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Abstract

In this paper, we study a class of matrix-valued orthogonal polynomials (MVOPs) that are related to
2-periodic lozenge tilings of a hexagon. The general model depends on many parameters. In the cases of
constant and 2-periodic parameter values we show that the MVOP can be expressed in terms of scalar
polynomials with non-Hermitian orthogonality on a closed contour in the complex plane.

The 2-periodic hexagon tiling model with a constant parameter has a phase transition in the large
size limit. This is reflected in the asymptotic behavior of the MVOP as the degree tends to infinity.
The connection with the scalar orthogonal polynomials allows us to find the limiting behavior of the
zeros of the determinant of the MVOP. The zeros tend to a curve Σ̃0 in the complex plane that has a
self-intersection.

The zeros of the individual entries of the MVOP show a different behavior and we find the limiting
zero distribution of the upper right entry under a geometric condition on the curve Σ̃0 that we were
unable to prove, but that is convincingly supported by numerical evidence.

1 Introduction and reduction to scalar orthogonality

The aim of this paper is to study a class of matrix-valued orthogonal polynomials (or MVOPs for short) that
are related to weighted lozenge tilings of a hexagon. We explain the connection in more detail in Section 3.
In this section we introduce the MVOPs and state our results on the reduction to scalar orthogonality that
are valid for finite degrees of the MVOPs. We state asymptotic results in Section 2.

1.1 Existence and uniqueness of MVOP

The matrix-valued orthogonality coming from the hexagon tiling models takes the particular form

1

2πi

∮
γ

Pk(z)W (z)zjdz = 0d, j = 0, 1, . . . , k − 1, (1.1)

where Pk(z) = zkId+ · · · is a monic matrix-valued polynomial of degree k and size d×d, W is a d×d weight
matrix whose entries are rational functions, and γ is a closed contour in the complex plane that encircles the
poles of W . The integrand in (1.1) is matrix-valued and the integral is to be taken entrywise. We use 0d to
denote the zero matrix of size d×d, and Id for the identity matrix. The type of matrix-valued orthogonality
originates from the work [17] where it was applied to 2-periodic tilings of the Aztec diamond.

The development of the theory of MVOPs dates back to the 1940s, see the survey [10] and the many
references therein. The more recent research on MVOPs (mostly from around the mid-1990s) deals with
orthogonality on the real line with a non-negative definite weight matrix W , see for example [1, 18, 20, 22, 39].
In that case, the existence and uniqueness of the MVOP are an easy consequence of a (matrix-valued) Gram-
Schmidt orthogonalization process. In contrast, the orthogonality (1.1) is not associated with a matrix-valued
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positive definite scalar product and existence and uniqueness of MVOPs is not a priori guaranteed. Indeed,
if W is rational (as is the case in this paper), then any Pk that cancels the poles of W (in the sense that
PkW is entire) will satisfy (1.1) by Cauchy’s theorem. Hence uniqueness of MVOPs is certainly lost for k
large enough. Observe also that the integrand in (1.1) is analytic, except for poles of W , and therefore the
contour of integration can be deformed as long as we do not cross any poles of W .

In the paper we focus on a special class of examples of size 2× 2. We let

Wα(z) =

(
α 1
z 1

)
, α ∈ R, (1.2)

and

W (z) = W~α,K,L =
Wα1

(z) · · ·WαL
(z)

zK
, (1.3)

with non-negative integers K and L, and ~α = (α1, . . . , αL) ∈ RL. The contour γ encircles the origin once in
the positive direction.

Proposition 1.1. Let K,L be non-negative integers and let αj > 0 for every j = 1, . . . , L. Let k be a
non-negative integer satisfying

2K − L ≤ 2k ≤ 2K. (1.4)

Let γ be a closed contour in the complex plane going around 0 once in the positive direction. Then the monic
matrix-valued polynomial Pk of degree k, satisfying (1.1) with weight matrix (1.3) exists and is unique.

The proof is based on the connection with a weighted lozenge tiling model of an ABC-hexagon with side
lengths A = 2k, B = L− 2K + 2k, and C = 2K − 2k. The inequalities (1.4) imply that the side lengths are
non-negative. We explain this connection in Section 3. Once we know that the tiling model exists, we can
apply [17, Lemma 4.8] to obtain existence and uniqueness of Pk, see Section 3.4.

1.2 Scalar orthogonality

In several cases we can express the MVOP Pk in terms of meromorphic functions with an orthogonality on
a Riemann surface. In case the Riemann surface has genus 0 we can map it to the Riemann sphere, and we
obtain orthogonal rational functions on C, that may lead to scalar orthogonal polynomials, depending on
the situation.

The reduction to scalar orthogonality on a Riemann surface is not new. It is implicit in [17], and made
explicit by Charlier [5] where the emphasis is on the Christoffel-Darboux kernel associated with matrix-valued
orthogonality that originates with [15]. Here we focus on the polynomials in two particular cases associated
with the weights (1.3) that give rise to genus 0 Riemann surfaces and orthogonality in the complex plane. We
also give direct proofs, while [5] relies on the Riemann-Hilbert problem for MVOPs, that was first considered
in [4, 28], see also [15]. The first case is where αj = α > 0 for all j.

Theorem 1.2. Let K,L, k, be non-negative integers such that (1.4) is satisfied. Suppose αj = α > 0 for
every j = 1, . . . , L. Let γ be a closed contour going around 0 once in the positive direction. Let Pk be the
MVOP of degree k with weight function

Wα(z)L

zK
(1.5)

on γ that uniquely exists by Proposition 1.1. Let β = 1−α
2 .

(a) Then

Pk(ζ2 − β2)

(
1 1

ζ + β −ζ + β

)
=

(
q2k(ζ) q2k(−ζ)
q2k+1(ζ) q2k+1(−ζ)

)
(1.6)

where q2k and q2k+1 are monic polynomials of degrees 2k and 2k + 1 respectively, satisfying

1

2πi

∮
γR

q2k+ε(ζ)ζj
(ζ + α+ β)L

(ζ2 − β2)K
dζ = 0, j = 0, 1, . . . , 2k − 1, ε = 0, 1, (1.7)

where γR is the circle of radius R > |β| around 0.
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(b) Conversely, if q2k and q2k+1 are monic polynomials of the indicated degrees satisfying (1.7), then there
is a constant

c = β − 1

2πi

∮
γ

q2k+1(ζ)

ζ2k+1
dζ (1.8)

such that, with ζ = (z + β2)1/2 the principal branch of the square root (i.e., Re ζ > 0), we have

Pk(z) =

(
1 0
c 1

)(
q2k(ζ) q2k(−ζ)
q2k+1(ζ) q2k+1(−ζ)

)(
1 1

ζ + β −ζ + β

)−1
=

(
1 0
c 1

)( q2k(ζ)+q2k(−ζ)
2

q2k(ζ)−q2k(−ζ)
2ζ

q2k+1(ζ)+q2k+1(−ζ)
2

q2k+1(ζ)−q2k+1(−ζ)
2ζ

)(
1 0
−β 1

)
. (1.9)

Note that the polynomials appearing in the middle matrix of the right-hand side of (1.9) are even in ζ
and therefore they are indeed polynomial in the variable z = ζ2 − β2. The diagonal entries are monic of
degree k in z, the (1, 2)-entry has degree ≤ k − 1 in z, and the (2, 1)-entry is a polynomial of degree ≤ k
whose leading coefficient is equal to the coefficient of ζ2k in the polynomial q2k+1. The choice of c in (1.18)
then guarantees that the (2, 1)-entry of the product (1.9) has degree ≤ k− 1. As a result the right-hand side
of (1.9) is a monic matrix valued polynomial of degree k in z.

The identities (1.7) are scalar orthogonality properties of the polynomials q2k and q2k+1. They are both
orthogonal to polynomials of degree ≤ 2k − 1 with respect to the rational weight

wα,K,L(ζ) =
(ζ + α+ β)L

(ζ2 − β2)K
, β =

1− α
2

, (1.10)

on γR. More precisely, Theorem 1.2 has the following immediate corollary.

Corollary 1.3. (a) The monic polynomial q2k of degree 2k satisfying (1.7) with ε = 0 exists uniquely, and
it is the unique scalar orthogonal polynomial of degree 2k with respect to the weight (1.10) on γR.

(b) The monic polynomial q2k+1 of degree 2k+ 1 satisfying (1.7) with ε = 1 exists, but it is not unique. If
q2k+1 satisfies (1.7) then so does q2k+1 + cq2k for any c, and this is the only freedom we have.

(c) If
1

2πi

∮
γR

q2k(ζ)ζ2k
(ζ + α+ β)L

(ζ2 − β2)K
dζ 6= 0,

then the constant c can be chosen such that the polynomial of degree 2k + 1 satisfies (1.7) with j = 2k
as well, and then the degree 2k + 1 scalar orthogonal polynomial with weight (1.10) on γR uniquely
exists.

The scalar weight (1.10) is rational with a zero at −α−β = − 1+α
2 of order L and two poles at ±β = ± 1−α

2
of order K. In case α = 1, the two poles coincide and then the scalar orthogonal polynomials can be expressed
in terms of Jacobi polynomials. Another special (limiting) case is α = 0, since then one of the poles coincides
with the zero and the weight reduces to a weight with one zero of order L−K (if L > K) and one pole of
order K. Again the scalar orthogonal polynomials can be expressed in terms of Jacobi polynomials.

A reduction to classical orthogonal polynomials may also appear for MVOP on the real line as in [19,
Theorem 5.1], where certain MVOPs are expressed in terms of Hermite polynomials.

The proof of Theorem 1.2 essentially relies on the spectral decomposition of the matrix Wα from (1.2).
We have

Wα = EΛE−1, (1.11)

with

Λ =

(
λ1 0
0 λ2

)
, λ1,2(z) = ±(z + β2)1/2 + α+ β, (1.12)

E =

(
1 1

λ1 − α λ2 − α

)
. (1.13)
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The eigenvalues (1.12) are the two branches of a meromorphic function ζ+α+β defined on the two-sheeted
Riemann surface associated with the equation

ζ2 = z + β2.

Also the eigenvectors of Wα, that are in the columns of (1.13), are meromorphic on the Riemann surface
that has genus zero and thus can be mapped conformally to the Riemann sphere.

1.3 Periodic parameters α1, α2

We have a similar result for the second case where the parameters αj alternate between α1 and α2. In this
case, there is a connection between the MVOP and 2×2-periodic tilings of the hexagon, see [6]. Here we rely
on the fact that the eigenvalues of Wα1Wα2 are again meromorphic on a Riemann surface of genus 0. An
extension to sequences (αj)j with higher periodicity fails since then the eigenvalues live on a higher genus
Riemann surface.

