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 1 

Abstract 24 

Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both 25 

human and veterinary medicine. We have previously found a drastic increase in enrofloxacin 26 

resistance in clinical Escherichia coli isolates collected from diseased pigs from the U.S.A over 27 

ten years (2006-2016). However, the genetic determinants responsible for this increase are yet to 28 

be determined. The aim of the present study was to identify and characterize the genetic basis of 29 

resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins 30 

(ceftiofur) in swine E. coli isolates using whole genome sequencing (WGS). Based on Illumina 31 

short read WGS, blaCMY-2 and chromosomal mutations in quinolone resistance determining 32 

regions of the genes gyrA, gyrB, parA and parC were the major genetic determinants mediating 33 

ceftiofur and enrofloxacin resistance, respectively. However, genes encoding extended spectrum 34 

Beta-Lactamases (ESBLs) (blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, blaCTX-M-55 and blaSHV-12) and 35 

plasmid mediated quinolone resistance (PMQR) genes (qnrB77, qnrB2, qnrS1, qnrS2 and aac-36 

(6)-lb’-cr) were also present in more than 20% of ceftiofur and enrofloxacin resistant isolates, 37 

respectively. Additionally, colistin resistance gene (mcr-9) were present in several isolates. Some 38 

plasmids carrying ESBL and PMQR genes were assembled by using both short (Illumina) and 39 

long reads (PacBio). Most of these plasmids were similar (> 90% nucleotide identity and similar 40 

genetic contexts around ESBL genes) to previously described plasmids isolated from humans 41 

and animals globally. Comparative studies are needed to further elucidate the transmission of 42 

these mobile genetic determinants (pAmpC, ESBL, PMQR genes) between humans, swine and 43 

environment.  44 

Importance 45 
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Food animal production has been identified as a potential contributor to the spread of 46 

antimicrobial resistance in both human and animal populations. Understanding the genetic 47 

mechanisms conferring resistance is critical to design informed control and preventive measures, 48 

particularly when involving critically important antimicrobial classes such as extended-spectrum 49 

cephalosporins and fluoroquinolones. Here, we studied the genetic traits associated with 50 

resistance in E. coli from diseased pigs in the U.S. We found extended spectrum beta-lactamase 51 

genes (blaCTX-M-blaSHV-12) in cephalosporin (ceftiofur) resistant isolates at higher levels than 52 

previously reported, and identified several combinations of both chromosomal mutations and 53 

plasmid-borne genes mediating fluoroquinolone (enrofloxacin) resistance. We also assembled 54 

the plasmid sequences carrying some of these genes, demonstrating their similarity with others 55 

previously found worldwide, which suggests that these plasmids might be part of a complex, 56 

global reservoir of antimicrobial resistance. We also detected for the first time mcr-9 genes in 57 

U.S farm animal isolates. 58 

Keywords: plasmids, ESBLs, swine, USA, PMQR, WGS, cephalosporin, fluoroquinolone, 59 

antimicrobial resistance  60 
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Introduction 61 

 62 

Antimicrobial resistance has emerged as an issue of grave concern in both human and veterinary 63 

medicine. Food animals are considered potential reservoirs of antimicrobial resistant and 64 

zoonotic pathogens such as Escherichia coli, although the extent of spread of resistant bacteria 65 

via food chain is still under debate (1). Critically important antimicrobials for human medicine 66 

such as cephalosporins and fluoroquinolones are still used in many parts of the world to treat 67 

diseased food animals, including swine in the U.S.A (2–4). Furthermore, certain genetic 68 

determinants responsible for resistance to antimicrobials approved for use in animals (such as 69 

ceftiofur and enrofloxacin) and those used in human medicine (such as cefoxitin and 70 

ciprofloxacin) are the same (5, 6). It is therefore important to monitor the circulation of genes 71 

responsible for resistance to such critically important antimicrobials in bacteria present in 72 

humans and animals to develop better source attribution models and targeted interventions in 73 

both humans and veterinary medicine (7).  74 

 Resistance to extended-spectrum cephalosporins is mediated by extended spectrum beta-75 

lactamases (ESBLs) (commonly encoded by the blaTEM, blaSHV, and blaCTX-M genes) and 76 

plasmidic AmpC (pAmpC, commonly encoded by the blaCMY genes) (8). These genes may be 77 

inserted on bacterial chromosomes but are usually present on plasmids with the potential to 78 

disseminate horizontally to other bacterial strains (9). blaCTX-M genes are reported as the most 79 

prevalent ESBL encoders worldwide in humans and animals (10). However, blaCMY-2 genes were 80 

primarily responsible for extended-spectrum cephalosporin resistance in bacteria of food animal 81 

origin in North America, while other ESBL-encoding genes were not reported until the late 82 

2000’s (11). Nevertheless, recent reports have also suggested the emergence of ESBL genes in 83 

bacteria of food animal origin in USA over the last decade (12). 84 
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Resistance to fluoroquinolones is mainly mediated by multiple chromosomal mutations in 85 

certain genes (gyrA, gyrB, parE and parC). Additionally, plasmid mediated quinolone resistance 86 

genes (such as qnr) and upregulation of efflux pumps confer variable levels of resistance to this 87 

antimicrobial family (13). qnr genes encoded in plasmids were also found in Salmonella isolates 88 

collected from retail pork, cecal samples from healthy pigs and clinical samples from diseased 89 

pigs in the same period, suggesting a likely role in the increase in phenotypic resistance (14–16). 90 

