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Abstract. In this paper we provide an analysis of the logical relations
within the conceptual or lexical field of angles in 2D geometry. The basic
tripartition into acute/right/obtuse angles is extended in two steps: first
zero and straight angles are added, and secondly reflex and full angles
are added, in both cases extending the logical space of angles. Within the
framework of Logical Geometry, the resulting partitions of these logical
spaces yield bitstring semantics of increasing complexity. These bitstring
analyses allow a straightforward account of the Aristotelian relations
between angular concepts. In addition, also relational concepts such as
complementary and supplementary angles receive a natural bitstring
analysis.
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1. Introduction

In this paper we will investigate the conceptual or lexical field of angles in 2D
geometry. A well-known mathematical reference work reports the following
basic definitions and properties of angles:

Given two intersecting lines or line segments, the amount of
rotation about the point of intersection (the vertex) required
to bring one into correspondence with the other is called
the angle α between them. Angles are usually measured in
degrees (denoted as ◦), radians (denoted rad, or without a
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Figure 1. (a-b-c) Acute, right and obtuse angles in regular
polygons (d-e-f) Acute, right and obtuse angles in triangles
(g) Schopenhauer’s Euler diagram for the basic tripartition
of the logical space of angles.

unit), or sometimes gradians (denoted grad).1 One full ro-
tation [. . . ] corresponds to 360◦ [. . . ]. Half a full rotation
is called a straight angle, and a quarter of a full rotation is
called a right angle. An angle less than a right angle is called
an acute angle, and an angle greater than a right angle is
called an obtuse angle. [21, p. 78, our emphases]

The acute, right and obtuse angles constitute a very natural basic constel-
lation. First of all, they characterise the interior angles of the sequence of
regular polygons in Figures 1(a-b-c): the angles of the triangle in Figure 1(a)
are acute, those of the square in Figure 1(b) are right, and those of any other
regular polygon with more than four angles — such as the pentagon in Fig-
ure 1(c) — are obtuse. Secondly, the acute, right and obtuse angles at the
bottom left in Figures 1(d-e-f) also yield the three-way classification of trian-
gles into acute, right and obtuse triangles respectively [21, p. 3023]. The basic
intuition that these three types of angles constitute a natural tripartition of
the ‘logical space’ of angles already inspired the 19th-century philosopher
Arthur Schopenhauer to draw an Euler diagram as in Figure 1(g) [17, p. 66].
Schopenhauer’s diagram has recently been discussed in more technical terms
(cf. [4, p. 196, Figure 6] and [12, p. 118, Figure 9]), which provided the impe-
tus for the more elaborate analysis of the logical space of geometric angles to
be developed here. Finally, this fundamental tripartition of acute, right and
obtuse angles also has natural links with topics from contemporary research
on spatial logic, such as qualitative spatial reasoning [16] and the logical
formalization of elementary geometry [1].

Our analysis is developed in the framework of Logical Geometry, and
makes use of the so-called Aristotelian relations. In their most general form,
these relations can be defined in the mathematical setting of Boolean algebra
[3, 4]:

1In this paper, we systematically use degrees to measure angles.
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Definition 1.1. Let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra
[7]. Two elements x, y ∈ B are said to be

B-contradictory iff x ∧ y = ⊥ and x ∨ y = >,
B-contrary iff x ∧ y = ⊥ and x ∨ y 6= >,
B-subcontrary iff x ∧ y 6= ⊥ and x ∨ y = >,
in B-subalternation iff ¬x ∨ y = > and x ∨ ¬y 6= >.

As a first special case of Definition 1.1, we take B to be a Boolean algebra
of statements. The top and bottom elements of such a Boolean algebra are
resp. the tautological and self-contradictory statements, while the algebraic
operations of meet, join and complement correspond to the logical operations
of resp. conjunction, disjunction and negation:

Definition 1.2. Let B = 〈B,∧,∨,¬,>,⊥〉 be a Boolean algebra of statements.
Two statements P,Q ∈ B are said to be

B-contradictory iff P ∧Q = ⊥ and P ∨Q = >,
B-contrary iff P ∧Q = ⊥ and P ∨Q 6= >,
B-subcontrary iff P ∧Q 6= ⊥ and P ∨Q = >,
in B-subalternation iff ¬P ∨Q = > and P ∨ ¬Q 6= >.

We thus find that two statements P and Q are contradictory in this
Boolean algebra iff P ∧Q = ⊥ and P ∨Q = >, i.e. iff the conjunction of P
and Q is self-contradictory, while the disjunction of P and Q is tautological.
The first part means exactly that P and Q cannot be true together, while
the second part means that P and Q cannot be false together. We have thus
obtained the ‘familiar’ definition of contradiction for statements (in terms
of being able to be true/false together). Similarly, P and Q are said to be
(i) contrary iff they cannot be true together but can be false together, (ii)
subcontrary iff they can be true together but cannot be false together, and
(iii) in subalternation if P entails Q but Q does not entail P .

As a second special case of Definition 1.1, we take B to be a Boolean
algebra of sets. The top and bottom elements of such a Boolean algebra are
resp. the entire domain of discourseD and the empty set ∅, while the algebraic
operations of meet, join and complement correspond to the set-theoretical
operations of resp. intersection, union and complementation (with respect to
D):

Definition 1.3. Let B = 〈B,∩,∪, \, D, ∅〉 be a Boolean algebra of sets. Two
sets X,Y ∈ B are said to be

B-contradictory iff X ∩ Y = ∅ and X ∪ Y = D,
B-contrary iff X ∩ Y = ∅ and X ∪ Y 6= D,
B-subcontrary iff X ∩ Y 6= ∅ and X ∪ Y = D,
in B-subalternation iff X ⊆ Y and X 6⊇ Y .