Theorem 1.4. Let K,L, k be non-negative integers such that (1.4) is satisfied. Suppose L is even, and
α2j−1 = α1 > 0, α2j = α2 > 0 for every j = 1, . . . , L/2. Let γ be a closed contour going around 0 once in
the positive direction. Let Pk be the MVOP of degree k with weight function

(Wα1(z)Wα2(z))L/2

zK
(1.14)

on γ that uniquely exists by Proposition 1.1. Let

β =
1− α1α2

2
√

1 + α1

√
1 + α2

. (1.15)

(a) Then (√
1+α2

1+α1
0

0 1

)
Pk(ζ2 − β2)

(√
1+α1

1+α2

√
1+α1

1+α2

ζ + β −ζ + β

)
=

(
q2k(ζ) q2k(−ζ)
q2k+1(ζ) q2k+1(−ζ)

)
(1.16)

where q2k and q2k+1 are monic polynomials of degrees 2k and 2k + 1 respectively, with the scalar
orthogonality

1

2πi

∮
CR

q2k+ε(ζ)ζj
((ζ − η1)(ζ − η2))

L/2

(ζ2 − β2)K
dζ = 0, j = 0, 1, . . . , 2k − 1, ε = 0, 1, (1.17)

where

ηj = − 1 + 2αj + α1α2

2
√

1 + α1

√
1 + α2

, j = 1, 2,

and γR is the circle of radius R > |β| around 0.

(b) Conversely, if q2k and q2k+1 are monic polynomials of the indicated degrees, satisfying (1.7) then there
is a constant

c = β − 1

2πi

∮
γ

q2k+1(ζ)

ζ2k+1
dζ (1.18)

such that, with ζ = (z + β2)1/2 the principal branch of the square root (i.e., Re ζ > 0), we have

Pk(z) =

(√
1+α1

1+α2
0

0 1

)(
1 0
c 1

)(
q2k(ζ) q2k(−ζ)
q2k+1(ζ) q2k+1(−ζ)

)(√
1+α1

1+α2

√
1+α1

1+α2

ζ + β −ζ + β

)−1

=

(√
1+α1

1+α2
0

0 1

)(
1 0
c 1

)( q2k(ζ)+q2k(−ζ)
2

q2k(ζ)−q2k(−ζ)
2ζ

q2k+1(ζ)+q2k+1(−ζ)
2

q2k+1(ζ)−q2k+1(−ζ)
2ζ

)(
1 0
−β 1

)(√
1+α2

1+α1
0

0 1

)
.

(1.19)
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It is an easy check to see that Theorem 1.4 reduces to Theorem 1.2 in case α1 = α2.
The proof of Theorem 1.4 is essentially the same as that of Theorem 1.2. The crucial property is that

Wα1
(z)Wα2

(z) has the eigenvalues

λ1,2 = ±
√

(1 + α1)(1 + α2)
(
z + β2

)1/2
+ z +

1 + α1α2

2

with β given by (1.15), Thus the eigenvalues and eigenvectors live on the Riemann surface associated with
the equation ζ2 = z+β2, which again has genus 0. We do not give more details on the proof of Theorem 1.4.

In [6], Charlier studies a 2×2-periodically weighted tiling model of the hexagon leading to matrix-valued
orthogonality with weight matrix W 2N (z)/z2N where

W (z) =

(
1 1
αz 1

)(
α2 α
z 1

)
, α > 0,

which is similar to (1.14). The matrix-valued orthogonality can be reduced to scalar orthogonality in this
case as well, with a scalar weight(

(ζ − αc)(ζ − αc−1)

ζ(ζ − c)(ζ − c−1)

)2N

, c =

√
α

1− α+ α2

on a contour going around c and c−1 but not around 0. See [6, Section 3] where this is discussed on the level
of the reproducing kernels.

Higher periodicity in the parameters will lead to a higher genus Riemann surface. For example in
the case of 3-periodicity with α3j+1 = α1, α3j+2 = α2, α3j+3 = α3 we find that the eigenvalues of
Wα1

(z)Wα2
(z)Wα3

(z) live on the genus 1 Riemann surface associated with

ζ2 = 4z3 + az2 + bz + c

where a, b, c are explicit in terms of the parameters αj , j = 1, 2, 3,

a = (1 + α1 + α2 + α3)2 + 8,

b = 6α1α2α3 + α1α2α3(α1 + α2 + α3) + 4(α1α2 + α1α3 + α2α3) + 2(α1 + α2 + α3) + 6,

c = (1− α1α2α3)2.

2 Asymptotic results

2.1 Discussion

For our asymptotic results we restrict to the special case from Theorem 1.2, namely αj = α > 0 for every j
with parameters L = 4n and K = 2n. This choice of parameters corresponds to tilings of a regular hexagon
of size 2n× 2n× 2n. We are motivated by the work [7] where this tiling problem was studied, but not with
MVOPs. Instead it relied on monic scalar orthogonal polynomials (pk,n)k with orthogonality

1

2πi

∮
γ

pk,n(z)zj
(z + 1)n(z + α)n

z2n
dz = 0, j = 0, 1, . . . , k − 1. (2.1)

Note that we use a second subscript n in order to emphasize that the orthogonality weight is varying with
n.

As we saw in Theorem 1.2 the point of view of matrix orthogonality leads to monic scalar orthogonal
polynomials qk = qk,n (if they exist) with

1

2πi

∮
γR

qk,n(z)zj
(z + α+ β)2n

(z2 − β2)n
dz = 0, j = 0, 1, . . . , k − 1. (2.2)

with β = (1−α)/2 and R > β. In the situation of Theorem 1.2(a), q2k is equal to q2k,2n, and q2k+1 is equal
to q2k+1,2n + cq2k,2n for some constant c, provided that q2k+1 has degree 2k + 1.

5



−1 −
√
α −α 0

ẑ+

ẑ−

Figure 1: Zeros of the polynomial pn,n with n = 40 and α = 0.2, together with the critical trajectories of

Q̂α(z)dz2. The zeros tend to one of the critical trajectories as n→∞, namely to the circular arc connecting
ẑ− and ẑ+.

Both families of polynomials pk,n and qk,n can be used for the analysis of the hexagon tiling model, but
curiously enough it is not possible to map one family directly to the other. However, we do see similar
behavior in the asymptotic behavior of pn,n and qn,n as n→∞.

The asymptotic behavior of pn,n is essentially done in [7], but since the focus there was on the hexagon
tiling model, the results for the polynomials were not stated explicitly in [7]. Let us summarize however
what we have. First of all we may restrict to 0 < α ≤ 1, because there is a symmetry α 7→ 1/α in the tiling
model. This is reflected in the orthogonality (2.1). Indeed, if we use pk,n(z;α) to denote the dependence on
α, then we obtain from a simple rescaling z 7→ αz in (2.1) that

pk,n(αz;α) = αkpk,n(z; 1/α).

We similarly find from (2.2) that
qk,n(αz;α) = αkqk,n(z; 1/α).

Next, it was found in [7] that there is a phase transition in the hexagon tiling model at the critical value
α = 1/9. In the large n limit there are frozen regions where the tiling is fixed with very high probability, and
liquid regions where one sees all three types of tiles in a random fashion. For 0 < α < 1

9 the liquid region
consists of two disjoint ellipses, which merge at the critical value of α. For 1

9 < α ≤ 1 the liquid region is
simply connected. See Figure 7 below for a hexagon tiling with α < 1

9 . The transition is reflected in the
behavior of the zeros of the polynomials (pn,n)n as n→∞. For 1

9 < α < 1 the zeros tend to the circular arc
|z| =

√
α, | arg z| < θα, for a certain θα < π, while for 0 < α < 1

9 they tend to a closed contour as n→∞.

By [7, Lemma 4.5], the circular arc is a critical trajectory of the quadratic differential Q̂α(z)dz2 where

Q̂α(z) =
(z − ẑ+)(z − ẑ−)(z +

√
α)2

z2(z + 1)2(z + α)2
(2.3)

with

ẑ± = −3− 2
√
α+ 3α

8
± 3i(1 +

√
α)

8

√(
1−

√
α
3

) (
3
√
α− 1

)
.

There are three critical trajectories connecting the two simple zeros ẑ± of the quadratic differentials. One of
these is the circular arc that attracts the zeros of pn,n as n→∞ in the case 1/9 < α ≤ 1. A brief overview
of basic properties of quadratic differential is given in [33, Section 4], see also [37] and [40] for more extensive
accounts.

2.2 Zeros of qn,n

For the asymptotic results on the polynomials qn,n in this paper we also restrict to 1/9 < α ≤ 1.
The quadratic differential Qα(z)dz2 that is relevant for the zeros of qn,n is given in the next definition.

6



−α− β −β − (1−
√
α)2

2
β

z+

z−

Σ0

Σ1
Σ2

Figure 2: Zeros of the polynomial qn,n with n = 40 and α = 0.2, together with the critical trajectories of
Qα(z)dz2. The zeros tend to Σ0, which is one of the critical trajectories as n→∞, but it is not the circular
arc Σ2 connecting z− and z+. The figure also shows the zeros and poles of the quadratic differential.

Definition 2.1. For 1
9 < α ≤ 1, we define the two points z± = z±(α) as

z± = z±(α) = (1 +
√
α)

(
−1 +

√
α

8
± 3i

8

√(
1−
√
α

3

)(
3
√
α− 1

))
(2.4)

and the rational function Q = Qα as

Qα(z) =
(z − z+)(z − z−)

(
z + (1−

√
α)2

2

)2
(z − β)2(z + β)2(z + α+ β)2

(2.5)

with β = 1−α
2 as before.

A little calculation shows that
Qα(−z − α− β) = Q̂α(z) (2.6)

with Q̂α given by (2.3), and therefore the critical trajectories of Qαdz
2 are mapped to those of Q̂αdz

2 by
the mapping z 7→ −z − α− β. The latter ones where determined in [7]. We then have the following.

Lemma 2.2. Let 1
9 < α ≤ 1.

(a) There are three critical trajectories Σ0, Σ1, Σ2 of Qα(z)dz2 that connect the simple zeros z± of Qα, as
shown in Figure 2.

(b) Each trajectory Σj carries a probability measure µj given by

dµj(s) =
1

πi
Qα(s)1/2ds, s ∈ Σj , j = 0, 1, 2, (2.7)

where ds denotes the complex line element and the appropriate square root is taken so that (2.7) is a
positive measure.

