Are Undergraduate Creative Coders Clean Coders? A
Correlation Study

Wouter Groeneveld
KU Leuven
Leuven, Belgium
wouter.groeneveld@kuleuven.be

Tibo Poncelet
Hasselt University/KU Leuven
Hasselt, Belgium
tibo.poncelet@student.uhasselt.be

ABSTRACT

Research on global competencies of computing students suggests
that next to technical programming knowledge, the teaching of
non-technical skills such as creativity is becoming very relevant.
Many CS1 courses introduce a layer of creative freedom by employ-
ing open project assignments. We are interested in the quality of
the submitted projects in relation to the creativity that students
show when tackling these open assignments. We have analyzed 110
projects from two academic years to investigate whether there is a
relation between creativity and clean code in CS1 student projects.
Seven judges were recruited that evaluated the creativity based on
Amabile’s Consensual Assessment Technique, while the PMD tool
was used to explore code quality issues in the Java projects. Results
indicate that the more projects are deemed as creative, the more
likely code quality issues arise in these projects, and thus the less
clean the code will be. We argue that next to promoting creativity
in order to solve programming problems, the necessary attention
should also be given to the clean code principles.

CCS CONCEPTS

- Software and its engineering — Software development tech-
niques; » Social and professional topics — Software engineer-
ing education;

KEYWORDS

clean code, code quality, creativity, software engineering education

ACM Reference Format:

Wouter Groeneveld, Dries Martin, Tibo Poncelet, and Kris Aerts. 2018. Are
Undergraduate Creative Coders Clean Coders? A Correlation Study. In The
53rd ACM Technical Symposium on Computer Science Education (SIGCSE’22),
March 2-5, 2022, Providence, Rhode Island, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °22, March 2-5, 2022, Providence, Rhode Island, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Dries Martin
Hasselt University/KU Leuven
Hasselt, Belgium
dries.martin@student.uhasselt.be

Kris Aerts
KU Leuven
Leuven, Belgium
kris.aerts@kuleuven.be

1 INTRODUCTION

Programming is only a small part of the complete software develop-
ment life cycle, that also includes (re)design and maintenance [14].
In order for code to be easily maintained, and thus modified, code
should be clean. In other words: the code quality should be high,
which facilitates rapid feedback cycles in the development life cycle.

Furthermore, in order to succeed as a software developer in the
industry, it is no longer enough to excel at programming or writing
clean code. A recent Delphi study reveals that experts also rate
creativity as an important skill [17]. Developers must use their
creativity to solve a difficult programming problem - and perhaps
also to write certain legacy code as clean as possible.

Students who are learning to program in CS1 courses are typ-
ically taught about syntax, control structures, compiling, testing,
debugging, basic object-oriented design, and so forth. In a syllabi
analysis report, Becker and Fitzpatrick summarized what exactly
educators expect of introductory programming students, based on
the learning outcomes of the CS1 courses [10]. Neither clean code
nor creativity was explicitly mentioned, although “problem solving"
as part of introductory computational thinking appeared in the list
of most frequent syllabus concepts. The absence of teaching clean
code practices is further confirmed by Keuning et al. [22].

At our local faculty, we give the necessary attention to the clean
code principles in our CS1 course, such as stressing the importance
of the readability of code. However, we feel that the teaching of
these concepts can be further improved. Students are required to
finish a programming project, as elaborated in Section 3.1. This
project is an open assignment which facilitates the creativity of
students, as also advocated by Brookes [12]. We suspected that the
concepts of clean code and creativity could be linked. Specifically,
we wondered the following:

e RQ1: Is there a relationship between creativity and code qual-
ity in CS1 student projects?

o RQ2: Are certain code quality aspects more related to creativity
than others?

By answering our research questions, we can better direct our
CS1 teaching focus, thereby potentially increasing both students’
creativity and their awareness of clean code principles.

The remainder of this paper is structured as follows. Section
2 explores the concepts of clean code and creativity further, and
touches on related work. In Section 3, we explain our employed

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SIGCSE 22, March 2-5, 2022, Providence, Rhode Island, USA

methodology. Next, Section 4 describes and discusses the results.
The limitations of this study are described in Section 5. Finally, in
Section 6, we conclude this work, and forecast on possible future
work.

2 BACKGROUND

In a 2018 paper on the evaluation of computational creativity sys-
tems, Jordanous hints at a relation between quality and creativity:

These two concepts are highly interrelated, to the point that
it is difficult (and perhaps inappropriate) to define creativity
without incorporating quality judgements into that definition
[of creativity] [19].

