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Chapter 1

Introduction

Insurance is a risk management strategy to protect an entity against uncertain
future financial losses. Property and casualty (P&C) insurance covers one’s
belongings and liability, for example a person’s house or responsibility when
crashing into someone else’s car. An individual might not be able to carry the
financial burden of such unfortunate events, which is why our society relies
heavily on insurance. Insurers pool many individuals, all exposed to similar
risks, such that the contributions of the many cover the misfortunes of the few.

Figure 1.1 shows the risk transfer process from policyholders who buy insurance
to insurers who sell insurance. A policy contract stipulates the specific
conditions which trigger a compensation from insurer to policyholder. In
return, policyholders are required to pay a predetermined premium at the start
of the policy period. From the policyholder’s point of view, this transforms
uncertain financial losses into a certain upfront cost. This allows individuals to
live their life without constantly worrying about incurring devastating financial
consequences, while of course still avoiding unnecessary risks and moral hazard.

Policyholders
Policy contract

Insurer

buy sell

Fixed upfront premium

Future loss payments

Strictly regulated framework

Figure 1.1: The insurance risk transfer process from policyholder to insurer.
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2 INTRODUCTION

The insurer receives a fixed premium and promises to pay future losses to the
policyholders. These future payments are uncertain such that the insurer sells a
product of which the cost is unknown at the moment of selling. This is known as
the inverse production cycle and makes it of vital importance for the insurer to
properly assess the policyholders’ claim risk based on the available information.

Predictive modeling is the discipline of developing a mathematical model on
historical data in order to predict the future. Insurers heavily rely on such tools
to predict the future number of claims (frequency) and claim sizes (severity).
Insurance pricing combines both components and leads to the pure premium, i.e.,
the premium needed to purely cover the policyholder’s underlying claim risk.
Heavy competition and anti-selection effects require insurers to constantly
improve their risk classification process with more accurate predictive models.

Two components are needed to develop a predictive model: a modeling
framework and historical data. In a classical setting, insurers focus on specific
statistical models named generalized linear models (GLMs). These types
of models are the industry standard due to many advantages such as easy
interpretation and simple implementation. Classical data typically comprises a
collection of self-reported risk characteristics such as the policyholder’s age and
residence area, supplemented with vehicle characteristics in motor insurance.

Technological advancements allow for innovations on both the model and data
components. Machine learning (ML) algorithms are gaining popularity in many
predictive modeling applications due to improved performance results. This
however leads to more opaque decision models, which makes interpretation and
implementation more difficult in practice. The insurance industry therefore
remains reluctant to use ML for pricing due to strict regulations on model
explainability. Regarding new data sources, telematics technology allows to
measure policyholder behavior on a granular scale. This results in new types of
information to use in the risk classification process, for example driving behavior
in motor insurance or data from smart sensors in home insurance.

This thesis comprises four chapters. In the first three chapters we focus
on new modeling paradigms within the insurance industry. We investigate
ML approaches to insurance pricing, thereby also focusing on interpretability
issues by opening the black box. Furthermore, we work on general data-driven
procedures to develop a GLM when starting from more flexible and complicated
models. The knowledge extracted from these complex models can help actuaries
to design a simple yet accurate GLM. The fourth and last chapter puts focus
on a new data paradigm with telematics technology. A baseline premium is
suggested by using self-reported risk characteristics and driving behavior data
is used to update those prices. This leads to a usage-based insurance (UBI)
system where policyholders can earn rebates by driving less and more safely.
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1.1 Machine learning: innovating insurance models

The first three chapters of this thesis focus on new modeling paradigms for
insurance pricing with the use of ML techniques. Figure 1.2 shows a visual
summary of these three chapters and their relation to each other.

GAM GLM

Actuarial comfort zone

transform
Chapter 1:

Tree Random forest

Bagging Boosting

Tree-based machine learning (ML)

Chapter 2:
compare

Tree Random forest

Bagging Boosting

SVM

Neural net

Any type of ML method

Chapter 3:
transform

Figure 1.2: Overview of the first three chapters in this thesis.

Chapter 2 stays within the actuarial comfort zone of well-known statistical
models, namely generalized additive models (GAMs) and GLMs. GAMs extend
the framework of GLMs by allowing to include smooth effects of risk factors.
Our procedure starts from a flexible GAM with smooth effects for continuous
and spatial risk factors. We then use these smooth effects to construct insurance
tariff classes in a data-driven way via decision trees and clustering techniques.
In the end we obtain a GLM with all risk factors in a categorical format, easy
to explain and easy to be implemented in a practical business environment.

Chapter 3 breaks out of the actuarial comfort zone and into the world of tree-
based ML techniques. We compare the GAM/GLM from Chapter 2 with decision
trees, random forests and gradient boosting machines (GBMs). We stress the
importance of using proper loss functions in line with distributional assumptions
for insurance frequency and severity data. Our comparison goes from pure
statistical out-of-sample performance to a more managerial evaluation with lift
measures. We furthermore put focus on model interpretability by looking under
the hood of our ML models and show how to discover interesting interaction
effects in the data. In our case study, GBMs outperform the GAM/GLM
approach on both statistical and managerial measures.

Chapter 4 builds on insights from Chapter 3 with the goal of returning to the
actuarial comfort zone. GBMs typically have superior predictive performance
over GAMs/GLMs, but at the cost of model transparency. Insurance is a highly
regulated industry and deals with high-stakes decisions on insurance coverage.
We therefore start from a complex black box model and extract knowledge
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via model interpretation techniques. These insights are used to perform smart
feature engineering and allow to fit a transparent global surrogate model which
approximates the black box behavior. It is important to note that this procedure
is model-agnostic, i.e., it can be applied to any model class. This approach can
be seen as a more general and improved version of the procedure in Chapter 2.

1.2 Telematics: innovating insurance data sources

The fifth and last chapter of this thesis shifts focus to new data paradigms for
insurance pricing with the use of telematics technology. Figure 1.2 shows an
overview of possible data features for motor insurance. In the classic setting,
insurers use static demographic information on the policyholder, vehicle and
area of residence. Telematics allows to track driving behavior of policyholders,
typically split into two broad categories. Firstly we measure driving habits or
pay as you drive (PAYD) features. This contains information on for example the
total mileage and distances driven on different road types and during distinct
times of day. Secondly we measure driving style or pay how you drive (PHYD)
features. This includes information on for example speeding, acceleration and
braking events, possibly combined with external weather data.

Static, demographic data

License age Car make/model Type of fuel Postal code

Driving habits

Mileage Travel time Time slot Road type

Driving style

Speed Acceleration Attention Weather

cla
ssi
c

telematics

telematics

Figure 1.3: Overview of different possible data features for motor insurance.

Chapter 5 investigates the added value of telematics information for insurance
pricing. We start by developing baseline pricing models with only classical
self-reported risk characteristics. In a next step we update those prices with
the driving behavior registered during the policy period. This results in a UBI
product framework in which policyholders can directly influence their premium
by adjusting their driving behavior. We show how telematics improves the
risk classification process, reduces the policyholder’s premiums on average and
allows the insurer to realize higher profits.
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1.3 Research contributions

The thesis chapters are based on the following publications and working papers:

(1) Henckaerts, R., Antonio, K., Clijsters, M., and Verbelen, R. (2018). A
data driven binning strategy for the construction of insurance tariff classes.
Scandinavian Actuarial Journal, 2018(8):681–705

(2) Henckaerts, R., Côté, M.-P., Antonio, K., and Verbelen, R. (2021b).
Boosting insights in insurance tariff plans with tree-based machine learning
methods. North American Actuarial Journal, 25(2):255–285

(3) Henckaerts, R., Antonio, K., and Côté, M.-P. (2021a). When stakes
are high: balancing accuracy and transparency with Model-Agnostic
Interpretable Data-driven suRRogates. arXiv preprint arXiv:2007.06894

(4) Henckaerts, R. and Antonio, K. (2021). The added value of dynamically
updating motor insurance prices with telematics collected driving behavior
data. Working paper

The author also contributed to the following working paper:

(i) Holvoet, F., Henckaerts, R., Antonio, K., and Gielis, S. (2021). Neural
networks for non-life insurance pricing. Working paper

The author contributed to the R universe with the following packages:

Henckaerts, R. (2020). distRforest: Distribution-based Random Forest. R
package version 1.0.0

Henckaerts, R. (2021). maidrr: Model-Agnostic Interpretable Data-driven
suRRogate. R package version 1.0.0





Chapter 2

A data-driven binning strategy
to construct tariff classes

We present a fully data-driven strategy to incorporate continuous risk factors and
geographical information in an insurance tariff. A framework is developed that aligns
flexibility with the practical requirements of an insurance company, the policyholder
and the regulator. Our strategy is illustrated with an example from property and
casualty (P&C) insurance, namely a motor insurance case study. We start by fitting
generalized additive models (GAMs) to the number of reported claims and their
corresponding severity. These models allow for flexible statistical modeling in the
presence of different types of risk factors: categorical, continuous and spatial risk
factors. The goal is to bin the continuous and spatial risk factors such that categorical
risk factors result which capture the effect of the covariate on the response in an
accurate way, while being easy to use in a generalized linear model (GLM). This is
in line with the requirement of an insurance company to construct a practical and
interpretable tariff that can be explained easily to stakeholders. We propose to bin
the spatial risk factor using Fisher’s natural breaks algorithm and the continuous risk
factors using evolutionary trees. GLMs are fitted to the claims data with the resulting
categorical risk factors. We find that the resulting GLMs approximate the original
GAMs closely, and lead to a very similar premium structure.

This chapter is based on joint work with Katrien Antonio, Maxime Clijsters and
Roel Verbelen, as published in the Scandinavian Actuarial Journal (Henckaerts et al.,
2018). We thank Michel Denuit for providing the data and for his valuable suggestions.
Furthermore, we acknowledge financial support from the Ageas Research Chair at KU
Leuven and from KU Leuven’s research council (COMPACT C24/15/001).
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2.1 Introduction

An insurance portfolio offers protection against a specified type of risk to
a collection of policyholders with various risk profiles. Insurance companies
differentiate premiums to reflect the heterogeneity of risks in their portfolio. A
flat premium across the entire portfolio would encourage good risks to leave
the company and accept a better offer elsewhere such that the insurer is left
with bad risks which pay a too low premium. To avoid such lapses, insurance
companies use risk factors (or: rating factors) to group policyholders with
similar risk profiles in tariff classes. Premiums are equal for policyholders
within the same tariff class and should reflect the inherent riskiness of each
class. The process of constructing these tariff classes is also known as risk
classification, see Denuit et al. (2007); Antonio and Valdez (2012); Paefgen et al.
(2013). Pricing (or: ratemaking, tarification) through detailed risk classification
is the mechanism for insurance companies to compete and to reduce the cost of
insurance contracts. In a highly competitive market many rating factors are
used to classify risks and to differentiate the price of an insurance product.

Property and casualty (P&C, or: non-life, general) insurance pricing typically
makes use of categorical, continuous and spatial risk factors. Categorical
risk factors have a discrete number of possible outcomes or levels. Examples
of categorical risk factors for motor insurance are the type of coverage and
type of fuel of the car. Continuous risk factors can attain all values within a
specified range. Examples of continuous risk factors for motor insurance are
the age of the policyholder and the horsepower of the car. A spatial risk factor
contains information about the policyholder’s residency. To capture the spatial
heterogeneity one can for example use the postal code of the municipality where
the policyholder resides as a rating factor. In motor insurance, this serves as a
proxy for the region where a policyholder drives his car.

Constructing tariff classes is rather straightforward when all risk factors are
categorical; each tariff class then represents a certain combination of levels of
the categorical risk factors. The continuous and spatial risk factors can be
interpreted as categorical factors with many levels, also called multi-level factors
by Ohlsson and Johansson (2010). It is however inefficient to take all these
levels into account separately since this will result in too many tariff classes
with very few policyholders. A better approach is to transform the continuous
and spatial risk factors with many levels in categorical risk factors with fewer
levels, also called binning by Kuhn and Johnson (2013). In this chapter we
present a data-driven strategy to bin continuous and spatial risk factors in order
to obtain categorical risk factors with a limited number of levels. After this
binning procedure it is again straightforward to construct the corresponding
tariff classes.



INTRODUCTION 9

Actuaries examine historical claims data to estimate the cost of offering the
insurance cover, i.e. the premium, to policyholders in a specific tariff class.
Insurance companies maintain large databases with policy(holder) characteristics
and claim histories which enable the actuary to build risk-based pricing models.
Actuarial models for P&C insurance pricing put focus on two components: a
predictive model for the frequency of claims and a predictive model for the
severity of claims (see Denuit et al., 2007; Frees et al., 2014; Parodi, 2014).
Claim frequency refers to the number of claims per unit of exposure. Exposure,
as described in McClenahan (2001), can be seen as a rating unit and measures
to which degree the policyholder is exposed to the insured risk. An example of
exposure in an insurance product is the fraction of the year for which premium
has been paid and therefore coverage is provided. Severity is the average claim
cost, expressed as the ratio of the total loss to the corresponding number of
claims causing this total loss, over a specific period of insurance.

Frequency and severity are typically assumed to be independent and the resulting
pure premiun (or: risk premium) is the product of the expected value of the
frequency and the expected value of the severity (see Klugman et al., 2012).
Alternatives for this independence assumption are investigated in the literature,
allowing dependence between frequencies and severities (see Gschlößl and Czado,
2007; Czado et al., 2012). A risk margin taking model risk and pure randomness
into account, as well as other premium elements (e.g. profit, commissions, taxes),
is added on top of the pure premium to end up with a commercial tariff (see
Wüthrich, 2016).

Generalized linear models (GLMs), developed by Nelder and Wedderburn
(1972), have become the industry standard to develop predictive models for
frequency and severity (see Haberman and Renshaw, 1997; Denuit et al., 2007;
De Jong and Heller, 2008; Frees, 2015). GLMs allow the response variable to
follow any distribution in the exponential family. The Poisson distribution is
particularly interesting for claim frequency models whereas the gamma and
lognormal distributions are often used for claim severity modeling. Covariates
enter a GLM through a linear predictor, leading to interpretable effects of the
risk factors on the response. Such a linear predictor is however less suited
for continuous risk factors that relate to the response in a non-linear way,
since transformations of the covariate are needed to capture a non-linear effect.
Generalized additive models (GAMs), developed by Hastie and Tibshirani (1990),
extend the framework of GLMs and allow for smooth continuous effects in the
predictor structure. This results in a statistically more flexible model compared
to the GLM. In practice however, actuaries tend to prefer the simplicity of
GLMs with categorical risk factors over GAMs with smooth effects, because
pricing models should be interpretable, intuitive, explainable to clients and
regulators, easy to program and adjustable to marketing needs and benchmark
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studies with competitors. Therefore our contribution designs a strategy to
construct tariff classes in GLMs in a data-driven way.
This chapter should be framed in between two existing approaches to handle
different types of risk factors in the literature on insurance pricing. One strand
of literature uses predefined bins for the continuous and spatial risk factors (see
Frees and Valdez, 2008; Antonio et al., 2010). These bins, which are constructed
without much motivation, are then used in GLMs. Dougherty et al. (1995) gives
an overview of methods to bin variables to be used in a (generalized) linear
model, but a disadvantage of those methods is that the response variable is
not taken into account in the binning process. Another strand of literature
develops GAMs for pricing with flexible effects of continuous and spatial risk
factors (see Denuit and Lang, 2004; Klein et al., 2014). What is lacking is a
general framework that aligns the statistical advantages of flexible modeling
with GAMs to the requirements of a production environment in an insurance
company. This chapter tries to fill this gap by starting from GAMs with smooth
effects and transforming these models into GLMs with categorical effects that
satisfy the practical needs of an insurance company. Our strategy bins the
continuous and spatial risk factors based on their GAM effects, resulting in
categorical risk factors which are easily deployed in a GLM.
This chapter is structured as follows. In Section 2.2 we present the claims
dataset and in Section 2.3 we fit flexible GAMs for frequency and severity to
this dataset. In Section 2.4 we bin the spatial and continuous effects using
Fisher’s natural breaks and evolutionary trees. In Section 2.5 we fit GLMs with
the binned risk factors and illustrate that the GLMs approximate the GAMs
closely.

2.2 Claims dataset

We illustrate our methodology with a motor third party liability (MTPL)
insurance portfolio from a Belgian insurer in 1997. A sample from this dataset
is analyzed in Denuit and Lang (2004) and Klein et al. (2014). Each record in
the dataset represents a unique policyholder who is observed during a certain
policy period, ranging from one day to one year. The risk factors are registered
at the start of the policy period and remain constant during this period. The
dataset contains 163,231 policyholders and the available variables are listed in
Table 2.1. In the Test-Achats Ruling, the Court of Justice of the EU prohibited
the use of gender in insurance tariffs to avoid discrimination between males and
females regarding pricing as from 21 December 2012. Notice of the European
Commission: http://ec.europa.eu/justice/newsroom/gender-equality/
news/121220_en.htm. Gender is therefore only investigated for use within an
internal, technical tariff, but can not be used in a commercial tariff.

http://ec.europa.eu/justice/newsroom/gender-equality/news/121220_en.htm
http://ec.europa.eu/justice/newsroom/gender-equality/news/121220_en.htm
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Variable Description

nclaims The number of claims filed by the policyholder.
exp The fraction of the year 1997 during which the policyholder was

exposed to the risk.
amount The total amount claimed by the policyholder in Euros.
coverage Type of coverage provided by the insurance policy:

TPL = only third party liability,
PO = partial omnium = TPL + limited material damage,
FO = full omnium = TPL + comprehensive material damage.

fuel Type of fuel of the vehicle: gasoline or diesel.
sex Gender of the policyholder: male or female.
use Main use of the vehicle: private or work.
fleet The vehicle is part of a fleet: yes or no.
ageph Age of the policyholder in years.
power Horsepower of the vehicle in kilowatt.
agec Age of the vehicle in years.
bm Level occupied in the former compulsory Belgian bonus-malus scale.

From 0 to 22, a higher level indicates a worse claim history (see
Lemaire, 1995).

long Longitude coordinate of the center of the municipality where the
policyholder resides.

lat Latitude coordinate of the center of the municipality where the
policyholder resides.

Table 2.1: Overview of the available variables in the MTPL dataset.

Figure 2.1 illustrates how nclaims, exp and amount from Table 2.1 are
distributed in the MTPL dataset. Most policyholders (88.79%) are claim-free
during their insured period. A substantial number of policyholders (10.14%)
files one claim and the remaining ones (1.07%) file two, three, four or five
claims. Most policyholders (77.33%) have an exposure equal to one and are
therefore covered by the insurance and exposed to the risk during the entire
year. The exposure of the other policyholders (22.67%) is equally spread out
between zero and one. Policyholders with an exposure lower than one have
surrendered the policy during the year or started the policy in the course of
the year. The overall claim frequency of the portfolio, calculated as the ratio of
the total number of claims and the total exposure in years, is equal to 13.93%.
Claims mainly involve small amounts. The total claim amount exceeds 10,000
Euro for only 2% of the claiming policyholders. The overall claim severity of
the portfolio, calculated as the ratio of the total claim amounts and the total
number of claims, is equal to 1,620.06 Euro.

Figure 2.2 illustrates how the risk factors from Table 2.1 are distributed in the
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Figure 2.1: Relative frequency of nclaims and exp and density estimate of amount.

MTPL dataset. The MTPL dataset contains five categorical risk factors: coverage,
fuel, sex, use and fleet. Most policyholders (58.28%) have only TPL coverage,
which means that only their liability with respect to a third party (that is:
another person) is covered. As in many developed countries, this coverage is
compulsory in Belgium. The other policyholders have chosen for a policy which
covers material damage on top of the TPL; either limited material damage
in the form of a partial omnium (28.17%) or comprehensive coverage in the
form of a full omnium (13.54%). Two types of fuel are used in the cars of the
policyholders: gasoline (69.12%) and diesel (30.88%). Most policyholders are
males (73.55%), they use their car mainly for private reasons (95.17%) and
most cars are not part of a fleet (96.83%).

The MTPL dataset contains four continuous risk factors:, ageph, power, agec
and bm. Almost all policyholders (93.53%) are aged between 25 and 75, which
means that there are few young and old drivers in the insurance portfolio. Most
of the cars in the insurance portfolio have less than 100 kilowatt of horsepower
(97.35%) and are younger than 20 years old (99.53%). The rather low range of
horsepower is nowadays outdated, but fits the less powerful cars from 1997. The
left panel of Figure 2.3 shows a two dimensional density estimate for ageph and
power. This gives additional intuition about the distribution of the policyholders
over these continuous risk factors and the interplay between ageph and power.

More than half of the policyholders reside in the two lowest bonus-malus levels
(level 0: 37.77% and level 1: 16.52%). Most of the other policyholders (42.90%)
have a bonus-malus level between 2 and 11 and almost no policyholders (2.81%)
occupy a bonus-malus level higher than 11. It should be noted that the bonus-
malus level is usually not incorporated as a risk factor in an a priori tariff.
However, we keep this variable in our analysis to investigate the information
contained in this risk factor, much in line with the work of Denuit and Lang
(2004); Klein et al. (2014). In reality, we distinguish between a priori and
a posteriori pricing. The a priori premium takes into account policyholder
information known at this point in time, while the a posteriori premium adjusts
the a priori price based on historical claims information as it becomes available
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over time. The bonus-malus level is therefore a typical example of a posteriori
information and is normally incorporated in an insurance tariff via credibility
models or via bonus-malus systems in a more commercial setting (Antonio and
Valdez, 2012). In traditional actuarial practice, a priori pricing deals with
cross-sectional data via GLMs or GAMs, while a posteriori pricing deals with
longitudinal panel data via Generalized Linear Mixed Models (GLMMs). Such
GLMMs extend GLMs with random effects in the linear predictor to take into
account unobserved heterogeneity and to determine the correlation structure.
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Figure 2.2: Relative frequency of the risk factors coverage, fuel, sex, use, fleet,
ageph, power, agec, bm.

The MTPL dataset contains geographical information in the form of longitude and
latitude coordinates, long and lat, of the municipality (or: postal code area)
where the policyholder resides. The map of Belgium in Figure 2.3 visualizes the
exposure in each municipality relative to the area of the municipality. White
municipalities are those where the insurer has no policyholders and is therefore
not exposed to the risk of filing a claim. Municipalities in light (dark) blue
represent the 20% of municipalities containing the lowest (highest) relative
exposure. Few policyholders are living in the southeastern part of Belgium,
the Ardennes, while a lot of policyholders are living near some big cities of the
French Community in Belgium; Brussels, Liège, Charleroi and Mons.
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Figure 2.3: Density of ageph - power (left) and exposure map of Belgium (right).

2.3 Flexible models for P&C pricing using GAMs

Following McClenahan (2001); Antonio and Valdez (2012) we denote with Fi
and Si respectively the frequency and severity of policyholder i. Frequency is
expressed as the number of claims Ni per unit of exposure ei, while severity
is expressed as the average claim amount over the number of claims Ni. The
severity Si is therefore only defined if policyholder i files a claim, i.e. if Ni > 0.
We define the pure premium πi as follows: πi = E[Fi] × E[Si], by assuming
independence between Fi and Si. In this setting we construct a predictive model
for Fi using the claim history of all policyholders in the portfolio, including
those who did not file a claim, and one for Si using the history of policyholders
who filed at least one claim.
GAMs are a suitable tool for actuarial regression modeling due to their
flexibility in handling different types of risk factors. These models allow for
the incorporation of smooth effects of continuous and spatial risk factors. The
predictor η of the GAMs is expressed as follows:

ηi = g(µi) = β0 +
p∑
j=1

βjx
d
ij +

q∑
j=1

fj(xcij) +
r∑
j=1

fj(xsij , ysij). (2.1)

where µi is the mean of a response variable with a distribution from the
exponential family and g(.) is the link function. The 0/1-valued dummy variables
xd represent the typical way to code categorical risk factors in the GLM or
GAM framework: a categorical risk factor with z levels requires the choice of
a reference level and z − 1 dummy variables to model the differences between
the other levels and the reference level. The regression coefficient βj captures
the effect of dummy variable xdj on the predictor η. GAMs extend GLMs by
including smooth functions of continuous risk factors. Main effects are captured
by the univariate smooth functions f(xc), while interaction and spatial effects
are expressed by bivariate smooth functions f(xs, ys).
GAMs form the starting point of our pricing strategy and we search for the
optimal model by using the Akaike information criterium (AIC, see Akaike,
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1974) and the Bayesian information criterion (BIC, see Schwarz, 1978). Both
take goodness of fit and model complexity into account and are defined as
follows:

AIC = −2 · logL+ 2 · EDF

BIC = −2 · logL+ log(n) · EDF
(2.2)

where logL is the log-likelihood of the model, n is the number of observations
in the dataset and EDF represents the effective degrees of freedom which
corresponds to the number of parameters in a GLM. Both AIC and BIC measure
the goodness of fit by minus two times the log-likelihood supplemented with
a complexity penalty. The BIC penalty is more severe and BIC will therefore
favor less complex models. We continue our search for the optimal GAM with
BIC as model selection criterion since we want to favor well performing models
that are as simple as possible.1 Note that lower AIC/BIC values indicate better
models.

We fit the GAMs to the claims data on frequency and severity separately and
follow - for both predictive models - a two-step strategy to select the appropriate
set of risk factors to be included in (2.1). The first step performs an exhaustive
search for the optimal GAM without taking into account interactions between
the risk factors. In the second step, we perform an additional exhaustive search
to search for meaningful interactions which improve the model fit. We only try
to add interactions between continuous risk factors which have been selected in
the first step.

We use R and the mgcv package developed by Wood (2006) to fit the GAMs.
The smooth functions f from (2.1) are represented by penalized thin plate
regression splines, wich are low rank approximations of the thin plate splines
of Duchon (1977). For details on thin plate (regression) splines we refer to
Section 2 of Wood (2003) and Section 4.1.5 of Wood (2006). We construct the
interaction effects as tensor product interactions which exclude the main effects
of the continuous risk factors, see Section 4.1.8 of Wood (2006) for details on
tensor product smooths. We define the interactions in such a way that we can
interpret them as corrections on top of the main effects which are included
separately in the model. The model parameters are estimated by maximizing
the penalized log-likelihood via penalized iteratively reweighted least squares
(P-IRLS), see Section 4.3 of Wood (2006) for details on this procedure. The
smoothness of the splines is controlled by a smoothing parameter, which will
make a trade-off between penalizing a bad fit to the data and penalizing the
‘wiggliness’ of the spline. Smoothing parameters are estimated via Generalized
Cross Validation (GCV, see Craven and Wahba, 1978) or via an Un-Biased
1For illustrative purposes we use BIC to select the optimal GAM, which serves as the starting
point of our strategy. In the subsequent binning steps we use AIC as selection criterion.
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Risk Estimator (UBRE, see Wahba, 1990) when the scale parameter in the
distribution of the response is unknown or when it is known, see Section 4.5.4
of Wood (2006).

2.3.1 Frequency

In this section we focus on developing a flexible regression model for claim
frequencies. We assume a Poisson distribution for nclaims and demonstrate
our approach within this distributional setting. This is a common assumption
in the insurance pricing industry and is in line with earlier work on this dataset
(see Denuit et al., 2007). An actuary can however easily apply our approach to
other distributional settings (e.g. negative binomial).

The goal is to explain the number of claims nclaims reported by a policyholder,
for given exposure exp, using different types of risk factors. Our starting point
is a Poisson GAM which includes all categorical risk factors coverage, fuel,
sex, use and fleet together with main effects of all continuous risk factors
ageph, power, agec and bm and a spatial effect based on long and lat. This
GAM, which is not yet using any interaction terms, is formulated as follows:

log(E(nclaims)) = log(exp) + β0 + β1coveragePO + β2coverageFO+

β3fueldiesel + β4sexfemale + β5usework+

β6fleetY + f1(ageph) + f2(power) + f3(agec)+

f4(bm) + f5(long, lat).

(2.3)

The logarithm of exposure is included in the model as an offset, such that the
expected number of claims is proportional to the exposure. The five categorical
risk factors are coded with dummy variables by taking the level with the largest
amount of exposure as reference level: coverageTPL, fuelgasoline, sexmale,
useprivate and fleetN . The functions f1, f2, f3 and f4 are univariate smooth
effects of continuous risk factors. The spatial effect, f5, is a bivariate smooth
function of the latitude and longitude coordinates.

Our modeling choice for the spatial effect is in line with Denuit and Lang (2004)
and Klein et al. (2014) in the field of P&C insurance pricing. This approach for
predictive models involving spatial information is also used in other domains of
statistics (see, among others, Vieira et al., 2005; Bristow et al., 2014; Chen et al.,
2015). The first law of geography, introduced by Tobler (1970), states that
“everything is related to everything else, but near things are more related than
distant things”. The GAM framework adheres this law and allows us to smooth
the spatial effect over neighboring municipalities and interpolate to unobserved
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districts, while controlling for other confounding risk factors such as the age
of the policyholder and power of the car. When socio-economic characteristics
are available per postal code, such as the average salary in a region, these can
be controlled for in the GAM as well. An alternative approach (see Ohlsson,
2008) would be to model the spatial effect as a multi-level factor in a credibility
framework.

We perform an exhaustive search over all possible combinations of explanatory
variables in order to find the best GAM fit. The full model in (2.3) contains
10 risk factors: 5 categorical, 4 continuous and 1 spatial. All 1024 different
models that can be formed by including or excluding these 10 risk factors are
evaluated.2 The model with the lowest BIC value of all 1024 investigated models
is given by:

log(E(nclaims)) = log(exp) + β0 + β1coveragePO + β2coverageFO+

β3fueldiesel + f1(ageph) + f2(power)+

f3(bm) + f4(long, lat).

(2.4)

Two categorical risk factors, coverage and fuel, three continuous risk factors,
ageph, power and bm, and the spatial risk factor are included in the optimal
specification for the predictor.

We now investigate whether the model in (2.4) can further be improved by
adding interaction effects between the continuous risk factors. Such interaction
effects are not considered in the studies of Denuit and Lang (2004); Klein
et al. (2014). For demonstration purposes we only include interaction effects
among continuous risk factors and not among categorical risk factors or between
a continuous and a categorical risk factor. An interaction effect between a
continuous and categorical risk factor will give rise to a smooth effect of the
continuous risk factor for every level of the categorical risk factor. Adding
these types of interactions will therefore only result in a more complex model
without contributing added value to the demonstration of our strategy for the
construction of tariff classes.

We examine interactions between the continuous risk factors already included
in (2.4). The only possible interactions between ageph, power and bm
are: ageph-power, ageph-bm and power-bm. Incorporating the interaction
ageph-power results in a decrease of BIC whereas adding the other two
interaction effects always results in an increase of BIC. The interaction
ageph-power is therefore added to the model in (2.4) and our resulting GAM
2This operation takes approximately 20 hours on one core of a 2.7 GHz Intel Core i5 processor.
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for claim frequency is given by:

log(E(nclaims)) = log(exp) + β0 + β1coveragePO + β2coverageFO+

β3fueldiesel + f1(ageph) + f2(power) + f3(bm)+

f4(ageph, power) + f5(long, lat).

(2.5)
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Figure 2.4: Fitted smooth frequency GAM effects from (2.5). Top row: main
effects f̂1(ageph), f̂2(power) and f̂3(bm). Bottom row: interaction effect
f̂4(ageph, power) and spatial effect f̂5(long, lat).

Figure 2.4 displays the five fitted smooth functions: f̂1(ageph), f̂2(power),
f̂3(bm), f̂4(ageph, power) and f̂5(long, lat) from (2.5). The top row shows the
fitted smooth effects of the risk factors ageph, power and bm in solid lines. The
dashed lines represent the 95% pointwise confidence intervals, which are wider
in regions with scarce data. Young policyholders appear to be risky drivers,
which might be explained by their driving style or lack of experience behind
the wheel. This riskiness decreases over increasing ages and stabilizes around
the age of 35. It increases slightly between ages 45 and 50, possibly due to
the fact that children of policyholders in their late 40s - early 50s start to
drive with their parents’ car. After age 50 the riskiness decreases again until
the age of 70, after which it starts increasing again. This implies that seniors
report more car accidents when growing older. Note however the widening
confidence interval for these high ages due to the rarity of old policyholders
in our portfolio. The smooth effect of power shows a steep increase over the
interval from 0 to 50 kilowatt and a more gradual increase from 50 kilowatt
onwards. This implies that policyholders driving a more powerful vehicle are
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more likely to report a claim. The smooth effect of bm shows a steady increase
over increasing bonus-malus levels. This effect is in line with our intuition,
since policyholders occupying high bonus-malus levels have worse claim histories
compared to policyholders with low bonus-malus levels.

The fitted interaction effect between ageph and power is displayed in the
bottom left panel of Figure 2.4. A negative (positive) correction, coloured in
light blue (dark blue), indicates that the combined main effects of ageph and
power overestimate (underestimate) the annual expected claim frequency. The
combinations low ageph - low power and high ageph - high power are therefore
less risky than the two main effects predict. The combinations high ageph -
low power and low ageph - high power are therefore more risky than the two
main effects predict. Among others, the results of our preferred GAM show
that young policyholders driving a more powerful car imply a high risk for the
insurer, at least in terms of the claim frequency.

The fitted spatial effect is displayed in the bottom right panel of Figure 2.4.
Note that this map does not indicate how likely claims are to occur in each
municipality, but it reflects in which municipalities the more risky policyholders
reside. Although a policyholder can have an accident in any municipality, we
can assume that he will drive quite often in his own municipality. Moreover, the
municipality serves as a proxy for socio-economic characteristics that characterize
the neighborhood where the policyholder resides. The municipalities are colour
coded where light blue (dark blue) indicates a municipality where policyholders
reside which have, on average, few (many) car accidents. The region around
Brussels, in the center of Belgium, is associated with the highest accident risk.
Traffic is very dense in this area, which is reflected in a higher expected annual
claim frequency for policyholders who live here. The southeastern, northeastern
and western parts of Belgium are less densely populated, which is reflected in a
lower expected annual claim frequency for policyholders who live here.