Proof. Part (a) is immediate from (2.6) and the corresponding result in [7, Lemma 4.6] on the critical

trajectories of Q̂αdz
2. The proof of part (b) is analogous to the proof of [7, Proposition 4.4].

The asymptotic behavior of the zeros of the polynomials (qn,n)n follows from a strong asymptotic formula.
The formula involves the g-function

g(z) =

∫
log(z − s)dµ0(s), (2.8)

7



associated with the measure µ0, which is defined and analytic in C \ (Σ0 ∪ (−∞, x∗)]) where x∗ denotes the
point of intersection of Σ0 with the positive real axis, as well as the following functions that are determined
by the endpoints z±, see (2.4), of Σ0,

A0(z) =
1

2
(a(z) + a(z)−1), (2.9)

a(z) =

(
z − z+
z − z−

)1/4

, (2.10)

ψ(z) =
1

2

(
z − z+ − z−

2
+ ((z − z+)(z − z−))

1/2

)
. (2.11)

The fractional powers in (2.10) and (2.11) are defined and analytic in C \ Σ0 while being real and positive
for large positive real z.

Proposition 2.3. Let 1
9 < α ≤ 1. With the notation above we then have.

(a) For each fixed k ∈ Z, the polynomial qn+k,n exists for n large enough, and

qn+k,n(z) = A0(z)ψk(z)eng(z)
(

1 +O

(
1

n(1 + |z|)

))
, z ∈ C \ Σ0, (2.12)

where the O is uniform for z in compact subsets of C \ Σ0.

(b) The zeros of qn,n tend to Σ0 as n→∞, and µ0 is the limit of the normalized zero counting measures.

We find it remarkable that the zeros of qn,n tend to Σ0, but Σ0 is not the image of the circular arc under
the mapping z 7→ −z −α− β, that attracts the zeros of pn,n as n→∞, compare the Figures 1 and 2. Thus
the two sequences of polynomials are genuinely different.

The normalized zero counting measure ν(q) of a polynomial q of degree n is the measure that assigns
mass 1/n to each of its zeros, where zeros are counted according to their multiplicities, i.e.,

ν(q) =
1

n

∑
q(x)=0

δx. (2.13)

The convergence in part (b) of Proposition 2.3 is in the sense of weak convergence of measures and so
ν(qn,n)→ µ0 weakly means that

lim
n→∞

∫
fdν(qn,n) =

∫
fdµ0

for every bounded continuous function on C.
The study of zero distributions of polynomials qn,n with respect to a varying non-Hermitian orthogonality

weight has a long history, starting with the pioneering works of Gonchar and Rakhmanov [26]. Under quite
general conditions, the zeros of polynomials that satisfy a non-Hermitian orthogonality tend to smooth
curves, that are critical trajectories of quadratic differentials, see for example [11, 29, 35]. See also [34] and
the many references cited therein.

2.3 Zeros of detPn,n

Our main interest is in the MVOP Pn,n that has the orthogonality (1.1) with matrix weight (1.5)

W (z) =
Wα(z)4n

z2n
,

since we recall that L = 4n and K = 2n. Our second main result deals with the limiting behavior of the
zeros of the determinant of Pn,n. These are sometimes also simply called zeros of Pn,n in the literature, see
for example [20, p. 98].

In the literature there are already many results on the zeros of MVOP when the matrix orthogonality is
on the real line with a semi-positive definite weight matrix. Theorem 1.1 in [20] states some properties of

8



Σ̃0
zeros of q80,80

after mapping

z 7→ z2 − β2

z2+ − β2

z2− − β2

Σ̃0

zeros of detP40,40

z2+ − β2

z2− − β2

Figure 3: The curve Σ̃0 and the zeros of q80,80 after the transformation z 7→ z2 − β2 (left) and the zeros of
detP40,40 (right).

the zeros of MVOP of finite degree, and the limiting behavior of the zeros of MVOP is investigated from two
perspectives by Durán, López-Rodriguez and Saff in [21]. See also Theorem 5.2 in [10]. The results in [21]
are generalized by Delvaux and Dette in [16]. In the present situation, the limiting behavior of the zeros of
detPn,n is as follows.

Theorem 2.4. Let 1
9 < α ≤ 1. Then the zeros of detPn,n tend to the curve

Σ̃0 = {z2 − β2 | z ∈ Σ0} (2.14)

as n→∞. Furthermore, the normalized zero counting measures of detPn,n(z) tend to the probability measure
µ̃0 that is the pushforward of µ0 under the map z 7→ z2 − β2.

The pushforward measure µ̃0 is characterized by the property that∫
fdµ̃0 =

∫
f(z2 − β2)dµ0(z) (2.15)

for every continuous function f on Σ̃0.
From Proposition 2.3(b) it follows that after transformation z 7→ z2 − β2, the zeros of qn,n(z) tend to

Σ̃0 as n → ∞ with µ̃0 as limiting normalized zero counting measure. The zeros of detPn,n have the same
limiting behavior, as also shown in Figure 3, where we compare the zeros of detPn,n with those of q2n,2n for
n = 40. The similar behavior is to be expected, because of the identity

detPn,n(z) =
q2n,2n(ζ)q2n+1,2n(−ζ)− q2n+1,2n(ζ)q2n,2n(−ζ)

2ζ
, z = ζ2 − β2, (2.16)

that easily follows from (1.9).

2.4 Zeros of the (1, 2)-entry of Pn,n

Finally, we study the asymptotic distribution of the zeros of the top right entry of the matrix Pn,n, see
Figure 4. The individual entries of a matrix valued orthogonal polynomial are not a natural quantity to
study, because they depend on the normalization of the matrix Pn,n, which in our case is taken to be monic.
Nevertheless, we were curious to look for the limiting distribution of their zeros, and we chose the (1, 2)-entry
since this entry has the simplest expression in terms of the scalar orthogonal polynomials. Indeed, by (1.9),
the (1, 2)-entry of Pn,n is given by

(Pn,n)12(z) =
q2n,2n(ζ)− q2n,2n(−ζ)

2ζ
, (2.17)

9



Σ̃0
z2− − β2

z2+ − β2

−β2

Zeros of (Pn,n)12

with n = 30

Σ0

z+

z−

Zeros of
qn,n(z)−qn,n(−z)

2z

with n = 60

Figure 4: The left panel shows the contour Σ̃0 and part of the zeros of (Pn,n)12 with n = 30 and α = 0.2.
There are more zeros on the negative real axis. As n → ∞ the real zeros fill out the interval (−∞,−β2]

and the non-real zeros follow part of the contour Σ̃0. The right panel shows the contour Σ0 and part of the

zeros of
qn,n(z)−qn,n(−z)

2z for the values n = 60 and α = 0.2. There are more zeros on the imaginary axis. As
n → ∞ the zeros fill out the full imaginary axis. Moreover, they will accumulate on the part of Σ0 in the
left half-plane and on the part of −Σ0 in the right half-plane.

where ζ = (z+β2)1/2 as before. We find the limiting distribution of the zeros of the right-hand side of (2.17)
and then the limiting distribution of the zeros of (Pn,n)12 follows after a coordinate transformation. Our
numerical explorations show that the other entries of Pn,n have the same limiting behavior of their zeros.

In order to prove the result we need the inequality (2.18) (see below) for the g-function (2.8) associated
with the measure µ0 on Σ0. We were not able to prove (2.18) analytically, but we are able to establish it
under a geometric condition on Σ0, see Theorem 2.6 which is supported by numerical evidence.

In the statement of Theorem 2.5 and also further throughout the paper, we use LHP = {z ∈ C | Re z < 0}
and RHP = {z ∈ C | Re z > 0} to denote the open left and right half-planes, respectively.

Theorem 2.5. Let 1
9 < α ≤ 1. Suppose that

Re g(−z) > Re g(z), for z ∈ RHP. (2.18)

Then the sequence of normalized zero counting measures of the polynomials
qn,n(z)−qn,n(−z)

2z tends weakly to
the probability measure

ν = νL + νR + ν0, (2.19)

as n → ∞, where νL = µ0|LHP, νR = µ∗0|RHP, and ν0 = Bal (µ0|RHP)− Bal (µ0|LHP). Here Bal denotes the
balayage of a measure to the imaginary axis, and µ∗0 is the pushforward of the measure µ0 under the sign
change z 7→ −z.

The sequence of normalized zero counting measures of (Pn,n)12 tends to ν̃ where ν̃ is the pushforward of
ν under the map z 7→ z2 − β2.

The balayage measure µ̂ = Bal(µ) of a measure µ onto the imaginary axis is characterized by the
properties that supp(µ̂) ⊂ iR,

∫
dµ̂ =

∫
dµ and U µ̂(z) = Uµ(z) for z ∈ iR where Uµ(z) =

∫
log 1
|z−s|dµ(s)

denotes the logarithmic potential of µ, see e.g. [38].
In (2.19) we have that ν0 is the part of ν that is on the imaginary axis. It is given as the difference

between two balayage measures, which a priori need not be positive. The condition (2.18) is needed in order
to show that

Bal (µ0|LHP) ≤ Bal (µ0|RHP) (2.20)

in the sense of measures, such that ν0 is indeed positive, see Lemma 6.1. Then according to Theorem 2.5 ν0
is the limiting distribution for the zeros on the imaginary axis. Very loosely speaking, the inequality (2.20)
expresses the fact that there is more of µ0 in the right half-plane than in the left half-plane.
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Σ0−Σ0
Ω0

α = 0.112

−z−
−z+

z+

z−

−Σ0
Ω0

α = 0.12

−z−
−z+

z+

z−

Σ0−Σ0

Ω0

α = 0.2

−z−

−z+

z+

z−

Σ0−Σ0

Ω0

α = 0.4

−z−

−z+

z+

z−

Figure 5: The contours Σ0 (in blue) and −Σ0 (in red) for the values of α equal to 0.112, 0.12, 0.2 and 0.4
from left to right. The part of Σ0 in the right half-plane and the part of −Σ0 in the left half-plane enclose
a bounded domain Ω0 and the figures show that the part of Σ0 in the left half-plane belongs to Ω0.

2.5 Geometric condition

The trajectory Σ0 intersects the imaginary axis and so it is partly in the right half-plane and partly in the
lower half-plane. The part of Σ0 in the right half-plane together with the part of −Σ0 in the left half-plane
enclose a bounded domain Ω0, as shown in Figure 5.

Theorem 2.6. Suppose that the part of Σ0 in the left half-plane (and by symmetry, the part of −Σ0 in the
right half-plane) are contained in Ω0. Then the inequality (2.18) holds.