The author further mentions that many creative projects aim to
produce high quality results, as can perhaps be expected. Bardzell
et al. related crafting quality in design to integrity, creativity, and
public sensibility by conducting interviews with elite craft prac-
titioners [7]. Unfortunately, none of the craftsmen were software
craftsmen, and creativity itself is only mentioned in passing. Within
the field of computing education, we have not found any published
work that investigates the potential correlation between the two
concepts in context of student projects. We did find reports on the
code quality of students [11, 22]. However, creativity was not men-
tioned. The same is true for reports on the creativity of computing
students that do not mention code quality [12, 28].

In order to get a better understanding of both concepts that might
be related, we first provide an overview of what exactly clean code
and creativity is, according to the current literature.

2.1 Whatis Clean Code?

Software, and therefore its source code, is in a constant state of
change. New requirements result in pieces of code that are changed,
refactored, and redesigned. Learning to program is one thing, but
learning how to write code that is easily maintainable is something
else. Robert C. Martin offers in the first chapter of his book ‘Clean
Code’ several definitions of clean code from different well-known
software experts [23]. Many definitions are overlapping, of which
the following concepts are the common divisor: (1) code that is easy
to understand, (2) code that is easy to modify, and (3) code that
is easy to test. Kent Beck proposed a fourth concept in The Agile
Manifesto [9]: Code that works correctly.

These concepts are even more important when working in teams
on a shared code base. Since the clean code principles are prevalent
in the software engineering industry, we argue that when intro-
ducing students to programming in CS1 courses, the necessary
attention should be given to these simple but important rules. This
can be done by gradually instructing students to write code in such
a way that it is easy to understand and modify, as Vihavainen et al.
did in an apprenticeship-based CS1 course [33].

Keuning et al. say that so far, little attention has been paid to
clean code issues in student programs. They found that novice
programmers develop programs with a substantial amount of code
quality issues, especially issues related to modularization. Keuning
et al. use the term “code quality" to indicate the degree of cleanliness
in students’ source code. They cite Fowler’s Refactoring book [15]
to provide an example of low quality in code, such as the code
duplication “code smell". In our view, clean code, code quality, and

Groeneveld, et al.

code smells are all closely related. In this paper, we consider a clean
coder to be someone who is able to keep the code quality high by
adhering to Martin’s clean code principles - and thus also implicitly
lowering the amount of Fowler’s code smells. After all, code with a
lot of duplication and other types of smell is not easy to understand,
modify, or test.

2.2 What is Creativity?

Even though cognitive creativity and creative behavior are well-
researched in the field of psychology [24, 30], it has proven difficult
to create a uniform definition of creativity that can be applied to the
field of computing education. Creativity is often defined as creating
something that is both novel (to the creator), of high quality, and
usable (appropriate to the task at hand) [21]. This definition already
hints at the quality of the creative output, even though it cannot
be simply ported to computing, since there is still an on-going
debate whether or not creativity is domain-general or domain-
specific [5]. Furthermore, in context of software development, does
“high quality" equal a high build quality? And if it does, is it the
same as code quality? The quality of software can be judged both
from the outside, by looking at the product as a whole, as well as
from the inside, by looking at the code.

Many published papers on measuring creativity in the SIGCSE
community are limited to the constructs of divergent thinking [16,
28]. To make matters worse, creativity seems to exist in differ-
ent contexts, where different kinds of creativity seem to manifest,
according to Veale et al. [32]: creativity from within yourself, cre-
ativity in teams, and creativity on socio-organizational levels. Piffer
argues that the notion of creativity can only be clarified after decid-
ing how to measure it [25]. Therefore, we consider a creative coder
to be someone who is able to program a creative piece of software,
judged by evaluating the end product, which in this research is the
finished CS1 student project. We elaborate on how the creativity of
a project was measured in Section 3.3.

3 METHODOLOGY

In this section, we elaborate our applied method used to assess
both the creativity and the code quality of student projects. First,
in order to help the reader interpret our results, we overview our
CS1 course where the study took place.

3.1 The CS1 Setting

The projects that were analyzed are part of a large-class CS1 course
offered at our university (about 200 students yearly). The course has
been designed for first-year engineering students. It is important
to note that this course is part of a general engineering curriculum.
Therefore, students who do not wish to specialize in computing,
but like to pursue a chemical engineering degree instead, still have
to pass the course. At our university, all courses of first-year engi-
neering students are shared. This has two big ramifications. First,
it implies that the course does not require prior knowledge of pro-
gramming. Second, it means that the student group is very diverse,
from students who would like to specialize in computing to students
who prefer other engineering fields, such as chemistry.

Are Undergraduate Creative Coders Clean Coders? A Correlation Study

The goal of the CS1 course is twofold. First, to introduce all
engineering students to the basic concepts of object-oriented pro-
gramming. Second, to lay the foundations for subsequent deeper
learning of software engineering related courses offered to second-
year students specializing in computing.

