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Abstract

This paper describes research conducted during a project with a multinational company
that focuses on product design. The project tackles two different goals: providing
sales staff with a tool that allows them to autonomously handle routine requests, and
providing the company’s engineers with a decision support system to help them design
products for more challenging application areas. For the first goal, we make use of a
deterministic decision process, represented in the recent Decision Model and Notation
(DMN) standard. For the second goal, we propose a constraint-based method. There, we
use the IDP system to provide a number of interactive functionalities based on a logical
representation of the relevant constraints. To ensure that the system is maintainable, we
want the constraints to be updated by the engineers themselves. The IDP language is not
ideal for this. Instead, we propose the cDMN notation, which extends the user-friendly
DMN to constraints.

Keywords: Deterministic modelling, DMN, Constraint-based reasoning, Interactive
configuration

1. Introduction

This paper describes the design, implementation and evaluation of a knowledge
base system for the configuration of highly specialized products. The products consist
of a number of different components, that come in various variants and sizes, and can
be produced with different materials. Customers order a product for a specific set of
requirements, such as operating temperature range and pressure, size, etc. Typically,
the customer is an engineer from another production company. Understanding and
explicating the customers’ needs is therefore not an issue in this application, in contrast
to typical configuration problems (Wang et al., 2019). The focus of the application is
the core design process that the company’s product engineers follow to decide on the
general design of the product, its specific components and their materials. At the start
of our collaboration with the company, the situation was as follows.

Standard Designs. Incoming requests were initially received by the sales staff. If the
customer’s requirements could be fulfilled by one of the company’s standard solutions,
the sales staff autonomously handled the request. They used a Visual Basic tool with a
Microsoft Access database to choose the appropriate standard design. Because of the
unstructured way in which the knowledge in this tool was represented, it was difficult to
maintain. Moreover, this tool only covered a small subset of the standard designs, and
extending it was a difficult and resource demanding task. The company wanted to move
to a more maintainable and easily expandable solution.

Non-standard Designs. Requests that fell outside the scope of standard designs were
forwarded to the engineering department. Here, one of the engineers analysed the
requirements and proposed a suitable product design. If the product was to be used in
well-known circumstances, characterized by a standard temperature range, standard size
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range, standard pressure range etc, this was a routine job for the engineer. For this kind
of demands, the company wanted to standardize the design, and automate the process.

If the product fell outside these well-known areas, the design was more challenging
and required a significant amount of creativity. Although the engineers used computers
to perform calculations or create 3D models of the products, there was no software
support for the crux of their activity, i.e., the actual design process. The company wanted
to start providing such support.

Design Procedure. Previously, to design non-standard products, the engineers followed
an ad hoc process. This process is highly individual, and is the result of the engineer’s
past experience, preferences, discussion with colleagues, etc. Although this way of
working is still common in industry, it has several downsides. First, there is a lack of
standardisation. This meant that different engineers may come up with different designs
for the same set of requirements. It implies higher production costs and complexity
in terms of product variants. Second, because of the lack of standardisation and docu-
mentation, the company depended heavily on key senior engineers. If they leave the
company, a great deal of the knowledge leaves with them. Finally, the lack of software
support also meant that the engineers spent a substantial amount of time on routine
tasks, which reduces their efficiency.

Support Tool. Because of these problems with their way of working, the company
wanted to develop a tool to support the design process. To promote user acceptance
and ensure maintainability, the tool has to be well understood by the engineers. Over
the course of the collaboration with the company, we designed and implemented a
knowledge base system that provides a solution for the aforementioned challenges.

A first crucial step was to extract the engineers’ domain knowledge. In this knowl-
edge elicitation process, two parties were involved: domain experts (i.e., the company’s
engineers) and knowledge engineers. Both have their own area of expertise: typically
knowledge engineers are not familiar with the problem domain, while domain experts
are not familiar with formal knowledge representation. The proper communication
between both parties is very important. We used the Decision Model and Notation
(DMN) (OMG, 2019) to structure and guide the process of capturing and aligning the
domain knowledge.

A second step was to use the extracted knowledge to build a system to assist both
sales and engineering. However, these two departments have contradictory needs. The
sales staff has limited knowledge of product design and expect the tool to propose a
single complete configuration for each set of input parameters. The engineering team,
on the other hand, want the system to assist them in interactively exploring the large and
partially unknown design space for non-standard applications. We therefore proposed
to create two independent KBs with different concerns, as can be seen in Figure 1.
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Figure 1: Two different approaches for standard and non-standard designs.

First, we made use of the DMN notation and the OpenRules1 inference system
for DMN to develop a tool for the sales staff. Second, to support the engineering
staff, we developed an interactive interface to consult the constraint-based KB by
means of multiple inferences like propagation, model expansion, relevance checking
and explanation. This interface was implemented on top of the IDP Knowledge Base
System (Bruynooghe et al., 2015). In addition to these knowledge-based functionalities,
we made use of a number of machine learning techniques to allow the user to explore
historically gathered data.

Knowledge in the IDP system is expressed in FO(·), an extension of First Order
Logic, which is difficult to understand for domain experts that have no background in
logic. To allow the engineers to understand the knowledge in the model, we developed
the cDMN notation. As we will demonstrate in this paper, this notation combines the
readability of the DMN standard with the expressiveness and flexibility of FO(.).

The focus of this paper is on demonstrating how the knowledge on product design
and configuration can be modelled in different formal representations (DMN and FO(·)),
and how this knowledge can be used to support the design process. cDMN is proposed
as an extension to DMN that allows the engineers to inspect and understand the content
of the knowledge base, which is crucial for the acceptance and maintainability of the
tool.

This paper consolidates and expands results that have been presented at various
conferences (Aerts & Vennekens, 2018, Deryck et al., 2019a). We conducted this
research in collaboration with an international engineering and manufacturing company.
The company wishes to stay anonymous to protect its trade secrets. It also requested
that we avoid providing too much information about its products.

In the remainder of this paper, we start by discussing the technologies which we
will use (Section 2), after which a running example will be introduced (Section 3).
In Sections 4 and 5, we explore a decision procedure and constraint programming
approach respectively. Section 6 discusses an interactive user interface to support

1www.openrules.com
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the design process in Section 5. Then we introduce our new cDMN formalism and
investigate how well this formalism is able to handle constraint knowledge in this
use case in Section 7. We compare our approach to the literature and conclude in
Sections 8 and 9.

2. Preliminaries

We will use two different knowledge representation frameworks: the DMN standard
with its OpenRules implementation, and the IDP system with its input language FO(.).
This section briefly describes both.

2.1. Decision Model and Notation

(Zhang, 2014) identified the inability to extract knowledge in a domain expert
readable format as a weakness of current product configuration methods. In our project
we use DMN to address this concern. This relatively new standard aims to increase
the efficiency of decision-making by offering a standard notation for decision logic
and “[providing] a common notation that is readily understandable by all business
users[. . . ]” (OMG, 2019, p.13). This means that the DMN notation is ideal to discuss
and co-create decision logic together with domain experts.

DMN provides two interconnected viewpoints to model decisions. The Decision
Requirements Diagram (DRD) is a high level model that shows an end-to-end view of a
decision, from its inputs over intermediate sub-decisions to the final decision. It shows
which inputs, knowledge sources and intermediate decisions are required to take the
top decision. The DRD allows users to get a general overview of the domain. It can be
used to delineate the borders of an automation project, and to make sure that IT and
business owners are on the same page. The second viewpoint shows the underlying
decision logic of each individual (sub-)decision. Although this decision logic can be
modeled in multiple ways, it is typically represented in a decision table, which maps
each set of inputs to the appropriate output. The individual decision tables are easily
understandable with little or no prior training, which makes them suitable to discuss the
decision logic between employees from different services. In fact, one of the goals of
the standard is that business users should be able to maintain the decision logic without
intervention of IT. As a result, business ownership of decisions increases, as well as
maintainability of the application.

Figure 2 shows a typical decision table in the rows-as-rules format. The input
columns have dark green headers, while the output columns at the right side of the
double separation line have light blue headers.

The syntax used in the tables is called the (Simple) Friendly Enough Expression
Language ((S-)FEEL), which is also part of the DMN-standard. Besides simple values,
FEEL also allows numerical comparisons, ranges of values and calculations.

A decision table’s hit policy determines how the table should be interpreted. The
table in Figure 2 has the Unique hit policy (U), as indicated in its upper left cell. This
means that each combination of input values may match at most one row. Other hit
policies are Any (multiple rows may be applicable, but they should have the same
output) and First (if multiple rows are applicable, only the output from the first hit is
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Figure 2: Components of a decision table

considered). Next to these single hit policies, there also exist multiple hit policies. In
this case multiple rows can apply, and the different output values are used, e.g., to create
a list.

2.2. IDP and FO(·)
IDP stands for imperative declarative programming, which refers to the declarative

KBs on the one hand, and the ability to apply different inference algorithms to these
KBs through an imperative shell on the other hand. As such, it is an implementation of
the Knowledge Base Paradigm, which advocates a strict separation between declarative
domain knowledge and the use of this knowledge to solve different problems in this
domain. The declarative KBs are written in FO(.), a language that extends classical First
Order Logic language with aggregates, types and inductive definitions (Bogaerts et al.,
2018, Wittocx et al., 2008). The extensions allow to express complex knowledge, such
as the fact that the size of a product equals the sum of the sizes of all components used
in the product:

∀p[Product] : Size(p) = sum{c[Component] : Used(c) ∧ Size(c) = s : s}. (1)

The knowledge in an IDP specification is structured in three blocks, the vocabulary,
the structure and the theory. A vocabulary is a set of types, functions and predicates.
As usual, each type is interpreted by a set of domain elements, each n-ary predicate by a
set of n-tuples of domain elements, and each n-ary function by a mapping of n-tuples
to elements. In addition, FO(·) also allows three-valued interpretations of relations, in
which it may be unknown whether a tuple belongs to the relation or not. A theory is a
set of logical formulas. When all formulas in the theory T hold in a structure S, that
structure is a model of the theory (S |= T ).

With an efficient solver, a number of inference tasks can be applied to this knowledge,
such as model expansion, optimization, propagation and so on. These inference tasks
are discussed later in Section 5.5.

3. Running Example

In this section we introduce the running example, which we will use throughout this
paper to demonstrate the key differences between the approaches that are presented. This
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example is an extract of the complete product design case. Although it is a simplification
of the real-world case, it nevertheless retains most of its essential features.

The task is to design a product that may consist of three components: a body, a
spring and a spacer. The use of the spacer is optional. The engineers are given a number
of specifications:

• The requested dimension of the product.

• The temperature range and pressure it should be able to handle.

• Whether there is a risk of pressure from the back side of the product (back
pressure).

• The position in which the product will be installed.

They need to determine:

• Which type of design (closed or open) to use.

• Whether to use a standard or thicker spring and which material to use for it.

• Which material to use for the body.

• Whether to use a spacer and, if so, which material to use for it.

They have to make these choices in such a way that:

• The design can release built up pressure if necessary.

• The materials can cope with the given temperature range.

• When the materials shrink due to cold, the spring should prevent the component
from falling out of the cavity in which it is placed.

Typically, cheaper materials are weaker than more expensive ones. In general, the
engineers look for the cheapest design that meets the criteria.

4. Modelling the Design Process

Each engineer has their own “standard” decision process that they follow to handle
routine requests. However, this process is not standardised in the company, and engineers
at different locations may do things somewhat differently. To standardize this process
and to be able to automate it, the engineers’ detailed technical knowledge needs to be
represented in a formal and structured manner. In this section we describe the substantial
knowledge elicitation effort needed to gain insight in the tacit design processes of
different engineers, and to unify and formalise them in decision models.
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4.1. Knowledge Extraction of the Design Process
As we described in Section 2.1, the ability of DMN to be understood by business

users (in this case, the product engineers) is a key advantage. It provides a common
language that is readable for both our knowledge engineers and the company’s domain
experts. This helps to avoid misunderstanding, ensures smooth communication, and
allows certain well-delineated parts of the decision model to be assigned as “homework”
to specific experts. Moreover, the product engineers’ ability to not only read but also co-
create a formal model, is of significant importance for the maintenance of the decision
model. The engineers themselves will be responsible for this.

