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Most expensive part of a multimedia or signal processing program:
manipulation of arrays inside loops

⇒ most interesting part to optimize

⇒ need for compact representation of
iterations of a loop/elements of an array

⇒ + efficient to manipulate

⇒ Integer points in polyhedra (“polyhedral model”)
⇒ More generally: sets of integers bounded by affine inequalities
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#define N 5
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for (j = 1; j <= i; ++j)
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Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j
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Iteration domain: P = { [i , j ] | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 ∧ j ≤ i }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions
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for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory
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Two Program Analysis and Transformation Tools

Why do we need an integer set library?

◮ Equivalence checker
◮ Checks the equivalence of two programs represented in the

polyhedral model
◮ Proves output is the same given that input is the same
◮ Maintains maps between statement iterations of both

programs that should be proven to produce the same result

Requirements
◮ manipulations on integer sets/maps
◮ explicit support for existentially quantified variables
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◮ CLooG
◮ Generates code for scanning integer points in polyhedra

(iteration domains)

Requirements
◮ manipulations on integer sets

⇒ remove redundant constraints/code
◮ explicit support for existentially quantified variables

⇒ replace some loops by guards



CLooG Example

S1: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ j = i}
S2: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ i ≤ j ≤ n}
S3: {(i , j) | 1 ≤ i ≤ m ∧ j = n ≤ m}

i

j



CLooG Example

S1: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ j = i}
S2: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ i ≤ j ≤ n}
S3: {(i , j) | 1 ≤ i ≤ m ∧ j = n ≤ m}

i

j
for (i=1;i<=m;i++) {

if (i <= n) {

S1(i,i);

}

for (j=i;j<=n;j++) {

S2(i);

}

S3(i,n);

}



Required Operations

◮ Basic operations

◮ Union
◮ Intersection
◮ Set difference
◮ . . .

◮ Operations required by equivalence checking

◮ Integer affine hull
◮ . . .

◮ Operations required by CLooG

◮ Projection (rational)
◮ Ordering
◮ Convex hull (rational)
◮ Simplification
◮ . . .



Why not use a double description based library?

E.g., PolyLib, PPL, (polymake)

◮ Who needs vertices anyway?
◮ Very useful for LattE macchiato/barvinok style counting

(but neither equivalence checking or CLooG needs any
counting)

◮ Some operations can be performed more efficiently on explicit
representation
But:

◮ Computing the dual can be costly
◮ Double description requires more space

⇒ trade-off

(sets used in equivalence checking and CLooG usually have few
constraints)
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E.g., PolyLib, PPL, (polymake)

◮ Who needs vertices anyway?
◮ Very useful for LattE macchiato/barvinok style counting

(but neither equivalence checking or CLooG needs any
counting)

◮ Some operations can be performed more efficiently on explicit
representation
But:

◮ Computing the dual can be costly
◮ Double description requires more space

⇒ trade-off

(sets used in equivalence checking and CLooG usually have few
constraints)

◮ Usually focus on rational values

◮ Little/no support for existentially quantified variables
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◮ Modeling some problems
Which array elements are accessed in this loop?
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for (i = 1; i <= 8; ++i)
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Why do we need existentially quantified variables?

◮ Modeling some problems
Which array elements are accessed in this loop?

for (j = 1; j <= p; ++j)

for (i = 1; i <= 8; ++i)

a[6i+9j-7] = a[6i+9j-7] + 5;

S(s) = {l ∈ Z | ∃i , j ∈ Z : l = 6i+9j−7∧1 ≤ j ≤ s∧1 ≤ i ≤ 8}

◮ Especially integer divisions/remainders
E.g., i % 10 <= 6

i − 10

⌊

i

10

⌋

≤ 6

i − 10α ≤ 6

with i − 9 ≤ 10α ≤ i

◮ May appear in original code
◮ May be introduced by (PIP-based) dependence analysis
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Why not use the Omega library?