The course employs Java to explain the basics of program struc-
tures. During the first part of the course, Blue] is used to introduce
objects and relationships between them [8]. Typical topics of similar
CS1 courses are covered, such as loops, variables, functions, itera-
tion, but also classes and inheritance, as well as some less common
ones such as exception handling, the very basics of threading, and
the Model-View-Controller (MVC) pattern. During the second part,
the NetBeans IDE is introduced, together with basic GUI program-
ming using JavaFX and SceneBuilder. We find that by introducing
something tangible such as JavaFX, students who do not enjoy pro-
gramming or have no wish to further pursue computing still enjoy
creating visible components. This allows the students to create little
games as part of their project.

Four ECTS credits [13] of the course are granted if students pass
both their theoretical exam and their project. The project, which
is an open programming assignment, accommodates for 33% of
the total grade and thus is major part of the course. Students are
free to form groups of at most three people. We encourage them
to work together, but it is not mandatory to do so. The assignment
itself is completely open. Open assignments are known to spark
the creativity of students [3] and to increase their motivation [2].
Students propose a subject themselves, which is then accepted or
revised based on the complexity of their ideas.

This paper analyzes the projects of students from academic years
2019-2020 (217 students) and 2020-2021 (197 students). In both years,
the course was taught by the first and last author. In total, 134
projects were processed, of which 110 were included in the study.
The remaining 24 projects did not compile or bootstrap correctly,
which made it impossible to judge the creativity, and therefore
excluded from the study.

3.2 Evaluating Clean Code

To evaluate the code quality of the projects, we adapted the method-
ology from Keuning et al. [22], who used PMD [4], a well-known
static analysis tool that is able to detect a large set of bad coding
practices in Java programs. PMD allows you to define rules, which
are bad coding practices, that are detected and reported in a CSV
format. In this paper, we define an issue as a problem detected
by PMD in relation to a specific rule. Keuning and colleagues cat-
egorized their utilized PMD rules according to Stegeman et al’s
developed rubric for assessing code quality [31]. We used the same
five categories to subdivide our own rules:

(1) Flow; e.g. issues with nesting, paths and unreachable code.
(2) Idiom; e.g. unsuitable choice of control structures, no reuse.
(3) Expressions; e.g. overly complex expressions.

(4) Decomposition; e.g. too large methods, duplicate code.
(5) Modularization; e.g. too many methods, tight coupling.

PMD comes equipped with more than a hundred different rules.
Therefore, we needed to select rules that were deemed relevant to
both our study and our CS1 course. To aid with the decision, we
randomly ran all 110 anonymized projects against both Keuning’s

SIGCSE °22, March 2-5, 2022, Providence, Rhode Island, USA

PMD ruleset and the built-in ‘quickstart’ PMD ruleset, which con-

tains common best practice rules. First, all 58 rules were applied to

the projects. Next, for each rule, we calculated the percentage of

the total occurrence and the percentage of presence in the projects.
We discarded rules using the following criteria:

— A rule found in fewer than 5% of the projects (8).

— A rule found in fewer than 0.10% of the total errors (4).

— A rule related to documentation, presentation, imports or
name conventions (e.g. LocalVarNamingConventions) (12).

— A rule marked as deprecated or controversial in the PMD
documentation (e.g. UnnecessaryConstructor) (3).

— Arule deemed not relevant for our CS1 course (e.g. Unnecessary
Modifier or AvoidInstantiatingObjectsInLoops) (5).

The final ruleset, containing 26 rules, categorized according to
Stegeman’s rubric, is visible in Table 1. All other rule settings have
been left on their default settings, as per recommendation in [22].

Table 1: Selected PMD rules per category. Rules marked in
italics also occur in the top 10 list of most frequently found
issues, in Table 3.

Flow (6)
CyclomaticComplexity
NPathComplexity
PrematureDeclaration
EmptyIfStmt
EmptyCatchBlock
ForLoopCanBeForeach

Idiom (8)

UnusedPrivateField
SwitchStmtsShouldHaveDefault
UnusedLocalVariable
UselessParentheses
CloseResource
ControlStatementBraces
UnnecessaryLocalBeforeReturn
UnusedFormalParameter

Expressions (5)
SimplifyBooleanExpressions
CollapsiblelfStatements
SimplifyBooleanReturns
ConfusingTernary
AvoidReassigningParameters

Decomposition (3)

The number of decision points.
The number of acyclic exec paths.

Prefer Java’s foreach syntax.

Ensure closure of connections.
Enforce braces for control stmts.
Creation of unneeded variables.

