- 1 Genetic determinants of extended spectrum cephalosporin and fluoroquinolone resistance
- 2 in Escherichia coli isolated from diseased pigs in the U.S.A
- 3 Shivdeep Singh Hayer¹, Seunghyun Lim^{1,2}, Samuel Hong^{1,3}, Ehud Elnekave¹, Timothy Johnson⁴,
- 4 Albert Rovira^{1,5}, Fabio Vannucci^{1,5}, Andres Perez,¹ Julio Alvarez^{*1,6,7,}
- 5
- ⁶ ¹Department of Veterinary Population Medicine, College of Veterinary Medicine, University of
- 7 Minnesota, Saint Paul, Minnesota, USA
- ²Bioinformatics and Computational Biology Program, University of Minnesota-Rochester,
- 9 Rochester, Minnesota, USA
- ³Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- ⁴Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University
- 12 of Minnesota, Saint Paul, Minnesota, USA
- ⁵Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota,
- 14 Saint Paul, Minnesota, USA
- ⁶VISAVET Health Surveillance Center, Universidad Complutense Madrid, Spain
- ⁷Department of Animal Health, Facultad de Veterinaria, Universidad Complutense, Madrid,
- 17 Spain
- 18 ^{*}Corresponding Author
- 19 Email- jalvarez@visavet.ucm.es
- 20 Running title: ESBL, PMQR and pAmpC genes in E. coli from diseased pigs in the U.S.A
- 21
- 22
- 23

24 Abstract

Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both 25 26 human and veterinary medicine. We have previously found a drastic increase in enrofloxacin resistance in clinical *Escherichia coli* isolates collected from diseased pigs from the U.S.A over 27 ten years (2006-2016). However, the genetic determinants responsible for this increase are yet to 28 29 be determined. The aim of the present study was to identify and characterize the genetic basis of resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins 30 31 (ceftiofur) in swine E. coli isolates using whole genome sequencing (WGS). Based on Illumina 32 short read WGS, *bla*_{CMY-2} and chromosomal mutations in quinolone resistance determining regions of the genes gyrA, gyrB, parA and parC were the major genetic determinants mediating 33 ceftiofur and enrofloxacin resistance, respectively. However, genes encoding extended spectrum 34 Beta-Lactamases (ESBLs) (bla_{CTX-M-14}, bla_{CTX-M-15}, bla_{CTX-M-27}, bla_{CTX-M-55} and bla_{SHV-12}) and 35 plasmid mediated quinolone resistance (PMQR) genes (qnrB77, qnrB2, qnrS1, qnrS2 and aac-36 37 (6)-lb'-cr) were also present in more than 20% of ceftiofur and enrofloxacin resistant isolates, respectively. Additionally, colistin resistance gene (mcr-9) were present in several isolates. Some 38 plasmids carrying ESBL and PMQR genes were assembled by using both short (Illumina) and 39 40 long reads (PacBio). Most of these plasmids were similar (> 90% nucleotide identity and similar genetic contexts around ESBL genes) to previously described plasmids isolated from humans 41 42 and animals globally. Comparative studies are needed to further elucidate the transmission of 43 these mobile genetic determinants (pAmpC, ESBL, PMQR genes) between humans, swine and environment. 44

45 *Importance*

46 Food animal production has been identified as a potential contributor to the spread of antimicrobial resistance in both human and animal populations. Understanding the genetic 47 mechanisms conferring resistance is critical to design informed control and preventive measures, 48 particularly when involving critically important antimicrobial classes such as extended-spectrum 49 cephalosporins and fluoroquinolones. Here, we studied the genetic traits associated with 50 51 resistance in E. coli from diseased pigs in the U.S. We found extended spectrum beta-lactamase genes (*bla*_{CTX-M}-*bla*_{SHV-12}) in cephalosporin (ceftiofur) resistant isolates at higher levels than 52 53 previously reported, and identified several combinations of both chromosomal mutations and 54 plasmid-borne genes mediating fluoroquinolone (enrofloxacin) resistance. We also assembled the plasmid sequences carrying some of these genes, demonstrating their similarity with others 55 previously found worldwide, which suggests that these plasmids might be part of a complex, 56 global reservoir of antimicrobial resistance. We also detected for the first time mcr-9 genes in 57 U.S farm animal isolates. 58 59 Keywords: plasmids, ESBLs, swine, USA, PMQR, WGS, cephalosporin, fluoroquinolone,

60 antimicrobial resistance

- 61 Introduction
- 62

Antimicrobial resistance has emerged as an issue of grave concern in both human and veterinary 63 64 medicine. Food animals are considered potential reservoirs of antimicrobial resistant and zoonotic pathogens such as Escherichia coli, although the extent of spread of resistant bacteria 65 via food chain is still under debate (1). Critically important antimicrobials for human medicine 66 67 such as cephalosporins and fluoroquinolones are still used in many parts of the world to treat diseased food animals, including swine in the U.S.A (2–4). Furthermore, certain genetic 68 determinants responsible for resistance to antimicrobials approved for use in animals (such as 69 70 ceftiofur and enrofloxacin) and those used in human medicine (such as cefoxitin and ciprofloxacin) are the same (5, 6). It is therefore important to monitor the circulation of genes 71 72 responsible for resistance to such critically important antimicrobials in bacteria present in humans and animals to develop better source attribution models and targeted interventions in 73 both humans and veterinary medicine (7). 74

75 Resistance to extended-spectrum cephalosporins is mediated by extended spectrum beta-76 lactamases (ESBLs) (commonly encoded by the bla_{TEM} , bla_{SHV} , and $bla_{\text{CTX-M}}$ genes) and 77 plasmidic AmpC (pAmpC, commonly encoded by the bla_{CMY} genes) (8). These genes may be 78 inserted on bacterial chromosomes but are usually present on plasmids with the potential to 79 disseminate horizontally to other bacterial strains (9). *bla*_{CTX-M} genes are reported as the most prevalent ESBL encoders worldwide in humans and animals (10). However, *bla*_{CMY-2} genes were 80 81 primarily responsible for extended-spectrum cephalosporin resistance in bacteria of food animal 82 origin in North America, while other ESBL-encoding genes were not reported until the late 83 2000's (11). Nevertheless, recent reports have also suggested the emergence of ESBL genes in 84 bacteria of food animal origin in USA over the last decade (12).

85 Resistance to fluoroquinolones is mainly mediated by multiple chromosomal mutations in certain genes (gyrA, gyrB, parE and parC). Additionally, plasmid mediated quinolone resistance 86 genes (such as qnr) and upregulation of efflux pumps confer variable levels of resistance to this 87 antimicrobial family (13). qnr genes encoded in plasmids were also found in Salmonella isolates 88 collected from retail pork, cecal samples from healthy pigs and clinical samples from diseased 89 90 pigs in the same period, suggesting a likely role in the increase in phenotypic resistance (14–16). An increase in fluoroquinolone resistance was recently reported in Salmonella enterica isolates 91 92 from diseased pigs in Minnesota between 2006 to 2015 (2). A similar increase in phenotypic 93 resistance to a fluoroquinolone (enrofloxacin) was also reported for the same timeframe in swine E. coli clinical isolates (17), though the genetic determinants mediating this increase has not been 94 determined yet. 95

Although increasing information on the prevalence of phenotypic resistance in bacteria 96 (including E. coli) of animal origin is generated by national AMR monitoring programs such as 97 NARMS (18), there is limited information on the genetic backbone mediating these resistance 98 phenotypes. This may be of particular importance in the case of critically important 99 antimicrobials such as fluoroquinolones, cephalosporins or carbapenems. The objective of this 100 101 study was to characterize the genetic basis of fluoroquinolone and extended spectrum cephalosporin resistance in phenotypically resistant E. coli isolates collected from diseased pigs 102 in the U.S.A between 2014-15 using both short read (Illumina) and long read (PacBio) whole 103 104 genome sequencing (WGS).

