An Integer Set Library for Program Analysis

Sven Verdoolaege

April 26, 2009

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program: manipulation of arrays inside loops
\Rightarrow most interesting part to optimize

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program:
manipulation of arrays inside loops
\Rightarrow most interesting part to optimize
\Rightarrow need for compact representation of iterations of a loop/elements of an array
$\Rightarrow+$ efficient to manipulate

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program: manipulation of arrays inside loops
\Rightarrow most interesting part to optimize
\Rightarrow need for compact representation of iterations of a loop/elements of an array
$\Rightarrow+$ efficient to manipulate
\Rightarrow Integer points in polyhedra ("polyhedral model")
\Rightarrow More generally: sets of integers bounded by affine inequalities

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i) for ($\mathrm{j}=1$; j <= i; ++j) a[i][j]=

Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
a[i][j]=
$$

Iteration domain: $P=\{[i, j] \mid i \geq 1$

Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
a[i][j]=
$$

Iteration domain: $P=\{[i, j] \mid i \geq 1 \wedge i \leq N$
Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i)

$$
\text { for (} \mathrm{j}=1 \text {; } \mathrm{j} \text { <= i; ++j) }
$$

$$
a[i][j]=
$$

Iteration domain: $P=\{[i, j] \mid i \geq 1 \wedge i \leq N \wedge j \geq 1$
\}
Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
a[i][j]=
$$

Iteration domain: $P=\{[i, j] \mid i \geq 1 \wedge i \leq N \wedge j \geq 1 \wedge j \leq i\}$
Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Representation Example: Iteration Domain

\#define N 5
for (i = 1; i <= N; ++i)

$$
\text { for }(j=1 ; j<=i ;++j)
$$

$$
a[i][j]=
$$

Iteration domain: $P=\{[i, j] \mid i \geq 1 \wedge i \leq N \wedge j \geq 1 \wedge j \leq i\}$
Assumptions on sequential code:

- iterators are integers
- loops with affine bounds
- affine conditions
- affine index expressions

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-, o Statement iteration
\longrightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement
\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

Execution order: top-down, left-right
-. ○ Statement iteration
\rightarrow Data flow dependence Executed statement

\rightarrow Data in memory

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

$$
\text { for }(i=0 ; i<=N ;++i)
$$

$$
\mathrm{a}[i]=\ldots
$$

$$
\text { for }(i=0 ; i<=N ;++i)
$$

$$
\mathrm{b}[\mathrm{~N}-\mathrm{i}]=\mathrm{f}(\mathrm{a}[\mathrm{i}])
$$

Program Transformation Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=N ;++i) \\
& a[i]=\cdots \\
& \text { for }(i=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i])
\end{aligned}
$$

$$
\text { for }(i=0 ; i<=N ;++i)
$$

$$
\mathrm{a}[i]=\ldots
$$

$$
\text { for }(i=0 ; i<=N ;++i)
$$

$$
\mathrm{b}[\mathrm{~N}-\mathrm{i}]=\mathrm{f}(\mathrm{a}[\mathrm{i}])
$$

Program Transformation Example

$$
\begin{aligned}
& \text { for (i }=0 ; i<=N ;++i) \\
& \text { a[i] = ... } \\
& \text { for (i }=0 ; i<=N ;++i) \\
& b[i]=f(a[N-i]) \\
& \text { for (i }=0 ; i<=N ;++i) \\
& \text { a[i] = ... } \\
& \text { for (i }=0 ; i<=N ;++i) \\
& \mathrm{b}[\mathrm{~N}-\mathrm{i}]=\mathrm{f}(\mathrm{a}[\mathrm{i}]) \\
& \text { for (i }=0 ; i<=N ;++i)\{ \\
& \text { a[i] = ... } \\
& \mathrm{b}[\mathrm{~N}-\mathrm{i}]=\mathrm{f}(\mathrm{a}[\mathrm{i}]) \\
& \text { \} }
\end{aligned}
$$

Two Program Analysis and Transformation Tools

Why do we need an integer set library?