An increase in fluoroquinolone resistance was recently reported in Salmonella enterica isolates 91 

from diseased pigs in Minnesota between 2006 to 2015 (2). A similar increase in phenotypic 92 

resistance to a fluoroquinolone (enrofloxacin) was also reported for the same timeframe in swine 93 

E. coli clinical isolates (17), though the genetic determinants mediating this increase has not been 94 

determined yet.  95 

 Although increasing information on the prevalence of phenotypic resistance in bacteria 96 

(including E. coli) of animal origin is generated by national AMR monitoring programs such as 97 

NARMS (18), there is limited information on the genetic backbone mediating these resistance 98 

phenotypes. This may be of particular importance in the case of critically important 99 

antimicrobials such as fluoroquinolones, cephalosporins or carbapenems. The objective of this 100 

study was to characterize the genetic basis of fluoroquinolone and extended spectrum 101 

cephalosporin resistance in phenotypically resistant E. coli isolates collected from diseased pigs 102 

in the U.S.A between 2014-15 using both short read (Illumina) and long read (PacBio) whole 103 

genome sequencing (WGS).  104 

 105 

Materials and methods 106 

 107 
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A total of 211 E. coli isolates recovered from diseased pigs at the University of Minnesota 108 

Veterinary Diagnostic Laboratory (UMN-VDL) between 2014-2015 were included in this study. 109 

These isolates were selected on the basis of results of broth microdilution tests routinely 110 

performed at the laboratory following Clinical and Laboratory Standards Institute guidelines and 111 

were classified as ceftiofur non-wild type (minimum inhibitory concentrations (MIC)  2 g/ml) 112 

and enrofloxacin non-wild type (MIC  0.25 g/ml) (19). For ease of interpretation, “non-wild 113 

type” and “wild type” isolates are referred to as “resistant” and “susceptible”, respectively. Out 114 

of these 211 isolates, 110 were enrofloxacin resistant and 106 were ceftiofur resistant, with 41 115 

isolates being resistant to both ceftiofur and enrofloxacin. Forty-six isolates susceptible to both 116 

antimicrobials were added to assess the presence of resistance genes and chromosomal mutations 117 

in susceptible isolates. Only one isolate per farm was selected in order to avoid duplicity of 118 

potentially identical clones circulating in the same farm. 119 

 Isolates were first subjected to short read sequencing using Illumina HiSeq 2500 (2 x 120 

125bp). The raw reads were uploaded to and assembled using the pipeline provided at 121 

Enterobase webserver. Draft genomes were uploaded to the Center for Genomic Epidemiology 122 

(CGE) webserver to identify multilocus sequence type (MLST version 2.0.4) (20), acquired 123 

resistance genes (Resfinder version 3.2) (21), plasmid sequence type (pMLST version 0.1.0)
 
(22) 124 

and plasmid replicon types (Plasmid Finder version 2.0.1) (22). Chromosomal mutations in 125 

quinolone resistance determining regions (QRDRs) were identified by downloading sequences of 126 

gyrA, gyrB, parC and parE from reference E. coli K-12 substr. MG1655 genome (Genbank 127 

accession number- NZ_AJGD00000000.1) and performing nucleotide BLAST against the draft 128 

genomes locally (version 2.9.0, E-value threshold-10). Draft genomes were annotated using 129 

PROKKA (version 1.13) (23). 130 
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 For the phylogenetic analysis, raw reads were first mapped to a reference genome (E. 131 

coli str. K-12 substr. MG1655, accession- NZ_AJGD00000000.1) and full gene alignments were 132 

assembled using snippy (default values, version 4.4.5) (24). From these full gene alignments, 133 

Gubbins (default values, version 0.1.0) was used to detect and remove loci present in 134 

recombinant regions and extract single nucleotide polymorphisms (25). Maximum likelihood 135 

trees were then built using a general time-reversible with gamma substitution model through 136 

RaxML (version 8.0) (26). Support for nodes on trees was assessed using 1000 bootstrap 137 

replicates and phylogenetic tree was made using iTOL (version 4.0) (27). 138 

 Additionally, long read sequencing was performed on a subset of isolates carrying ESBL 139 

genes (blaSHV-12, blaCTX-M) in the analysis above using Pacific Biosciences (PacBio) RSII 140 

technology (SMRT Cell 1M v3) (28). Long reads were first corrected for errors using LoRDEC 141 

(version 0.9) (28). Unicycler (version 0.4.7)
 
(29) was used to obtain de-novo hybrid assemblies 142 

of these isolates using both long and short reads, and assemblies were visualized using Bandage 143 

(version 0.8.1) (30). Complete plasmid genomes (here on referred to as “assembled plasmids”) 144 

were uploaded to ISSaga webserver (31) for identification of insertion sequences and to the CGE 145 

webserver to perform analyses as mentioned above. The assembled plasmids were also blasted 146 

against a database of reference plasmids available at the PLSDB webserver
 
(32) to identify 147 

closely related plasmids also carrying antimicrobial resistance genes of interest (ESBL, PMQR). 148 