The above condition can be equivalently reformulated as a requirement on Σ̃0 from (2.14) as follows. The

part of Σ̃0 that is the image of the part of Σ0 in the closed right half-plane under the mapping z 7→ z2 − β2

is a closed curve that divides the plane in a bounded and an unbounded set: the requirement then becomes
that the remaining part of Σ̃0 should be contained in the bounded set. See for example Figure 3.

The condition of Theorem 2.6 is strongly supported by computational evidence. See Figure 5 for plots
of Σ0, −Σ0 and Ω0 for a number of α values.
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A

A

B

B

C

C

(x, y)

α1 α2

α3 α6

α3

α6 α7 α8

Figure 6: An ABC-hexagon with side lengths A = 4, B = 5 and C = 3 (left) can be covered by the three
types of lozenges that are shown in the middle. The weighting (3.1) depends on the coordinates (x, y) of
the square tiles. The right panel shows a possible weighted tiling in which the shaded square tiles have the
indicated weight αj while all other tiles have weight 1.

2.6 Overview of the rest of the paper

The rest of the paper is organized as follows. In Section 3, we discuss lozenge tilings of the hexagon and its
connection with MVOPs and this leads to the proof of Proposition 1.1. In Section 4, we prove Theorem 1.2.
Then, in Section 5, we derive the strong asymptotics of the scalar orthogonal polynomials qn+k,n as n→∞
using the Deift-Zhou steepest descent method with a small twist. We use the strong asymptotics of qn,n and
qn+1,n to prove Proposition 2.3 and Theorem 2.4. In Section 6, we study the properties of the upper right
entry of Pn and prove Theorem 2.5. Finally, in Section 7, Theorem 2.6 is proved.

3 Tilings of a hexagon

3.1 Introduction

Random lozenge tilings of a hexagon have been studied extensively in the last decades because of its remark-
able connections with various fields of mathematics and physics, see the book [27] of Vadim Gorin for an
introduction to the topic. In the simplest random model one assigns an equal probability to each possible
tiling, and within this model the arctic circle phenomenon was observed and proved, see [9] or [2, Section
3.4]. Periodically weighted tilings were studied in [30] and in [8] (for a related tiling model of a so-called
Aztec diamond). Recently in [17], a new technique based on MVOPs was developed to study random tiling
models with periodic weightings. The matrix valued orthogonality (1.1) with weights (1.3) appears in this
context, as we will explain now.

We follow [6, 7]. An ABC-hexagon has its vertices at the points (0, 0), (B, 0), (B+C,C), (B+C,A+C),
(C,A + C) and (0, A) as in Figure 6. The hexagon can then be covered with the three types of lozenges
shown in Figure 6 as well. This can be done in many ways, and a particular example of a tiling is shown
in the right panel of Figure 6 for the case of a regular hexagon with A = B = C = 4. The vertices of the
lozenges all lie on the integer lattice Z2.

In a weighted tiling model, certain weights are assigned to the lozenges, depending on their shape and
on their location in the hexagon. In a periodic weighting this is done in a periodic fashion with respect to
at least one direction. The simplest model is to introduce two periodicity in one direction, say the vertical
direction, depending on the location of the square tiles. In this model we fix parameters α1, α2, . . . , αL > 0

12



Figure 7: A typical lozenge tiling of a larger size hexagon with periodic weighting with parameter αj =
α = 1/10 for all j. The regular hexagon in this picture is obtained from the one in Figure 6 by a shear
transformation (x, y) 7→ (x, y − x/2). The figure is due to Christophe Charlier.

with L = B + C, and put

W


(x, y)

 =

{
αj if x = j − 1, and y is even,

1 if y is odd,
(3.1)

while all other tiles have weight 1. A hexagon tiling T then has the weight

W(T ) =
∏
T∈T
W(T ) =

L∏
j=1

α
Nj(T )
j

where Nj(T ) is the number of square tiles in the jth column of T at an even height. This is a 1× 2-periodic
tiling of the hexagon, as the weights only depend on the height of the lozenge (that is, the vertical direction).
See the right panel of Figure 6 where the square tiles with weight αj are highlighted. We introduce a
probability measure P on the set of all tilings of a hexagon of fixed size by setting

P(T ) =
W(T )∑
T ′W(T ′)

, (3.2)

where the sum runs over all possible tilings T ′ of the hexagon.
There is a completely analogous weighting which is 2 × 1 periodic. Here the weight of the square tile

depends on the parity of the horizontal coordinate instead of the vertical coordinate. The two weightings are
equivalent and show the same phenomena in the large size limit. The main phenomenon that was discovered
is illustrated in Figure 7. In the large n limit the pattern of tiles is fixed in certain regions near the corners
of the hexagon, where only one type of lozenge is present, as well as in a region in the middle with two types
of lozenges. These regions are called the solid regions. The remaining part of the hexagon is referred to as
a liquid region. All three types of lozenges are present in the liquid region, and they do not appear in a
regular pattern.

The solid region with two types of lozenges can connect two opposite sides of the hexagon as it is the
case in Figure 7 or it can happen that it consists of two disjoint parts. In the former case the liquid region
consists of two disjoint pieces, while in the latter case the liquid region is connected. There is a transition
between the two cases which depends on the parameter α > 0. The critical parameter is α = 1/9 as shown
in [7].
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Figure 8: The non-intersecting path system on a directed graph corresponding to the hexagon tiling of
Figure 6. The 1× 2 periodic weighting corresponds to weights α on the horizontal edges at even height. All
other edges have weight 1.

3.2 Systems of non-intersecting paths

A lozenge tiling of the hexagon can be alternatively viewed as a non-intersecting path system. The paths
correspond to level lines for the height function for boxes stacked in a corner. The non-intersecting paths
are obtained by drawing diagonal lines on two of the three types of lozenges as shown in Figure 8. This
gives us a bijection between tilings of an ABC-hexagon and non-intersecting path systems on a directed
graph G = (Z2, E) with starting points at A consecutive points (0, 0), . . . , (0, A − 1) and ending points
at (B + C,C), . . . , (B + C,A + C − 1). The edge set E consists of directed edges ((x, y), (x + 1, y)) and
((x, y), (x + 1, y + 1)) with (x, y) ∈ Z2. See Figure 8 for the non-intersecting path system corresponding to
the tiling of Figure 6. The weights αj on the square tiles in the 1 × 2 periodic setting correspond to edge
weights on the horizontal edges at even numbered heights. Note that we applied a shift y 7→ y − 1/2 to the
vertical coordinate.

By then putting particles on the paths as also indicated in Figure 8, we obtain a multi-level particle
system. A hexagon of size ABC then has B + C + 1 levels 0, 1, . . . , B + C with A particles on each level.
The vertical positions of the particles on the mth level will be denoted by

y
(m)
0 < y

(m)
1 < · · · < y

(m)
A−1

with fixed starting positions y
(0)
j = j and ending positions y

(L)
j = C + j for j = 0, . . . , A− 1, at levels 0 and

B + C, respectively.
To any weighting of the edges of the directed graph we associate transition matrices Tm : Z×Z→ R for

m ∈ Z where Tm(x, y) is equal to the weight on the edge from (m,x) to (m+ 1, y) if there is such an edge,
and zero otherwise.

Then it is a general fact, which is a consequence of the Lindström-Gessel-Viennot lemma [25, 32] that
the multi-level particle system coming from an ABC-hexagon has the joint probability measure given by a
product of determinants

P

((
y
(m)
j

)A−1,B+C

j=0,m=0

)
=

1

ZA,B,C

A−1∏
j=0

δj

(
y
(0)
j

)
·
B+C−1∏
m=0

det
[
Tm

(
y
(m)
j , y

(m+1)
k

)]A−1
j,k=0

·
A−1∏
j=0

δC+j

(
y
(B+C)
j

)
. (3.3)

The probability measure (3.3) is determinantal by the Eynard-Mehta theorem [23] (see also [17, Theorem
4.3]) with a correlation kernel that has an explicit double sum formula.
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3.3 Periodic transition matrices

One of the contributions of [17] is to rewrite the correlation kernel of the determinantal point process as a
double contour integral in case all transition matrices Tm are periodic, in the sense that

Tm(x+ p, y + p) = Tm(x, y), (x, y) ∈ Z2

for some integer p ≥ 1. The MVOP appear in this formula and they have size p×p if the transition matrices
are p-periodic. The orthogonality weights come from the symbols of the transition matrices.

In the situation of the two periodic weighting with parameters α1, . . . , αB+C , the transition matrices
Tm : Z× Z→ R are 2-periodic

Tm(x, y) =


αj , if m = j − 1, and y = x is even,

1, if m = j − 1, and y = x is odd or if y = x+ 1,

0, otherwise.

(3.4)

The symbol of Tm is given by

Wα(z) =

(
α 1
z 1

)
, with α = αj , j = m+ 1 (3.5)

and these will enter into the matrix-valued weight function.
The formalism of [17] then assumes that the sides A and C of the hexagon are even, say A = 2k, C = 2c.

The matrix-valued orthogonality weight then is

Wα1(z)Wα2(z) · · ·WαB+C
(z)

zk+c
, (3.6)

and Lemma 4.8 of [17] then states that a unique monic matrix-valued polynomial Pk of degree k exists that
is orthogonal with respect to the above weight matrix on a closed contour γ going around 0 once in the
counterclockwise direction. This leads to the proof of the existence of MVOP.

3.4 Proof of Proposition 1.1

Proof. Suppose an integer k ≥ 0 is given, as well as integers K ≥ k and L ≥ 2(K − k). We take

A = 2k, c = K − k, C = 2c, and B = L− C.

Then A,B,C are non-negative integers with A and C even. With these parameters the matrix weight (3.6)
is equal to (1.3) and therefore the MVOP Pk of degree k uniquely exists, due to [17, Lemma 4.8].

4 Proof of Theorem 1.2

Proof. (a) Let

Q2k(ζ) = Pk(ζ2 − β2)

(
1 1

ζ + β −ζ + β

)
. (4.1)

Then the first column of Q2k has the entries

q2k(ζ) := (Q2k)11 (ζ) = (Pk)11 (ζ2 − β2) + (Pk)12 (ζ2 − β2)(ζ + β),

q2k+1(ζ) := (Q2k)21 (ζ) = (Pk)21 (ζ2 − β2) + (Pk)22 (ζ2 − β2)(ζ + β),
(4.2)

and these are easily seen to be monic polynomials of respective degrees 2k and 2k + 1, since Pk is a monic
matrix valued polynomial of degree k. From (4.1) it is also immediate that the second column contains the
entries q2k(−ζ) and q2k+1(−ζ) with the same polynomials (4.2). Thus (1.6) holds and it remains to check
the orthogonality (1.7).
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The matrix orthogonality of Pk with weight (1.5) yields

1

2πi

∮
γ

Pk(z)Wα(z)Lzj−Kdz = 02, j = 0, 1, . . . , k − 1, (4.3)

where we choose for γ the circle around −β2 of radius R2 > β2. Recall the spectral decomposition Wα =
EΛE−1 from (1.11) with

Λ(ζ) =

(
ζ + α+ β 0

0 −ζ + α+ β

)
, E(ζ) =

(
1 1

ζ + β −ζ + β

)
, (4.4)

and ζ = (z + β2)1/2, Re ζ > 0, see (1.12) and (1.13). Hence by (4.1), (1.11), (4.4),

Pk(z)Wα(z)L = Q2k(ζ)Λ(ζ)LE−1(ζ) = Q2k(ζ)Λ(ζ)L
1

2ζ

(
ζ 1
ζ −1

)(
1 0
−β 1

)
.