A central notion in the framework of Logical Geometry is that of a bit-
string, i.e. a sequence of values 1 or 0, such as 100 or 01011 [6]. Bitstrings
are said to belong to a level depending on the number of 1-bits they contain.
For example, 100 is a level 1 (L1) bitstring, 01010 is a L2 bitstring, and so
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on. Bitstrings provide a compact way of representing the semantics of the ex-
pressions in a given logical fragment or lexical field, and allow us to study the
logical relations holding between these expressions in terms of their bitstring
representations. In particular, Aristotelian relations can straightforwardly be
defined in terms of bitstrings. Hence, as a third and final special case of Defi-
nition 1.1, we can take B to be a Boolean algebra of bitstrings of length n, i.e.
{0, 1}n. The top and bottom elements of such a Boolean algebra are resp. 1n

and 0n, i.e. the bitstrings 1 · · · 1 and 0 · · · 0, exclusively consisting of n values
1 or 0, respectively. The algebraic operations of meet, join and complement
then correspond to the logical operations of resp. conjunction, disjunction
and negation, applied bitwise, i.e. bit position by bit position:

Definition 1.4. Let B = 〈B,∧,∨,¬,1n,0n〉 be a Boolean algebra {0, 1}n of
bitstrings of length n. Two bitstrings b1 and b2 ∈ B are said to be

B-contradictory iff b1 ∧ b2 = 0n and b1 ∨ b2 = 1n,
B-contrary iff b1 ∧ b2 = 0n and b1 ∨ b2 6= 1n,
B-subcontrary iff b1 ∧ b2 6= 0n and b1 ∨ b2 = 1n,
in B-subalternation iff b1 ∧ b2 = b1 and b1 ∨ b2 6= b1.

In the present paper, Boolean algebras consisting of sets (cf. Definition 1.3)
and of bitstrings (cf. Definition 1.4) will play a crucial role in the analysis of
the logical space of geometric angles.

The paper consists of two main parts, followed by a brief conclusion.
In Section 2 the basic classification of angles into acute, right and obtuse
angles is given a bitstring analysis and the Aristotelian relations between
these concepts are captured in a JSB hexagon (§ 2.1). Subsequently, the
logical space of angles is extended in two steps, first by adding zero and
straight angles (§ 2.2) and secondly by adding reflex and full angles (§ 2.3),
thus stepwise increasing the complexity of the bitstring analysis as well. In
Section 3, various logical relations between angles — such as complementarity
(§ 3.1), supplementarity (§ 3.2) and counter-supplementarity (§ 3.3) — are
discussed, and given an analysis in terms of mirroring or flipping operations
on bitstrings. By way of conclusion, Section 4 recasts the results of this paper
in terms of decreasing bitstring complexity, and briefly points to a possible
connection with the notion of Duality in the realm of quantification.

2. Aristotelian relations between angular predicates

2.1. Acute, right and obtuse angles

In the most basic case, the logical space of angles is restricted to the open
interval A1 := {α | 0◦ < α < 180◦}. The language LA to describe this
logical space contains one-place predicates P — such as acute, right, oblique,
obtuse — and individual constant symbols s such as a, b, . . . as the labels for
angles. These expressions are interpreted in A1 by means of the interpretation
function [[·]]1 : LA → A1. In particular, one-place predicates P in LA denote
subsets of A1 — for all P ∈ LA : [[P ]]1 ⊆ A1 — whereas the constant symbols
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s in LA denote elements of A1 — for all s ∈ LA : [[s]]1 ∈ A1. Well-formed
formulae of LA are of the form P (s) where for all P, s ∈ LA : [[P (s)]]1 = 1
iff [[s]]1 ∈ [[P ]]1. The three basic angular predicates are defined as follows [21,
pp. 28, 2054, 2568]:

[[acute]]1 := {α ∈ A1 | 0◦ < α < 90◦}
[[right]]1 := {90◦}
[[obtuse]]1 := {α ∈ A1 | 90◦ < α < 180◦}

The predicate oblique is then defined as acute or obtuse, in other words,
as the negation of the predicate right. We can hence define the three negative
counterparts of the above basic predicates as follows:

[[non acute]]1 := A1 \ [[acute]]1
= {α ∈ A1 | 90◦ ≤ α < 180◦}

[[non right]]1 = [[oblique]]1 := A1 \ [[right]]1
= {α ∈ A1 | α 6= 90◦}

[[non obtuse]]1 := A1 \ [[obtuse]]1
= {α ∈ A1 | 0◦ < α ≤ 90◦}

We can now take these six predicates together to define the fragment

F1 := {acute, right, obtuse, non acute, oblique, non obtuse}
In order to characterise the Aristotelian relations between the predicates
in this fragment, we provide a bitstring analysis by defining the partition
induced by the fragment [6, Definition 5].

Intuitively speaking, we get the “basic” tripartition —•— with the node
for the central reference point of 90◦ and the two intervals to the left and to
the right for 0◦ < α < 90◦ and 90◦ < α < 180◦ respectively.2 Technically
speaking, the partition induced by F1 is defined as

Π(F1) := {acute, right, obtuse}
and the corresponding bitstring mapping β1 yields the following bitstrings of
length three for the fragment F1:

β1(acute) = 100 β1(non acute) = 011
β1(right) = 010 β1(oblique) = 101
β1(obtuse) = 001 β1(non obtuse) = 110

Applying Definition 1.3 to the Boolean algebra of sets for (denotations
of) angular predicates, or equivalently, Definition 1.4 to the Boolean algebra
of bitstrings of length 3, gives rise to the standard hexagon in Figure 2(a),
which belongs to the Aristotelian family of Jacoby-Sesmat-Blanché (JSB)
hexagons [2, 9, 18]. More specifically, since the three pairwise contrary el-
ements acute (100), right (010) and obtuse (001) are jointly exhaustive —
i.e. 100 ∨ 010 ∨ 001 = 111 —, this diagram belongs to the Boolean subfamily
of strong JSB hexagons [15]. Using the coding conventions in Figure 2(c), we
can observe (i) three diagonals for the contradiction relations, (ii) an upside
down triangle for the contrariety relations between the three L1 predicates

2See [20] for the introduction of this diagrammatic representation format for scalar
structures.
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Figure 2. (a) Jacoby-Sesmat-Blanché hexagon for F1 (b)
Kite structure for the primitively lexicalised subfragment of
F1 (c) Coding conventions for the Aristotelian relations.

acute, right and obtuse, (iii) an upright triangle for the subcontrariety re-
lations between the three L2 predicates non acute, oblique, and non obtuse,
and (iv) six arrows along the edges of the hexagon for the subalternation
relations from the L1 to the L2 elements.