To create a DMN model, we organised multiple brainstorming workshops with
the involved parties. Each workshop spans a couple of days and results in an initial
representation of the design process for a clearly delineated application area. Participants
include a number of design engineers from different locations worldwide, a manager
and one external knowledge engineer to guide the workshop. This approach offers a
number of advantages.

• The involvement of multiple participants stimulates the exploration of different
approaches instead of blindly adopting the approach of one engineer or location.

• The face-to-face time allows intensive discussion necessary to agree on an aligned
approach.

• Each workshop focuses solely on one specific application area, which helps to
keep the discussion focused.

• From a change management perspective, the involvement of participants reduces
their resistance to the new application and increases visibility of the project.

• As layman in product design, the knowledge engineer asks “trivial” questions that
help to clarify the engineers’ design processes and to ensure that they are all on
the same page.

Each workshop starts with a brief introduction to DMN, after which the knowledge
engineer guides the domain experts through the modelling process. First, the standard
operating conditions are identified to delineate the scope of the application. After this,
we typically start by constructing a DRD to get a general overview of the structure of
the design process, and then proceed to construct detailed decision tables for each of the
decisions in the DRD A workshop results in a formal representation of the engineers’
knowledge. As the DMN model is executable, this provides us with an initial prototype
of a decision support system for that particular application area. This prototype is then
presented to the design engineers for evaluation. Depending on how close to reality the
preliminary model is, this evaluation can be done by e-mail or in another workshop.
Based on the feedback, the model is refined. This process is repeated until all parties
agree that the model is correct.

For the applications that fall within the existing Visual Basic tool of the sales staff,
we used a different method. In this case, we started from the existing Visual Basic code
and transformed this into a DMN model. The DMN model proved to be significantly
shorter (360 lines of VB code were reduced to 80 table rows spread across 20 tables),
more structured, and therefore easier to maintain.
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4.1.1. Results
Following the methodology outlined in Section 4.1, we have completed the knowl-

edge extraction process for six different application areas, producing a total of approx-
imately 190 decision tables. In each of the application areas, one or two tables were
pure data tables, consisting of numerical data for dimensioning the components. Due to
similarities between the different application areas, limited reuse of decision tables was
possible. The size of the extracted tables ranges from 1 to 38 rows, with an average size
of 5 rows and 3 input conditions.

Overall, the DMN representation seemed to fit well with the engineers’ way of
thinking about their design process. They found the DMN format quite intuitive and
after some initial questions, they were typically able to easily interpret and reason with
the knowledge in the tables. Our experiences therefore confirm that DMN’s readability
for domain experts is a big advantage of this standard. However, there were some
exceptions. Occasionally, the engineers do not follow a strict bottom-up decision
procedure when making their design. For instance, to ensure that the component stays
in place, either a thicker spring or a closed design type can be used. A thicker spring
with an open design type is preferred, but this is not always feasible. In particular, in
cold circumstances, the product may shrink to such an extent that the open design fails,
even with a thicker spring. However, to know whether this is the case, the shrinkage of
the product has to be computed. Because this depends on the used materials and the
precise layout of the components, this computation can only be done at the very end of
the design process. Therefore, the engineers first assume that the open design type will
suffice. They completely design the product based on this assumption and then compute
the shrinkage. If it turns out that the shrinkage is too big, they backtrack and restart the
design process with a closed design. Such a “guess and check” procedure cannot be
elegantly represented in DMN. In Section 4.2 we discuss the work-around that we have
used for this.

In general, we found the use of the formal DMN representation in the workshop to
provide a significant added value. The precision of the notation allowed us to quickly
detect inconsistencies and missing values in the information that the domain experts
were providing. Moreover, the design engineers themselves also started to notice flaws
in the decision tables once they had gotten used to the notation. For example, they
noticed implementation mistakes made by the knowledge engineer, and thought of
previously unnoticed exceptions to their own design process. Eventually, the design
engineers were comfortable enough with the notation to leave certain decision tables as
“homework” for after the workshop.

Based on these experiences, we are confident the design engineers will be able to
maintain the existing decision tables and will be able to construct additional DMN
models for new application areas.

4.2. Running Example

In this section, we present a DMN model that is representative for the results of the
workshops. As we will show, some parts of the design procedure fit quite naturally into
the DMN framework, while others can only be encoded by means of rather cumbersome
work-arounds.
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Figure 3: DRD of the product design application.

Dimensions
U OD ID CS OD ID CS
1 null — — ID+2*CS
2 — null — OD-2*CS
3 — — null (OD-ID)/2

Figure 4: Decision table for dimensions.

Figure 3 shows the DRD of our model, which captures the general structure of the
decision logic. It starts from the customer requirements (product dimensions, operating
conditions) at the bottom and has the decisions that must be made at the top, with
various sub-decisions in between. Each rectangle corresponds to a decision table. These
can be found in Figures 4, 5, 6 and 7.

We now discuss the different steps of the design procedure that the engineers
typically follow and their DMN representation .

1. There are three relevant dimensions: the outer diameter (OD) of the product, its
inner diameter (ID) and its cross-section (CS). The customer provides two of
these, and the engineer computes the third, using the formula CS = (OD− ID)/2.
The corresponding DMN table in Figure 4 consists of three different rows (one
per dimension that might be missing), that all contain essentially the same infor-
mation.

2. An initial design type is chosen, depending on the required operating conditions,
whether there is back pressure and in which position the product will be installed.
This decision fits well within the mould of a DMN decision table, as can be seen
in Figure 5a. However, as we will discuss in Section 4.4, the table fails to capture
the underlying reasons behind this decision.

3. A spacer is selected based on the design type as shown in the second decision
table in Figure 5b.
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Design Type
A Back

Pressure
Position Pressure Temperature Design Type

1

True

Pressure Accumulating — — Open
2 Bi Directional — — Open
3

not(
Pressure Accumulating,
Bi Directional)

> 150 — Open
4 (100, 150] ≥−50 Open
5 (100, 150] <−50 Closed
6 ≤ 100 — Closed
7 False — — — Closed

(a) Design Type

Spacer
U Design Type Spacer
1 Closed False
2 Open True

(b) Spacer

Figure 5: Decision tables for Design Type and Spacer.

4. Based on the temperature restrictions and design type, the best material is selected
for the body, spring and spacer, as can be seen in Figure 6.

5. The expected shrinkage is computed based on the design type, dimensions, tem-
perature and selected materials. While we omit the details, the formula for this
calculation can easily be placed in the “Shrinkage Load” table in Figure 7b.

6. Based on the selected design type, the spring strength of a standard spring is deter-
mined. If this is enough to cope with the expected shrinkage, the standard spring
is selected. Otherwise, the engineers switch to a thicker spring and recompute the
spring strength of the design.
Since DMN does not allow to recompute a value, the “Spring Strength” in
Figure 7a table computes both the spring strength that the design would have
with a standard spring and that it would have with a thicker spring. The “Spring
Thickness” table in Figure 7c then uses these two values to decide which spring
type to use. Because of this, the DRD has an edge from “Spring Strength” to
“Spring Thickness”. This is counter-intuitive, because in reality it is the thickness
of the spring that determines the design’s spring strength, not the other way
around.

7. If the thicker spring from the previous step does not provide enough spring
strength, the engineers’ final option is to switch to another design type. Since the
choice of design type is the initial choice upon which all further choices are based,
this means that the engineers essentially restart the entire process from scratch.
When no acceptable spring can be found, the DMN table “Spring Thickness”
returns null. This alerts the users of the system that something is wrong, but
the backtracking step of redoing the entire design process with a new design is
not possible in DMN. Therefore, we have implemented a workaround in which
the “Design Type” table is overly cautious: in low temperatures, it will always
choose the more shrinkage resistant closed design. This means that the product
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Body Material

P
Temperature Design Type Body Material
[-150.. 200] Closed, Open M2, M1, M3

1 [-150, -120) — M1
2 [-120, 80] Closed M1
3 [-120, 80] Open M2
4 (80, 100] — M1
5 (100,200] — M3

(a) Body Material

Spring Material
U Temperature Spring

Material
1 [-150, -50) M1
2 [-50,150] M5
3 (150,200] M3

(b) Spring Material

Spacer Material
U Spacer Temperature Spacer

Material
1

True
[-150, -50) M1

2 [-50,150] M5
3 (150,200] M3
4 False — null

(c) Spacer Material

Figure 6: Decision tables to determine component materials.

will be over-designed in certain circumstances, but it prevents possible failure of
the process.

4.3. Results

DMN is designed to be a fully executable specification and is currently supported
by a number of different tools, both commercial and open source. We have created an
automated design system by implementing the constructed DMN tables in the OpenRules
system2.

Our approach of basing the tool on a DMN formalisation of the engineers’ design
process proved successful. Not only did the engineers appreciate the intuitive nature of
the DMN standard, it also made them think about how they come to a design in a given
situation. Consequently, it helped them to better understand and standardize their design
process. Moreover, transforming the Visual Basic tool that was originally developed
for the sales staff into a DMN model, brought to light a number of errors. Without a
formal representation of the knowledge, these errors would have been far more difficult
to detect.

We created DMN models for six application areas. The average application contains
about 30 decision tables with 5 rows and 3 input conditions. To validate our DMN
models, the engineers inspected the decision tables in detail and provided us with ten
cases that represent both normal sets of requirements and a number of edge cases. Our
OpenRules implementation generates the correct design in all of the test cases.

2http://openrules.com
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Spring Strength
U Design Type CS Standard Spring Strength Thick Spring Strength
1 Closed [0.75, 1.25] 15 20
2 Closed [1.75, 2.25] 13 18
3 Open [0.75, 1.25] 7 11
4 Open [1.75, 2.25] 6 9

(a) Decision table for Standard Spring Strength and Thick Spring Strength

Shrinkage Load
U Design Type Shrinkage Load
1 . . . f(CS, Material of Body, Temperature)

(b) Calculation of Shrinkage Load

Spring Thickness
U Shrinkage Load Spring Thickness
1 ≤ Standard Spring Strength Standard
2 (Standard Spring Strength,Thick Spring Strength] Thick

(c) Decision table for the Spring Thickness

Figure 7: Decision tables to check whether a design can cope with the expected shrinkage.

Computing a design takes about 0.3 seconds single core on an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz.

Based on these promising results, the company decided to adopt this approach.
They further developed the OpenRules models and subjected them to extensive testing.
Currently, the DMN-based approach is operational in their production environment for
a select number of application areas.

4.4. Discussion
According to Shafiee et al. (Shafiee et al., 2020), configuration projects differ from

other IT projects in several ways. It is more difficult to delineate the scope of a product
configurator because of the inherent complexity and diversity of the relevant knowledge,
and because of frequent changes to it. Moreover, because such applications require a
large amount of detailed information, projects require heavy involvement of product
engineers and extensive documentation that must be understandable for both IT and
business users. As described above, the use of DMN facilitated the delineation of
the scope, facilitated the involvement of the engineers, and resulted in an extensive
knowledge base of the available information. However, both literature and our case also
point towards some downsides to the use of DMN.

First, as mentioned in Section 4.2, a few aspects of the design process do not fit
readily into the DMN model. This lack of expressivity has been recognized earlier,
e.g., by Car (Car, 2018), who points out that the lack of expressivity does not hamper
automated decision making as such, but does force the modelers to be creative with
the logic representation. This typically reduces the value of the model as a source of
documentation and as a means for internal standardization, and this therefore undesirable.
In our case, the limitations of DMN forced us to adopt an “err on the side of safety”
approach to handle the issues concerning shrinkage. While our solution is suboptimal
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(in the sense that the product is over-designed), it prevents the risk of suggesting faulty
designs, and avoids the introduction of complicated decision structures that would
greatly reduce the legibility of the DMN model.