2.3.2 Severity

We now focus on developing a flexible regression model for claim severities. Our
dataset does not contain individual claim amounts, but we have the total claim
amount and the number of claims at our disposal. We therefore work with the
average cost of a claim where avg is defined as the ratio of amount and nclaims.
We use nclaims as a weight in our regression model and assume a lognormal
distribution for avg. This is a common assumption in the insurance pricing
industry and is in line with earlier work on this dataset (see Denuit and Lang,
2004). An actuary can however easily apply our strategy with other severity
distributions (e.g. gamma).
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We follow the fitting procedure outlined in Section 2.3.1 and start with finding
an optimal lognormal GAM without interation effects. In a next step we look
for interactions between continuous risk factors that improve the model fit. In
the severity fitting procedure we can only use observations of policyholders who
actually filed a claim, i.e. nclaims > 0, which accounts for 18,295 records in
our MTPL dataset. The very large claims are excluded from our analysis since
these are not the focus when developing a tariff structure. Using techniques
from Extreme Value Theory (EVT) Denuit and Lang (2004); Klein et al. (2014)
obtain a threshold of 81,000 Euro which separates small, attritional losses from
large losses. For 19 records the average claim cost exceeds this threshold. We
therefore obtain 18,276 records below the threshold to fit our severity model.

Our preferred model for claim severity is the lognormal GAM given by:

E(log(avg)) =γ0 + γ1coveragePO + γ2coverageFO+

g1(ageph) + g2(bm).
(2.6)

A Gaussian distribution is assumed for the response log(avg), such that the
average amount of a claim follows a lognormal distribution. Only one categorical
risk factor, coverage, and two continuous risk factors, ageph and bm, are
selected. We find no relevant interaction or spatial effect for severity. As
documented in actuarial pricing literature (see Charpentier, 2014), severity
models tend to have fewer relevant risk factors compared to frequency models.
Claim severity is more difficult to explain by risk factors than claim frequency
for at least two reasons. First of all, one has less data available to fit a severity
model. Secondly, the driver has almost no control over the cost of an accident.

Figure 2.5 displays the two fitted smooth functions: ĝ1(ageph) and ĝ2(bm) from
(2.6). Going from ages 18 to 35, we can observe a decrease of the average claim
cost. This indicates that very young drivers are involved in more severe car
accidents. The average claim cost starts to increase again for policyholders older
than 35, stabilizes in the age interval 45 to 60 after which it starts to increase
again. A possible explanation might be the fact that older policyholders drive
more expensive cars and repairing costs increase. The age of the policyholder
might be operating as a proxy for the price of the car. Unfortunately we do not
have that information in our dataset to confirm this. The average claim cost
increases with increasing bonus malus levels. There is however a stabilizing
region around level 5 and the average claim cost decreases from bonus malus
level 13 onwards. Because of the scarceness of data for the high bonus malus
levels one can not conclude much about this region, as the widening confidence
bounds illustrate.
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Figure 2.5: Fitted smooth severity GAM effects ĝ1(ageph) and ĝ2(bm) from (2.6).

2.4 Data-driven binning methods for the smooth
GAM effects

The GAM model formulas (2.5) and (2.6) are optimal, according to BIC, for
claim frequency and severity in the MTPL dataset. These models offer a high
degree of flexibility for the spatial and continuous risk factors, which is very
appealing from a statistical modeling point of view. For practical purposes, as
discussed in Section 2.1, insurers prefer a pricing model where each risk factor is
categorical. This makes the price list easy to implement, explain and adjust. In
this section we present a data-driven approach to bin the spatial and continuous
risk factors of the predictors (2.5) and (2.6). In Section 2.4.1 we bin the spatial
risk factor, which is only present in the frequency model. In Section 2.4.2 we bin
the continuous risk factors, which are present in both the frequency and severity
models. Once all risk factors are categorical, it is straightforward to estimate a
GLM with the risk factors coded by dummy variables (see Section 2.5).

2.4.1 Spatial effect

We first put focus on binning the fitted continuous spatial effect f̂5(long, lat)
from the frequency model (2.5). For each of the 1,146 Belgian municipalities we
have a single number which represents the spatial riskiness of that municipality:
si = f̂5(longi, lati) for i ∈ {1, ..., 1146}. The goal therefore is to group the
municipalities with similar spatial riskiness together. We use the classInt
package in R, developed by Bivand (2015), to compare four different binning
methods:

• Equal intervals. The range of the spatial effect f̂5(long, lat) is divided
in k bins of equal length: max(si)−min(si)

k , where the maximum and
minimum are taken over all i. This approach can give good results
for uniformly distributed data, but tends to perform poorly for skewed
data.
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• Quantile binning. Each bin will contain approximately 1146
k municipalities

where k equals the number of bins. This method is often the default in
statistical software packages, though it can give very misleading results.
Similar observations can be assigned to different bins in order to make
sure that each bin contains the same number of observations.

• Complete linkage. This method performs agglomerative hierarchical
clustering (see Kaufman and Rousseeuw, 1990). Initially each municipality
forms its own bin and in every iteration the two bins closest to each
other are merged. The distance between bins i and j is equal to the
distance between their most distant points: d(i, j) = max |s(i)

u − s
(j)
v |

∀u, v : s(i)
u ∈ i, s(j)

v ∈ j, where u and v run over all possible combinations
of points from bin i and bin j. Bins with remote observations will only
be merged in a late stage of the iteration process.

• Fisher’s natural breaks. This iterative algorithm, developed by Fisher
(1958) and discussed in Slocum et al. (2005), maximizes the homogeneity
within bins. Bins are created such that every observation s(i)

u in bin i is as
close as possible to the average of its bin s̄(i). This is done by minimizing
the sum of squared distances between observations s(i)

u and the respective
bin means s̄(i):

∑k
i=1
∑ni

u=1(s(i)
u − s̄(i))2. Here, i runs over the different

bins, u runs over the municipalities within each bin, k is the number of
bins and ni the number of municipalities within bin i.

We compare the results of the different binning methods using two measures:
the goodness of variance fit (GVF) and the tabular accuracy index (TAI). The
GVF and TAI are defined as follows by Armstrong et al. (2003):

GVF = 1−
∑k
i=1
∑ni

u=1(s(i)
u − s̄(i))2∑1146

u=1 (su − s̄)2
(2.7)

TAI = 1−
∑k
i=1
∑ni

u=1 |s
(i)
u − s̄(i)|∑1146

u=1 |su − s̄|
(2.8)

where k and ni indicate the number of bins and the number of municipalities
in bin i. The denominator in (2.7) and (2.8) measures the deviation of each
municipality from the global average. The numerator in (2.7) and (2.8) measures
the deviation of each municipality from its bin average. For both measures a
value closer to 1 indicates small variance within the bins compared to the global
variance and hence a more homogeneous binning of the municipalities.

Table 2.2 compares the performance of the four binning methods for different
number of bins k. We denote the highest values for the GVF and TAI in bold
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in every column where we use the fourth digit behind the decimal point in case
of a tie in the presented values. Fisher’s natural breaks algorithm outperforms
the other methods in eleven out of twelve cases. This method clearly results in
the most homogeneous binning and is therefore the preferred method to bin the
spatial effect f̂5(long, lat) from the frequency model (2.5). The equal intervals
method is performing rather well despite its simplicity; it attains the second
best GVF in five out of six cases. Quantile binning also performs well, attaining
the second best TAI in five out of six cases. The complete linkage method
attains the lowest GVF/TAI in nine out of twelve cases.

k=2 k=3 k=4 k=5 k=6 k=7
GVF TAI GVF TAI GVF TAI GVF TAI GVF TAI GVF TAI

Equal 0.610 0.357 0.778 0.492 0.882 0.628 0.913 0.675 0.940 0.730 0.955 0.767
Quantile 0.615 0.356 0.773 0.526 0.854 0.642 0.894 0.694 0.921 0.751 0.937 0.778
Complete 0.558 0.314 0.680 0.395 0.857 0.613 0.892 0.657 0.936 0.726 0.952 0.761
Fisher 0.615 0.356 0.822 0.562 0.892 0.654 0.927 0.724 0.951 0.769 0.963 0.795

Table 2.2: The GVF and TAI for the four methods and different values for k to bin
the spatial effect f̂5(long, lat).

In order to get a better understanding of the resulting bins for different
methods we show two visual comparisons with k = 5. Figure 2.6 shows the
empirical cumulative distribution function of the spatial effect f̂5(long, lat)
in combination with the bins produced by the different methods. Figure 2.7
visualizes the different spatial binning results on the map of Belgium. The
four methods result in very different bins for the spatial effect and therefore
give rise to very different groupings of the municipalities. The method of equal
intervals clearly divides the range of the spatial effect in five equally sized
bins. A lot of municipalities are therefore grouped in the middle bin (499)
whereas few municipalities are grouped in the first and last bin (39 and 111).
Quantile binning produces very wide bins in the extreme ends of the support
where data are scarce. Every bin contains approximately 230 municipalities.
Complete linkage groups a lot of municipalities in the second bin (465) and
few municipalities in the first and last bin (39 and 55). Fisher’s natural breaks
algorithm results in the most homogeneous binning and seems to act as a
middle ground between equal intervals and quantile binning. We obtain 300
municipalities in the middle bin and respectively 86 and 176 in the first and
last bin.

From inspecting Table 2.2 it follows that increasing the number of bins k results
in a monotonic increase of both the GVF and TAI. These measures can therefore
not be used to choose the number of bins k since more bins will always result
in a more homogeneous binning. As motivated in Section 2.1, pricing actuaries
ultimately prefer a GLM where all types of risk factors are coded as categorical
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Figure 2.6: The empirical cumulative density function of the fitted spatial effect

f̂5(long, lat) in combination with the five bins produced by the four
different binning methods.
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Figure 2.7: Maps of Belgium with the municipalities grouped into five distinct bins
based on the intervals produced by the four different binning methods
for the spatial effect f̂5(long, lat).

variables. We therefore propose to tune the optimal number of bins for the
spatial effect based on the binned spatial effect which will be used in a GLM. We
tune the number of bins by considering a set of possible values for the number
of spatial bins, e.g. k ∈ {2, 3, 4, 5, 6, 7}. For each value in this set the procedure
listed in Table 2.3 is applied.

After applying this procedure we choose the number of bins for the spatial
effect that results in the lowest AIC for the GAM with a binned spatial effect.
Our approach requires the estimation of a GAM with binned spatial effect for
each value in the considered set, but this extra effort allows us to find the best
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Procedure: Find the optimal number of bins for the spatial effect

Step 1 Apply Fisher’s natural breaks algorithm to calculate the bin intervals
for the spatial effect, f̂5(long, lat) from (2.5), where the number of
bins is chosen equal to the current value of the predefined set of values.
These bin intervals are used to transform the continuous spatial effect
into a categorical spatial effect.

Step 2 Estimate a new GAM where we use a predictor structure similar to
(2.9). This GAM contains the spatial effect in a categorical format,
but still uses flexible effects to model the continuous risk factors.

Step 3 Calculate AIC of the GAM with a binned spatial effect.

Table 2.3: Procedure to find the optimal number of bins for the spatial effect.

fitting GLM in the end. The results in Table 2.4 illustrate that choosing five
bins result in the lowest AIC for the GAM with a binned spatial effect. We also
report the BIC values of the GAMs with a binned spatial effect and conclude
that choosing BIC as evaluation measure also results in five bins for binning
the spatial effect.

# bins AIC BIC

2 124778.9 125047.6
3 124753.1 125023.9
4 124652.3 124928.4
5 124621.3 124907.2
6 124627.7 124921.6
7 124639.1 124942.9

Table 2.4: AIC and BIC for the fitted GAM with binned spatial effect, as obtained
via Fisher’s natural breaks, evaluated over a predefined set for the number
of bins.

From this section we conclude that it is optimal to bin the spatial effect
f̂5(long, lat) from the frequency model (2.5) with Fisher’s natural breaks
algorithm in five bins. This results in the most homogeneous binning for the
spatial effect and the lowest AIC value for the GAM with a binned spatial effect.
For the frequency model we continue our study with a GAM which specifies
the spatial effect as a categorical risk factor (geo). The bin [−0.036, 0.11) is
chosen as the reference class since it contains the highest amount of exposure,
namely 354 municipalities. This gives the following GAM specification for the
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frequency model:

log(E(nclaims)) = log(exp) + β0 + β1coveragePO + β2coverageFO+

β3fueldiesel + β4geo[−0.48,−0.27) + β5geo[−0.27,−0.14)+

β6geo[−0.14,−0.036) + β7geo[0.11,0.34] + f1(ageph)+

f2(power) + f3(bm) + f4(ageph, power).
(2.9)

2.4.2 Continuous risk factors

We now put focus on binning the main and interaction effects of the continuous
risk factors: f̂1(ageph), f̂2(power), f̂3(bm), f̂4(ageph, power) from the frequency
model (2.9) and ĝ1(ageph), ĝ2(bm) from the severity model (2.6).

We want to create bins where consecutive values of a continuous risk factor
are grouped together. The approach followed for binning the spatial effect is
therefore no longer appropriate, since it might create bins where - for example -
policyholders younger than 30 are grouped with policyholders older than 80. We
propose the use of regression trees as a technique to perform the binning since
these models produce intuitive splits in line with our requirement of grouping
consecutive values of the continuous variables, e.g. ages. Classic regression tree
methods, such as Classification And Regression Trees (CART) from Breiman
et al. (1984), are recursive partitioning methods that fit a model in a forward
stepwise search. Splits are chosen to maximize the homogeneity of the partitions
at every step and these consecutive splits are kept fixed in all the following
steps. This forward stepwise search is an efficient heuristic, but the resulting
binning is only locally optimal. We refer to Breiman et al. (1984); Hastie and
Tibshirani (1990); for details and terminology regarding tree-based models.

In our procedure, we choose to use evolutionary trees from the R package evtree
developed by Grubinger et al. (2014). These evolutionary trees combine the
framework of regression trees with genetic algorithms. An evolutionary process
mutates the tree structure at any possible node until convergence is reached
towards an optimal solution which can not be improved anymore. Evolutionary
trees therefore allow us to adapt earlier splits in a later stage of the fitting
procedure. Thanks to this extra flexibility, evolutionary trees are capable of
finding a global optimum (see Grubinger et al., 2014), which results in a more
robust binning of our continuous risk factors as we showcase later on.

The data that serves as input to the evolutionary trees are the main and
interaction effects from the GAMs in (2.9) and (2.6): (ageph,f̂1), (power,f̂2),
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(bm,f̂3), (ageph, power,f̂4), (ageph,ĝ1), (bm,ĝ2). Hence we grow a regression
tree for each of the fitted flexible effects, with the flexible effect (e.g. f̂1(ageph))
as response and the corresponding risk factor (e.g. ageph) as covariate. This
results in a binned version of the flexible effect which takes into account the
ordering of the levels of the continuous risk factors. It is important to take
the composition of the insurance portfolio into account when deciding where
to split or bin the risk factors. For policyholders older than 75, for example,
the fitted smooth effect f̂1(ageph) in Figure 2.4 is strongly increasing, but
Figure 2.2 indicates that the portfolio does not contain many policyholders
aged over 75. It is not desirable to obtain many splits in this region, since it
will only affect a small portion of the portfolio. Therefore the distribution of
the policyholders with respect to a specific risk factor is taken into account
by using the number of policyholders as weights. Table 2.5 shows a snippet
of input data for the f̂1(ageph) tree. For example, the MTPL portfolio contains
393 policyholders aged 20. The smooth effect for ageph = 20, f̂1(20), therefore
obtains an integer weight of 393. The evolutionary tree will interpret this weight
as if the observation pair (ageph = 20, f̂1(20)) occurs 393 times in its input data.
A constraint is imposed to make sure that bins are not too sparsely populated:
each bin should at least contain 5% of the policyholders in the entire portfolio.
Modifying this constraint gives insurers flexibility over the granularity of the
bins.

Covariate: ageph Response: f̂1(ageph) Weight: w

18 0.495 16
19 0.459 116
20 0.424 393

Table 2.5: Snippet of the input data for the evolutionary tree that bins f̂1(ageph).

The evaluation function to measure the performance of a tree has the following
form:

n · log(MSE) + 4 · α · (m+ 1) · log(n) (2.10)
where n is the number of observations in the input data, m is the number of leaf
nodes in a tree and α is a tuning parameter (see Grubinger et al., 2014). Note
that n is equal to the sum of all the weights since a tree interprets a weight as
being the number of times that the respective (response, covariate) pair occurs
in the input data. The first term in evaluation function (2.10) measures the
accuracy of the tree by means of the mean squared error (MSE). For f̂1(ageph)
- for example - this MSE looks as follows:

MSE =
∑max(ageph)
i=min(ageph) wagephi

(f̂1(agephi)− f̂ b1(agephi))2∑max(ageph)
i=min(ageph) wagephi

(2.11)
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with wagephi
the number of policyholders with ageph = i, f̂1(agephi) the fitted

GAM effect for a policyholder with ageph = i and f̂ b1(agephi) the fitted value
obtained from the regression tree. This last value is obtained as the mean of
f̂1(agephi) over all policyholders in the age bin where ageph = i belongs to.
The second term of evaluation function (2.10) represents a complexity penalty
in terms of the size of the tree, measured by the number of leaf nodes m, where
each leaf node corresponds to a bin. The tuning parameter α takes care of the
trade-off between accuracy and complexity.

The evaluation function in (2.10) scales in a comparable manner over
the four trees that bin the frequency effects f̂1(ageph), f̂2(power), f̂3(bm),
f̂4(ageph, power) because of two reasons. Firstly, n = 163,231 for all four trees
since this is the total number of policyholders in the MTPL dataset. Secondly,
the MSEs are on the same level since they deal with the variance of the effects
at the level of the predictor of the frequency model. This motivates the use
of a single tuning parameter αfreq to construct the trees. Likewise we define
αsev as the single tuning parameter for both trees that bin the severity effects
ĝ1(ageph), ĝ2(bm). For both these trees n = 18,276 and the MSEs are again
at the same level, that is the level of the predictor of the severity model.
This implies that we have two tuning parameters which can be optimized
independently: αfreq and αsev. Tuning these α’s follows the same approach as
tuning the number of bins for the spatial effect in Section 2.4.1. We consider
a set of possible values for both αfreq and αsev and search for the optimal
ones. After some initial exploration, we choose to use the unequally spaced
set {1,1.5,2,. . .,9.5,10,15,20,. . .,95,100,150,200,. . .,950} for both αfreq and αsev.
These values allow us to find the right balance between too complex trees (low
α’s) and too simplistic trees (high α’s). For each value in this set the procedure
listed in Table 2.6 is applied.

Procedure: Find the optimal tuning parameters αfreq and αsev for the
evolutionary trees

Step 1 Fit evolutionary trees to the main and interaction effects of the
continuous risk factors, (ageph, f̂1(ageph)) et cetera, where α is chosen
equal to the current value of the predefined set of values. The splits
produced by these trees are used to transform the continuous effects
into categorical effects.

Step 2 Estimate a frequency and severity GLM with the resulting categorical
risk factors.

Step 3 Calculate AIC of the frequency GLM and the severity GLM.

Table 2.6: Procedure to find the optimal tuning parameters αfreq and αsev to bin
the main and interaction effects, (ageph, f̂1(ageph)) et cetera, via the
resulting GLM.
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After applying this procedure we choose the values of αfreq and αsev that result
in the lowest AIC for respectively the frequency and severity GLM. Figure 2.8
shows the splits produced by the preferred evolutionary trees with αfreq = 550
and αsev = 70.
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Figure 2.8: Binning intervals for the continuous effects. Top and middle row: main
and interaction effects f̂1(ageph), f̂2(power), f̂3(bm) and f̂4(ageph, power)
from the frequency model, binned by evolutionary trees with αfreq = 550.
Bottom row: main effects ĝ1(ageph) and ĝ2(bm) from the severity model,
binned by evolutionary trees with αsev = 70.

By means of example we discuss the splits obtained for the main effects
f̂1(ageph), f̂3(bm) and the interaction effect f̂4(ageph, power). Similar
observations hold for the other effects. The main effect f̂1(ageph) is split
into eight bins. All policyholders with an age in the interval [33, 51) are grouped
together since f̂1(ageph) is rather flat over this interval. Younger policyholders
have a higher risk profile and three bins are formed for policyholders younger
than 33: [18, 26), [26, 29) and [29, 33). The first bin is wider because there
are very few young policyholders present in the portfolio. The smooth effect
f̂1(ageph) decreases for policyholders aged over 51. These policyholders typically
have more driving experience and therefore a lower risk profile. Two bins are
created in this region: [51, 56) and [56, 61). The smooth effect f̂1(ageph)
stabilizes after age 61 before it starts increasing again for senior policyholders.
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This results in two bins; [61, 73) for the stabilizing region and [73, 95] for the
senior policyholders with a higher risk profile.

The main effect f̂3(bm) is split into seven bins. The first three bonus-malus
levels end up in separate bins: [0, 1), [1, 2) and [2, 3). The next bin, [3, 7), is
wider because f̂3(bm) increases less steeply over this range. The next two bins,
[7, 9) and [9, 11), are less wide because f̂3(bm) starts to increase more steeply
again over this region. The higher bonus-malus levels are grouped into one bin:
[11, 22]. This bin is so wide for two reasons: the slope of f̂3(bm) decreases for
higher bonus-malus levels and only a few policyholders have such high levels.

The interaction effect f̂4(ageph, power) is split into seven bins. The solid white
contour lines indicate where f̂4(ageph, power) = 0. These combinations of
ageph and power therefore indicate a neutral region where the main effects of
ageph and power are sufficient to fully grasp the riskiness. Our method detects
this neutral region by forming three bins around the solid white contour lines.
The vertical bin for 40 ≤ ageph < 57 represents the neutral zone around the
vertical contour line. Two horizontal bins, one for 49 ≤ power < 72 on the
left and one for 47 ≤ power < 68 on the right, take the neutral zone around
the horizontal contour line into account. The bottom left graph of Figure 2.3
shows the two-dimensional distribution of the number of policyholders over
ageph and power. This figure explains why the tree chooses the neutral zone
in the vertical direction as largest; most policyholders can be captured as
such. The other four bins represent policyholders with lower/higher risk profiles
compared to the neutral region. Two bins represent policyholders with a lower
risk profile: ageph < 40, power < 49 and ageph ≥ 57, power ≥ 68. Two bins
represent policyholders with a higher risk profile: ageph < 40, power ≥ 72 and
ageph ≥ 57, power < 47.

Figure 2.9 motivates our preference for the more flexible evolutionary trees
over the classic recursive partitioning trees when binning the continuous risk
factors. The R package rpart, developed by Therneau et al. (2019), is used to
fit the recursive trees and weights are applied in the same manner as for the
evolutionary trees. The left panel of Figure 2.9 shows the first split for binning
the interaction effect. Although this split at ageph = 74 is an optimal way to
bin the interaction effect in two regions, it does not imply that this split is still
optimal when we bin the interaction effect in three or more regions. The right
panel of Figure 2.9 shows the binning result with recursive partitioning for seven
bins. As such we obtain the same number of bins as with the evolutionary trees
in Figure 2.8. Evolutionary trees lead to a much more stable binning result
which is globally optimal instead of only locally optimal. Furthermore, compared
to the pattern found in Figure 2.9 with a recursive tree, the neutral region with
areas of increased and decreased risk from Figure 2.8 in an evolutionary tree is
much easier to explain to customers and managers in practice.
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Figure 2.9: The optimal first split for the interaction effect (left) and the resulting
seven bins for the interaction effect (right) obtained with recursive
partitioning.

2.5 Analysis of the premium structure

2.5.1 From GAM to GLM

We now use the categorical risk factors, as constructed in Section 2.4, to fit a
Poisson GLM for the frequency and a lognormal GLM for the severity of the
claims data. For each risk factor we choose the bin with the largest exposure as
reference class in our GLMs. A full specification of the frequency and severity
regression models is in Appendix A.1.
The top and bottom row of Figure 2.10 compare the original main GAM effects
with the resulting estimated GLM coefficients for the frequency and severity
model respectively. Note that the GLM coefficients of Figure 2.10, indicated by
dots, are a rescaled version of the actual coefficients. This rescaling is performed
to make the GAM effects and the GLM coefficients comparable. Indeed, a GAM
effect such as f̂1(ageph) is estimated in such a way that the weighted mean of
the smooth effect, with the number of policyholders as weights, is equal to zero:∑max(ageph)

i=min(ageph) wagephi
f̂1(agephi)∑max(ageph)

i=min(ageph) wagephi

= 0 (2.12)

with wagephi
the number of policyholders with ageph = i and f̂1(agephi) the

corresponding fitted GAM effect. For a categorical risk factor, the GLM
coefficient for the reference class is equal to zero and the GLM coefficients of the
other classes are expressed relative to this reference class. The weighted mean
of the GLM coefficients, with the number of policyholders as weights, therefore
depends on the choice of the reference class. We adjust the GLM coefficients
such that the weighted mean of the rescaled GLM coefficients is equal to zero:

β̃agephj
= β̂agephj

−
∑kageph

j=1 magephj
β̂agephj∑kageph

j=1 magephj

(2.13)
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with kageph the number of bins for the risk factor ageph, magephj
the number of

policyholders in bin j and β̂agephj
the fitted GLM coefficient for the policyholders

in bin j. This rescaling is of course only performed to enable a visual comparison
between the GAM effects and the GLM coefficients; the actual GLM is not
adjusted in any way.

The piecewise constant functions formed by the GLM coefficients in Figure 2.10
approximate the smooth GAM effects very closely, especially for bins with high
exposure. For example, the GLM coefficients for age bin [33, 51) approximate
f̂1(ageph) very well. This indicates that our resulting GLMs are a good
approximation of the original GAMs. We trade flexibility for simplicity and some
discrepancies are therefore impossible to avoid. For example: both f̂1(ageph)
and ĝ1(ageph) are underestimated by the GLM coefficients for the youngest
and oldest policyholders. Such discrepancies only occur in the extreme ends of
the range of the risk factors, where the exposure is very low, and therefore few
policyholders are affected by this.
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Figure 2.10: Comparison between the GAM effects and GLM coefficients. Top row:
risk factors ageph, bm and power in the frequency model. Bottom row:
risk factors ageph and bm in the severity model.

Figure 2.11 shows the GAM interaction effect between ageph and power in
the frequency model together with the approximation obtained with the GLM
coefficients. The plus-shaped (+) region can be interpreted as a neutral zone
while the top left and bottom right (bottom left and top right) indicate regions
of increased (decreased) risk. Figure 2.12 shows both the GAM estimate for
the spatial effect in the frequency model and its approximation in the GLM. As
expected, the GLM coefficients reflect the riskiness as captured by the spatial
effect from the GAM.
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Figure 2.11: Comparison between the GAM effect and GLM coefficients for the
interaction between ageph and power in the frequency model.
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Figure 2.12: Comparison between the GAM effect and GLM coefficients for the
spatial effect in the frequency model.

2.5.2 A comparative analysis

Table 2.7 compares the statistical performance of the original GAMs and the
resulting GLMs via both the AIC and BIC measures. The GAMs attain a lower
AIC value for both the frequency and severity models, whereas the GLMs attain
a lower BIC value for both the frequency and severity models. This comparison
clearly shows the trade-off between flexibility and simplicity in the modeling
process. GAMs are the preferred tool for flexibility based on the low complexity
penalty of AIC, while GLMs are the preferred tool for simplicity based on the
high complexity penalty of BIC.

AIC Frequency Severity

GAM 124 630 65 593
GLM 124 646 65 603

BIC Frequency Severity

GAM 125 121 65 706
GLM 124 926 65 696

Table 2.7: Comparison of statistical performance between the original GAMs and
resulting GLMs via both the AIC and BIC measures.

We calculate the pure premium πi for every policyholder i as the product of the
expected values of the frequency Fi and the severity Si: πi = E[Fi]×E[Si], taking
the actual exposure and risk factors of insured i into account. We use the GAM
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(resp. GLM) frequency and severity models to obtain the GAM (resp. GLM)
premium structure. By summing these premiums over all policyholders we
obtain the total pure premium inflow: Π =

∑n
i=1 πi. At portfolio level, the

GLM and the GAM result in a pure premium cash inflow of 29,867,987 and
29,865,859 Euro respectively. The GLM premium inflow is 1,706 Euro higher
compared to the GAM inflow, but this difference represents only 0.007% of the
total pure premium income. An insurance company therefore obtains nearly
the same cash inflow by using any of the two models. The premium inflow is in
both cases sufficient to cover the actual losses in the portfolio, which amount to
26,464,970 Euro. Note that policyholders with very large losses are excluded
from this comparison in order to stay in line with the modeling process as
outlined in Section 2.3.2.
Figure 2.13 shows a comparison between the annual GLM and GAM pure
premiums by setting exp = 1 for all policyholders in the insurance portfolio.
The policyholders are ordered, from left to right, according to increasing GAM
premium in the top panel. We observe that the GLM premiums (light blue)
are scattered around the GAM premiums (dark blue), but both show the same
increasing trend. Differences between both premiums for a specific policyholder
are attributable to differences between both the underlying frequency as well
as severity models. The bottom left panel in Figure 2.13 shows violin plots of
both the GLM and GAM premiums. We can clearly observe that the premiums
resulting from both models are very similar. There is no visual difference
in the bodies of both distributions. This indicates that, on average, there
is no difference in premiums for the bulk of the policyholders. Our findings
are confirmed by examining the relative pure premium differences, defined as
(πGLMi − πGAMi )/πGAMi , in the bottom right panel of Figure 2.13. A negative
(positive) difference therefore indicates that the policyholder pays less (more)
under the GLM compared to the GAM. The differences are centered around
zero, again indicating that policyholders, on average, pay the same premium
in the GLM and GAM case. Note that the difference in both premiums lies
between -4.7% and 5.3% for half the insurance portfolio and that the median
difference is equal to 0.17%.
Figure 2.14 shows the distribution of the relative premium difference over the
continuous risk factors ageph, power and bm. The dots indicate the average of
the relative differences for policyholders with that specific risk characteristic
while the error bars indicate plus and minus two times the standard deviation.
The top panel shows that for most ages the premium difference is close to zero.
Both very young and very old policyholders pay less under the GLM compared
to the GAM, which is in line with our findings in Figure 2.10. The middle panel
indicates that policyholders driving a car with low (high) horsepower pay more
(less) under the GLM compared to GAM, while for the other policyholders the
premium difference is close to zero, again in line with our findings in Figure 2.10.
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Figure 2.13: Comparison between the GAM and GLM pure premiums.

The bottom panel shows that for nearly every bm level the premium difference is
close to zero. The GLM coefficients approximate the GAM effects very closely
for the low bm levels and the approximation errors of the frequency and severity
models offset each other for high bm levels. For all continuous risk factors we
can conclude that the premium differences are close to zero in areas containing
a large number of policyholders (cfr. Figure 2.2).

−0.50

−0.25

0.00

0.25

25 50 75

ageph

R
e

la
ti
ve

d
if
fe

re
n

c
e

−0.5

0.0

0.5

0 50 100 150 200 250

power

R
e
la

ti
ve

d
if
fe

re
n

c
e

−0.2

−0.1

0.0

0.1

0.2

0 5 10 15 20

bm

R
e

la
ti
ve

d
if
fe

re
n

c
e

Figure 2.14: Distribution of the premium differences over the continuous risk factors
ageph, power and bm.

For solvency purposes it is very important to hold enough capital such that
the insurance company can fulfill its obligations towards its policyholders. We
simulate 5,000,000 GLM and GAM scenarios by sampling observations from
the estimated Poisson and lognormal distributions for frequency and severity
respectively. The left panel of Figure 2.15 shows the distribution of the portfolio
losses in these scenarios for both the GLM and GAM. These distributions look
very similar, indicating that both models predict similar portfolio losses. The
right panel of Figure 2.15 shows the high empirical quantiles of these losses,
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from the 90% quantile onwards. These high quantiles can be interpreted as a
Value at Risk (VaR), a very popular measure to calculate capital requirements.
We observe that the GLM and the GAM approach result in very similar values
for the VaR. Table 2.8 shows the numerical values for the VaR measure at four
often used quantiles. The GLM results in slightly higher capital requirements
than the GAM in three out of four cases, but differences between both are
extremely small (< 0.01%).
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Figure 2.15: Comparison of the simulated losses and quantiles for GAM/GLM.

VaR 95% 99% 99.5% 99.9%

GAM 31,064,090 31,641,996 31,875,657 32,449,219
GLM 31,066,851 31,644,391 31,878,921 32,448,961

Table 2.8: Comparison of the 95%, 99%, 99.5% and 99.9% VaR for GAM/GLM.

2.6 Conclusions

This chapter presents a fully data-driven strategy to bin spatial and continuous
risk factors with the goal of deploying these in a practical insurance tariff. We
develop a predictive model for claim frequency as well as severity. Combining
both models allows the actuary to calculate a pure risk premium for an insurance
contract. We start from the framework of generalized additive models and
build close approximations to these models. As such an easy to understand
predictive model results which is formulated within the well-known framework
of generalized linear models. Starting from a GAM with flexible effects for
continuous risk factors, their interactions and a spatial effect, we propose to
bin the spatial effect using Fisher’s natural breaks algorithm and the effects of
the continuous risk factors using evolutionary trees.
With Fisher’s natural breaks we minimize the within-bin variance and hence
produce a homogeneous binning of the spatial effect. This method is very
similar to the K-means clustering algorithm (see MacQueen, 1967), though uses
dynamic programming and will always return the same (optimal) binning result.



