\}
$$

Thus, for $i=1,2,3$ and for all $P, Q \in \mathcal{L}_{A}: \llbracket c$-supplementary ${ }^{2}(P, Q) \rrbracket_{i}=1$ iff

$$
\exists \llbracket a \rrbracket_{i} \in \llbracket P \rrbracket_{i}, \exists \llbracket b \rrbracket_{i} \in \llbracket Q \rrbracket_{i}: \llbracket c \text {-supplementary }(a, b) \rrbracket_{i}=1
$$

In virtue of the symmetry of the first-order c-supplementary relation, also the second-order c-supplementary ${ }^{2}$ relation is symmetric, i.e. for $i=1,2,3$ and for all $\Gamma, \Delta \subseteq \mathcal{A}_{i}$:

$$
(\Gamma, \Delta) \in \llbracket c \text {-supplementary }{ }^{2} \rrbracket_{i} \text { iff }(\Delta, \Gamma) \in \llbracket c \text {-supplementary }{ }^{2} \rrbracket_{i}
$$

It is easy to see that, relative to the logical spaces $\mathcal{A}_{1}=\left\{\alpha \mid 0^{\circ}<\alpha<\right.$ $\left.180^{\circ}\right\}$ and $\mathcal{A}_{2}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 180^{\circ}\right\}$, the relation of c-supplementarity is not particularly interesting. In the former case, the extreme value of 180° is excluded, so it is impossible in principle to have two angles from \mathcal{A}_{1} add
up to 360°. In the latter case, the only pair of angles that does stand in the relation of c-supplementarity is that of two straight angles $\left(180^{\circ}, 180^{\circ}\right)$. In terms of the second-order c-suppl(ementary $)^{2}$ relation this yields:

$$
\begin{aligned}
& \llbracket \text { c-suppl }{ }^{2} \rrbracket_{1}=\{ \} \\
& \llbracket \text { c-suppl } \rrbracket_{2}=\left\{\left(\llbracket \text { straight } \rrbracket_{2}, \llbracket \text { straight } \rrbracket_{2}\right)\right\}
\end{aligned}
$$

By contrast, in the logical space $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$, c-supplementarity shows up in nine different shapes: if $\llbracket c$-supplementary $(a, b) \rrbracket_{3}=1$ then:

| either | \llbracket zero $(a) \rrbracket_{3}$ | $=1$ | and | \llbracket full $(b) \rrbracket_{3}$ |
| ---: | ---: | ---: | ---: | ---: |$=1$,

These nine scenarios straightforwardly correspond to the nine pairs of angular predicates in the denotation of the second-order c-suppl(ementary) ${ }^{2}$ relation:

$$
\begin{aligned}
& \llbracket c \text { csuppl }{ }^{2} \rrbracket_{3}=\left\{\left(\llbracket z e r o \rrbracket_{3}, \llbracket f u l \rrbracket_{3}\right), \quad\left(\llbracket \text { acute } \rrbracket_{3}, \llbracket c_{-} a c u t e \rrbracket_{3}\right),\right. \\
& \left(\llbracket f u l \rrbracket_{3}, \llbracket z e r o \rrbracket_{3}\right), \quad\left(\llbracket c_{-} a c u t e \rrbracket_{3}, \llbracket a c u t e \rrbracket_{3}\right), \\
& \left(\llbracket r i g h t \rrbracket_{3}, \llbracket c _r i g h t \rrbracket_{3}\right), \quad\left(\llbracket \text { obtuse } \rrbracket_{3}, \llbracket c_{-} \text {obtuse } \rrbracket_{3}\right), \\
& \left(\llbracket c _r i g h t \rrbracket_{3}, \llbracket r i g h t \rrbracket_{3}\right), \quad\left(\llbracket c_{-} \text {obtuse } \rrbracket_{3}, \llbracket \text { obtuse } \rrbracket_{3}\right), \\
& \left.\left(\llbracket \text { straight } \rrbracket_{3}, \llbracket \text { straight } \rrbracket_{3}\right) \quad\right\}
\end{aligned}
$$