105

106 *Materials and methods*

108	A total of 211 E. coli isolates recovered from diseased pigs at the University of Minnesota
109	Veterinary Diagnostic Laboratory (UMN-VDL) between 2014-2015 were included in this study.
110	These isolates were selected on the basis of results of broth microdilution tests routinely
111	performed at the laboratory following Clinical and Laboratory Standards Institute guidelines and
112	were classified as ceftiofur non-wild type (minimum inhibitory concentrations (MIC) $\ge 2 \ \mu g/ml$)
113	and enrofloxacin non-wild type (MIC $\ge 0.25 \ \mu g/ml$) (19). For ease of interpretation, "non-wild
114	type" and "wild type" isolates are referred to as "resistant" and "susceptible", respectively. Out
115	of these 211 isolates, 110 were enrofloxacin resistant and 106 were ceftiofur resistant, with 41
116	isolates being resistant to both ceftiofur and enrofloxacin. Forty-six isolates susceptible to both
117	antimicrobials were added to assess the presence of resistance genes and chromosomal mutations
118	in susceptible isolates. Only one isolate per farm was selected in order to avoid duplicity of
119	potentially identical clones circulating in the same farm.
120	Isolates were first subjected to short read sequencing using Illumina HiSeq 2500 (2 x
121	125bp). The raw reads were uploaded to and assembled using the pipeline provided at
122	Enterobase webserver. Draft genomes were uploaded to the Center for Genomic Epidemiology
123	(CGE) webserver to identify multilocus sequence type (MLST version 2.0.4) (20), acquired
124	resistance genes (Resfinder version 3.2) (21), plasmid sequence type (pMLST version 0.1.0) (22)
125	and plasmid replicon types (Plasmid Finder version 2.0.1) (22). Chromosomal mutations in
126	quinolone resistance determining regions (QRDRs) were identified by downloading sequences of
127	gyrA, gyrB, parC and parE from reference E. coli K-12 substr. MG1655 genome (Genbank
128	accession number- NZ_AJGD0000000.1) and performing nucleotide BLAST against the draft
129	genomes locally (version 2.9.0, E-value threshold-10). Draft genomes were annotated using
130	PROKKA (version 1.13) (23).

131	For the phylogenetic analysis, raw reads were first mapped to a reference genome (<i>E</i> .
132	coli str. K-12 substr. MG1655, accession- NZ_AJGD0000000.1) and full gene alignments were
133	assembled using snippy (default values, version 4.4.5) (24). From these full gene alignments,
134	Gubbins (default values, version 0.1.0) was used to detect and remove loci present in
135	recombinant regions and extract single nucleotide polymorphisms (25). Maximum likelihood
136	trees were then built using a general time-reversible with gamma substitution model through
137	RaxML (version 8.0) (26). Support for nodes on trees was assessed using 1000 bootstrap
138	replicates and phylogenetic tree was made using iTOL (version 4.0) (27).
139	Additionally, long read sequencing was performed on a subset of isolates carrying ESBL
140	genes (<i>bla</i> _{SHV-12} , <i>bla</i> _{CTX-M}) in the analysis above using Pacific Biosciences (PacBio) RSII
141	technology (SMRT Cell 1M v3) (28). Long reads were first corrected for errors using LoRDEC
142	(version 0.9) (28). Unicycler (version 0.4.7) (29) was used to obtain <i>de-novo</i> hybrid assemblies
143	of these isolates using both long and short reads, and assemblies were visualized using Bandage
144	(version 0.8.1) (30). Complete plasmid genomes (here on referred to as "assembled plasmids")
145	were uploaded to ISSaga webserver (31) for identification of insertion sequences and to the CGE
146	webserver to perform analyses as mentioned above. The assembled plasmids were also blasted
147	against a database of reference plasmids available at the PLSDB webserver (32) to identify
148	closely related plasmids also carrying antimicrobial resistance genes of interest (ESBL, PMQR).
149	Plasmids sequences with a query coverage of >80% and nucleotide identity >90% were
150	downloaded and the top five closely related plasmids genomes to each of the ones found here
151	were visually compared using BRIG (version 0.95) (33).
152	

Results

*Genetic determinants conferring extended spectrum cephalosporin and fluoroquinolone*156 *resistance*

157	Out of 106 ceftiofur-resistant isolates, 89 (84%) carried bla_{CMY-2} genes (figure 1). These genes
158	were not present in the remaining 105 non-resistant isolates. Isolates carrying this gene belonged
159	to 24 different ST types, with ST12 (n=21) and ST101 (n=10) being the dominant ST types
160	(figure 1). Twenty of the 21 ST12 isolates varied only by 9-32 single nucleotide polymorphisms
161	(SNPs) while ST10 and ST101 isolates varied by 7-4185 and 8-1367 SNPs, respectively.
162	Twenty-four isolates belonging to 13 different ST types carried bla_{SHV-12} (5 isolates) or bla_{CTX-M}
163	genes (19 isolates), of which 22 were ceftiofur resistant (figure 1). The two ceftiofur susceptible
164	isolates carried the bla_{SHV-12} gene.
165	Multiple fluoroquinolone-resistant associated genes and mutations were detected in 106
166	of the 110 enrofloxacin-resistant E. coli isolates (table 1), while only four out of the 101
167	susceptible isolates presented any of them (specifically, single mutations in the gyrA gene (S83L
168	or D87Y)). Isolates resistant to enrofloxacin belonged to 30 different ST types. The dominant ST
169	types were ST100 (n=37) and ST744 (n=17) (table 1, figure 1). Thirty-six of these ST100
170	isolates varied by less than 20 SNP and these isolates were collected from 6 different states in
171	USA. In contrast, ST744 isolates varied by 8-606 SNPs.
172	Six different types of PMQR genes were identified in a total of 24 isolates spread across
173	7 states (figure 1). These 24 isolates belonged to 16 different ST types (table 1, figure 1).
174	Enrofloxacin MIC values for isolates with a single PMQR gene, two PMQRs genes and one
175	PMQR gene plus a chromosomal mutation (gyrA- S83L, D87G or parE- D476A) ranged
176	between 0.5-1.0 μ g/ml, with the exception of two isolates that carried only <i>qnrB19</i> but had
177	enrofloxacin MIC values of 2 µg/ml.

178 Description of assembled plasmids carrying PMQRs and ESBLs genes

179

180

181 10 isolates (seven isolates carrying bla_{CTX-M} genes, two carrying bla_{SHV-12} genes and one carrying

We assembled complete *E. coli* chromosomes and plasmids using both long and short reads from

- 182 a $bla_{\text{CTX-M}}$ and a *qnrB77* gene) (table 2). In seven of the isolates, $bla_{\text{CTX-M}}$ genes were present on
- 183 IncFII ($bla_{CTX-M-14, 15, 27}$) and IncHI2 ($bla_{CTX-M-55}$) plasmids with sizes ranging between 69 and
- 184 240 kbp. *bla*_{CTX-M} genes were present in regions flanked by IS26, ISE*cp1*, IS5, IS6 and Tn3

family transposases, which were often truncated (table 2, figures 2-4). In one isolate, $bla_{CTX-M-15}$

186 was present on the *E. coli* chromosome, flanked by transposases similar to those surrounding

187 $bla_{\text{CTX-M-15}}$ in the IncFII plasmids. Plasmids with $bla_{\text{CTX-M-14}}$ or $bla_{\text{CTX-M-27}}$ carried only $bla_{\text{CTX-M}}$

188 or one other AMR gene (erm(B), a macrolide resistant gene); whereas the plasmids carrying

189 $bla_{\text{CTX-M-15}}$ and $bla_{\text{CTX-M-55}}$ also bore genes which can confer resistance to aminoglycosides,

190 penicillins, macrolides or trimethoprim (table 2, figures 2-4). Additionally, some of these bla_{CTX} .