CONCLUSIONS 37

K-means starts optimizing after a random initialization and the end result
therefore depends on this initialization. Fisher’s method is only applicable to
one-dimensional binning problems whereas K-means generalizes towards higher
dimensional settings. This is not a problem in our case since binning the spatial
effect is a one-dimensional problem.
The evolutionary trees are very good at binning the main effects of continuous
risk factors. They focus on splitting a smooth effect in ranges where it has a large
slope, but only if sufficient policyholders are present in these ranges. As such, the
composition of the current portfolio is taken into account and our approach will
automatically adapt to changing portfolio compositions. The evolutionary trees
also perform well at discriminating between areas of increased and decreased
risk in a two-dimensional setting for interaction effects of continuous risk factors.
In our case study, this leads to a neutral zone grouping policyhoders with
very similar risk profiles and regions containing policyholders with increased or
decreased risk profiles. A downside of using a single regression tree to split a
bivariate interaction effect is the fact that the resulting bins will always have
a rectangular shape. It is therefore not possible to produce a split along a
non-linear contour line such as those encountered in Figure 2.4. More complex
models - for example boosted trees or support vector machines - are needed to
obtain non-linear borders. The problem with such models however is their lack
of interpretability; a non-linear border is harder to explain than the straight
borders produced by a regression tree.
Our approach leads to GLMs which involve a simpler tariff structure compared
to the original GAMs. We observed that premiums, simulated losses and capital
requirements calculated from the resulting GLM approximate those from the
original GAM quite closely. We therefore end up with a simpler model that can
be deployed in practice as a close substitute for a more complex, flexible model.
Our study did not consider car brands and models as risk factors in the tariff.
These are examples of multi-level factors, i.e. factor variables with a huge number
of levels. Ohlsson (2008) demonstrates how (hierarchical) multi-level factors,
such as car brands and models, can be estimated using credibility theory in an
iterative algorithm. The spatial effect can be processed in the same way if one
chooses not to model it as a bivariate smooth function in the GAM framework.
A possible strategy is then to bin all the continuous risk factors in the GAM
in order to obtain a GLM with only categorical risk factors. Afterwards all
multi-level factors, such as the car brand, the car model and the municipality,
can be incorporated in the tariff structure by using the iterative procedure
outlined in Ohlsson (2008).
Our approach illustrates the use of data analytics within insurance pricing.
This field is rapidly gaining importance in the era of big data. We focus on the
interplay between the traditional toolkit of the pricing actuary (e.g. GLMs) and
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tools from the machine learning community (e.g. regression trees and genetic
algorithms). We illustrate the complementarity of these techniques in pricing
practice and how they can assist an actuary in finding the right balance between
flexibility and simplicity. The application of our approach is not limited to the
case of car insurance or P&C insurance in general. It can be used in every
business environment where it is useful to approximate flexible smooth effects
with more interpretable and simpler predictive models that are easier to explain
to stakeholders. An obvious example is credit scoring, since a credit scoring
model needs to be transparent and easy to explain to customers.



Chapter 3

Tree-based machine learning
with a focus on interpretability

Pricing actuaries typically operate within the framework of generalized linear models
(GLMs). With the upswing of data analytics, our study puts focus on machine learning
methods to develop full tariff plans built from both the frequency and severity of claims.
We adapt the loss functions used in the algorithms such that the specific characteristics
of insurance data are carefully incorporated: highly unbalanced count data with excess
zeros and varying exposure on the frequency side combined with scarce, but potentially
long-tailed data on the severity side. A key requirement is the need for transparent
and interpretable pricing models which are easily explainable to all stakeholders. We
therefore focus on machine learning with decision trees: starting from simple regression
trees, we work towards more advanced ensembles such as random forests and boosted
trees. We show how to choose the optimal tuning parameters for these models in an
elaborate cross-validation scheme, we present visualization tools to obtain insights
from the resulting models and the economic value of these new modeling approaches
is evaluated. Boosted trees outperform the classical GLMs, allowing the insurer to
form profitable portfolios and to guard against potential adverse risk selection.

This chapter is based on joint work with Marie-Pier Côté, Katrien Antonio and Roel
Verbelen, as published in the North-American Actuarial Journal (Henckaerts et al.,
2021b). This research was supported by the Research Foundation - Flanders (FWO) [SB
grant 1S06018N] and by the Society of Actuaries James C. Hickman Scholar Program.
Katrien Antonio acknowledges financial support from the Ageas Research Chair at KU
Leuven and from KU Leuven’s research council (COMPACT C24/15/001). We are
grateful for the access to the computing resources of the Department of Mathematics
and Statistics at McGill University and the VSC (Flemish Supercomputer Center),
funded by the Research Foundation - Flanders (FWO) and the Flemish Government -
department EWI. Thanks are also due to Christian Genest for supporting this project
in various ways and to Michel Denuit for sharing the data analyzed in this chapter.
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3.1 Introduction

Insurance companies bring security to society by offering protection against
financial losses. They allow individuals to trade uncertainty for certainty, by
transferring the risk to the insurer in exchange for a fixed premium. An insurer
sets the price for an insurance policy before its actual cost is revealed. Due
to this phenomenon, known as the reverse production cycle of the insurance
business, it is of vital importance that an insurer properly assesses the risks in
its portfolio. To this end, tools from predictive modeling come in handy.

The insurance business is highly data driven and partly relies on algorithms for
decision making. In order to price a contract, property and casualty (P&C, or:
general, non-life) insurers predict the loss cost y for each policyholder based on
his/her observable characteristics x. The insurer therefore develops a predictive
model f , mapping the risk factors x to the predicted loss cost ŷ by setting
ŷ = f(x). For simplicity, this predictive model is usually built in two stages by
considering separately the frequency and severity of the claims. Generalized
linear models (GLMs), introduced by Nelder and Wedderburn (1972), are the
industry standard to develop state-of-the-art analytic insurance pricing models
(Haberman and Renshaw, 1997; De Jong and Heller, 2008; Frees, 2015). Pricing
actuaries often code all risk factors in a categorical format, either based on
expert opinions (Frees and Valdez, 2008; Antonio et al., 2010) or in a data-
driven way (see Chapter 2). GLMs involving only categorical risk factors result
in predictions available in tabular format, that can easily be translated into
interpretable tariff plans.

Technological advancements have boosted the popularity of machine learning
and big data analytics, thereby changing the landscape of predictive modeling in
many business applications. However, few papers in the insurance literature go
beyond the actuarial comfort zone of GLMs. Dal Pozzolo (2010) contrasts the
performance of various machine learning techniques to predict claim frequency in
the Allstate Kaggle competition. Guelman (2012) compares GLMs and gradient
boosted trees for predicting the accident loss cost of auto at-fault claims. Liu
et al. (2014) approach the claim frequency prediction problem using multi-class
AdaBoost trees. Wüthrich and Buser (2019) and Zöchbauer et al. (2017) show
how tree-based machine learning techniques can be adapted to model claim
frequencies. Yang et al. (2018) predict insurance premiums by applying a
gradient boosted tree algorithm to Tweedie models. Pesantez-Narvaez et al.
(2019) employ XGBoost to predict the occurrence of claims using telematics
data. Ferrario et al. (2018) and Schelldorfer and Wüthrich (2019) propose
neural networks to model claim frequency, either directly or via a nested GLM.
Machine learning techniques have also been used in other insurance applications,
such as policy conversion or customer retention (Spedicato et al., 2018), renewal
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pricing (Krasheninnikova et al., 2019) and claim fraud detection (Wang and
Xu, 2018).
Insurance pricing models are heavily regulated and they must meet specific
requirements before being deployed in practice, posing some challenges for
machine learning algorithms. Firstly, the European Union’s General Data
Protection Regulation (GDPR, 2016), effective May 25, 2018, establishes a
regime of “algorithmic accountability" of decision-making machine algorithms.
By law, individuals have the right to an explanation of the logic behind
the decision (Kaminski, 2018), which means that pricing models must be
transparent and easy to communicate to all stakeholders. Qualified transparency
(Pasquale, 2015) implies that customers, managers and the regulator should
receive information in different degrees of scope and depth. Secondly, every
policyholder should be charged a fair premium, related to his/her risk profile,
to minimize the potential for adverse selection (Dionne et al., 1999). If the
heterogeneity in the portfolio is not carefully reflected in the pricing, the good
risks will be prompt to lapse and accept a lower premium elsewhere, leaving
the insurer with an inadequately priced portfolio. Thirdly, the insurer has the
social role of creating solidarity among the policyholders. The use of machine
learning for pricing should in no way lead to an extreme “personalization of risk”
or discrimination, e.g., in the form of extremely high premiums (O’Neil, 2016)
for some risk profiles that actually entail no risk transfer. By finding a trade-off
between customer segmentation and risk pooling, the insurer avoids adverse
selection while offering an effective insurance product involving a risk transfer
for all policyholders. In a regime of algorithmic accountability, insurers should
be held responsible for their pricing models in terms of transparency, fairness
and solidarity. It is therefore very important to be able to “look under the
hood” of machine learning algorithms and the resulting pricing models. That is
exactly one of the goals of this chapter.
In this chapter, we study how tree-based machine learning methods can be
applied to insurance pricing. The building blocks of these techniques are decision
trees, covered in Friedman et al. (2001). These are simple predictive models
that mimic human decision-making in the form of yes-no questions. In insurance
pricing, a decision tree partitions a portfolio of policyholders into groups of
homogeneous risk profiles based on some characteristics. The partition of
the portfolio is directly observable, resulting in high transparency. For each
subgroup, a constant prediction is put forward, automatically inducing solidarity
among the policyholders in a subgroup (as long as the size of this subgroup is
large enough). These aspects of decision trees make them good candidates for
insurance pricing. However, the predictive performance of such simple trees
tends to be rather low. We therefore consider more complex algorithms that
combine multiple decision trees in an ensemble, i.e., tree-based machine learning.
These ensemble techniques usually provide better predictive performance, but
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at the cost of less transparency. We employ model interpretation tools to
understand these “black boxes”, allowing us to interpret the resulting models
and underlying decision process. Tree-based machine learning techniques are
often praised for their ability to discover interaction effects in the data, a very
useful insight for insurers that will be explored in this chapter.

Insurance claim data typically entails highly imbalanced count data with excess
zeros and varying exposure-to-risk on the frequency side, combined with long-
or even heavy-tailed continuous data on the severity side. Standard machine
learning algorithms typically deal with data that is more normal-like or balanced.
Guelman (2012) models the accident loss cost by simplifying the frequency
count regression problem into a binary classification task. This however cannot
factor in varying exposure-to-risk and leads to a loss of information regarding
policyholders who file more than one claim in a period. Wüthrich and Buser
(2019) and Zöchbauer et al. (2017) show how the specific data features on the
frequency side can be taken into account for regression.

We extend the existing literature by also putting focus on the severity side
of claims and obtaining full tariff plans on real-world claims data from an
insurance portfolio. We develop an elaborate cross-validation scheme instead of
relying on built-in routines from software packages and we take into account
multiple types of risk factors: categorical, continuous and spatial information.
The goal of this chapter is to investigate how tree-based pricing models perform
compared to the classical actuarial approach with GLMs. This comparison puts
focus on statistical performance, interpretation and business implications. We
go beyond a purely statistical comparison, but acknowledge the fact that the
resulting pricing model has to be deployed, after marketing adjustments, in a
business environment with specific requirements.

The rest of this chapter is structured as follows. Section 3.2 introduces the basic
principles and guidelines for building a benchmark pricing GLM. Section 3.3
consolidates the important technical details on tree-based machine learning.
Section 3.4 presents interpretations from the optimal frequency and severity
models fitted on a Belgian insurance data set, together with an out-of-sample
performance comparison. Section 3.5 reviews the added value from a business
angle and Section 3.6 concludes this chapter. In an accompanying online
supplement, available at https://github.com/henckr/sevtree, we provide
more details on the construction and interpretation of tree-based machine
learning methods for the severity.

https://github.com/henckr/sevtree
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3.2 State-of-the-art insurance pricing models

To assess the possible merits of tree-based machine learning for insurance pricing,
we first have to establish a fair benchmark pricing model that meets industry
standards. GLMs are by far the most popular pricing models in today’s industry.
This section outlines the basic principles and steps for creating a benchmark
pricing GLM with the strategy from Chapter 2.
A P&C insurance company is interested in the total loss amount L per unit
of exposure-to-risk e, where L is the total loss for the N claims reported by
a policyholder during the exposure period e. P&C insurers usually opt for a
so-called frequency-severity strategy to price a contract (Denuit et al., 2007;
Frees et al., 2014; Parodi, 2014). Claim frequency F is the number of claims
N filed per unit of exposure-to-risk e. Claim severity S refers to the cost per
claim and is defined by the average amount per claim filed, that is the total loss
amount L divided by the number of claims N . The pure (or: risk) premium π
then follows as:

π = E
(
L

e

)
indep.= E

(
N

e

)
× E

(
L

N
| N > 0

)
= E(F )× E(S),

assuming independence between the frequency and the severity component of
the premium (Klugman et al., 2012). Alternatives, allowing dependence between
F and S, are investigated in the literature (Gschlößl and Czado, 2007; Czado
et al., 2012; Garrido et al., 2016).
Predictive models for both F and S are typically developed within the framework
of GLMs. Let Y , the response variable of interest, follow a distribution from
the exponential family. The structure of a GLM with all explanatory variables
in a categorical format is:

η = g(µ) = z>β = β0 +
q∑
j=1

βjzj , (3.1)

with η the linear predictor, g(·) the link function and µ the expectation of Y .
The q+1 dimensional 0/1-valued vector z contains a 1 for the intercept together
with the q dummy variables expressing the policyholder’s risk profile. In a claim
frequency model, the response variable N typically follows a count distribution
such as the Poisson. Assuming g(·) = ln(·), the model may account for exposure-
to-risk through an offset ln(e) such that the risk premium is proportional to
the exposure. In a claim severity model, the response variable L/N typically
follows a right skewed distribution with a long right tail such as the gamma or
log-normal. Only policyholders filing at least one claim, i.e., N > 0, contribute
to the severity model calibration and the number of claims N is used as a case
weight in the regression (Denuit and Lang, 2004).
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Chapter 2 details a data-driven strategy to build a GLM with all risk factors
in a categorical format. This strategy aligns the practical requirements of
a business environment with the statistical flexibility of generalized additive
models (GAMs, documented by Wood, 2006). GAMs extend the linear predictor
in Eq. (3.1) with (multidimensional) smooth functions. After an exhaustive
search, the starting point for both frequency and severity is a flexible GAM
with smooth effects for continuous risk factors, including two-way interactions,
and a smooth spatial effect. These smooth effects are used to bin the continuous
and spatial risk factors, thereby transforming them to categorical variables.
Figure 3.1 schematizes how decision trees and unsupervised clustering are applied
to achieve this binning. The output of this framework is an interpretable pricing
GLM, which serves as benchmark pricing model in this study.
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ŝ(long, lat)

F̂
n(s

)

(2b) Unsupervised clustering

β̂1

β̂2

β̂ref = 0

β̂3

β̂4

(2c) Binned spatial effect

Figure 3.1: Schematic overview of the binning strategy of Chapter 2 for a continuous
risk factor (1a - 1c) and a spatial risk factor (2a - 2c). The smooth GAM
effect of a continuous risk factor (1a) is fed as a response to a decision
tree (1b), which splits the continuous risk factor into bins (1c). The
smooth spatial effect (2a) is clustered in an unsupervised way (2b),
resulting in groups of postcode areas (2c). These categorical risk factors
are used in a GLM.

3.3 Tree-based machine learning methods

Section 3.3.1 introduces the essential algorithmic details needed for understanding
the tree-based modeling techniques used in this chapter. We consider regression
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trees (Breiman et al., 1984), random forests (Breiman, 2001) and gradient
boosting machines (Friedman, 2001) as alternative modeling techniques for
insurance pricing. These models rely on the choice of a loss function, which
has to be tailored to the characteristics of insurance data as we motivate in
Section 3.3.2. In Section 3.3.3 and 3.3.4, we explain our tuning strategy and
present interpretation tools.

3.3.1 Algorithmic essentials

Regression tree Decision trees partition data based on yes-no questions,
predicting the same value for each member of the constructed subsets. A
popular approach to construct decision trees is the Classification And Regression
Tree (CART) algorithm, introduced by Breiman et al. (1984). The predictor
space R is the set of possible values for the p variables x1, . . . , xp, e.g., R =
Rp for p unbounded, continuous variables and R = [min(x1),max(x1)] ×
[min(x2),max(x2)] for two bounded, continuous variables. A tree divides the
predictor space R into J distinct, non-overlapping regions R1, . . . , RJ . In the
jth region, the fitted response ŷRj

is computed as a (weighted) average of the
training observations falling in that region. The regression tree predicts a (new)
observation with characteristics x as follows:

ftree(x) =
J∑
j=1

ŷRj
1(x ∈ Rj). (3.2)

The indicator 1(A) equals one if event A occurs and zero otherwise. As the J
regions are non-overlapping, the indicator function differs from zero for exactly
one region for each x. A tree therefore makes the same constant prediction ŷRj

for the entire region Rj .

It is computationally impractical to consider every possible partition of the
predictor space R in J regions, therefore CART uses a top-down greedy approach
known as recursive binary splitting. From the full predictor space R, the
algorithm selects a splitting variable xv with v ∈ {1, . . . , p} and a cut-off c
such that R = R1(v, c) ∪ R2(v, c) with R1(v, c) = {R |xv 6 c} and R2(v, c) =
{R |xv > c}. This forms two nodes in the tree, one containing the observations
satisfying xv 6 c and the other containing the observations satisfying xv > c.
For a categorical splitting variable, the corresponding factor levels are replaced
by their empirical response averages, see Section 8.8 in Breiman et al. (1984).
These averages are sorted from low to high and a cut-off c is chosen such that
the factor levels are split into two groups. The splitting variable xv and cut-off
c are chosen such that their combination results in the largest improvement
in a carefully picked loss function L (· , ·). For i = {1, . . . , n}, where n is the
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number of observations in the training set, the CART algorithm searches for xv
and c minimizing the following summations:∑

i : xi∈R1(v,c)

L (yi, ŷR1) +
∑

i : xi∈R2(v,c)

L (yi, ŷR2).

A standard loss function is the squared error loss, but we present more suitable
loss functions for claim frequency or severity data in Section 3.3.2. In a next
iteration, the algorithm splits R1 and/or R2 in two regions and this process
is repeated recursively until a stopping criterion is satisfied. This stopping
criterion typically puts a predefined limit on the size of a tree, e.g., a minimum
improvement in the loss function (Breiman et al., 1984), a maximum tree depth
or a minimum number of observations in a tree node (Friedman et al., 2001).

A large tree is likely to overfit the data and does not generalize well to new
data, while a small tree is likely to underfit the data and fails to capture the
general trends. This is related to the bias-variance tradeoff (Friedman et al.,
2001) meaning that a large tree has low bias and high variance while a small
tree has high bias but low variance. To prevent overfitting, the performance of
a tree is penalized by the number of regions J as follows:

J∑
j=1

∑
i : xi∈Rj

L (yi, ŷRj
) + J · cp ·

∑
i : xi∈R

L (yi, ŷR) , (3.3)

where the first part assesses the goodness of fit and the second part is a penalty
measuring the tree complexity. The strength of this penalty is driven by the
complexity parameter cp, a tuning parameter (see Section 3.3.3 for details on
the tuning strategy). A large (small) value for cp puts a high (low) penalty on
extra splits and will result in a small (large) tree. The complexity parameter
cp is usually scaled with the loss function evaluated for the root tree, which
is exactly the last summation in Eq. (3.3); see Remark 3.8 in Zöchbauer et al.
(2017). This ensures that cp = 1 delivers a root tree without splits capturing
an overall y estimate (denoted ŷR in Eq. (3.3)) and cp = 0 results in the largest
possible tree allowed by the stopping criterion.

Figure 3.2 depicts an example of a regression tree for claim frequency data.
The rectangles are internal nodes which partition observations going from top
to bottom along the tree. The top node, splitting on the bonus-malus level
bm, is called the root node. The ellipses are leaf nodes, containing prediction
values for the observations ending in that specific leaf. Going from left to right,
the leaf nodes are ordered from low (light blue) to high (dark blue) prediction
values. Decision trees have many advantages because their predictions are highly
explainable and interpretable, both very important criteria for regulators. The
downside of trees however is that the level of predictive accuracy tends to be
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lower compared to other modeling techniques. This is mainly driven by the high
variance of a tree, e.g., slight changes in the data can result in very different
trees and therefore rather different predictions for certain observations. The
predictive performance can be substantially improved by aggregating multiple
decision trees in ensembles of trees, thereby reducing the variance. That is the
idea behind popular ensemble methods, such as random forests and gradient
boosting machines, which are discussed next.
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Figure 3.2: Visual representation of a regression tree for claim frequency with nodes
(rectangles) containing the splitting variable xv, edges (lines) representing
the splits with cut-off c and leaf nodes (ellipses) containing the prediction
values ŷRj . The variable names are defined in Table B.1.

Random forest Bagging, which is short for bootstrap aggregating (Breiman,
1996), and random forests (Breiman, 2001) are similar ensemble techniques
combining multiple decision trees. Bagging reduces the variance of a single
tree by averaging the forecasts of multiple trees on bootstrapped samples of
the original data. This stabilizes the prediction and improves the predictive
performance compared to a single decision tree. Starting from the data set D,
the idea of bagging is to take bootstrap samples {Dt}t=1,...,T and to build T
decision trees, one for each Dt independently. The results are then aggregated
in the following way:

fbagg(x) = 1
T

T∑
t=1

ftree(x | Dt) , (3.4)

where the condition (| Dt) indicates the tree being developed on sample Dt.

The performance improvement through variance reduction gets bigger when there
is less correlation between the individual trees, see Lemma 3.25 in Zöchbauer
et al. (2017). For that reason, the trees are typically grown deep (i.e., cp = 0
in Eq. (3.3)), until a stopping criterion is satisfied. Taking bootstrap samples
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of smaller sizes δ · n, with n the number of observations in D and 0 < δ < 1,
decorrelates the trees further and reduces the model training time. However, a
lot of variability remains within a bagged ensemble because the trees built on
the bootstrapped data samples are still quite similar. This is especially the case
when some explanatory variables in the data are much more predictive than the
others. The important variables will dominate the first splits, causing all trees to
be similar to one another. To prevent this, a random forest further decorrelates
the individual trees by sampling variables during the growing process. At each
split, m out of p variables are randomly chosen as candidates for the optimal
splitting variable. Besides this adaptation, a random forest follows the same
strategy as bagging and predicts a new observation according to Eq. (3.4). The
random forest procedure is detailed in Algorithm 1 where T and m are treated
as tuning parameters (see Section 3.3.3 for details on the tuning strategy).

for t = 1, . . . , T do
generate bootstrapped data Dt of size δ · n by sampling with replacement from data
D;

while stopping criterion not satisfied do
randomly select m of the p variables;
find the optimal splitting variable xv from the m options together with cut-off c;

frf(x) = 1
T

∑T

t=1 ftree(x | Dt);

Algorithm 1: Procedure to build a random forest model.

A random forest improves the predictive accuracy obtained with a single decision
tree by using more, and hopefully slightly different, trees to solve the problem
at hand. However, the trees in a random forest are built independently from
each other (i.e., the for loop in Algorithm 1 can be run in parallel) and do not
share information during the training process.

Gradient boosting machine In contrast to random forests, boosting is an
iterative statistical method that combines many weak learners into one powerful
predictor. Friedman (2001) introduced decision trees as weak learners; each
tree improves the current model fit, thereby using information from previously
grown trees. At each iteration, the pseudo-residuals are used to assess the
regions of the predictor space for which the model performs poorly in order to
improve the fit in a direction of better overall performance. The pseudo-residual
ρi,t for observation i in iteration t is calculated as the negative gradient of the
loss function −∂L {yi, f(xi)}/∂f(xi), evaluated at the current model fit. This
typical approach called stepwise gradient descent ensures that a lower loss is
obtained at the next iteration, until convergence. The boosting method learns
slowly by fitting a small tree of depth d (with a squared error loss function)
to these pseudo-residuals, improving the model fit in areas where it does not
perform well. For each region Rj of that tree, the update b̂j is calculated as
the constant that has to be added to the previous model fit to minimize the
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loss function, namely b that minimizes L {yi, f(xi) + b} over this region. A
shrinkage parameter λ controls the learning speed by shrinking updates for
x ∈ Rj as follows: fnew(x) = fold(x) +λ · b̂j . A lower λ usually results in better
performance but also increases computation time because more trees are needed
to converge to a good solution. Typically, λ is fixed at the lowest possible value
within the computational constraints (Friedman, 2001). The collection of T
trees at the final iteration is used to make predictions.

Stochastic gradient boosting, introduced by Friedman (2002), injects randomness
in the training process. In each iteration, the model update is computed from a
randomly selected subsample of size δ · n. This improves both the predictive
accuracy and model training time when δ < 1. The (stochastic) gradient
boosting machine algorithm is given in Algorithm 2 where T and d are treated
as tuning parameters (see Section 3.3.3 for details on the tuning strategy).

initialize fit to the optimal constant model: f0(x) = arg minb
∑n

i=1 L (yi, b);
for t = 1, . . . , T do

randomly subsample data of size δ · n without replacement from data D;
for i = 1, . . . , δ · n do

ρi,t = −
[
∂L{yi,f(xi)}

∂f(xi)

]
f=ft−1

fit a tree of depth d to the pseudo-residuals ρi,t resulting in regions Rj,t for
j = 1, . . . , Jt;

for j = 1, . . . , Jt do

b̂j,t = arg minb
∑

i : xi∈Rj,t

L {yi, ft−1(xi) + b}

update ft(x) = ft−1(x) + λ
∑Jt

j=1 b̂j,t1(x ∈ Rj,t);
fgbm(x) = fT (x);

Algorithm 2: Procedure to build a (stochastic) gradient boosting machine.

3.3.2 Loss functions for insurance data

The machine learning algorithms discussed in Section 3.3.1 require the
specification of a loss (or: cost) function that is to be minimized during the
training phase of the model. We first present a general discussion on the loss
function choice, followed by details on the R implementation.

Loss functions The standard loss function for regression problems is the
squared error loss:

L {yi, f(xi)} ∝ {yi − f(xi)}2 ,

where yi is the observed response and f(xi) is the prediction of the model for
variables xi. However, the squared error is not necessarily a good choice when
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modeling integer-valued frequency data or right-skewed severity data. We use
the concept of deviance to make this idea clear. The deviance is defined as
D{y, f(x)} = −2 · ln[L{f(x)}/L(y)], a likelihood ratio where L{f(x)} is the
model likelihood and L(y) the likelihood of the saturated model (i.e., the model
in which the number of parameters equals the number of observations). The
condition L{f(x)} 6 L(y) always holds, so the ratio of likelihoods is bounded
from above by one. For competing model fits, the best one obtains the lowest
deviance value on holdout data. We therefore use a loss function L (· , ·) such
that D{y, f(x)} =

∑n
i=1 L {yi, f(xi)}. This idea was put forward by Venables

and Ripley (2002) for general classification and regression problems.

Assuming constant variance, the normal (or: Gaussian) deviance is expressed
as follows:

D{y, f(x)} = 2 ln
n∏
i=1

exp
{
− 1

2σ2 (yi − yi)2
}
− 2 ln

n∏
i=1

exp
[
− 1

2σ2 {yi − f(xi)}2
]

= 1
σ2

n∑
i=1
{yi − f(xi)}2 ,

which boils down to a scaled version of the sum of squared errors. This implies
that a loss function based on the squared error is appropriate when the normal
assumption is reasonable. More generally, the squared error is suitable for any
continuous distribution symmetrical around its mean with constant variance,
i.e., any elliptical distribution. However, claim frequency and severity data do
not follow any elliptical distribution, as we show in Section 3.4.1. Therefore, in
an actuarial context, Wüthrich and Buser (2019) and Zöchbauer et al. (2017)
propose more suitable loss functions inspired by the GLM pricing framework
from Section 3.2.

Claim frequency modeling involves count data, typically assumed to be Poisson
distributed in GLMs. Therefore, an appropriate loss function is the Poisson
deviance, defined as follows:

D(y, f(x)) = 2 ln
n∏
i=1

exp(−yi)
yyi

i

yi!
− 2 ln

n∏
i=1

exp{−f(xi)}
f(xi)yi

yi!

= 2
n∑
i=1

[
yi ln yi

f(xi)
− {yi − f(xi)}

]
. (3.5)

When using an exposure-to-risk measure ei, f(xi) is replaced by ei · f(xi) such
that the exposure is taken into account in the expected number of claims. Thus,
the Poisson deviance loss function can account for different policy durations.
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Predictions from a Poisson regression tree in Eq. (3.2) are equal to the sum of the
number of claims divided by the sum of exposure for all training observations in
each leaf node: ŷRj

=
∑
i∈Ij

Ni/
∑
i∈Ij

ei for Ij = {i : xi ∈ Rj}. This optimal
estimate is obtained by setting the derivative of Eq. (4.5) with respect to f
equal to zero. As a tree node without claims leads to a division by zero in the
deviance calculation, an adjustment can be made to the implementation with a
hyper-parameter that will be introduced in Section 3.3.3.

Right-skewed and long-tailed severity data is typically assumed to be gamma or
log-normally distributed in GLMs. In Section 3.4, we present the results obtained
with the gamma deviance as our preferred model choice, but a discussion on
the use of the log-normal deviance is available in the supplementary material.
The gamma deviance is defined as follows:

D{y, f(x)} = 2 ln
n∏
i=1

1
yiΓ(α)

(
αyi
yi

)α
exp

(
−αyi
yi

)

− 2 ln
n∏
i=1

1
yiΓ(α)

{
αyi
f(xi)

}α
exp

{
− αyi
f(xi)

}

= 2
n∑
i=1

α

{
yi − f(xi)
f(xi)

− ln yi
f(xi)

}
.

(3.6)

The shape parameter α acts as a scaling factor and can therefore be ignored.
When dealing with case weights, α can be replaced by the weights wi. In severity
modeling, the response is the average claim amount over Ni observed claims
and Ni should be used as case weight. Predictions from a gamma regression
tree in Eq. (3.2) are equal to the sum of the total loss amount divided by the
sum of the number of claims for all training observations in each leaf node:
ŷRj

=
∑
i∈Ij

Li/
∑
i∈Ij

Ni for Ij = {i : xi ∈ Rj}. This optimal estimate is
obtained by setting the derivative of Eq. (3.6) with respect to f equal to zero.

Implementation in R Our results are obtained with two special purpose
packages for tree-based machine learning in the statistical software R. For the
regression trees and random forests, we developed our own package called
distRforest (Henckaerts, 2020). For stochastic gradient boosting, we chose
the implementation from Southworth (2015) of the gbm package, originally
developed by Ridgeway (2014). Our distRforest package extends the rpart
package by Therneau et al. (2019) such that it is capable of developing regression
trees and random forests with our specific desired loss functions for both claim
frequency and severity. We had to go beyond the standard implementations
especially because of the loss functions appropriate for actuarial applications.
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Although the rpart package supports the Poisson deviance for regression trees,
it did not facilitate the use of a suitable loss function for severity data.

3.3.3 Tuning strategy

Tuning and hyper-parameters Table 3.1 gives an overview of the
parameters used by the algorithms described in Section 3.3.1. Some of these
are chosen with care (tuning parameters), while others are less influential
and are set to a sensible predetermined value (hyper-parameters). Instead
of relying on the built-in tuning strategies of the R packages mentioned in
Section 3.3.2, we perform an extensive grid search to find the optimal values
among a predefined tuning grid displayed in Table B.2 in Appendix B.2. We
prefer a grid search above other tuning strategies, such as Bayesian optimization
(Xia et al., 2017), for its ease of implementation while being a sound approach.
The hyper-parameter κ enforces a stopping criterion for trees used across the
three algorithms, ensuring that a split is not allowed if a resulting node would
contain less than 1% of the observations. The hyper-parameter δ in Algorithms 1
and 2 specifies to develop the trees in the ensemble techniques on 75% of the
available training data. The shrinkage parameter λ in Algorithm 2 is set at
a low value for which computation time is still reasonable, namely 0.01. The
parameter γ helps to avoid division by zero when optimizing the Poisson deviance
in Eq. (4.5). This parameter is therefore only used when growing a regression
tree and random forest for claim frequency. We refer the reader to Section 8.2
in Therneau and Atkinson (2019) for details on the rpart implementation. In
short, a gamma prior is assumed on the Poisson rate parameter to keep it from
becoming zero when there is no claim in a node. With Ij = {i : xi ∈ Rj}, the
prediction in a node is adapted as follows:

ŷγRj
=

γ−2 +
∑
i∈Ij

Ni

γ−2/ŷR +
∑
i∈Ij

ei
.

Note that ŷγRj
= ŷR for γ = 0 and ŷγRj

= ŷRj
=
∑
i∈Ij

Ni/
∑
i∈Ij

ei for γ =∞.

Cross-validation Machine learning typically relies on training data to build
a model, validation data to tune the parameters and test data to evaluate
the out-of-sample performance of the model. In this chapter, we develop an
extensive cross-validation scheme, inspired by K-fold cross-validation (Friedman
et al., 2001), that serves two purposes. First, we tune the parameters in the
algorithms under study with a 5-fold cross-validation approach. Second, we
evaluate the predictive performance of the algorithms investigated on multiple
data sets, instead of on a single test set. Algorithm 3 outlines the basic principles
of our approach and Figure 3.3 gives a schematic representation. The full data
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Tuning parameters Hyper-parameters

Regression tree complexity parameter cp κ = 0.01
coefficient of variation gamma prior γ

Random forest number of trees T cp = 0 γ = 0.25
number of split candidates m κ = 0.01 δ = 0.75

Gradient boosting machine number of trees T λ = 0.01
tree depth d κ = 0.01 δ = 0.75

Table 3.1: Overview of the parameters for the different machine learning techniques.

D is split in six disjoint and stratified (Neyman, 1934) subsets D1, . . . ,D6 by
ordering first on claim frequency, then on severity. The ordered observations
are assigned to each of the subsets in turn. Stratification ensures that the
distribution of response variables is similar in the six subsets, as we illustrate
in Table 3.2 for the data introduced in Section 3.4.1. The foreach and inner
for loop in Algorithm 3 represent the typical approach to perform 5-fold
cross-validation on data from which we already separated a hold-out test set
Dk. The foreach loop iterates over the tuning grid and the for loop allows
the validation set D` to vary. The optimal tuning parameters are those that
minimize the cross-validation error, which is obtained by averaging the error on
the validation sets. The outer for loop in Algorithm 3 allows the hold-out test
set to vary and model performance is evaluated on this test set Dk. Advantages
of evaluating a trained model on multiple test sets are threefold. First, we
obtain multiple performance measures per model class which results in a more
accurate performance assessment. Second, it allows to perform sensitivity checks
to assess the stability of different algorithms. Third, it exempts us from the
choice of a specific test set which could bias results.