Plasmids sequences with a query coverage of >80% and nucleotide identity >90% were 149 

downloaded and the top five closely related plasmids genomes to each of the ones found here 150 

were visually compared using BRIG (version 0.95) (33).  151 

 152 

Results 153 

 154 
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Genetic determinants conferring extended spectrum cephalosporin and fluoroquinolone 155 

resistance  156 

Out of 106 ceftiofur-resistant isolates, 89 (84%) carried blaCMY-2 genes (figure 1). These genes 157 

were not present in the remaining 105 non-resistant isolates.  Isolates carrying this gene belonged 158 

to 24 different ST types, with ST12 (n=21) and ST101 (n=10) being the dominant ST types 159 

(figure 1). Twenty of the 21 ST12 isolates varied only by 9-32 single nucleotide polymorphisms 160 

(SNPs) while ST10 and ST101 isolates varied by 7-4185 and 8-1367 SNPs, respectively. 161 

Twenty-four isolates belonging to 13 different ST types carried blaSHV-12 (5 isolates) or blaCTX-M 162 

genes (19 isolates), of which 22 were ceftiofur resistant (figure 1). The two ceftiofur susceptible 163 

isolates carried the blaSHV-12 gene. 164 

 Multiple fluoroquinolone-resistant associated genes and mutations were detected in 106 165 

of the 110 enrofloxacin-resistant E. coli isolates (table 1), while only four out of the 101 166 

susceptible isolates presented any of them (specifically, single mutations in the gyrA gene (S83L 167 

or D87Y)). Isolates resistant to enrofloxacin belonged to 30 different ST types. The dominant ST 168 

types were ST100 (n=37) and ST744 (n=17) (table 1, figure 1). Thirty-six of these ST100 169 

isolates varied by less than 20 SNP and these isolates were collected from 6 different states in 170 

USA. In contrast, ST744 isolates varied by 8-606 SNPs. 171 

 Six different types of PMQR genes were identified in a total of 24 isolates spread across 172 

7 states (figure 1). These 24 isolates belonged to 16 different ST types (table 1, figure 1). 173 

Enrofloxacin MIC values for isolates with a single PMQR gene, two PMQRs genes and one 174 

PMQR gene plus a chromosomal mutation (gyrA- S83L, D87G or parE- D476A) ranged 175 

between 0.5-1.0 g/ml, with the exception of two isolates that carried only qnrB19 but had 176 

enrofloxacin MIC values of 2 g/ml.  177 
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Description of assembled plasmids carrying PMQRs and ESBLs genes   178 

 179 

We assembled complete E. coli chromosomes and plasmids using both long and short reads from 180 

10 isolates (seven isolates carrying blaCTX-M genes, two carrying blaSHV-12 genes and one carrying 181 

a blaCTX-M and a qnrB77 gene) (table 2). In seven of the isolates, blaCTX-M genes were present on 182 

IncFII (blaCTX-M-14, 15, 27) and IncHI2 (blaCTX-M-55) plasmids with sizes ranging between 69 and 183 

240 kbp. blaCTX-M genes were present in regions flanked by IS26, ISEcp1, IS5, IS6 and Tn3 184 

family transposases, which were often truncated (table 2, figures 2-4). In one isolate, blaCTX-M-15 185 

was present on the E. coli chromosome, flanked by transposases similar to those surrounding 186 

blaCTX-M-15 in the IncFII plasmids. Plasmids with blaCTX-M-14 or blaCTX-M-27 carried only blaCTX-M 187 

or one other AMR gene (erm(B), a macrolide resistant gene); whereas the plasmids carrying 188 

blaCTX-M-15 and blaCTX-M-55 also bore genes which can confer resistance to aminoglycosides, 189 

penicillins, macrolides or trimethoprim (table 2, figures 2-4). Additionally, some of these blaCTX-190 

M-15 and blaCTX-M-55 plasmids also carried genes that can cause resistance to sulphonamides, 191 

phenicols or tetracyclines (table 2, figures 2 and 4). Concerningly, two of the blaCTX-M-15 carrying 192 

IncFII plasmids also harbored aac(6’)-Ib-cr gene which can confer resistance to both 193 

aminoglycosides and fluoroquinolones (table 2, figure 4).  194 

The two plasmids carrying blaSHV-12 genes assembled were of large IncHI2 type plasmids 195 

(approx. 287-300kbp), and carried genes for resistance to aminoglycosides, sulphonamides, 196 

trimethoprim, tetracyclines, penicillins, phenicols (only p39) and macrolides (table 2, figure 5). 197 

blaSHV-12 genes were present in a region flanked by intact IS6 family transposases. One of these 198 

plasmids also carried genes for resistance to fluoroquinolones (qnrB2, aac(6’)-Ib-cr) and both of 199 

these plasmids also carried a colistin resistance gene (mcr-9) (table 2, figure 5).  200 
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In addition to these ESBL-encoding plasmids, we also assembled a 59 kbp IncN plasmid 201 

carrying a qnrB77 gene (table 2, figure 6). This plasmid was present in a ST4981 isolate which 202 

also carried an ESBL-encoding gene (blaCTX-M-15) chromosomally. This plasmid also carried 203 

resistance genes to trimethoprim and aminoglycosides. The qnrB77 gene was flanked by a 204 

complete and a truncated transposase of IS91 family of transposases (table 2, figure 6).  205 