Consolidate if statements.

Negation problems in if/else clauses.

SingularField Fields with limited scopes.

NcssCount (Lines of Code) Methods (60) and Classes (1500)

CPD-50 Copy-Paste Detector for 50 tokens
Modularization (4)

LawOfDemeter Low coupling: “Only talk to friends".

TooManyFields

TooManyMethods

GodClass A class that does too many things.

For each project, PMD collected all issues regarding our selected
26 rules. Then, also for each project, we calculated the total amount
of issues and the total amount of unique issues reported by PMD.
For instance, if a project contains three unused private fields and
two God classes, the total amount of issues is 5, while the amount of

SIGCSE 22, March 2-5, 2022, Providence, Rhode Island, USA

unique issues is 2 (UnusedPrivateField and GodClass). Irrelevant
information, such as the the specific location of each issue, was
discarded.

To cross-validate whether the selected PMD rules effectively
measure the code quality, half of the projects from academic year
2019-2020 were randomly assessed manually by inspecting the
anonymized source code. A score bewteen 1 and 10 was assigned
by the first author that indicates the code quality rate of these
projects. The first author has more than a decade of experience
in the software engineering industry and has guided many soft-
ware development teams on how to write clean code. We found a
strong negative correlation between the manual assessment and the
amount of total PMD issues for each project (r = —0.70, p = 0.00)
and a moderate negative correlation for the total number of unique
issues (r = —0.54, p = 0.00). This signifies that the 26 PMD metrics
reported in this paper are solid ways to evaluate the global code
quality of all student projects.

3.3 Evaluating creativity

As mentioned in Section 2.2, there is no uniform definition of cre-
ativity. Therefore, evaluating the creativity of student projects can
be problematic. Rhodes’ 4P Creativity Model [26] defines four dif-
ferent dimensions that influence creativity: Person, Press (or Place),
Product, and Process. Each dimension can be evaluated in its own
way. For instance, to assess the creativity of a person (the student),
one can rely on different personality tests. For this study, we are in-
terested in the assessment of students’ CS1 programming projects,
which are tangible outcomes of their creative process, and thus are
part of the Product dimension.

In the field of cognitive psychology, Amabile’s Consensual As-
sessment Technique [1] (CAT) is a common evaluation technique
to assess the creativity of a product [6]. This method relies on
the opinions of expert judges that give a score between 1 and
10 for each product in a pool. Unlike many other techniques for
creativity assessment, the CAT technique is not tied to any partic-
ular theory of creativity. Since the CAT scoring process is highly
subjective, to reconcile differences, it is recommended to form a
panel of expert judges, and to calculate the average of the given
scores [6]. Even though assembling a group of expert judges is very
resource-insensitive, replacing all experts with novice judges, such
as students, is generally not recommended [20].

For this study, we recruited both novice and expert judges. Two
members of the CS1 teaching staff acted as expert judges, while
five second-year students acted as junior judges. After explaining
the design of this research and the CAT concept, each judge blindly
evaluated the creativity of every anonymized project. After spend-
ing exactly one minute for each project, a score was administered
individually, without looking at the source code. We refrained from
providing a definition of creativity, as per recommendation in [6].
The novice judges highly enjoyed evaluating projects of their fellow
students. More than a few times, they made the remark T wish I
spent more time working on my own project, now that I see all the
others". Engaging students in grading is known to increase their
motivation [18].

The standard deviation (SD) of the scores between the judges, av-
eraging on 1.06, was low enough for us to conclude the same as Baer

Groeneveld, et al.

and McKool: judges score surprisingly similar [6]. Therefore, an
inter-rater reliability is not relevant when using the CAT technique.
However, as an extra verification step, when the judges reached a
significant disagreement (SD > 1.50, 10 out of 110 projects), the
project concerned was discussed in group, after which a new global
score was assigned. The projects with the largest SD were suspected
of plagiarism by a few judges, which resulted in a low score.

3.4 Finding relationships

According to a very recent systematic literature review on infer-
ential statistics in computing education research, one of the most
frequently used tests for inferring a relationship between ordinal
and interval level data is the Pearson product-moment correla-
tion [29]. Since the creativity scores are ordinal (arranged on a
scale form 1 to 10) and the PMD metrics can be considered as inter-
val level data (a continuous scale), we chose to answer our research
questions by using this recommended correlation technique.

4 RESULTS AND DISCUSSION

We will first discuss creativity and code quality separately, before
investigating potential relationships. The full data set of the 110
processed projects in both academic years can be consulted at
https://people.cs.kuleuven.be/~wouter.groeneveld/correl/.