191 $_{M-15}$ and $bla_{CTX-M-55}$ plasmids also carried genes that can cause resistance to sulphonamides,

192 phenicols or tetracyclines (table 2, figures 2 and 4). Concerningly, two of the *bla*_{CTX-M-15} carrying

193 IncFII plasmids also harbored aac(6')-*Ib*-cr gene which can confer resistance to both

aminoglycosides and fluoroquinolones (table 2, figure 4).

The two plasmids carrying bla_{SHV-12} genes assembled were of large IncHI2 type plasmids (approx. 287-300kbp), and carried genes for resistance to aminoglycosides, sulphonamides, trimethoprim, tetracyclines, penicillins, phenicols (only p39) and macrolides (table 2, figure 5). bla_{SHV-12} genes were present in a region flanked by intact IS6 family transposases. One of these plasmids also carried genes for resistance to fluoroquinolones (*qnrB2*, *aac*(6')-*Ib*-*cr*) and both of these plasmids also carried a colistin resistance gene (*mcr-9*) (table 2, figure 5).

201	In addition to these ESBL-encoding plasmids, we also assembled a 59 kbp IncN plasmid
202	carrying a <i>qnrB77</i> gene (table 2, figure 6). This plasmid was present in a ST4981 isolate which
203	also carried an ESBL-encoding gene ($bla_{CTX-M-15}$) chromosomally. This plasmid also carried
204	resistance genes to trimethoprim and aminoglycosides. The qnrB77 gene was flanked by a
205	complete and a truncated transposase of IS91 family of transposases (table 2, figure 6).
206	Some of these plasmids (p1, p23, p33 and p65) also carried genes ($qac\Delta E$) that determine
207	resistance to quarternary ammonium compounds. Genes related to heavy metal resistance such as
208	mercury (merCDEPTR), arsenic (arsHB), copper (pcoES) and tellurium (terABCDWX)
209	resistance were also present on plasmids carrying bla_{SHV-12} . Plasmid carrying $bla_{CTX-M-55}$ genes
210	also carried tellurium resistance genes (terABCDWX). Additionally, all the plasmids assembled
211	in this study carried mobility genes (tra set of genes) and genes that can aid in plasmid
212	maintenance and stability. All the IncFII and IncHI2plasmids carried genes coding for at least
213	one toxin-antitoxin system, e.g., the IncFII plasmids carried pemI-pemK genes and all the
214	IncHI2 carried higA-higB genes. Similarly, the qnrB77 carrying IncN plasmid also carried
215	mobility genes (tra) and genes encoding for proteins that aid in plasmid stability (stbB-stbC
216	genes), antirestriction systems (ardA-ardB genes) and mutagenesis (mucA-mucB genes).
217	The comparison of these assembled plasmids with the PLDSB database resulted in the
218	identification of several previously described plasmids with a high similarity (>80% coverage,
219	and >98% nucleotide identity). To summarize, most of the plasmids carrying ESBL encoding
220	genes assembled in this study were similar to plasmids harbored on various Enterobactericaceae
221	and collected from various sources (animals, humans, environment) across different continents
222	and shared the same molecular context around the genes of interest (qnr, bla genes) (figures 2-5).

In contrast, we were not able to identify similar plasmids to the $bla_{\text{CTX-M-15}}$ carrying IncFII

(pMLST- F48:A1:B49) and the *qnrB77* carrying IncN plasmids found in this study.

225

226 Resistance determinants to other critical antimicrobials

No carbapenem resistance genes were identified in our collection, but the *mcr-9* gene was
present in 7 isolates belonging to 6 different ST types. These isolates carried both the *mcr-9* gene
and either a pAmpC, an ESBL or a PMQR gene (table 3). Descriptions of these isolates are
presented briefly in table 3. *mcr-9* was also present in two of the ESBL plasmids assembled in

- this study (table 2).
- 232

233 Discussion

234

Whole genome sequencing (WGS) of enrofloxacin and ceftiofur resistant E. coli revealed 235 236 multiple determinants conferring resistance to these critical antimicrobials, which were present on a wide spectrum of ST types recovered from the major swine producing states in the U.S.A. 237 The use of both long and short read WGS technologies identified the genetic context of these 238 resistance determinants for several isolates suggesting determinants by which resistance may be 239 spreading such as plasmids carrying bla_{CMY-2} , which previously established in Salmonella and E. 240 241 coli populations circulating in food animals in the U.S.A (11). We also assembled plasmids not 242 previously described in isolates from swine or other food animals or retail meat in USA. Nearly 84% of the ceftiofur resistant E. coli isolates carried a bla_{CMY-2} gene, which is 243 consistent with findings in ceftiofur-resistant Salmonella isolates from diseased pigs collected 244 245 during the same study period (15). However, 24 E. coli isolates in this study (including 2 isolates non-resistant to ceftiofur) carried bla_{CTX-M} or bla_{SHV-12} genes, indicating a much higher 246 247 prevalence (18%) of bla_{CTX-M} in our isolates compared to ceftiofur-resistant Salmonella of swine

248	origin (15). Still, our data suggest a more limited distribution of bla_{CTX-M} genes compared with
249	reports in extended spectrum cephalosporin resistant E. coli isolates retrieved from swine in
250	other upper income countries in Europe and Asia such as Belgium and Hong Kong (34, 35).
251	ESBL-encoding genes are the predominant genes responsible for extended spectrum
252	cephalosporin resistance globally in food animals (10). However, until the late 2000's these
253	genes were not found in food animal isolates collected in North America (36). In a study on E.
254	coli isolates collected from diseased pigs at the UMN-VDL in 2008, all ceftiofur resistant
255	isolates carried <i>bla</i> _{CMY-2} genes (37); whereas <i>bla</i> _{CTX-M} carrying <i>E. coli</i> in finishing pigs in USA
256	were first identified in 2011 (38). Since then, more recent studies have also reported the sporadic
257	occurrence of <i>bla</i> _{CTX-M} genes in <i>Enterobacteriaceae</i> isolates of swine origin (including pork) in
258	the U.S.A (39, 40). Our study reinforces the results that prevalence of ESBLs might have
259	increased in E. coli collected from pigs during late 2000s-early 2010s.
260	Similar to ESBLs, presence of PMQR genes (qnr, aac(6')-Ib-cr) in food animal isolates
261	in the U.S.A had not been reported until recently (14, 15, 41, 42). There has also been an
262	increase in PMQR genes in clinical Salmonella isolates from humans in the U.S.A; and animal
263	sources have been postulated to contribute to this surge (42). In this study, presence of PMQR
264	genes without additional QRDR mutations was sufficient to yield MIC values to the
265	intermediate-susceptibility levels (0.25-1 μ g/ml) but not above (with the exception of 2 <i>qnrB19</i>
266	carrying isolates). This is consistent with previous reports suggesting PMQR genes like qnrB and
267	qnrS confer only lower level resistance to quinolones by inhibiting binding of quinolones to
268	DNA gyrase (43). However, these PMQRs are known to supplement resistance caused by other
269	determinants such as altered target enzymes (DNA gyrase), efflux pump activities and
270	deficiencies in outer membrane porin channels (44). The presence of PMQRs in zoonotic

bacteria and their clinical impact on both human and animal health should be thereforecontinuously monitored.