Some of these plasmids (p1, p23, p33 and p65) also carried genes (qacE) that determine 206 

resistance to quarternary ammonium compounds. Genes related to heavy metal resistance such as 207 

mercury (merCDEPTR), arsenic (arsHB), copper (pcoES) and tellurium (terABCDWX) 208 

resistance were also present on plasmids carrying blaSHV-12. Plasmid carrying blaCTX-M-55 genes 209 

also carried tellurium resistance genes (terABCDWX). Additionally, all the plasmids assembled 210 

in this study carried mobility genes (tra set of genes) and genes that can aid in plasmid 211 

maintenance and stability. All the IncFII and IncHI2plasmids carried genes coding for at least 212 

one toxin-antitoxin system, e.g., the IncFII plasmids carried pemI-pemK genes and all the 213 

IncHI2 carried higA-higB genes. Similarly, the qnrB77 carrying IncN plasmid also carried 214 

mobility genes (tra) and genes encoding for proteins that aid in plasmid stability (stbB-stbC 215 

genes), antirestriction systems (ardA-ardB genes) and mutagenesis (mucA-mucB genes). 216 

 The comparison of these assembled plasmids with the PLDSB database resulted in the 217 

identification of several previously described plasmids with a high similarity (>80% coverage, 218 

and >98% nucleotide identity). To summarize, most of the plasmids carrying ESBL encoding 219 

genes assembled in this study were similar to plasmids harbored on various Enterobactericaceae 220 

and collected from various sources (animals, humans, environment) across different continents 221 

and shared the same molecular context around the genes of interest (qnr, bla genes) (figures 2-5). 222 
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In contrast, we were not able to identify similar plasmids to the blaCTX-M-15 carrying IncFII 223 

(pMLST- F48:A1:B49) and the qnrB77 carrying IncN plasmids found in this study. 224 

 225 

Resistance determinants to other critical antimicrobials 226 

No carbapenem resistance genes were identified in our collection, but the mcr-9 gene was 227 

present in 7 isolates belonging to 6 different ST types. These isolates carried both the mcr-9 gene 228 

and either a pAmpC, an ESBL or a PMQR gene (table 3). Descriptions of these isolates are 229 

presented briefly in table 3. mcr-9 was also present in two of the ESBL plasmids assembled in 230 

this study (table 2).  231 

 232 

Discussion 233 

 234 

Whole genome sequencing (WGS) of enrofloxacin and ceftiofur resistant E. coli revealed 235 

multiple determinants conferring resistance to these critical antimicrobials, which were present 236 

on a wide spectrum of ST types recovered from the major swine producing states in the U.S.A. 237 

The use of both long and short read WGS technologies identified the genetic context of these 238 

resistance determinants for several isolates suggesting determinants by which resistance may be 239 

spreading such as plasmids carrying blaCMY-2, which previously established in Salmonella and E. 240 

coli populations circulating in food animals in the U.S.A (11). We also assembled plasmids not 241 

previously described in isolates from swine or other food animals or retail meat in USA. 242 

Nearly 84% of the ceftiofur resistant E. coli isolates carried a blaCMY-2 gene, which is 243 

consistent with findings in ceftiofur-resistant Salmonella isolates from diseased pigs collected 244 

during the same study period (15). However, 24 E. coli isolates in this study (including 2 isolates 245 

non-resistant to ceftiofur) carried blaCTX-M or blaSHV-12 genes, indicating a much higher 246 

prevalence (18%) of blaCTX-M in our isolates compared to ceftiofur-resistant Salmonella of swine 247 
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origin (15). Still, our data suggest a more limited distribution of blaCTX-M genes compared with 248 

reports in extended spectrum cephalosporin resistant E. coli isolates retrieved from swine in 249 

other upper income countries in Europe and Asia such as Belgium and Hong Kong (34, 35). 250 

ESBL-encoding genes are the predominant genes responsible for extended spectrum 251 

cephalosporin resistance globally in food animals (10). However, until the late 2000’s these 252 

genes were not found in food animal isolates collected in North America (36). In a study on E. 253 

coli isolates collected from diseased pigs at the UMN-VDL in 2008, all ceftiofur resistant 254 

isolates carried blaCMY-2 genes (37); whereas blaCTX-M carrying E. coli in finishing pigs in USA 255 

were first identified in 2011 (38). Since then, more recent studies have also reported the sporadic 256 

occurrence of blaCTX-M genes in Enterobacteriaceae isolates of swine origin (including pork) in 257 

the U.S.A (39, 40). Our study reinforces the results that prevalence of ESBLs might have 258 

increased in E. coli collected from pigs during late 2000s-early 2010s.  259 

Similar to ESBLs, presence of PMQR genes (qnr, aac(6’)-Ib-cr) in food animal isolates 260 

in the U.S.A had not been reported until recently (14, 15, 41, 42). There has also been an 261 

increase in PMQR genes in clinical Salmonella isolates from humans in the U.S.A; and animal 262 

sources have been postulated to contribute to this surge (42). In this study, presence of PMQR 263 

genes without additional QRDR mutations was sufficient to yield MIC values to the 264 

intermediate-susceptibility levels (0.25-1 g/ml) but not above (with the exception of 2 qnrB19 265 

carrying isolates). This is consistent with previous reports suggesting PMQR genes like qnrB and 266 

qnrS confer only lower level resistance to quinolones by inhibiting binding of quinolones to 267 