4.1 Projects and creativity

On average, the judges rated the creativity of the projects at 5.92 out
of 10, with a global SD of 1.46. The normal distribution of the CAT
scores is visible in Figure 1. The average is 13 out of 20, with a global
SD of 3.37. There is a moderate correlation between the creativity
score and the total grade of the project (r = 0.46, p = 0.00). This is
to be expected, as creativity is one of the criteria in the evaluation
rubric of the CS1 projects, next to others such as complexity and
JavaFX UI design.

40

30

20

Figure 1: The normal distribution of the creativity CAT
scores (x-axis) for all projects (y-axis).

We categorized each submitted project by topic. Since the assign-
ment itself was open, it is interesting to see that many, but not all,
students resorted to implementing popular small games. The topics,
along their respective average scores, are visible in Table 2. Projects

https://people.cs.kuleuven.be/~wouter.groeneveld/correl/

Are Undergraduate Creative Coders Clean Coders? A Correlation Study

that did not fit in any other category were placed in the “original”
category, which has the second highest average CAT rating. Exam-
ples of simple boardgames we found were the Game of the Goose
and Monopoly. Examples of simple dicegames we encountered were
Yahtzee and higher/lower. We considered some projects to be more
original than others, such as the Pokémon-inspired random battle
games. However, since they were based on an existing game, and
occurred more than once, we decided against categorizing them as
“original". Furthermore, it is also interesting to note that original
ideas do not necessarily mean high grades. For instance, students
who played it safe and implemented a solid version of chess or
checkers scored in total on average 15 out of 20, while completely
original projects scored on average 12.18. This is because next to
creativity, complexity is also a component of the project grade.

Table 2: Identified project topics and their average CAT
scores and total grades.

Topic ‘ # ‘ % | CAT ‘ Grade
original 20 | 18.18% | 7.09 12.18
doodle jump 16 | 14.55% | 4.79 | 11.75
space shooter 15 | 13.64% | 5.40 11.87
race/frogger 8 727% | 6.51 | 13.94
arkanoid 7 6.36% | 5.87 | 14.93
tic-tac-toe/4-in-a-row 7 6.36% | 4.58 | 10.00
chess/checkers 6 5.45% | 5.70 | 15.00
snake 6 5.45% | 4.96 | 12.67
simple boardgame 6 5.45% | 5.61 | 12.25
pacman 3 2.73% | 5.46 13.67
bubble shooter 3 2.73% | 6.57 | 16.67
simple dicegame 3 2.73% | 436 9.67
poké-battle 2 1.82% | 6.95 | 10.00
2048 game 2 1.82% 7.65 15.00
mastermind 2 1.82% | 6.47 12.00
hang man 2 1.82% | 6.14 9.50
tetris 2 1.82% 6.35 13.50
minesweeper 1 091% | 4.67 | 14.00
Total | 110 |

4.2 Projects and their code quality issues

Table 3 contains a list of the top 10 most frequently found code
quality issues by PMD. These issues are marked in italics in Table 1.
We also counted the number of issues that frequently occurred
in the same projects. First, the quotient of total issues in relation
to unique issues found in each project was calculated. Next, for
each project with a quotient higher than 10, issues that occur 15
times or more are counted. We found 11 projects with such a high
quotient. In total, 7363 issues have been found in 104,456 lines
of code. The average amount of issues per project is 64, and each
project contains on average 836 lines of code. We counted 10 unique
issues on average per project.

When inspecting the top 10 PMD issues of the millions of student
projects analyzed by Keuning et al., we see that LawOfDemeter also
occurs often: it is the third most common issue [22]. It is interesting
to note that coupling-related issues are commonplace. In addition,
LawOfDemeter is also the issue that is the most recurring within a
single project.

SIGCSE °22, March 2-5, 2022, Providence, Rhode Island, USA

Table 3: The most frequently found code quality issues, in-
cluding project counts with a high number of recurring is-
sues, and respective correlations with the average CAT cre-
ativity score.

Issue ‘ Category ‘ # ‘ Recur? ‘ Corr.
LawOfDemeter Modularization | 4113 11 0.19
SimplifyBooleanExpressions| Expressions 646 4 0.26
UnusedPrivateField Idiom 491 0| 012
CPD-50 Decomposition 448 2 0.27
UselessParentheses Idiom 411 0| 0.09
SingularField Decomposition | 359 0| 013
ControlStatementBraces Idiom 327 2| -0.11
CyclomaticComplexity Flow 242 1 0.36
SwitchStmtsShldHvDefault | Idiom 170 0 0.28
CollapsiblelfStatements Expressions 156 2| 0.02
Total | 7363 |