273 ESBLs have been associated with pandemic ST131 E. coli in humans (45). However, in this study only one ST131 isolate was identified, and it was considered susceptible to both 274 antimicrobial classes under study. The main enrofloxacin resistant swine-specific ST type 275 276 identified in this study was ST100, which is associated with porcine enterotoxigenic infections (46). Enrofloxacin was approved to treat swine enteric infections in the U.S.A in 2012 (2) and 277 278 the association of ST100 with enrofloxacin resistance might be of concern for swine health. 279 Some of the major cephalosporin and /or fluoroquinolone resistant ST types (ST744, ST10, ST23, ST88, ST90, ST410, ST58) identified in our panel (figure 1) have been associated with 280 carriage of *bla*_{CTX-M} in multiple animal species, have been implicated in human infections and 281 are considered "zoonotic ST types" (47–49). The presence of these resistant ST types in swine 282 may suggest a potential health risk to other animal species and humans. However, further 283 284 comparative studies and detailed outbreak investigations are needed to substantiate the spread of these resistant bacteria from diseased pigs to food products and humans. 285

To the best of our knowledge, this is the first study to describe completely assembled 286 287 plasmids carrying *bla*_{CTX-M-14}, -15, -27, -55, *bla*_{SHV-12} and *qnrB77* in *E. coli* isolates of swine origin in the U.S.A. However, the close identities between some plasmids in this study and those 288 289 already described in humans and animals globally indicate that the presence of ESBL genes in 290 this isolate collection could be part of the pandemic expansion of ESBLs (10). bla_{CTX-M-15} and *bla*_{CTX-M-14} are considered the predominant ESBL genes in humans globally (10) and have been 291 292 also identified in food animals including pigs worldwide (50–53). The plasmids carrying *bla*_{CTX}-293 _{M-15} identified in our study were highly similar (98% coverage, >99% nucleotide identity) to

294	other plasmids found in human <i>E. coli</i> isolates collected in the U.S.A between 2009-10 (54),
295	(Genbank accession number-CP009232) which were also described to have the same plasmid
296	backbone as other ESBL gene carrying plasmids reported worldwide (54). <i>bla</i> _{CTX-M-14} carrying
297	plasmids identical to those found here have been previously reported in human isolates in Hong
298	Kong and characterized as an epidemic plasmid type (pHK01) (55) which has spread globally to
299	other Asian (China, Vietnam, South Korea) and European countries (Finland) (unpublished;
300	Genbank accession numbers- NC_013727.1, KU932024.1, KU987452.1, NC_013542.1,
301	NZ_CP018973.1). Families of insertion sequences (IS26, ISEcp9, IS6) that were part of the
302	above-mentioned genetic contexts have also been demonstrated to be involved in transposing
303	ESBL-encoding genes across plasmids and bacterial chromosomes (56).

It has been widely believed that the presence of plasmids in the absence of selective 304 pressure imposes a metabolic fitness cost to the bacterial host (57). However, the fitness cost 305 imposed due to plasmid carriage depends on the plasmid-bacterial host combination (58-60). 306 307 There are several plasmid characteristics that facilitate plasmid stability in bacterial hosts: for example, IncF plasmids similar to those assembled here have a narrow host range and carry 308 factors such as toxin-antitoxin systems which help in maintaining their stability in bacterial hosts 309 310 in the absence of antimicrobial pressure (61). Similarly, IncHI2 plasmids similar to those assembled here carry genes which confer resistance to heavy metals, mutagenesis induction 311 system etc. which can also contribute to their stability (62). Endemic plasmids identical to those 312 313 found in our study such as pHK01-like plasmids have been demonstrated to be conjugative invitro (63). Hence, it can be postulated that these plasmids might aid in the establishment of 314 315 ESBLs as dominant determinants behind extended spectrum cephalosporin resistance in swine in the U.S.A as occurred globally. We are planning to conduct *in-vitro* conjugation and fitness
experiments to test these hypotheses.

To the best of our knowledge, this is the first report of the presence of mcr-9 genes in 318 bacteria isolates from food animals in the U.S.A. mcr-9 gene was recently described for the first 319 time in a S. Typhimurium isolate collected from a human patient in Washington State, the U.S.A. 320 321 and was able to confer colistin resistance to *E. coli* isolates cloned with this gene (64). Colistin has never been used in swine in the U.S.A and therefore the presence of mcr-9 gene in swine 322 could be an indicator of the complex transmission dynamics of resistant determinants across 323 324 different ecosystems and/or co-selection of resistant determinants due to use of other unrelated antimicrobials. 325

326 Several considerations must be accounted for when interpreting these results. An 327 association between antimicrobial use and presence of these resistance genes cannot be 328 established due to the lack of information on use of antimicrobials. Also, the public health 329 implications of our findings could be limited by the removal of diseased pigs, such as the ones 330 from which these resistant and potentially zoonotic ST types were retrieved, from the food chain.

331 *Conclusions*

332

We have identified and characterized a wide range of genetic determinants of resistance to some critically important antimicrobial classes in swine clinical *E. coli* isolates, some of which had never been described in isolates of animal origin in the U.S.A. Future studies will focus on assembling finished genomes of isolates carrying *mcr-9* genes as well as conducting conjugation and fitness experiments on selected isolates to predict the success of these plasmids and bacterial hosts.

339 Data availability

340	Short reads generated during this project have been submitted at NCBI Genbank under
341	Bioprojects PRJNA605257, PRJNA605064 and PRJNA604903. Complete plasmid sequences
342	have been submitted at Genbank under accession numbers MT077880, MT077881, MT077882,
343	MT077883, MT077884, MT077885, MT077886, MT077887, MT077888 and MT077889.
344	
345 346 347	<i>Funding</i> This work was supported by the USDA National Institute of Food and Agriculture (Animal
348	Health Formula Fund project MIN-62-091), Swine Disease Eradication Center fund and the
349	Rapid Agricultural Response Fund (RARF) at the University of Minnesota.
350	Tables
351	Table 1. Pattern of genetic determinants of enrofloxacin resistance in E. coli clinical isolates of
352	swine origin
353	Footnote:
354	'±' symbolizes that this genetic determinant might or might not be present in isolates with that
355	particular MIC value.
356	*- Other determinants were <i>parC</i> (A56T or E84G), <i>parE</i> (S458A or L416F) and single PMQR
357	(aac(6')-Ib-cr, qnrB77 or qnrB19)
358	
359	Table 2. Characteristics of plasmids assembled in this study
360	Footnote: Colors in the farthest right column represent genes that can confer resistance to
361	different antimicrobial families: dark blue- aminoglycosides, purple- penicillins, light blue-
362	fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and sulphonamide
363	(sul1, sul2), light green-phenicols, red- tetracyclines, orange- colistin.