DNA gyrase (43). However, these PMQRs are known to supplement resistance caused by other 268 

determinants such as altered target enzymes (DNA gyrase), efflux pump activities and 269 

deficiencies in outer membrane porin channels (44). The presence of PMQRs in zoonotic 270 
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bacteria and their clinical impact on both human and animal health should be therefore 271 

continuously monitored.  272 

 ESBLs have been associated with pandemic ST131 E. coli in humans (45). However, in 273 

this study only one ST131 isolate was identified, and it was considered susceptible to both 274 

antimicrobial classes under study. The main enrofloxacin resistant swine-specific ST type 275 

identified in this study was ST100, which is associated with porcine enterotoxigenic infections 276 

(46). Enrofloxacin was approved to treat swine enteric infections in the U.S.A in 2012 (2) and 277 

the association of ST100 with enrofloxacin resistance might be of concern for swine health. 278 

Some of the major cephalosporin and /or fluoroquinolone resistant ST types (ST744, ST10, 279 

ST23, ST88, ST90, ST410, ST58) identified in our panel (figure 1) have been associated with 280 

carriage of blaCTX-M in multiple animal species, have been implicated in human infections and 281 

are considered “zoonotic ST types” (47–49). The presence of these resistant ST types in swine 282 

may suggest a potential health risk to other animal species and humans. However, further 283 

comparative studies and detailed outbreak investigations are needed to substantiate the spread of 284 

these resistant bacteria from diseased pigs to food products and humans.  285 

To the best of our knowledge, this is the first study to describe completely assembled 286 

plasmids carrying blaCTX-M-14, -15, -27, -55, blaSHV-12 and qnrB77 in E. coli isolates of swine origin 287 

in the U.S.A. However, the close identities between some plasmids in this study and those 288 

already described in humans and animals globally indicate that the presence of ESBL genes in 289 

this isolate collection could be part of the pandemic expansion of ESBLs (10). blaCTX-M-15 and 290 

blaCTX-M-14 are considered the predominant ESBL genes in humans globally (10) and have been 291 

also identified in food animals including pigs worldwide (50–53). The plasmids carrying blaCTX-292 

M-15 identified in our study were highly similar (98% coverage, >99% nucleotide identity) to 293 



 13 

other plasmids found in human E. coli isolates collected in the U.S.A between 2009-10 (54), 294 

(Genbank accession number-CP009232) which were also described to have the same plasmid 295 

backbone as other ESBL gene carrying plasmids reported worldwide (54). blaCTX-M-14 carrying 296 

plasmids identical to those found here have been previously reported in human isolates in Hong 297 

Kong and characterized as an epidemic plasmid type (pHK01) (55) which has spread globally to 298 

other Asian (China, Vietnam, South Korea) and European countries (Finland) (unpublished; 299 

Genbank accession numbers- NC_013727.1, KU932024.1, KU987452.1, NC_013542.1, 300 

NZ_CP018973.1). Families of insertion sequences (IS26, ISEcp9, IS6) that were part of the 301 

above-mentioned genetic contexts have also been demonstrated to be involved in transposing 302 

ESBL-encoding genes across plasmids and bacterial chromosomes (56).  303 

It has been widely believed that the presence of plasmids in the absence of selective 304 

pressure imposes a metabolic fitness cost to the bacterial host (57). However, the fitness cost 305 

imposed due to plasmid carriage depends on the plasmid-bacterial host combination (58–60). 306 

There are several plasmid characteristics that facilitate plasmid stability in bacterial hosts: for 307 

example, IncF plasmids similar to those assembled here have a narrow host range and carry 308 

factors such as toxin-antitoxin systems which help in maintaining their stability in bacterial hosts 309 

in the absence of antimicrobial pressure (61). Similarly, IncHI2 plasmids similar to those 310 

assembled here carry genes which confer resistance to heavy metals, mutagenesis induction 311 

system etc. which can also contribute to their stability (62). Endemic plasmids identical to those 312 

found in our study such as pHK01-like plasmids have been demonstrated to be conjugative in-313 

vitro (63). Hence, it can be postulated that these plasmids might aid in the establishment of 314 

ESBLs as dominant determinants behind extended spectrum cephalosporin resistance in swine in 315 
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the U.S.A as occurred globally. We are planning to conduct in-vitro conjugation and fitness 316 

experiments to test these hypotheses.  317 

To the best of our knowledge, this is the first report of the presence of mcr-9 genes in 318 

bacteria isolates from food animals in the U.S.A. mcr-9 gene was recently described for the first 319 

time in a S. Typhimurium isolate collected from a human patient in Washington State, the U.S.A, 320 

and was able to confer colistin resistance to E. coli isolates cloned with this gene (64). Colistin 321 

has never been used in swine in the U.S.A and therefore the presence of mcr-9 gene in swine 322 

could be an indicator of the complex transmission dynamics of resistant determinants across 323 

different ecosystems and/or co-selection of resistant determinants due to use of other unrelated 324 

antimicrobials.  325 

Several considerations must be accounted for when interpreting these results. An 326 

association between antimicrobial use and presence of these resistance genes cannot be 327 

established due to the lack of information on use of antimicrobials. Also, the public health 328 

implications of our findings could be limited by the removal of diseased pigs, such as the ones 329 

from which these resistant and potentially zoonotic ST types were retrieved, from the food chain. 330 