Remember from the end of $\S 3.2$ that the equivalence between the supplementary ${ }^{2}$ relation between angular predicates and the flipping operation ϕ on the corresponding bitstrings no longer holds when moving to the most complex logical space $\mathcal{A}_{3}=\left\{\alpha \mid 0^{\circ} \leq \alpha \leq 360^{\circ}\right\}$. This logical space is in a sense 'too big' to have the supplementary ${ }^{2}$ relation correspond to a flipping operation on bitstrings of length nine. In this subsection, by contrast, we encounter the mirror-image constellation, so to speak: the logical spaces \mathcal{A}_{1} and \mathcal{A}_{2} are 'too small' to have the c-supplementary ${ }^{2}$ relation correspond to a flipping operation on bitstrings of length 3 or 5 only. This obviously relates to the fact observed above that the denotations of the $\llbracket c$-suppl ${ }^{2} \rrbracket_{1}$ and $\llbracket c$-suppl ${ }^{2} \rrbracket_{2}$ relations are hardly interesting.

Furthermore, as for \mathcal{A}_{3}, we have replaced the bitstring mapping β_{3} corresponding to the seven-partition $\Pi\left(\mathcal{F}_{3}\right)$ with the β_{3}^{\prime} mapping corresponding to the nine-partition $\Pi\left(\mathcal{F}_{3}^{\prime}\right)$. On the face of it, both partitions are 'balanced' and 'symmetric'. Nevertheless, there is a clear intuition of a discrepancy between the 'sizes' of the subareas. In particular, in β_{3}, bit position 6 (for reflex) has the same 'size' as the combination of bit positions 2 (acute), 3 (right) and 4 (obtuse). In β_{3}^{\prime}, by contrast, this discrepancy is resolved, since there is a perfect match between bit positions 2 (acute), 3 (right) and 4 (obtuse) on the one hand, and positions 8 (c_acute), 7 (c_right) and 6 (c_obtuse) on the
other hand. As a consequence, the only kind of equivalence that can be established in \mathcal{A}_{3} is that between the c-supplementary ${ }^{2}$ relation and the flipping operation ϕ on bitstrings of length 9 . More formally, we have:

$$
\llbracket c \text {-supplementary }{ }^{2}(X, Y) \rrbracket_{3}=1 \Leftrightarrow \phi\left(\beta_{3}^{\prime}(X)\right)=\beta_{3}^{\prime}(Y)
$$

This equivalence holds, first of all, for the L1 predicates described above:

$$
\begin{array}{rlrl}
\llbracket c^{-s u p p l}{ }^{2}(\text { zero, full }) \rrbracket_{3}=1 & \Leftrightarrow & \phi\left(\beta_{3}^{\prime}(\text { zero })\right) & =\beta_{3}^{\prime}(\text { full }) \\
& \Leftrightarrow & \phi(100000000) & =000000001 \\
\llbracket \text { c-suppl }^{2}(\text { acute, c_acute }) \rrbracket_{3}=1 & \Leftrightarrow & \phi\left(\beta_{3}^{\prime}(\text { acute })\right) & =\beta_{3}^{\prime}(\text { c_acute }) \\
\llbracket \text { c-suppl }^{2}(\text { right, c_right }) \rrbracket_{3}=1 & \Leftrightarrow & \phi(010000000) & =000000010 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}(\text { right })\right) & =\beta_{3}^{\prime}(\text { c_right }) \\
& \Leftrightarrow \phi(001000000) & =000000100 \\
\llbracket \text { c-suppl }^{2}(\text { obtuse, c_obtuse }) \rrbracket_{3}=1 & \Leftrightarrow & \phi\left(\beta_{3}^{\prime}(\text { obtuse })\right) & =\beta_{3}^{\prime}(\text { c_obtuse }) \\
& \Leftrightarrow & \phi(000100000) & =000001000 \\
\llbracket \text { c-suppl }^{2}\left({\text { straight }, \text { straight }) \rrbracket_{3}=1}\right. & \Leftrightarrow & \phi\left(\beta_{3}^{\prime}(\text { straight })\right) & =\beta_{3}^{\prime}(\text { straight }) \\
& \Leftrightarrow & \phi(000010000) & =000010000
\end{array}
$$