D1 D2 D3 D4 D5 D6∑
Ni/
∑

ei 0.1391687 0.1391433 0.1392443 0.1392213 0.1391517 0.1393045∑
Li/
∑

Ni 1,296.165 1,302.894 1,324.667 1,312.619 1,330.884 1,287.832

Table 3.2: Summary statistics of response variables in the different data subsets D1
to D6.

3.3.4 Interpretability matters: opening the black box

The GDPR’s regime of “algorithmic accountability” and the resulting “right to
explanation” highlight the vital importance of interpretable and transparent
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Input: model class (mclass) and corresponding tuning grid (tgrid)
split data D into 6 disjoint stratified subsets D1, . . . ,D6;
for k = 1, . . . , 6 do

leave out Dk as test set;
foreach parameter combination in tgrid do

for ` ∈ {1, . . . , 6} \ k do
train a model fk` of mclass on D \ {Dk,D`};
evaluate the model performance on D` using loss function L (·, ·);
valid_errork` ← 1

|D`|
∑
i∈D`

L {yi, fk`(xi)};

valid_errork ← 1
5
∑

`∈{1,...,6}\k valid_errork`;
optimal parameters from tgrid are those that minimize valid_errork;
train a model fk of mclass on D \ Dk using the optimal parameters;
evaluate the model performance on Dk using loss function L (·, ·);
test_errork ← 1

|Dk|
∑
i∈Dk

L {yi, fk(xi)};

Output: optimal tuning parameters + performance measure for each of the six folds.

Algorithm 3: Cross-validation scheme for model tuning and performance
evaluation.

D1 D2 D3 D4 D5 D6

D2 D3 D4 D5 D6

Train Valid Test

Full data set D

Data fold 1

Data fold 2

Data fold 3

Data fold 4

Data fold 5

Data fold 6

Zoom in on training in fold 1

Figure 3.3: Graphical representation of the cross-validation scheme. The holdout
test set for data fold k is Dk, indicated in red. Within data fold k,
we tune the parameters by 5-fold cross-validation on D \ Dk with the
validation sets D` in green and the training data D \ {Dk,D`} in blue.
After tuning, we train the model on D\Dk using the optimal parameters
for data fold k.

pricing models. However, machine learning techniques are often considered
black boxes compared to statistical models such as GLMs. In a GLM, parameter
estimates and their standard errors give information about the effect, uncertainty
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and statistical relevance of all variables. Such quick and direct interpretations
are not possible with machine learning techniques, but this section introduces
tools to gain insights from a model. A good source on interpretable machine
learning is Molnar (2020). These tools are evaluated on the data used to train
the optimal models, i.e., D \ Dk for data fold k. A subset of the training data
can be used to save computation time if needed.

Variable importance Variable selection and model building is often a time
consuming and tedious process with GLMs (see Chapter 2). An advantage of
tree-based techniques is their built-in variable selection strategy, making a priori
design decisions less critical. Unraveling the variables that actually matter in
the prediction is thus crucial. For ` ∈ {1, . . . , p}, Breiman et al. (1984) measure
the importance of a specific feature x` in a decision tree t by summing the
improvements in the loss function over all the splits on x`:

I`(t) =
J−1∑
j=1

1{v(j) = `} (∆L )j .

The sum is taken over all J − 1 internal nodes of the tree, but only the nodes
where the splitting variable xv is x` contribute to this sum. These contributions
(∆L )j represent the difference between the evaluated loss function before and
after split j in the tree. The idea is that important variables appear often and
high in the decision tree such that the sum grows largest for those variables. We
normalize these variable importance values such that they sum to 100%, giving
a clear idea about the relative contribution of each variable in the prediction.
We can easily generalize this approach to the ensemble techniques by averaging
the importance of variable x` over the different trees that compose the ensemble:

I` = 1
T

T∑
t=1
I`(t) ,

where the sum is taken over all trees in the random forest or gradient boosting
machine.

Partial dependence plots Besides knowing which variables are important,
it is meaningful to understand their effect on the prediction target. Partial
dependence plots, introduced in Friedman (2001), show the marginal effect
of a variable on the predictions obtained from a model. Hereto, we evaluate
the prediction function in specific values of the variable of interest x` for
` ∈ {1, . . . , p}, while averaging over a range of values of the other variables x∗:

f̄`(x`) = 1
n

n∑
i=1

fmodel(x`,x∗i ) . (3.7)
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The vector x∗i holds the realized values of the other variables for observation i
and n is the number of observations in the training data. Interaction effects
between x` and another variable in x∗ can distort the effect (Goldstein et al.,
2015). Suppose that half of the observations show a positive association between
x` and the prediction outcome (higher x` leads to higher predictions), while
the other half of the observations show a negative association between x` and
the prediction outcome. Taking the average over all observations will cause the
partial dependence plot to look like a horizontal line, wrongly indicating that
x` has no effect on the prediction outcome. Individual conditional expectations
can rectify such wrong conclusions.

Individual conditional expectation Individual conditional expectations,
introduced by Goldstein et al. (2015), also show the effect of a variable on the
predictions obtained from a model, but on an individual level. We evaluate
the prediction function in specific values of the variable of interest x` for
` ∈ {1, . . . , p}, keeping the values of the other variables x∗ fixed:

f̃`,i(x`) = fmodel(x`,x∗i ) , (3.8)

where x∗i are the realized values of the other variables for observation i. We
obtain an effect for each observation i, allowing us to detect interaction effects
when some (groups of) observations show different behavior compared to others.
For example, two distinct groupings will emerge when half of the observations
have a positive association and the other half a negative association between x`
and the prediction outcome. Individual conditional expectations can also be
used to investigate the uncertainty of the effect of variable x` on the prediction
outcome. The partial dependence plot can be interpreted as the average of this
collection of individual conditional expectations, i.e., f̄`(x`) = 1

n

∑n
i=1 f̃`,i(x`).
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3.4 Case study on claim frequency and severity

An insurer’s pricing team uses proprietary data to deliver a fine-grained tariff
plan for a portfolio. As a typical example of such data, we study a motor third
party liability (MTPL) portfolio from a Belgian insurer in 1997. This section puts
focus on the claim frequency and severity models that are developed with the
different modeling techniques. We briefly introduce the data and we report the
optimal tuning parameters for the frequency and severity models. Afterwards,
we use the tools from Section 3.3.4 to gain some insights in these optimal models.
We conclude this section with an out-of-sample deviance comparison to assess
the statistical performance of the different modeling techniques.

3.4.1 Quick scan of the MTPL data

The data used here is also analyzed in Denuit and Lang (2004), Klein et al.
(2014) and Chapter 2. We follow the same data pre-processing steps as
the aforementioned papers, e.g., regarding the exclusion of very large claims.
Table B.1 in Appendix B.1 lists a description of the available variables. The
portfolio contains 163,212 unique policyholders, each observed during a period
of exposure-to-risk expressed as the fraction of the year during which the
policyholder was exposed to the risk of filing a claim. Claim information is
known in the form of the number of claims filed and the total amount claimed
(in euro) by a policyholder during her period of exposure. The data set lists
five categorical, four continuous and two spatial risk factors, each of them
informing about specific characteristics of the policy or the policyholder. A
detailed discussion on the distribution of all variables is available in Chapter 2.
Regarding spatial information, we have access to the 4-digit postal code of the
municipality of residence and the accompanying latitude/longitude coordinates
of the center of this area. The GAM/GLM benchmarks employ spatial smoothing
over the latitude/longitude coordinates. In line with this approach, we use the
coordinates as continuous variables in the tree-based models.

Figure 3.4 displays the distribution of the claims information (nclaims and
amount) and the exposure-to-risk measure (expo). Most policyholders in the
portfolio are claim-free during their insured period, some file one claim and few
policyholders file two, three, four or five claims. The majority of all these claims
involve small amounts, but very large claims occur as well. Most policyholders
are exposed to the risk during the full year, but there are policyholders who
started the policy in the course of the year or surrendered the policy before
the end of the year. Figure 3.4 motivates the use of loss functions which are
not based on the squared error loss. We work with the Poisson and gamma
distribution/deviance for frequency and severity respectively as our preferred
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distributional assumption (for GAM/GLM) and loss function choice (for tree-
based techniques). Note that earlier work on this data, such as Denuit et al.
(2007) and Chapter 2, assumed a log-normal distribution for severity. We
illustrate the difference and motivate our choice in the supplementary material.
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Figure 3.4: Distribution of the claim counts, amounts and the exposure-to-risk
measure in the MTPL data.

3.4.2 Optimal tuning parameters

Table 3.3 lists the optimal tuning parameters for the different machine learning
techniques in each of the six data folds. Comparing the number of splits in the
trees and the number of trees in the ensembles, we conclude that the frequency
models are more extensive compared to the severity variants. This is driven by
the lower sample size for severity modeling and the fact that the severity of a
claim is typically harder to predict than the frequency (Charpentier, 2014).
The complexity parameter cp does not give much information about the size of
a regression tree and therefore Table 3.3 also lists the number of splits in the
tree. All frequency trees contain between 20 and 38 splits while the severity
trees comprise of only one or two splits. The coefficient of variation for the
gamma prior γ remains stable over the different data folds.
The number of trees T in the random forest is very unstable over the different
folds for both frequency and severity. This shows that the size of the eventual
model highly depends on the training data when simply averaging independently
grown trees. In four out of six cases, the number of split candidates m is equal
to 5 for frequency models and 2 for the severity models. The low value of m for
severity random forests indicates that variance reduction is the main performance
driver, as opposed to finding the best split out of multiple candidates.
The number of trees T in the gradient boosting machine is more stable over the
folds compared to the random forest. This shows that the sequential approach
of growing a boosted model is less affected by the specific data fold. The tree
depth d ranges from 3 to 5 in the frequency models. Table 3.3 reveals that
the largest values of T correspond to the smallest values of d and vice versa,
highlighting the interplay between these tuning parameters. In five out of six
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cases, the severity models use stumps (i.e., trees with only one split) as weak
learners. A tree depth of d = 1 makes these models completely additive, without
interaction by construct.

Regression tree Random forest Boosting machine

data fold cp γ splits T m T d

Fr
eq
ue
nc
y

1 7.3× 10−5 0.125 38 4,900 5 2,600 3
2 1.4× 10−4 0.125 24 900 5 2,000 4
3 1.1× 10−4 0.125 31 400 8 1,400 5
4 1.2× 10−4 0.250 27 5,000 5 1,500 5
5 1.8× 10−4 0.250 20 600 10 1,900 4
6 1.7× 10−4 0.250 23 100 5 2,700 3

Se
ve
ri
ty

1 3.3× 10−3 - 2 4,300 2 600 1
2 5.8× 10−3 - 1 200 2 300 1
3 3.7× 10−3 - 2 600 1 500 1
4 7.3× 10−3 - 1 100 2 400 2
5 5.4× 10−3 - 1 3,600 2 600 1
6 5.4× 10−3 - 1 100 1 600 1

Table 3.3: Overview of the optimal tuning parameters for the tree-based machine
learning techniques.

We also tune the benchmark GLMs for each of the six data folds separately,
i.e., we perform the binning strategy from Chapter 2 in each fold k such that
the optimal bins are chosen for the training data at hand D \ Dk. A grid is
used for the two tuning parameters involved, one for the continuous variables
and one for the spatial effect, thereby avoiding the two-step binning procedure
initially proposed in Chapter 2. Examples of the resulting benchmark GLMs
for frequency and severity are presented in Appendix B.4.2.

3.4.3 Model interpretation

We will use the variable importance measure to find the most relevant variables
in the frequency and severity models. Afterwards, we will make use of partial
dependence plots and individual conditional expectations to gain understanding
on a selection of interesting effects for the claim frequency. Similar results on
claim severity can be found in the supplementary material.

Variable importance To learn which variables matter for predicting claim
frequency and severity, we compare in Figure 3.5 the variable importance plots
for the different machine learning techniques over the six data folds. The
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variables are ranked from top to bottom, starting with the most important
one as measured by the average variable importance over the folds (multiple
variables with zero importance are ordered alphabetically from Z to A). By
contrasting the graphs in the left column of Figure 3.5, we see that the important
variables (mostly bonus-malus scale and age) are similar across all methods for
the frequency model. Other relevant risk factors are the power of the vehicle
and the spatial risk factor (combining the longitude and latitude information).
The frequency GLM, presented in Table B.3 in Appendix B.4.2, contains the
top seven variables together with coverage, which is ranked at the ninth place
for all methods.

The right column of Figure 3.5 shows the variable importance for severity
models. The ranking is very dissimilar across the different modeling techniques.
The regression tree models for severity contain only one split using the type
of coverage in four out of the six folds, while the other two trees have an
additional split on the age of the car. The random forest and gradient boosting
machine include more variables, but they both lead to rather different rankings
of the importance of those variables. The severity GLM, presented in Table B.4
in Appendix B.4.2, contains three variables: coverage, ageph and agec. An
interesting observation is that the most important risk factors in the gradient
boosting machines are those selected in the GLMs.
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Figure 3.5: Variable importance in the optimal regression tree (top), random forest
(middle) and gradient boosting machine (bottom) per data fold (color)
for frequency (left) and severity (right).
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Partial dependence plot of the age effect Figure 3.6 compares the partial
dependence effect of the age of the policyholder in frequency models. The two
top panels of Figure 3.6 show the GLM and GAM effects on the left and right
respectively. As explained in Section 3.2, due to our proposed data-driven
approach, the GLM effects are a step-wise approximation of the GAM effects.
The risk of filing a claim is high for young policyholders and gradually decreases
with increasing ages to stabilize around the age of 35. The risk starts decreasing
again around the age of 50 and increases for senior policyholders around the
age of 70. The bottom left panel of Figure 3.6 shows the age effect captured
by the regression trees. The effect is less stable across the folds compared to
the other methods, this is a confirmation and illustration of the variability of a
single regression tree. There is also no increase in risk for senior policyholders in
the regression trees. The bottom right panel of Figure 3.6 shows the age effect
according to the gradient boosting machines. This looks very similar to the
smooth GAM effect with one important distinction, namely the flat regions at
the boundaries. This makes the tree-based techniques more robust with respect
to extrapolation and results in less danger of creating very high premiums for
risk profiles at edges. Note that the gradient boosting machine predicts a wider
range of frequencies than the regression tree, namely 0.12 to 0.20 versus 0.12 to
0.165 respectively. The shape of the age effect in the random forest, available
in Appendix B.3, is rather similar to the gradient boosting machine effect but
on a slightly more compact range.
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Figure 3.6: Partial dependence plot to visualize the effect of the age of the
policyholder on frequency for the optimal model obtained per data
fold (color) in a GLM (top left), GAM (top right), regression tree
(bottom left) and gradient boosting machine (bottom right).
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Partial dependence plot of the spatial effect Figure 3.7 compares the
spatial effect in frequency models, more specifically the models trained on the
data where fold D3 was kept as the hold-out test set. We choose a specific data
fold because we otherwise need to show six maps of Belgium per method as
opposed to overlaying six effects as in Figure 3.6. The two top panels show the
GLM and GAM effects on the left and right respectively. Brussels, the capital
of Belgium located in the center of the country, is clearly the most accident-
prone area to live and drive a car because of heavy traffic. The southern and
northeastern parts of Belgium are less risky because of sparser population
and more rural landscapes. The bottom left panel of Figure 3.7 shows the
spatial effect as it is captured with a regression tree. Splitting on longitude
and latitude coordinates results in a rectangular split pattern on the map of
Belgium. The bottom right panel of Figure 3.7 shows the spatial effect for the
gradient boosting machine. The underlying rectangular splits are still visible
but in a smoother way compared to the regression tree. Brussels still pops out
as the most risky area and the pattern looks similar to the GLM and GAM
effects. The shape of the random forest spatial effect (see Appendix B.3) is
again similar to that of the gradient boosting machine on a more compact range.
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Figure 3.7: Partial dependence plot to visualize the effect of the municipality of
residence on frequency in a GLM (top left), GAM (top right), regression
tree (bottom left) and gradient boosting machine (bottom right).

Figures 3.6 and 3.7 teach us that a single tree is not able to capture certain
aspects in the data, resulting in a coarse approximation of the underlying risk
effect. The ensemble techniques are able to capture refined risk differences in
a much smoother way. The differences in the range of the predicted effects
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imply that the gradient boosting machine performs more segmentation while
the random forest puts more focus on risk pooling.

Individual conditional expectation of the bonus-malus effect Figure 3.8
compares the bonus-malus effect captured with a regression tree (left) and a
gradient boosting machine (right) for frequency data. As in Figure 3.7, we show
the effect for the models trained on the data where fold D3 was kept as the
hold-out test set. The gray lines are individual conditional expectations for
1,000 random policyholders and the blue line shows the partial dependence curve.
The values for x∗ in Eq. (3.8) are those registered for the selected policyholders.
On average, we observe an increase in frequency risk as the blue line surges over
the bonus-malus levels, which is to be expected because higher bonus-malus
levels indicate a worse claim history. We can get an idea about the sensitivity
of the bonus-malus effect across the different policyholders in the portfolio by
comparing the steepness of the gray lines. Keeping all other risk factors fixed,
a steeper effect indicates that a policyholder’s risk is more sensitive to changes
in the bonus-malus scale. This effect is driven by the combination of all risk
factors registered for this policyholder.

Figure 3.8: Effect of the bonus-malus scale on frequency in a regression tree (left)
and gradient boosting machine (right) as partial dependence (blue) and
individual conditional expectations (gray).

The previous figures show some counterintuitive results regarding the
monotonicity of a fitted effect. For example, the bonus-malus individual
conditional expectations for the regression tree in Figure 3.8 reveal decreases
in risk over increasing bonus-malus levels for certain policyholders. This poses
problems for the practical implementation of such a tariff because it assigns
a lower premium to policyholders with a worse claim history. In practice, an
actuary would specify monotonicity constraints on such a risk factor, either by
an a posteriori smoothing of the resulting effect or by using an implementation
that allows to specify such constraints a priori, e.g., the gbm package has this
functionality. Our analysis does not enforce such constraints.
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3.4.4 Hunting for interaction effects

Tree-based models are often praised for their ability to model interaction effects
between variables (Buchner et al., 2017; Schiltz et al., 2018). The predictions of
a model can not be expressed as the sum of the main effects when interactions
are present, because the effect of one variable depends on the value of another
variable. Friedman’s H-statistic, introduced by Friedman and Popescu (2008),
estimates the interaction strength by measuring how much of the prediction
variance originates from the interaction effect. We will put focus on two-way
interactions between variables xk and x`, but in theory this measure can be
applied to arbitrary interactions between any number of variables. Let f̄k(xk)
and f̄l(x`) represent the one-dimensional partial dependence of the variables as
defined in Section 3.3.4 and f̄kl(xk, x`) the two-way partial dependence, defined
analogously to Eq. (3.7). The H-statistic is expressed as:

H2
k` =

∑n
i=1{f̄kl(x

(i)
k , x

(i)
` )− f̄k(x(i)

k )− f̄l(x(i)
` )}2∑n

i=1 f̄
2
kl(x

(i)
k , x

(i)
` )

,

where x(i)
k indicates that the partial dependence function is evaluated at the

observed value of xk for policyholder i. Assuming the partial dependence is
centered at zero, the numerator measures the variance of the interaction while
the denominator measures the total variance. The ratio of both therefore
measures the interaction strength as the amount of variance explained by the
interaction. The H-statistic ranges from zero to one, where zero indicates no
interaction and one implies that the effect of xk and x` on the prediction is
purely driven by the interaction.
Table 3.4 shows the fifteen highest two-way H-statistics among the variables
available in the data set (as listed in Table B.1 in Appendix B.1) for the
frequency gradient boosting machine trained on the data where fold D3 was
kept as the hold-out test set. The strongest interaction is found between the
longitude and latitude coordinates, which is not a surprise seeing how these two
variables together encode the region where the policyholder resides.
The H-statistic informs us on the strength of the interaction between two
variables, but gives us no idea on how the effect behaves. Figure 3.9 shows
grouped partial dependence plots to investigate the interactions highlighted
in gray in Table 3.4. The partial dependence plots of a specific variable are
grouped into five equally sized groups based on the value of another variable.
Interaction effects between both variables can be discovered by comparing the
evolution of the curves over the five different groups. An interaction is at play
when this evolution is different for policyholders in different groups. In order to
focus purely on the evolution of the effect, we let all the curves in Figure 3.9
start at zero by applying a vertical shift.
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Variables H-statistic Variables H-statistic Variables H-statistic

(lat, long) 0.2687 (agec, coverage) 0.1185 (bm, power) 0.0800
(fuel, power) 0.1666 (ageph, power) 0.1062 (ageph, lat) 0.0799
(agec, power) 0.1319 (ageph, bm) 0.0961 (agec, ageph) 0.0785
(ageph, sex) 0.1293 (power, sex) 0.0829 (long, sex) 0.0732
(coverage, long) 0.1203 (fuel, long) 0.0828 (agec, bm) 0.0678

Table 3.4: H-statistic of the 15 strongest two-way interactions between all the
variables in the gradient boosting machine for frequencies, trained on
data with D3 as hold-out test set.
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Figure 3.9: Grouped partial dependence plots for the gradient boosting machine on
frequency, trained on data with D3 as hold-out test set. The effect is
binned in five equally sized groups. The left column shows the effects
for the power of the car grouped by the age of the policyholder (top),
the type of fuel (middle) and the bonus-malus scale (bottom). The right
column shows the effects for the sex of the policyholder (top), age of the
car (middle) and type of coverage (bottom), grouped by the age of the
policyholder or car.

An important and well-known effect in insurance pricing is the interaction
between the age of the policyholder and the power of the vehicle. Our benchmark
GLM and GAM use this interaction effect in the predictor and Figure 11 in
Chapter 2 shows that young policyholders with high power vehicles form an
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increased risk for the insurer regarding claim frequency. The top left panel of
Figure 3.9 shows the partial dependence of the power of the vehicle, grouped by
the age of the policyholder. The power effect is steepest for young policyholders,
indicated by the red line. The steepness of the effect decreases for increasing
ages. The difference in the steepness of the effect between young and old
policyholders is a visual confirmation of the interaction at play between the
variables ageph and power. The top right panel of Figure 3.9 shows the partial
dependence for the sex of the policyholders, grouped by their age. For young
policyholders, aged 18 to 33, we observe that males are on average more risky
drivers compared to females, while for the other age groups the female drivers
are perceived more risky than males. European insurers are not allowed to use
gender in their tariff structure nowadays, implying that young female drivers
might be partly subsidizing their male peers.

The middle left panel of Figure 3.9 shows the partial dependence of the power
of the vehicle, grouped by the type of fuel. We observe that the steepness of
the power effect is slightly higher for gasoline cars. Drivers typically choose a
diesel car when their annual mileage is above average, which would justify their
choice of buying a bigger and more comfortable car with higher horsepower.
However, drivers who own a high powered gasoline car might choose such a car
to accommodate for a more sportive driving style, making them more prone
to the risk of a claim. The middle right panel of Figure 3.9 shows the partial
dependence of the age of the vehicle, grouped by the policyholder’s age. We
observe a big bump for young policyholders in the vehicle age range from 5 to
15. This could indicate an increased claim frequency risk for starting drivers
who buy their first car on the second-hand market. The sharp drop around 19
could relate to vintage cars that are used less often and are thus less exposed
to the claim risk.

The bottom left panel of Figure 3.9 shows the partial dependence of the power
of the vehicle, grouped by the bonus-malus scale. We observe that the power
effect grows steeper for increasing levels occupied in the bonus-malus scale. This
indicates that driving a high powered car becomes more risky for policyholders
in higher bonus-malus scales. The bottom right panel of Figure 3.9 shows
the partial dependence of the type of coverage, grouped by the age of the
vehicle. For vehicles in the age range zero to three, we observe that adding
material damage covers decreases the claim frequency risk less compared to
other age ranges. This might indicate that policyholders who buy a new car
add a material damage cover because they worry about damaging their newly
purchased vehicle, while policyholders with older cars who still add damage
covers are more risk-averse and also less risky drivers.
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3.4.5 Statistical out-of-sample performance

Figure 3.10 compares the out-of-sample performance of the different models
investigated over the six data folds. We evaluate the Poisson deviance for
frequency models and the gamma deviance for severity models, see Eq. (4.5) and
(3.6) respectively, on the holdout test data. In the left panel of Figure 3.10, we
observe a clear ranking of the out-of-sample Poisson deviance among the different
methods. The gradient boosting machine is most predictive, consistently leading
to the lowest deviance values. The performance of GLMs and GAMs is very
similar, which is expected because the GLM is a data driven approximation
of the GAM, as explained in Section 3.2. Next in line is the random forest,
and the regression tree is the least predictive for frequency. These results
are very stable over the six data folds. The right panel of Figure 3.10 shows
the out-of-sample gamma deviance for severity. The methods perform rather
similarly and there is no clear winner or loser over the different folds. The
peak at the fourth fold reveals a weakness of the GAM: the extrapolation of
smooth effects, see Figure 3.6, combined with out-of-sample testing can lead to
huge deviance values. In the severity GAM trained on D \ D4 and evaluated
on D4, the problem occurred with the age of the car. Specifically, the maximal
value for agec in D \ D4 for severity is 32 while the maximal value in D4 is 37,
thus requiring an extrapolation of the calibrated smooth effect. This motivates
to cap continuous variables at a certain cut-off in a pre-processing stage for a
GAM. A tree-based method automatically deals with this problem thanks to
the flat region at the outer ends of the effect, see Figure 3.6.
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Figure 3.10: Out-of-sample Poisson deviance for frequency (left) and gamma
deviance for severity (right), each color representing a different modeling
technique.

This comparison only puts focus on the statistical performance of the frequency
and severity models. In the next section, we combine both in a pricing model
and compare the different tariff structures using practical business metrics
relevant for an insurance company.
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3.5 Model lift: from analytic to managerial insights

Choosing between two tariff structures is an important business decision. This
creates the need to translate our model findings to evaluation criteria that
capture a manager’s interest. We evaluate the economic value of a tariff
using tools proposed in the literature to measure model lift (Frees et al., 2013;
Goldburd et al., 2016, Section 7.2). In this context, model lift refers to the
ability of a model to prevent adverse selection. An insurer might become victim
hereof when a competitor refines its tariff structure via innovation such that
good risks switch to the competitor and the insurer is left with the bad risks
which are more prone to high losses.

We combine the claim frequency and severity models from Section 3.4 to obtain
the pure premium for each policy under consideration, allowing us to compare
different tariff structures. As Figure 3.3 illustrates, each observation is out-of-
sample in exactly one of the data folds, more specifically the observations in
Dk are out-of-sample for data fold k. We then use the optimal model trained
on D \ Dk to predict the policyholders in holdout test set Dk. Following this
strategy, we obtain one premium per modeling technique for each policyholder in
the full data D. Table 3.5 shows a comparison between the predicted premium
totals and the observed losses, both on the portfolio level and split by data
fold. On average, every method is perfectly capable of replicating the total
losses. Section 3.5.2 compares the model lift measures from Section 3.5.1 on the
portfolio level. We also analyzed each of the data folds separately (not shown),
leading to the same ranking of models as in Section 3.5.2, thereby validating
the consistency of our results.

Data fold GLM CART RF GBM Losses

1 4,396,698 4,341,397 4,407,389 4,376,619 4,365,483
2 4,420,933 4,339,615 4,419,903 4,384,513 4,388,147
3 4,369,876 4,313,768 4,380,972 4,337,848 4,461,478
4 4,370,502 4,374,666 4,383,748 4,324,014 4,422,213
5 4,405,369 4,374,368 4,399,226 4,357,937 4,485,079
6 4,397,372 4,375,151 4,412,852 4,363,588 4,342,569

portfolio 26,360,750 26,118,966 26,404,091 26,144,519 26,464,970

GLM CART RF GBM

1.01 0.99 1.01 1.00
1.01 0.99 1.01 1.00
0.98 0.97 0.98 0.97
0.99 0.99 0.99 0.98
0.98 0.98 0.98 0.97
1.01 1.01 1.02 1.01

1.00 0.99 1.00 0.99

Table 3.5: Comparison of the predicted premiums and observed losses on portfolio
level and by data fold. We show the premium and loss totals (left) and
the ratio of premiums to losses (right).



MODEL LIFT: FROM ANALYTIC TO MANAGERIAL INSIGHTS 69

3.5.1 Tools to measure model lift

Suppose that an insurance company has a tariff structure P bench in place and
a competitor introduces a tariff structure P comp based on a new modeling
technique or a different set of rating variables. We define the relativity ri as the
ratio of the competing premium to the benchmark premium for policyholder i:

ri = P comp
i

P bench
i

. (3.9)

A small relativity indicates a profitable policy which can potentially be lost to
a competitor offering a lower premium. A high relativity reveals an underpriced
policy which could benefit from better loss control measures such as renewal
restrictions. These statements make the assumption that P comp is a more
accurate reflection of the true risk compared to P bench.

Loss ratio lift The loss ratio (LR) is the ratio of total incurred claim losses
and total earned premiums. Following Goldburd et al. (2016), we assess the
loss ratio lift in the following way:

1. sort the policies from smallest to largest relativity ri;
2. bin the policies into groups containing the same amount of total exposure
e;

3. within each bin, calculate the overall loss ratio using the benchmark
premium P bench.

The bins should have loss ratios around 100% if the benchmark tariff is a
technically accurate reflection of the risk. However, an upward trend in the loss
ratios would indicate that policies with a lower (higher) premium under the
competing tariff are those with a lower (higher) loss ratio in the benchmark
tariff, pointing out that the competing tariff better aligns the risk.

Double lift A double lift chart facilitates a direct comparison between two
potential tariff structures. Following Goldburd et al. (2016), this chart is created
in the following way:

1. sort the policies from smallest to largest relativity ri;
2. bin the policies into groups containing the same amount of total exposure
e;

3. within each bin, calculate the average actual loss amount (L) and the
average predicted pure premium for both the models (P bench and P comp);

4. within each bin, calculate the percentage error for both models as P/L−1.

The best tariff structure is the one with the percentage errors closest to zero,
indicating that those premiums match the actual losses more closely.
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Gini index Frees et al. (2013) introduced the ordered Lorenz curve to compare
the tariffs P bench and P comp by analyzing the distribution of losses versus
premiums, where both are ordered by the relativities r from Eq. (3.9). The
ordered Lorenz curve is defined as follows:(∑n

i=1 Li 1{Fn(ri) ≤ s}∑n
i=1 Li

,

∑n
i=1 P

bench
i 1{Fn(ri) ≤ s}∑n
i=1 P

bench
i

)
,

for s ∈ [0, 1] where Fn(ri) is the empirical cumulative distribution function of the
relativities r. This curve will coincide with the 45 degree line of equality when
the technical pricing is done right by the benchmark premium. However, the
curve will be concave up when P comp is able to spot tariff deficiencies in P bench.
The cumulative distributions are namely taken from the most overpriced policies
towards the most underpriced policies in P bench. The Gini index, introduced by
Gini (1912) and computed as twice the area between the ordered Lorenz curve
and the line of equality, has a direct economic interpretation. A tariff structure
P comp that yields a larger Gini index is likely to result in a more profitable
portfolio because of better differentiation between good and bad risks. The
insurer can decide to only retain the policies with a relativity value below a
certain threshold. Averaging this decision over all possible thresholds, Frees
et al. (2013) show that the average percentage profit for an insurer equals one
half of the Gini index.

3.5.2 Adverse selection and profits

The panels in the left column of Figure 3.11 show the loss ratio lift charts for
the regression tree, random forest and gradient boosting machine respectively
with the GLM as benchmark tariff (i.e., the GLM premium is the denominator
in Eq. (3.9)). All tree-based methods show an increasing trend in the loss
ratios. This implies that policies which would receive a lower premium under
the competing tariff, those in the first bins, are policies with favorable loss ratios.
At the same time, policies having a higher premium under the competing tariff,
those in the last bins, exhibit detrimental loss ratios. The tree-based techniques
are therefore able to spot deficiencies in the GLM benchmark tariff. One should
not draw conclusions from these graphs too fast however. The middle panels
of Figure 3.11 show the loss ratio lifts for the GLM with the three respective
tree-based techniques as a benchmark tariff. Comparing these lift charts side
by side, we can observe that the upwards trend is now steeper in the cases of
the regression tree and random forest. Thus, the GLM is better in spotting
deficiencies in those tree-based tariffs compared to the other way around. The
gradient boosting machine and GLM result in rather complementary tariffs.
The GLM is very good in the three middle relativity bins, but the gradient
boosting machine is clearly outperforming in the first and last bin.
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These findings are confirmed by the double lift charts in the right panels
of Figure 3.11. These show the double lift charts obtained with the GLM
as the benchmark tariff in the relativities. The red and turquoise line
respectively show the percentage error for the tree-based model and the GLM.
For both the regression tree and the random forest, the percentage error for
the GLM benchmark tariff is more closely centered around zero compared
to the competitor percentage error. We again notice the complementarity of
the gradient boosting machine and GLM tariffs. The percentage error for the
gradient boosting machine is closer to zero for the first and last relativity bin,
but the GLM is closer to zero for the other three relativity bins.
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Figure 3.11: Assessment of model lift for the regression tree (top), random forest
(middle) and gradient boosting machine (bottom). The left column
shows the loss ratio lift for the tree-based techniques with the GLM as
benchmark. The middle column shows the loss ratio lift for the GLM
with the tree-based techniques as benchmark. The right column shows
the double lift chart for the tree-based techniques with the GLM as
benchmark.