- Equivalence checker
- Checks the equivalence of two programs represented in the polyhedral model
- Proves output is the same given that input is the same
- Maintains maps between statement iterations of both programs that should be proven to produce the same result Requirements
- manipulations on integer sets/maps
- explicit support for existentially quantified variables

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

$$
\begin{array}{ll}
\text { a1[0] = in1; } & \text { a2[0] = in2; } \\
\text { for }(i=1 ; i<=N ;++i) & \text { for }(i=1 ; i<=N ;++i) \\
\quad a 1[i]=f(a 1[i-1]) ; & \text { a2[i] }=f(a 2[i-1]) ; \\
\text { out1 }=a 1[N] ; & \text { out2 }=a 2[N] ;
\end{array}
$$

Equivalence Checking Example

```
Given in1 == in2, can we prove out1 == out2?
a1[0] = in1; \(\quad\) a2[0] = in2;
for ( \(\mathrm{i}=1\); \(\mathrm{i}<=\mathrm{N}\); ++i) for ( \(\mathrm{i}=1\); \(\mathrm{i}<=\mathrm{N}\); ++i)
    \(a 1[i]=f(a 1[i-1]) ; \quad a 2[i]=f(a 2[i-1])\);
out1 = a1[N]; out2 = a2[N];
out1 == out2 requires a1[N] == a2[N]
```


Equivalence Checking Example

$$
\begin{aligned}
& \text { Given in1 == in2, can we prove out1 == out2? } \\
& \begin{array}{ll}
\text { a1 }[0]=\operatorname{in} 1 ; & \text { a2 }[0]=\operatorname{in2} ; \\
\text { for }(i=1 ; i<=N ;++i) & \text { for }(i=1 ; i<=N ;++i) \\
\text { a1 }[i]=f(a 1[i-1]) ; & \text { a2[i] }=f(a 2[i-1]) ; \\
\text { out1 }=a 1[N] ; & \text { out2 }=a 2[N] ;
\end{array} \\
& \text { out1 == out2 requires a1[N] == a2[N] } \\
& \text { a1[N] == a2[N] requires a1[N-1] == a2[N-1] }
\end{aligned}
$$

Equivalence Checking Example

$$
\begin{aligned}
& \text { Given in1 == in2, can we prove out1 == out2? } \\
& \text { a1[0] = in1; } \quad \text { a2[0] = in2; } \\
& \text { for (} i=1 \text {; } i<=N \text {; ++i) for (} i=1 \text {; } i<=N \text {; ++i) } \\
& \text { a1[i] = } f(a 1[i-1]) \text {; } \\
& \text { out1 = a1[N]; } \\
& \text { a2[i] }=f(a 2[i-1]) \text {; } \\
& \text { out2 = a2[N]; } \\
& \text { out1 == out2 requires a1[N] == a2[N] } \\
& \mathrm{a} 1[\mathrm{~N}]==\mathrm{a} 2[\mathrm{~N}] \text { requires } \mathrm{a} 1[\mathrm{~N}-1]==\mathrm{a} 2[\mathrm{~N}-1] \\
& \text { a1 }[\mathrm{N}-1]==\mathrm{a} 2[\mathrm{~N}-1] \text { requires a1[} \mathrm{N}-2]==\mathrm{a} 2[\mathrm{~N}-2]
\end{aligned}
$$

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

```
a1[0] = in1;
for (i = 1; i <= N; ++i) for (i = 1; i <= N; ++i)
    a1[i] = f(a1[i - 1]);
out1 = a1[N];
a2[0] = in2;
    a2[i] = f(a2[i - 1]);
out2 = a2[N];
out1 == out2 requires a1[N] == a2[N]
a1[N] == a2[N] requires a1[N-1] == a2[N-1]
a1[N-1] == a2[N-1] requires a1[N-2] == a2[N-2]
```