Performing the change of variable z = ζ2 − β2 with dz = 2ζdζ in (4.3), we obtain

1

2πi

∫
γ+
R

Q2k(ζ)Λ(ζ)L
(
ζ 1
ζ −1

)(
1 0
−β 1

)
(ζ2 − β2)j−Kdζ = 02, j = 0, 1, . . . , k − 1, (4.5)

where γ+R denotes the semicircle |ζ| = R, Re ζ > 0. The constant matrix

(
1 0
−β 1

)
can be dropped from

(4.5) as it disappears if we multiply by its inverse. Then the matrix identity (4.5) results in four integrals
that are equal to zero, and each integral contains the scalar weight wα,K,L from (1.10). Using (4.1), (1.6),
(4.4), and (1.10), we obtain the following integrals containing either q2k or q2k+1,

1

2πi

∫
γ+
R

[q2k+ε(ζ)wα,K,L(ζ) + q2k+ε(−ζ)wα,K,L(−ζ)] ζ(ζ2 − β2)jdζ = 0,

1

2πi

∫
γ+
R

[q2k+ε(ζ)wα,K,L(ζ)− q2k+ε(−ζ)wα,K,L(−ζ)] (ζ2 − β2)jdζ = 0,

(4.6)

for ε = 0, 1, and j = 0, 1, . . . , k − 1.
The integrals in (4.6) are turned into integrals over the full circle γR by writing them as a sum of two

integrals and changing variables ζ → −ζ in the second one. We obtain for j = 0, 1, . . . , k − 1, and ε = 0, 1,

1

2πi

∮
γR

q2k+ε(ζ)wα,K,L(ζ)ζ(ζ2 − β2)jdζ = 0,

1

2πi

∮
γR

q2k+ε(ζ)wα,K,L(ζ)(ζ2 − β2)jdζ = 0.

(4.7)

Observe the extra factor ζ in the first integral of (4.7). The 2k polynomials ζ 7→ ζ(ζ2−β2)j , ζ 7→ (ζ2−β2)j ,
j = 0, . . . , k−1, are linearly independent, since we have a unique polynomial in this set for each degree from
0 up to 2k − 1. Thus they are a basis of the vector space of all polynomials of degree ≤ 2k − 1. We then
obtain (1.7) by taking suitable linear combinations of the identities in (4.7), which completes the proof of
part (a).

(b) Suppose q2k and q2k+1 are two monic polynomials of degrees 2k and 2k+ 1, respectively that satisfy
(1.7) and define Q2k as

Q2k(ζ) =

(
q2k(ζ) q2k(−ζ)
q2k+1(ζ) q2k+1(−ζ)

)
.

Then, for any c ∈ C, the matrix valued function Pk as defined in (1.9) satisfies the orthogonality (1.1)
with weight matrix (1.5), simply by reversing the arguments from part (a). From the second line of (1.9) it
is clear that Pk is a polynomial in the variable z, see also the remark following the statement of Theorem 1.2.
The diagonal entries of Pk are monic polynomials of degree k, and the (1, 2)-entry is a polynomial of degree
≤ k − 1. The (2, 1)-entry is a polynomial of degree ≤ k.
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Σ0

γ0

z+

z−

−α− β −β β

Figure 9: Σ0 (in blue) has analytic continuation to a closed contour γ0 surrounding ±β, where γ0 \ Σ0

consists of orthogonal trajectories connecting z± with −α− β.

Suppose
q2k+1(ζ) = ζ2k+1 + aζ2k +O(ζ2k−1)

as ζ →∞. Then
q2k+1(ζ) + q2k+1(−ζ)

2
= aζ2k +O(ζ2k−2)

and it follows from (1.9) that

(Pk)21 (z) = (c+ a− β)zk +O(zk−1) as z →∞.

The choice for c in (1.18) then guarantees that c + a − β = 0 and therefore the (2, 1) entry of Pk has
degree ≤ k − 1. Thus Pk defined by (1.9) is a monic matrix valued polynomial with the required matrix
orthogonality. Part (b) then follows because of the uniqueness of the MVOP, see also Proposition 1.1.

5 Proofs of Proposition 2.3 and Theorem 2.4

We prove part (a) of Proposition 2.3 via the Deift-Zhou steepest descent analysis of the Riemann-Hilbert
problem (or RH problem) for scalar orthogonal polynomials. It is well-known that the monic scalar orthogonal
polynomials can be expressed in terms of a RH problem [24]. The Deift-Zhou steepest descent analysis was
first performed in [14] and its application to orthogonal polynomials has been well-developed by now. We
refer to [12, 13] or [3, Section 2.4] for more background information.

In our case, the method works smoothly for qn,n but we need a little twist to make it work for qn+k,n
with k 6= 0. This is the reason why we give a detailed account here.

5.1 The Riemann-Hilbert problem for qn+k,n

The critical trajectory Σ0 is analytically continued to a closed contour γ0 around 0 as in Figure 9. The
additional part is an orthogonal trajectory of the quadratic differential Qαdz

2. Then γ0 surrounds the
points ±β, see also [7, section 4]. Thus γR can be deformed to γ0 in (2.2) without crossing the poles, and
qn+k,n is also characterized by the orthogonality

1

2πi

∮
γ0

qn+k,n(z)zj
(z + α+ β)2n

(z2 − β2)n
dz = 0, j = 0, 1, . . . , n+ k − 1.

The closed contour γ0 is positively (counterclockwise) oriented. As usual in RH problems the + side is on
the left and the − side is on the right when traversing the contour according to its orientation.

Riemann-Hilbert problem 1. Y is a 2× 2 matrix-valued function that satisfies
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• Y : C \ γ0 → C2×2 is analytic,

• Y has a jump on γ0 given by

Y+(z) = Y−(z)

(
1 wα(z)n

0 1

)
for z ∈ γ0, (5.1)

where Y± denote the limiting values of Y on the ± sides of γ0, and

wα(z) =
(z + α+ β)2

(z2 − β2)
.

• Y (z) = (I2 +O(z−1))

(
zn+k 0

0 z−n−k

)
as z →∞.

Fokas, Its and Kitaev first established in [24] that Riemann-Hilbert problem 1 has a solution in terms
of the scalar orthogonal polynomials qn+k,n. The solution to the RH problem exists if and only if qn+k,n
uniquely exists, and in that case

Y (z) =

 qn+k,n(z)
1

2πi

∮
γ0

qn+k,n(s)wα(s)n

s− z
ds

q̂n+k−1,n(z)
1

2πi

∮
γ0

q̂n+k−1,n(s)wα(s)n

s− z
ds

 (5.2)

for some polynomial q̂n+k−1,n of degree ≤ n + k − 1. If q̂n+k−1,n has exact degree n + k − 1, then it is
a multiple of the monic orthogonal polynomial of degree n + k − 1, and qn+k−1,n uniquely exists as well.
However, it is possible that the degree of q̂n+k−1,n is less than n+ k − 1.

A consequence of the steepest descent analysis will be that, for a fixed k ∈ Z, the Riemann-Hilbert
problem 1 is solvable for n large enough. Hence the polynomial qn+k,n exists for n large enough.

5.2 Steepest descent analysis

5.2.1 First transformation Y 7→ T

Note that there is a discrepancy between the power of the weight function in the jump of Y and the degree
of z±(n+k) in the asymptotics of Y (z) as z → ∞. The transformation Y 7→ T will not depend on k, and it
leads to a RH problem that is not normalized at infinity, as we will see. We use the g-function (2.8), the
function

Vα(z) = − logwα(z) = log(z2 − β2)− 2 log(z + α+ β), (5.3)

as well as the following lemma.

Lemma 5.1. Let 1
9 < α ≤ 1, and let Σ0 and γ0 be as in Figure 9. Then there is a constant ` such that

g+(z) + g−(z)− Vα(z)

{
= −`, z ∈ Σ0,

< −`, z ∈ γ0 \ Σ0.
(5.4)

In addition
g+(z)− g−(z) = 2φ+(z), z ∈ Σ0, (5.5)

where φ is defined by

φ(z) =

∫ z

z+

Qα(s)1/2ds (5.6)

and φ satisfies

φ(z) = g(z)− Vα(z)

2
+
`

2
, z ∈ C \ (Σ0 ∪ (−∞, x∗]) (5.7)

where x∗ is the point of intersection of Σ0 with the positive real line.
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Proof. This is essentially the same as the proof of [7, Proposition 4.4].

By taking the derivative in (5.7) and using (5.6) we get that

2g′(z) = V ′α(z) + 2Qα(z)1/2, z ∈ C \ Σ0. (5.8)

Also note that µ0 is a critical measure in the sense of Mart́ınez-Finkelshtein and Rakhmanov, see [33] and
especially Section 5 therein.

We then define

T (z) = e
n`
2 σ3Y (z)e−ng(z)σ3e−

n`
2 σ3 , σ3 =

(
1 0
0 −1

)
. (5.9)

Then T satisfies the following Riemann-Hilbert problem.

Riemann-Hilbert problem 2. The matrix valued function T satisfies the following:

• T : C \ γ0 → C2×2 is analytic,

• T has boundary values on γ0 that satisfy

T+(z) = T−(z)

(
e−2nφ+(z) 1

0 e−2nφ−(z)

)
, for z ∈ Σ0 ⊂ γ0, (5.10)

T+(z) = T−(z)

(
1 e2nφ(z)

0 1

)
, for z ∈ γ0 \ Σ0, (5.11)

• T (z) =
(
I2 +O(z−1)

)(zk 0
0 z−k

)
as z →∞.

The jump matrix on γ0 \ Σ0 tends to the identity matrix as n→∞ because φ(z) < 0 on γ0 \ Σ0 due to
(5.7) and the strict inequality in (5.4).