4.3 ROQ1: Relating creativity to code quality

We found almost moderate positive correlations between lines of
code and evaluated creativity (r = 0.38, p = 0.00), between unique
code quality issues and evaluated creativity (r = 0.33, p = 0.00), and
between total code quality issues and evaluated creativity (r = 0.27,
p = 0.00). Although the correlations are not strong, they do seem
to suggest that more creative projects contain more code quality
issues. Figure 2 displays scatter plots of the CAT scores projected on
the unique issues and total issues, including a linear trend line. If we
remove the edge cases with high error bars from Figure 2a, where
the total issues of the projects exceeds 200, the correlation between
the total code quality issues and evaluated creativity increases
further from 0.27 to 0.34. The results of this paper were informally
shared among second-year students (who completed the CS1 project
in 2019-2020) as part of an introduction into academic research.
When asked for a possible explanation for the correlations, the
students suggested two distinct possibilities.

First, it could be that students who decide to take on more origi-
nal projects also experiment more. A consequence of experimen-
tation during the development is encountering unforeseen bugs
which students were not able to quickly resolve due to lack of ex-
perience. As a result, several code quality issues may have been
overlooked while working as fast as possible to make up for the
time lost looking for the bugs. This is in line with existing research
that shows that first-year students are not yet competent enough
to accurately plan and estimate software projects [34]. A lack of
decent planning could be more damaging for creative projects, as
our results indicate that the higher the creativity, the higher the
complexity. This is further elaborated in Section 4.4.

Second, during the academic year, students have to complete
multiple projects of multiple courses, not limited to computing. This
rapid context switching potentially causes a heavy fragmentation of
the students’ time. Spending little fragments of time on a software
project could be harmful to the code quality, compared to working
on a piece of software without interruptions or distractions [27].

The above reasons have merit but are only informal remarks of
the students themselves, although supported by literature. We plan
to continue the investigations of the rationale in future work.

SIGCSE 22, March 2-5, 2022, Providence, Rhode Island, USA

500

400

300

g
3 [2 4
& °
K] ® L4
g 200 3
°
100 0 $ 3 < (X% 2 >
= PO oo’
o 3e= 23] 37 1%
8o » S 6 o3 §s . %
2,00 4.00 6.00 8.00

(a) Compared to total issues found

Groeneveld, et al.

25

20 .
° °
. °
DK) ° .
o 15 o o
4 [d ° ®
2 ® o |o [)
° ° oee O o]
ES o0 o ° "™
g 10 1) CRITY) o ')
B ° 0 . 0-0-"00000 & 006 &
e o o ¢ o0’ 0
0§ * o [X)
) ® ® ® o
5 @) e o
(] [
(] (]
0
2.00 4.00 6.00 8.00

(b) Compared to unique issues found

Figure 2: Scatter plots of evaluated creativity CAT scores compared to code quality issues.

4.4 RQ2: Are certain issues more relevant?

The top 10 found PMD issues listed in Table 3 reveals that some
issues are more correlated to the CAT scores than others. Yet the
possible interpretations of these numbers are dubious. For instance,
why would SwitchStmtsShouldHaveDefault be more related to
creativity than LawOfDemeter? Not every issue appears as often as
others: students seem to make more mistakes against good coupling
practices than to forget the default statement in a switch block,
although we did not count the total amount of switch blocks in a
project. We argue that some of the categorizes defined by Stegeman
et al, as explained in Section 3.2, can have more severe conse-
quences for Robert C. Martin’s clean code concepts than others.
Missing a default case would be less devastating for long-term
code maintainability than violating the Law of Demeter.

Most issues show no moderate correlation with creativity, al-
though CyclomaticComplexity (r = 0.36) nears 0.40. A cyclomatic
complex project is a project where the code contains too many
decision points in certain methods to be easily readable. In prac-
tice, this is usually visible by nesting multiple if, for, while, and
case statements. There is an internal strong positive correlation
between cyclomatic complexity and the issues CPD-50 (Decompo-
sition, r = 0.67), LawOfDemeter (Modularization, r = 0.57), and
NPathComplexity (Flow, r = 0.51). Since the CS1 project assign-
ments were open, we argue that some students challenged them-
selves by picking a complex problem (e.g. a 2D platformer with
gravity and enemies) instead of a simple one (e.g. a tic-tac-toe game).
Their risk got rewarded by receiving higher creative scores from
the judges. However, since these first-year students are still novice
coders, a complex problem introduces many messy complexities
in their code, hence the higher amount of aforementioned PMD
issues, more duplication, and thus generally more lines of code.

5 LIMITATIONS

This study analyzes CS1 projects of two academic years. Having
access to more data would potentially alter the normal distribution
of Figure 1 or the correlations of Figure 2. Nonetheless, we think
that the results of the 110 projects are significant enough to warrant
the results described in Section 4. Another possible threat to validity
could be the interpretation of the judges during the CAT phase.