◮ focuses on integer values

◮ has explicit support for existentially quantified variables

◮ very fast on small problems due to extensive use of heuristics

But:

◮ not supported for many years (until recently)

◮ accuracy limited by machine precision

◮ different way of handling existentially quantified variables

◮ some heuristics favor speed over accuracy

# Omega Calculator v2.1 (based on Omega Library 2.1, July,

AffineHull {[a,b] : a=b && 1 <= a <= 162};

# AffineHull {[a,b] : a=b && 1 <= a <= 162};

{[a,a]}

AffineHull {[a,b] : a=b && 1 <= a <= 163};

# AffineHull {[a,b] : a=b && 1 <= a <= 163};

{[In_1,In_2]}

⇒ completely unacceptable for equivalence checking



Internal Representation

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

R(s) = { (x1, x2) ∈ Z
d1 × Z

d2 | ∃z ∈ Z
e : A1x1 + A2x2 + Bs + Dz ≥ c }

◮ “basic” types: “convex” sets and maps (relations)

◮ equality + inequality constraints
◮ parameters s
◮ (optional) explicit representation of existentially quantified

variables as integer divisions

⇒ useful for aligning dimensions when performing set operations
(e.g., set difference)

⇒ can be computed using PIP
⇒ already available if obtained from PIP-based dependence

analysis

◮ union types: sets and maps

⇒ (disjoint) unions of basic sets/maps



Parametric Integer Programming

R(s) = { (x1, x2) ∈ Z
d1×Z

d2 | ∃z ∈ Z
e : A1x1+A2x2+Bs+Dz ≥ c }

Lexicographic minimum of R:

lexminR = { (x1, x2) ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }
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◮ explicit representation of existentially quantified variables

◮ explicit representation of range variables

Technique: dual simplex + Gomory cuts
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isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉 + 〈bi , s〉 ≥ ci ) })
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H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

⇒ very inefficient!
2. using “wrapping”

◮ S1 and S2 are polytopes
⇒ wrap facets around ridges until all facets found (FLL2000)
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◮ S1 and S2 are pointed (Ri recession cone of Si )
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⇒ project out lineality H = lin.hull(R1 ∩ − R2)
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◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si )
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

◮ S1 or S2 has non-trivial lineality space
⇒ project out lineality S1 and lineality S2



Improved Code Generation using CLooG
Using PolyLib as a backend:

for (p1=0;p1<=floord(8*N+63,32);p1++) {

for (p3=max(max(max(max(0,ceild(-32*p1-27,4)),

ceild(512*p1-128*N-975,16)),ceild(28*p1-7*N-20,36)),

ceild(60*p1-15*N-44,68));

p3<=min(min(floord(4*M+47,16),floord(24*p1+5*M+36,20)),

floord(136*p1+31*M+224,124));p3++) {

if ((p1 >= 0) && (p1 <= floord(N-1,4))) {

for (p5=max(0,4*p3);p5<=min(M-1,4*p3+3);p5++) {

for (p7=max(0,4*p1);p7<=min(N-1,4*p1+3);p7++) {

S9(p3,p5,p1,p7); /* ... */
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Using isl as a backend:

for (p1=0;p1<=floord(N+7,4);p1++) {

for (p3=max(0,ceild(4*p1-N+1,4));

p3<=min(floord(M+11,4),floord(4*p1+M+3,4));p3++) {

if (p1 <= floord(N-1,4)) {

for (p5=4*p3;p5<=min(M-1,4*p3+3);p5++) {

for (p7=4*p1;p7<=min(N-1,4*p1+3);p7++) {

S9(p3,p5,p1,p7); /* ... */



CLooG Speed Comparison

PolyLib-64 PolyLib-gmp isl-gmp

Example from previous slide
(from Harald Devos)

0.15s 0.31s 0.18s

CLooG test suite 5.1s 11.4s 7.5s
Simple tiling example 1.11s 2.63s 1.11s
Extreme tiling example 14.6s 28.5s 5.15s
LU example 0.86s 1.88s 0.35s
Sobel example (from Harald
Devos)

0.62s 1.64s 0.15s

(Tiling examples from Uday K Bondhugula)



Conclusion

◮ isl: a new integer set library

◮ currently used in
◮ equivalence checking tool
◮ CLooG

◮ Produces better code than PolyLib backend
◮ Comparable in speed or faster than PolyLib backend

◮ explicit support for existentially quantified variables

◮ uses PIP for solving (P)ILP problems

◮ all computations in exact integer arithmetic using GMP

◮ built-in incremental LP solver

◮ released under LGPL license
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