Second, DMN consists of a strict hierarchy of mandatory decisions. It cannot
represent interwoven, optional or cyclical decisions. In our case, the selection of the
design type and spacer is an example of two decision tables that are interwoven. While
some circumstances require a closed design, other circumstances require the use of an
open design with a spacer. Sometimes both designs are possible. The two decisions
involved are selection of the design (open or closed), and selection of the appropriate
spacer. Both decisions are inherently connected, but the DMN standard forces to impose
some arbitrary order on them. Our case study also contains decisions that are optional, in
the sense that, in certain circumstances, the decision need not to be made. For instance,
if the design does not contain a spacer, there is no need to decide on the spacer material.
There is currently no way to model this in DMN, although this has been identified as
one of the shortcomings of the standard (Mertens et al., 2015).

Third, DMN is not able to represent background information or constraints. This
typically forces one to mix different kinds of knowledge within a single table. In our
application, physical constraints and preferences of the company are mixed in one table,
as for instance in the decision table “Design Type” in Figure 5a. This decision table
could be explained in any of the following ways:

• A closed design is always preferred, but it is not usable in rules 1, 2, 3 and 4.

• An open design is always preferred, but it can only be used in rules 1, 2, 3 and 4.

• An open design is preferred if there is back pressure, while a closed design is
preferred in all situations when there is no back pressure.

Mixing constraints and preferences in this way reduces the maintainability of the tables.
Suppose that a supplier changes the price of a material. This may have an impact on
the preferred components of the design, as the engineers try to design the product at the
lowest cost and some components require more material. However, without knowing
the underlying rationale of this table, it is impossible to determine the impact of this
change. A representation that separates preferences from constraints would not have this
problem. The inability to represent constraints and background information leads users
to develop additions to the standard, e.g.; decision logic for background information in
(Calvanese et al., 2019), or a constraint addition in OpenRules (Feldman, 2011).

Fourth, the available inference engines for DMN support only a single inference task,
namely that of computing the “output” decision variables given all the input variables.
This goes further than a mere lack of vendor interest in developing tools capable of
other inference tasks. Car (Car, 2018) considers this a shortcoming of the standard
itself, because it does not use more advanced modelling standards that would allow
other forms of inference. Either way, the fact remains that the current tools offer limited
functionality. For example, one disadvantage of DMN that is often cited is its inability
(in combination with BPMN) to model a series of questions (Sooter et al., 2019). This
is a common problem, that also appeared in one of our earlier cases and that we then
resolved outside the DMN tool (Deryck et al., 2019b). In Section 6, we discuss the
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different forms of inference that are available in the tool that we have developed to
interactively support the engineers.

Fifth, a DMN model decomposes a final decision in hierarchical structured subde-
cisions. This reduces the complexity of the decision, and leads to smaller and easier
to read decision tables. A downside of this approach is that it is not possible to talk
about global properties of the design. E.g., the cost of a component depends on its
material. The cost of the design depends on the cost of the components that are used.
However, for some components the use of a better material might eliminate the need
for a particular additional component. This interdependency means that we cannot in
general find the cheapest global design by making a sequential series of local decisions.3

Sixth, the entire DMN approach of course assumes that there is a decision procedure
to model. The approach cannot handle uncertainty and is limited to pre-defined decisions
with known in- and outputs (Biard et al., 2015). For the design of products in new and
challenging application areas, the design process is unknown. This means that DMN
cannot be used at all, even though (some of) the information from known areas may still
be applicable.

Finally, another weakness of the DMN standard identified in recent literature is
the limited legibility of large tables, thus hampering manual validation (Mertens et al.,
2015). Alternative, multiple tools for automatic verification exist (e.g.; (Hasić et al.,
2020)). Our solution does not focus on this problem, as we did not observe this problem
in our case. All large tables in our applications are converted data tables that contain no
decision logic, so there is no need for users to be able to interpret the tables.

Overall, we conclude that a DMN model of the engineers’ design procedure is
well-suited for the standard application areas in the company. To support the engineers
with non-standard applications, however, a different approach is needed.

5. Modelling the Underlying Constraints

As discussed in the previous section, we cannot hope to achieve our stated goals by
an approach in which we simply model the design procedure as the engineers follow it.
Instead, we need to clarify the preferences and the underlying physical constraints that
have led the engineers to adopt this procedure in the first place.

In general, the design process followed by the engineers is governed by a number
of physical constraints (e.g., a material M1 can only be used in temperatures ≤ 100◦C)
and preferences (e.g., material M2 is preferred over material M1, perhaps because it
is cheaper or more durable). In order to develop a decision support system that can
also provide useful information for challenging new application areas, we need to make
direct use of these underlying constraints and preferences, rather than of the engineers’
existing design process. These contain more information than is explicitly present in
the design procedure, because they also explain why certain designs are impossible.
As such, it is not possible to automatically deduce these constraints from the design

3A limited form of local (i.e., within the scope of a single decision table) optimization can be done using
the “Priority” hit policy
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procedure. Instead, coming up with them requires additional discussions with the design
engineers.

5.1. Knowledge Extraction of the Physical Constraints
Although some information about physical constraints on components and materials

is documented, the majority of this information exists only in the engineers’ head.
The elicitation of this information proved difficult. The engineers often did not know
where to start and discussions tended to be chaotic. To remedy this, we used the DMN
models to structure the process.We organised a discussion with the engineers who were
originally involved in the construction of these models. For each row of each table, we
asked why this output is the appropriate choice in this particular set of circumstances.
Unlike the workshops in which the DMN models were initially constructed, here it is
less crucial to involve different engineers: even though multiple engineers may disagree
on the best solution for a given problem, they tend to agree on the reason why certain
solutions might or might not work.

This use of the DMN tables provides a structured way of working, in which different
topics are addressed in a meaningful order and we can be sure that no relevant constraints
are overlooked. Moreover, because the engineers know and understand the DMN model,
there is no confusion about the question that is being discussed at a particular point in
time.

To reduce the time investment required from the engineers, it proved useful to care-
fully prepare these discussions in advance. Often, the form in which a particular table
has been written down already suggests a certain underlying reason. For example, the
“default” row at the bottom of the decision table “Design type” in Figure 5a suggests that
the closed design is the preferred choice, with the other rows describing circumstances
in which this preferred choice is not possible. Additionally, considerations that were
mentioned during the workshops to construct the DMN models may provide further
clues. In practice, we have found that we can construct most of the constraints without
help of the engineers and only need them to verify and possibly help us revise our initial
guesses.

From a theoretical point of view, it is interesting to note that, although most of the
physical constraints have a similar if-then structure, two kinds can actually be discerned.
Some of the constraints are descriptive in nature, e.g., only open designs can release
pressure. Other are prescriptive in nature, e.g.; if the product is used in a pressure
accumulating location, then it should be able to release pressure.

DesignType = ”Open”⇔ ReleasePressure. (2)

Location = ”PressureAccumulating”⇒ ReleasePressure. (3)

Both kinds are used next to each other. The practical relevance of this distinction for
our current application seems limited, but it might become more important as technology
evolves.

Even though most of the DMN decision tables can be interpreted individually, in
some cases, multiple decision tables are interwoven. As a result, the same constraints
underlie several of these decision tables at once. Section 5.3 handles a detailed example
of this.
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5.2. Knowledge Extraction of the Preferences
Typically, there are many different designs that are physically feasible and therefore

satisfy all of the constraints. The engineers have to select the best design among the
possibilities. In theory, a large range of optimisation criteria and techniques could be
used for this. In practice, however, these are limited by the available data, incomplete
knowledge of client preferences, and so on. Therefore, the purpose of preference elicita-
tion is the creation of a flexible optimization framework that includes multiple criteria,
and that can be adapted to client needs. The available metrics can be grouped around
different criteria, such as cost and durability. In our case we have both totally ordered
metrics and partially ordered ones. Some orderings have a fixed, meaningful distance,
but this is not the case for all orders. These differences between the optimisation metrics
need to be taken into account when combining them.

One of the explicit goals of our project is to help the company increase its internal
standardisation and reduce the impact of individual preferences of engineers. At the
same time, however, the engineers should retain enough flexibility to take the wishes
of individual customers into account. Our optimization framework uses a three-level
structure to this end. The highest level consists of a lexicographic ordering of the solution
space, according to a sequence of criteria m1, ...,mn. This means that all solutions that
have a non-optimal value for m1 are immediately discarded if there exists at least one
solution with the optimal value for m1. Among the remaining solutions, those with a
non-optimal value for m2 are also discarded, and so on. The first criteria m1, ...,mn−2 are
all atomic criteria, such as the local availability of materials. The criterion mn−1 is the
second level of our hierarchy and calculates the pareto-optimal front of the remaining
solutions with regards to a new set of metrics m′1, ...,m

′
k. To increase confidence in

the system, we want to be sure that no design exists that is better than the proposed
solution in any of the criteria without making at least one of the other criteria worse.
The result is a collection of possible solutions with different characteristics. At the third
level, i.e., the final criterion mn, the engineer can select the best design according to
their preferences. With a slider the engineer may indicate the importance of a limited
number of numerical criteria, such as cost and life expectancy, for the final solution.
This is translated into a weight for the corresponding term in a weighted cost function.
In summary, our preferences are of the form:

lexico
(
m1, ...,mn, pareto(m′1, ...,m

′
k),max(∑

i
αim′′i )

)
(4)

where

• The mi and m′i are partial orders.

• The m′′i are numerical criteria.

• The αi are weights to fine-tune the importance of each of the numerical criteria.

This framework reconciles the company’s need for standardization with the product
engineers’ need for flexibility. It does so by confining the solution space and by
controlling the optimization metrics on the one hand and by allowing the relative
importance of metrics to be interactively adjusted to reflect clients’ needs on the other
hand.
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5.3. Running Example
In this section we apply the constraints and preferences approach to the running

example described in Section 3. We use the FO(·) language to represent them. We
explain how the formulated constraints relate to the DMN model that we presented in
Section 4.2.

Dimensions. A constraint such as CS = (OD− ID)/2 expresses a relation between
three variables. In DMN, we had to designate some of these variables as input and the
others as output, leading to the three separate table rows in Figure 4. Here, we can just
use the single constraint to derive the value of the remaining variable from that of the
other two.

Design Type and Spacer. The restrictions on Design Type and whether a spacer is
used are interwoven and more complex. Discussions with the engineers have revealed
that the decision tables in Figure 5 can be explained as a combination of the following
constraints and preferences.

Constraints:

• Only open designs are able to release pressure:

DesignType = ”Open”⇔ ReleasePressure. (5)

• When the product is placed in a pressure accumulating location, it should be able
to release pressure:

Location = ”PressureAccumulating”⇒ ReleasePressure. (6)

• It is impossible to use a spacer in combination with a closed design:

¬
(
DesignType = ”Closed” ∧ ComponentUsed(Spacer)

)
. (7)

• A spacer is necessary if the back pressure is higher than 150 bar:

BackPressure ∧ Pressure > 150⇒ComponentUsed(Spacer). (8)

• In the “Bi Directional” location, the component tends to move back and forth
excessively, so in order to avoid damage, a spacer is always necessary:

Location = ”Bi-directional”⇒ComponentUsed(Spacer). (9)

• Each design should always have a body and a spring:

ComponentUsed(Body) ∧ ComponentUsed(Spring). (10)

Preferences:
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1. If the back pressure is between 100 and 150 bars, it is recommended but not
mandatory to use a design with a spacer.

2. Closed designs tend to be cheaper and outperform open designs, so they are the
preferred type of design.

The first line in table “Design Type” in Figure 5a is a result of combining constraints
5 and 6. The component should be able to release pressure and since closed designs
cannot do that, an open design is the only option.

The second row is a combination of constraint 7 and constraint 9. In the “Bi
Directional” location a spacer is always necessary, and since it is impossible to have a
spacer in closed designs, the only remaining possibility is an open design.

Analogously, the third line in the decision procedure can be obtained by combining
constraint 8 and 7.

The combination of constraint 7 and preference 1 would suggest selecting an open
design if the back pressure is between 100 and 150 bars. However, in the decision
table, a distinction is made between row 4 and 5 based on the temperature. This is the
previously mentioned work-around to avoid running into cases in which the shrinkage
cannot be addressed by simply adding a thicker spring to an open design. By contrast,
our constraint representation avoids the need for such a work-around (see below).