5.2.2 Second transformation T 7→ S: opening of lenses

We open up lenses around Σ0 such that Reφ > 0 on the lips γ+ and γ− of the lenses, except at the endpoints
z+, z−, and we define

S(z) = T (z)×



(
1 0

−e−2nφ(z) 1

)
for z between Σ0 and γ+,(

1 0

e−2nφ(z) 1

)
for z between Σ0 and γ−,

I2 elsewhere.

(5.12)

Then S satisfies the following Riemann-Hilbert problem:

Riemann-Hilbert problem 3. The function S satisfies:

• S : C \ (γ ∪ γ+ ∪ γ−)→ C2×2 is analytic,

• S has boundary values on γ, γ+ and γ− that satisfy

S+(z) = S−(z)

(
1 0

e−2nφ(z) 1

)
for z ∈ γ+ ∪ γ−, (5.13)

S+(z) = S−(z)

(
0 1
−1 0

)
for z ∈ Σ0, (5.14)

S+(z) = S−(z)

(
1 e2nφ(z)

0 1

)
for z ∈ γ0 \ Σ0, (5.15)

• S(z) = (I2 +O(z−1))

(
zk 0
0 z−k

)
as z →∞.

The jump matrices on γ± and on γ0 \ Σ0 tend to the identity matrix as n→∞.
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5.2.3 Model Riemann-Hilbert problem

Ignoring the jumps that are exponentially small, we look for a solution N to the following model Riemann-
Hilbert problem:

Riemann-Hilbert problem 4. The function N satisfies

• N : C \ Σ0 → C2×2 is analytic,

• N has boundary values on Σ0 that satisfy

N+(z) = N−(z)

(
0 1
−1 0

)
for z ∈ Σ0, (5.16)

• N(z) =
(
I2 +O(z−1)

)(zk 0
0 z−k

)
as z →∞.

The Riemann-Hilbert problem 4 depends on the integer k ∈ Z as it appears in the asymptotic condition.
The solution N0 for the case k = 0 is well-known, namely

N0(z) =

 1

2
(a(z) + a(z)−1)

1

2i
(a(z)− a(z)−1)

− 1

2i
(a(z)− a(z)−1)

1

2
(a(z) + a(z)−1)

 , (5.17)

where a(z) is given by (2.10). Note that (N0)11(z) = A0(z) where A0(z) is given by (2.9).

Lemma 5.2. The solution of Riemann-Hilbert problem 4 takes the form

N(z) =

(
ck 0
0 c−k

)
N0(z)


(
ψ(z)
c

)k
0

0
(
ψ(z)
c

)−k
 (5.18)

where c = z+−z−
4 and ψ(z) is given by (2.11).

Proof. The function ψ is analytic and non-zero on C \ Σ0 with boundary values satisfying ψ+ψ− = c2 on
Σ0, as can be easily obtained from (2.11). These properties guarantee that N is well-defined and analytic
outside Σ0 with the same jump matrix on Σ0 as N0 has. Also ψ(z) = z +O(1) as z →∞ and this gives the
asymptotic condition from the Riemann-Hilbert problem 4.

5.2.4 Local parametrices and final transformation S 7→ R

In small disks D+ and D− around the endpoints z+ and z− of Σ0, we can build local parametrices using
Airy functions, see for example [12, 13] or [3, Section 2.4.6]. We will call these P (+) and P (−) respectively.
The local parametrices do not play a role in the strong asymptotics of qn+k,n away from the contour Σ0.

We next define the function R by

R(z) = S(z)×


N(z)−1 for z ∈ C \ (D+ ∪D−),

P (+)(z)−1 for z ∈ D+,

P (−)(z)−1 for z ∈ D−.
(5.19)

Then the following lemma holds, cf. [3, Section 2.5] or [31, Lemma 8.3].

Lemma 5.3. R is the solution of a small-norm RH problem, which has a solution for n large enough. In
addition, there exists a constant C > 0 such that for all z ∈ C,

‖R(z)− I2‖ ≤
C

n(1 + |z|)
,

where ‖ · ‖ denotes any matrix norm.
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5.2.5 Proof of Proposition 2.3(a)

Since R exists for n large enough, we find by tracing back the transformations Y 7→ T 7→ S 7→ R that the
Riemann-Hilbert problem 1 is solvable for n large enough. This implies that qn+k,n exists for n large enough.

Let K be a compact subset of C \ Σ0. By taking the lense around Σ0 and the disks around z± small
enough such that K lies outside the region bounded by the lenses and disks, we find from (5.9), (5.12), (5.19)
that

Y (z) = e−
n`
2 σ3R(z)N(z)e

n`
2 σ3eng(z)σ3 , z ∈ K.

Because qn+k,n(z) = Y11(z) is the (1, 1)-entry of Y we then obtain

qn+k,n(z) =
(
1 0

)
Y (z)

(
1
0

)
= eng(z)

(
1 0

)
R(z)N(z)

(
1
0

)
= eng(z) (R11(z)N11(z) +R12(z)N21(z)) , z ∈ K.

Using Lemma 5.3, we calculate

qn+k,n(z) = eng(z)
(
N11(z)

(
1 +O

(
1

n(1 + |z|)

))
+N12(z)O

(
1

n(1 + |z|)

))
= N11(z)eng(z)

(
1 +O

(
1

n(1 + |z|)

))
, z ∈ K.

with O term that is uniform on K. The second identity holds since |N11(z)| is bounded away from 0 for
z ∈ K. Then part (a) of Proposition 2.3 follows since the (1, 1) entry of N satisfies

N11(z) = A0(z)ψ(z)k

see (5.17) and (5.18).

5.3 Proof of Proposition 2.3(b)

Part (b) follows from the strong asymptotic formula (2.12) in a standard fashion. Indeed, (2.12) implies that

lim
n→∞

1

n
log |qn,n(z)| = Re g(z), z ∈ C \ Σ0

and Re g = −Uµ0 where

Uµ0(z) =

∫
log

1

|z − s|
dµ0(s)

is the logarithmic potential of µ0. Part (b) then follows from the following result that is well-known, but we
state it here for convenience, as we will also use it in later proofs.

Lemma 5.4. Suppose (pn)n is a sequence of monic polynomials with deg pn = n whose zeros are all in a
bounded subset of the complex plane. Suppose µ is a probability measure with compact support such that

lim
n→∞

1

n
log |pn(z)| = −Uµ(z), a.e. on C. (5.20)

Then the sequence (ν(pn))n of normalized zero counting measures tends to µ in the weak sense.

Proof. Let νn = ν(pn) the normalized counting measure of the zeros of pn, see (2.13). The proof that µ0 is
the weak limit of (νn)n as n→∞ uses basic tools from logarithmic potential theory.

The probability measures νn are all supported on a fixed compact subset K of C. The set of probability
measures on K is compact for the weak topology. Thus, by a standard compactness argument, it suffices to
show that µ is the only possible limit of a weakly convergent subsequence.
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Suppose (νnj )j is a subsequence of (νn)n that weakly converges to some probability measure ν on K.
Then by the Lower Envelope Theorem, see [38, Theorem I.6.9] one has

lim
j→∞

Uνnj (z) = Uν(z), for quasi-every z ∈ C.

Here quasi-every z means except for a set of capacity zero, and in particular it holds almost everywhere with
respect to two-dimensional Lebesgue measure. Because of (5.20) and

Uνn(z) = − 1

n
log |pn(z)|

we then find that Uµ(z) = Uν(z) a.e. on C. The uniqueness theorem for logarithmic potentials, see [38,
Theorem II.2.1] then implies that ν = µ. This proves the lemma.

The proof of Proposition 2.3(b) clearly also works for the zeros of qn+k,n as n→∞ with a fixed k ∈ Z.

5.4 Proof of Theorem 2.4

From (2.16) and the strong asymptotic formula (2.12) that we use for k = 0 and k = 1, we obtain

detPn,n(ζ2 − β2) =
1

2ζ
(q2n,2n(ζ)q2n+1,2n(−ζ)− q2n,2n(−ζ)q2n+1,2n(ζ))

=
1

2ζ
A0(ζ)A0(−ζ)e2n(g(ζ)+g(−ζ))

×
(
ψ(−ζ)

(
1 +O

(
1

n(1 + |ζ|)

))
− ψ(ζ)

(
1 +O

(
1

n(1 + |ζ|)

)))
= A0(ζ)A0(−ζ)

ψ(−ζ)− ψ(ζ)

2ζ
e2n(g(ζ)+g(−ζ))

(
1 +O

(
1

n(1 + |ζ|)

))
(5.21)

as n→∞, uniformly for ζ in compact subsets of C \ (Σ0 ∪−Σ0). We may indeed combine the two O terms
in the last step of (5.21) since ψ(−ζ)− ψ(ζ) does not vanish in C \ (Σ0 ∪ −Σ0).

Thus the zeros of ζ 7→ detPn,n(ζ2 − β2) tend to Σ0 ∪ −Σ0 as n → ∞, which means that the zeros of

detPn,n tend to Σ̃0, see (2.14).
Using (5.21) we also find for ζ ∈ C \ (Σ0 ∪ −Σ0),

lim
n→∞

1

2n
log
∣∣detPn,n(ζ2 − β2)

∣∣ = Re (g(ζ) + g(−ζ))

=

∫
log |ζ − s|dµ0(s) +

∫
log |ζ + s|dµ0(s)

=

∫
log |ζ2 − s2|dµ0(s)

and therefore for z ∈ C \ Σ̃0,

lim
n→∞

1

2n
log |detPn,n(z)| =

∫
log
∣∣z − (s2 − β2)

∣∣ dµ0(s) = −U µ̃0(z),

see also (2.15). Since detPn,n is a monic polynomial of degree 2n we can apply Lemma 5.4 and Theorem 2.4
follows.

6 Proof of Theorem 2.5

Throughout this section we assume that the inequality (2.18) for the g-function holds. We write

Qn(z) =
qn,n(z)− qn,n(−z)

2z
, (6.1)
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which is a polynomial of degree
dn = degQn ≤ n− 1.

We let ν(Qn) be its normalized zero counting measure.

Lemma 6.1. (a) The a priori signed measure ν defined by (2.19) is a probability measure with

Uν(z) = min (Uµ0(z), Uµ0(−z)) =

{
Uµ0(z), z ∈ LHP,

Uµ
∗
0 (z), z ∈ RHP.

(6.2)

(b) We have

lim
n→∞

− 1

n
log |Qn(z)| = Uν(z), z ∈ C \ (iR ∪ Σ0 ∪ −Σ0), (6.3)

where the convergence is uniform in compacts of C \ (iR ∪ Σ0 ∪ −Σ0).