Table 3. Characteristics of isolates carrying *mcr-9* genes 365 Footnote: Colors in the farthest right column represent genes that can confer resistance to 366 different antimicrobial families: dark blue- aminoglycosides, purple- penicillins, light blue-367 fluoroquinolones, dark green- macrolides, pink- trimethoprim (dfrA-type) and sulphonamide 368 (sul1, sul2), light green-phenicols, red- tetracyclines, black- extended spectrum cephalosporin. 369 370 371 Figures Figure 1. Maximum-likelihood tree constructed using the core-gene alignment of Escherichia 372 coli isolates collected from diseased pigs at UMN-VDL between 2014-15. 373 Footnote: Ceftiofur and enrofloxacin MIC values (in µg/ml), sequence types (ST) and 374 geographical location of isolation are presented in text columns. Ceftiofur and enrofloxacin MIC 375 values are labelled in red and blue to denote resistant and non-resistant isolates, respectively. 376 Heat map shows presence of chromosomal mutations in quinolone resistance determining 377 378 regions (QRDRs), plasmid mediated quinolone resistance genes (PMQRs), extended spectrum beta-lactamase encoding genes (ESBL) and plasmidic AmpC genes (*bla*_{CMY-2}) 379 380 *Figure 2.* Circular maps representing comparisons of *bla*_{CTX-M-14} (p77) and *bla*_{CTX-M-55} (p65) 381 carrying plasmids available at Genbank and plasmids assembled in this study. 382 Footnote: The innermost rings (not colored black) represent the top plasmids with high 383 nucleotide identity and coverage with respect to reference plasmids (p77 and p65). The legend 384 on upper-left presents plasmid name, country, animal species/human and year of isolation, where 385 386 available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes

and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.

389

389 390	<i>Figure 3.</i> Circular maps representing comparisons of <i>bla</i> _{CTX-M-27} (p37 and p62) carrying
391	plasmids available at Genbank and plasmids assembled in this study.
392	Footnote: The innermost rings (not colored black) represent the top plasmids with high
393	nucleotide identity and coverage with respect to reference plasmid (p37). The legend on upper-
394	left presents plasmid name, country, animal species/human and year of isolation, where
395	available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes
396	and genes associated with mobile elements are colored and labelled in red and blue, respectively.
397	Truncated genes are represented with Δ as prefix.
398 399	<i>Figure 4.</i> Circular maps representing comparisons of <i>bla</i> _{CTX-M-15} (p1, p2 and p4) carrying
400	plasmids available at Genbank and plasmids assembled in this study.
401	Footnote: The innermost rings (not colored black) represent the top plasmids with high
402	nucleotide identity and coverage with respect to reference plasmids (p1). There were no plasmids
403	similar to p4. The legend on upper-left presents plasmid name, country, animal species/human
404	and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in
405	outermost ring. AMR genes and genes associated with mobile elements are colored and labelled
406	in red and blue, respectively. Truncated genes are represented with Δ as prefix.
407 408	<i>Figure 5.</i> Circular maps representing comparisons of bla_{SHV-12} (p33 and p39) carrying plasmids
409	available at Genbank and plasmids assembled in this study.
410	Footnote: The innermost rings (not colored black) represent the top plasmids with high
411	nucleotide identity and coverage with respect to reference plasmids (p33 and p39). The legend

on ı	upper-left presents plasmid name, country, animal species/human and year of isolation, where	
ava	ilable. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes	
and	genes associated with mobile elements are colored and labelled in red and blue, respectively.	
Tru	ncated genes are represented with Δ as prefix.	
Fig	ure 6. Circular maps representing region carrying antimicrobial resistance genes in qnrB77	
carrying plasmid (p23) assembled in this study.		
Footnote: AMR genes and genes associated with mobile elements are colored and labelled in red		
and	blue, respectively. Truncated genes are represented with Δ as prefix.	
Ref	erences	
1.	Aarestrup FM. 2015. The livestock reservoir for antimicrobial resistance: a personal view	
	on changing patterns of risks, effects of interventions and the way forward. Philos Trans R	
	Soc B Biol Sci 370:20140085.	
2.	Hong S, Rovira A, Davies P, Ahlstrom C, Muellner P, Rendahl A, Olsen K, Bender JB,	
	Wells S, Perez A, Alvarez J. 2016. Serotypes and Antimicrobial Resistance in Salmonella	
	enterica Recovered from Clinical Samples from Cattle and Swine in Minnesota, 2006 to	
	2015. PLOS ONE 11:e0168016.	
3.	Carmo LP, Nielsen LR, Alban L, Müntener CR, Schüpbach-Regula G, Magouras I. 2017.	
	Comparison of Antimicrobial Consumption Patterns in the Swiss and Danish Cattle and	
	on u avai and Tru <i>Fig</i> carr Foo and <i>Ref</i> 1.	

441 Swine Production (2007–2013). Front Vet Sci 4.

442	4.	Food and Drug Administration. 2017. Summary Report On Antimicrobials Sold or
443		Distributed for Use in Food-Producing Animals.
444	5.	Neuert S, Nair S, Day MR, Doumith M, Ashton PM, Mellor KC, Jenkins C, Hopkins KL,
445		Woodford N, de Pinna E, Godbole G, Dallman TJ. 2018. Prediction of Phenotypic
446		Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal
447		Salmonella enterica. Front Microbiol 9.
448	6.	Edirmanasinghe R, Finley R, Parmley EJ, Avery BP, Carson C, Bekal S, Golding G,
449		Mulvey MR. 2017. A Whole-Genome Sequencing Approach To Study Cefoxitin-Resistant
450		Salmonella enterica Serovar Heidelberg Isolates from Various Sources. Antimicrob Agents
451		Chemother 61:e01919-16, /aac/61/4/e01919-16.atom.
452	7.	Magouras I, Carmo LP, Stärk KDC, Schüpbach-Regula G. 2017. Antimicrobial Usage and -
453		Resistance in Livestock: Where Should We Focus? Front Vet Sci 4.
454	8.	Lalak A, Wasyl D, Zajac M, Skarzynska M, Hoszowski A, Samcik I, Wozniakowski G,
455		Szulowski K. 2016. Mechanisms of cephalosporin resistance in indicator Escherichia coli
456		isolated from food animals. Vet Microbiol 194:69–73.
457	9.	Rodríguez I, Thomas K, Van Essen A, Schink A-K, Day M, Chattaway M, Wu G, Mevius
458		D, Helmuth R, Guerra B. 2014. Chromosomal location of blaCTX-M genes in clinical
459		isolates of Escherichia coli from Germany, The Netherlands and the UK. Int J Antimicrob

460 Agents 43:553–557.

461	10.	Bevan ER, Jones AM, Hawkey PM. 2017. Global epidemiology of CTX-M β -lactamases:
462		Temporal and geographical shifts in genotype. J Antimicrob Chemother 72:2145–2155.
463	11.	Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in
464		Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food
465		animals. Front Microbiol 4.
466	12.	Wittum TE, Mollenkopf DF, Erdman MM. 2012. Detection of Salmonella enterica Isolates
467		Producing CTX-M Cephalosporinase in U.S. Livestock Populations. Appl Environ
468		Microbiol 78:7487–7491.
469	13.	Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ,
470		Piddock LJV. 2016. Understanding the mechanisms and drivers of antimicrobial resistance.
471		The Lancet 387:176–187.
472	14.	Tyson GH, Tate HP, Zhao S, Li C, Dessai U, Simmons M, McDermott PF. 2017.
473		Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from
474		Swine Ceca and Retail Pork Chops in the United States. Antimicrob Agents Chemother
475		61:e01318-17, /aac/61/10/e01318-17.atom.
476	15.	Elnekave E, Hong SL, Lim S, Hayer SS, Boxrud D, Taylor AJ, Lappi V, Noyes N, Johnson
477		TJ, Rovira A, Davies P, Perez A, Alvarez J. 2019. Circulation of Plasmids Harboring
478		Resistance Genes to Quinolones and/or Extended-Spectrum Cephalosporins in Multiple
479		Salmonella enterica Serotypes from Swine in the United States. Antimicrob Agents
480		Chemother 63:e02602-18.
481	16.	Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ, Lappi V, Johnson TJ, Vannucci F,