Our aim was to employ CAT to evaluate creativity and to employ
PMD to evaluate quality. Jordanous warned about the potential
confusion between creativity evaluation and quality judgments,
leading to less grounded evaluative results [19]. We believe that
by cross-validating and by using multiple judges, as explained in
Section 3.3, the effects of potential confusions have been mitigated.
An additional shortcoming could be focusing on the wrong PMD
issues, thereby correlating creativity with irrelevant code quality
issues. However, as we based our method on Keuning’s work, and
took great care in selecting the relevant PMD issues for our CS1
setting and based on the cross-validation, as explained in Section 3.2,
we are fairly certain that this eliminated the possible inclusion of
irrelevant PMD issues. Another risk could be that certain excluded
rules might be more related to creativity. Rejected rules, according
to the criteria from Section 3.2, do not accurately represent the
students’ code quality, and therefore, are not deemed relevant.

6 CONCLUSION AND FUTURE WORK

We have analyzed 110 projects from two academic years to investi-
gate whether there is a relation between creativity and clean code
in CS1 student projects. Our results show preliminary evidence
that the more creative projects are, the more code quality issues
arise in these projects and the less clean the submitted code turns
out to be. This potentially creates a new problem: the more we as
educators encourage creativity, the more messy the produced code
can be. Thus, it is vital that the necessary attention to the clean
code principles is given. We argue that this should become more
important as we let students experiment and be creative. This is in
line with Keuning et al’s conclusion [22].

If we want to increase the creativity of students’ work, we need
to pay attention to the quality as well. Future work might shed
more light on the teaching of clean code in relation to creativity.
For example, we do not yet know what the effects of explicitly
teaching creativity are on the code quality. Most studies, like this
paper, limit the implementation of creativity in a CS1 course to the
use of open assignments. Also, we wonder whether the observed
effect would be reversed for last-year computing students, as they
should be more disciplined in keeping their code quality high.

Are Undergraduate Creative Coders Clean Coders? A Correlation Study

ACKNOWLEDGMENTS

We would like to thank both junior and senior creativity judges
for their participation and interest in our mini research lab that
evolved into this paper.

REFERENCES

(1]

[2

=

(11

[12]
[13]

[14

[15]

[16]

Teresa M Amabile. 1982. Social psychology of creativity: A consensual assessment
technique. Journal of personality and social psychology 43, 5 (1982), 997.

Mikko Apiola, Matti Lattu, and Tomi A. Pasanen. 2010. Creativity and Intrin-
sic Motivation in Computer Science Education: Experimenting with Robots.
In Proceedings of the Fifteenth Annual Conference on Innovation and Technol-
ogy in Computer Science Education (Bilkent, Ankara, Turkey) (ITiCSE ’10). As-
sociation for Computing Machinery, New York, NY, USA, 199-203. https:
//doi.org/10.1145/1822090.1822147

Mikko Apiola, Matti Lattu, and Tomi A Pasanen. 2012. Creativity-Supporting
Learning Environment—CSLE. ACM Transactions on Computing Education (TOCE)
12, 3 (2012), 1-25.

PMD Authors. 2021. PMD. https://pmd.github.io/.

John Baer. 2010. Is creativity domain specific. The Cambridge handbook of
creativity 321 (2010).

John Baer and Sharon S McKool. 2009. Assessing creativity using the consen-
sual assessment technique. In Handbook of research on assessment technologies,
methods, and applications in higher education. IGI Global, 65-77.

Shaowen Bardzell, Daniela K Rosner, and Jeffrey Bardzell. 2012. Crafting quality in
design: integrity, creativity, and public sensibility. In Proceedings of the designing
interactive systems conference. 11-20.

David John Barnes, Michael Kolling, and James Gosling. 2006. Objects First with
Java: A practical introduction using BlueJ. Pearson Prentice Hall London.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. Manifesto for agile software development. (2001).

Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal About
Our Expectations of Introductory Programming Students?. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 1011-1017. https://doi.org/10.1145/3287324.3287485

Jurgen Borstler, Harald Storrle, Daniel Toll, Jelle van Assema, Rodrigo Duran,
Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie
MacKellar. 2018. " I know it when I see it" Perceptions of Code Quality: ITiCSE’'17
Working Group Report. In Proceedings of the 2017 ITiCSE Conference on Working
Group Reports. 70-85.

Wayne Brookes. 2018. On creativity and innovation in the computing curriculum.
In Proceedings of the 20th Australasian Computing Education Conference. 17-24.
European Commission. 2015. European Credit Transfer andAccumulation System
(ECTS). http://ec.europa.eu/education/ects/ectsen.htm.