In all other situations, both closed and open designs are possible, but closed designs
are preferred, which explains the last row in the decision procedure.

Materials. If a component is used, it should have a material; a component’s material
is null when the component is not used. Each material has a minimum and maximum
temperature. For each component that is used in the design, a material must be selected
such that the operating temperature falls within the temperature range of this material.
This knowledge is represented by the following two constraints:

∀c[Component] : ComponentUsed(c)⇔Material(c) 6= null. (11)

∀c[Component] : ComponentUsed(c)⇒
MinTemp(Material(c))≤ Temperature≤MaxTemp(Material(c)). (12)

The specific values for MaxTemp and MinTemp of each material are predefined,
and can be found in Figure 16b.

Not every material can be used for each component. This is expressed in the
predefined PossibleMaterial predicate:

∀c[Component] : ComponentUsed(c)⇒ PossibleMaterial(c,Material(c)). (13)

In addition to these general constraints on the materials of all components, there is
also a specific constraint on the material used for the body:

DesignType =Closed⇒Material(Body) 6= M2. (14)
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These constraints still leave considerable freedom in selecting a material. In our original
DMN model (Figure 6), we selected a specific material for each set of circumstances,
based on the two physical constraints, and on the fact that the engineers prefer to use
cheaper materials when possible. With constraint-based reasoning, we can separate
these two concerns, expressing the constraints in the tables mentioned above, and
subsequently expressing an optimization criterion as discussed in Section 5.3.1.

To illustrate how these constraints and preferences correspond to the “Body Material”
table in Figure 6a, we discuss one row in this decision table. Based on the constraints
and preferences, row 5 can be explained as follows: in this temperature range, all three
materials M1, M2 and M3 are possible; however, if a closed design is selected, material
M2 can no longer be used. From the remaining materials (M1 and M3), the cheapest
(M1) is then selected. This is indeed the outcome of the decision table. All other rows
in the table can be explained analogously.

Shrinkage check. The SpringStrength should be larger than ShrinkageLoad:

ShrinkageLoad ≤ SpringStrength. (15)

Both ShrinkageLoad and SpringStrength can be calculated in terms from previously
discussed design features, such as Design Type, Cross-Section and Spring Thickness.
The IDP-system ensures that this shrinkage check is satisfied by adjusting the design
features, for example, by selecting a thicker spring or a different design type.

5.3.1. Preferences
In the current version of the application, the optimization framework described

in Section 5.2 is implemented as a weighted cost function. Lexicographical criteria
are modelled as n-category integers [1,n], and the corresponding weight is set to a
sufficiently high value to ensure that no combination of other criteria can compensate for
a non-optimal value. Another concern is to ensure that only pareto optimal solutions are
proposed, even for categorical criteria. This is implemented by introducing ascending
numerical values for those categorical criteria. By ensuring all pareto criteria are
included in the weighted sum, only pareto optimal solutions will be proposed.

There are four criteria that are relevant to select an optimal design:

• The cost of a design can be determined by adding up the used material cost of
each component, listed in Figure 21. Note that a design without a spacer will be
cheaper, since it requires less material. Moreover, thicker springs are harder to
fabricate, which makes the production cost higher.

• The durability of a design depends on a number of factors. When a product
without spacer is used in a back pressure environment, it will wear faster. When
this pressure is higher than 100 bar, the product is damaged almost immediately.
Moreover, a product wears because of the spring strength.

• The leak tightness of a product is proportional to the spring strength. For example,
closed designs typically have a higher leak tightness than open designs.
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• Availability: certain materials could be out of stock and should be avoided if
possible. This is the most important criterion in the lexicographical ordering.

In the framework proposed in Section 5.2, these criteria are combined as

Lexico(Availability,Pareto(Durability,LeakTightness,Cost),Min(Cost)). (16)

As explained, our current tool implements this by a weighted sum function. The
weights can be tweaked to favour one criterion over the others.

The following extract shows the logic to construct the optimisation term. Here, we
use the FO(·) notation of sum{x̄ : ϕ(x̄) : F(x̄)} to denote ∑F(x̄) over all x̄ such that
ϕ(x̄).

Availability = sum{c : IsUsed(c)∧¬LocallyAvailable(Material(c)) :−100} (17)

Durability =

sum{ : ¬IsUsed(Spacer)∧BackPressure∧Pressure < 100 :−5}+
sum{ : ¬IsUsed(Spacer)∧BackPressure∧Pressure≥ 100 :−100}+

−1/5×SpringStrength.

(18)

LeakTightness = 1/2×SpringStrength. (19)

Cost =

sum{c : IsUsed(c) : Cost(Material(c))}+
sum{ : SpringT hickness = T hick : 5}+

sum{ : SpringT hickness = Standard : 2}.
(20)

OptimisationFunction = Durability+LeakTightness−5×Cost +Availability.
(21)

By capturing all optimization criteria in one optimisation function, we can make use
of the IDP minimization inference task to find an optimal solution. We allow the user to
adjust these weights at execution time. Hence, engineers can choose which criterion
should be given priority within this preference framework.

The combination of constraints and preferences defined in this section produce the
same outcome as the DMN procedure of Section 4.2. For example, an open design
will only be used when a spacer is not necessary (because it is less leak-tight), cheaper
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materials are selected when they can handle the operating conditions, and so on. A more
detailed comparison is made in Section 7.7.5.

Separating the preferences and constraints increases the flexibility in a number of
ways.

• The optimisation criteria can be easily adjusted by tweaking the weights, depend-
ing on the customer’s priorities.

• When a material’s cost or local availability changes, this can easily be updated
in the interpretation of the function cost or of the predicate Locally Available.
There is no need to change the constraints or preferences themselves.

• Additional criteria can be added in a modular way.

5.4. Missing Data
In a different application area, we encountered an additional challenge. Certain data

was unknown, e.g., the property Li f eExpectancy is known for some designs, but not
for others. The company’s engineers indicated that this is indeed the current situation. It
would take great effort to determine these missing values and complete the data in the
property tables. Therefore, a solution should be developed that allows our system to
handle the missing data.

We introduce a small example to illustrate the mechanism we propose to cope with
missing data. Each of the properties that has missing values becomes a partial instead
of a total function, whose value is only defined when the property is known, e.g.,

Li f eExpectancy = {D1→ x;D3→ z} (22)

when the Li f eExpectancy of design D2 is unknown. Then, the constraint states that
Li f eExpectancy(UsedDesign)> RequestedLi f eExpectancy is changed to one of the
following logical formulas:

∀x : Li f eExpectancy(UsedDesign) = x⇒ x≥ RequestedLi f eExpectancy. (23)

∃x : Li f eExpectancy(UsedDesign) = x∧ x≥ RequestedLi f eExpectancy. (24)

The first constraint specifies that if the Li f eExpectancy is known, it should satisfy the
constraint. This approach is bold when it comes to accepting designs with missing
values: when a value is missing, the Li f eExpectancy constraint is satisfied, and the
corresponding design can be selected. The second constraint is more cautious. It only
allows designs which have no missing values, by stating that a value should exist for the
Li f eExpectancy of the UsedDesign and that it should be higher than the requested one.

The engineers could not specify a general desired behaviour of the system, since this
greatly depends on the situation. They would like to be able to switch between those
two behaviours manually. Therefore, we slightly adapted our approach to give them this
choice. We introduced a new predicate in the vocabulary: AllowUnknown(Property)
and changed the constraint to:

(
∃x : Li f eExpectancy(UsedDesign) = x∧ x≥ RequestedLi f eExpectancy

)
∨(

¬∃x : Li f eExpectancy(UsedDesign) = x∧AllowUnknown(Li f eExpectancy)
)
.

(25)
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If ¬AllowUnknown(Li f eExpectancy), designs with an unknown Li f eExpectancy
are not considered and vice versa.

5.5. Implementation of a Constraint-based Approach

We used the IDP knowledge base system (Bruynooghe et al., 2015) to implement the
constraint-based design system. It offers different algorithms, implementing a number of
logical inference tasks, based on Answer Set Programming (ASP), Logic Programming
(LP) and SAT solving technology. In recent editions of the ASP Competition (Alviano
et al., 2013), IDP proves to be competitive with other state-of-the-art ASP systems,
though typically somewhat slower than systems such as Clasp.

Our motivation to use IDP is twofold. First, IDP uses classical logic as an input
language. This monotonic language allows different constraints to be represented
independently of each other. Thanks to this modularity, they can be explained to
the company’s engineers without requiring much additional background. While the
engineers would probably not be able to write down constraints correctly, they are able
to read them pretty well. We suspect that this would not be the case for languages such
as ASP, that use non-classical connectives such as negation-as-failure.

Second, as IDP is an implementation of the knowledge base paradigm, it provides
support for different logical inference tasks on the same knowledge base. This can
be used to provide a multitude of functionalities to the end user. Such flexibility is
not offered by constraint-programming languages such as MiniZinc (Nethercote et al.,
2007).

We can reproduce the functionality of the OpenRules implementation using our
constraint-based representation in IDP, by using the inference tasks of Model Expansion
and optimisation. Other inference tasks are used in our GUI which we discuss in
Section 6.

Model Expansion. To compute a design, we apply the logical inference task of Model
Expansion (Mitchell et al., 2006). This takes as input a theory T and a structure Sin
for part of the vocabulary of T , and the goal is to produce a structure Sout for the
remaining part of the vocabulary such that Sin ∪ Sout |= T . In our case, the structure
Sin describes the problem specification, by providing an interpretation for constants
such as Temperature, Pressure and Location; the structure Sout then describes a design,
by providing an interpretation for constants such as DesignType and functions such as
Material.

Optimisation. IDP’s optimisation functionality allows us to specify a numerical term t
together with a model expansion problem (T,Sin). IDP will then compute not just any
solution to the model expansion problem, but the solution Sout that, in addition to being
such that Sin ∪ Sout |= T , also minimizes the value tSin∪Sout of this term. In our case,
the term is the weighted sum Optimisation f unction, as defined in Section 5.3.1. IDP
implements this inference task with an optimisation loop, which iteratively produces
better solutions by each time adding a new constraint that the next solution must have a
lower score than the previous solution. This method is typically also used in, e.g., ASP
solvers.
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5.6. Results

While it proved relatively easy to construct the DMN model in collaboration with
the engineers, constructing the more expressive constraint-based model in FO(.) was
significantly more challenging. We therefore used the former to validate the latter. This
is possible because the scope of the FO(.) model is strictly larger than the scope of the
DMN model. In particular, for inputs I that falls within the scope of our DMN model
D, we check the correspondence between the output D(I) of D, and the solutions Sout
of the model expansion problem (T,SI) for the FO(.) theory T . The vocabulary of the
theory T is such that the DMN input I and output D(I) can easily be translated into
FO(.) structures SI and SD(I).

The first aspect to check is that the constraints are not too strict: for each possible
set of inputs I, the design D(I) that is constructed by the DMN model should satisfy the
constraints in theory T , i.e., SI ∪SD(I) |= T or in other words, SD(I) should be a solution
the model expansion problem (T,SI).

Second, to verify that the constraints are not too weak, we also check that the design
D(I) proposed by the DMN model D is among the optimal solutions of this model
expansion problem, i.e., that tSI∪SD(I) ≤ tSI∪S′ for any other solution S′ to the model
expansion problem (T,SI), where t is the optimisation term that is minimised. This
checks that 1) the constraints do not fail to rule out designs with a higher score that are
in fact impossible and 2) that the weights used in the optimisation criterion are assigned
correctly.

We implemented both of these checks using IDP. We first transformed the DMN
model to IDP syntax as described in (Dasseville et al., 2016). We then used IDP to
perform the required checks on the relation between the IDP theory derived directly
from the DMN model and the IDP theory that represents the constraints.

The first check initially revealed a small number of errors in the constraint-based
representation. After minor fixes, it was concluded successfully. In the second check,
IDP proposed a different design than the DMN model for a number of cases. A thorough
analysis of these cases revealed that the outcome of the constraint-based model was
correct, and that the DMN solution was sub-optimal. This non-optimality turned out
to be caused by the obligation of making decisions in a fixed order. When using the
constraint-based method, on the other hand, the solver is free to make decisions in any
order, allowing it to find a better scoring global optimum.