482		Davies P, Hedberg C, Perez A, Alvarez J. 2018. Salmonella enterica Serotype 4,[5],12:i:- in
483		Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. Clin Infect
484		Dis 66:877–885.
485	17.	Hayer SS. 2019. Monitoring of phenotypic and genotypic changes in antimicrobial
486		resistance in clinical swine bacterial isolates circulating in the U.S. Ph.D Dissertation,
487		University of Minnesota, Minneapolis, USA.
488	18.	Food and Drug Administration. 2019. NARMS now.
489	19.	EUCAST. 2019. MIC and zone distributions and ECOFFs.
490	20.	Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L,
491		Sicheritz-Ponten T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus Sequence Typing
492		of Total-Genome-Sequenced Bacteria. J Clin Microbiol 50:1355–1361.
493	21.	Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM,
494		Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob
495		Chemother 67:2640–2644.
496	22.	Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller
497		Aarestrup F, Hasman H. 2014. In Silico Detection and Typing of Plasmids using
498		PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob Agents Chemother
499		58:3895–3903.
500	23.	Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-
501		2069.

502 24. Seemann T. snippy: fast bacterial variant calling from NGS reads.

503 25. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris

504 SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole 505 genome sequences using Gubbins. Nucleic Acids Res 43:e15.

- 506 26. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
 507 of large phylogenies. Bioinformatics 30:1312–1313.
- 508 27. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
 509 developments. Nucleic Acids Res 47:W256–W259.
- 510 28. Salmela L, Rivals E. 2014. LoRDEC: accurate and efficient long read error correction.
 511 Bioinformatics 30:3506–3514.
- 512 29. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome
 513 assemblies from short and long sequencing reads. PLOS Comput Biol 13:e1005595.
- 30. Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de
 novo genome assemblies. Bioinformatics 31:3350–3352.
- 516 31. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. 2011. ISsaga is an ensemble
- of web-based methods for high throughput identification and semi-automatic annotation of
 insertion sequences in prokaryotic genomes. Genome Biol 12:R30.
- 519 32. Galata V, Fehlmann T, Backes C, Keller A. 2019. PLSDB: a resource of complete bacterial
 520 plasmids. Nucleic Acids Res 47:D195–D202.
- 521 33. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator

(BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402.

523	34.	Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, Chan PY, Yuen KY. 2011.
524		Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to
525		"critically important" antibiotics among food animals in Hong Kong, 2008-10. J
526		Antimicrob Chemother 66:765–768.
527	35.	Van Damme I, Garcia-Graells C, Biasino W, Gowda T, Botteldoorn N, de Zutter L. 2017.
528		High abundance and diversity of extended-spectrum beta-lactamase (ESBL)-producing
529		Escherichia coli in faeces and tonsils of pigs at slaughter. Vet Microbiol 208:190–194.
530	36.	Roach S, Wallinga D. 2013. Commentary on genetic mechanisms of antimicrobial
531		resistance in bacteria from U.S. food animals: ESBLs are here. Front Microbiol 4.
532	37.	Johnson TJ, Shepard SM, Rivet B, Danzeisen JL, Carattoli A. 2011. Comparative genomics
533		and phylogeny of the IncI1 plasmids: A common plasmid type among porcine
534		enterotoxigenic Escherichia coli. Plasmid 66:144–151.
535	38.	Mollenkopf DF, Mirecki JM, Daniels JB, Funk JA, Henry SC, Hansen GE, Davies PR,
536		Donovan TS, Wittum TE. 2013. Escherichia coli and klebsiella pneumoniae producing
537		CTX-M cephalosporinase from swine finishing barns and their association with
538		antimicrobial use. Appl Environ Microbiol 79:1052–1054.
539	39.	Tadesse DA, Zhao SH, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF. 2012.
540		Antimicrobial drug resistance in Escherichia coli from humans and food animals, United
541		States, 1950-2002. Emerg Infect Dis 18:741–749.

542	40.	Jiang F, Wu Z, Zheng Y, Frana TS, Sahin O, Zhang Q, Li G. 2019. Genotypes and
543		Antimicrobial Susceptibility Profiles of Hemolytic Escherichia coli from Diarrheic Piglets.
544		Foodborne Pathog Dis 16:94–103.
545	41.	Awosile B, McClure J, Sanchez J, Rodriguez-Lecompte JC, Keefe G, Heider LC. 2018.
546		Salmonella enterica and extended-spectrum cephalosporin-resistant Escherichia coli
547		recovered from Holstein dairy calves from 8 farms in New Brunswick, Canada. J Dairy Sci
548		101:3271–3284.
549	42.	Cummings KJ, Rodriguez-Rivera LD, Norman KN, Ohta N, Scott HM. 2017. Identification
550		of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy
551		Farm Environmental Samples. Zoonoses Public Health 64:305–307.
552	43.	Tran JH, Jacoby GA, Hooper DC. 2005. Interaction of the Plasmid-Encoded Quinolone
553		Resistance Protein Qnr with Escherichia coli DNA Gyrase. Antimicrob Agents Chemother
554		49:118–125.
555	44.	Martínez-Martínez L, Pascual A, García I, Tran J, Jacoby GA. 2003. Interaction of plasmid
556		and host quinolone resistance. J Antimicrob Chemother 51:1037-1039.
557	45.	Pitout JDD, DeVinney R. 2017. Escherichia coli ST131: a multidrug-resistant clone primed
558		for global domination. F1000Research 6.
559	46.	Abraham S, Jordan D, Wong HS, Johnson JR, Toleman MA, Wakeham DL, Gordon DM,
560		Turnidge JD, Mollinger JL, Gibson JS, Trott DJ. 2015. First detection of extended-spectrum

- 561 cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing
- animals. J Glob Antimicrob Resist 3:273–277.

563	47.	Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL, Rojas TCG, Montelli AC,
564		Sadatsune T, Ramos M de C, Nolan LK, Silveira WD da. 2014. Overlapped Sequence
565		Types (STs) and Serogroups of Avian Pathogenic (APEC) and Human Extra-Intestinal
566		Pathogenic (ExPEC) Escherichia coli Isolated in Brazil. PLOS ONE 9:e105016.
567	48.	Day MJ, Rodríguez I, van Essen-Zandbergen A, Dierikx C, Kadlec K, Schink A-K, Wu G,
568		Chattaway MA, DoNascimento V, Wain J, Helmuth R, Guerra B, Schwarz S, Threlfall J,
569		Woodward MJ, Coldham N, Mevius D, Woodford N. 2016. Diversity of STs, plasmids and
570		ESBL genes among Escherichia coli from humans, animals and food in Germany, the
571		Netherlands and the UK. J Antimicrob Chemother 71:1178–1182.
572	49.	Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Zankari E,
573		Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov
574		RL. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant escherichia coli
575		isolates from human bloodstream infection and imported chicken meat, denmark 2015.
576		Eurosurveillance 20:1–5.
577	50.	Liu BT, Yang QE, Li L, Sun J, Liao XP, Fang LX, Yang SS, Deng H, Liu YH. 2013.
578		Dissemination and Characterization of Plasmids Carrying oqxAB-blaCTX-M Genes in
579		Escherichia coli Isolates from Food-Producing Animals. PLOS ONE 8:e73947.
580	51.	Norizuki C, Kawamura K, Wachino JI, Suzuki M, Nagano N, Kondo T, Arakawa Y. 2018.
581		Detection of Escherichia coli Producing CTX-M-1-Group Extended-Spectrum beta-
582		Lactamases from Pigs in Aichi Prefecture, Japan, between 2015 and 2016. Jpn J Infect Dis
583		71:33–38.