Kagan Erdil, Emily Finn, Kevin Keating, Jay Meattle, Sunyoung Park, and Deborah
Yoon. 2003. Software maintenance as part of the software life cycle. Comp180:
Software Engineering Project (2003), 1-49.

Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

David Ginat. 2008. Learning from Wrong and Creative Algorithm Design. In Pro-
ceedings of the 39th SIGCSE Technical Symposium on Computer Science Education

[17

[18

[19

[21

[22]

[23

[24

[25

[27

[28

[29

'S
=

[31

[32

[33

[34

SIGCSE °22, March 2-5, 2022, Providence, Rhode Island, USA

(Portland, OR, USA) (SIGCSE ’08). Association for Computing Machinery, New
York, NY, USA, 26-30. https://doi.org/10.1145/1352135.1352148

Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. 2020. Non-
cognitive abilities of exceptional software engineers: a Delphi study. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education.
1096-1102.

Wouter Groeneveld, Joost Vennekens, and Kris Aerts. 2020. Engaging Software En-
gineering Students in Grading: The effects of peer assessment on self-evaluation,
motivation, and study time. arXiv preprint arXiv:2012.03521 (2020).

Anna Jordanous. 2018. Creativity vs quality: why the distinction matters when
evaluating computational creativity systems. In Proceedings of The 5th Computa-
tional Creativity Symposium at the AISB Convention. AISB.

James C Kaufman, Claudia A Gentile, and John Baer. 2005. Do gifted student
writers and creative writing experts rate creativity the same way? Gifted Child
Quarterly 49, 3 (2005), 260-265.

James C Kaufman and Robert J Sternberg. 2007. Creativity. Change: The Magazine
of Higher Learning 39, 4 (2007), 55-60.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110-115.

Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

ED Petkus Jr. 1996. The creative identity: Creative behavior from the symbolic
interactionist perspective. The Journal of Creative Behavior 30, 3 (1996), 188-196.
Davide Piffer. 2012. Can creativity be measured? An attempt to clarify the notion
of creativity and general directions for future research. Thinking Skills and
Creativity 7, 3 (2012), 258-264.

Mel Rhodes. 1961. An analysis of creativity. The Phi Delta Kappan 42, 7 (1961),
305-310.

Pilar Rodriguez, Jari Partanen, Pasi Kuvaja, and Markku Oivo. 2014. Combining
lean thinking and agile methods for software development: A case study of a
finnish provider of wireless embedded systems detailed. In 2014 47th Hawaii
International Conference on System Sciences. IEEE, 4770-4779.

Andrea Salgian, Teresa M Nakra, Christopher Ault, and Yunfeng Wang. 2013.
Teaching creativity in computer science. In Proceeding of the 44th ACM technical
symposium on Computer science education. 123-128.

Kate Sanders, Judy Sheard, Brett A Becker, Anna Eckerdal, and Sally Hamouda.
2019. Inferential Statistics in Computing Education Research: A Methodological
Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research. 177-185.

Dean Keith Simonton. 2000. Creativity: Cognitive, personal, developmental, and
social aspects. American psychologist 55, 1 (2000), 151.

Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric
for feedback on code quality in programming courses. In Proceedings of the 16th
Koli Calling International Conference on Computing Education Research. 160-164.
Tony Veale, Pablo Gervas, and Alison Pease. 2006. Understanding creativity: A
computational perspective. New Generation Computing 24, 3 (2006), 203-207.
Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko Kurhila. 2013.
Massive increase in eager TAs: Experiences from extreme apprenticeship-based
CS1. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. 123-128.

Timothy T Yuen. 2007. Novices’ knowledge construction of difficult concepts in
CS1. ACM SIGCSE Bulletin 39, 4 (2007), 49-53.

https://doi.org/10.1145/1822090.1822147
https://doi.org/10.1145/1822090.1822147
https://pmd.github.io/
https://doi.org/10.1145/3287324.3287485
http://ec.europa.eu/education/ects/ectsen.htm
https://doi.org/10.1145/1352135.1352148

	Abstract
	1 Introduction
	2 Background
	2.1 What is Clean Code?
	2.2 What is Creativity?

	3 Methodology
	3.1 The CS1 Setting
	3.2 Evaluating Clean Code
	3.3 Evaluating creativity
	3.4 Finding relationships

	4 Results and discussion
	4.1 Projects and creativity
	4.2 Projects and their code quality issues
	4.3 RQ1: Relating creativity to code quality
	4.4 RQ2: Are certain issues more relevant?

	5 Limitations
	6 Conclusion and Future Work
	References