Equivalence Checking Example

```
Given in1 == in2, can we prove out1 == out2?
a1[0] = in1;
for ( \(i=1\); \(i<=N\); ++i) for ( \(i=1\); \(i<=N\); ++i)
    a1[i] \(=f(a 1[i-1]) ; \quad a 2[i]=f(a 2[i-1]) ;\)
out1 = a1[N];
a2[0] = in2;
out2 = a2[N];
out1 == out2 requires a1[N] == a2[N]
a1[ N\(]==\mathrm{a} 2[\mathrm{~N}]\) requires a1[ \(\mathrm{N}-1]==\mathrm{a} 2[\mathrm{~N}-1]\)
a1 \([\mathrm{N}-1]==\mathrm{a} 2[\mathrm{~N}-1]\) requires \(a 1[\mathrm{~N}-2]==\mathrm{a} 2[\mathrm{~N}-2]\)
\(\Rightarrow\) requires a1[i] \(==\mathrm{a} 2[\mathrm{i}]\) for \(1 \leq i \leq N\)
\(\Rightarrow\) induction for \(2 \leq i \leq N+\) requires a1 [0] \(=\) a2 [0]
\(\Rightarrow\) Integer affine hull of \(\{(N, N),(N-1, N-1)\}:\{(i, i)\}\)
```


Equivalence Checking Example

```
Given in1 == in2, can we prove out1 == out2?
a1[0] = in1;
for ( \(i=1\); \(i<=N\); ++i) for ( \(i=1\); \(i<=N\); ++i)
    a1[i] \(=f(a 1[i-1])\);
out1 = a1[N];
a2[0] = in2;
    \(\mathrm{a} 2[\mathrm{i}]=\mathrm{f}(\mathrm{a} 2[\mathrm{i}-1])\);
out2 = a2[N];
out1 == out2 requires a1[N] == a2[N]
a1[ N\(]==\mathrm{a} 2[\mathrm{~N}]\) requires a1[ \(\mathrm{N}-1]==\mathrm{a} 2[\mathrm{~N}-1]\)
a1 \([\mathrm{N}-1]==\mathrm{a} 2[\mathrm{~N}-1]\) requires \(a 1[\mathrm{~N}-2]==\mathrm{a} 2[\mathrm{~N}-2]\)
\(\Rightarrow\) requires a1[i] \(==\mathrm{a} 2[\mathrm{i}]\) for \(1 \leq i \leq N\)
\(\Rightarrow\) induction for \(2 \leq i \leq N+\) requires a1[0] \(=\mathrm{a} 2[0]\)
\(\Rightarrow\) Integer affine hull of \(\{(N, N),(N-1, N-1)\}:\{(i, i)\}\)
a1[0] == a2[0] requires in1 == in2
```


Two Program Analysis and Transformation Tools

Why do we need an integer set library?

- Equivalence checker
- Checks the equivalence of two programs represented in the polyhedral model
- Proves output is the same given that input is the same
- Maintains maps between statement iterations of both programs that should be proven to produce the same result Requirements
- manipulations on integer sets/maps
- explicit support for existentially quantified variables

Two Program Analysis and Transformation Tools

Why do we need an integer set library?

- Equivalence checker
- Checks the equivalence of two programs represented in the polyhedral model
- Proves output is the same given that input is the same
- Maintains maps between statement iterations of both programs that should be proven to produce the same result
Requirements
- manipulations on integer sets/maps
- explicit support for existentially quantified variables
- CLooG
- Generates code for scanning integer points in polyhedra (iteration domains)
Requirements
- manipulations on integer sets
\Rightarrow remove redundant constraints/code
- explicit support for existentially quantified variables
\Rightarrow replace some loops by guards

CLooG Example

CLooG Example

S1: $\{(i, j) \mid 1 \leq i \leq n \leq m \wedge j=i\}$
S2: $\{(i, j) \mid 1 \leq i \leq n \leq m \wedge i \leq j \leq n\}$
S3: $\{(i, j) \mid 1 \leq i \leq m \wedge j=n \leq m\}$

$$
\begin{aligned}
& \text { for } \quad(i=1 ; i<=m ; i++)\{ \\
& \text { if }(i<=n)\{ \\
& \quad \text { S1 }(i, i) ; \\
& \text { f } \\
& \text { for } \quad(j=i ; j<=n ; j++)\{ \\
& \quad \text { S2 }(i) ; \\
& \text { S } 3(i, n) ; \\
& \text { \} }
\end{aligned}
$$

Required Operations

- Basic operations
- Union
- Intersection
- Set difference
- ...
- Operations required by equivalence checking
- Integer affine hull
- ...
- Operations required by CLooG
- Projection (rational)
- Ordering
- Convex hull (rational)
- Simplification
- ...