Conclusions 331 

 332 

We have identified and characterized a wide range of genetic determinants of resistance to some 333 

critically important antimicrobial classes in swine clinical E. coli isolates, some of which had 334 

never been described in isolates of animal origin in the U.S.A. Future studies will focus on 335 

assembling finished genomes of isolates carrying mcr-9 genes as well as conducting conjugation 336 

and fitness experiments on selected isolates to predict the success of these plasmids and bacterial 337 

hosts.  338 

Data availability 339 
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Short reads generated during this project have been submitted at NCBI Genbank under 340 

Bioprojects PRJNA605257, PRJNA605064 and PRJNA604903. Complete plasmid sequences 341 

have been submitted at Genbank under accession numbers MT077880, MT077881, MT077882, 342 

MT077883, MT077884, MT077885, MT077886, MT077887, MT077888 and MT077889. 343 
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Tables 350 

Table 1. Pattern of genetic determinants of enrofloxacin resistance in E. coli clinical isolates of 351 

swine origin  352 

Footnote: 353 

‘’ symbolizes that this genetic determinant might or might not be present in isolates with that 354 

particular MIC value.   355 

*
- Other determinants were parC (A56T or E84G), parE (S458A or L416F) and single PMQR 356 

(aac(6’)-Ib-cr, qnrB77 or qnrB19)  357 

 358 

Table 2. Characteristics of plasmids assembled in this study 359 

Footnote: Colors in the farthest right column represent genes that can confer resistance to 360 

different antimicrobial families: dark blue- aminoglycosides, purple- penicillins, light blue- 361 

fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and sulphonamide 362 

(sul1, sul2), light green-phenicols, red- tetracyclines, orange- colistin. 363 
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 364 

Table 3. Characteristics of isolates carrying mcr-9 genes 365 

Footnote: Colors in the farthest right column represent genes that can confer resistance to 366 

different antimicrobial families: dark blue- aminoglycosides, purple- penicillins, light blue- 367 

fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and sulphonamide 368 

(sul1, sul2), light green-phenicols, red- tetracyclines, black- extended spectrum cephalosporin. 369 

 370 

Figures 371 

Figure 1. Maximum-likelihood tree constructed using the core-gene alignment of Escherichia 372 

coli isolates collected from diseased pigs at UMN-VDL between 2014-15.  373 

Footnote: Ceftiofur and enrofloxacin MIC values (in g/ml), sequence types (ST) and 374 

geographical location of isolation are presented in text columns. Ceftiofur and enrofloxacin MIC 375 

values are labelled in red and blue to denote resistant and non-resistant isolates, respectively. 376 

Heat map shows presence of chromosomal mutations in quinolone resistance determining 377 

regions (QRDRs), plasmid mediated quinolone resistance genes (PMQRs), extended spectrum 378 

beta-lactamase encoding genes (ESBL) and plasmidic AmpC genes (blaCMY-2) 379 

 380 

Figure 2. Circular maps representing comparisons of blaCTX-M-14 (p77) and blaCTX-M-55 (p65) 381 

carrying plasmids available at Genbank and plasmids assembled in this study.  382 

Footnote: The innermost rings (not colored black) represent the top plasmids with high 383 

nucleotide identity and coverage with respect to reference plasmids (p77 and p65). The legend 384 

on upper-left presents plasmid name, country, animal species/human and year of isolation, where 385 

available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes 386 
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and genes associated with mobile elements are colored and labelled in red and blue, respectively. 387 

Truncated genes are represented with  as prefix.  388 

 389 

Figure 3. Circular maps representing comparisons of blaCTX-M-27 (p37 and p62) carrying 390 

plasmids available at Genbank and plasmids assembled in this study.  391 

Footnote: The innermost rings (not colored black) represent the top plasmids with high 392 

nucleotide identity and coverage with respect to reference plasmid (p37). The legend on upper-393 

left presents plasmid name, country, animal species/human and year of isolation, where 394 

available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes 395 

and genes associated with mobile elements are colored and labelled in red and blue, respectively. 396 

Truncated genes are represented with  as prefix.  397 

 398 

Figure 4. Circular maps representing comparisons of blaCTX-M-15 (p1, p2 and p4) carrying 399 

plasmids available at Genbank and plasmids assembled in this study.  400 

Footnote: The innermost rings (not colored black) represent the top plasmids with high 401 

nucleotide identity and coverage with respect to reference plasmids (p1). There were no plasmids 402 

similar to p4. The legend on upper-left presents plasmid name, country, animal species/human 403 

and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in 404 

outermost ring. AMR genes and genes associated with mobile elements are colored and labelled 405 

in red and blue, respectively. Truncated genes are represented with  as prefix.  406 

 407 

Figure 5. Circular maps representing comparisons of blaSHV-12 (p33 and p39) carrying plasmids 408 

available at Genbank and plasmids assembled in this study.  409 

Footnote: The innermost rings (not colored black) represent the top plasmids with high 410 

nucleotide identity and coverage with respect to reference plasmids (p33 and p39). The legend 411 
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on upper-left presents plasmid name, country, animal species/human and year of isolation, where 412 

available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes 413 

and genes associated with mobile elements are colored and labelled in red and blue, respectively. 414 

Truncated genes are represented with  as prefix.  415 

 416 

Figure 6. Circular maps representing region carrying antimicrobial resistance genes in qnrB77 417 

carrying plasmid (p23) assembled in this study.  418 

Footnote: AMR genes and genes associated with mobile elements are colored and labelled in red 419 

and blue, respectively. Truncated genes are represented with  as prefix.  420 

 421 
 422 
 423 
 424 
 425 
 426 
 427 
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Table 1. Pattern of genetic determinants of enrofloxacin resistance in E. coli clinical isolates of swine origin  