Notice that the L2 angular predicate oblique is the only negative pred-
icate which itself receives a simple, non-compound lexicalisation. On the ba-
sis of similar linguistic observations of lexicalisation patterns, Seuren and
Jaspers [10, 19] have proposed a so-called ‘kite’ structure, which reduces the
JSB hexagon by eliminating the ‘non-natural’ elements at the top and the
bottom right of the hexagon. Applying this strategy to the hexagon of angular
predicates in Figure 2(a) yields the kite structure in Figure 2(b).3

2.2. Adding zero and straight angles

In a first, minimal move of extending the logical space of angles, we close
the interval A1 by including its extreme values 0◦ and 180◦. We thus define
the new logical space as the closed interval A2 := {α | 0◦ ≤ α ≤ 180◦} and
the interpretation function [[·]]2 : LA → A2. Two extra one-place predicates
are added to the language LA, namely zero and straight [21, p. 2869], thus
yielding the following five basic angular predicates:

[[zero]]2 := {0◦}
[[acute]]2 := {α ∈ A2 | 0◦ < α < 90◦}
[[right]]2 := {90◦}
[[obtuse]]2 := {α ∈ A2 | 90◦ < α < 180◦}
[[straight]]2 := {180◦}

We can then again define their negative counterparts as follows:

3See [3, Section 3] for an analogous kite-based analysis of the mathematical terminology
of compatibility and strong/weak contrariety.
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[[non zero]]2 := A2 \ [[zero]]2
= {α ∈ A2 | 0◦ < α ≤ 180◦}

[[non acute]]2 := A2 \ [[acute]]2
= {α ∈ A2 | α = 0◦ or 90◦ ≤ α ≤ 180◦}

[[non right]]2 := A2 \ [[right]]2
= {α ∈ A2 | α 6= 90◦}

[[non obtuse]]2 := A2 \ [[obtuse]]2
= {α ∈ A2 | 0◦ ≤ α ≤ 90◦ or α = 180◦}

[[non straight]]2 := A2 \ [[straight]]2
= {α ∈ A2 | α < 180◦}

We can now take these ten predicates together to define the fragment

F2 := { zero, acute, right, obtuse, straight, non zero,
non acute, non right, non obtuse, non straight }

In order to provide a bitstring analysis, we define the partition induced
by the fragment. Intuitively speaking, the original basic tripartition —•— is
turned into a five-partition •—•—• by adding two nodes at the left and right
extremes for the extreme values of 0◦ and 180◦. Technically speaking, the
partition induced by F2 is defined as

Π(F2) := {zero, acute, right, obtuse, straight}

and the corresponding bitstring mapping β2 yields the following bitstrings of
length five for the fragment F2:

β2(zero) = 10000 β2(non zero) = 01111
β2(acute) = 01000 β2(non acute) = 10111
β2(right) = 00100 β2(non right) = 11011
β2(obtuse) = 00010 β2(non obtuse) = 11101
β2(straight) = 00001 β2(non straight) = 11110

A first remark concerns the interpretation of the predicate acute, which
is often used in a broader way than defined above, namely as smaller than
90◦, but possibly 0◦. This situation obviously resembles the distinction drawn
between so-called one-sided and two-sided readings of quantifiers and modal
operators [8], for instance one-sided some and perhaps even all versus two-
sided some but not all, or similarly one-sided possible and perhaps even nec-
essary versus two-sided possible but not necessary (i.e. contingent). In other
words, we should distinguish between one-sided acute1 and two-sided acute2,
which receive distinct bitstring representations, resp. as L2 and L1 elements:

β2(acute1) = 11000 β2(acute2) = 01000

A second question concerns the interpretation of the predicate oblique.
In the basic logical space A1 of § 2.1 it was equal to the disjunction of acute
and obtuse, and also to the negation of right. In the more elaborate logical
spaceA2 that we are considering now, the former, disjunctive characterisation
— namely acute or obtuse — still seems to make sense, whereas the latter,
negative characterisation does not. In particular, the two extreme predicates
zero and straight are typically understood as falling under non oblique. Put
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Figure 3. (a) Contrariety and subcontrariety relations in
F2 (b) Subalternation relations in F2.

differently, the predicate non oblique is equivalent to the three-way disjunc-
tion zero or right or straight and thus gets represented as a L3 bitstring:

β2(oblique) = 01010 β2(non oblique) = 10101

Notice that oblique is still a L2 predicate, but now relative to a more
fine-grained logical space, i.e. with respect to bitstrings of length 5 instead
of length 3.

At this point, we can again apply Definitions 1.3 and 1.4 to the angular
predicates in the fragment F2 and their corresponding bitstrings of length 5
to build the decagonal diagrams for the Aristotelian relations in Figure 3. For
the sake of visual clarity, we omit the five diagonals for the five contradiction
relations. In Figure 3(a), both the ten relations of contrariety between the
five L1 predicates and the ten relations of subcontrariety between the five
L4 predicates are visualised by means of a pentagon with an inscribed pen-
tagonal star.4 In Figure 3(b), by contrast, the twenty arrows represent the
subalternation relations from each of the five L1 predicates to the four L4
predicates that it is not contradictory with.

Observe, finally, that the original fragment

F1 = {acute, right, obtuse, non acute, non right, non obtuse }

is a subfragment of F2, and still yields a JSB hexagon inside the decagon.
However, since the three pairwise contrary elements acute (01000), right
(00100) and obtuse (00010) are no longer jointly exhaustive, we now get
a weak JSB hexagon, rather than a strong one [15].5

4Aristotelian diagrams like these — as well as the JSB hexagon discussed above — are
called α-structures by Moretti [13]. See [4] for some further theoretical results on (the
Boolean properties of) α-structures, and [11] for another example of a decagonal α-

structure, which once again derives from the works of Schopenhauer.
5See [6, Section 4.3] for a more detailed analysis of the strong/weak Boolean subfamilies
of the Aristotelian family of JSB hexagons.
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2.3. Adding reflex and full angles

In a second move, the logical space of angles is extended more radically, i.e.
it is ‘doubled’ by including the angles between 180◦ and 360◦. We thus define
the new logical space A3 := {α | 0◦ ≤ α ≤ 360◦} and the interpretation func-
tion [[·]]3 : LA → A3. Again two extra one-place predicates are added to the
language LA, namely reflex and full [21, pp. 1117, 2514] — see Figures 3(a-
b-c-d) below — thus yielding the following seven angular predicates:

[[zero]]3 := {0◦}
[[acute]]3 := {α ∈ A3 | 0◦ < α < 90◦}
[[right]]3 := {90◦}
[[obtuse]]3 := {α ∈ A3 | 90◦ < α < 180◦}
[[straight]]3 := {180◦}
[[reflex]]3 := {α ∈ A3 | 180◦ < α < 360◦}
[[full]]3 := {360◦}

We can now take these seven predicates together with their seven neg-
ative counterparts to define the fragment

F3 := { zero, acute, right, obtuse, straight, reflex, full,
non zero, non acute, non right, non obtuse,
non straight, non reflex, non full }

In order to provide a bitstring analysis, we define the partition induced by
the fragment. Intuitively speaking, the five-partition •—•—• from § 2.2 is
turned into a seven-partition by adding an interval and a node to the right:
•—•—•—•. Technically speaking, the partition induced by F3 is defined as

Π(F3) := {zero, acute, right, obtuse, straight, reflex, full}

and the corresponding bitstring mapping β3 yields the following bitstrings of
length seven for the fragment F3:

β3(zero) = 1000000 β3(non zero) = 0111111
β3(acute) = 0100000 β3(non acute) = 1011111
β3(right) = 0010000 β3(non right) = 1101111
β3(obtuse) = 0001000 β3(non obtuse) = 1110111
β3(straight) = 0000100 β3(non straight) = 1111011
β3(reflex) = 0000010 β3(non reflex) = 1111101
β3(full) = 0000001 β3(non full) = 1111110

At first sight, the above analysis also allows a straightforward generalisa-
tion for the two higher-level predicates oblique and non oblique. In particular,
oblique would correspond to the three-way disjunction acute or obtuse or re-
flex and its negation non oblique to the four-way disjunction zero or right or
straight or full :

β3(oblique) = 0101010 β3(non oblique) = 1010101

However, an angle of 270◦ — as represented in Figure 4(b) — classifies
as reflex according to the above definition, and hence as oblique. This seems
to run into conflict with the fundamental connection between the angles of
90◦ and 270◦, which we will turn to in more detail in Section 3. We therefore
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Figure 4. (a) Reflex, counter-obtuse angle (b) Reflex,
counter-right angle (c) Reflex, counter-acute angle (d) Full
angle.

propose an alternative analysis, which turns the five-partition •—•—• from
§ 2.2 into a nine-partition •—•—•—•—• by copying the four left-most com-
ponents of the former, i.e. •—•—, and rotating them around the 180◦ node,
i.e. —•—•. In this way, two nodes are added, namely for 270◦ and for 360◦,
and two intervals for 180◦ < α < 270◦ and 270◦ < α < 360◦ respectively.
In other words, the denotation of the predicate reflex is split into three sub-
areas, for which we introduce the new names counter obtuse, counter right
and counter acute — or c obtuse, c right and c acute for short — which are
represented in Figures 4(a-b-c) respectively, and which are defined as follows:

[[zero]]3 = {0◦}
[[acute]]3 = {α ∈ A3 | 0◦ < α < 90◦}
[[right]]3 = {90◦}
[[obtuse]]3 = {α ∈ A3 | 90◦ < α < 180◦}
[[straight]]3 = {180◦}
[[c obtuse]]3 := {α ∈ A3 | 180◦ < α < 270◦}
[[c right]]3 := {270◦}
[[c acute]]3 := {α ∈ A3 | 270◦ < α < 360◦}
[[full]]3 = {360◦}

The alternative fragment

F ′3 := { zero, acute, right, obtuse, straight, c obtuse, c right,
c acute, full, non zero, non acute, non right,
non obtuse, non straight, non c obtuse,
non c right, non c acute, non full }

induces the partition

Π(F ′3) := { zero, acute, right, obtuse, straight,
c obtuse, c right, c acute, full }

and the corresponding bitstring mapping β′3 yields the following bitstrings of
length nine for the fragment F ′3:
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β′3(zero) = 100000000 β′3(non zero) = 011111111
β′3(acute) = 010000000 β′3(non acute) = 101111111
β′3(right) = 001000000 β′3(non right) = 110111111
β′3(obtuse) = 000100000 β′3(non obtuse) = 111011111
β′3(straight) = 000010000 β′3(non straight) = 111101111
β′3(c obtuse) = 000001000 β′3(non c obtuse) = 111110111
β′3(c right) = 000000100 β′3(non c right) = 111111011
β′3(c acute) = 000000010 β′3(non c acute) = 111111101
β′3(full) = 000000001 β′3(non full) = 111111110

On this more fine-grained analysis, reflex corresponds to the three-way
disjunction c obtuse or c right or c acute:

β′3(reflex) = 000001110 β′3(non reflex) = 111110001

More importantly, oblique now gets a very natural interpretation as the
four-way disjunction acute or obtuse or c obtuse or c acute and its negation
non oblique the equally straightforward analysis as the five-way disjunction
zero or right or straight or c right or full :

β′3(oblique) = 010101010 β′3(non oblique) = 101010101

At this point, we could, once again, apply Definitions 1.3 and 1.4 to
the angular predicates in the fragments F3 and F ′3 and their corresponding
bitstrings of lengths 7 and 9, in order to build the Aristotelian diagrams
that extend the hexagon and decagon in Figures 2 and 3. However, in view
of the considerable graphical complexity of these tetra-decagonal and octa-
decagonal diagrams, we will refrain from doing so here.

3. Complementarity and supplementarity relations between
angles and angular predicates

In Section 2, we progressively introduced a whole series of one-place pred-
icates of the language LA, describing properties of individual angles, and
yielding an ever more refined classification of angles. The bitstring semantics
assigned to fragments of these predicates naturally leads to the characteri-
sation of the Aristotelian relations between these angular properties. In this
section, we move from properties of individual angles to relations between
angles. Hence, we will add several two-place predicates to the language LA.