Why not use a double description based library?

E.g., PolyLib, PPL, (polymake)

- Who needs vertices anyway?
- Very useful for LattE macchiato/barvinok style counting (but neither equivalence checking or CLooG needs any counting)
- Some operations can be performed more efficiently on explicit representation But:
- Computing the dual can be costly
- Double description requires more space
\Rightarrow trade-off
(sets used in equivalence checking and CLooG usually have few constraints)

Why not use a double description based library?

E.g., PolyLib, PPL, (polymake)

- Who needs vertices anyway?
- Very useful for LattE macchiato/barvinok style counting (but neither equivalence checking or CLooG needs any counting)
- Some operations can be performed more efficiently on explicit representation But:
- Computing the dual can be costly
- Double description requires more space
\Rightarrow trade-off
(sets used in equivalence checking and CLooG usually have few constraints)
- Usually focus on rational values
- Little/no support for existentially quantified variables

Why do we need existentially quantified variables?

- Modeling some problems Which array elements are accessed in this loop?

$$
\begin{aligned}
& \text { for }(j=1 ; j<=p ;++j) \\
& \text { for }(i=1 ; i<=8 ;++i) \\
& \mathrm{a}[6 i+9 j-7]=a[6 i+9 j-7]+5 ; \\
& S(s)=\{I \in \mathbb{Z} \mid \exists i, j \in \mathbb{Z}: I=6 i+9 j-7 \wedge 1 \leq j \leq s \wedge 1 \leq i \leq 8\}
\end{aligned}
$$

Why do we need existentially quantified variables?

- Modeling some problems Which array elements are accessed in this loop?

$$
\begin{aligned}
& \text { for }(j=1 ; j<=p ;++j) \\
& \text { for }(i=1 ; i<=8 ;++i) \\
& \text { a }[6 i+9 j-7]=a[6 i+9 j-7]+5 ; \\
& S(s)=\{I \in \mathbb{Z} \mid \exists i, j \in \mathbb{Z}: I=6 i+9 j-7 \wedge 1 \leq j \leq s \wedge 1 \leq i \leq 8\}
\end{aligned}
$$

- Especially integer divisions/remainders

```
E.g., i % 10 <= 6
```

$$
i-10\left\lfloor\frac{i}{10}\right\rfloor \leq 6
$$

Why do we need existentially quantified variables?

- Modeling some problems Which array elements are accessed in this loop?

$$
\begin{aligned}
& \text { for }(j=1 ; j<=p ;++j) \\
& \text { for } \quad(i=1 ; i<=8 ;++i) \\
& \text { a }[6 i+9 j-7]=a[6 i+9 j-7]+5 ; \\
& S(s)=\{I \in \mathbb{Z} \mid \exists i, j \in \mathbb{Z}: I=6 i+9 j-7 \wedge 1 \leq j \leq s \wedge 1 \leq i \leq 8\}
\end{aligned}
$$

- Especially integer divisions/remainders E.g., i \% $10<=6$

$$
\begin{aligned}
i-10\left\lfloor\frac{i}{10}\right\rfloor & \leq 6 \\
i-10 \alpha & \leq 6
\end{aligned}
$$

with $i-9 \leq 10 \alpha \leq i$

Why do we need existentially quantified variables?

- Modeling some problems Which array elements are accessed in this loop?

$$
\begin{aligned}
& \text { for }(j=1 ; j<=p ;++j) \\
& \text { for }(i=1 ; i<=8 ;++i) \\
& \text { a }[6 i+9 j-7]=a[6 i+9 j-7]+5 ; \\
& S(s)=\{I \in \mathbb{Z} \mid \exists i, j \in \mathbb{Z}: I=6 i+9 j-7 \wedge 1 \leq j \leq s \wedge 1 \leq i \leq 8\}
\end{aligned}
$$

- Especially integer divisions/remainders E.g., i \% $10<=6$

$$
\begin{aligned}
i-10\left\lfloor\frac{i}{10}\right\rfloor & \leq 6 \\
i-10 \alpha & \leq 6
\end{aligned}
$$

with $i-9 \leq 10 \alpha \leq i$

- May appear in original code
- May be introduced by (PIP-based) dependence analysis

Why not use the Omega library?