584	52.	Horton RA, Randall LP, Snary EL, Cockrem H, Lotz S, Wearing H, Duncan D, Rabie A,
585		McLaren I, Watson E, La Ragione RM, Coldham NG. 2011. Fecal Carriage and Shedding
586		Density of CTX-M Extended-Spectrum β -Lactamase-Producing Escherichia coli in Cattle,
587		Chickens, and Pigs: Implications for Environmental Contamination and Food Production.
588		Appl Environ Microbiol 77:3715–3719.
589	53.	Tian GB, Wang HN, Zhang AY, Zhang Y, Fan WQ, Xu CW, Zeng B, Guan ZB, Zou LK.
590		2012. Detection of clinically important β -lactamases in commensal Escherichia coli of
591		human and swine origin in western China. J Med Microbiol 61:233–238.
592	54.	Li JJ, Spychala CN, Hu F, Sheng JF, Doi Y. 2015. Complete Nucleotide Sequences of
593		blaCTX-M-Harboring IncF Plasmids from Community-Associated Escherichia coli Strains
594		in the United States. Antimicrob Agents Chemother 59:3002–3007.
595	55.	Ho PL, Lo WU, Wong RCW, Yeung MK, Chow KH, Que TL, Tong AHY, Bao JYJ, Lok S,
596		Wong SSY. 2011. Complete sequencing of the FII plasmid pHK01, encoding CTX-M-14,
597		and molecular analysis of its variants among Escherichia coli from Hong Kong. J
598		Antimicrob Chemother 66:752–756.
599	56.	Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile Genetic Elements Associated
600		with Antimicrobial Resistance. Clin Microbiol Rev 31:e00088-17.
601	57.	San Millan A, MacLean RC. 2017. Fitness Costs of Plasmids: a Limit to Plasmid
602		Transmission. Microbiol Spectr 5.
603	58.	Johnson TJ, Singer RS, Isaacson RE, Danzeisen JL, Lang K, Kobluk K, Rivet B, Borewicz
604		K, Frye JG, Englen M, Anderson J, Davies PR. 2015. In Vivo Transmission of an IncA/C

605		Plasmid in Escherichia coli Depends on Tetracycline Concentration, and Acquisition of the
606		Plasmid Results in a Variable Cost of Fitness. Appl Environ Microbiol 81:3561–3570.
607	59.	Buckner MMC, Saw HTH, Osagie RN, McNally A, Ricci V, Wand ME, Woodford N, Ivens
608		A, Webber MA, Piddock LJV. 2018. Clinically Relevant Plasmid-Host Interactions Indicate
609		that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella
610		pneumoniae Carbapenemase-Carrying Plasmids. mBio 9:e02303-17,
611		/mbio/9/2/mBio.02303-17.atom.
612	60.	Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Ewers C,
613		Guenther S. 2016. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not
614		Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages.
615		Front Microbiol 7.
616	61.	Carattoli A. 2013. Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304.
617	62.	García-Fernández A, Carattoli A. 2010. Plasmid double locus sequence typing for IncHI2
618		plasmids, a subtyping scheme for the characterization of IncHI2 plasmids carrying
619		extended-spectrum β -lactamase and quinolone resistance genes. J Antimicrob Chemother
620		65:1155–1161.
621	63.	Ho PL, Lo WU, Yeung MK, Li Z, Chan J, Chow KH, Yam WC, Tong AHY, Bao JYJ, Lin
622		CH, Lok S, Chiu SS. 2012. Dissemination of pHK01-like incompatibility group IncFII
623		plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet
624		Microbiol 158:172–179.
625	64.	Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. 2019.

626	Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant,
627	Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. mBio 10.
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	

MIC value	Pattern of genetic determinants (n=number of isolates)	ST types (n=number of isolates)
(in µg/ml)		
>2	<i>gyrA</i> (S83L) + <i>gyrA</i> (D87Y or D87N or D87G) + <i>parC</i> (S80I or S80R)	744 (n=11), 100 (n=10), 224 (n=4), 410
	\pm other genetic determinants [*] (n=49)	(n=3), 10 (n=2), 457 (n=2), 617 (n=2), 4981
		(n=2), 88 (n=1), 93 (n=1), 167 (n=1), 977
		(n=1), 1585 (n=1), 2161 (n=1), 3901 (n=1)
2	<i>gyrA</i> (S83L) + <i>parC</i> (S80I or S80R) (n=23)	100 (n=21), 58 (n=1), 90 (n=1)
	<i>qnrB19</i> (n=2)	361 (n=1), 2496 (n=1)
	No genetic determinants (n=1)	5926 (n=1)
1	<i>gyrA</i> (S83L) + <i>parC</i> (S80I or S80R) (n=7)	100 (n=6), 69 (n=1)
	gyrA(S83L) only (n=1)	6234 (n=1)
	gyrA(D87G) + qnrB2 (n=1)	10 (n=1)
	qnrB19 + qnrS2 (n=1)	101 (n=1)
	aac(6')- Ib - cr + $qnrB2$ (n=1)	540 (n=1)
	Single PMQR (qnrB19, qnrS1, qnrS2, qnrB2 or qnrB77) (n=6)	10 (n=3), 641 (n=1), 847 (n=1), 5759 (n=1)

Table 1. Pattern of genetic determinants of enrofloxacin resistance in E. coli clinical isolates of swine origin

	No genetic determinants (n=1)	10 (n=1)
0.25-0.5	$gyrA(S83L) \pm aac(6')-Ib-cr (n=6)$	6234 (n=2), 10 (n=1), 58 (n=1), 101 (n=1),
		410 (n=1)
	Single PMQR (qnrB19, qnrS2, qnrB2) (n=5)	10 (n=3), 93 (n=1), 1112 (n=1)
	<i>gyrA</i> (D87G or D87Y) (n=3)	10 (n=1), 88 (n=1), 641 (n=1)
	aac(6')-Ib-cr + qnrB2 (n=1)	641 (n=1)
	No genetic determinants (n=2)	641 (n=1), 3057 (n=1)
≤ 0.125	<i>gyrA</i> (S83L) (n=3)	10 (n=1), 847 (n=1), Unknown ST (n=1)
	<i>gyrA</i> (D87Y) (n=1)	90 (n=1)

'±' symbolizes that this genetic determinant might or might not be present in isolates with that particular MIC value.