3.1. Complementary angles

The first angular relation to be analysed is that of complementarity : two
angles are said to be complementary iff they add up to 90◦ [21, p. 482]. More
formally, for i = 1, 2, 3:

[[complementary]]i := {(α, β) ∈ Ai ×Ai | α+ β = 90◦}

In other words, for i = 1, 2, 3 and for all a, b ∈ LA:

[[complementary(a, b)]]i = 1 iff [[a]]i + [[b]]i = 90◦
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This complementarity relation is symmetric, i.e. for i = 1, 2, 3 and for all
α, β ∈ Ai:

(α, β) ∈ [[complementary]]i iff (β, α) ∈ [[complementary]]i

We can now type-shift [14] the complementarity relation from a two-
place first-order predicate — i.e. a relation between two angles α, β ∈ Ai

— to a two-place second-order predicate complementary2 — i.e. a relation
between two sets of angles Γ,∆ ⊆ Ai. For i = 1, 2, 3, [[complementary2]]i :=

{(Γ,∆) ∈ ℘(Ai)× ℘(Ai) | ∃α ∈ Γ,∃β ∈ ∆ : (α, β) ∈ [[complementary]]i}
Thus, for i = 1, 2, 3 and for all P,Q ∈ LA: [[complementary2(P,Q)]]i = 1 iff

∃[[a]]i ∈ [[P ]]i,∃[[b]]i ∈ [[Q]]i : [[complementary(a, b)]]i = 1

In virtue of the symmetry of the first-order complementary relation, also the
second-order complementary2 relation is symmetric, i.e. for i = 1, 2, 3 and
for all Γ,∆ ⊆ Ai:

(Γ,∆) ∈ [[complementary2]]i iff (∆,Γ) ∈ [[complementary2]]i

In the most basic case — described in § 2.1 — the logical space of
angles is restricted to A1 = {α | 0◦ < α < 180◦}. In this scenario, there
is only one type of complementarity, namely that between two acute angles.
In other words, [[complementary(a, b)]]1 = 1 only if [[acute(a)]]1 = 1 and
[[acute(b)]]1 = 1. Or put in second-order terms:

[[complementary2]]1 = {([[acute]]1, [[acute]]1)}
Extending the logical space of angles to A2 = {α | 0◦ ≤ α ≤ 180◦}, as

in § 2.2, however, three scenarios arise: if [[complementary(a, b)]]2 = 1, then:

either [[zero(a)]]2 = 1 and [[right(b)]]2 = 1,
or [[acute(a)]]2 = 1 and [[acute(b)]]2 = 1,
or [[right(a)]]2 = 1 and [[zero(b)]]2 = 1.

Or equivalently, in second-order terms:

[[complementary2]]2 = { ([[zero]]2, [[right]]2), ([[acute]]2, [[acute]]2),
([[right]]2, [[zero]]2) }

Notice that extending the logical space of angles toA3 = {α | 0◦ ≤ α ≤ 360◦},
as in § 2.3, does not add any extra complexity. In other words, exactly the
same three scenarios arise as with A2:

[[complementary2]]3 = { ([[zero]]3, [[right]]3), ([[acute]]3, [[acute]]3),
([[right]]3, [[zero]]3) }

3.2. Supplementary angles

The second angular relation to be analysed is that of supplementarity : two
angles are said to be supplementary iff they add up to 180◦ [21, p. 2897].
More formally, for i = 1, 2, 3:

[[supplementary]]i := {(α, β) ∈ Ai ×Ai | α+ β = 180◦}
In other words, for i = 1, 2, 3 and for all a, b ∈ LA:

[[supplementary(a, b)]]i = 1 iff [[a]]i + [[b]]i = 180◦
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This supplementarity relation is again symmetric, i.e. for i = 1, 2, 3 and for
all α, β ∈ Ai:

(α, β) ∈ [[supplementary]]i iff (β, α) ∈ [[supplementary]]i

As with the complementarity relation in § 3.1, we can now type-shift
the supplementarity relation from a two-place first-order relation between
two angles α, β ∈ Ai to a two-place second-order supplementary2 relation
between two sets of angles Γ,∆ ⊆ Ai. For i = 1, 2, 3, [[supplementary2]]i :=

{(Γ,∆) ∈ ℘(Ai)× ℘(Ai) | ∃α ∈ Γ,∃β ∈ ∆ : (α, β) ∈ [[supplementary]]i}

Thus, for i = 1, 2, 3 and for all P,Q ∈ LA: [[supplementary2(P,Q)]]i = 1 iff

∃[[a]]i ∈ [[P ]]i,∃[[b]]i ∈ [[Q]]i : [[supplementary(a, b)]]i = 1

In virtue of the symmetry of the first-order supplementary relation, also the
second-order supplementary2 relation is symmetric, i.e. for i = 1, 2, 3 and for
all Γ,∆ ⊆ Ai:

(Γ,∆) ∈ [[supplementary2]]i iff (∆,Γ) ∈ [[supplementary2]]i

In the logical space A1 = {α | 0◦ < α < 180◦}, three types of supple-
mentarity arise: if [[supplementary(a, b)]]1 = 1 then:

either [[acute(a)]]1 = 1 and [[obtuse(b)]]1 = 1,
or [[right(a)]]1 = 1 and [[right(b)]]1 = 1,
or [[obtuse(a)]]1 = 1 and [[acute(b)]]1 = 1.

In terms of the second-order supplementary2 relation this yields:

[[supplementary2]]1 = { ([[acute]]1, [[obtuse]]1), ([[right]]1, [[right]]1),
([[obtuse]]1, [[acute]]1) }

Moving to the logical space A2 = {α | 0◦ ≤ α ≤ 180◦}, however,
supplementarity shows up in five different shapes: if [[supplementary(a, b)]]2 =
1 then:

either [[zero(a)]]2 = 1 and [[straight(b)]]2 = 1,
or [[acute(a)]]2 = 1 and [[obtuse(b)]]2 = 1,
or [[right(a)]]2 = 1 and [[right(b)]]2 = 1,
or [[obtuse(a)]]2 = 1 and [[acute(b)]]2 = 1,
or [[straight(a)]]2 = 1 and [[zero(b)]]2 = 1.