For an application area with about 30 variables the IDP system typically finds the
optimal design in about 3.15 seconds on one core of an Intel(R) Xeon(R) CPU E5-2630
v3 @ 2.40GHz.

5.7. Discussion

The constraint representation has a number of interesting advantages. By modelling
the required characteristics of the product as constraints rather than specific rules, the
outcome is usually a set of solutions rather than a single solution. Hence, the constraint
approach enables flexible optimisation, allowing a solution that is optimal in a specific
situation to be chosen from this set of solutions. Moreover, it allows to distinguish
between physical constraints and subjective preferences. This makes the model easy
to adapt to changes in the data (such as availability of materials), without requiring a
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review of the entire decision process. The constraints can also easily be reused in new
application areas for which there is no complete model available.

However, we also found a disadvantage of the approach. The constraint approach
is less comprehensible for domain experts. It proves to be complicated to write down
individual constraints in the correct syntax. While we have used classical FO because
we believe it is quite understandable for untrained domain experts, it is still more
complex than the simple table-based DMN format. Apart from this, it is inherently
more complex to reason with constraints compared to rules-based reasoning. In a DMN
decision model, there is always a clear link between input and output, and outputs can
only be defined in one table. This makes it easy for domain experts to understand the
link between variables. In constraint reasoning, a single output may be affected by
numerous constraints in different constraint tables. For example in Section 5.3, the
design type is influenced by a multitude of constraints. Finding out which constraints
influence a particular aspect of the design and determining their joint outcome is not a
straightforward task and we find this often confuses the domain experts.

Another downside of our prototype is tied to the particular technology used in the
IDP system. Its model expansion algorithm follows a ground-and-solve strategy (similar
to ASP solvers), in which all variables are first replaced by all of their possible values.
For the grounding phase to enumerate all possible values, each variable needs to have
a finite domain. Moreover, in order for the grounding to be computed in reasonable
time, these domains should be relatively small. Because our application requires some
calculations with floating point numbers (e.g., when calculating the shrinkage in cold
circumstances), we had to implement a work-around for the normal ground-and-solve
workflow.

6. Interactive Decision Support

Our goal is to provide design engineers with a decision support system that they can
use to interactively explore the possible designs. A graphical interface that allows them
to interact with the knowledge base is an essential part of such system.

We reuse and extend the IDP AutoConfig tool (Dasseville et al., 2016), which aims
to provide a generic knowledge-based configuration tool that can easily be applied to
different domains. It supports the principles of the knowledge base paradigm by allowing
multiple inference tasks to be applied on the same knowledge base. This notably allows
the users to perform basic tasks, but also helps them to answer more advanced questions.
The tool’s main screen displays a three-valued structure which represents the current
state of the configuration process. In such a three-valued structure, each ground atomic
fact P(d1, ...,dn) (with P an n-ary predicate symbol and the di domain elements of the
appropriate type) or F(d1, ...,dn) = dn+1 (with F an n-ary function symbol) can be
either certainly true (ct), certainly false (c f ) or unknown (u). In the initial state of the
system, all atoms that describe that design are unknown. While the system is being
used, increasingly more atoms are assigned a ct or c f value, either by the user or by the
system itself, in response to user actions. This narrows down the final design.

The tool does not force the engineers to enter information in a fixed order. Instead,
it allows them to specify any piece of information at any stage in the configuration
process. At each point in time, the tool computes all consequences of the information
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it has received so far. This way of working stands in sharp contrast to how the DMN
system can be used.

Because IDP lacks support for non-linear calculations with real numbers, the cal-
culation of the shrinkage is currently omitted from the knowledge base used in this
tool. Moreover, even calculations which are supported may significantly slow down the
system. If we include our optimisation criterion (see Section 5.3.1) in the theory, the
required calculation time for a single propagation step grows to over 20 seconds. For
this reason, our current prototype also excludes this criterion. Both limitations originate
from the implementation technology used in IDP3 and are not inherent to our approach.
Further development to the IDP solver will solve these issues.

6.1. Existing Functionalities

In this section we discuss how we applied the functionalities that were already
available in the AutoConfig tool to our case study.

Propagation. Once the user assigns a ct or c f truth value to a certain atom, the conse-
quences of that assignment are propagated to other atoms. For this, the system considers
all two-valued interpretations M that extend the current three-valued interpretation and
that are models of the knowledge base T (M |= T ). If it is the case that a ground atom A
holds in all such M, then the truth value of A is switched from u to ct. If A is false in all
M, the truth value of A is switched from u to c f .

This functionality is perceived to be very useful in this specific use case because it
allows the system to guide the user in exploring the search space. The system makes
a distinction between the user’s selection and propagated values. The user can undo
their own selections, but not the propagations made by the system (because they are, by
definition, forced by the selections that were made). All the user can do with propagated
values is ask for an explanation of why this value must be assigned (see below). For this
reason, user selections of propagated values are indicated with Undo and Question-mark
symbols, respectively, as can be seen in Figure 8. The reason for this distinction is that
they can ask for an explanation of the propagated values.

Explanation. For each of the propagated atoms it is possible to request an explanation of
why this atom has been propagated as certainly true or certainly false. This explanation
consists of the user-selected atoms that the system used to deduce this truth value.
Typically, the user inputs environmental variables under which a design should be
able to operate. As a result, some designs can no longer be used.With the explanation
functionality, IDP is able to identify which (combination of) input variables causes that
design to be infeasible. An example of this can be seen in Figure 9. This functionality is
particularly important for the user acceptance of the proposed product design.

Model expansion. The model expansion functionality allows the user to ask the system
to complete the current three-valued interpretation into a two-valued model M of the
knowledge base T , by assigning truth values ct or c f to the unknown atoms such that
(M |= T ). In principle multiple models are possible, and the user has no control over
which one is chosen (see Section 5.5). In the specific context of our use case, this
inference was not found to be very useful.
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(a) The initial state

(b) The state of the tool after selecting Pressure.

Figure 8: Propagation in the AutoConfig tool.

Figure 9: Explanation in the AutoConfig tool, consisting of the user-selected atoms (top) and constraints
(bottom).
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Optimization. The AutoConfig tool offers the possibility to optimize a predefined term
in the knowledge base, as described in Section 5.5. This allows the system to compute
an optimal model. This feature is useful in the context of product design to determine
an optimal design for a specific set of requirements. By introducing multiple terms, it is
possible to optimize according to different criteria, such as the lowest production cost,
best durability or best overall design.

Relevance. The AutoConfig tool offers the ability to specify a core of the knowledge
base. Such a core is a set of atoms such that the goal of the configuration process is to
determine the truth value of these atoms. Once this has been done, the truth value of the
remaining atoms is irrelevant. The relevance functionality allows the AutoConfig tool to
determine which predicates and functions may still influence the value of the problem’s
core, and grey out the irrelevant symbols. This functionality was found useful because
it prevents the engineers from having to make choices that are no longer relevant to
complete the design.

6.2. Additional Functionalities

Even though the AutoConfig interface was not specifically designed for our product
design use case, it proved very useful. After testing the first version of the tool with the
engineers, we found it was missing some functionalities for our case.

Comparison. The engineers wanted to be able to compare multiple designs. Because of
the large number of possible designs and materials, it is difficult to know the properties
of each design by heart, especially for less experienced engineers. We developed a
comparison functionality, which offers an effective way to identify the key features of a
certain design or material. Moreover, when an engineer is in doubt between two options,
it offers a quick way to see the implications of both.

Figure 10 illustrates our comparison method. It shows a comparison made between
an open and a closed design. Our method works by first using propagation to derive the
consequences of each of the possible choices. Then the resulting three-valued structures
are compared and all differences are displayed. In the example, the truth value of
ReleasePressure is ct in the three-valued structure of an open design, while it is c f in
the three-valued structure of a closed design. In other words, pressure cannot be released
in a closed design, while an open design always releases pressure.

The ct/c f /u values are displayed in the same way as on the main screen, i.e., ct and
c f values are shown respectively as green and red boxes. As the screen shows, e.g., in
an open design, the Position is still open for choice, while in a closed design, the Bi
Directional and Pressure Accumulating position are not possible, a standard design is
the only option.

Extended Explanation. The AutoConfig tool already offered the ability to explain why
a certain atom was propagated. Such an explanation consisted of the set of choices
made by the user that imply the atom in question. However, for the engineers, it was
not always clear why these particular choices had an effect on that particular atom.
Therefore, we extended this functionality to also identify the relevant constraints. This
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Figure 10: Comparison between an open and a closed design in the AutoConfig tool.

additional information allows the engineers to better comprehend the reasoning of the
system.

To build an explanation, we use essentially the same method as was used originally.
First, we invert the truth value of the to-be-explained atom to create an unsatisfiable
problem. Subsequently, we use the explain unsat core inference task of IDP, which
determines the smallest subset of constraints that make a problem unsatisfiable.

As most engineers lack the ability to read constraints as they are formulated in the
KB, we allow the KB maintainer to provide a readable annotation for each constraint.
As shown in Figure 9, a complete explanation thus consists of a set of user-choices on
the one hand, and a set of annotations of constraints on the other hand.

Deactivate constraints. It is possible that an experienced engineer has more thorough
knowledge of the domain at hand than the knowledge base. This might become apparent
when the system draws an incorrect conclusion. If this occurs, we provide the possibility
to temporarily deactivate a constraint. Because of the modular nature of the constraints
in the KB, the IDP system can still draw conclusions from the remaining knowledge.
This functionality enables engineers to experiment with out-of-the-box designs.

It only makes sense to start deactivating constraints once the system has derived
some atomic property P and the user wants to allow for the possibility that P would
not hold. Therefore, this functionality can be accessed from the explanation widget, as
shown in Figure 9. Once a constraint has been deactivated, it is important to visually
indicate this, as can be seen in the upper right corner of Figure 11, so the engineer does
not forget about it and possibly creates an erroneous design.
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Figure 11: Visual representation of when a constraint is deactivated in the AutoConfig tool (detail of upper
right corner).

Reactivate constraints. After having deactivated a constraint, the user might eventually
want to reactivate it, e.g., because they have finished their experimental try-out design.
Reactivating a deactivated constraint might create an inconsistent state of the knowledge
base. To avoid this, an additional check is performed to ensure a consistent knowledge
base. If this check fails, the system alerts the user that it is not possible to perform the
action. Similar to the explanation of atoms, an explanation of why the constraint cannot
be reactivated is generated, as shown in Figure 12.

Provide Feedback. When an experienced engineer is using the tool, they might stumble
upon a piece of knowledge that is no longer up-to-date or that should be reviewed, e.g.,
a constraint that no longer is applicable, or a certain value that should not be possible
given the current user-selection. In such situations, the user can flag that constraint or
atom for review. The system then logs (1) the element that is flagged, (2) the current
state of the user interface, which allows the problem to be reproduced, and (3) a textual
description of the issue provided by the user. The KB maintainer then reviews the
reports and updates the model if needed. This feedback mechanism ensures that the
KB will be kept up-to-date, provided that experienced engineers consistently provide
feedback when they encounter such imperfections.

To ensure the correctness of the KB, it is important that changes are manually
supervised. However, the KB maintainer could be assisted in this task by a number of
automated functionalities. It would be interesting to investigate this possibility in future
work.
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Figure 12: Indication of a constraint that cannot be reactivated in the AutoConfig tool (detail of upper right
corner)

6.3. Using Historical Data

Throughout the years, the company has gathered a database which contains all the
products that have been designed. This database consists of the customer requirements,
technical drawings and design features for each of these products. This historical
database contains a lot of knowledge about product design. Presenting the contents
of the database in an intuitive way can give the engineers insight in the choices that
were made before. In addition to the constraint-based presentation of the product design
knowledge, this historical information can also be very useful to support the engineers
in their design tasks.