*- Other determinants were *parC*(A56T or E84G), *parE*(S458A or L416F) and single PMQR (*aac(6')-lb-cr, qnrB77 or qnrB19*)

Plasmid (Genbank	Gene of	Size of	Replicon type	ST type	Other AMR genes present in the plasmid
Accession number)	interest	plasmid	(pMLST)		sequence
p77 (MT077889)	bla _{CTX-M-14}	77 kbp	IncF (F2:A8:B56)	10	-
p37 (MT077885)	bla _{CTX-M-27}	69 kbp	IncF (F21*:A-:B-)	744	erm(B)
p62 (MT077887)	bla _{CTX-M-27}	69 kbp	IncF (F21*:A-:B-)	10	-
p1 (MT077880)	bla _{CTX-M-15}	170 kbp	IncF (F31:A4:B1)	617	aadA5, aac(3)-IIa, aac(6')-Ib-cr, bla _{OXA-1} ,
					<pre>mph(A), sul1, dfrA17, catB3, tet(B)</pre>
p2 (MT077881)	bla _{CTX-M-15}	170 kbp	IncF (F31:A4:B1)	58	aac(6')-Ib-cr, bla _{OXA-1} , mph(A), dfrA17,
					catB3, tet(B)
p4 (MT077882)	bla _{CTX-M-15}	115 kbp	IncF (F48:A1:B49)	744	aac(3)-IIa, bla _{TEM-1b} , mph(A), dfrA17
p65 (MT077888)	bla _{CTX-M-55}	240 kbp	IncHI2 (ST-2)	165	<pre>aac(3)-IId, aadA2, aph(3")-Ib, aph(3')-Ia,</pre>
					aph(6)-Id, bla _{TEM-1b} , mph(A), sull, dfrA12,
					<i>tet(M)</i>
p33 (MT077884)	bla _{SHV-12}	302 kbp	IncHI2 (ST-1)	641	aac(6')-Ib3, aac(6')-IIc, aph(6')-Id, aph(3')-
					Ib, aadA2, aac(6')-Ib-cr, bla _{TEM-1b} , qnrB2,

Table 2. Characteristics of plasmids assembled in this study

					ere(A), sul1, sul2, dfrA19, tet(D), mcr-9
p39 (MT077886)	bla _{SHV-12}	289 kbp	IncHI2 (ST-1)	1112	aph(3'')-Ib, aph(6')-Id, aph(3')-Ia, aac(6')-
					IIc, bla _{TEM-1b} , ere(A), sull, catA2, tet(D), mcr-
					9
p23 (MT077883)	qnrB77	60 kbp	IncN (unknown)	4981	aac(3)-VIa, aadA1, dfrA15

Colors in the farthest right column represent genes that can confer resistance to different antimicrobial families: **dark blue**aminoglycosides, **purple**- penicillins, **light blue**- fluoroquinolones, **dark green**- macrolides, **pink**- trimethoprim (*dfrA-type*) and sulphonamide (*sul1*, *sul2*), **light green**-phenicols, **red**- tetracyclines, **orange**- colistin. Table 3. Characteristics of isolates carrying *mcr-9* genes

Isolate (Biosample	ST type	Other AMR genes in the isolate
accession)		
8	540	aac(6')-IIc, aadA2b, aac(6')-Ib3, aph(3")-Ib, aph(6)-Id, aac(6')Ib-cr, bla _{TEM-1b} ,
(SAMN14052773)		qnrB2, ere(A), mdf(A), sul1, sul2, sul3, dfrA12, dfrA19, tet(A), tet(M)
33	641	aac(6')-Ib3, aac(6')-IIc, aph(6')-Id, aph(3")-Ib, aadA2, , aac(6')-Ib-cr, bla _{TEM-}
(SAMN14069745)		1b, qnrB2, ere(A), mdf(A), sul1, sul2, dfrA19, tet(D), tet(B), bla _{SHV-12}
39	1112	aph(3'')-Ib, aph(6')-Id, aph(3')-Ia, aac(6')-IIc, aadA2, bla _{TEM-1b} , qnrB2,
(SAMN14069776)		ere(A), mdf(A), sul1, dfrA19, catA2, tet(B), tet(D), bla _{SHV-12}
81	90	aac(3)-VIa, aadA1, aadA2, aadA5, aph(3")-Ib, aph(3')-Ia, aph(6)-Id, armA,
(SAMN14070155)		bla _{TEM-1b} , mph(E), msr(E), mdf(A), sul2, dfrA1, floR, tet(A), tet(B), bla _{CMY-2}
243	101	aac(3)-VIa, aadA1, aph(3")-Ib, aph(6)-Id, mdf(A), sul1, sul2, floR, tet(A),
(SAMN14088537)		bla _{CMY-2} , bla _{CTX-M-55}
279	10	aac(6')-IIc, aadA2b, aph(3")-Ib, aph(3')-Ia, aph(6)-Id, bla _{TEM-1b} , qnrB2,
(SAMN14089329)		ere(A), mdf(A), dfrA19, sul1, sul2, tet(B), tet(D), bla _{CMY-2} , bla _{SHV-12}
283	10	aac(6')-IIc, aadA2b, aph(3')-Ib, aph(3')-Ia, aph(6)-Id, bla _{TEM-1b} , qnrB2,

(SAMN14089333)	ere(A), mdf(A), dfrA19, sul1, sul2, tet(B), tet(D), bla _{CMY-2} , bla _{SHV-12}

Colors in the farthest right column represent genes that can confer resistance to different antimicrobial families: **dark blue**aminoglycosides, **purple**- penicillins, **light blue**- fluoroquinolones, **dark green**- macrolides, **pink**- trimethoprim (*dfrA-type*) and sulphonamide (*sul1*, *sul2*), **light green**-phenicols, **red**- tetracyclines, **black**- extended spectrum cephalosporin.

Figure 1. Maximum-likelihood tree constructed using the core-gene alignment of *Escherichia coli* isolates collected from diseased pigs at UMN-VDL between 2014-15.

Footnote: Ceftiofur and enrofloxacin MIC values (in µg/ml), sequence types (ST) and geographical location of isolation are presented in text columns. Ceftiofur and enrofloxacin MIC values are labelled in red and blue to denote resistant and non-resistant isolates, respectively. Heat map shows presence of chromosomal mutations in quinolone resistance determining regions (QRDRs), plasmid mediated quinolone resistance genes (PMQRs), extended spectrum beta-lactamase encoding genes (ESBL) and plasmidic AmpC genes (*bla*_{CMY-2})

Figure 2. Circular maps representing comparisons of $bla_{CTX-M-14}$ (p77) and $bla_{CTX-M-55}$ (p65) carrying plasmids available at Genbank and plasmids assembled in this study.

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to reference plasmids (p77 and p65). The legend on upper-left presents plasmid name, country, animal species/human and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.

Figure 3. Circular maps representing comparisons of $bla_{CTX-M-27}$ (p37 and p62) carrying plasmids available at Genbank and plasmids assembled in this study.

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to reference plasmid (p37). The legend on upper-left presents plasmid name, country, animal species/human and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.

Figure 4. Circular maps representing comparisons of $bla_{CTX-M-15}$ (p1, p2 and p4) carrying plasmids available at Genbank and plasmids assembled in this study.

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to reference plasmids (p1). There were no plasmids similar to p4. The legend on upper-left presents plasmid name, country, animal species/human and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR

genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.

Figure 5. Circular maps representing comparisons of *bla*_{SHV-12} (p33 and p39) carrying plasmids available at Genbank and plasmids assembled in this study.

The innermost rings (not colored black) represent the top plasmids with high nucleotide identity and coverage with respect to reference plasmids (p33 and p39). The legend on upper-left presents plasmid name, country, animal species/human and year of isolation, where available. Area of the plasmid carrying AMR genes is presented in outermost ring. AMR genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.

p23 (This study)

Figure 6. Circular maps representing region carrying antimicrobial resistance genes in *qnrB77* carrying plasmid (p23) assembled in this study.

AMR genes and genes associated with mobile elements are colored and labelled in red and blue, respectively. Truncated genes are represented with Δ as prefix.