MIC value 

(in g/ml) 

Pattern of genetic determinants (n=number of isolates) ST types (n=number of isolates) 

>2  gyrA(S83L) + gyrA(D87Y or D87N or D87G) + parC(S80I or S80R) 

 other genetic determinants
* 
(n=49) 

744 (n=11), 100 (n=10), 224 (n=4), 410 

(n=3), 10 (n=2), 457 (n=2), 617 (n=2), 4981 

(n=2), 88 (n=1), 93 (n=1), 167 (n=1), 977 

(n=1), 1585 (n=1), 2161 (n=1), 3901 (n=1) 

2 gyrA(S83L) + parC(S80I or S80R) (n=23) 100 (n=21), 58 (n=1), 90 (n=1) 

qnrB19 (n=2)  361 (n=1), 2496 (n=1) 

No genetic determinants (n=1) 5926 (n=1) 

1 gyrA(S83L) + parC(S80I or S80R) (n=7) 100 (n=6), 69 (n=1) 

gyrA(S83L) only (n=1) 6234 (n=1) 

gyrA(D87G) + qnrB2 (n=1) 10 (n=1) 

qnrB19 + qnrS2 (n=1) 101 (n=1) 

aac(6’)-Ib-cr + qnrB2 (n=1) 540 (n=1) 

Single PMQR (qnrB19, qnrS1, qnrS2, qnrB2 or qnrB77) (n=6) 10 (n=3), 641 (n=1), 847 (n=1), 5759 (n=1) 



No genetic determinants (n=1) 10 (n=1) 

0.25-0.5  gyrA(S83L)    aac(6’)-Ib-cr  (n=6) 6234 (n=2), 10 (n=1), 58 (n=1), 101 (n=1), 

410 (n=1) 

Single PMQR (qnrB19, qnrS2, qnrB2) (n=5) 10 (n=3), 93 (n=1), 1112 (n=1) 

gyrA (D87G or D87Y) (n=3) 10 (n=1), 88 (n=1), 641 (n=1) 

aac(6’)-Ib-cr + qnrB2 (n=1) 641 (n=1) 

No genetic determinants (n=2) 641 (n=1), 3057 (n=1) 

 0.125 gyrA(S83L) (n=3) 10 (n=1), 847 (n=1), Unknown ST (n=1) 

 gyrA(D87Y) (n=1) 90 (n=1) 

‘’ symbolizes that this genetic determinant might or might not be present in isolates with that particular MIC value.   

*
- Other determinants were parC(A56T or E84G), parE(S458A or L416F) and single PMQR (aac(6’)-Ib-cr, qnrB77 or qnrB19)  

 



Table 2. Characteristics of plasmids assembled in this study 

Plasmid (Genbank 

Accession number) 

Gene of 

interest 

Size of 

plasmid 

Replicon type 

(pMLST) 

ST type Other AMR genes present in the plasmid 

sequence 

p77 (MT077889) blaCTX-M-14 77 kbp  IncF (F2:A8:B56) 10 - 

p37 (MT077885) blaCTX-M-27 69 kbp IncF (F21*:A-:B-) 744 erm(B) 

p62 (MT077887) blaCTX-M-27 69 kbp IncF (F21*:A-:B-) 10 - 

p1 (MT077880) blaCTX-M-15 170 kbp IncF (F31:A4:B1) 617 aadA5, aac(3)-IIa, aac(6’)-Ib-cr, blaOXA-1, 

mph(A), sul1, dfrA17, catB3, tet(B)  

p2 (MT077881) blaCTX-M-15 170 kbp IncF (F31:A4:B1) 58 aac(6’)-Ib-cr, blaOXA-1, mph(A), dfrA17, 

catB3, tet(B) 

p4 (MT077882) blaCTX-M-15 115 kbp IncF (F48:A1:B49) 744 aac(3)-IIa, blaTEM-1b, mph(A), dfrA17 

p65 (MT077888) blaCTX-M-55 240 kbp IncHI2 (ST-2) 165 aac(3)-IId, aadA2, aph(3”)-Ib, aph(3’)-Ia, 

aph(6)-Id, blaTEM-1b, mph(A), sul1, dfrA12, 

tet(M) 

p33 (MT077884) blaSHV-12 302 kbp IncHI2 (ST-1) 641 aac(6’)-Ib3, aac(6’)-IIc, aph(6’)-Id, aph(3’)-

Ib, aadA2, aac(6’)-Ib-cr, blaTEM-1b, qnrB2, 



ere(A), sul1, sul2, dfrA19, tet(D), mcr-9 

p39 (MT077886) blaSHV-12 289 kbp IncHI2 (ST-1) 1112 aph(3’’)-Ib, aph(6’)-Id, aph(3’)-Ia, aac(6’)-

IIc, blaTEM-1b, ere(A), sul1, catA2, tet(D), mcr-

9 

p23 (MT077883) qnrB77 60 kbp IncN (unknown) 4981 aac(3)-VIa, aadA1, dfrA15 

 

Colors in the farthest right column represent genes that can confer resistance to different antimicrobial families: dark blue- 

aminoglycosides, purple- penicillins, light blue- fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and 

sulphonamide (sul1, sul2), light green-phenicols, red- tetracyclines, orange- colistin. 