The gradient boosting machine tariff clearly holds economic value over the GLM
benchmark. However, in the bottom left panel of Figure 3.11, we observe that
the gradient boosting machine is slightly over-correcting the GLM premium in
the extreme ends of the tariff. The loss ratio in the first bin is 0.84 while the
average relativity in that bin is equal to 0.78. Likewise, the average loss ratio
in the last bin is 1.21 while the average relativity in that bin is equal to 1.30.
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Table 3.6 shows a two-way comparison of Gini indices for the machine learning
methods and the GLM. The row names indicate the model generating the
benchmark tariff structure P bench while the column names indicate the model
generating the competing tariff structure P comp. The row-wise maximum values
are indicated in bold. We observe that the gradient boosting machine achieves
the highest Gini index when the benchmark is either the GLM, the regression
tree or the random forest. When the gradient boosting machine serves as
benchmark, the GLM attains the highest Gini index. We use the mini-max
strategy of Frees et al. (2013) where we search for the benchmark model with
the minimal maximum Gini index. In other words, we look for the benchmark
model with the lowest value in bold in Table 3.6. The gradient boosting machine
achieves this minimal maximum Gini index, indicating that this approach leads
to a tariff structure that is the least probable to suffer from adverse selection.
Note that the GLM tariff achieves the second place, before the random forest
and regression tree.

Frees et al. (2013) explain that the average profit for an insurer is equal to half
the Gini index. Let us assume that the insurance company uses state-of-the-art
GLMs to develop their current tariff structure on this specific data. This implies
that developing a competing tariff structure with gradient boosting machines
would result in an average profit of around 3.3% for the insurer. The average is
taken over all possible decision-making strategies that the insurance company
can take to retain policies based on the relativities. Therefore, by following an
optimal strategy, the profit can even be higher for a specific choice of portfolio.
We suspect that the improvement in profits could be even greater if there were
more explanatory variables in the data.

competitors: GLM CART RF GBM

be
nc
hm

ar
k GLM 4.07 5.99 6.57

CART 10.86 10.10 12.02
RF 7.07 0.53 7.59
GBM 3.93 0.67 2.30

Table 3.6: Two-way comparison of Gini indices for the different tree-based techniques
and GLM.
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3.5.3 Solidarity and risk differentiation

From a social point of view, it is crucial for everybody to be able to buy insurance
cover at a reasonable price. A tariff structure that follows from a complex
machine learning algorithm should not lead to the “personalization of risk” with
excessively high premiums for some policyholders. Figure 3.12 shows violin
plots of the annual (i.e., exposure equals one) premium distribution in both
the gradient boosting machine tariff P gbm and the GLM tariff P glm. We only
consider the gradient boosting machine because Sections 3.4.5 and 3.5.2 teach
us that only this method holds added value over the GLM. The left panel shows
the annual premium amounts and we observe that both distributions look very
similar. The minimum, median and maximum premium is 43, 155 and 1138 Euro
in P gbm and 41, 156 and 1230 Euro in P glm respectively. The right panel shows
the relative difference between both premiums, namely (P gbm − P glm)/P gbm.
The difference is centered around zero and for half the policyholders the difference
lies in the range [−12%,+12%]. This implies that, overall, P gbm and P glm trade
off segmentation and risk pooling in a similar way, thereby finding a balance
between differentiation and solidarity. For a small selection of policyholders,
the gradient boosting machine leads to considerable discounts compared to the
GLM.
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Figure 3.12: Comparison of the annual premium distribution in the gradient boosting
machine tariff P gbm and the GLM tariff P glm: absolute premiums (left)
and relative differences (right).

The gradient boosting machine and GLM result in similar premiums on a
portfolio level (see Table 3.5), but on a coarser scale, they could lead to different
approaches for targeting specific customer segments. Figure 3.13 are the relative
premium differences between P gbm and P glm over the age of the policyholder in
the left panel and the power of the car in the right panel. The blue dots show the
average premium difference for policyholders with that specific characteristic,
e.g., all policyholders aged 25. We observe that younger policyholders obtain
a slightly lower premium in the gradient boosting machine tariff, while senior
policyholders obtain a slightly higher premium compared to the GLM tariff. For
middle aged policyholders there are some fluctuations which can be explained
by analyzing the age effects in Figure 3.6. For the group of dots around the
age of 75, P gbm gives an average 30% premium discount over P glm. Figure 3.6
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shows that the age effect starts increasing before the age of 75 in the GLM (top
left), but only after the age of 75 for the gradient boosting machine (bottom
right). Therefore, policyholders around the age of 75 obtain a better deal in
the gradient boosting machine tariff. In the right panel of Figure 3.13, the
premium differences increase roughly monotonically with the power of the car.
Low powered cars obtain a lower premium in P gbm while high powered cars get
a lower premium in P glm. In between the differences are close to zero, indicating
that both tariffs treat those cars in a similar fashion.
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Figure 3.13: Comparison of premium differences between P gbm and P glm over the
age of the policyholder (left) and the power of the car (right).

We conclude that gradient boosting machines can be a valuable tool for the
insurer, while the other tree-based techniques under investigation show little
added value on our specific portfolio. The gradient boosting machine is able
to deliver a tariff that assesses the underlying risk in a more accurate way,
thereby guarding the insurer against adverse selection risks which eventually can
result in a profit. The gradient boosting machine also honored the principle of
solidarity in the portfolio, offering affordable insurance cover for all policyholders
with premiums in the same range as the benchmark GLM.

3.6 Conclusions and outlook

In this study, we have adapted tree-based machine learning to the problem
of insurance pricing, thereby leaving the comfort zone of both traditional
ratemaking and machine learning. State-of-the-art GLMs are compared to
regression trees, random forests and gradient boosting machines. These tree-
based techniques can be used on insurance data, but care has to be taken with the
underlying statistical assumptions in the form of the loss function choice. This
chapter brings multiple contributions to the existing literature. First, we develop
complete tariff plans with tree-based machine learning techniques for a real-life
insurance portfolio. In this process, we use the Poisson and gamma deviance
because the classical squared error loss is not appropriate for a frequency-severity
problem. Second, our elaborate cross-validation scheme gives a well thought
and careful tuning procedure, allowing us to assess not only the performance of
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different methods, but also the stability of our results across multiple data folds.
Third, we go beyond a purely statistical comparison and also focus on business
metrics used in insurance companies to evaluate different tariff strategies. Fourth,
we spend a lot of attention on the interpretability of the resulting models. This
is a very important consideration for insurance companies within the GDPR’s
regime of algorithmic accountability. Fifth, our complete analysis is available in
well-documented R functions, readily applicable to other data sets. This includes
functions for training, predicting and evaluating models, running the elaborate
cross-validation scheme, interpreting the resulting models and assessing the
economic lift of these models. Sixth, we extended the rpart package such that it
is now possible to build regression trees with a gamma deviance as loss function
and random forest with both the Poisson and gamma deviance as loss functions.
This package is available at https://github.com/henckr/distRforest.

The gradient boosting machine is consistently selected as best modeling approach,
both by out-of-sample performance measures and model lift assessment criteria.
This implies that an insurer can prevent adverse selection and generate profits
by considering this new modeling framework. However, this might be impossible
because of regulatory issues, e.g., filing requirements (see Appendix B.4). In
that case, an insurance company can still learn valuable information on how to
form profitable portfolios from an internal, tech nical model and translate this
to a commercial product which is in line with all those requirements. A possible
approach would be to approximate a gradient boosting machine with a GLM,
much in line with the strategy to develop the benchmark pricing GLM in this
study. The gradient boosting machine can be used to discover the important
variables and interactions between those variables, which can then be included
in a GLM for deployment. Although we present the tools to detect potentially
interesting variables and interactions, we leave for future work the building of a
competitive GLM inspired by the gradient boosting machine.

https://github.com/henckr/distRforest




Chapter 4

Model-Agnostic Interpretable
Data-driven suRRogates

Technological advancements allow to develop high-performance black box predictive
models. However, strictly regulated industries (like banking and insurance) ask for
transparent decision-making algorithms. We therefore present a procedure to develop
a Model-Agnostic Interpretable Data-driven suRRogate (maidrr) suited for structured
tabular data. Knowledge is extracted from a black box via partial dependence effects.
These are used to perform smart feature engineering by grouping variable values. This
results in a segmentation of the feature space with automatic variable selection. A
transparent generalized linear model (GLM) is fit to the features in categorical format
and their relevant interactions. This GLM serves as a global surrogate to the original
black box and replaces it in production. We demonstrate our R package maidrr with
a case study on general insurance claim frequency modeling for six publicly available
datasets. Our maidrr GLM closely approximates a gradient boosting machine (GBM)
black box and outperforms both a linear and tree surrogate as benchmarks.

This chapter is based on joint work with Katrien Antonio and Marie-Pier Côté, which
is publicly available as an arXiv preprint Henckaerts et al. (2021a). This research
is supported by the Research Foundation Flanders [SB grant 1S06018N] and by the
Natural Sciences and Engineering Research Council of Canada [RGPIN-2019-04190].
Furthermore, Katrien Antonio acknowledges financial support from the Ageas Research
Chair at KU Leuven and from KU Leuven’s research council [COMPACT C24/15/001].
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4.1 Introduction

The big data revolution opened the door to highly complex artificial intelligence
(AI) technology and black box models in search for top performance (Caruana
and Niculescu-Mizil, 2006). However, at the same time, there is growing public
awareness for the issues of interpretability, explainability and fairness of AI
systems (O’Neil, 2016). The General Data Protection Regulation (GDPR,
2016) introduces “the right to an explanation” of decision-making algorithms,
thereby pushing for transparent communication on the underlying decision
process. An explainable AI (XAI) algorithm enables human users to understand,
trust and manage its decisions (Gunning, 2017). Explainability is gaining
attention in many industries, such as automotive (Meteier et al., 2019), banking
(Bracke et al., 2019), healthcare (Ahmad et al., 2018), insurance (OECD, 2020),
manufacturing (Hrnjica and Softic, 2020) and critical systems (Gade et al.,
2019). Full transparency is essential for high-stakes decisions with a big impact
on a person’s life (Rudin, 2019). High-stakes examples include medical diagnosis,
insurance pricing, education admission, loan applications, criminal justice, job
recruitment and autonomous transportation.

A lack of algorithmic transparency can hinder AI implementations in business
practice due to regulatory compliance requirements (Arrieta et al., 2020). XAI
is therefore especially important in highly regulated industries with an extensive
review of algorithms by supervisory authorities. Examples from the financial
sector include the key information documents (KIDs) for packaged retail and
insurance-based investment products (PRIIPs, 2014), detailed motivations for
credit actions under the Equal Credit Opportunity Act (ECOA, 1974) and
filing requirements for general insurance rates to the National Association of
Insurance Commissioners (NAIC, 2012). Our case study in Section 4.3 puts
focus on general insurance pricing as one of the high-stakes XAI application
areas where transparent decision-making is essential due to strict regulations.

4.1.1 Related works

Surrogate models aim to copy the behavior of a complex system by capturing
its essence in a simpler format. Approaches like model compression (Bucilă
et al., 2006), mimic learning (Ba and Caruana, 2014) and distillation (Hinton
et al., 2015) transfer knowledge from a complex/slow model into a simple/fast
approximation. The resulting surrogate is still an opaque model, but is easier
to deploy in environments with stringent space and time requirements. These
methods purely focus on simpler implementations with faster execution times
and lower memory requirements. Within XAI applications it is however very
important to explain a system’s underlying decision process. Explainability is
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often a subjective notion without a formal definition according to Lipton (2018).
In effort to make this notion more specific, several classification schemes have
emerged in recent literature (Adadi and Berrada, 2018; Carvalho et al., 2019;
Arrieta et al., 2020; Burkart and Huber, 2021). We use the classification
of Guidotti et al. (2018, Figure 4) to discuss the different roads towards
explainability of black box models.

Model inspection The goal of model inspection is to understand the inner
workings of a black box and how its behavior changes for different input
conditions. Examples of popular tools are feature importance (Breiman, 2001),
partial dependence plots (Friedman, 2001), individual conditional expectations
(Goldstein et al., 2015) and accumulated local effects (Apley and Zhu, 2019).
The provided level of information is typically rather low as these tools assess the
effect of one or two features on the prediction target, thereby making it hard to
obtain a global view and understanding of the black box behavior. Furthermore,
Wachter et al. (2018) argue that these kinds of tools are hard to interpret by
non-expert users. Methods for model inspection are however very valuable for
experts (e.g., data scientists) to debug or validate a black box.

Model explanation With model explanation, we aim to understand the
whole decision logic inside a back box. The internal decision process is explained
via a global surrogate, i.e., a simple white box model that is constructed by
using the black box predictions as targets with the goal to mimic its behavior.
Example tools are TREPAN (Craven and Shavlik, 1995) and born again trees
(?), both extracting a tree structure from a black box model. This type of
explanation is intuitive for a non-expert user as its logic can be described via
a decision tree or a list of rules. Fidelity then measures to which extent the
surrogate is able to mimic the black box behavior. The surrogate needs to
capture the correct feature interactions with a high degree of fidelity to avoid
misleading explanations, which can be a challenging task.

Outcome explanation Outcome explanation has the goal to explain the
black box prediction for a specific data instance. Individual predictions are
explained via a local surrogate, i.e., a simple model constructed in the vicinity
of the observation of interest. Examples of popular tools are LIME (Ribeiro
et al., 2016), K-LIME (Hall et al., 2017), SHAP (Lundberg and Lee, 2017),
Anchors (Ribeiro et al., 2018) and SLIM (Hu et al., 2020). These methods
each have their own approach to derive the local model, possibly resulting in
different explanations for the same data instance. The user therefore needs
to understand the inner workings, validity domain and limitations of these
outcome explanations to avoid wrong conclusions. These observations make it
hard for non-experts to trust and correctly interpret the provided explanations.
Furthermore, Laugel et al. (2018) show that there is a trade-off between the
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stability of explanations across similar instance predictions and fidelity to the
original black box model.

In summary, the discussed explanation methods suffer from two main drawbacks.
First, the need for expert knowledge to draw correct conclusions limits the
usability for layman users. Second, explanations are based on a surrogate model
while the complex black box remains in production. High fidelity is therefore
crucial to obtain valid and non-misleading explanations. Guidotti et al. (2018)
mention a fourth approach towards model explainability, namely a transparent
design.

Transparent design An interpretable model is used from the start in a
transparent design. As such, the model can be understood by non-experts while
avoiding the issue of misleading explanations. Decision trees, rules and linear
models are transparent by design, meaning they are easily comprehensible for
human users. In linear models, the contribution (sign and strength) of feature xj
to the prediction target y is directly observable from the model coefficient βj
(Doran et al., 2017). Rudin (2019) advocates to only use interpretable models
for high-stakes decisions because correct and clear explanations are crucial in
such situations.

4.1.2 Research goals

The transparent design approach has two potential drawbacks. First, a simple
interpretable model is expected to have reduced accuracy compared to a complex
black box. However, Rudin (2019) argues that this is often not the case on
structured data with meaningful features after careful pre-processing. Second,
domain expertise might be needed to develop an interpretable model that makes
sense and performs well. For a linear model, one has to define the model
structure upfront by selecting the features, interactions and their representation.
In this paper, we aim to streamline and automate the transparent design process.
We extract knowledge from a complex black box via model inspection techniques
and perform smart feature engineering. This allows to develop a transparent
model which approximates the complex system. The resulting surrogate is
simple enough to allow for easy/fast deployment and is highly transparent
which eliminates the need for extra model explanation tools.

This paper presents a novel procedure to develop a global surrogate for a
complex system, with the goal of implementing the surrogate in production.
The surrogate inherits the strengths of a sophisticated black box algorithm,
delivered in a simpler format that is easier to understand, manage and implement.
For certain applications, it might be sufficient to have an explanation surrogate
model while the black box remains in production. However, high-stakes decisions
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or strict regulations ask for full transparency of the model in production. We
deliver a surrogate that aims to closely approximate the black box model such
that it can be used as a substitute with (model and outcome) explanations
readily available. The resulting high degree of model transparency can boost
AI business applications, especially in highly regulated sectors such as banking
and insurance.

Our procedure to construct a global surrogate first extracts knowledge from the
complex system via model inspection techniques. Next, using these insights,
it performs smart feature engineering on the training data. In the end, a
transparent design model is fit to the engineered training data. We put forward
the following three desirable properties for our procedure. Firstly, a model-
agnostic procedure is preferred due to the ever increasing variety of black box
algorithms. We rely on partial dependence (PD) effects to extract knowledge
from the black box, thereby covering a vast amount of different model types
(Friedman, 2001). Secondly, a data-driven procedure avoids the need for ad
hoc model choices and assists model developers. This fully automates the
transformation from black box to transparent surrogate. Thirdly, the resulting
surrogate should be interpretable such that it is easy to comprehend by humans.
Here, we use generalized linear models (GLMs), formulated by Nelder and
Wedderburn (1972), as the transparent design model that is fit in the final step
of our procedure. This versatile model class covers a broad range of classification
and regression models and allows to represent its output as a decision table.
Huysmans et al. (2011) perform a user study on the comprehensibility of several
representation formats and show that decision tables outperform trees and rules
with respect to accuracy, response time, answer confidence and ease of use.
GLMs are widely used in the insurance industry thanks to the high degree of
transparency (Goldburd et al., 2016).

We introduce maidrr: a procedure to develop a Model-Agnostic Interpretable
Data-driven suRRogate for a black box model on structured tabular data.
The complete procedure is implemented in the open source R package maidrr
(Henckaerts, 2021). The rest of this paper is structured as follows. Section 4.2
details the maidrr methodology. Section 4.3 shows an application to insurance
claim frequency modeling, where transparency is essential due to strict
regulations imposed to insurance pricing models put in production. We
demonstrate that our maidrr surrogate GLM is able to closely approximate a
gradient boosting machine (GBM) black box, while outperforming a linear and
tree benchmark surrogate. Section 4.4 concludes this paper.
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4.2 Methodology

We first give an overview of the process behind maidrr, as schematized in
Figure 4.1 and described in Algorithm 1. All the steps are detailed later in
this section. The starting point of maidrr is a black box that we want to
transform into a simpler and more comprehensible global surrogate. We extract
knowledge from the black box in the form of partial dependence (PD) effects
for all features xj that pass an (optional) importance screening, with j ∈
{1, . . . , p}. These PD effects f̄j , describing the relation between a feature xj
and the target, are used to group values/levels within a feature via dynamic
programming (DP). The grouping approach slightly differs depending on the
type of feature. For continuous or ordinal features, only adjacent values may
be binned together, whereas any two levels within a nominal feature can be
clustered. The binning/clustering via DP leads to an optimal and reproducible
grouping of levels. This results in a full segmentation of the feature space as all
features are transformed to a categorical format xcj with k∗j groups. Automatic
feature selection is performed as only categorical features xcj with k∗j > 1 groups
are withheld. The same feature engineering process is followed to include
interactions in the surrogate, with slight modifications detailed later on. Finally,
a generalized linear model (GLM) is fit to the segmented data with selected
features in a categorical format and their relevant interactions. The end product
is an interpretable global surrogate which approximates the black box model
and replaces it in production.

Algorithm 1 maidrr
Input: data, fpred, λmarg, λintr, k, v and h
upfront feature selection: F = {j | j ∈ {1, . . . , p} , V (xj) ≥ v}
for all j in F do
calculate the PD effect f̄j via Eq. (4.1)
apply the DP algorithm to feature xj with k∗j = arg min

kj∈{1,...,k}
Eq. (4.2)

xcj represents the grouped version of xj in categorical format with k∗j groups
end for
final feature selection: F ∗ = F \ {j | k∗j = 1}
upfront interaction selection: I = {(l,m) | l ∈ F ∗ , m ∈ F ∗ , l 6= m , H(xl, xm) ≥ h}
for all (a, b) in I do
calculate the PD effect f̄a:b via Eq. (4.3)
apply the DP algorithm to interaction xa:b with k∗ab = arg min

kab∈{1,...,k}
Eq. (4.4)

xca:b represents the grouped version of xa:b in categorical format with k∗ab groups
end for
final interaction selection: I∗ = I \ {(l,m) | k∗lm = 1}
fit a GLM to the target with features xcj for j ∈ F ∗ and interactions xca:b for (a, b) ∈ I∗
Output: surrogate GLM
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Figure 4.1: The maidrr process for transforming a black box algorithm into a
transparent GLM.

4.2.1 Marginal effects: knowledge extraction

Any black box model giving a prediction function fpred(x) for features x ∈ Rp
can be used as a starting point, because maidrr is a model-agnostic procedure.
With j ∈ {1, . . . , p}, upfront feature selection is possible by only considering the
features xj ∈ F for which an importance measure V (xj) exceeds a pre-specified
threshold value v in Algorithm 1. We use the permutation approach of Breiman
(2001) to calculate the measure V (xj). This approach quantifies the decrease in
model performance after randomly changing a feature’s values. Features that
cause a high decrease in model performance after permutation are considered
to be important.

We extract knowledge from the black box via partial dependence (PD) effects. A
univariate PD captures the marginal relation between a feature xj and the model
predictions (Friedman, 2001). The PD effect f̄j(xj) evaluates the prediction
function fpred for a given value of feature xj , while averaging over n observed
values of the other features xi−j for observation i ∈ {1, . . . , n}:

f̄j(xj) = 1
n

n∑
i=1

fpred(xj ,xi−j). (4.1)
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4.2.2 Marginal effects: feature segmentation

The PD effect f̄j is used to group values/levels within feature xj , as a similar
PD indicates a similar relation to the prediction target. This grouping reduces
the complexity of the feature with a limited loss of information. In theory,
PDs can be misleading for correlated features and accumulated local effects
(ALE) serve as an alternative (Apley and Zhu, 2019). However, Appendix C.1
compares the resulting PDs and ALEs for highly correlated features in our case
study, justifying the use of PDs for grouping purposes.
For feature xj , let mj denote the unique number of observed values and let
xj,q denote its qth value for q ∈ {1, . . . ,mj}. We then define zj,q = f̄j(xj,q)
as the PD effect of feature xj evaluated in xj,q. The goal is now to arrange
the values xj,q in kj groups based on zj,q. This represents a one-dimensional
clustering problem of zj,q for q ∈ {1, . . . ,mj}. Wang and Song (2011) developed
a dynamic programming (DP) algorithm for optimal and reproducible one-
dimensional clustering problems. Elements of an mj-dimensional vector zj,q are
assigned to kj clusters by minimizing the within-cluster sum of squares, that
is, the sum of squared distances from each element to its corresponding cluster
mean. This follows the same spirit as the K-means algorithm (MacQueen,
1967), but the DP algorithm guarantees reproducible and optimal groupings
by progressively solving the sub-problem of clustering u elements in v clusters
with 1 ≤ u ≤ mj and 1 ≤ v ≤ kj . This algorithm is implemented in the R
package Ckmeans.1d.dp (Song, 2019) and allows for the inclusion of adjacency
constraints in the clustering problem. We impose such constraints for continuous
and ordinal features to group adjacent values. Nominal features with no specific
ordering are clustered without constraints such that any two levels can be
grouped. The DP algorithm requires the specification of the number of groups kj
for feature xj to group zj,q.
In theory, we can perform a p-dimensional grid search to find the optimal kj for
each feature xj with j ∈ {1, . . . , p}. However, this would cause the computation
time to grow exponentially with p, harming maidrr’s scalability. We thus
propose a penalized loss function to find the optimal number of groups kj in
{1, . . . , k}, where k is the hyperparameter in Algorithm 1 that allows to specify
the maximum number of groups per feature. After grouping feature xj in kj
groups, let z̃j,q represent the average PD effect for the group to which xj,q
belongs. The penalized loss function is then defined as follows:

mj∑
q=1

wj,q (zj,q − z̃j,q)2 + λmarg log(kj). (4.2)

The first part of this loss function measures how well the PD effect is
approximated by the grouped variant as a weighted mean squared error (wMSE)
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over all unique values of feature xj . The weight wj,q represents the proportion
of observations that equal value xj,q for feature xj . This forces the procedure to
focus on closely approximating frequently occurring feature values as opposed to
rare cases. The second part of Eq. (4.2) measures the complexity by means of the
common logarithm of the number of groups kj . The penalty parameter λmarg
in Eq. (4.2) acts as a bias-variance trade-off. A low (high) value of λmarg
allows for many (few) groups, resulting in an accurate (coarse) approximation
of the PD. Note that λmarg does not depend on j because the PD effects reside
on the same scale, namely the scale of the predictions, see Eq. (4.1). The
original p-dimensional tuning problem in this way reduces to be one-dimensional
over λmarg. We minimize Eq. (4.2) for each feature xj , resulting in a full
segmentation F ∗ of the feature space. Automatic feature selection is enabled as
xj is excluded from the surrogate when kj = 1.

4.2.3 Interaction effects: knowledge and segmentation

So far we focused on grouping features via their marginal PDs, but feature
interactions can play a major role in explaining the data. Interaction strength
in the black box model is measured via the H-statistic (Friedman and Popescu,
2008). We find a set of relevant interactions I by selecting all pairwise
combinations of the features present in F ∗ whose realized values of the H-
statistic exceed a pre-specified threshold value h in Algorithm 1.
The pure interaction effect between features xa and xb is captured by subtracting
both one-dimensional PDs from the two-dimensional PD:

f̄a:b(xa, xb) = 1
n

n∑
i=1

fpred(xa, xb,xi−a,−b) −
1
n

n∑
i=1

∑
`∈{a,b}

fpred(x`,xi−`). (4.3)

We define feature xa:b as the interaction containing all combinations of
features xa and xb in the original data. The DP algorithm clusters levels
in xa:b that have similar f̄a:b(xa, xb) values, without any adjacency constraints.
We allow for such maximum flexibility because interactions represent a correction
on top of the marginal effects. Defining za,c:b,d = f̄a:b(xa,c, xb,d) and z̃a,c:b,d as
the average PD effect for the group to which (xa,c, xb,d) belongs, we determine
the number of groups kab by minimizing the two-dimensional equivalent of
Eq. (4.2) as follows:

ma∑
c=1

mb∑
d=1

wa,c:b,d (za,c:b,d − z̃a,c:b,d)2 + λintr log(kab). (4.4)

We minimize Eq. (4.4) for each interaction xa:b, resulting in a segmentation of
select interactions I∗. A distinct value of λ is advised for marginal (λmarg) and
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interaction (λintr) effects, as the PDs in Eq. (4.1) and (4.3) reside on different
scales. We tune both λ’s from Eq. (4.2) and (4.4) via a grid search and K-fold
cross-validation. The optimal λ values minimize loss functions that balance
the original target observations and the surrogate GLM predictions, resulting
in a data-driven procedure. Section 4.3.2 further details our sequential tuning
approach for λmarg and λintr.

4.2.4 Global surrogate

In a final step, we fit a transparent model to the original target with selected
features F ∗ and interactions I∗ in a categorical format. Generalized linear
models (GLMs) allow for the specification of a diverse set of target distributions
(Nelder and Wedderburn, 1972). This facilitates the application of maidrr to
classification tasks and many types of regression problems, for example linear,
Poisson and gamma regression. We refer to Appendix C.2 for details on the GLM
formulation. GLMs with only categorical features lead to fixed-size decision
tables, see Appendix C.3. Even with many features they remain transparent,
fileable in a tabular format and easy to use by business intermediaries, so the
complexity of the GLM is not a concern.

4.2.5 Computational complexity

We detail the computational cost of the steps in Algorithm 1. For training
data with n records, the calculation of the permutation feature importance
measure V (xj) for j ∈ {1, . . . , p} requires n×(1+p) evaluations of the prediction
function fpred, namely once for the original data and once for each of the p
permuted datasets. Calculating a PD effect f̄j for feature xj with mj unique
values via Eq. (4.1) requires n × mj evaluations of fpred. This can become
computationally expensive for high values of n and/or mj , but several strategies
exist to ease the computational burden (Greenwell, 2017). Firstly, the PD
calculation can be parallelized over different values of xj . Secondly, it is
generally not necessary to evaluate the prediction in each of the mj values as
reasonable results are obtained with a reduced number of points. Thirdly, a
subset of the full training data of size smaller than n can be used to speed
up computations. The main PD effects are calculated for all features in the
upfront selection of size |F | ≤ p. The interaction PD effect for xa:b requires at
most n×ma ×mb evaluations of fpred and is calculated for all pairwise feature
combinations obtained from the final (univariate) feature selection. These main
and interaction PD effects only need to be calculated once and can then be
reused in the calculation of the H-statistic. Overall, the maximum total number
of fpred evaluations equals n× (1+p+

∑p
j=1mj +

∑p
j=1

∑p
i=1,i6=jmj×mi) with
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a complexity of at most O(np2M2) where M = max(m1, . . . ,mp). The actual
number of evaluations will typically be much lower due to feature selection and
the strategies mentioned earlier. The DP clustering algorithm of Wang and
Song (2011) has a complexity of O(kjm2

j) to cluster mj values in kj groups.
Standard GLM algorithms have a complexity of O(p3 + np2) for n records and
p features (Nykodym et al., 2016).

4.3 Case study for the insurance industry

In most jurisdictions, insurers are required by law to document their pricing
or rating model to the regulator (in detail) and to customers (high-level).
Determining a fair insurance quote is high-stakes with a big impact on a
person’s life. This creates a clear need for transparency in the underlying
decision-making process. GLMs are currently a widely used pricing tool within
the strictly regulated insurance industry. Their high degree of transparency,
thanks to observable coefficients, allows intuitive model post-processing by
industry experts. Actuaries first construct a technical tariff with GLMs and
then, in dialogue with product managers and marketing, they manually tweak
the coefficients to develop the commercial tariff that is eventually put into
production. A crucial part in this pricing process is the accurate modeling of
the number of claims reported by a policyholder. We therefore apply maidrr to a
general insurance claim frequency prediction problem. Section 4.3.1 introduces
the model setting and datasets. Section 4.3.2 details the model construction for
the black box and our GLM surrogate. Section 4.3.3 evaluates the performance
of the GLM with respect to the black box against two benchmark surrogates.

4.3.1 Claim frequency modeling with insurance data

We analyze six motor third party liability (MTPL) insurance portfolios, which
are available in the R packages CASdatasets (Dutang and Charpentier, 2019)
or maidrr (Henckaerts, 2021). All datasets contain an MTPL portfolio followed
over a period of one year, with the number of policyholders n and the number
of features p detailed in Table 4.1. Each dataset holds a collection of different
types of risk features, for example the age of the policyholder (numeric), the
region of residence (nominal) and the type of insurance coverage (ordinal).
We model the number of claims filed during a given period of exposure-to-risk,
defined as the fraction of the year for which the policyholder was covered by
the insurance policy. Exposure is vital information, as filing one claim during a
single month of coverage represents a higher risk than filing one claim during
a full year. Table 4.1 shows the distribution of the number of claims in the
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portfolios. Most policyholders do not file a claim, some file one claim and
a small portion files two or more claims. Such count data is often modeled
via Poisson regression, a specific form of GLM with a Poisson assumption for
the target y and a logarithmic link function. In this setting, the industry
standard is to incorporate the logarithm of exposure t via an offset term:
ln(E[y]) = ln(t) + β0 +

∑
j βjxj . This leads to E[y] = t × exp(β0 +

∑
j βjxj),

that is, predictions are proportional to exposure and have a multiplicative
structure: E[y] = t× exp(β0)×

∏
j exp(βjxj).

number of claims

dataset n p 0 1 2 3 4 5 6

ausprivauto 67,856 5 63,232 4,333 271 18 2 0 0
bemtpl 163,210 10 144,936 16,539 1,554 162 17 2 0
freMPL 137,254 9 106,577 26,068 4,097 448 62 2 0
freMTPL 677,925 8 643,874 32,175 1,784 82 7 2 1
norauto 183,999 4 175,555 8,131 298 15 0 0 0
pricingame 99,859 19 87,213 11,232 1,262 134 16 1 1

Table 4.1: Overview of the number of policyholders n, number of features p and
distribution of the number of claims in the portfolios. The dataset names
correspond to those in the CASdatasets or maidrr R packages.

4.3.2 Finding a transparent model by opening the black box

Section 4.3.2 describes the construction of a gradient boosting machine or GBM
as black box. Section 4.3.2 details the maidrr procedure to obtain a GLM
surrogate and illustrates the automatic feature selection and segmentation for
several datasets.

GBM as black box

We opt for a gradient boosting machine or GBM (Friedman, 2001) as the
black box to start from. More specifically, we use stochastic gradient boosting
(Friedman, 2002) as implemented in the R package gbm (Greenwell et al., 2019).
This choice is justified by the good performance of GBMs in Chapter 3 to
predict claim frequency and severity data. The model-agnostic nature of maidrr
allows any model to be used as input, including deep neural networks.
We tune the number of trees T in the GBM via 5-fold cross-validation, see
Table 4.2. Other hyperparameters are fixed to a sensible value. Following Hastie
et al. (2009, Section 10.11), we use decision trees of depth two, which are able
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to model up to third-order interactions. Each tree is built on randomly sampled
data of size 0.75n and the learning rate is set to 0.01. To take into account the
distributional characteristics of the count data, we use the Poisson deviance as
loss function in the GBM tuning process. The Poisson deviance is defined as
follows:

DPoi {y, fpred(x)} = 2
n

n∑
i=1

[
yi × ln

{
yi

fpred(xi)

}
− {yi − fpred(xi)}

]
. (4.5)

ausprivauto bemtpl freMPL freMTPL norauto pricingame

T 474 3,214 1,377 3,216 793 1,198

Table 4.2: Overview of the optimal number of trees (T ) in the GBM for the different
datasets.