- focuses on integer values
- has explicit support for existentially quantified variables
- very fast on small problems due to extensive use of heuristics

Why not use the Omega library?

- focuses on integer values
- has explicit support for existentially quantified variables
- very fast on small problems due to extensive use of heuristics

But:

- not supported for many years (until recently)
- accuracy limited by machine precision
- different way of handling existentially quantified variables
- some heuristics favor speed over accuracy

Why not use the Omega library?

- focuses on integer values
- has explicit support for existentially quantified variables
- very fast on small problems due to extensive use of heuristics But:
- not supported for many years (until recently)
- accuracy limited by machine precision
- different way of handling existentially quantified variables
- some heuristics favor speed over accuracy \# Omega Calculator v2.1 (based on Omega Library 2.1, Ju AffineHull \{[a,b] : a=b \&\& 1 <= a <= 162\}; \# AffineHull \{[a,b] : a=b \&\& 1 <= a <= 162\}; \{[a, a]\}
AffineHull \{[a,b] : a=b \&\& 1 <= a <= 163\};
\# AffineHull \{[a,b] : a=b \&\& 1 <= a <= 163\};
\{[In_1, In_2]\}
\Rightarrow completely unacceptable for equivalence checking

Internal Representation

$$
\begin{aligned}
& S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\} \\
& R(\mathbf{s})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
\end{aligned}
$$

- "basic" types: "convex" sets and maps (relations)
- equality + inequality constraints
- parameters s
- (optional) explicit representation of existentially quantified variables as integer divisions
\Rightarrow useful for aligning dimensions when performing set operations (e.g., set difference)
\Rightarrow can be computed using PIP
\Rightarrow already available if obtained from PIP-based dependence analysis
- union types: sets and maps
\Rightarrow (disjoint) unions of basic sets/maps

Parametric Integer Programming

$$
R(\mathbf{s})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \preccurlyeq \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric Integer Programming

$$
R(\mathbf{s})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \preccurlyeq \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Programming

$$
R(\mathbf{s})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \preccurlyeq \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Programming

$$
R(\mathbf{s})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \preccurlyeq \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{gathered}
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right)
\end{gathered}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{aligned}
S_{2}(\mathbf{s}) & =\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2} & =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right) \\
& =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{aligned}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{aligned}
S_{2}(\mathbf{s}) & =\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2} & =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right) \\
& =\bigcup_{i}^{1}\left(S_{1} \cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right) \\
= & \bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
& \left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{aligned}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{gathered}
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
\left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{gathered}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{gathered}
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
\left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{gathered}
$$

- with existentially quantified variables
\Rightarrow compute explicit representation

$$
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \left\lvert\, \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle+\left\langle\mathbf{d}_{i},\left\lfloor\frac{\langle\mathbf{p}, \mathbf{x}\rangle+\left\langle\mathbf{q}_{i}, \mathbf{s}\right\rangle+r}{m}\right\rfloor\right\rangle \geq c_{i}\right.\right\}
$$

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

$$
S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

PolyLib way:

1. Compute $H=$ conv.hull $\left(S_{1} \cup S_{2}\right)$
2. Replace $S_{1} \cup S_{2}$ by $H \backslash\left(H \backslash\left(S_{1} \cup S_{2}\right)\right)$

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

$$
S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

PolyLib way:

1. Compute $H=$ conv.hull $\left(S_{1} \cup S_{2}\right)$
2. Replace $S_{1} \cup S_{2}$ by $H \backslash\left(H \backslash\left(S_{1} \cup S_{2}\right)\right)$
isl way:
3. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

isl Operation: Set Coalescing

1. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

isl Operation: Set Coalescing

1. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

1. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

1. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

1. Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
- adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
- adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

2. Recognize cases

- non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped
- no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints
- single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Closed Convex Hull

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

1. using elimination

- convex hull of polyhedra
\Rightarrow sum of cones in homogeneous space

$$
\begin{aligned}
H=\left\{\mathbf{x} \mid \exists \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}:\right. & \mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \wedge 1=z_{1}+z_{2} \wedge \\
& \left.A \mathbf{x}_{1} \geq \mathbf{c} z_{1} \wedge z_{1} \geq 0 \wedge B \mathbf{x}_{2} \geq \mathbf{d} z_{2} \wedge z_{2} \geq 0\right\}
\end{aligned}
$$