Secondly, we again get the equivalences for the extra c-supplementary ${ }^{2}$ relations between the negative L8 counterpart predicates:

$$
\begin{aligned}
& \llbracket \text { c-suppl }^{2} \quad\left(n_{-} z e r o, n_{-} f u l l\right) \rrbracket_{3} \quad=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{-} \text {zero }\right)\right) \quad=\beta_{3}^{\prime}\left(n_{-} \text {full }\right) \\
& \Leftrightarrow \phi(011111111) \quad=111111110 \\
& \llbracket c \text {-suppl }{ }^{2} \quad\left(n_{-} a c u t e, n_{-} c _a c u t e\right) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{-} \text {acute }\right)\right) \quad=\beta_{3}^{\prime}\left(n_{-} c_{-} a c u t e\right) \\
& \Leftrightarrow \phi(101111111) \quad=111111101 \\
& \llbracket c \text {-suppl }{ }^{2} \quad\left(n_{-} \text {right, } n_{-} c _r i g h t\right) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{-} \text {right }\right)\right)=\beta_{3}^{\prime}\left(n_{-} \text {c_right }\right) \\
& \Leftrightarrow \phi(110111111) \quad=111111011 \\
& \llbracket c \text {-suppl }{ }^{2} \quad\left(n_{-} \text {obtuse, } n_{-} c \text { _obtuse }\right) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{_} \text {obtuse }\right)\right)=\beta_{3}^{\prime}\left(n_{-} \text {c_obtuse }\right) \\
& \Leftrightarrow \phi(111011111) \quad=111110111 \\
& \llbracket c \text {-suppl }{ }^{2} \quad\left(n_{-} \text {straight, } n \text { _straight }\right) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{-} \text {straight }\right)\right)=\beta_{3}^{\prime}\left(n _ \text {straight }\right) \\
& \Leftrightarrow \phi(111101111) \quad=111101111
\end{aligned}
$$

And finally, the observed equivalence between the reflexivity of the c supplementary ${ }^{2}$-relation with the predicates straight and non_straight and the mapping of the respective symmetric bitstrings onto themselves by the ϕ-operation straightforwardly carries over to the disjunctive L4 predicate oblique and its negative L5 counterpart non_oblique, :

$$
\begin{aligned}
& \llbracket \text { c-suppl }{ }^{2} \quad(\text { oblique, oblique }) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}(\text { oblique })\right) \quad=\beta_{3}^{\prime}(\text { oblique }) \\
& \Leftrightarrow \phi(010101010) \quad=010101010 \\
& \llbracket c \text {-suppl }{ }^{2} \quad\left(n_{-} \text {oblique, } n_{-} \text {oblique }\right) \rrbracket_{3}=1 \\
& \Leftrightarrow \phi\left(\beta_{3}^{\prime}\left(n_{-} \text {oblique }\right)\right) \quad=\beta_{3}^{\prime}\left(n_{-} \text {oblique }\right) \\
& \Leftrightarrow \phi(101010101)=101010101
\end{aligned}
$$