In a separate project, an algorithm was developed that is able to analyse the design
features in the technical drawings and to measure similarity between designs (Van Daele
et al., 2019). We use this similarity measure to find designs that resemble the current
state of the configuration process, and present the most similar ones to the user. The
properties of each of these designs is listed, as can be seen in Figure 13. Additionally, a
summary of all applicable solutions can be found in the right-most column.

6.4. Evaluation

6.4.1. Evaluation Procedure
During the research project, engineers from the company were solicited multiple

times to evaluate the tool and provide suggestions for improvement. So, over the
course of several months, they got familiar with bits and pieces of the interface and
its functionalities. After incorporating their suggestions in the AutoConfig tool, we
organised an evaluation workshop to find out if the project goals were met. Five
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Figure 13: Browsing historical products in the AutoConfig tool (truncated image).

engineers with different levels of exposure to the tool and experience in the tested
application area, were invited to use the tool. Their design experience ranged from a
couple of months to multiple years. Some of the engineers had been closely involved
in the project, while for others, it was the first time they used the tool. Due to the
COVID-19 measures, the workshop was organized online.

The company’s project manager introduced the workshop to the attendees, recalling
the purpose of the tool and the session. A researcher then demonstrated and explained
the different functionalities of the tool. Subsequently the engineers had 15 minutes to
play around with the tool themselves and ask questions. Once they had familiarised
themselves with the tool, they received an assignment, i.e., a set of requirements for
which they had to design a product using our tool, and an evaluation form they would
need to fill in afterwards. After the assignment, each engineer individually filled in the
questionnaire and sent it to the researchers. The results of the different engineers were
compared and taken as a starting point for a group discussion. The evaluation consists
of three parts: the expected usage of the tool, its benefits, and its potential users. The
results are described below.

6.4.2. Usage of the Tool
The tool was developed to support engineers in the design of non-standard products.

In our evaluation, we wanted to check whether the engineers found it useful for this
purpose. In their answers, the engineers indicated they would indeed use the tool to this
end. They thought the tool would be most useful for designs that are not too standard,
but not too specialised either. On the one hand, for very common designs, experienced
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engineers might immediately know the right design and perceive the tool as overhead.
However, they pointed out that, even in this case, the tool might be useful to challenge
their own assumptions and ensuring standardisation. On the other hand, for designs
with complex geometry, even after using the tool, the engineer would still need to make
manual calculations to fine-tune the dimensions of the components. In the follow-up
discussion, the engineers indicated that they saw the manual calculations as inevitable,
and not as a missing functionality of the tool. The search for historical designs was seen
as an interesting functionality of the tool. Finally, the engineers also thought the tool
would be useful for training purposes and for double checking personal expertise.

Analysis of product failures was also mentioned as a potential application for the
tool. It could be useful to enter the details of the failed product and the operating
conditions at the time of failure into the tool, and check which constraints are violated.
However, a specific functionality for this would be more convenient.

For the tool to remain useful, more experienced engineers need to use it regularly,
and update it when they notice unsound or outdated constraints. It is therefore important
that the company incentivises its use and stresses its importance in promoting consistent
designs and validating one’s assumptions.

6.4.3. Benefits of the Tool
The second part of the questionnaire focussed on the expected benefits of the system.

When asked about the daily time benefit, the engineers report an expected daily gain of
at least 15 minutes to more than 30 minutes per engineer, depending on the number of
incoming requests per day. Moreover, they expect to replace the daily design meeting
by this tool. The estimated time benefit takes into account the time it takes to get used
to the tool, the effort to update the tool and the fact that experienced engineers are able
to develop more regular products without the tool. The tool takes a few seconds to show
the consequences of a choice, or to retrieve designs from the databases. One of the
engineers commented that the tool would be more usable if it were more responsive.

For some tasks the tool is useful and convenient, but does not translate into a
quantifiable time gain. For example, even though the tool helps to consult historical
designs, this remains a time consuming task. The reason is that the historical database
contains a large number of products. While the machine learning techniques attempt to
select the most relevant ones, this may still be a large list.

Another important benefit is the expected increase in ’first time right’ designs: this
lowers the production time and cost, and increases customer confidence. It also makes
sure designs are more consistent, which in turn also increases customer confidence.
Nowadays, under similar circumstances, different designs might be proposed by the US
plant and by the European plant. Unsurprisingly, customers find this very strange.

Other benefits mentioned include continuous learning about designs and their con-
straints, and promotion of a standard to judge design quality.

6.4.4. Target Audience of the Tool
The usefulness of the tool might be different for engineers with different levels

of experience. The interviewed engineers think the tool will be as useful for more
experienced engineers as it was for them, and even more useful for less experienced
engineers. In the discussion that followed, it was said that the tool will probably be
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used differently depending on the level of experience. It can be seen as a knowledge
transfer tool from more experienced to less experienced engineers. For the first group,
the tool is not only useful to help with the design process, but also to challenge one’s
own assumptions and design preferences. This group is expected to contribute heavily
to the development and maintenance of the tool. For the latter group, the tool will be an
indispensable support for their day-to-day design tasks and will be part of their training.

6.4.5. Conclusion
Overall, the engineers had a positive reaction during the evaluation session. For the

design process, the main advantages that surfaced are the time gain of an estimated 10%,
improved consistency and accuracy in designs. The engineers appreciated in particular
the combination of a knowledge based approach that lines out the constraints of the
design, and the possibility to review historical designs. Additionally, the tool is not
only relevant for the design of a specific product, but can more broadly be seen as a
knowledge transfer and training tool. For novice engineers, a wealth of knowledge
is available. For experienced engineers, the interaction with the tool challenges the
assumptions and practices of the engineer, while the engineer challenges and updates
the constraints in the knowledge base. This motivates experienced engineers to use the
tool, even if they could design regular products without it. From the overall feedback,
we conclude that the tool meets the requirements that were identified at the beginning of
the project.

7. cDMN: A user-friendly representation of constraint knowledge

The FO(·) representation with constraints has a clear advantage over the DMN
decision model in terms of versatility and applicability. The expressive language
allows to represent complex knowledge, and the constraint-based reasoning and related
inference tasks allow this knowledge to be used in multiple use cases. The largest
challenge for the constraint-based approach, is to extract the actual domain knowledge
from domain experts. Not only is it often hard to formulate tacit knowledge, we currently
also lack a formal language that allows domain experts to understand the knowledge
captured in the constraint model. This opens the way for misunderstandings and prevents
the domain experts from working on the model without the presence of a knowledge
engineer. This stands in stark contrast to our knowledge elicitation methodology for the
decision process for the well-known applications, in which the DMN standard helped
us to avoid precisely these problems.

In this section, we propose an extension of the DMN standard, such that the notation
becomes better suited for complex real-life situations. We do this by allowing FO
constraints to be represented in a simple and readable manner. We call this extension
cDMN. The full specification and examples can be found in the gitlab repository
(Vandevelde & Aerts, 2020). The development of cDMN was previously discussed in a
conference paper (Aerts et al., 2020).

This section first presents the building blocks of the cDMN notation. We then
introduce its formal semantics. Finally, we demonstrate the use of cDMN in our running
example.
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7.1. Constraint Tables
DMN is well suited for applications with a clear hierarchical decision procedure to

uniquely determine the value of some output. It imposes restrictions on the construction
of the decision model to ensure that a unique value is always assigned to each output
of each table. While cells in an input column may contain different kinds of S-FEEL
expression, only single values can be used in output columns. Therefore, if a row
matches the input, the corresponding single value is assigned to the output. In addition,
a default value can be assigned to an output column, which will be the value of this
output if none of the rows match the input conditions. If no rows match and there is no
default specified, the output is assigned the special value null to indicate an error in the
specification.

cDMN extends the scope of DMN to constraint reasoning. Instead of defining a
single solution, we enumerate the conditions that possible solutions must satisfy. Hence,
the outcome of the constraint-based model is not a single, deterministically defined
solution, but a solution space with various possibilities. From this space, any solution or
the most optimal solutions with respect to some criterion, may be selected.

To represent constraints in a tabular format, we introduce constraint tables in cDMN.
The structure of such a table follows that of regular decision tables with input and output
columns, and constraints as rows. Each row in a constraint table represents a logical
implication. If the input conditions are satisfied, then the output conditions must also be
satisfied. Conversely, if none of the input rows are applicable, the output can take on
any value, as opposed to being forced to null as in regular decision tables.

In constraint tables, output columns can contain any S-Feel statement, whereas in
decision tables, only single atomic values (such as integers, floats and strings) can be
used. This greatly improves expressivity.

Constraint tables can be recognized by their hit policy, which is the Every hit policy,
denoted as E*. It expresses that for every row in the table, the implication must be
satisfied.

The following example illustrates the difference between a decision and constraint
table. As shown in (Calvanese et al., 2016), the first line of the decision table in
Figure 14b is logically equivalent to:

∀x : SpacerIsUsed = x⇔Design =Closed∧x = False∨Design 6=Closed∧x = True.
(26)

In other words, the only way to obtain Spacer = False is by having the input condition
Design = Closed. We compare this to the interpretation of a constraint table. The
first row in the “Spacer is Used” constraint table in Figure 14a is interpreted as the
logical implication Design =Closed⇒ SpacerIsUsed = False. In other words, when
Design 6=Closed, a spacer may or may not be used.

7.2. Expressive Data Types and Glossary
In logical terms, the input and output variables used in DMN are all constants. In

order to allow complex logical formulas to be expressed, cDMN allows the user to
define a complete FO vocabulary with types, functions, relations, booleans and constants
in the glossary. This glossary consists of one table per kind of symbol. The glossary for
our running example can be found in Figure 15.
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Spacer is Used
E* Design Type Position Back Pressure Pressure Spacer is Used

1 Closed - - - False
2 - Bi Directional - - True
3 - - True > 150 True

(a) Constraint Table for the use of a spacer

Spacer Is Used
U Design Type Spacer Is Used
1 Closed False
2 Open True

(b) Decision Table for the use of a spacer

Figure 14: Constraint and Decision Table for Spacer

• The Type table defines all data types used in the model. Each type is defined by its
name, its base type (string, int or float) and the different values that are possible
for this type. E.g., the first line of the types sub-glossary in Figure 15 defines a
type called Component, which can take the values Body, Spacer or Spring.

• The Functions table contains the function symbols of the vocabulary. Such a func-
tion maps a number of arguments onto a value. Functions are declared using the
notation FunctionName of ArgumentType and ArgumentType. The range
of the function is specified in the Type column. For example, the first line of the
Functions table in Figure 15 introduces a function called Material which maps
one argument of the type Component to a Material.

• In the Relations table, relations on one or more types are defined, e.g., Component
is Used denotes whether a component is used or not.

• Constants (i.e., zero-arity functions) can be defined in the Constants table, e.g.,
we introduce a CS of the type Dimension.

• Boolean variables are introduced in the Booleans table, e.g., Release Pressure

denotes whether the product is able to release pressure.

7.3. Header expressions and quantification

Not only does cDMN allow more complex data types, it also allows more complex
expressions to be put in the column headers of decision and constraint tables. Besides
constants, the following expressions are allowed as headers:

• a type Type;

• an expression of the form “Type called name”;

• an expression of the form “Function of arg1 and ... and argn”, where each of the
argi is another header expression;

36



Types
Name Type Values
Component string Body, Spring, Spacer
Material string M1, M2, M3, M5, M4
temperature int [-200,200]
Dimension float [0, 10]
... ... ...

Constants
Name Type
CS Dimension
ID Dimension
OD Dimension
Temperature temperature
... ...

Booleans
Name
Release Pressure
Back Pressure

Functions
Name Type
Material of Component Material
MinTemp of Material temperature
MaxTemp of Material temperature

Relations
Name
Component is Used

Figure 15: Extract of the cDMN glossary for the product design application.

• an arithmetic combination of header expressions (such as a sum).

The Type and Type called name expressions are called variable introducing headers.
They are used to introduce universally quantified variables. With the use of quantifica-
tion, compact tables can be created, in which one row is applicable for all the elements
of a type. If the same type or variable name reappears further in the table, it refers back
to this universally quantified variable. An example of this can be seen in Figure 16a,
where a variable of type Component is introduced and reused throughout the table. It
states that each component, if it is used, should be able to handle the operating tem-
perature (i.e., the operating temperature should fall between the minimal and maximal
temperature of the material used for that component).