These five scenarios straightforwardly correspond to the five pairs of angular
predicates in the denotation of the second-order supplementary2 relation:

[[supplementary2]]2 = { ([[zero]]2, [[straight]]2), ([[acute]]2, [[obtuse]]2),
([[straight]]2, [[zero]]2), ([[obtuse]]2, [[acute]]2),
([[right]]2, [[right]]2), }

As was the case with the complementary2 relation at the end of § 3.1, ex-
tending the logical space of angles from A2 to A3 = {α | 0◦ ≤ α ≤ 360◦} does
not add any extra complexity. In other words, exactly the same five pairs of
angular predicates constitute the denotation of the supplementary2 relation
as with A2:
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[[supplementary2]]3 = { ([[zero]]3, [[straight]]3), ([[acute]]3, [[obtuse]]3),
([[straight]]3, [[zero]]3), ([[obtuse]]3, [[acute]]3),
([[right]]3, [[right]]3) }

This second-order relationship of supplementarity can now be connected
to the bitstring analysis provided for the one-place predicates in Section 2.
The basic intuition is that any bitstring can be ‘flipped’, i.e. reversed from left
to right: flipping 100, for instance, yields 001, and flipping 1100 yields 0011.
Using [β(X)]i to denote the i-th position in the bitstring β(X) of first-order
predicates X in LA, we can define φ as the flipping operation on bitstrings in
the following way: for all bitstrings β(X) and β(Y ) of length n: φ(β(X)) =
β(Y ) iff for all 1 ≤ i ≤ n, [β(Y )]i = [β(X)]n+1−i. Applying the flipping
operation φ to the six non-trivial bitstrings of length 3, for instance, yields
the following picture:

φ(100) = 001 φ(110) = 011
φ(010) = 010 φ(101) = 101
φ(001) = 100 φ(011) = 110

Observe that the flipping operation φ is an involution, or self-inverse
function: for all bitstrings β(X) and β(Y ) of length n: φ(φ(β(X))) = β(X),
or equivalently φ(β(X)) = β(Y ) ⇔ φ(β(Y )) = β(X). Observe, furthermore,
that in the case of symmetric bitstrings — i.e. bitstrings where [β(X)]i =
[β(X)]n+1−i for all 1 ≤ i ≤ n — the φ-operation maps a bitstring onto
itself. With the above bitstrings of length 3, for instance, this is the case for
φ(010) = 010 and φ(101) = 101.
More importantly, a straightforward connection can now be established be-
tween the second-order supplementary2-relation between two angular pred-
icates X and Y and the flipping operation on their bitstrings counterparts
β(X) and β(Y ). More precisely, for i = 1, 2 we have:6

[[supplementary2(X,Y )]]i = 1⇔ φ(βi(X)) = βi(Y )

In the smallest logical space A1 = {α | 0◦ < α < 180◦}, this equivalence
first of all holds for the supplementary2 relations — henceforth abbreviated
as suppl2 — between the L1 predicates described above:

[[suppl2(acute, obtuse)]]1 = 1 ⇔ φ(β1(acute)) = β1(obtuse)
⇔ φ(100) = 001

[[suppl2(right, right)]]1 = 1 ⇔ φ(β1(right)) = β1(right)
⇔ φ(010) = 010

Completely analogously, we get the equivalence for the extra supplementary2

relations between the negative L2 counterpart predicates:

[[suppl2(n acute, n obtuse)]]1 = 1 ⇔ φ(β1(n acute)) = β1(n obtuse)
⇔ φ(011) = 110

[[suppl2(n right, n right)]]1 = 1 ⇔ φ(β1(n right)) = β1(n right)
⇔ φ(101) = 101

6The case i = 3 will be discussed in more detail later.
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Moving from the logical space A1 to A2 = {α | 0◦ ≤ α ≤ 180◦},
the complexity of the bitstring semantics increases from length 3 to length 5.
Again, the equivalence between the supplementary2 relation between angular
predicates and the flipping operation φ on the corresponding bitstrings holds,
first of all, for the L1 predicates described above:

[[suppl2(zero, straight)]]2 = 1 ⇔ φ(β2(zero)) = β2(straight)
⇔ φ(10000) = 00001

[[suppl2(acute, obtuse)]]2 = 1 ⇔ φ(β2(acute)) = β2(obtuse)
⇔ φ(01000) = 00010

[[suppl2(right, right)]]2 = 1 ⇔ φ(β2(right)) = β2(right)
⇔ φ(00100) = 00100

Secondly, we get the equivalence for the extra supplementary2 relations be-
tween the negative counterpart predicates. However, with bitstrings of length
5, the latter are L4 predicates:

[[suppl2(n zero, n straight)]]2 = 1 ⇔ φ(β2(n zero)) = β2(n straight)
⇔ φ(01111) = 11110

[[suppl2(n acute, n obtuse)]]2 = 1 ⇔ φ(β2(n acute)) = β2(n obtuse)
⇔ φ(10111) = 11101

[[suppl2(n right, n right)]]2 = 1 ⇔ φ(β2(n right)) = β2(n right)
⇔ φ(11011) = 11011

Notice that the identical pairs (right, right) and (non right, non right) of
the supplementary2 relation perfectly match the fact that the φ-operation
maps the respective symmetric bitstrings onto themselves. Exactly the same
situation holds in the case of the disjunctive L2 predicate obliq(ue) and its
negative L3 counterpart n(on) obliq(ue):

[[suppl2(obliq, obliq)]]2 = 1 ⇔ φ(β2(obliq)) = β2(obliq)
⇔ φ(01010) = 01010

[[suppl2(n obliq, n obliq)]]2 = 1 ⇔ φ(β2(n obliq)) = β2(n obliq)
⇔ φ(10101) = 10101

It is important to stress that the equivalence between the supplementary2

relation between angular predicates and the flipping operation φ on the corre-
sponding bitstrings no longer holds when moving to the most complex logical
space A3 = {α | 0◦ ≤ α ≤ 360◦}. In the latter case, the complexity of the
bitstring semantics increases to length 7 or 9, and the corresponding flipping
operation φ concerns all seven or nine bit positions. The range of application
of the supplementary2 relation, by contrast, is restricted to 0◦ ≤ α ≤ 180◦,
i.e. to the first five bit positions in bitstrings of length 7 or 9. In the next
subsection, however, we introduce a new relation between angular predicates
which allows us to restore the equivalence with the flipping operation on
bitstrings in A3.