4. Conclusion and prospects

In this paper we have provided an analysis of the logical relations within the conceptual or lexical field of angles in 2D geometry. In Section 2, the basic set of angular predicates acute, right, and obtuse was extended in three steps, by adding (i) zero and straight, (ii) reflex and full and (iii) counter_acute, counter_right and counter_obtuse respectively. The former two extensions correspond to extending the logical space of angles from \mathcal{A}_{1} to \mathcal{A}_{2} to \mathcal{A}_{3}. Within the framework of Logical Geometry, the respective three-, five- and sevenpartitions of these logical spaces correspond to the bitstring mappings β_{1}, β_{2} and β_{3}, yielding bitstrings of increasing complexity, i.e. length 3,5 and 7 respectively. The final extension, by contrast, is no longer a matter of extending the logical space, but rather of providing a more fine-grained analysis of the same logical space \mathcal{A}_{3} in terms of a nine-partition, corresponding to the bitstring mapping β_{3}^{\prime} and yielding bitstrings of length 9 . These various bitstring analyses allow a straightforward account of the Aristotelian relations between angular predicates, which are graphically represented by means of standard hexagonal or decagonal Aristotelian diagrams, among others.

Notice that the rhetoric of the paper was very much in terms of expansion from small to large, with respect to both logical space and bitstring complexity. On occasion, however, also the reverse perspective is adopted in Logical Geometry, when a distinction is drawn between 'collapsing' and 'eliminating' bit positions [6, p. 349]. Moving 'back' from β_{3}^{\prime} to β_{3}, for instance, and thus replacing a more fine-grained analysis with a more coarse-grained analysis of the same logical space \mathcal{A}_{3}, would be a matter of collapsing bit positions 6,7 and 8 of β_{3}^{\prime} into the single bit position 6 of β_{3}. Moving 'back' from β_{3} to β_{2}, or from β_{2} to β_{1}, by contrast, reduces the size of logical space from \mathcal{A}_{3} to \mathcal{A}_{2}, and from \mathcal{A}_{2} to \mathcal{A}_{1}, and would be a matter of eliminating bit positions 6 and 7 from β_{3} and bit positions 1 and 5 from β_{2} respectively.

In Section 3, we moved from one-place predicates for angular properties to two-place predicates for angular relations. First, the two standard relations from the literature were analysed, namely complementarity - for angles adding up to 90° - and supplementarity - for angles adding up to 180°. Secondly, a new relation is proposed, namely counter-supplementarity for angles adding up to 360°. Furthermore, equivalence relations were observed between angular relations and the flipping operation ϕ which reverses the bitstrings from left to right. In particular, we established equivalences between supplementarity and flipping bitstrings of length 3 and 5 , and between counter-supplementarity and flipping bitstrings of length 9.

Notice that the flipping operation ϕ is the only operation that has been applied to bitstrings in the present paper. It is perfectly possible, however, to also define a 'switching' operation σ which systematically reverses the values of each bit position, e.g. from 11010 to 00101 . As a matter of fact, this is precisely the effect of the predicate negation that showed up time and again between a predicate X and its negative counterpart non_X. In future research we aim to investigate the possible interaction between the flipping
and switching operations ϕ and σ. What is the relationship, for instance, between $\sigma(\phi(\beta(X)))$ and $\phi(\sigma(\beta(X)))$? We also intend to extend the present analysis to the realm of proportional quantification in natural language involving expressions such as two thirds of the students or 80% of the books, the underlying scalar structure of which closely resembles that of the logical space of geometric angles. One crucial question in this respect will revolve around the possible connection with duality notions such as internal and external negation [5].