7.4. Data table
Another novelty introduced by cDMN are data tables. The motivation for this kind

of table comes from the fact that usually two different types of knowledge are relevant
for a decision problem. The first is the decision logic or decision procedure. This
knowledge can be specified in the decision tables and constraint tables. A second type
of knowledge is raw data, e.g., material properties such as cost and temperature ranges.
It is possible to specify this type of knowledge in decision tables. However, using
data tables has the advantage that decision logic is separated from the specific problem
instance at hand (e.g., the particular materials that are considered). Figure 16b shows an
example of such a data table in the context of our application.

7.5. Formal semantics
In this section we describe the formal semantics of cDMN by translating it to the

FO(·) language used by the IDP system.
It is straightforward to translate the glossary into an FO(·) vocabulary: types, func-

tions, constants, relations and booleans are each translated to their FO(·) counterpart.
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Temperature Constraints
E* Component Component is used Temperature

1 - True ≥MinTemp of Material of Component
2 - True ≤MaxTemp of Material of Component

(a) Temperature restrictions on the selection of materials.

Data Table: Temperatures
Material MinTemp of Material MaxTemp of Material

1 M1 -150 100
2 M2 -120 80
3 M3 -50 200
4 M5 -50 150

(b) A data table to define MinTemp and MaxTemp of each material.

Figure 16: Tables for the selection of component materials.

Decision tables retain their usual semantics as described by Calvanese (Calvanese
et al., 2019). We briefly recall these semantics. Each cell of a decision table (i, j)
corresponds to a formula Fi j(x) in one free variable x. For instance, a cell “≤ 50”
corresponds to the formula “x≤ 50”. A decision table with rows R, input columns I and
output columns O is a conjunction of material implications:

∧
i∈R

(∧
j∈I

Fi j(H j)⇒
∧
k∈O

Fik(Hk)

)∧(
¬
∨
i∈R

∧
j∈I

Fi j(H j)⇒
∧
k∈O

Hk = null
)

(27)

where H j is the header of column j. Each conjunct corresponds to one row, ex-
cept for the last one, which forces the output to Null if no rows are applicable. For
example, the table in Figure 14b corresponds to the logical formula (DesignType =
Closed⇒ SpacerIsUsed = False)∧ (DesignType = Open⇒ SpacerIsUsed = True)∧
(¬(DesignType =Closed∨DesignType = Open)⇒ Spacer = null).

Data tables are simply a specific case of decision tables.
In (Deryck et al., 2019a), we defined the semantics of simple constraint tables

(without quantification and functions) also as a conjunction of implications but without
the final conjunct. The semantics of constraint tables and decision tables therefore differ
only in the interpretation of incomplete tables: when no rows are applicable in decision
tables, the output is forced to null (i.e., the implicit default value is null), while the
output in constraint tables can take any value.

Now we extend this semantics to take variables and quantification into account.
Our first step is to define a function that maps cDMN expressions to terms: For

the most part, this definition corresponds to that of Calvanese (Calvanese et al., 2019).
However, we extend it to take into account the fact that certain expressions – which we
call variable expressions – must be translated to FO variables. There are three kinds of
variable expressions. We now define a mapping ν that maps each of these three kinds
of cDMN variable expressions to a typed FO variable x of type T , which we denote as
x[T ]:

• The name T of a type is a variable expression. We define ν(T ) = xT [T ], with xT
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a new variable of type T .

• An expression e of the form “Type called v” is a variable expression. We define
ν(e) = v[Type].

• If the header of a column contains an expression “Type called v”, then v is a
variable expression in all subsequent columns of the table and in its body. We
define ν(v) as v[Type].

Given this function ν , we now define the following mapping tν(·) of cDMN expres-
sions to terms.

• For a constant c, tν(c) = c; similarly, for an integer or floating point number n,
tν(n) = n.

• For an arithmetic expression e of the form e1θe2 with θ ∈ {+,−,∗,/}, we define
tν(e) = tν(e1) θ tν(e2).

• For a variable expression v, we define tν(v) = ν(v).

• For a function expression, i.e. “Function of arg1 and ... and argn”:
tν(X) = Function(tν(arg1), ...., tν(argn)) .

Similarly to Calvanese, we translate each entry c in a cell (i, j) of a table into a
formula Fi j(x) in one free variable x:

• If c is of the form “θe” with θ one of the relational operators {≤,≥,=, 6=}, then
Fi j(x) is the formula x θ t(e).

• If c is of the form Not e, then Fi j is x 6= t(e).

• If c is a list e1, . . . ,en, then Fi j is x = t(e1)∨ . . .∨x = t(en). As a special case, if c
consists of a single expression e, then Fi j is x = t(e).

• If c is a range, e.g. [e1,e2), then Fi j is x≥ t(e1)∧ x < t(e2).

We are now ready to define the semantics of a constraint table. If I is the set of
input columns of the table, O the set of output columns and V ⊆ I the set of variable
introducing columns, we define the semantics of the table as:

∀
l∈V

ν(Hl) :
∧
i∈R

(∧
j∈I

Fi j
(
tν(H j)

)
⇒
∧
k∈O

Fik
(
tν(Hk)

))
(28)

For example, in the the first row of Figure 16a,

• ν(H1) = x[Component] and tν(H1) = x;

• tν(H2) = IsUsed(tν(H1)) = IsUsed(x);

• tν(H3) = Temperature and tν(F3,1) equals the formula
Temperature≥MinTemp(Material(tν(H1))).
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Dimensions
U CS
1 (OD- ID)/2

Figure 17: Decision table for dimensions.

Combining this leads to the FO(·) formula:

∀x[Component] : IsUsed(x)⇒ Temperature≥MinTemp(Material(x)). (29)

The above transformation turns each decision or constraint table T into an FO(·)
formula φT . The glossary and data tables together define a structure S for part of the
vocabulary. The domain of S consists of the union of the interpretations It of all the
types t. If t is enumerated in the glossary, then It is this enumeration. Otherwise, It
consists of all the values that appear in a data table in a column of type t. The structure
S interprets all the predicates for which a data table is provided, and it interprets them
by the set of tuples that is given in this table.

The set of “solutions” of a cDMN model is the set MX(Φ,S) of all model expansions
of the structure S w.r.t. the theory Φ = {φT | T is a constraint or decision table}, i.e., the
set of all structures S′ |= Φ that extend S to the entire vocabulary.

7.6. Implementation

The previous section defines the semantics of cDMN by translating it FO(·). A
practical solver has been implemented using the IDP-system. The specifics of the
implementation can be found in (Vandevelde & Aerts, 2020).

7.7. Running Example

In this section we discuss the cDMN solution for the running example introduced in
Section 3. The cDMN notation represents constraints in a table format. Consequently,
the knowledge in the cDMN model will be almost identical to that of the constraint
model discussed in Section 5.3.

7.7.1. Dimensions
Because we transform cDMN tables into FO(·) formulas that we give to IDP, our

system can propagate the value of any arbitrary subset of variables in such a table to the
other variables. In other words, the distinction between “input” and “output” variables
may still be a useful way for domain experts to think about the structure of a table, but
no longer has implications for how the table can be used by the system. Consequently,
the relation between component dimensions can easily be represented in a decision table
with a single row (Figure 17).

7.7.2. Design Type and Spacer
The constraints considering design type and spacer described in Section 5.3 can

be easily put into two constraint tables with independent concerns, one for the concept
of Release Pressure in Figure 18a and one for the use of a Spacer in Figure 18b. The
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Release pressure
E* Design Type Position Release Pressure

1 Open - True
2 Closed - False
3 - Pressure Accumulating True

(a) Constraints related to Release Pressure.

Spacer is Used
E* Design Type Position Back Pressure Pressure Spacer is Used

1 Closed - - - False
2 - Bi Directional - - True
3 - - True > 150 True

(b) Constraints related to the use of a spacer.

Use Component
E* Component Component is Used

1 Body, Spring True

(c) Constraint table to specify Body and Spring are always used.

Figure 18: Constraint tables for the selection of Design Type and Use Component.

formulation of knowledge in constraint tables leaves considerable freedom in selecting
a design and spacer. Section 7.7.5 discusses how this is handled.

Note that the constraint table in Figure 18a contains both descriptive (e.g., open
designs can release pressure) and prescriptive information (e.g., in pressure accumulating
positions, pressure should be released), as discussed in Section 5.1.

7.7.3. Materials
Figure 19 specifies for each of the components which materials can be used, e.g., the

body can only be constructed from material M1, M2 or M3. Of course, this constraint is
only relevant if the component is used in the product. When this is not the case, i.e., a
component is not used, its material is set to null. The last line in Figure 19 states the
additional constraint that the body of a closed design cannot be made of material M2.

In addition to these general constraints on the materials of all components, the
materials each have a minimum/maximum temperature. Those temperatures are listed
in a data table (Figure 16b). The “Temperature Constraints” table in Figure 16a states
that, for each component that is actually used in the design, a material must be selected
such that the operating temperature falls within the temperature range of this material.

As we discussed in Section 5.3, these constraints still leave considerable freedom in
selecting a material. We will discuss how to prioritize certain materials in Section 7.7.5.

7.7.4. Shrinkage check
The decision tables in Figure 20 describe how to determine the Shrinkage Load and

Spring Strength and state the constraint that the former should not exceed the latter.
Note that this is a more intuitive way of representing the knowledge in Figure 7.

It enables us to differentiate between the constraint (i.e., Shrinkage Load should
not exceed Spring Strength), and how to determine these values based on other design
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Component Materials
E* Component Component is Used Design Type Material of Component

1 Body True - M1, M2, M3
2 Spring , Spacer True - M1, M3, M5
3 - False - null
4 Body True Closed Not(M2)

Figure 19: General constraints on components’ materials.

Shrinkage Load
U Design Type Shrinkage Load
1 ... f(CS, Material of Body, Temperature)

(a) Calculation of Shrinkage Load.

Spring Strength
U CS Design Type Spring Thickness Spring Strength
1

[0.75, 1.25]

Closed Standard 15
2 Closed Thick 20
3 Open Standard 7
4 Open Thick 11
5

[1.75, 2.25]

Closed Standard 13
6 Closed Thick 18
7 Open Standard 6
8 Open Thick 9

(b) Decision table to define Spring Strength.

Shrinkage Check
E* Shrinkage Load

1 ≤ Spring Strength

(c) Constraint table for the shrinkage check.

Figure 20: Constraint approach to determine whether the shrinkage load can be handled.

properties. As discussed in Section 4.2, a work-around is needed in DMN to obtain a
similar result, i.e., although the Spring Strength is a property of a spring with a certain
thickness, we actually needed to make Spring Thickness an output of the DMN table
that checks shrinkage, for lack of better solutions. As mentioned in Section 5.7, the
Shrinkage Load and Spring Strength are also influenced by the Design Type. Because
of cDMN’s constraint-based nature, a switch from an open to a closed design will be
automatically considered if the Shrinkage Check cannot be satisfied with an open design.
We were not able to achieve this behaviour using standard DMN.

7.7.5. Preferences
Because of the constraint-based nature of cDMN, typically, a cDMN model will not

have a unique solution. If we provide the system with a set of dimensions and operating
conditions, there may be many possible combinations of designs and materials that meet
all of the constraints. Usually, the user is interested in finding an optimum in this set of
possible solutions. For instance, the product engineers try to find the cheapest design or
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the most reliable design. Such global optimization is not possible in regular DMN.
Figure 21 shows how an optimal design can be selected, based on a number of

parameters. The underlying reasons behind these tables are identical to those defined in
the preferences in Section 5.3.1.

Design Selection. We select a number of examples to highlight the alignment between
the DMN tables in Section 4.2 and the cDMN model.

When both open and closed designs can be used, the leak tightness of closed designs
is superior (Figure 21d). The cDMN model therefore selects a closed design when
maximizing the optimization term, this is indeed what also happens in the DMN table
in Figure 5a.