- eliminate $\mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}$ using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

1. using elimination

- convex hull of polyhedra
\Rightarrow sum of cones in homogeneous space

$$
\begin{aligned}
H=\left\{\mathbf{x} \mid \exists \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}:\right. & \mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \wedge 1=z_{1}+z_{2} \wedge \\
& \left.A \mathbf{x}_{1} \geq \mathbf{c} z_{1} \wedge z_{1} \geq 0 \wedge B \mathbf{x}_{2} \geq \mathbf{d} z_{2} \wedge z_{2} \geq 0\right\}
\end{aligned}
$$

- eliminate $\mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}$ using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

1. using elimination

- convex hull of polyhedra
\Rightarrow sum of cones in homogeneous space

$$
\begin{aligned}
H=\left\{\mathbf{x} \mid \exists \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}:\right. & \mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \wedge 1=z_{1}+z_{2} \wedge \\
& \left.A \mathbf{x}_{1} \geq \mathbf{c} z_{1} \wedge z_{1} \geq 0 \wedge B \mathbf{x}_{2} \geq \mathbf{d} z_{2} \wedge z_{2} \geq 0\right\}
\end{aligned}
$$

- eliminate $\mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}$ using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

$$
H=\operatorname{conv} \cdot h u l l\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

1. using elimination

- convex hull of polyhedra
\Rightarrow sum of cones in homogeneous space

$$
\begin{aligned}
H=\left\{\mathbf{x} \mid \exists \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}:\right. & \mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \wedge 1=z_{1}+z_{2} \wedge \\
& \left.A \mathbf{x}_{1} \geq \mathbf{c} z_{1} \wedge z_{1} \geq 0 \wedge B \mathbf{x}_{2} \geq \mathbf{d} z_{2} \wedge z_{2} \geq 0\right\}
\end{aligned}
$$

- eliminate $\mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}$ using Fourier-Motzkin elimination \Rightarrow very inefficient!

isl Operation: Closed Convex Hull

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

1. using elimination

- convex hull of polyhedra
\Rightarrow sum of cones in homogeneous space

$$
\begin{aligned}
H=\left\{\mathbf{x} \mid \exists \mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}:\right. & \mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2} \wedge 1=z_{1}+z_{2} \wedge \\
& \left.A \mathbf{x}_{1} \geq \mathbf{c} z_{1} \wedge z_{1} \geq 0 \wedge B \mathbf{x}_{2} \geq \mathbf{d} z_{2} \wedge z_{2} \geq 0\right\}
\end{aligned}
$$

- eliminate $\mathbf{x}_{1}, \mathbf{x}_{2}, z_{1}, z_{2}$ using Fourier-Motzkin elimination
\Rightarrow very inefficient!

2. using "wrapping"

- S_{1} and S_{2} are polytopes
\Rightarrow wrap facets around ridges until all facets found (FLL2000)
- H is pointed
\Rightarrow change perspective
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$
- S_{1} or S_{2} has non-trivial lineality space
\Rightarrow project out lineality S_{1} and lineality S_{2}

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

isl Operation: Closed Convex Hull—Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

Compute $a=\min x_{2}+y_{2}$ s.t.

$$
x_{1}+y_{1}=1 \wedge A \mathbf{x} \geq \mathbf{c} x_{0} \wedge x_{0} \geq 0 \wedge B \mathbf{y} \geq \mathbf{d} y_{0} \wedge y_{0} \geq 0
$$

(Cone of hull is sum of cones in homogeneous space)

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

Compute $a=\min x_{2}+y_{2}$ s.t.

$$
x_{1}+y_{1}=1 \wedge A \mathbf{x} \geq \mathbf{c} x_{0} \wedge x_{0} \geq 0 \wedge B \mathbf{y} \geq \mathbf{d} y_{0} \wedge y_{0} \geq 0
$$

(Cone of hull is sum of cones in homogeneous space)

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$

- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

- Consider cones in homogeneous space

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective

- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . \operatorname{hull}\left(R_{1} \cap-R_{2}\right)$

isl Operation: Closed Convex Hull-Wrapping

$$
H=\text { conv.hull }\left(S_{1} \cup S_{2}\right) \quad S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