References

[1] Balbiani, P., Goranko, V., Kellerman, R., Vakarelov, D.: Logical theories for fragments of elementary geometry. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 343-428. Springer (2007)
[2] Blanché, R.: Structures Intellectuelles. J. Vrin, Paris (1969)
[3] Demey, L.: Metalogic, metalanguage and logical geometry. Logique et Analyse (248), 453-478 (2019)
[4] Demey, L.: From Euler diagrams in Schopenhauer to Aristotelian diagrams in Logical Geometry. In: Lemanski, J. (ed.) Language, Logic, and Mathematics in Schopenhauer, pp. 181-205. Springer, Cham (2020)
[5] Demey, L., Smessaert, H.: Duality in logic and language. In: Fieser, J., Dowden, B. (eds.) Internet Encyclopedia of Philosophy, pp. 1-37. University of Tennessee, Martin, TN (2016)
[6] Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. Journal of Philosophical Logic 47, 325-363 (2018)
[7] Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer, New York, NY (2009)
[8] Horn, L.: A Natural History of Negation. CSLI Publications, Stanford, CA, 2 edn. (2001)
[9] Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32-56 (1950)
[10] Jaspers, D.: Logic and colour in cognition, logic and philosophy. In: Silva, M. (ed.) How Colours Matter to Philosophy, p. 249-271. Springer, Cham (2017)
[11] Lemanski, J., Demey, L.: Schopenhauer's partition diagrams and logical geometry. In: Basu, A., et al. (eds.) Diagrammatic Representation and Inference. pp. 149-165. Springer, Cham (2021)
[12] Moktefi, A.: Schopenhauer's Eulerian diagrams. In: Lemanski, J. (ed.) Language, Logic, and Mathematics in Schopenhauer, pp. 111-127. Springer, Cham (2020)
[13] Moretti, A.: The Geometry of Logical Opposition. PhD thesis. Université de Neuchâtel, Neuchâtel (2009)
[14] Partee, B.: Noun phrase interpretation and type-shifting principles. In: Groenendijk, J., de Jongh, D., Stokhof (eds.) Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers, pp. 115-143. Foris, Dordrecht (1987)
[15] Pellissier, R.: Setting n-opposition. Logica Universalis 2(2), 235-263 (2008)
[16] Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 161-215. Springer (2007)
[17] Schopenhauer, A.: The World as Will and Representation (translated and edited by J. Norman, A. Welchman and C. Janaway). Cambridge University Press, Cambridge (2010)
[18] Sesmat, A.: Logique II. Hermann, Paris (1951)
[19] Seuren, P.A.M., Jaspers, D.: Logico-cognitive structure in the lexicon. Language 90(3), 607-643 (2014)
[20] Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry. In: Béziau, J.Y., Basti, G. (eds.) The Square of Opposition: A Cornerstone of Thought, pp. 197-214. Springer, Berlin (2017)
[21] Weisstein, E.: Concise Encyclopedia of Mathematics. CRC Press (1999)

Hans Smessaert
Department of Linguistics
KU Leuven
Belgium
e-mail: hans.smessaert@kuleuven.be
Lorenz Demey
Center for Logic and Philosophy of Science
KU Leuven
Belgium
e-mail: lorenz.demey@kuleuven.be

[^0]: This research is supported via the ID-N research project Bitstring Semantics for Human and Artificial Reasoning (BITSHARE). The second author holds a research professorship (BOFZAP) at KU Leuven. Thanks to Jens Lemanski, Andrew Schumann and two anonymous reviewers for their feedback on an earlier version of this paper.

[^1]: ${ }^{1}$ In this paper, we systematically use degrees to measure angles.

[^2]: ${ }^{2}$ See [20] for the introduction of this diagrammatic representation format for scalar structures.

[^3]: ${ }^{3}$ See [3, Section 3] for an analogous kite-based analysis of the mathematical terminology of compatibility and strong/weak contrariety.

[^4]: ${ }^{4}$ Aristotelian diagrams like these - as well as the JSB hexagon discussed above - are called α-structures by Moretti [13]. See [4] for some further theoretical results on (the Boolean properties of) α-structures, and [11] for another example of a decagonal α structure, which once again derives from the works of Schopenhauer.
 ${ }^{5}$ See [6, Section 4.3] for a more detailed analysis of the strong/weak Boolean subfamilies of the Aristotelian family of JSB hexagons.

[^5]: ${ }^{6}$ The case $i=3$ will be discussed in more detail later.