GLM surrogate via maidrr

We build a surrogate GLM to approximate the optimal GBM for each dataset.
The function maidrr::autotune (Henckaerts, 2021) implements a tuning
procedure for Algorithm 1 which requires five input parameters: λmarg, λintr, k,
v and h. The λ values determine the granularity of the resulting segmentation
and GLM. We define a search grid for both λ’s, ranging from 10−10 to 1. This
range is sufficiently wide for our application, as indicated by the optimal values
in Table 4.3. These λ values are determined by performing 5-fold cross-validation
on the resulting GLM with the Poisson deviance in Eq. (4.5) as loss function.
Tuning of the λ values is done in two stages. First, a grid search over λmarg is
performed by running the “marginal” part of Algorithm 1 and fitting a GLM.
This results in the optimal GLM with only marginal effects. Then, a grid search
over λintr determines which interactions to include in that marginal GLM by
running the “interaction” part of Algorithm 1. This requires two one-dimensional
grid searches of length grid_size instead of one two-dimensional search of length
grid_size2, thereby saving computation time. We perform no upfront feature
selection by setting v = 0. The value of h determines the set of interactions that
are considered for inclusion in the GLM by excluding meaningless interactions
with a low H-statistic. This value is calculated automatically to consider the
minimal set of interactions for which the empirical distribution function of the
H-statistic exceeds 50%. We set the maximum number of groups k = 15.
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ausprivauto bemtpl freMPL freMTPL norauto pricingame

λmarg 4.2× 10−5 4.2× 10−5 1.6× 10−4 1.3× 10−7 1.1× 10−5 2.0× 10−6

λintr 8.5× 10−6 4.1× 10−6 4.6× 10−5 3.1× 10−6 3.1× 10−5 2.8× 10−6

Table 4.3: Overview of the optimal λmarg and λintr values for the different datasets.

Figure 4.2 illustrates the automatic feature selection of maidrr for the bemtpl
portfolio. Figure 4.2a shows feature importance scores according to the GBM
and Figure 4.2b shows the number of groups for each feature in function of λmarg.
Important features, such as bm and postcode, retain a higher number of groups
for increasing values of λmarg. Levels of uninformative features, like use and
sex, are quickly placed in one group, effectively excluding these variables from
the GLM. This is how maidrr performs automatic feature selection via the
data-driven tuning of λmarg.
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Figure 4.2: Illustration of the automatic feature selection process in maidrr for
bemtpl.

Figure 4.3 displays the resulting segmentation for two continuous features:
vehicle power for bemtpl in Figure 4.3a and vehicle age for pricingame in
Figure 4.3b. Both show the GBM PD effect, where darker blue indicates a
higher observation count in the portfolio. The features are grouped into 8 and
9 bins respectively, indicated by the vertical lines. The bins are wide wherever
the PD effect is quite stable and narrow where the effect is steeper. We observe
that claim risk increases for increasing vehicle power, while it decreases for
increasing vehicle age.
Figure 4.4 displays the resulting segmentation for three categorical features.
Groups are indicated by different plotting characters, with size proportional
to the observation count in the portfolio. Figure 4.4a shows that claim risk
decreases with increasing age of the policyholder in the ausprivauto portfolio.
Due to similar PD effects, both levels containing the oldest policyholders are
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grouped together as well as both levels containing the people of working age.
This results in four age segments: youngest, young, working and older people.
Figure 4.4b shows that claim risk decreases for a decreasing driving distance
limit in the norauto portfolio. The PD effects are dissimilar enough not to
be grouped together, so each level remains in a separate segment. Figure 4.4c
shows the PD effects and resulting grouping for vehicle makes in the norauto
portfolio. The 41 different makes are divided in 11 segments with {Mazda, Jeep}
and {Lada, Unic, Other} as the most and least risky segments respectively.
Categorical features with many levels are often hard to deal with in practice.
Appendix C.4 demonstrates how maidrr greatly reduces the complexity for
geographical information in the bemtpl and pricingame portfolios.
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Figure 4.3: PD effect and the resulting segmentation for two continuous features.
Groups are separated by vertical lines and darker blue indicates a higher
observation count in the portfolio.

4.3.3 Evaluation of the GLM surrogate

This section evaluates the performance of our maidrr GLM based on three
desiderata for a surrogate model: accuracy, fidelity and interpretability (Guidotti
et al., 2018, Section 3.2). Since accurate predictions matter highly for a model
to remain competitive and relevant in production, Section 4.3.3 puts focus on
accuracy. Section 4.3.3 evaluates fidelity as the extent to which the surrogate is
able to mimic the behavior of the original black box. Section 4.3.3 evaluates
interpretability because the surrogate should be comprehensible and easy to use
in practice. We benchmark our GLM against two transparent global surrogates:
a linear model (LM) and a decision tree (DT) of four levels depth. We fit both
with the original data as features and the GBM predictions as target to capture
the GBM’s underlying decision process (Molnar, 2020, Section 5.6.1).
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Figure 4.4: PD effect and the resulting segmentation for three categorical features.
Groups are indicated by plotting characters, with size proportional to
the observation count in the portfolio.

Accuracy

The goal of our maidrr GLM surrogate is to approximate a complex black
box and replace it in the production pipeline. It is therefore vital that the
GLM results in accurate predictions with minimal accuracy loss compared to
the black box. We measure prediction accuracy via the Poisson deviance
from Eq. (4.5), where smaller deviance values indicate higher accuracy.
With fsurro and fgbm the surrogate and GBM prediction function, we assess
the accuracy loss via percentage differences as follows: ∆DPoi = 100 ×(
DPoi{y, fsurro(x)}/DPoi{y, fgbm(x)} − 1

)
.

Table 4.4 shows the Poisson percentage differences ∆DPoi for the GLM, LM
and DT surrogates with respect to the GBM black box. Results are shown
for each dataset separately and the last column contains the average over all
datasets. The maidrr GLM attains the lowest accuracy loss and outperforms the
benchmark surrogates on each dataset. The GLM’s accuracy loss stays below
0.5% on four out of six datasets, with an average of 0.64% over all datasets. On
average, the GLM is 3 and 7.5 times as accurate as the DT and LM surrogates.
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ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.10 0.49 1.80 0.92 0.03 0.48 0.64
LM 0.22 1.15 18.39 6.35 0.07 2.53 4.79
DT 0.25 1.68 4.82 2.66 0.28 2.13 1.97

Table 4.4: Poisson percentage differences ∆DPoi for the different surrogate models.

Fidelity

This section investigates how closely the maidrr GLM mimics the behavior
of the GBM black box by assessing how well the surrogates replicate the
GBM’s predictions. Firstly, we compute Pearson’s linear and Spearman’s rank
correlation coefficients ρ (Weaver et al., 2017, Chapter 10) between the GBM
and surrogate predictions. We average these coefficients to consolidate both
types of correlation in one number, but the results below also hold for each
coefficient separately. Secondly, the R2 measure represents the percentage of
variance that the surrogate model is able to capture from the black box (Molnar,
2020, Section 5.6.1). With µgbm the mean GBM prediction, the R2 ∈ [0, 1] is
defined as follows:

R2 = 1−
∑n
i=1 {fsurro(xi)− fgbm(xi)}2∑n
i=1 {fgbm(xi)− µgbm}2

.

Table 4.5 shows the averaged ρ for the GLM, LM and DT surrogates on each
dataset separately and averaged over all datasets in the last column. The GLM
ranks first in all datasets, thereby outperforming both benchmark surrogates.
The correlation between the GBM and GLM is at least 95% on four out of six
datasets, with an average of 95% over all datasets. On average, the GLM’s
correlation to the GBM is 12% and 9% higher compared to the DT and LM
surrogates.

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.95 0.97 0.91 0.92 0.99 0.97 0.95
LM 0.95 0.93 0.74 0.60 0.98 0.95 0.86
DT 0.86 0.83 0.75 0.78 0.91 0.87 0.83

Table 4.5: Average correlation coefficient ρ for the different surrogate models.

Table 4.6 shows the R2 for the GLM, LM and DT surrogates on each dataset
separately and averaged over all datasets in the last column. The GLM ranks
first in five datasets and second in ausprivauto. The GLM captures more than
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90% of variance on four out of six datasets, with an average of 90% over all
datasets. On average, the GLM captures an extra 12% and 15% of variance
compared to the DT and LM surrogates.

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.86 0.94 0.91 0.78 0.99 0.93 0.90
LM 0.89 0.83 0.62 0.30 0.95 0.88 0.75
DT 0.75 0.74 0.88 0.75 0.84 0.76 0.78

Table 4.6: R2 measure for the different surrogate models.

For both the ρ and R2 measures, DT outperforms LM on the frempl and
fremtpl datasets while LM outperforms DT on the remaining four datasets.
This is driven by the fact that the DT puts focus on interactions while the LM
puts focus on marginal effects. Our maidrr GLM combines both marginal and
interaction effects, resulting in better performance overall.

We conclude that our GLM constructed with maidrr outperforms the benchmark
DT and LM surrogates when it comes to both prediction accuracy and mimicking
the GBM’s underlying behavior. Remember that the DT and LM are trained
with the GBM’s predictions as target. The maidrr procedure extracts knowledge
from the GBM to perform smart feature engineering, but afterwards the
GLM is fit to the original target. The observation that the GLM is better
at mimicking the GBM compared to the benchmark surrogates is therefore
especially interesting.

Interpretability

Global interpretations A GLM is globally interpretable as the model
coefficients, relating the features to the predictions, are easily observable.
Appendix C.3 details global interpretations for the GLM to model the number
of claims in the norauto dataset. Our maidrr procedure outputs a GLM with
all features in a categorical format. This allows to summarize the full working
regime of the GLM in a decision table, see Table C.1 in Appendix C.3. In practice,
such a tabular model is easy to represent and maintain in a spreadsheet with
responsive filters. Decision tables are very comprehensible for human users and
outperform both trees and rules in accuracy, response time, answer confidence
and ease of use (Huysmans et al., 2011).

Local interpretations We now turn to explaining individual predictions
and illustrate this with the three artificial instances in the bemtpl dataset
listed in Table 4.7. Based on the GBM and GLM predictions, these instances
represent a high/medium/low risk profile. We want to assess how the features
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influence the riskiness of each individual. Feature contributions in a GLM can
be extracted via the fitted coefficients, as implemented in maidrr::explain
(Henckaerts, 2021). For comparison purposes we use Shapley (1953) values to
explain the GBM predictions, with the efficient implementation of Štrumbelj
and Kononenko (2010, 2014) available in the R package iml (Molnar et al.,
2018).

high risk medium risk low risk

bm 7 4 1
postcode 11 91 55
ageph 27 45 66
power 96 66 26
fuel diesel gasoline gasoline
agec 1 8 15
coverage TPL TPL+ TPL++
fleet yes no no
sex female male male
use private work work

GBM 0.2847 0.1398 0.0502
GLM 0.3861 0.1231 0.0413

Table 4.7: Artificial instances in the bemtpl portfolio for which we explain the
individual predictions.

Figures 4.5a, 4.5b and 4.5c show the Shapley values for the GBM prediction of
each instance. The sum of these values equals the difference between the instance
prediction, shown in Table 4.7, and the average GBM prediction of 0.1417. The
presence of mainly positive/negative Shapley values in Figure 4.5a/4.5c thus
represents a high/low risk profile respectively. Figures 4.5d, 4.5e and 4.5f show
the GLM’s feature contributions on the response scale after taking the inverse
link function, namely exp(βj) for feature xj in our Poisson GLMs with log link.
The contributions are multiplicative with respect to the baseline prediction
of exp(−2.04) = 0.13 from the intercept. The gray dashed line indicates the
point of “no contribution” at exp(0). Furthermore, the GLM allows to split the
contributions over marginal effects and interactions with other features, while
95% confidence intervals indicate the uncertainty around each contribution.

The GBM and GLM explanations are very similar. For example, Figures 4.5a
and 4.5d attribute this profile’s high risk to a residence in Brussels, young
age, high bonus-malus level and driving a new high-powered diesel vehicle.
The interaction between the bonus-malus level and age of the vehicle puts a
negative correction on both positive marginal effects in the GLM, while the
other interactions have limited impact on the prediction. The GLMs show no
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Figure 4.5: Explanations for the high (left), medium (middle) and low (right) risk
instance predictions from Table 4.7 in the GBM via Shapley values (top)
and the GLM via β coefficients (bottom).

contribution from gender as this feature is not selected by maidrr, while it has
negligibly small Shapley values in all cases. An insurance rate is determined by
the product of claim frequency and severity, such that the contributions can be
directly interpreted as a percentage premium/discount on the price. Living in
Brussels increases the baseline frequency, and thus the price, by almost 50% in
the technical analysis for this dataset. One can assess the fairness of this penalty,
possibly followed by a manual adjustment to intervene in the decision-making
process via expert judgment.

Other interpretations We focused on the GBM’s Shapley values and GLM’s
βj coefficients to answer the question “How does each feature contribute to an
instance prediction?”. As Section 4.1 indicated, there exists a wide variety of
other interpretation tools to answer different questions. We briefly discuss two
options and connect these to GLM explanations. LIME fits a local surrogate to
observations in the neighborhood of an instance of interest. This local model is
then used to explain the black box model’s behavior and to answer the question
“How does the prediction change in the vicinity of this instance?” (Ribeiro
et al., 2016). The observable βj coefficients in a GLM allow to directly quantify
how a prediction changes if a continuous feature increases/decreases or when
a categorical feature switches levels. Furthermore, these prediction changes
relate directly to the GLM in production instead of a surrogate which merely
approximates the black box’s behavior. Counterfactual explanations answer the
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question “How do we need to change an instance’s feature values to change the
prediction to a predefined value?” (Wachter et al., 2018). This indicates how a
data instance needs to change in order to obtain a desired prediction output
from a model. Given an instance’s current prediction and the desired target
value, the observable βj coefficients allow to reverse engineer which feature
changes are necessary. For practical usability, one can limit the options to those
features that one actually has control over to change.

4.4 Conclusions

Decision-making algorithms in business practice can become highly complex
in order to gain a competitive advantage. However, transparency is critical for
any high-stakes decision or for companies active in strictly regulated industries.
To balance accuracy and explainability, we present maidrr: a procedure to
develop a Model-Agnostic Interpretable Data-driven suRRogate for a complex
system. The paper is accompanied by an R package in which the procedure
is implemented (Henckaerts, 2021). We apply maidrr to six real-life general
insurance portfolios for claim frequency prediction, with insurance pricing as an
example of a high-stakes decision in a strictly regulated industry. We thereby
put focus on a highly relevant count regression problem, which is not often dealt
with in classical machine learning literature. Our maidrr procedure results in
a surrogate GLM which closely approximates the performance of a black box
GBM in terms of accuracy and fidelity, while outperforming two benchmark
surrogates. The resulting GLM can then be deployed in the production pipeline
with minimal performance loss. In the process, maidrr automatically performs
feature selection and segmentation, providing a possibly useful by-product for
customer or market segmentation applications.
Both global and local interpretations are easily extracted from our maidrr
GLM. Explanations only depend on the fitted coefficients, which are easily
observable and presentable on the response scale. This representation boosts
the ability to understand the feature contributions on the scale of interest and
allows for manual intervention when deploying the model in practice. This
gives some important advantages to maidrr with respect to the following XAI
goals (see Arrieta et al., 2020, Table 1). 1) Trustworthiness: a GLM with only
categorical features always acts as intended since all the possible working regimes
can be listed in a decision table of fixed size. 2) Accessibility/Interactivity:
manual post-processing of the model becomes very easy and intuitive by
tweaking the GLM coefficients. This allows users to intervene and be more
involved in the development and improvement of the model. 3) Fairness:
the clear influence of each feature allows for an ethical analysis of the model,
which becomes especially important for high-stakes decisions which influence
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people’s lives. In our insurance setting, it is important that every policyholder
receives a fair insurance quote. The direct interpretation of the feature
contributions as a penalty/discount to the baseline tariff further serves this
cause. 4) Confidence: the uncertainty of the contributions is quantifiable via
confidence intervals such that the model’s robustness, stability and reliability
can be assessed. 5) Informativeness: contributions are split across marginal
effects and interactions of features, thereby increasing the amount of information
available to the user on the underlying decision of the model.

Our maidrr procedure combines the inherent interpretability of a GLM with the
data knowledge extracted from a sophisticated black box. We therefore believe
that maidrr can serve as a useful tool in any situation where a competitive, yet
transparent model is needed.



Chapter 5

Dynamically updating motor
insurance prices with driving
behavior data

We analyze a novel dataset collecting the driving behavior of young policyholders
in a motor third party liability (MTPL) portfolio, followed over a period of three
years. Driving habits are measured by the total mileage and the distance driven on
different road types and during distinct time slots. Driving style is characterized by
the number of harsh acceleration, braking, cornering and lateral movement events.
First, we develop a baseline pricing model for the complete portfolio with claim history
and self-reported risk characteristics of approximately 400,000 policyholders each
year. Next, we propose a methodology to update the baseline price via the telematics
information of young drivers. Our approach results in a truly usage-based insurance
(UBI) product, making the premium dependent on a policyholder’s driving habits and
style. We highlight the added value of telematics via improvements in risk classification
and we put focus on managerial insights by analyzing expected profits and retention
rates under our new UBI pricing structure.

This chapter is based on joint work with Katrien Antonio. This research is supported
by the Research Foundation Flanders [SB grant 1S06018N]. We are very grateful to the
contact persons at the insurance company for providing the data analyzed in this work,
for the insightful meetings with interesting feedback and for the smooth co-operation.
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5.1 Introduction

Property and casualty (P&C) insurance is a highly data-driven business, where
proper risk assessment is fundamental in several applications. Insurance pricing
is the process of determining a fair accurate premium through risk classification.
Traditional pricing relies on a policyholder’s self-reported risk characteristics, for
example driver age, vehicle power or residence location in motor insurance. These
characteristics allow an actuary to form groups of policyholders with similar
perceived risk. However, these features merely act as proxy measurements for
the actual risk. Vickrey (1968) was the first to express critique towards the static
pricing structure in motor insurance, advocating to link premiums to vehicle use.
With the advent of digitization and big data, telematics technology allows to
access new sources of information via the integrated use of telecommunications
and informatics (Husnjak et al., 2015).

Telematics can serve as a monitoring tool for risk prevention, for example via
smart wearables which stimulate a healthy lifestyle in health insurance or smart
sensors which detect fires, leaks or intrusion in home insurance (Eling and Kraft,
2020). Personalized feedback on risky behavior and financial incentives motivate
positive behavioral changes (Ellison et al., 2015). Customer are generally willing
to share personal information for new pricing paradigms or additional services
within motor and home insurance, whereas sharing health-data is less accepted
(Maas et al., 2008). Telematics has great application potential within motor
insurance and other innovative mobility services (Longhi and Nanni, 2020).
Usage-based motor insurance (UBI) makes the price of a policy dependent on
the vehicle use and corresponding driving behavior via pay-as-you-drive (PAYD)
and pay-how-you-drive (PHYD) schemes (Tselentis et al., 2016). PAYD puts
focus on driving habits (e.g., distance driven, time of day or road type) while
PHYD takes into account driving style (e.g., aggressive acceleration, sudden
lane shifts or excessive speeding).

Motor UBI products provide significant benefits to insurers, customers and
society in general. Monitoring driving behavior allows to reduce asymmetric
information between the insurer and its policyholders, thereby mitigating the
problems of moral hazard and adverse selection (Filipova-Neumann and Welzel,
2010). UBI gives insurance companies the chance to innovate and profit from
new business models by increasing revenues (e.g., by tapping into underexploited
market segments) and/or decreasing costs (e.g., by a reduction of crash rates,
claim costs and fraud) (Desyllas and Sako, 2013). The benefits of reduced crashes
and other operational gains outweigh the system’s costs, making telematics
economically viable (Pitera et al., 2013). More accurate assessment of the
underlying claim risk leads to higher actuarial accuracy, fairness and economic
efficiency, which in turn reduces cross-subsidies between groups and premium
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leakage (Litman, 2011). UBI has the opportunity to stimulate responsible
driving by providing interactive feedback that motivates and engages users,
making the customer experience more exciting (Toledo et al., 2008). Progressive
pricing towards low income drivers increases insurance affordability through
consumer savings, resulting in less uninsured driving (Litman, 2004). Reduced
vehicle travel leads to many societal benefits such as increased road safety
with less crashes and a reduction in traffic congestion, fuel consumption, oil
dependence, CO2 emissions, air pollution and road costs (Parry, 2005; Bordhoff
and Noel, 2008; Greenberg, 2009).
Recent regulatory developments in Europe are, indirectly, endorsing the use
of telematics in insurance. Following the Test-Achats Ruling, the European
Commission adopted Guidelines to prohibit price discrimination at the individual
level between men and women (OJ/C11, 2012). Ayuso et al. (2016b) explain
women’s lower accident risk by a lower driving intensity and less risky behavior
compared to men. Ayuso et al. (2016a) show that, when taking driving intensity
into account, gender no longer has a significant effect in explaining the time to the
first accident at fault. Verbelen et al. (2018) find that driving behavior renders
gender redundant as a rating factor. This suggests that gender differences
regarding claim risk are, to a certain extent, attributable to differences in
driving behavior between men and women. Telematics can leverage this new
information and reduce the need to rely on, possibly discriminatory, proxy
characteristics. Next to this, all new motor vehicles in the EU are required
to be equipped with eCall technology as of April 2018 (OJ/L123, 2015). This
system automatically sends location data to emergency services in case of an
accident and facilitates to offer UBI services.
State-of-the-art P&C insurance pricing follows a frequency-severity approach:
modeling claim counts and sizes independently with generalized linear or additive
models (GLM/GAM) (Denuit et al., 2019b). Various actuarial studies compare
predictive model performance when using 1) only traditional features, 2) only
telematics information and 3) the combination of both in a hybrid set-up. The
occurrence of a claim in these studies is predicted with logistic regression (LR),
random forests (RF) and neural networks (NNs) by both Baecke and Bocca
(2017) and Huang and Meng (2019), where the latter also include support vector
machines (SVMs) and extreme gradient boosting (XGBoost) in their comparison.
Gao et al. (2019) predict claim frequency with Poisson GAMs and telematics
features extracted from speed-acceleration heatmaps (Wüthrich, 2017) with
dimension reduction techniques (Gao and Wüthrich, 2018). Verbelen et al.
(2018) use Poisson and negative binomial GAMs with compositional predictors
to model claim frequency. Ayuso et al. (2019) and Guillén et al. (2019) model
claim frequency using standard and zero-inflated Poisson GLMs respectively. So
et al. (2020) develop a cost-sensitive multi-class adaptive boosting (AdaBoost)
algorithm to predict claim frequency. All aforementioned studies find that the
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hybrid approach results in the best predictive performance and that predictive
models using only telematics information outperform those with only traditional
features. This clearly indicates the added value of driving behavior to improve
current risk classification practices. Paefgen et al. (2013) find that mileage is
most valuable to predict accident risk, even more than all other driving features
in their study combined.

Several studies find an increasing non-proportional relationship between distance
driven and accident risk, stabilizing for high mileage. Boucher et al. (2013) and
Boucher et al. (2017) use Poisson GLMs and GAMs respectively to assess the
impact of distance on claim frequency. Paefgen et al. (2014) perform a case-
control study with logistic regression to distinguish drivers with and without
an accident. Guillén et al. (2019) find a positive relation between the driving
distance and the excess zeros in observed claim counts with a zero-inflated
Poisson GLM. The stabilization of accident risk for high-mileage drivers might
be due to a learning effect after gaining more experience, different driving habits
(e.g., less risky roads or time slots) or other safety factors (e.g., newer vehicles).
In addition to similar results for claim frequency, Lemaire et al. (2016) find a
slight positive linear effect of mileage on claim severity and Ferreira and Minikel
(2012) find that the per mile pure premium decreases with annual mileage.

Another set of studies puts focus on deriving driving profiles from high-frequency
GPS data. Wüthrich (2017) designs so called speed-acceleration heatmaps from
GPS data and performs K-means clustering to group similar driver profiles. Ma
et al. (2018) use GPS data to calculate driving performance measures, including
contextual elements such as traffic speed and volume, to assess the influence on
claim occurrence and frequency with logistic and Poisson GLMs respectively.
He et al. (2018) use GPS and other sensor data from a vehicle’s on-board
diagnostics (OBD) unit to compile driver profiles and to measure accident risk.

In this chapter, we analyze a novel dataset on telematics motor insurance which
consists of two components. The first data component is a large insurance
portfolio followed over the years 2017, 2018 and 2019 with claim history and self-
reported risk characteristics of approximately 400,000 policyholders each year.
This component is used to develop a baseline a priori tariff which represents the
status quo of pricing a (new) policyholder using only a priori directly observable
characteristics. The second data component contains information on the driving
behavior of young drivers in the portfolio. Policyholders younger than 26 can
opt to install a black box in their vehicle in return for a one-time price discount.
The recorded driving behavior has no influence on future premiums charged
under this contract. Driving habits are registered by measuring the total mileage
and the distance driven on different road types and during distinct time slots.
Driving style is characterized by recording the number of sudden movement
events such as harsh acceleration, braking, cornering and lateral movements.
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Our goal is to start from a pricing model with only self-reported characteristics
and to develop an updating mechanism that adjusts the proposed baseline
price by means of the available telematics information. This approach allows
incumbent insurers to incorporate insights on driving behavior into their current
in-house pricing expertise. We showcase the added value of telematics via
the resulting improvement in risk classification. Furthermore, we put focus
on managerial insights by analyzing profits and retention rates under the new
telematics paradigm. Denuit et al. (2019a) propose an update mechanism that
accounts for driving habits in claim frequency via a multivariate mixed Poisson
model, a typical actuarial approach to incorporate a posteriori information
in a credibility framework. To the best of our knowledge, this is the first
work to explore the full spectrum of pricing (frequency/severity) and driving
behavior (habits/style) including a profit and retention analysis. Our updating
mechanism results in a true UBI system where the price of insurance coverage
is adjusted to the actual vehicle use.
The rest of this chapter is structured as follows. Section 5.2 provides a description
of the dataset and outlines our methodology. Section 5.3 details our baseline
models for pricing and customer churn prediction. Section 5.4 describes how
we update the baseline pricing model with telematics information, highlighting
the resulting improvement in risk classification. Section 5.5 investigates the
managerial impact of telematics pricing by analyzing profits and retention rates
under various price elasticity settings. Section 5.6 concludes this chapter.

5.2 Overview of our data and methodology

We analyze a novel motor third party liability (MTPL) portfolio followed
over the years 2017, 2018 and 2019. Figure 5.1 shows a timeline indicating
the collection of policy, claim and telematics information. Self-reported risk
characteristics are typically known at the start of the policy period, with changes
(e.g., replacing the insured vehicle) reported during the policy period. During
the course of the year, the insured can surrender the policy and claims can occur.
Both policy and claim information are available for the complete portfolio of
approximately 400,000 policyholders each year, with 68,196 reported claims in
total. Young policyholders have the option to sign up for a telematics black box,
registering driving behavior information on mileage, driving habits (by road type
and time of day) and driving style (via harsh movements). We aggregate the
driving behavior measurements on the yearly policy level, resulting in telematics
information for 5,974, 9,383 and 10,481 policyholders in the portfolios observed
in 2017, 2018 and 2019 respectively. In total, more than 308 million kilometers
are driven by these policyholders. We split the dataset in train (2017 and 2018)
and test (2019) data for assessment purposes.
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Full portfolio

Young drivers

2017 2018 2019

Figure 5.1: Timeline with policy, claim and telematics information over the years
2017 - 2019.

Sections 5.2.1 and 5.2.2 describe the policy and telematics data respectively.
Section 5.2.3 investigates the presence of a selection effect and Section 5.2.4
outlines our price updating methodology.

5.2.1 Classic insurance pricing with portfolio data

The pure premium π is the price required to purely cover a policyholder’s claim
risk. The calculation of this premium is typically split into two components,
namely the expected claim frequency F and severity S. Suppose that a
policyholder files N claims during a period of exposure-to-risk e for a total
amount of L, then E(F ) = E(N/e) and E(S) = E(L/N |N > 0). Both
components are then combined to result in the pure premium as follows:
π = E(F )× E(S).

Table 5.1 lists the claim and policy information available in the portfolio
data. The policy contains self-reported risk characteristics about the driver(s),
payment method, geographical location and insured vehicle. Figure 5.2 shows
the distribution of claim information in the training portfolios of 2017 and 2018.
The left panel shows the exposure-to-risk as the fraction of the year that a
policyholder was covered by the policy. A large portion of the policyholders is
exposed to the risk of filing a claim during the full year (38.9%), while the others
have an exposure between zero and one. An exposure below one occurs when a
policyholder starts a policy after the start of the year, surrenders the contract
before the end of the year or when one of the self-reported characteristics
changes during the year. The middle panel indicates the number of claims filed
by a policyholder. Most policyholders do not file a claim with the insurance
company (95.6%), some file one claim (4.2%) and the remaining policyholders
file two, three, four or five claims. The right panel shows the distribution of the
claim amounts up to 10,000 Euro. Claims are typically of a moderate size, with
the mean and median amount respectively equal to 4,067 and 1,259 Euro, but
extremely large claims occur with the maximum equal to 3,422,728 Euro.
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Claims
claim_expo Fraction of the year that a policyholder is covered by the policy.
claim_count Number of claims reported by a policyholder during the exposure period.
claim_amount Total amount in Euros for all reported claims during the exposure period.

Driver(s)
driv_age Age of the main driver in years.
driv_experience Years of driving experience.
driv_seniority Years of seniority as a client.
driv_number Number of registered drivers.
driv_add_younger Registered driver younger than the main driver: yes or no.
driv_add_younger26 Registered driver younger than the age of 26: yes or no.

Payment method
paym_split Frequency of payments: annual, biannual, quarterly, monthly or other.
paym_sepa Payment via SEPA (Single Euro Payments Area) bank transfer: yes or no.

Geographical location
geo_postcode Postal code of the policyholder’s residence.
geo_mosaic Customer segment based on demographic and socioeconomic characteristics.

Vehicle
veh_age Age of the vehicle in years.
veh_power Power of the vehicle in kilowatts.
veh_weight Weight of the vehicle in kilos.
veh_value Value of the vehicle in Euros.
veh_seats Number of seats in the vehicle.
veh_fuel Type of fuel: diesel, petrol, hybrid, gas, electricity or other.
veh_use Type of use: personal (with or without commute), professional or transport.
veh_type Type of vehicle: car, van, mobile home or minibus
veh_segment Vehicle segment, with small urban, medium family, sports and 21 others.
veh_make Vehicle make, with 34 different levels.
veh_mileage_limit Limit on the driving mileage: yes or no.
veh_garage Garage to park the vehicle: yes or no.
veh_adas Vehicle equipped with advanced driver-assistance systems: yes or no.
veh_trailer Trailer insured together with the vehicle: yes or no.

Table 5.1: Description of the claim and policy information in the portfolio data.
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Figure 5.2: Distribution of the exposure period e (left), claim counts N (middle)
and amounts L (right).
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5.2.2 Telematics data

Driving behavior data is available for a selection of young policyholders in the
portfolio. Table 5.2 lists the information recorded by the telematics black box.
Driving habits are measured by the total mileage, the proportional distance
driven on different road types (abroad, motorway, urban and other) and the
proportional distance driven during different time slots (day, rush hour, evening
and night). These proportions sum to one and indicate where and when a
policyholder usually drives. Verbelen et al. (2018) discuss how to deal with such
compositional data from a statistical perspective. Driving style is measured
by recording different types of harsh movement events (acceleration, braking,
cornering and lateral), which we transform to the number of occurrences per
100 kilometers (km). We also define a measure for the mileage on a yearly basis
by scaling the black box registration period to a full year. Imagine a black box
that was active for 4 out of 12 months, then the yearly mileage equals three
times the recorded distance.

Mileage Driving distance in kilometers for each calendar year.
distance The actual recorded mileage during the year under consideration.
dist_yrly Yearly mileage (in case the black box did not register the full year).

Road type Proportion of the total distance driven on different road types.
road_abroad Roads outside of Belgium.
road_motorway Belgian motorways.
road_urban Belgian urban areas.
road_other Other road types in Belgium.

Time of day Proportion of the total distance driven during different time slots.
time_day Day: 9.30AM - 4PM.
time_evening Evening: 7PM - 10PM.
time_night Night: 10PM - 6AM.
time_rush Rush hours: 6AM - 9.30AM and 4PM - 7PM.

Harsh events Number of sudden movement events recorded per 100 kilometers.
harsh_accel Acceleration: high positive g-force in the direction of travel.
harsh_brake Deceleration: high negative g-force in the direction of travel.
harsh_latrl Lateral: high g-force orthogonal to the direction of travel, e.g., lane shifts.
harsh_cornr Cornering: high g-force in multiple directions.

Table 5.2: Description of the available telematics data.

Figure 5.3 details the distribution of the telematics features in the training data.
The top panels show the recorded (left) and yearly (right) distance driven. The
rightwards shift indicates how most low mileage recordings are due to inactive
black boxes and we observe an average yearly mileage of 16,502 kilometers. The
middle left panel indicates that a large proportion of kilometers is driven in
urban areas, followed by other roads and motorways. Abroad driving accounts
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for a small part of the distance driven. The middle right panel shows that
daytime and rush hour driving are frequent, with less kilometers driven during
the evening and at night. Gray lines emphasize the composition nature of
the data for 100 random drivers. The bottom panels indicate the number of
harsh movement events recorded per 100 kilometer driven. Harsh cornering
occurs most often (35.5 events/100km on average), followed by braking (8.7),
acceleration (3.3) and lateral movements (0.9).
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Figure 5.3: Distribution of the actual distance (top left), yearly distance (top right),
road types (middle left), times of day (middle right) and harsh movement
events (bottom) in the training data.

5.2.3 Selection effect

In our portfolio, the installation of a black box to record driving behavior is a
choice offered to young drivers only. Figure 5.4 shows the age distribution for
policyholders who have a black box installed (green) and those who do not have
a black box (red). The left panel displays the full portfolio and indicates that
only young policyholders have the option to sign up for the telematics device.
The right panel zooms in on policyholders aged younger than 26 at underwriting
time. For the ages 18 up to 22 there is a higher number of drivers with a black
box, while the situation is reversed for the ages 23 up to 27. In total, around
42% of the young policyholders opted for the telematics device. We therefore
focus our analysis of a possible selection effect on young policyholders with the
telematics option (< 26 years at underwriting).
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Figure 5.4: Age distribution for policyholders with/without (green/red) a black box.

We use the two-sample Poisson test of Fay (2010) to compare the observed claim
risk for a control group of young policyholders without a black box (µno) and
a test group with a box (µyes). For each group we calculate µ̂ =

∑
iNi/

∑
i ei

in Table 5.3 and test the null hypothesis H0 : µ̂yes = µ̂no or equivalently H0 :
µ̂no/µ̂yes = 1. The p-value equals 0.315 such that we do not reject the null H0.
The observed value of µ̂no/µ̂yes = 0.965 with a 95% confidence interval of
[0.900, 1.034].