- S_{1} and S_{2} are polytopes (FLL2000)
- Assume $x_{1} \geq 0$ defines a facet and $x_{2} \geq 0$ a ridge on the facet
- Wrap facet around ridge \Rightarrow new facet constraint $x_{2} \geq a x_{1}$
- Repeat for all ridges
- Ridges found through recursive application
- Repeat for new facets until all facets found
- H is pointed \Rightarrow change perspective
- Consider cones in homogeneous space
- Take other homogeneous direction \Rightarrow union of polytopes
- Compute convex hull
- Convert back
- S_{1} and S_{2} are pointed (R_{i} recession cone of S_{i})
\Rightarrow project out lineality $H=\operatorname{lin} . h u l l\left(R_{1} \cap-R_{2}\right)$
- S_{1} or S_{2} has non-trivial lineality space \Rightarrow project out lineality S_{1} and lineality S_{2}

Improved Code Generation using CLooG

Using PolyLib as a backend:

```
for (p1=0;p1<=floord(8*N+63,32);p1++) {
    for (p3=max(max(max (max(0,ceild(-32*p1-27,4)),
        ceild(512*p1-128*N-975,16)), ceild(28*p1-7*N-20,36)),
        ceild(60*p1-15*N-44,68));
        p3<=min(min(floord(4*M+47,16),floord(24*p1+5*M+36,20)),
        floord(136*p1+31*M+224,124));p3++) {
        if ((p1 >= 0) && (p1 <= floord(N-1,4))) {
        for (p5=max(0,4*p3);p5<=min(M-1,4*p3+3);p5++) {
        for (p7=max(0,4*p1);p7<=min(N-1,4*p1+3);p7++) {
        S9(p3,p5,p1,p7); /* ... */
```


Improved Code Generation using CLooG

Using PolyLib as a backend:

```
for (p1=0;p1<=floord(8*N+63,32);p1++) {
    for (p3=max(max (max (max (0,ceild(-32*p1-27,4)),
        ceild(512*p1-128*N-975,16)), ceild(28*p1-7*N-20,36)),
        ceild(60*p1-15*N-44,68));
        p3<=min(min(floord(4*M+47,16),floord(24*p1+5*M+36,20)),
        floord(136*p1+31*M+224,124));p3++) {
    if ((p1 >= 0) && (p1 <= floord(N-1,4))) {
    for (p5=max(0,4*p3);p5<=min(M-1,4*p3+3);p5++) {
        for (p7=max(0,4*p1);p7<=min(N-1,4*p1+3);p7++) {
            S9(p3,p5,p1,p7); /* ... */
```

Using isl as a backend:

```
for (p1=0;p1<=floord(N+7,4);p1++) {
    for (p3=max(0,ceild(4*p1-N+1,4));
        p3<=min(floord(M+11,4),floord(4*p1+M+3,4));p3++) {
    if (p1 <= floord(N-1,4)) {
    for (p5=4*p3;p5<=min(M-1,4*p3+3);p5++) {
        for (p7=4*p1;p7<=min(N-1,4*p1+3);p7++) {
            S9(p3,p5,p1,p7); /* ... */
```


CLooG Speed Comparison

PolyLib-64 PolyLib-gmp isl-gmp

Example from previous slide	0.15 s	0.31 s	0.18 s
(from Harald Devos)			
CLooG test suite	5.1 s	11.4 s	7.5 s
Simple tiling example	1.11 s	2.63 s	1.11 s
Extreme tiling example	14.6 s	28.5 s	5.15 s
LU example	0.86 s	1.88 s	0.35 s
Sobel example (from Harald	0.62 s	1.64 s	0.15 s
Devos)			

(Tiling examples from Uday K Bondhugula)

Conclusion

- isl: a new integer set library
- currently used in
- equivalence checking tool
- CLoog
- Produces better code than PolyLib backend
- Comparable in speed or faster than PolyLib backend
- explicit support for existentially quantified variables
- uses PIP for solving (P)ILP problems
- all computations in exact integer arithmetic using GMP
- built-in incremental LP solver
- released under LGPL license