16 Hans Smessaert and Lorenz Demey

3.3. Counter-supplementary angles

Remember from § 2.3 that the semantic analysis of the most complex logical
space A3 = {α | 0◦ ≤ α ≤ 360◦} was presented in two steps. In particu-
lar, we argued in favour of replacing the original seven-partition Π(F3) —
which naturally arises from the standard definitions of reflex and full an-
gles — with the nine-partition Π(F ′3). The crucial modification involved the
subdivision of the denotation of the predicate reflex into three subareas: (i)
c(ounter) obtuse for 180◦ < α < 270◦, (ii) c(ounter) right for α = 270◦, and
(iii) c(ounter) acute for 270◦ < α < 360◦. The primary motivation for this
modification concerned the problematic position of an angle of 270◦ with
respect to the entailment relation between the predicates reflex and oblique.

In this subsection we will provide a second argument, by presenting an
analysis which aims to do justice to the fundamental connection between
the angles of 90◦ and 270◦. The key purpose of this proposal is precisely to
generalise the concept of supplementarity defined in § 3.2 for the logical space
A2 to the most complex logical space A3. In order to do so, we define the
new relation of counter-supplementarity or c-supplementarity. Two angles are
said to be counter-supplementary, or c-supplementary for short, iff they add
up to 360◦. More formally, for i = 1, 2, 3:

[[c-supplementary]]i := {(α, β) ∈ Ai ×Ai | α+ β = 360◦}
In other words, for i = 1, 2, 3 and for all a, b ∈ LA:

[[c-supplementary(a,b)]]i = 1 iff [[a]]i + [[b]]i = 360◦

This c-supplementarity relation is again symmetric, i.e. for i = 1, 2, 3 and for
all α, β ∈ Ai:

(α, β) ∈ [[c-supplementary]]i iff (β, α) ∈ [[c-supplementary]]i

As with the complementarity relation in § 3.1 and the supplementarity rela-
tion in § 3.2, we can now type-shift the c-supplementarity relation from a two-
place first-order relation between two angles α, β ∈ Ai to a two-place second-
order c-suppl(ementary)

2
relation between two sets of angles Γ,∆ ⊆ Ai. For

i = 1, 2, 3, [[c-supplementary2]]i :=

{(Γ,∆) ∈ ℘(Ai)× ℘(Ai) | ∃α ∈ Γ,∃β ∈ ∆ : (α, β) ∈ [[c-supplementary]]i}

Thus, for i = 1, 2, 3 and for all P,Q ∈ LA: [[c-supplementary2(P,Q)]]i = 1 iff

∃[[a]]i ∈ [[P ]]i,∃[[b]]i ∈ [[Q]]i : [[c-supplementary(a,b)]]i = 1

In virtue of the symmetry of the first-order c-supplementary relation, also the
second-order c-supplementary2 relation is symmetric, i.e. for i = 1, 2, 3 and
for all Γ,∆ ⊆ Ai:

(Γ,∆) ∈ [[c-supplementary2]]i iff (∆,Γ) ∈ [[c-supplementary2]]i

It is easy to see that, relative to the logical spaces A1 = {α | 0◦ < α <
180◦} and A2 = {α | 0◦ ≤ α ≤ 180◦}, the relation of c-supplementarity is
not particularly interesting. In the former case, the extreme value of 180◦

is excluded, so it is impossible in principle to have two angles from A1 add
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up to 360◦. In the latter case, the only pair of angles that does stand in the
relation of c-supplementarity is that of two straight angles (180◦, 180◦). In

terms of the second-order c-suppl(ementary)
2

relation this yields:

[[c-suppl2]]1 = { }
[[c-suppl2]]2 = {([[straight]]2, [[straight]]2) }

By contrast, in the logical spaceA3 = {α | 0◦ ≤ α ≤ 360◦}, c-supplementarity
shows up in nine different shapes: if [[c-supplementary(a, b)]]3 = 1 then:

either [[zero(a)]]3 = 1 and [[full(b)]]3 = 1,
or [[acute(a)]]3 = 1 and [[c acute(b)]]3 = 1,
or [[right(a)]]3 = 1 and [[c right(b)]]3 = 1,
or [[obtuse(a)]]3 = 1 and [[c obtuse(b)]]3 = 1,
or [[straight(a)]]3 = 1 and [[straight(b)]]3 = 1,
or [[c obtuse(a)]]3 = 1 and [[obtuse(b)]]3 = 1,
or [[c right(a)]]3 = 1 and [[right(b)]]3 = 1,
or [[c acute(a)]]3 = 1 and [[acute(b)]]3 = 1,
or [[full(a)]]3 = 1 and [[zero(b)]]3 = 1.

These nine scenarios straightforwardly correspond to the nine pairs of angular
predicates in the denotation of the second-order c-suppl(ementary)

2
relation:

[[c-suppl2]]3 = { ([[zero]]3, [[full]]3), ([[acute]]3, [[c acute]]3),
([[full]]3, [[zero]]3), ([[c acute]]3, [[acute]]3),
([[right]]3, [[c right]]3), ([[obtuse]]3, [[c obtuse]]3),
([[c right]]3, [[right]]3), ([[c obtuse]]3, [[obtuse]]3),
([[straight]]3, [[straight]]3) }

Remember from the end of § 3.2 that the equivalence between the
supplementary2 relation between angular predicates and the flipping opera-
tion φ on the corresponding bitstrings no longer holds when moving to the
most complex logical space A3 = {α | 0◦ ≤ α ≤ 360◦}. This logical space
is in a sense ‘too big’ to have the supplementary2 relation correspond to a
flipping operation on bitstrings of length nine. In this subsection, by contrast,
we encounter the mirror-image constellation, so to speak: the logical spaces
A1 and A2 are ‘too small’ to have the c-supplementary2 relation correspond
to a flipping operation on bitstrings of length 3 or 5 only. This obviously re-
lates to the fact observed above that the denotations of the [[c-suppl2]]1 and
[[c-suppl2]]2 relations are hardly interesting.