Black box
∑

i
Ni

∑
i
ei µ̂

No 1,817 17,984.03 0.1010
Yes 1,477 14,104.14 0.1047

Table 5.3: Claim risk statistics for young policyholders without/with a black box.

The empirical observation µ̂yes > µ̂no might sound surprising. However, the
right panel of Figure 5.4 indicates that policyholders without a black box are
older on average in our sample. Older drivers are typically less risky compared
to younger ones. We therefore further investigate the presence of a selection
effect by fitting the following Poisson GLM, investigating the effect of having a
black box via the dummy variable bbox while controlling for the driver’s age
driv_age:

ln[E(N)] = ln[e]+β0 +βagedriv_age+βboxbbox+βintdriv_age : bbox. (5.1)

Table 5.4 shows the results with (left) and without (right) the interaction term
included. The black box coefficient βbox is negative in both GLMs, indicating
a lower claim risk for policyholders with the box. Since exp(−0.054) = 0.95,
having a box installed decreases claim risk with 5%. However, the effect is not
statistically significant according to the p-values in both GLMs. The fitted
interaction term reveals that the age effect decreases less steep for policyholders
with a black box, but this is also not significant. Figure 5.5 shows the fitted
GLM effects (lines), 95% confidence intervals (shades) and the empirical claim
frequencies (points) by group (color).
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With interaction term Without interaction term
Coefficient β Std. error z-value p-value Coefficient β Std. error z-value p-value

intercept −0.452 0.268 −1.68 0.09 −0.536 0.193 −2.78 0.006
driv_age −0.078 0.011 −6.85 7e−12 −0.074 0.008 −9.11 < 2e−16

bbox −0.222 0.374 −0.59 0.55 −0.054 0.037 −1.48 0.140
driv_age:bbox 0.007 0.016 0.45 0.65 - - - -

Table 5.4: Summary of the selection effect in a GLM with (left) and without (right)
the interaction term.
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Figure 5.5: Age effect for young drivers with/without a box (green/red) and the
interaction (left/right).

These findings point to the absence of a significant selection effect. This could
be due to the fact that signing up for the telematics device is not coupled to
future premium changes. Furthermore, young policyholders might be persuaded
by their parents to install the black box.

5.2.4 A methodology to update pricing

Figure 5.6 outlines our updating mechanism proposal to include telematics
information into a pricing structure that already uses self-reported policy
characteristics. We take position at time t and consider yearly policy periods,
as is customary in motor insurance, but this scheme is applicable to any policy
duration (e.g., quarters or months). For now, we simply denote claim, policy
and telematics features by y, x and z respectively. First, a baseline pricing
model π(x) is developed for the complete portfolio using policy and claim
information recorded in period [t − 1, t]. Next, this premium is updated for
policyholders with a back box using telematics and claim information in period
[t− 1, t]. These updates are modeled as a multiplicative adjustment δπ(z) to
the baseline such that the updated price follows as: π∗(x, z) = π(x)× δπ(z).

We propose to implement a commercial UBI product where the premium for
coverage in [t, t + 1] is paid at two different moments in time. The baseline
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t− 1 t t+ 1

Model development

Complete portfolio

With black box

Baseline

Updates π∗(x, z) = π(x)× δπ(z)

Policy (x)

Claims (y)

Telematics (z)

Claims (y)

π(x)

Figure 5.6: Methodology of our mechanism to update baseline premiums with
telematics information.

premium π(x) is paid at time t based on the actual policy characteristics
registered at that time. The ex post update δπ(z) is calculated at time t+ 1
based on the driving behavior in period [t, t+1]. Clients have the opportunity to
directly influence their insurance premium and earn a rebate with good driving
if δπ(z) < 1. Risky behavior is discouraged as bad driving results in a price
penalty via δπ(z) > 1. The insurer still receives the base premium a time t to
cover claims and other costs during period [t, t+ 1].

5.3 Baseline pricing and churn models

We first put focus on developing a baseline insurance pricing model for the
complete portfolio using the self-reported policy data from Table 5.1. This
represents the status quo for incumbent insurance companies who are thinking
about incorporating telematics into their pricing strategies. We also develop a
baseline model to predict the churn (or: lapse) behavior of customers, defining
the churn rate ρ as the probability that a policyholder surrenders the policy.
Suppose that a binary indicator C ∈ {0, 1} equals one for policyholders who
lapse their contract during the year, then ρ = E(C). We therefore develop a
predictive model for the claim frequency F , severity S and churn probability ρ
with the risk characteristics listed in Table 5.1 as features x. We opt for
stochastic gradient boosting machines or GBMs (Friedman, 2002) to determine
the prediction function, based on the good GBM performance in insurance
pricing (see Chapter 3) and churn applications (Spedicato et al., 2018).

Section 5.3.1 details the GBM development process. Section 5.3.2 proposes a
slight adjustment that restores the balance between observed and predicted
targets. Section 5.3.3 provides insights into the optimal GBMs. The frequency
and severity GBMs are used in Section 5.4 as a baseline pricing model, while
the churn GBM is used in Section 5.5 as baseline for retention rates.
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5.3.1 GBM training process

Given features x and a target y, our goal is to train a GBM to accurately
predict ŷ = f(x). We model integer-valued count data for claim frequency,
skewed long-tailed data for claim severity and binary 0/1-valued data for
customer churn. Table 5.5 summarizes our distributional assumptions and the
accompanying deviance loss functions used in the GBM training process. The
exposure-to-risk e is taken into account via an offset term in the frequency
model to obtain expected claim frequencies proportional to the duration of
the policy contract. Furthermore, the number of claims N is used as a weight
in the claim severity model. We train our GBMs via the R interface to H2O:
an open source machine learning (ML) platform (LeDell et al., 2020). Many
parameters are available to tune the performance of GBMs, see Click et al.
(2021) for a complete list. The selected parameters listed in Table 5.6 are
obtained via a random grid search and 5-fold cross-validation on the combined
training portfolios of 2017 and 2018. It is interesting to note that the optimal
tree depths for claim frequency and severity are consistent with the results from
Table 3.3 in Section 3.4.2 of Chapter 3, especially because completely different
datasets are analyzed in both case studies.

Distribution Prediction f(x) Loss function D(y, f(x))

Claim frequency N ∼ Poisson E(N |x, e) 2
n

∑n

i=1

[
yi ln

{
yi

f(xi)

}
− {yi − f(xi)}

]
Claim severity L/N ∼ gamma E(L/N |x) 2∑

i
Ni

∑n

i=1 Ni
[
yi−f(xi)
f(xi) − ln

{
yi

f(xi)

}]
Customer churn C ∼ Bernoulli E(C |x) − 1

n

∑n

i=1 [yi ln {f(xi)}+ (1− yi) ln {f(xi)}]

Table 5.5: Distributional assumptions for claim frequency, severity and client churn.

ntrees learn_rate max_depth sample_rate col_sample_rate

Claim frequency 4,700 0.02 4 1.0 0.6
Claim severity 3,900 0.01 1 0.5 0.7
Customer churn 4,100 0.02 5 0.7 0.6

Table 5.6: Optimal settings of the GBM tuning parameters for the different models.

5.3.2 Balance property

The maximum likelihood estimator (MLE) in a GLM framework (with canonical
link) leads to

∑n
i=1 ŷi =

∑n
i=1 yi (Wüthrich, 2020, Corollary 2.4). This is

known as the balance property and implies that the sum of predicted targets ŷi
equals the sum of the observed targets yi for i ∈ 1, . . . , n in the training data.
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This unbiasedness is very important for insurance pricing as we need to cover
total losses at the portfolio level. GBMs, as most predictive models, focus
purely on accurate individual predictions. We therefore enforce the balance
property in our portfolio of young drivers by scaling the frequency and severity
GBM predictions from ŷi to ŷbi . Table 5.7 shows the (possibly) biased ratio∑
ŷi/
∑
yi and the balanced ratio

∑
ŷbi /

∑
yi for claim frequency F , severity S

and the resulting premium π = E(F )× E(S). On the train data we observe an
underestimation of total claim frequency (0.3%) and severity (5.4%), leading to
an underestimation of the premium inflow to cover losses. Scaling the predictions
with aforementioned percentages leads to perfect balance for frequency and
severity, while total losses are now covered by the premium inflow. On the test
data we observe an over/underestimation for frequency/severity respectively.
Perfect balance for these components is not achieved as the scaling is based
on the train data. However, both components offset each other, resulting in a
premium inflow that covers total losses on the test data as well.

Claim frequency F Claim severity S Premium π

biased balanced biased balanced biased balanced

Train 0.997 1.000 0.946 1.000 0.948 1.004
Test 1.045 1.048 0.907 0.958 0.961 1.019

Table 5.7: Biased and balanced ratios for the frequency, severity and premium.

5.3.3 Insights in the optimal GBMs

Table 5.8 lists the ten most important features in each GBM. Postal code and
driving experience are most important to predict claim frequency, while vehicle
characteristics (e.g., the weight, make and segment) are most informative to
predict severity. The various ways of paying premiums learns us a lot about
the churn behavior of customers. The top ten features carry around 90% (or
even more) of the total information contained in the collection of 24 features.
Figure 5.7 shows partial dependence (PD) effects (Friedman, 2001) for the
highlighted features in Table 5.8. Claim frequency decreases as the driver gains
more experience behind the wheel (top left panel). This decrease is rather steep
in the first 10 years, emphasizing the high claim risk of young, inexperienced
drivers. The effect becomes stable after 30 years, with a slight increase for senior
policyholders. The top right panel shows the frequency PD for each postal
code area in Belgium. Claim risk is highest in densely populated cities (e.g.,
the capital Brussels in the center) and lowest in spacious rural areas (e.g., the
Ardennes in the south-east). Claim severity increases with the vehicle’s weight
(middle left panel). This is likely due to the fact that heavier cars cause more
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Claim frequency Claim severity Customer churn

Rank Feature % Feature % Feature %

1 geo_postcode 34.72 veh_weight 23.21 paym_split 43.48
2 driv_experience 14.08 veh_make 21.37 geo_postcode 11.67
3 driv_seniority 8.52 geo_postcode 10.54 veh_age 9.85
4 veh_make 6.25 veh_segment 10.48 paym_sepa 9.44
5 geo_mosaic 5.85 geo_mosaic 6.59 driv_seniority 6.90
6 veh_fuel 5.09 driv_seniority 5.83 veh_make 3.43
7 veh_segment 4.66 veh_value 3.50 driv_experience 2.85
8 paym_split 3.91 veh_age 3.44 geo_mosaic 2.45
9 driv_add_younger26 3.29 driv_experience 2.98 driv_age 2.43
10 driv_age 2.75 driv_add_younger26 2.91 veh_use 1.99∑

89.12 90.86 94.48

Table 5.8: Top ten most important features in the different GBMs.

damage to other cars in an accident. Some of the more expensive brands (e.g.,
BMW, Porsche, Mercedes and Jaguar) lead to higher severities, maybe due to
a more sturdy build compared to cheaper cars. The churn probability increases
with the payment frequency (middle right panel) and is higher for policyholders
not paying via a SEPA transfer (bottom right panel). Policyholders who pay an
annual premium might be quite loyal and convinced to stay with the company,
while monthly payments may indicate that someone is browsing for better offers
elsewhere in the meantime. SEPA transfers are often automatically credited
from an account. Policyholders who prefer to actively pay the invoice might
not be ready to enter a long-term commitment with the company and prefer to
be able to switch insurance swiftly.

5.4 Towards a usage-based pricing mechanism

Our goal is to update the baseline pricing structure, consisting of the combined
frequency and severity GBMs developed in Section 5.3, by using the driving
behavior of policyholders with a telematics box. For this selection of drivers we
have access to claim targets y, a baseline prediction f(x) based on self-reported
policy characteristics x from Table 5.1 and telematics information z from
Table 5.2. Explainability of the updating mechanism is a key requirement, as the
resulting price adjustments should be comprehensible and easy to communicate
to all stakeholders (e.g., regulators, managers and clients). We therefore opt to
use generalized linear models or GLMs (Nelder and Wedderburn, 1972). Such
a GLM leads to an interpretable model structure and is applicable to targets
following any distribution of the exponential family (e.g., Bernoulli, Poisson and
gamma). The general formulation of a log-link GLM with ln[f(x)] as an offset
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Figure 5.7: PD effect for driving experience (top left) and postal code (top right) in
the claim frequency GBM, the vehicle’s make (bottom left) and weight
(middle left) in the severity GBM and the payment frequency (middle
right) and SEPA indicator (bottom right) in the churn GBM.

(i.e., term with a coefficient fixed to one) in the linear predictor is as follows:

ln[E(y |x, z)] = ln[f(x)] + β0 +
p∑
j=1

βjzj

E(y |x, z) = f(x)× exp(β0)×
p∏
j=1

exp(βjzj)

(5.2)

with β0 the intercept and βj the coefficient for telematics feature zj with
j ∈ {1, . . . , p}. Recall from Table 5.5 that the target y represents N and L/N ,
while f(x) equals E(N |x, e) and E(L/N |x) for the frequency and severity
GBM respectively. Figure 5.8 visualizes our update methodology, applied to
the claim frequency (left) and severity (right) components.
Our proposed updating mechanism in Equation (5.2) allows for intuitive price
effects since the final prediction is multiplicative in three contributions:

• the baseline GBM prediction f(x) for a policyholder with risk characteristics x,
• an overall update factor exp(β0) via the intercept and
• an update exp(βjzj) from each individual telematics feature zj .
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Figure 5.8: Methodology of our mechanism to update baseline premium components.

The updated GLM predictions satisfy the balance property, as described in
Section 5.3.2, while we deliberately enforce this property in the baseline GBMs.
This implies that the multiplicative adjustments result in a pure redistribution
of risk in the claim frequency and severity models.

We perform feature selection to unravel the effect of driving behavior on
claim risk in Section 5.4.1. Focusing on informative features, we develop
our explainable updating mechanism in Section 5.4.2. Finally, we highlight the
added value of telematics for risk classification in Section 5.4.3.

5.4.1 Finding the most important telematics features

We search for a small collection of highly informative telematics features z to
render the update mechanism simple, yet powerful. The complete set of possible
features includes those listed in Table 5.2, supplemented with all possible
two-way interactions. We apply the Least Absolute Shrinkage and Selection
Operator or LASSO (Tibshirani, 1996) to perform feature selection. LASSO
shrinks model coefficients βj to zero by applying a regularization penalty λ ||β||1
in the maximum likelihood estimation (MLE) of the GLM in Equation (5.2).
Only highly informative features zj with non-zero coefficients βj remain in
the GLM, leading to a sparse structure. The degree of sparseness depends
on the value of λ, with higher values leading to more sparsity. All telematics
features are continuous but with various scales, so we standardize each zj before
applying LASSO. We fit a frequency and severity GLM with the structure of
Equation (5.2) and the distributional assumptions outlined in Table 5.5. The
following steps are performed 100 times:

1. sample 50% of the train data and divide the sample in five equally sized
sets,

2. standardize the features z by subtracting the mean and dividing by the
standard deviation,
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3. fit 5 GLMs, each time omitting one data set, for each value of λ in a
predetermined grid,

4. find the value of λ that minimizes the 5-fold cross-validation error
D(y, f(x, z)),

5. register the features zj with non-zero coefficients βj in the GLM fit with
optimal λ value.

Repeating the LASSO procedure for multiple data samples allows to discover
features which are selected consistently, no matter which part of the data is used.
We can therefore assume that those features are most informative and reliable
to update our baseline predictions. Figure 5.9 shows the selection proportions
based on 100 LASSO experiments for the 20 most informative features. A
red/green color indicates a negative/positive β coefficient if selected. The left
panel shows four dominant telematics features to update claim frequency, namely
dist_yrly (100), harsh_latrl (99), harsh_brake (94) and time_night (90),
all with unanimous positive coefficients across all simulations. We decide to keep
these four features as the next feature is selected only 72/100 times. The right
panel indicates that none of the telematics features carries much information to
update claim severity. The most popular feature is selected in only 42% of the
simulations. Telematics features do not seem to be important for predicting
claim severity and we therefore decide to incorporate telematics information in
the pure premium solely via the claim frequency component. It is interesting to
note that the LASSO procedure on the full training data, in combination with
the “one standard error rule” (Hastie et al., 2009), leads to the same feature
selection results for both frequency and severity.
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Figure 5.9: Feature selection proportions in the LASSO GLM for claim frequency
(left) and severity (right), where red/green indicates a negative/positive
β coefficient if selected.
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5.4.2 An explainable updating mechanism

Let z∗ ∈ R4 represent the features dist_yrly, harsh_latrl, harsh_brake
and time_night. We propose an updating mechanism based on the following
Poisson GLM for claim frequency:

ln[E(N |x, e,z∗)] = ln[E(N |x, e)] + β0 +
4∑
j=1

βj log(z∗j + 1)

E(N |x, e,z∗) = E(N |x, e)× exp(β0)×
4∏
j=1

(z∗j + 1)βj .

(5.3)

The updated prediction E(N |x, e,z∗) takes self-reported policy characteristics
into account via the baseline prediction E(N |x, e). This baseline is multiplied
by one fixed term exp(β0) and four terms that depend on the recorded driving
behavior, one for each telematics feature z∗j . We model the telematics features
as βj log(z∗j + 1), which is basically the Yeo–Johnson transformation of power
zero for non-negative values (Yeo and Johnson, 2000). This choice is based on
two reasons: 1) to stabilize the data distributions shown in Figure 5.3 and 2) to
obtain an intuitive updating formula where each telematics feature has an effect
of the form (z∗j + 1)βj . These terms all equal one when the telematics features
equal zero, implying that the update to the baseline is completely determined
by exp(β0) for a policyholder who did not drive at all.

We obtain exp(β0) ≈ 0.02 after fitting the GLM from Equation (5.3) to the
drivers with telematics. This indicates that policyholders who did not drive
during the entire year receive a 98% rebate of their baseline premium. The
small fee of 2% can be seen as a fixed subscription payment and is justified
by the administrative costs needed to maintain the policy during the full year.
Furthermore, the policyholder was covered for the entire policy period and
had the freedom to drive on public roads without worrying about insurance.
Figure 5.10 shows the multiplicative update effect for each telematics feature,
namely (z∗j + 1)βj . We anonymized the y-axis for confidentiality reasons, but
every panel contains a horizontal dashed line at the value one. The top left
panel shows the non-proportional increase for mileage with the fixed discount
already included, namely exp(β0)×(dist_yrly+1)βdist_yrly . Low-mileage drivers
receive large discounts and the combined update even remains below one for
high-mileage drivers. The top right panel shows an almost linear increase for
night-time driving and the bottom left/right panels show non-proportional
increases for harsh braking/lateral events. These three components focus on
driving safety and the associated updates are always above one. This increases
the total update once night driving, harsh braking or lateral events are registered.
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Safe driving during the day is therefore the key to earn discounts, with less
driving resulting in bigger discounts.
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Figure 5.10: Multiplicative update effects for the mileage including the fixed discount
(top left), night-time driving (top right), harsh braking (bottom left)
and lateral movements (bottom right).

Figure 5.11 shows the distribution of scores βj log(z∗j +1) and updates (z∗j +1)βj

for policyholders in the train data. The y-axis is again anonymized and a
horizontal dashed line represents the value zero/one in the left/right panel.
Total scores/updates are additive/multiplicative in the different components, as
shown in Equation (5.3). The update for mileage, with fixed discount included,
remains below one for every policyholder. An average mileage driver without
unsafe events receives a discount of around 50%. The three other telematics
components result in updates above one due to their risky nature, thereby
increasing the total update. Average night-time driving, harsh braking and
lateral movements results in penalties of approximately 10%, 35% and 20%.
Total updates range from around 95% discounts to more than 300% penalties,
with a 5% discount on average. Around 60% of the drivers are receiving a
discount on the baseline premium with our updating mechanism. In Section 5.5
we discuss how to transform this technical analysis into a commercial UBI
product with update limits on discounts and penalties.
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Figure 5.11: Distribution of scores βj log(z∗j +1) (left) and updates (z∗j +1)βj (right)
in the train data.
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Figure 5.12 shows an intuitive dashboard to inform policyholders on their
driving behavior and related price effects. The top left panel shows the driving
information recorded in 2017 for a random policyholder. The top right panel
compares this behavior relative to the full portfolio: a low/high decile indicates
better/worse driving behavior. This profile shows an above average number of
lateral movement events, but scores well regarding braking, night-time driving
and especially mileage. The bottom panel shows the additive score for each
component. Low mileage driving (green) results in a big discount, while the
other three components (red) decrease the discount. This driver obtains a total
discount (blue) of around 35% on the baseline premium.

Figure 5.12: Dashboard with recorded driving information (top left), ranking within
the portfolio (top right) and influence of each component on the final
price (bottom).

5.4.3 The added value of telematics for risk classification

We aim to quantify the value of our telematics updating mechanism. Here the
focus lies on predictive performance gains and risk classification improvements
by updating the claim frequency component. Section 5.5 analyzes the effects on
an insurer’s profits and retention rates.

Table 5.9 shows the Poisson deviance values for the GBM baseline and GLM
update predictions. The updates result in a relative deviance improvement
of 2.58% and 1.50% on the train and test data respectively. This shows that
our simple updating mechanism with telematics information is able to improve
the predictive performance of an elaborate GBM. We also show the relative
improvements when only one telematics feature z∗j is used to fit the update GLM
in Equation (5.3). The mileage and harsh movements show the highest deviance
improvements. It is interesting to note how similar the gains in train and test
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data are for the mileage-only GLM. Mileage might therefore be considered as
the most general and consistent indicator of claim risk in our data.

Poisson deviance (absolute values) Relative improvement from GBM baseline to GLM update (%)

GBM baseline GLM update Total dist_yrly time_night harhs_brake harsh_latrl

Train 0.4044 0.3939 2.581 0.905 0.659 0.848 1.154
Test 0.3927 0.3868 1.495 0.881 0.218 0.285 0.305

Table 5.9: Poisson deviance for the baseline GBM and update GLM on the train
and test data.

We define a risk score for policyholder i in model m as rmi = Fn{fm(xi, z∗i )},
namely the empirical cumulative distribution function of the predicted claim
frequency for policyholder i in model m. Note that rmi ∈ [0, 1] with low/high
values for policyholders with a low/high prediction in model m. We visualize
improvements in claim risk classification with a Lorenz curve, a tool developed
to represent wealth distribution inequalities in welfare economics (Lorenz, 1905):

LCm(s) =
∑n
i=1Ni 1{rmi ≤ s}∑n

i=1Ni
for s ∈ [0, 1].

The Lorenz curve accumulates observed claims from low to high risks as perceived
by model m (i.e., rmi : 0 → 1). Better risk classification means that claims
accumulate at a slower/faster rate for low/high values of rmi . Figure 5.13 shows
the Lorenz curves for the GBM baseline (red) and GLM update (green) on both
the train (left) and test (right) data. We observe that, in both the train and
test data, the green line is shifted further to the bottom right than the red line,
indicating the improved risk classification with telematics updates. To quantify
this improvement we use the Gini index, defined as two times the area between
a Lorenz curve and the 45 degree line of equality (Gini, 1912). We obtain a
Gini improvement of 19.6% (going from 0.275 to 0.329) and 52.5% (going from
0.136 to 0.207) for the train and test data respectively.

We now group policyholders in five equally sized bins based on the risk scores rmi
and calculate the observed claim proportions in each bin as follows:

PCm(s) =
∑n
i=1Ni 1{

s−1
5 < rmi ≤ s

5}∑n
i=1Ni

for s ∈ {1, . . . , 5}

Figure 5.14 shows the proportional claims for the GBM baseline (red) and GLM
update (green) on both the train (left) and test (right) data. Both models show
an increasing trend in claim proportions thanks to risk classification. However,
the green bars are lower/higher compared to the red ones for low/high risk
bins, indicating a better risk classification of the update GLM. To quantify
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Figure 5.13: Lorenz curves for the GBM (red) and GLM (green) on the train (left)
and test (right) data.

the improvement we calculate the slopes of a linear fit to the proportions. We
obtain a slope increase of 18.9% (0.064 to 0.076) and 61.7% (0.031 to 0.050) for
the train and test data.
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Figure 5.14: Claim bins for the GBM (red) and GLM (green) on the train (left) and
test (right) data.

It does not come as a surprise that extra features carry useful information to
improve predictive performance and risk classification. The gains are however of
a considerable size, even higher on the test compared to train data. This hints
that driving behavior is a better measure to extrapolate past claim behavior to
the future compared to the self-reported risk characteristics.

5.5 Managerial insights on telematic updates

We now turn to a managerial view on the value of telematics for insurance pricing
by analyzing the resulting monetary profits and client retention rates. The
GBMs from Section 5.3 result in a baseline price π(x) and churn probability ρ(x)
for a policyholder with self-reported risk characteristics x at time t. The GLM
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from Section 5.4.2 proposes multiplicative premium updates δπ(z) based on
telematics information z gathered over the period [t, t + 1]. This results in
an updated price π∗(x, z) = π(x) × δπ(z), taking the form of a rebate or
penalty at time t+ 1. The churn behavior of clients is likely to depend on these
price changes, implying a transformation of the baseline churn probability ρ(x)
to ρ∗(x, δπ) over the period [t, t + 1]. We hereby assume that policyholders
can track their driving behavior and the price implications in a dashboard
application, directly influencing their churn behavior. Section 5.5.1 details our
assumptions regarding changes in the churn probability following price updates
via the price elasticity of demand. Section 5.5.2 shows the effect on profits
and retention rates in a stylized example with a fair redistribution constraint.
This constraint intends to allow for a fair comparison between the baseline
and telematics situation, while combating extremely high (and low) premium
changes. In Section 5.5.3 we optimize the product design for maximal profits
under retention constraints and for maximum retention under profitability
constraints.

5.5.1 Price elasticity of demand

We aim to analyze an insurer’s profits and retention rates under the new
telematics pricing structure. The price elasticity of demand εp measures how
sensitive the demand of a quantity q is to changes in its price π as follows:
εp = ∆q/q

∆π/π , with ∆q/q and ∆π/π the percentage change in quantity and price
respectively. For the vast majority of goods and services, the “law of demand”
dictates that the quantity decreases for increasing prices, leading to a negative
price elasticity (Gillespie, 2014). We assume insurance follows this law, especially
in a highly competitive segment such as motor insurance. Within economics it
is customary to drop the minus sign and report on absolute values of εp, with
demand being referred to as elastic when εp > 1 and inelastic when εp < 1
(Browning and Zupan, 2020).

Our dataset does not allow to estimate the portfolio’s observed price elasticity, as
we do not have information on price quotes and the insured’s acceptance/decline
decision. We therefore develop assumptions based upon relevant empirical
research on demand elasticity within motor insurance. Sherden (1984) analyzes
elasticity over a range of prices for different types of coverage. He shows that
bodily injury covers are rather inelastic over the full price range, i.e. εp < 1,
while collision becomes elastic for prices equal to 1.6 times the average with εp
approaching three for high prices. Barone and Bella (2004) compute the price
elasticity for 989 customer segments and find most values ranging from 0.4
(inelastic) to 2.2 (elastic). Guelman and Guillén (2014) find an approximate
linear relation between lapse rates and price changes. However, the resulting
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price elasticity εp (i.e., the slope) differs per customer segment and they obtain
a slightly higher elasticity for price increases compared to price decreases.
Let δρ represent an additive change in a customer’s churn probability as follows:
ρ∗ = ρ + δρ. We assume a linear relationship between the change in churn
probability δρ, the price update δπ and the elasticity εp as follows: δρ =
εp · (δπ − 1). This leads to the following churn probability, forced to be bounded
in the interval [0, 1]: ρ∗(x, δπ) = ρ(x) + εp · (δπ − 1). Figure 5.15 illustrates this
relation for a policyholder with a baseline churn probability ρ(x) = 10% and
a price elasticity εp ∈ [0, 5]. Notice how δρ = 0 when there is no price change,
i.e., when δπ = π∗/π = 1. The churn probability increases or decreases linearly
when δπ > 1 or δπ < 1 respectively, with a slope equal to the price elasticity εp.
Following the aforementioned empirical research, we opt for εp ∈ [0, 5] to cover
all examples of realistic motor insurance markets. Our assumption proposes a
fixed elasticity for the complete portfolio without taking customer segmentation
into account. We believe that this simplification is justifiable as our telematics
portfolio of only young drivers is already more homogeneous compared to the
complete portfolio with all policyholders. Furthermore, this allows us to focus
on the effect of telematics pricing updates on the retention rates and profits.
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Figure 5.15: Effect of price updates δπ on the churn probability ρ∗ for a price
elasticity εp ∈ [0, 5].

5.5.2 Profits and retention rates with fairness constraints

Let us define the expected average profit (P ) and retention rate (R) as follows:

P = 1
n

n∑
i=1

(1−(ρi+δρi )) ·(δπi πi−Li) and R = 1
n

n∑
i=1

1−(ρi+δρi ). (5.4)

The expected retention rate R is defined by averaging over n policyholders the
probability of retaining policyholder i, namely the term 1− (ρi + δρi ), with ρ
and δρ the baseline churn probability and additive change due to price updates.
The profit P is defined by averaging the product of two terms. The second
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term (δπi πi − Li) represents the profit (or loss) for contract i with δπi πi the
updated premium inflow and Li the observed claim amount outflow. The first
term in P represents the retention probability that this profit/loss is realized for
policyholder i. Averaging over all policyholders results in the expected average
profit per client in the portfolio. We use all n = 25,838 policyholders with
telematics during the period 2017-2019 to evaluate P and R. Both the baseline
price π and churn probability ρ are calculated at the beginning of each year,
based on the self-reported risk characteristics x available at that time. The price
updates δπ and (indirectly related) churn updates δρ depend on the registered
driving behavior z during the year. We assume that this information becomes
available to policyholders as the year progresses. Finally, the loss payments L
depend on the claim experience during each year.

Our goal is to compare profits and retention rates under the telematics
paradigm to the baseline situation without telematics, i.e., when δρ = 0 and
δπ = 1 in Equation (5.4). This baseline results in profits of 12.45 Euro per
policyholder and a retention rate of 90.85%. We propose two constraints
that allow for a fair and realistic comparison of telematics versus the baseline,
namely a solidarity/commercial constraint via update limits and a redistribution
constraint via a scale factor α:

δπlo ≤ δπ ≤ δπhi and
n∑
i=1

(1− ρi) · πi =
n∑
i=1

(1− ρi) · α · δπi · πi. (5.5)

Figure 5.11 showed that price updates δπ result in huge discounts and penalties.
We want to refrain from such excessive price increases as this goes against the
nature of insurance and the principle of solidarity. From a commercial point of
view, it is reasonable to assume that an insurer desires to put a maximum limit
on the discount for financial protection. The first constraint in Equation (5.5)
therefore restricts price updates by imposing lower and upper limits δπlo and
δπhi. Further, we want to use the updates to redistribute the premium volume
among policyholders. This is achieved by scaling the updates δπ with a fixed
factor α to ensure that the equality in the second constraint in Equation (5.5)
holds. This redistribution constraint allows for a fair comparison of profits as
the telematics and baseline tariff result in the same expected total premium
inflow under the assumption of zero price elasticity, i.e., εp = 0 and δρ = 0.

Figure 5.16 shows the distribution of the updates δπ for five symmetrical lower
and upper bounds, namely δπhi = 1 + δπlo with δπlo ∈ {0.5, 0.4, 0.3, 0.2, 0.1}. This
results in price increases and decreases of maximum 50%, 40% up to 10%
respectively. The gray lines connect updates δπi for random policyholders i
under the different limits and indicate how the updates end up in the
lower/upper bound for stricter limits. Table 5.10 reports the scale factor α and
median/average value of the updates δπ (respectively indicated by a horizontal
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bar and open circle in Figure 5.16). Both the median and average updates stay
below one, indicating that more than half of the policyholders are receiving
a discount thanks to the telematics updates. Furthermore, the median of the
resulting price δππ remains below the median baseline price π of 304.7 Euro.
The average price is approximately equal to the average baseline price of 342.3
Euro in all the scenarios, a direct consequence of our redistribution constraint.
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Figure 5.16: Distribution of the price updates δπ for different limits.

Symmetrical lower and upper limits

none 50% 40% 30% 20% 10%

Scale factor α 1.010 1.043 1.053 1.062 1.071 1.075

Price update δπ Median 0.911 0.941 0.950 0.959 0.966 0.970
Average 0.968 0.975 0.978 0.982 0.987 0.993

Premium δππ
Median 275.2 284.1 286.9 290.7 295.9 301.0
Average 342.9 342.7 342.7 342.6 342.5 342.4

Table 5.10: Statistics on updates δπ and prices δππ for different limits.

Figure 5.17 shows the expected profits per client on the x-axis and retention
rates on the y-axis for different values of the symmetrical update limits (color)
and price elasticity εp (plot shape). The vertical and horizontal dashed lines
indicate the baseline profit (12.45 Euro) and retention rate (90.85%) without
using telematics (δρ = 0 and δπ = 1). Notice that all situations lead to the
baseline profit and retention for εp = 0, a direct consequence of our redistribution
constraint. Profits and retention rates diverge for different limits when εp > 0.
The limits of 10% up to 40% always result in higher profits compared to the
baseline situation, at the cost of lower retention rates. For a moderate price
elasticity εp ∈ [1, 2], the 10% and 20% limit result in profits between 7 and
11 Euro per customer on top of the baseline, with retention rates remaining
above 87% and 82% respectively. An extra profit of 10 Euro per customer
results in a total excess profit of almost 260,000 Euro. A higher price elasticity
typically results in more profits but a decrease in client retention. The 50%
limit has lower profits compared to the baseline for a price elasticity εp ∈ [1, 2]
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and no limit results in lower profits over the full range of εp. This is driven by
the relatively low premiums in these cases, as indicated the median values in
Table 5.10.
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Figure 5.17: Profit and retention rate by limit (color) and price elasticity εp (shape).