(c) The zeros of Qn tend to iR ∪ Σ0 ∪ −Σ0 or to ∞ as n→∞.

Proof. (a) The inequality (2.18) tells us that

Uµ0(z) > Uµ0(−z) = Uµ
∗
0 (z), z ∈ RHP (6.4)

where µ∗0 is the reflection of µ0 in the imaginary axis. Because of symmetry we have the opposite inequality
in the left half-plane and equality on the imaginary axis. This proves the second equality in (6.2).

Write µ0 = µR + µL with µR = µ0|RHP, µL = µ0|LHP, and similarly µ∗0 = µ∗R + µ∗L. By the properties of
balayage, we have UµL(z) = UBal(µL)(z) and Uµ

∗
L(z) = UBal(µ∗L)(z) for z ∈ RHP, and then (6.4) gives

UµR(z) + UBal(µL)(z) > Uµ
∗
R(z) + UBal(µ∗L)(z), z ∈ RHP (6.5)

with equality for Re z = 0. Both sides of (6.5) are harmonic in the left half-plane, and behave like
− log |z|+O(z−1) as |z| → ∞. Since they are equal on the imaginary axis, we obtain equality in the
left half-plane by the maximum principle for harmonic functions, that is,

UµR(z) + UBal(µL)(z) = Uµ
∗
R(z) + UBal(µ∗L)(z), z ∈ LHP. (6.6)

We next use De La Vallée Poussin’s theorem from potential theory which is stated in [38, Theorem IV 4.5]
for measures with compact supports, and is extended to measures with unbounded support in [36, Theorem
4.9]. We obtain from (6.5) and (6.6) that

(µR + Bal(µL)) |LHP ≤ (µ∗R + Bal(µ∗L)) |LHP.

Since µR and µ∗R are supported in the open right half-plane and the balayage measures are on the imaginary
axis, we conclude

Bal(µL) ≤ Bal(µ∗L)

By symmetry we have Bal(µR) = Bal(µ∗L) and we find ν0 = Bal(µR) − Bal(µL) ≥ 0. Then also ν =
µL + µ∗R + ν0 ≥ 0 is a positive measure.

Furthermore
Uν = UµL + Uµ

∗
R + UBal(µR) − UBal(µL).

In the right half-plane we have UBal(µL) = UµL , and UBal(µR) = UBal(µ∗L) = Uµ
∗
L , and we find Uν =

Uµ
∗
R +Uµ

∗
L = Uµ

∗
0 in the right half-plane. Similarly Uν = Uµ0 in the left half-plane and the first equality in

(6.2) follows. The equality implies that

Uν(z) = − log |z|+O(1) as z →∞,

and therefore ν has total mass one, i.e., it is a probability measure.
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(b) The asymptotic formula (2.12) implies that

lim
n→∞

1

n
log |qn,n(z)| = Re g(z), z ∈ C \ Σ0,

lim
n→∞

1

n
log |qn,n(−z)| = Re g(−z), z ∈ C \ −Σ0,

where the convergence is uniform in compacts. The inequality (2.18) for the g-function then gives us for
z ∈ C \ (iR ∪ Σ0 ∪ −Σ0),

lim
n→∞

1

n
log |qn,n(z)− qn,n(−z)| = max(Re g(z),Re g(−z)),

where the convergence is uniform in compacts of C \ (iR ∪ Σ0 ∪ −Σ0). By (6.1), this leads to

lim
n→∞

− 1

n
log |Qn(z)| = min (Uµ0(z), Uµ0(−z)) , z ∈ C \ (iR ∪ Σ0 ∪ −Σ0)

uniformly on compacts. Then (6.3) follows because of (6.2).

(c) Because the convergence of (6.3) is uniform in compacts and Uν is harmonic and hence finite in
C \ (iR ∪ Σ0 ∪ −Σ0), we find that Qn has no zeros in fixed compacts of C \ (iR ∪ Σ0 ∪ −Σ0) for n large
enough. Consequently, the zeros of Qn either tend to iR ∪ Σ0 ∪ −Σ0 or run off to ∞.

Lemma 6.2. (a) The first moment of µ0 is positive, that is, m1 =
∫
sdµ0(s) > 0.

(b) If n is odd then Qn is a monic polynomial of degree dn = n− 1.

(c) If n is even and large enough, then dn = n− 2, and the leading coefficient ρn of Qn satisfies

lim
n→∞

ρn
n

= −m1 < 0.

Proof. (a) It is possible to explictly compute m1 = 5
8α −

3
4

√
α + 5

8 and conclude from there that m1 > 0.
We give another proof that only relies on the assumption (2.18) and thus generalizes to other situations.

We note that for |z| big enough, by a Taylor expansion of the logarithm,

g(z) =

∫
log(z − s)dµ0(s)

= log z +

∫
log
(

1− s

z

)
dµ0(s)

= log z −
∞∑
k=1

mk

kzk
.

where mk =
∫
skdµ0(s) for k = 1, 2, . . .. Since log(−z) = log z± πi, with some choice of ± depending on the

location of z and the precise branch of the logarithm, we find

g(−z)− g(z)−±πi = 2h(z) with h(z) =

∞∑
k=0

m2k+1

2k + 1
z−2k−1. (6.7)

Note that all moments are real by the symmetry of µ0 with respect to the real axis. If m1 would be negative,
then we find by letting z = x go to infinity along the positive real axis that

Re g(−x)− Re g(x) = 2h(x) = 2m1x
−1 +O(x−3),

which is < 0 for x big enough, which contradicts our assumption (2.18). Thus m1 ≥ 0.
Now assume m1 = 0. Then take the first k ≥ 1 with m2k+1 6= 0. Such a k has to exist, since otherwise h

is identically zero, and thus Re g(−z) = Re g(z) for every |z| large enough, which contradicts (2.18). Then
by (6.7),

Re g(−z)− Re g(z) = 2
m2k+1

2k + 1
Re(z−2k−1) +O(z−2k−3). as z →∞.
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Taking z = reiθ we get

Re g(−z)− Re g(z) = 2
m2k+1

2k + 1
r−2k−1 cos ((2k + 1)θ) +O(r−2k−3) as r →∞.

Because of (2.18), we find m2k+1 cos ((2k + 1)θ) ≥ 0 for every −π2 < θ < π
2 which is clearly impossible since

m2k+1 6= 0 and the cosine changes sign on the interval (−π2 ,
π
2 ) as 2k + 1 ≥ 3.

(b) This is clear from the formula (6.1) since qn,n is a monic polynomial of degree n.

(c) If n is even then the leading terms of qn,n(z) and qn,n(−z) cancel when we take their difference as we
do in (6.1) and we find that Qn is a polynomial of degree ≤ n − 2 whose coefficient for zn−2 is the second
coefficient of qn,n, i.e., the coefficient ρn in

qn,n(z) = zn + ρnz
n−1 +O(zn−2) as z →∞.

Then −ρn is equal to the sum of the zeros of qn,n, which is

−ρn = n

∫
sdνn(s)

where νn = ν(qn,n) is the normalized zero counting measure of qn,n. Since νn → µ0 by Proposition 2.3 we
obtain that −ρn/n→

∫
sdµ0(s) = m1 as n→∞. Then part (c) of the lemma follows, since m1 > 0 by part

(a).

Proof of Theorem 2.5. Take an arbitrary a ∈ C \ (iR ∪ Σ0 ∪ −Σ0) that is distinct from any of the zeros of
Qn for n = 1, 2, . . .. By (6.3) we have that

lim
n→∞

− 1

n
log |Qn(a)| = Uν(a). (6.8)

Let Ta be the Möbius transformation z 7→ Ta(z) = 1
z−a . Then

z 7→ zn

Qn(a)
Qn
(
z−1 + a

)
(6.9)

is a monic polynomial of degree n whose zeros are Ta(zj,n), j = 1, . . . , dn where zj,n, j = 1, . . . , dn are the
zeros of Qn, together with a zero of order n− dn at z = 0. It follows from Lemma 6.1(c) that there exists a
δ > 0 such that |zj,n − a| > δ for j = 1, . . . , dn, so the set of zeros of the polynomials (6.9) is bounded.

We have by (6.3) and (6.8), whenever z−1 + a 6∈ iR ∪ Σ0 ∪ −Σ0,

lim
n→∞

− 1

n
log

∣∣∣∣ zn

Qn(a)
Qn
(
z−1 + a

)∣∣∣∣ = Uν
(
z−1 + a

)
− Uν(a)− log |z|

=

∫ (
log

1

|z−1 + a− s|
− log

1

|a− s|
− log |z|

)
dν(s)

=

∫
log

1

|z − Ta(s)|
dν(s)

= UT
∗
a ν(z) (6.10)

where T ∗a ν is the pushforward of ν under the mapping Ta. From Lemma 5.4 we then find that T ∗a ν is the
weak limit of the normalized zero counting measures of the polynomials (6.9), and this means that ν is the
weak limit of the zeros of Qn, as claimed in Theorem 2.5.

Since (Pn)12(z) = Q2n,2n(ζ) with ζ = (z+β2)1/2 by (2.17) and (6.1) we then also find that ν̃ is the limit
of the zeros of (Pn)12 and the theorem is proved.
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Ω1 Ω2

Γ

Γ

Σ0

z+

z−

Ω1 Ω2

−Σ0

−z−

−z+

Figure 10: The sets Ω1 (in blue) and Ω2 as used in the proof of Theorem 2.6. In the right picture, the set
−Σ0 is plotted in red and we see that indeed −Σ0 ∩ RHP is contained in Ω1.

7 Proof of Theorem 2.6

7.1 Proof of Theorem 2.6

For the proof of Theorem 2.6 we will work with

D0(z) = ((z − z+)(z − z−))1/2, z ∈ C \ Γ, (7.1)

with branch cut along
Γ = {z ∈ C | Re z = Re z+, | Im z| ≥ Im z+} (7.2)

and such that D0(z) is real and positive for z ∈ R. Then Γ∪Σ0 is a contour that separates the complex plane
into two unbounded domains Ω1 and Ω2, i.e., Ω1 ∪Ω2 = C \ (Γ∪Σ0), where Ω1 lies to the left and Ω2 lies to
the right of Γ ∪Σ0, see left panel of Figure 10. The assumption of Theorem 2.6 says that −Σ0 ∩RHP ⊂ Ω1

as shown in the right panel of Figure 10.
Here we use the fact that Σ0 intersects Γ only in z± which is obvious from the figures. It will follow from

Lemma 7.1 that we state and prove below after finishing the proof of Theorem 2.6. In fact from part (c) of
that lemma we conclude that

Σ0 \ {z−, z+} ⊂ {z ∈ C | Re z > Re z+}. (7.3)

Because of (5.8) and (2.5) we have

2g′(z) = V ′α(z) + 2
z + (1−

√
α)2

2

(z − β)(z + β)(z + α+ β)
D(z) (7.4)

where D(z) is the branch of the square root (7.1) that is analytic in C \ Σ0, namely

D(z) =

{
−D0(z), for z ∈ Ω1,

D0(z), for z ∈ Ω2.
(7.5)

We apply a partial fraction decomposition to the rational expression in front of D(z) in (7.4) and we
combine it with V ′α(z) that we get from (5.3) to obtain for z ∈ Ω1,

2g′(z) = − 1

D0(β)

[
D0(z)−D0(β)

z − β

]
− 1

D0(−β)

[
D0(z)−D0(−β)

z + β

]
+

2

D0(−α− β)

[
D0(z)−D0(−α− β)

z + α+ β

]
, z ∈ Ω1.