Table 3. Characteristics of isolates carrying mcr-9 genes 

 

Isolate (Biosample 

accession) 

ST type Other AMR genes in the isolate 

8 

(SAMN14052773) 

540 aac(6')-IIc, aadA2b, aac(6’)-Ib3, aph(3”)-Ib, aph(6)-Id, aac(6')Ib-cr, blaTEM-1b, 

qnrB2, ere(A), mdf(A), sul1, sul2, sul3, dfrA12, dfrA19, tet(A), tet(M) 

33 

(SAMN14069745) 

641 aac(6’)-Ib3, aac(6’)-IIc, aph(6’)-Id, aph(3”)-Ib, aadA2, , aac(6’)-Ib-cr, blaTEM-

1b, qnrB2, ere(A), mdf(A), sul1, sul2, dfrA19, tet(D), tet(B), blaSHV-12 

39 

(SAMN14069776) 

1112 aph(3’’)-Ib, aph(6’)-Id, aph(3’)-Ia, aac(6’)-IIc, aadA2, blaTEM-1b, qnrB2, 

ere(A), mdf(A), sul1, dfrA19, catA2, tet(B), tet(D), blaSHV-12 

81 

(SAMN14070155) 

90 aac(3)-VIa, aadA1, aadA2, aadA5, aph(3”)-Ib, aph(3’)-Ia, aph(6)-Id, armA, 

blaTEM-1b, mph(E), msr(E), mdf(A), sul2, dfrA1,  floR, tet(A), tet(B), blaCMY-2 

243 

(SAMN14088537) 

101 aac(3)-VIa, aadA1, aph(3”)-Ib, aph(6)-Id, mdf(A), sul1, sul2, floR, tet(A), 

blaCMY-2, blaCTX-M-55 

279 

(SAMN14089329) 

10 aac(6’)-IIc, aadA2b, aph(3”)-Ib, aph(3’)-Ia, aph(6)-Id, blaTEM-1b, qnrB2, 

ere(A), mdf(A), dfrA19, sul1, sul2, tet(B), tet(D), blaCMY-2, blaSHV-12  

283 10 aac(6’)-IIc , aadA2b , aph(3’)-Ib, aph(3’)-Ia, aph(6)-Id, blaTEM-1b, qnrB2, 



(SAMN14089333) ere(A), mdf(A), dfrA19, sul1, sul2, tet(B), tet(D), blaCMY-2, blaSHV-12  

 

Colors in the farthest right column represent genes that can confer resistance to different antimicrobial families: dark blue- 

aminoglycosides, purple- penicillins, light blue- fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and 

sulphonamide (sul1, sul2), light green-phenicols, red- tetracyclines, black- extended spectrum cephalosporin. 
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Figure 1. Maximum-likelihood tree constructed using the core-gene alignment of Escherichia 

coli isolates collected from diseased pigs at UMN-VDL between 2014-15.  

Footnote: Ceftiofur and enrofloxacin MIC values (in µg/ml), sequence types (ST) and 

geographical location of isolation are presented in text columns. Ceftiofur and enrofloxacin MIC 

values are labelled in red and blue to denote resistant and non-resistant isolates, respectively. 

Heat map shows presence of chromosomal mutations in quinolone resistance determining 

regions (QRDRs), plasmid mediated quinolone resistance genes (PMQRs), extended spectrum 

beta-lactamase encoding genes (ESBL) and plasmidic AmpC genes (blaCMY-2) 

 



  

Figure 2. Circular maps representing comparisons of blaCTX-M-14 (p77) and blaCTX-M-55 (p65) carrying plasmids available at Genbank 

and plasmids assembled in this study.  

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to 

reference plasmids (p77 and p65). The legend on upper-left presents plasmid name, country, animal species/human and year of 

isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes and genes associated 

with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with D as prefix.  



 

Figure 3. Circular maps representing comparisons of blaCTX-M-27 (p37 and p62) carrying 

plasmids available at Genbank and plasmids assembled in this study.  

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity 

and coverage with respect to reference plasmid (p37). The legend on upper-left presents plasmid 

name, country, animal species/human and year of isolation, where available. Area of the plasmid 

carrying AMR genes is presented in outermost ring. AMR genes and genes associated with 

mobile elements are colored and labelled in red and blue, respectively. Truncated genes are 

represented with D as prefix.  

 



   

Figure 4. Circular maps representing comparisons of blaCTX-M-15 (p1, p2 and p4) carrying plasmids available at Genbank and plasmids 

assembled in this study.  

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to 

reference plasmids (p1). There were no plasmids similar to p4. The legend on upper-left presents plasmid name, country, animal 

species/human and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR 



genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are 

represented with D as prefix.  

 



   

Figure 5. Circular maps representing comparisons of blaSHV-12 (p33 and p39) carrying plasmids available at Genbank and plasmids 

assembled in this study.  

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to 

reference plasmids (p33 and p39). The legend on upper-left presents plasmid name, country, animal species/human and year of 

isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes and genes associated 

with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with D as prefix.  



 

Figure 6. Circular maps representing region carrying antimicrobial resistance genes in qnrB77 

carrying plasmid (p23) assembled in this study.  

 

AMR genes and genes associated with mobile elements are colored and labelled in red and blue, 

respectively. Truncated genes are represented with D as prefix.  
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