This stylized example indicates that both policyholders and the insurer are able
to gain from telematics via lower premiums on average and higher expected
profits respectively. We now turn to constrained optimization techniques for
profit or retention maximization.

5.5.3 Constrained profit or retention maximization

We maximize the expected profit P , given that we want to retain a minimum
proportion of the portfolio R∗. This corresponds to the following constrained
optimization problem:

max
α

P (α) = 1
n

n∑
i=1

(1− (ρi + δρi )) · (αδπi πi − Li),

subject toR(α) = 1
n

n∑
i=1

1− (ρi + δρi ) ≥ R∗.

(5.6)

We explicitly take the dependence on the scale factor α into account via the
premium updates δπ, but the churn updates implicitly also depend on α via
δρ = εp · (αδπ − 1). We find an efficient frontier by varying R∗ over a range of
values and maximizing P (R∗) via α. Figure 5.18 shows the efficient frontiers
when R∗ ∈ [0.75, 0.9] for various combinations of the update limits δπlo and
δπhi (grid) and price elasticity εp (color). We no longer focus on symmetrical
bounds but allow all combinations in the set ±{10%, 30%, 50%}. The profit and
retention rate under the baseline without using telematics are again indicated
by the dashed lines for comparison purposes.
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For an inelastic portfolio (εp = 0.5), the expected profit is always higher than
the baseline. The range of excess profits per policyholder increases with the
upper limit going from 28 Euro for 10% to 86 Euro for 50%. The large profits
with high upper limits come at the cost of lower retention and losing around
15% of the policyholders. For a unit elastic portfolio (εp = 1), the maximal
profits drop to around 47 Euro per customer. Telematics results in lower profits
compared to the baseline (or even losses) for retention rates above 85% when the
limits widen (i.e., going to the left bottom of Figure 5.18). The efficient frontier
shifts further to the left for elastic portfolios (εp > 1). For the symmetrical 10%
limit the profits remain larger than the baseline, while for the symmetrical 50%
limit they never exceed the baseline.
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Figure 5.18: Profits and retention rates by values of the update limit (grid) and
price elasticity (color).

A company with a clear idea on the price elasticity of its customers can use this
analysis to pinpoint the retention rate and update limits in a profit-maximizing
strategy. Without an accurate estimate of price elasticity, these results can
still be used for a risk-return analysis. The symmetrical 10% limits are almost
certain to result in (small) profits, while the symmetrical 50% limits can result
in huge profits or detrimental losses depending on the actual price elasticity. A
lower limit of 10% and upper limit of 50% give the best of both worlds, high
return and low risk, but such a structure with low discounts and high penalties
will be hard to sell to customers.

We now maximize the expected retention rate R, given that we expect to make
a minimum amount of profit P ∗. This corresponds to the following constrained
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optimization problem:

max
α

R(α) = 1
n

n∑
i=1

1− (ρi + δρi ),

subject toP (α) = 1
n

n∑
i=1

(1− (ρi + δρi )) · (αδπi πi − Li) ≥ P ∗.

(5.7)

Again, the churn update δρ implicitly depends on α. Figure 5.19 shows the
retention rates and profits for various combinations of the update limits δπlo
and δπhi (grid), price elasticity εp (color) and required excess profits above the
baseline (shape). The profit and retention rate without telematics is indicated
by the dashed lines. For example, an excess profit of 10 Euro above the baseline
profit of 12.45 Euro implies that the minimum profit P ∗ equals 22.45 Euro.
Notice that the combination of a 10% upper limit and excess profit of 35 Euro
per client is impossible, as the plotting characters do not attain P ∗ = 47.45 in
the top panels of Figure 5.19.

In general, retention rates are decreasing for an increasing price elasticity and
excess profit, while retention increases when going from wide to narrow limits
(bottom left to top right in Figure 5.19). In some settings it is possible to
achieve higher retention than the baseline. This is for example the case with
the symmetrical 10% limit in an inelastic market for low excess profits and in
an elastic market without excess profit. Retention rates remain relatively high
in both inelastic and unit elastic portfolios, but they decrease drastically when
using wider limits in elastic portfolios. A solid risk-return analysis is therefore
very important in an elastic market.

Our analysis shows that telematics has big economical value for insurers, but care
has to be taken in implementing the updating scheme to align risk and return.
We believe this helps companies to make decisions on the discount/penalty
structure that aligns best with the strategic goals regarding target profits or
retention rates. This can be combined together with marketing and consumer
studies on which types of structures would be accepted by policyholders.

5.6 Conclusions

On the one hand, insurance companies have an abundance of historical
data and in-house expertise on technical risk assessment with self-reported
characteristics. On the other hand, new technologies such as telematics offer
exciting opportunities to innovate and further improve the pricing practice. This
chapter aims at combining the best of both worlds. We first develop a baseline
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Figure 5.19: Profits and retention rates by values of the limit (grid), elasticity (color)
and P ∗ (shape).

pricing model on a large portfolio with only self-reported features. Next, we
propose an explainable updating mechanism to incorporate driving behavior
information into the baseline tariff. The yearly mileage, amount of night driving
and rate of harsh braking and lateral movement events are used to update the
baseline price in an intuitive way. We analyze the added value of telematics
for insurance pricing from both a statistical and managerial perspective. The
statistical performance shows that telematics improves the risk classification
process, resulting in a better assessment of claim risk for both the in-sample
train and out-of-sample test data. The managerial evaluation shows the added
economic value of telematics with respect to profits and retention rates under
different assumptions of the price elasticity of the clients. We show how the
updating system’s design has an impact on the risk-return profile. We believe
this analysis can help managers, actuaries and marketeers to bring a successful
commercial telematics product into the market, aligned with the strategic goals
and risk-appetite of the company.

The application of telematics technology within the (motor) insurance industry
poses many opportunities, but is still in its infancy. In this chapter we take a first
step in utilizing the added value of telematics and highlight the improvements
in risk classification and pricing of an MTPL product. The resulting gains for
both policyholders (e.g., lower premiums) and the insurer (e.g., higher profits)
might spark the interest of insurance companies who were on the fence about
launching a telematics product until now. In this chapter we take the angle of
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an incumbent firm with in-house expertise who is interested in updating the
current pricing structure with telematics information. In a next project we aim
to develop a purely telematics tariff structure based on driving behavior and
claims data, without relying on any self-reported risk characteristics. A more
dynamic structure of premium payment, for example like a monthly usage-based
subscription service, could represent how insurtech startups try to make a
disruptive entry in the market.

In our work, the churn and pricing models are not interconnected. It can
be interesting to connect insights on churn behavior with price updates from
telematics to improve marketing offers. For example by offering a bigger discount
to safe drivers with a high probability to surrender the policy, thereby persuading
these good risks to stay with the insurance company.

Another path for future research is to analyze post-accident changes in
driving behavior and related price implications. Bonus-malus systems reward
policyholders with a discount for claim-free years and penalize with a surcharge
following an accident at fault (Lemaire, 1995). These systems are common
in the European insurance market and result in a fixed discount/penalty for
the next period. However, psychological studies show that involvement in a
traffic accident can lead to lack of confidence behind the wheel, anxiety and
emotional distress, resulting in slower and more cautious driving (Mayou et al.,
1991, 1993). The analysis of post-accident driving behavior can lead to more
dynamic bonus-malus updates, for example by rewarding improved behavior
with less severe penalties or a faster convergence to the initial bonus.



Chapter 6

Conclusions and outlook

This thesis puts focus on new modeling techniques and new data sources to
calculate the pure premium. This is the estimated amount that the insurance
company needs to pay future claims, without any profit or loss. This pure
premium is intended to cover the underlying risk of each profile, and its
calculation relies heavily on statistical methods and the available information.
Our work contributes to the more accurate calculation of the pure premium,
but this is far from the eventual price that is charged to the policyholder. The
technical premium is obtained by adding a safety margin and other loading
factors to the pure premium. The safety margin takes into account the inherent
uncertainty of the future and allows to adjust for differences between the
predictions and observed reality. The loading factors cover all sorts of costs such
as administration, claims management, commissions, taxes, sales and marketing.
These loadings are usually defined as a percentage of the pure premium and can
be defined via expert judgment or calculated via statistical approaches (Yang
et al., 2020). The commercial premium, the one which is actually charged to the
policyholders, is then derived from the technical premium by taking into account
the company’s goals and extra constraints. This includes the current market
positioning, the desired level of profit, competition and premium stability, as
well as legal and IT constraints on the information that one can use. This shows
that the journey from pure to commercial premium is still a challenging one,
but we hope that this thesis already provides a good starting point to calculate
accurate pure premiums, from which can be built further.

Recent technological advancements have boosted the performance of many
predictive models, leading to innovating business applications across industries.
Innovation in the insurance industry is however not an easy task for two main
reasons. Firstly, insurance plays a crucial role in protecting our modern society
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and the people in it against life-ruining financial losses. This makes insurance
pricing a high-stakes decision with a big impact on a person’s life. Secondly, the
insurance industry is heavily regulated to make sure that everyone is treated
fairly without any discrimination. These two reasons contribute to the fact that
explainability is a key requirement for any practical insurance tariff. Transparent
communication of the underlying decisions is a right for policyholders and should
be taken into account during the tariff design process.

The inherent need for transparency makes it more difficult to apply black
box ML models to insurance. In Chapter 2 we therefore remained within the
actuarial comfort zone of well-known statistical white box models. We make use
of ML techniques to transform a flexible GAM into a very transparent GLM.
Chapter 3 however shows that our GAM/GLM approach is outperformed by a
GBM black box, both from a statistical and an economic perspective. The price
to pay for this extra performance is reduced interpretability of the pricing model.
We show some techniques to open the black box and understand the decision
process, but this might not be sufficient for the regulator. In Chapter 4 we bring
pricing back to the world of white box models. By extracting knowledge from a
complex black box, we perform smart feature engineering which allows to fit
a transparent global surrogate. Our approach results in an explainable tariff
model which approximates the performance of the original black box closely. We
believe this allows actuaries to combine both performance and interpretability,
thereby having a competitive solid tariff while complying with regulations.

In our research on new modeling approaches we mainly put focus on tree-based
ML techniques. A straightforward extension is to take a journey into the realm
of neural networks (NNs) and deep learning. Holvoet et al. (2021) is unpublished
work to which we contributed, where we investigate the application of NNs
to insurance pricing. In that case study we find that standard NNs perform
worse than a GBM for example. We suspect that NNs are great alternatives
for unstructured text or image data, but GBMs tend to perform better on
structured tabular insurance data. However, we did find that NNs can be used
as an adjustment model to improve upon a baseline model such as a GBM
or GLM. This is very promising as it means that one might be able to use a
transparent GLM in combination with a NN that makes slight adjustments to
that tariff. This can increase predictive performance without losing too much
of the inherent interpretability of the GLM baseline.

In practice, insurance contracts can stipulate deductibles and/or policy limits,
which makes the observed loss amount left-truncated and/or right-censored.
Such aspects need be taken into account in the statistical estimation process via
actuarial models or tools from survival analysis (Klugman et al., 2012). Lopez
et al. (2016) show how to adapt CART to survival data with Kaplan-Meier
weights. When there is no policy limit in place, then extreme loss amounts
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can occur, which need to be addressed appropriately. The central part of the
loss distribution can be modeled via approaches outlined in this thesis, while
the tail of the distribution should be modeled via tools from Extreme Value
Theory (EVT). Recent work brings techniques from EVT to tree-based models
via Generalized Pareto Regression Trees (Farkas et al., 2020) and gradient
boosting for quantile regression (Velthoen et al., 2021) to model extreme claims.
There is still a big opportunity for research that brings these practical policy
considerations to the world of machine learning via solid statistical processes.

In Chapter 5 we switch from a focus on new modeling approaches to new data
sources for insurance pricing. Telematics technology allows to tap into a whole
new category of information on policyholder behavior. This behavioral data can
be valuable to understand a policyholder’s risk profile in addition to insights
obtained from the typical self-reported proxy characteristics. We show the
added value of driving behavior data to update prices from a classical baseline
tariff. We again put forward the explainability of our updating mechanism as a
key requirement. Policyholders need to be able to monitor and understand the
price effects of their driving behavior, which might even result in safer or less
driving in the end. In our study, telematics information results in improved risk
classification, lower premiums on average and possible profits for the insurer.
We believe that there are many unexplored roads for insurers to make proper use
of this new technology, of course within the bounds of fairness and regulations.

In our research on telematics we take the point of an incumbent firm with
strong developed in-house expertise on motor pricing. Such firms might be most
interested in using driving behavior to update their current pricing structure.
Insurtech players might be more interested in finding a disruptive business
model which purely puts focus on driving behavior for pricing. A possible
extension on our work would therefore be to go from a hybrid pricing structure
to one that uses only telematics information. Policyholders can be clustered
together based on their driving habits, making groups of similar driving profiles.
Within these profiles one could then propose a fixed price-per-km, possibly
adding extra costs once dangerous events are registered. In the end, it would be
possibly to switch from the typical static payment structure to a more dynamic
subscription-based UBI approach. Besides pricing, telematics can also assist in
faster claims handling thanks to detailed crash reports or other services like for
example predictive maintenance alerts. This technology can possibly lead to
big changes in the insurance value chain and current business models.

The application of machine learning and telematics approaches in the insurance
industry is still in its infancy, at least in the Belgian market. Main reasons
of adoption reluctance are the fact that these new techniques are harder to
explain to stakeholders, implement in an IT infrastructure and manually adjust
to business needs. However, as we try to show in this thesis, it might be possible
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to take advantage of these new technologies while still adhering to the specific
requirements of the insurance industry. We hope that this thesis contributes to
assist practitioners in translation new insights from research to practice.



Appendix Chapter 2

A.1 Full specification of the resulting GLMs

Coefficient SE (σ) t-stat p-value

(Intercept) -2.17531 0.02138 -101.734 < 2e-16 ***
COVERAGEPO -0.11964 0.01678 7.129 1.01e-12 ***
COVERAGEFO -0.11399 0.02187 -5.212 1.87e-07 ***
FUELdiesel 0.17802 0.01574 11.313 < 2e-16 ***
AGEPH[18,26) 0.27717 0.02967 9.341 < 2e-16 ***
AGEPH[26,29) 0.14379 0.02925 4.917 8.80e-07 ***
AGEPH[29,33) 0.06492 0.02612 2.485 0.01295 *
AGEPH[51,56) -0.06093 0.02648 -2.301 0.02142 *
AGEPH[56,61) -0.16279 0.03330 -4.888 1.02e-06 ***
AGEPH[61,73) -0.24733 0.02963 -8.348 < 2e-16 ***
AGEPH[73,95] -0.19082 0.04086 -4.670 3.01e-06 ***
POWER[10,36) -0.20689 0.03305 -6.259 3.88e-10 ***
POWER[36,46) -0.06471 0.02268 -2.853 0.00434 **
POWER[75,243] 0.11630 0.02807 4.143 3.43e-05 ***
BM[1,2) 0.12522 0.02296 5.454 4.93e-08***
BM[2,3) 0.18461 0.03314 5.570 2.55e-08 ***
BM[3,7) 0.34292 0.02125 16.140 < 2e-16 ***
BM[7,9) 0.48463 0.02978 16.271 < 2e-16 ***
BM[9,11) 0.54521 0.02702 20.176 <2e-16 ***
BM[11,22] 0.78219 0.02592 30.175 < 2e-16 ***
GEO[-0.48,-0.27) -0.32882 0.05320 -6.181 6.37e-10***
GEO[-0.27,-0.14) -0.20339 0.02326 -8.744 < 2e-16 ***
GEO[-0.14,-0.036) -0.15519 0.01944 -7.985 1.40e-15 ***
GEO[0.11,0.34] 0.19847 0.01822 10.894 < 2e-16 ***
AGEPHPOWER-0.052 -0.07053 0.04641 -1.520 0.12859
AGEPHPOWER-0.029 -0.02585 0.02609 -0.991 0.32176
AGEPHPOWER0.039 0.05843 0.03967 1.473 0.14078
AGEPHPOWER0.047 0.03483 0.03730 0.934 0.35051

Significance codes: .p<0.1;∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A.1: Full specification of the frequency GLM.
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Coefficient SE (σ) t-stat p-value

(Intercept) 6.06322 0.02528 239.798 < 2e-16 ***
COVERAGEPO -0.16280 0.02501 -6.510 7.70e-11 ***
COVERAGEFO 0.10968 0.03236 3.389 0.000703 ***
AGEPH[18,28) -0.02757 0.03665 -0.752 0.451893
AGEPH[28,42) -0.11173 0.02535 -4.407 1.06e-05 ***
AGEPH[64,71) 0.08156 0.04409 1.850 0.064313 .
AGEPH[71,92] 0.33702 0.04749 7.096 1.33e-12 ***
BM[1,2) 0.08857 0.03459 2.561 0.010460*
BM[2,8) 0.13165 0.02878 4.574 4.82e-06 ***
BM[8,10) 0.19560 0.04313 4.535 5.80e-06 ***
BM[10,22] 0.31009 0.03457 8.970 < 2e-16 ***

Significance codes: .p<0.1;∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A.2: Full specification of the severity GLM.



Appendix Chapter 3

B.1 List of variables in the MTPL data

Claim information and exposure-to-risk measure
nclaims The number of claims filed by the policyholder.
amount The total amount claimed by the policyholder in euro.
expo The fraction of the year during which the insurer was exposed to the risk.

Categorical risk factors
coverage Type of coverage provided by the insurance policy: TPL, TPL+ or TPL++.

TPL = only third party liability,
TPL+ = TPL + limited material damage,
TPL++ = TPL + comprehensive material damage.

fuel Type of fuel of the vehicle: gasoline or diesel.
sex Gender of the policyholder: male or female.

(As from 21 December 2012, the European Court of Justice prohibited the use of gender in insurance tariffs to avoid
discrimination between males and females, known as the Test-Achats Ruling. Gender is therefore only investigated
for use within an internal technical tariff, but can not be used in a commercial product.)

use Main use of the vehicle: private or work.
fleet The vehicle is part of a fleet: yes or no.

Continuous risk factors
ageph Age of the policyholder in years.
power Horsepower of the vehicle in kilowatt.
agec Age of the vehicle in years.
bm Level occupied in the former compulsory Belgian bonus-malus scale.

From 0 to 22, a higher level indicates a worse claim history, see Lemaire (1995).
(This variable is typically not used as an a priori rating factor, but rather as an a posteriori correction in a credibility
framework or bonus-malus scheme. We however keep bm in the data to assess the amount of information contained
in this variable and to investigate the resulting effect.)

Spatial risk factor
long Longitude coordinate of the center of the municipality where the policyholder resides.
lat Latitude coordinate of the center of the municipality where the policyholder resides.

Table B.1: Description of the available variables in the MTPL data.
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B.2 Search grid for the tuning parameters

Regression tree cp ∈ {1.0× 10−5, 1.1× 10−5, . . . , 1.0× 10−2}
γ ∈ {2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20}∗

Random forest T ∈ {100, 200, . . . , 5,000}
m ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Gradient boosting machine T ∈ {100, 200, . . . , 5,000}
d ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Table B.2: Search grid for the tuning parameters in the different tee-based machine
learning techniques.
∗ Note that the γ tuning parameter is only used in frequency models for
the Poisson deviance.

B.3 Random forests for claim frequency data

The left and right panel of Figure B.1 show the partial dependence plot of the
age and spatial effect in the claim frequency random forests, respectively. These
effects are discussed in Section 3.4.3. The six random forests for frequency
contain rather different number of trees, ranging from 100 to 5,000 (see Table 3.3
earlier). However, these random forests exhibit very similar effects for the age
of the policyholder in Figure B.1. This indicates that the underlying model
structure does not change drastically after including a sufficient number of trees.
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Figure B.1: Effect of the age of the policyholder (left) and the municipality of
residence (right) on frequency in a random forest.
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B.4 Filing requirements for pricing models

Insurance companies can be required by regulation to file their rating model
on paper. This section presents such frequency and severity models, trained
on the data where D3 was kept as hold-out test set. Section B.4.2 and B.4.1
show the GLMs and regression trees respectively. The other five GLMs and
regression trees are not shown due to lack of space. This filing requirement is
more difficult to satisfy for the ensemble methods, but it is possible by printing
the individual trees. However, this would result in a large amount of pages
which is not very practical or insightful for the regulator.

B.4.1 Regression tree
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Figure B.2: Regression trees for claim frequency (big, top left) and severity (small,
bottom right), both trained on the data where D3 was kept as hold-out
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B.4.2 GLM
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Coefficient SE (σ) t-stat p-value

Intercept −2.19 ∗∗∗ 0.03 −64.09 0.00
coverageTPL+ −0.10 ∗∗∗ 0.02 −5.46 0.00
coverageTPL++ −0.10 ∗∗∗ 0.03 −3.97 0.00
fueldiesel 0.18 ∗∗∗ 0.02 10.00 0.00
fleetyes −0.13 ∗∗∗ 0.05 −2.72 0.01
ageph[18,26) 0.32 ∗∗∗ 0.04 8.94 0.00
ageph[26,29) 0.16 ∗∗∗ 0.04 4.61 0.00
ageph[29,32) 0.11 ∗∗∗ 0.04 3.11 0.00
ageph[32,35) 0.02 0.04 0.46 0.65
ageph[50,54) −0.11 ∗∗∗ 0.03 −3.53 0.00
ageph[54,58) −0.05 0.04 −1.28 0.20
ageph[58,62) −0.23 ∗∗∗ 0.05 −4.93 0.00
ageph[62,73) −0.25 ∗∗∗ 0.04 −7.06 0.00
ageph[73,95] −0.21 ∗∗∗ 0.05 −4.42 0.00
bm[1,2) 0.14 ∗∗∗ 0.03 5.46 0.00
bm[2,3) 0.16 ∗∗∗ 0.04 4.48 0.00
bm[3,5) 0.37 ∗∗∗ 0.03 11.86 0.00
bm[5,7) 0.32 ∗∗∗ 0.03 11.39 0.00
bm[7,9) 0.48 ∗∗∗ 0.03 14.77 0.00
bm[9,11) 0.52 ∗∗∗ 0.03 17.30 0.00
bm[11,22] 0.75 ∗∗∗ 0.03 26.07 0.00
agec[9,14) 0.04 ∗ 0.02 1.91 0.06
agec[14,48] −0.02 0.03 −0.75 0.46
power[10,35) −0.16 ∗∗∗ 0.04 −3.95 0.00
power[35,42) −0.05 0.03 −1.54 0.12
power[42,49) −0.02 0.03 −0.55 0.58
power[59,73) 0.02 0.02 0.89 0.37
power[73,92) 0.07 ∗ 0.04 1.76 0.08
power[92,243] 0.13 ∗∗∗ 0.05 2.88 0.00
latlong[-0.46,-0.36) −0.31 0.19 −1.62 0.11
latlong[-0.36,-0.26) −0.33 ∗∗∗ 0.06 −5.97 0.00
latlong[-0.26,-0.18) −0.20 ∗∗∗ 0.03 −5.86 0.00
latlong[-0.18,-0.12) −0.23 ∗∗∗ 0.04 −6.38 0.00
latlong[-0.12,-0.061) −0.13 ∗∗∗ 0.03 −4.41 0.00
latlong[-0.061,-0.017) −0.05 0.03 −1.62 0.11
latlong[0.025,0.077) 0.06 ∗∗ 0.03 2.42 0.02
latlong[0.077,0.14) 0.03 0.03 0.86 0.39
latlong[0.14,0.23) 0.04 0.03 1.29 0.20
latlong[0.23,0.33] 0.36 ∗∗∗ 0.03 12.37 0.00
agephpower-0.05 −0.04 0.06 −0.61 0.54
agephpower-0.02 −0.11 ∗∗∗ 0.04 −3.15 0.00
agephpower-0.01 −0.03 0.03 −0.79 0.43
agephpower0.01 −0.00 0.03 −0.02 0.98
agephpower0.02 −0.04 0.05 −0.67 0.50
agephpower0.04 0.04 0.04 1.07 0.29

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table B.3: Frequency GLM specification, trained on the data where D3 was kept as
hold-out test set.
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Coefficient SE (σ) t-stat p-value

Intercept 7.31 ∗∗∗ 0.08 88.50 0.00
coverageTPL+ −0.23 ∗∗∗ 0.05 −4.62 0.00
coverageTPL++ 0.18 ∗∗ 0.07 2.54 0.01
ageph[18,25) 0.13 0.11 1.23 0.22
ageph[25,28) −0.02 0.10 −0.15 0.88
ageph[28,30) 0.08 0.11 0.70 0.49
ageph[30,33) 0.07 0.10 0.65 0.52
ageph[33,36) −0.19 ∗ 0.10 −1.87 0.06
ageph[36,39) −0.26 ∗∗ 0.10 −2.57 0.01
ageph[39,42) −0.19 ∗ 0.10 −1.84 0.07
ageph[42,45) −0.01 0.10 −0.12 0.91
ageph[49,52) −0.02 0.10 −0.21 0.83
ageph[52,55) −0.13 0.11 −1.18 0.24
ageph[55,61) −0.17 ∗ 0.10 −1.69 0.09
ageph[61,66) −0.20 ∗ 0.11 −1.73 0.08
ageph[66,72) −0.04 0.11 −0.33 0.75
ageph[72,95] 0.11 0.11 0.93 0.35
agec[0,2) 0.22 ∗∗ 0.11 2.09 0.04
agec[2,3) −0.11 0.09 −1.11 0.27
agec[3,4) −0.08 0.10 −0.82 0.41
agec[4,6) −0.08 0.07 −1.09 0.28
agec[6,7) −0.10 0.08 −1.22 0.22
agec[7,8) −0.10 0.09 −1.21 0.23
agec[10,11) −0.12 0.09 −1.33 0.18
agec[11,12) −0.05 0.09 −0.52 0.60
agec[12,14) −0.14 ∗ 0.08 −1.69 0.09
agec[14,48] −0.01 0.09 −0.06 0.95

Significance codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table B.4: Severity GLM specification, trained on the data where D3 was kept as
hold-out test set.

B.5 Supplementary material

Supplementary material related to this chapter can be found online at https:
//github.com/henckr/sevtree.

https://github.com/henckr/sevtree
https://github.com/henckr/sevtree


Appendix Chapter 4

C.1 PD and ALE for correlated features

Figure C.1 compares the PD and ALE for several vehicle characteristics in the
pricingame dataset, namely the weight, value, maximum speed, horsepower
and age. Figure C.1a shows that the vehicle age is negatively correlated with
the other characteristics while there is a strong positive correlation between the
weight, value, maximum speed and horsepower. Figures C.1b, C.1c, C.1d, C.1e
and C.1f show the centered PD (in blue) and ALE (in red) for all the vehicle
features. Both effects are very similar for each of the features, especially in
the ranges with high observation counts as indicated by the black rugs on the
x-axis. We observe some vertical shifts between the PD and ALE in feature
ranges with low observation counts. However, these vertical shifts are not a
problem for our maidrr procedure as we only use these effects to perform the
feature grouping. Furthermore, observation counts are taken into account as
weights in the penalized loss function of Eq. (4.2), further reducing the impact
of these shifts on the obtained segmentation. This justifies the use of PD effects
for grouping, even when dealing with correlated features.

142



GENERAL GLM FORMULATION 143

1 −0.32 −0.42 −0.3 −0.17

−0.32 1 0.81 0.89 0.59

−0.42 0.81 1 0.64 0.23

−0.3 0.89 0.64 1 0.71

−0.17 0.59 0.23 0.71 1

vhage

vhdin

vhspeed

vhvalue

vhweight

vh
ag

e
vh

din

vh
sp

ee
d

vh
va

lue

vh
weig

ht

−1.0

−0.5

0.0

0.5

1.0
corr

(a) correlation matrix

−0.06

−0.04

−0.02

0.00

0.02

0 20 40 60
vhage

ef
fe

ct

type

ALE

PD

(b) age in years

−1e−03

−5e−04

0e+00

5e−04

0 200 400
vhdin

ef
fe

ct

type

ALE

PD

(c) motor power in hp

−0.008

−0.006

−0.004

−0.002

0.000

100 150 200 250 300
vhspeed

ef
fe

ct

type

ALE

PD

(d) maximum speed in km/h

−0.02

−0.01

0.00

0.01

0 50000 100000 150000
vhvalue

ef
fe

ct

type

ALE

PD

(e) value in euros

−0.002

0.000

0.002

0.004

1000 2000 3000
vhweight

ef
fe

ct

type

ALE

PD

(f) weight in kg

Figure C.1: Comparison of PD and ALE for correlated vehicle characteristics in the
pricingame dataset.

C.2 General GLM formulation

A GLM allows any distribution from the exponential family for the target of
interest y. This includes, among others, the normal, Bernoulli, Poisson and
gamma distributions, making GLMs a versatile modeling tool. Denoting by g(·)
the link function, the structure of a GLM with all categorical features x is:

g(E[y]) = x>β = β0 +
d∑
j=1

βjxj .

The d+ 1 dimensional vector x contains a 1 for the intercept β0 together with
d dummy variables xj ∈ {0, 1}. A categorical feature x with m levels contains
a reference level which is captured by the intercept. The other m− 1 levels are
coded via dummy variables to model the differences between those levels and
the reference level, captured by the coefficients βj .
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C.3 Global interpretations for a GLM

The Poisson GLM with logarithmic link function to model the number of claims
for the norauto dataset has the following structure and fitted coefficients:

ln (E[nclaims]) =− 2.40 + 0.54 Maleno + 0.09 Youngyes

− 0.76 DistLimit8000km − 0.62 DistLimit12000km

− 0.51 DistLimit16000km − 0.33 DistLimit20000km − 0.20 DistLimit30000km

− 0.17 GeoRegionLow− & Low+ − 0.05 GeoRegionMed− + 0.23 GeoRegionHigh+

− 0.08 DistLimit:GeoRegion8000/12000/16000km:High+ & nolimit:Low−/Low+/Med−

where Maleyes, Y oungno, DistLimitnolimit and GeoRegionMed+ & High− are
the reference levels captured by the intercept. These references are the levels
which contain the highest number of policyholders such that the intercept
models the claim frequency of an “average” policyholder. Taking the inverse
link function, namely the exponential, on both sides results in a multiplicative
GLM prediction function with the following global interpretations:

• The predicted claim frequency for an older male policyholder without a
driving distance limit and living in the Med+ or High- geographical region
equals 0.09 or exp(−2.40).

• Predictions are 72% higher for female policyholders compared to males
as exp(0.54) = 1.72. Note: In 2012, the EU put forward rules on gender-
neutral pricing in the insurance industry such that gender is no longer
allowed as a rating factor in a commercial tariff. However, gender is
typically still included in the internal technical analysis.

• As exp(0.09) = 1.09, predictions are 9% higher for young compared to old
policyholders.

• For policyholders with a driving distance limit of 8, 12, 16, 20 and 30
thousand kilometers, predictions respectively amount to 47%, 54%, 60%,
72% and 82% of those for someone without a limit. There is a clear
increasing trend of claim risk with the distance limit.

• Predictions for policyholders living in the Low or Med- geographical
regions amount to respectively 84% and 95% of those for the Med+/High-
regions, whereas predictions increase with 26% for those in the High+
region.
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• The interaction between the distance limit and geographical region results
in a negative correction for policyholders with the most risky level of one
of the features and a low-risk level of the other. As exp(0.08) = 0.92,
predictions are reduced by 8% for policyholders living in the High+ region
with a maximal distance limit of 16,000 kilometers and for those with no
distance limit living in the Low-, Low+ or Med- region.

The observations listed above are globally valid for the GLM predictions on
every policyholder. It is possible to detail the full working regime of our maidrr
GLM as all features are represented in a categorical format. A decision table
can be constructed by combining all possible levels of the different features.
Table C.1 shows part of the decision table for the norauto dataset, with the
four lowest and highest predictions indicated in italics and bold respectively.
The three other parts for Male = Yes & Young = No and Male = No & Young
= Yes/No are not shown for space reasons.

Male Young DistLimit GeoRegion GLM prediction (%)

1 Yes Yes 8000 km Low- & Low+ 3.88
2 Yes Yes 8000 km Medium- 4.41
3 Yes Yes 8000 km Medium+ & High- 4.62
4 Yes Yes 8000 km High+ 5.36
5 Yes Yes 12000 km Low- & Low+ 4.47
6 Yes Yes 12000 km Medium- 5.08
7 Yes Yes 12000 km Medium+ & High- 5.32
8 Yes Yes 12000 km High+ 6.17
9 Yes Yes 16000 km Low- & Low+ 4.99
10 Yes Yes 16000 km Medium- 5.67
11 Yes Yes 16000 km Medium+ & High- 5.94
12 Yes Yes 16000 km High+ 6.89
13 Yes Yes 20000 km Low- & Low+ 5.94
14 Yes Yes 20000 km Medium- 6.75
15 Yes Yes 20000 km Medium+ & High- 7.07
16 Yes Yes 20000 km High+ 8.92
17 Yes Yes 30000 km Low- & Low+ 6.78
18 Yes Yes 30000 km Medium- 7.70
19 Yes Yes 30000 km Medium+ & High- 8.07
20 Yes Yes 30000 km High+ 10.18
21 Yes Yes no limit Low- & Low+ 7.63
22 Yes Yes no limit Medium- 8.67
23 Yes Yes no limit Medium+ & High- 9.87
24 Yes Yes no limit High+ 12.45

Table C.1: Part of the GLM predictions in a decision table for the norauto dataset.
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C.4 Geographical segmentation

Figure C.2 shows the average PD effect for geographical regions where groups
are indicated by colors. Figure C.2a shows the postal code areas on the map
of Belgium with the initial 80 regions from the bemtpl portfolio segmented
in 10 clusters. The capital Brussels in the center of Belgium (red colored),
together with other big cities (orange colored), are risky due to heavy traffic in
those densely populated areas. The rural regions in the northeast and south of
Belgium are less risky. Figure C.2b shows the INSEE department code areas
on the map of France with the initial 96 regions from the pricingame portfolio
segmented in 15 clusters. The capital Paris and surrounding departments in
the north of France (red/orange colored) are high-risk areas.
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Figure C.2: Average PD effect for geographical regions where groups are indicated
by colors.
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