Since g′(z)→ 0 as z →∞, we have D0(β)−1 +D0(−β)−1 = 2D0(−α− β)−1, and thus

g′(z) = h(z), z ∈ Ω1, (7.6)
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with

h(z) = − 1

2D0(β)

[
D0(z)−D0(β)

z − β
− D0(z)−D0(−α− β)

z + α+ β

]
− 1

2D0(−β)

[
D0(z)−D0(−β)

z + β
− D0(z)−D0(−α− β)

z + α+ β

]
, z ∈ C \ Γ. (7.7)

We emphasize that we consider h(z) for z ∈ C \ Γ, but the identity (7.6) only holds for z ∈ Ω1.
The expressions within square brackets in (7.7) turn out to have positive real parts. This is a consequence

of Lemma 7.2 that we state and prove separately below. Note that D0(x) > 0 for x ∈ R, because of the
choice of the square root in (7.1). Then we conclude from (7.7) that

Reh(z) < 0, z ∈ C \ Γ. (7.8)

Now take z0 ∈ −Σ0 ∩ RHP, z0 6= −z±. By the geometrical assumption in Theorem 2.6, we then have
that z0 ∈ Ω1. Then −z0 belongs to Σ0 \ {z±}, and because of (7.3) we then have

[−z0, z0] ⊂ C \ Γ. (7.9)

where [−z0, z0] denotes the horizontal line segment from −z0 to z0.
If this segment would be fully contained in Ω1, then we can conclude from (7.6), (7.9) and the fundamental

theorem of calculus that

g(z0)− g+(−z0) =

∫
[−z0,z0]

h(s)ds (7.10)

where we use g+(−z0) to indicate that we use the + boundary value of g at −z0 ∈ Σ0. If [−z0, z0] is not
fully contained in Ω1, then we can write

g(z0)− g+(−z0) =

∫
γ−z0,z0

h(s)ds

where γz0,z0 is any path from −z0 to z0 in Ω1. By Cauchy’s theorem and (7.9), we can then deform to the
horizontal line segment, since h is analytic in C \ Γ. Thus (7.10) holds in all cases.

Taking real parts in (7.10), and noting (7.8), we find that that

Re(g(z0)− g(−z0)) < 0, z0 ∈ −Σ0 ∩ RHP \ {−z±}. (7.11)

The above argument can be easily adapted to the case z0 = −z± and we also find

Re(g(z0)− g(−z0)) < 0, z0 = −z±. (7.12)

We finally extend the inequality (7.11), (7.12) to the full right-half plane by a subharmonicity argument.
We use that Re g(z) is harmonic in C \ Σ0 and subharmonic on C, and Re g(−z) is harmonic in C \ −Σ0.
Also Re g(z) = Re g(z) by symmetry in the real axis, and it follows that

Re(g(z)− g(−z)) = Re(g(z)− g(−z))

is subharmonic on RHP \ −Σ0. It has boundary value 0 on the imaginary axis, and at infinity. In addition
it is < 0 on −Σ0 ∩RHP by (7.11) and (7.12). Then the maximum principle for subharmonic functions tells
us that Re(g(z)− g(−z)) < 0 for Re z > 0, which concludes the proof of Theorem 2.6 pending the proofs of
two lemmas that we will turn to next.

7.2 Lemma 7.1

Lemma 6.4 in [7] provides information on the critical trajectories of Q̂αdz
2, that is directly translated into

information on Σ0 because of the relation (2.6). This is contained in part (a) of the following lemma.
We assume that Σ0 is oriented from z− to z+.
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Lemma 7.1. If we follow Σ0 according to its orientation, then we have the following.

(a) z 7→ |z+α+β| is strictly increasing along Σ0∩C− and by symmetry strictly decreasing along Σ0∩C+.

(b) Qα is real and positive on the real line, and on a smooth contour L contained in the disk |z+α+β| ≤
√
α,

and nowhere else in the complex plane.

(c) The real part of z is strictly increasing along Σ0 ∩ C− and strictly decreasing along Σ0 ∩ C+.

Proof. (a) This follows from [7, Lemma 6.4 (a)] and the mapping z 7→ −z−α−β that maps the trajectories

of Q̂αdz
2 (that are relevant in [7]) to the trajectories of Qαdz

2.

(b) From (2.5) it is clear that Qα is real and positive on the real line. Furthermore, each value w is taken
by Qα six times in C (counting multiplicities), since w = Qα(z) can be written as a degree six polynomial
equation for z, see again (2.5). An inspection of the graph of Qα on the real line shows that Qα has a strictly
positive local minimum at a point xmin ∈ (−α−β,−β), and each value in [Qα(xmin),∞] is taken on the real
line six times, and so these values do not appear anywhere else in the complex plane as function values of
Qα. Moreover, each value in [0, Qα(xmin)) is taken four times on the real line (counting multiplicities), and
therefore each of these values is taken exactly two times away from the real axis.

From xmin there is then a smooth contour L into the complex plane, orthogonal to the real line at xmin

along which Qα is real and positive, and strictly decreasing if we move away from xmin. The contour L will
end at z± since these are the two simple zeros of Qα away from the real line, see (2.5).

Let C be the circle |z + α + β| =
√
α of radius

√
α around −α − β. From −α − β < xmin < −β and

α ≤ 1, it follows that xmin lies inside the circle, and the proof of (b) will be finished if we can show that L
intersects the circle only in its endpoints z±.

Suppose, to get a contradiction, that L intersects C at a point ẑ 6= z±. Then Qα(ẑ) > 0 which implies
that the trajectory of the quadratric differential Qαdz

2 that passes through ẑ has a vertical tangent at ẑ.
If ẑ ∈ Σ2 (see Figure 2), then Σ2 is this trajectory passing through ẑ, and we get a contradiction since

Σ2 is part of the circle C, and Σ2 does not have a vertical tangent at a point ẑ 6∈ R.
Thus ẑ ∈ C \Σ2. But C \Σ2 consists of vertical trajectories of the quadratic differential Qαdz

2 from z±

to the double zero − (1−
√
α)2

2 , which also lies on C. Since Qα(ẑ) > 0 we have that the vertical trajectory has
a horizontal tangent at ẑ. A vertical tangent to the circle |z + α + β| =

√
α only happens at the top and

bottom points where the real part is −α− β but this is not the case at ẑ, since

Re ẑ > Re z+ = − (1 +
√
α)2

8

see (2.4), which is > −α− β.
The contradiction shows that L meets the circle C only in z± and part (b) is proved.

(c) By part (a) we have that Σ0 is outside of the closed disk |z + α+ β| ≤
√
α, except for the endpoints

z± which are on the circle C.
Then it follows from part (b) that Qα(z) ∈ C \ R+ for every z ∈ Σ0 \ {z±, x∗} where x∗ is the point of

intersection of Σ0 with the positive real axis. Then the trajectory Σ0 does not have a vertical tangent at any
z ∈ Σ0 \ {z±, x∗}, which means that Re z is strictly increasing along Σ0 ∩ C− according to its orientation
from z− to z+, and by symmetry strictly decreasing along Σ0 ∩ C+. This proves part (c).

7.3 Lemma 7.2

Lemma 7.2. For every x ∈ R and z ∈ C \ Γ, we have that

∂

∂x
Re

(
D0(z)−D0(x)

z − x

)
> 0, (7.13)

Proof. Let ∆(w) = (w2 + 1)1/2 with branch cut along (−i∞,−i] ∪ [i, i∞). Then it is easy to see from the
definition (7.1) that

D0(z)−D0(x)

z − x
=

∆(w)−∆(ξ)

w − ξ
(7.14)
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where w = (z − Re z+)/ Im z+ and ξ = (x− Re z+)/ Im z+.

On its branch cut, ∆(w) has purely imaginary boundary values, namely ∆±(iη) = ±i
√
η2 − 1 for w =

iη ∈ Γ with η > 1. Then

∆±(w)−∆(ξ)

w − ξ
=

√
ξ2 + 1∓ i

√
η2 − 1

ξ − iη

=

(√
ξ2 + 1∓ i

√
η2 − 1

)
(ξ + iη)

ξ2 + η2

and

Re

(
∆±(w)−∆(ξ)

w − ξ

)
=
ξ
√
ξ2 + 1± η

√
η2 − 1

ξ2 + η2
.

Then a little calculation shows that

∂

∂ξ
Re

(
∆±(w)−∆(ξ)

w − ξ

)
=

(
η
√
ξ2 + 1± ξ

√
η2 − 1

)2
√
ξ2 + 1(ξ2 + η2)2

.

Since the numerator is a perfect square we find

∂

∂ξ
Re

(
∆±(w)−∆(ξ)

w − ξ

)
> 0 (7.15)

for w = iη, η > 1 and ξ ∈ R. By symmetry the same inequality inequality (7.15) holds for w = −iη, η < 1
and ξ ∈ R.

It follows that

w 7→ ∂

∂ξ
Re

(
∆±(w)−∆(ξ)

w − ξ

)
has positive boundary values on (−i∞− i]∪ [i, i∞) and it is harmonic everywhere else in the complex plane.
By the minimum principle for harmonic function, we get that the inequality

∂

∂ξ
Re

(
∆(w)−∆(ξ)

w − ξ

)
> 0 (7.16)

holds for every w ∈ C. Because of the identity (7.5) and (7.16) we have

∂

∂x
Re

(
D0(z)−D0(x))

z − x

)
=

1

Im z+

∂

∂ξ
Re

(
∆(w)−∆(ξ)

w − ξ

)
> 0

where w = (z − Re z+)/ Im z+ and ξ = (x− Re z+)/ Im z+, and the lemma follows.
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