Thick springs have a higher cost than standard springs, as can be seen in Figure 21b,
so they will only be selected when necessary to cope with a high shrinkage load.

Figure 21c states that the durability of a design is gravely affected when no spacer is
used in a high back pressure (≥ 100) environment. In such circumstances, this design
will never be used if a spacer design is available. This behaviour can also be found in
row 4 and 5 of Figure 5a, where a closed design without spacer is only used in low
temperature (i.e., high shrinkage) circumstances.

In contrast, when no spacer is used in lower back pressure environments, the cost dif-
ference (i.e., designs without spacer are cheaper) outweighs the loss in durability. When
the weights of the optimisation function are adjusted, this could shift the preferences in
this case.

Materials. Because of the penalty for using locally unavailable materials (Figure 21e),
the cDMN model never selects material M4. When this material would be available
again, the adaptation to the cDMN model is trivial (i.e changing the availability in the
Material Properties data table), while the DMN model would be more difficult to update.

When the temperature is between -50 and 100 degrees, all materials could be used
for the spring. When taking into account the cost of each of the materials, specified in
Figure 21a, cDMN selects the cheapest possible material, i.e., M5. This is indeed also
the material selected by DMN in Figure 6b.

7.8. Discussion

We compare the cDMN model of our running example with the FO(·) representation
presented in Section 5.3. A first conclusion is that the proposed notation is expressive
enough to represent the knowledge in this running example, i.e., all knowledge fits
well within this table-based notation. Second, the readability of the knowledge model
considerably improves by expressing the knowledge in the cDMN language. Not only
does the cDMN notation allow the decision logic to be expressed in a readable table-
based notation, it also allows data to be expressed in a straightforward user-friendly
manner (i.e., typically data is already available in similar tables).

We also compare of the DMN model discussed in Section 4.2 and the cDMN model
in this section. A first observation is that the cDMN model is considerably larger than
the standard DMN model, i.e., the DMN model consists of only nine decision tables,
whereas the cDMN model consists of ten tables that determine the physical constraints
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Data Table: Material Properties
Material Cost of Material Material is Locally Available

1 M1 8 True
2 M2 5 True
3 M3 10 True
4 M5 4 True
5 M4 7 False

(a) Data table: Define cost and local availability of materials.

Cost
C+ Component called c c is Used Spring Thickness Cost

1 - True - Cost of Material of c
2 - - Thick 5
3 - - Standard 2

(b) Define total cost of design.

Durability
C+ Spacer is used Back Pressure Pressure Durability

1 False True < 100 −2
2 False True ≥ 100 −100
3 - - - −1/5× Spring Strength

(c) Define durability of design.

Leak Tightness
U Leak Tightness
1 1/2×Spring Strength

(d) Define leak tightness of design.

Availability
C+ Component Component is used Material of Component

is Locally Available
Availability

1 - True False -100

(e) Define availability penalty.

Execute
Maximize

Durability
+ Leak Tightness
+ Availability
- 5× Cost

(f) The optimization term that will be optimized when executing the model

Figure 21: Preferences in cDMN.
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and an additional six tables to express the possible preferences. The larger size of the
cDMN model is compensated for in terms of practicality:

• It is not necessary to determine a decision procedure prior to creating a cDMN
model.

• The cDMN model contains substantially more knowledge than the DMN model,
i.e., the DMN model contains only knowledge about how to determine one output
based on a set of inputs, but contains no information about alternative solutions,
nor the reason why a solution is selected.

• Consequently, the knowledge in the cDMN model can be used in more ways.

• The knowledge expressed in a cDMN model is much more modular. When a
certain preference, constraint or value of a property changes, this can easily be
adapted without changing the rest of the model.

• As a result of introducing multiple optimization criteria, the same model can
be used when, for a specific request, the priorities deviate from the standard
priorities. In regular DMN, a new model would have to be created for each
possible optimization function.

Even though the cDMN model is larger, the readability of the model is not affected.
Each of the tables is as legible as its DMN counterparts.

8. Related Work

Product Configuration. There exists a vast body of research on product configuration
systems, which are typically defined as systems to automatically construct a design from
a set of pre-defined components, considering several constraints and some optimisation
criteria (Brown, 1998). The advantages of using product configurators are well docu-
mented and include improvement of lead time (Haug et al., 2011, Forza & Salvador,
2002), sales quotation time (Hvam et al., 2004), product quality and associated costs,
sales, and supplier communication (Haug et al., 2019).

A thorough literature review on product configuration was performed by (Zhang,
2014). Their findings reveal that, despite the wide range of existing research, several
topics still require further exploration. First, although knowledge acquisition from
historical data has been extensively studied, less research has been done on extracting
knowledge from domain experts. An exception to this is the recent work of Shafiee et
al. (Shafiee et al., 2018) who developed a framework for the knowledge acquisition in
configuration projects. They propose a four-step framework consisting of determining
the scope of the application, knowledge acquisition, modelling and knowledge validation
and documentation and maintenance. Although these elements are also present in our
project, they are not separated into distinct steps because of our focus on the creation of
(c)DMN models together with the product engineers. The act of creating the models
encompasses both the knowledge acquisition and modelling phase, while the resulting
tables can easily be validated and maintained by (other) product engineers in the
company, and form a complete knowledge base. A second difference is that, in the
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framework of Shafiee, knowledge engineers structure, initiate and execute the different
phases, while in our approach the product engineers themselves play a central role at
every stage.

A second aspect which according to (Zhang, 2014) has not yet received much atten-
tion is the ability to suggest new designs. The majority of existing product configuration
approaches focus on selecting the most appropriate option among a fixed range of
possibilities. By contrast, our constraint-based approach is also able to provide useful
information to the engineers in cases that fall outside the scope of existing solutions.

Third, (Zhang, 2014) also identifies several ways in which additional forms of
inference might be useful to provide functionality other than suggesting a design. For
example, they identify such tasks as explaining which conflicting constraints have
led to a rejected design or reconfiguring an existing design to cope with changed
requirements. The IDP system has been developed according to the knowledge base
paradigm (Denecker, 2008), in which different logical inference methods can be applied
to the same knowledge base in order to implement different functionalities. Indeed, in
Section 6, we describe how the AutoConfig tool can be used in an interactive way, which,
amongst other functionalities, contains the ability to explain the system’s behaviour.
Moreover, the task of reconfiguration has already been considered in the context of
this system (Vlaeminck et al., 2009, Wittocx et al., 2009). The IDP system therefore
provides a suitable framework to implement these different tasks.

DMN. The use of DMN has become widespread in business and is well-documented
in academic research since its inception in 2015 (Kluza et al., 2019). Several papers
describe the use of DMN in industrial and manufacturing environments. E.g.; the
Composelector H2020 project created a platform aimed to support the multi-scale
selection of composite material (Belouettar et al., 2018). DMN is used to refer the
decision maker to the correct component of the platform. In another example, Peinl
and Perak (Peinl & Perak, 2019) describe how they use BPMN and DMN for the
customization of Manufacturing Execution Systems (MES). They started from the
observation that academic literature suggests to use as much standardized software as
possible, but that this is difficult due to the industry-specific needs and the evolution
towards lot-size one. Therefore, they propose HiCuMES, a highly modular solution,
in which they use DMN to model different product types that require different process
steps. In contrast to our application, DMN is not used to automate actual engineering
decisions in either application.

Interactivity is an important quality of a decision support system. As DMN tables
are typically static and not designed for interaction, real life applications have had
to solve this in different ways. Sooter (Sooter et al., 2019) describes a combined
BPMN/DMN approach to model an extended decision process in which user (inter-
)actions are modelled in a BPMN model to which the DMN model is attached. In other
words, interaction is only possible in certain fixed steps of the decision process. Batoulis
et al. (Batoulis et al., 2015) describe how dynamic decision making can be supported
by dynamically updating decision tables based on the current availability of needed
resources. As already discussed, we propose a different approach in which DMN and
cDMN tables can be used as a declarative knowledge base, to which different forms of
logical inference can be applied to produce the desired interactive behaviour in the IDP
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system.
Apart from the interactivity issues, DMN decision tables are also often not expressive

enough to model real-life cases (Calvanese et al., 2019, Deryck et al., 2019a, Car,
2018). The DMN standard does propose the Friendly Enough Expression Language
(FEEL), that is able to adress more complex situation than the S-FEEL language that
we used (OMG, 2019). However, as it is a programming language with its own syntax,
it cannot be used directly by domain experts, hence limiting its usefulness.

A number of DMN tools provide ways to deal with the limitations. For instance,
OpenRules allows to insert Java-snippets to express complex parts of the logic. The
advantage of this approach is that it still keeps the overall idea of decision tables that
can be maintained by business experts, while allowing an IT-expert to code specific
complex parts of the decision logic.

Other approaches allow DMN to be extended by more declarative representations.
For instance, the aforementioned OpenRules also offers an interface to a constraint
solver (Feldman, 2011), while (Calvanese et al., 2019) allows DMN to be enriched with
domain knowledge expressed in Description Logic. The latter paper demonstrates its
approach by means of a case study of port clearance for cargo ships. Here, the clearance
decision itself can be modelled with traditional DMN, but the ontology of cargo ship
types and their features are modelled in Description Logic.

These papers share with our work on cDMN the goal of extending DMN to be
able to cope with the complex knowledge that typically arises in real-world problems.
However, they extend DMN’s decision tables with a completely separate formalism, that
is intended to be used by knowledge engineers rather than domain experts. By contrast,
our goal is to investigate whether it is possible to allow the more complex knowledge
to also be expressed in a “syntax-less” table format, allowing it to be maintained by
domain experts as well.

9. Conclusions and future work

In this paper, we explored multiple approaches to develop a decision support system
for the design of machine components. This research was conducted in collaboration
with a multinational company that aims to standardise and partially automate its design
process. The products that need to be designed can either follow a routine design
process, if they are to be used in known application areas, or an ad hoc design process,
if they will be used in new and challenging application areas.

This project’s main challenge is that there are two potentially contradictory require-
ments. On the one hand, a flexible and powerful knowledge representation method
is needed to provide support to the engineers even in circumstances that fall outside
of their designs’ usual scope. On the other hand, the company needs a system that
can deterministically propose standard designs, to assist the people in the sales depart-
ment. Moreover, for the creation of both applications, engineers needed to be closely
involved, as they posess the necessary product knowledge to create and help maintain
the knowledge base.

Taking these requirements into account, we modelled knowledge in both a determin-
istic and constraint-based way, using the DMN standard for the former and FO(.) in the
IDP system for the latter.
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The DMN-based approach has proven to be very useful for the routine application
and is currently used by the company in their production environment.

To assist the engineers in more challenging application areas, we allow them to
interact with a system that presents a multitude of user-friendly functionalities. We
based this system on the IDP AutoConfig tool, which we extended with a number
of functionalities, to further assist the engineers. Next to these knowledge-based
functionalities, a number of ways to explore the historical data were added to this
tool. The engineers indicate that the proposed system is indeed useful, by saving them a
lot of time, reducing manual errors and helping them to converge to a more standardized
design proposal. They also recognize that the tool could even be used as a training
tool for less experienced engineers. Moreover, the fact that the system allows the users
to provide feedback, which is used to update knowledge, increases confidence in the
system and ensures its maintainability.

While both the DMN-based and constraint-based approach have their advantages,
neither is able to completely fulfill all of our requirements. We therefore propose the
cDMN framework to combine the user-friendly notation of DMN with the more versatile
functionalities that can be provided by the constraint-based approach.

In future work, we will be looking into a more standardised approach to represent
missing data (e.g., when material properties are not known). Moreover, it would be
interesting to investigate whether historical data can be used to identify additional
constraints that can be used to supplement those in the knowledge base. An additional
possibility is to extract knowledge from the general constraint-based knowledge base, to
automatically create or update the deterministic procedure of a certain sub-application,
and to keep knowledge in these two systems up-to-date. Currently, the constructed
knowledge base is maintained manually, but it could be useful to find a way to assist the
knowledge base maintainer in this process.

Finally, the IDP-system is not able to perform floating point calculations. Therefore,
we are looking into the possibility to port the system to a back-end that can handle these
calculations.
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