Furthermore, as for A3, we have replaced the bitstring mapping β3 cor-
responding to the seven-partition Π(F3) with the β′3 mapping corresponding
to the nine-partition Π(F ′3). On the face of it, both partitions are ‘balanced’
and ‘symmetric’. Nevertheless, there is a clear intuition of a discrepancy be-
tween the ‘sizes’ of the subareas. In particular, in β3, bit position 6 (for reflex )
has the same ‘size’ as the combination of bit positions 2 (acute), 3 (right)
and 4 (obtuse). In β′3, by contrast, this discrepancy is resolved, since there is
a perfect match between bit positions 2 (acute), 3 (right) and 4 (obtuse) on
the one hand, and positions 8 (c acute), 7 (c right) and 6 (c obtuse) on the
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other hand. As a consequence, the only kind of equivalence that can be estab-
lished in A3 is that between the c-supplementary2 relation and the flipping
operation φ on bitstrings of length 9. More formally, we have:

[[c-supplementary2(X,Y )]]3 = 1⇔ φ(β′3(X)) = β′3(Y )

This equivalence holds, first of all, for the L1 predicates described above:

[[c-suppl2(zero, full)]]3 = 1 ⇔ φ(β′3(zero)) = β′3(full)
⇔ φ(100000000) = 000000001

[[c-suppl2(acute, c acute)]]3 = 1 ⇔ φ(β′3(acute)) = β′3(c acute)
⇔ φ(010000000) = 000000010

[[c-suppl2(right, c right)]]3 = 1 ⇔ φ(β′3(right)) = β′3(c right)
⇔ φ(001000000) = 000000100

[[c-suppl2(obtuse, c obtuse)]]3 = 1 ⇔ φ(β′3(obtuse)) = β′3(c obtuse)
⇔ φ(000100000) = 000001000

[[c-suppl2(straight, straight)]]3 = 1 ⇔ φ(β′3(straight)) = β′3(straight)
⇔ φ(000010000) = 000010000

Secondly, we again get the equivalences for the extra c-supplementary2-
relations between the negative L8 counterpart predicates:

[[c-suppl2 (n zero, n full)]]3 = 1
⇔ φ(β′3(n zero)) = β′3(n full)
⇔ φ(011111111) = 111111110

[[c-suppl2 (n acute, n c acute)]]3 = 1
⇔ φ(β′3(n acute)) = β′3(n c acute)
⇔ φ(101111111) = 111111101

[[c-suppl2 (n right, n c right)]]3 = 1
⇔ φ(β′3(n right)) = β′3(n c right)
⇔ φ(110111111) = 111111011

[[c-suppl2 (n obtuse, n c obtuse)]]3 = 1
⇔ φ(β′3(n obtuse)) = β′3(n c obtuse)
⇔ φ(111011111) = 111110111

[[c-suppl2 (n straight, n straight)]]3 = 1
⇔ φ(β′3(n straight)) = β′3(n straight)
⇔ φ(111101111) = 111101111

And finally, the observed equivalence between the reflexivity of the c-
supplementary2-relation with the predicates straight and non straight and
the mapping of the respective symmetric bitstrings onto themselves by the
φ-operation straightforwardly carries over to the disjunctive L4 predicate
oblique and its negative L5 counterpart non oblique, :

[[c-suppl2 (oblique, oblique)]]3 = 1
⇔ φ(β′3(oblique)) = β′3(oblique)
⇔ φ(010101010) = 010101010

[[c-suppl2 (n oblique, n oblique)]]3 = 1
⇔ φ(β′3(n oblique)) = β′3(n oblique)
⇔ φ(101010101) = 101010101
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4. Conclusion and prospects

In this paper we have provided an analysis of the logical relations within the
conceptual or lexical field of angles in 2D geometry. In Section 2, the basic
set of angular predicates acute, right, and obtuse was extended in three steps,
by adding (i) zero and straight, (ii) reflex and full and (iii) counter acute,
counter right and counter obtuse respectively. The former two extensions cor-
respond to extending the logical space of angles from A1 to A2 to A3. Within
the framework of Logical Geometry, the respective three-, five- and seven-
partitions of these logical spaces correspond to the bitstring mappings β1,
β2 and β3, yielding bitstrings of increasing complexity, i.e. length 3, 5 and 7
respectively. The final extension, by contrast, is no longer a matter of extend-
ing the logical space, but rather of providing a more fine-grained analysis of
the same logical space A3 in terms of a nine-partition, corresponding to the
bitstring mapping β′3 and yielding bitstrings of length 9. These various bit-
string analyses allow a straightforward account of the Aristotelian relations
between angular predicates, which are graphically represented by means of
standard hexagonal or decagonal Aristotelian diagrams, among others.

Notice that the rhetoric of the paper was very much in terms of ex-
pansion from small to large, with respect to both logical space and bitstring
complexity. On occasion, however, also the reverse perspective is adopted in
Logical Geometry, when a distinction is drawn between ‘collapsing’ and ‘elim-
inating’ bit positions [6, p. 349]. Moving ‘back’ from β′3 to β3, for instance,
and thus replacing a more fine-grained analysis with a more coarse-grained
analysis of the same logical space A3, would be a matter of collapsing bit
positions 6, 7 and 8 of β′3 into the single bit position 6 of β3. Moving ‘back’
from β3 to β2, or from β2 to β1, by contrast, reduces the size of logical space
from A3 to A2, and from A2 to A1, and would be a matter of eliminating
bit positions 6 and 7 from β3 and bit positions 1 and 5 from β2 respectively.

In Section 3, we moved from one-place predicates for angular proper-
ties to two-place predicates for angular relations. First, the two standard
relations from the literature were analysed, namely complementarity — for
angles adding up to 90◦ — and supplementarity — for angles adding up to
180◦. Secondly, a new relation is proposed, namely counter-supplementarity
for angles adding up to 360◦. Furthermore, equivalence relations were ob-
served between angular relations and the flipping operation φ which reverses
the bitstrings from left to right. In particular, we established equivalences be-
tween supplementarity and flipping bitstrings of length 3 and 5, and between
counter-supplementarity and flipping bitstrings of length 9.

Notice that the flipping operation φ is the only operation that has been
applied to bitstrings in the present paper. It is perfectly possible, however,
to also define a ‘switching’ operation σ which systematically reverses the
values of each bit position, e.g. from 11010 to 00101. As a matter of fact,
this is precisely the effect of the predicate negation that showed up time and
again between a predicate X and its negative counterpart non X. In future
research we aim to investigate the possible interaction between the flipping
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and switching operations φ and σ. What is the relationship, for instance,
between σ(φ(β(X))) and φ(σ(β(X)))? We also intend to extend the present
analysis to the realm of proportional quantification in natural language —
involving expressions such as two thirds of the students or 80% of the books,
the underlying scalar structure of which closely resembles that of the logical
space of geometric angles. One crucial question in this respect will revolve
around the possible connection with duality notions such as internal and
external negation [5].
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