
An Integer Set Library for Program Analysis

Sven Verdoolaege

April 26, 2009

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program:
manipulation of arrays inside loops

⇒ most interesting part to optimize

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program:
manipulation of arrays inside loops

⇒ most interesting part to optimize

⇒ need for compact representation of
iterations of a loop/elements of an array

⇒ + efficient to manipulate

Program Analysis and Transformation

Most expensive part of a multimedia or signal processing program:
manipulation of arrays inside loops

⇒ most interesting part to optimize

⇒ need for compact representation of
iterations of a loop/elements of an array

⇒ + efficient to manipulate

⇒ Integer points in polyhedra (“polyhedral model”)
⇒ More generally: sets of integers bounded by affine inequalities

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j

i
Iteration domain: P = { [i , j] | i ≥ 1 }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j

i
Iteration domain: P = { [i , j] | i ≥ 1 ∧ i ≤ N }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j

i
Iteration domain: P = { [i , j] | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j

i
Iteration domain: P = { [i , j] | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 ∧ j ≤ i }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Representation Example: Iteration Domain

#define N 5

for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)

a[i][j]=

j

i

•

• •

• • •

• • • •

• • • • •

Iteration domain: P = { [i , j] | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 ∧ j ≤ i }

Assumptions on sequential code:

◮ iterators are integers

◮ loops with affine bounds

◮ affine conditions

◮ affine index expressions

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

•

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

•

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

• •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

• • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

• • • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

• • • • •

• • • • •

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

Execution order: top-down, left-right

•, ◦ Statement iteration
Data flow dependence

• Executed statement
Data in memory

• • • • •

◦ ◦ ◦ ◦ ◦

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[N-i] = f(a[i])

• • • • •

◦ ◦ ◦ ◦ ◦

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[N-i] = f(a[i])

• • • • •

◦ ◦ ◦ ◦ ◦

•

•

•

•

•

◦

◦

◦

◦

◦

Program Transformation Example

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i])

• • • • •

◦◦◦◦◦

for (i = 0; i <= N; ++i)

a[i] = ...

for (i = 0; i <= N; ++i)

b[N-i] = f(a[i])

• • • • •

◦ ◦ ◦ ◦ ◦

for (i = 0; i <= N; ++i) {

a[i] = ...

b[N-i] = f(a[i])

}

•

•

•

•

•

◦

◦

◦

◦

◦

Two Program Analysis and Transformation Tools

Why do we need an integer set library?

◮ Equivalence checker
◮ Checks the equivalence of two programs represented in the

polyhedral model
◮ Proves output is the same given that input is the same
◮ Maintains maps between statement iterations of both

programs that should be proven to produce the same result

Requirements
◮ manipulations on integer sets/maps
◮ explicit support for existentially quantified variables

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

a1[N] == a2[N] requires a1[N-1] == a2[N-1]

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

a1[N] == a2[N] requires a1[N-1] == a2[N-1]

a1[N-1] == a2[N-1] requires a1[N-2] == a2[N-2]

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

a1[N] == a2[N] requires a1[N-1] == a2[N-1]

a1[N-1] == a2[N-1] requires a1[N-2] == a2[N-2]

. . .

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

a1[N] == a2[N] requires a1[N-1] == a2[N-1]

a1[N-1] == a2[N-1] requires a1[N-2] == a2[N-2]

. . .
⇒ requires a1[i] == a2[i] for 1 ≤ i ≤ N

⇒ induction for 2 ≤ i ≤ N + requires a1[0] = a2[0]

⇒ Integer affine hull of { (N, N), (N − 1, N − 1) }: { (i , i) }

Equivalence Checking Example

Given in1 == in2, can we prove out1 == out2?

a1[0] = in1;

for (i = 1; i <= N; ++i)

a1[i] = f(a1[i - 1]);

out1 = a1[N];

a2[0] = in2;

for (i = 1; i <= N; ++i)

a2[i] = f(a2[i - 1]);

out2 = a2[N];

out1 == out2 requires a1[N] == a2[N]

a1[N] == a2[N] requires a1[N-1] == a2[N-1]

a1[N-1] == a2[N-1] requires a1[N-2] == a2[N-2]

. . .
⇒ requires a1[i] == a2[i] for 1 ≤ i ≤ N

⇒ induction for 2 ≤ i ≤ N + requires a1[0] = a2[0]

⇒ Integer affine hull of { (N, N), (N − 1, N − 1) }: { (i , i) }

a1[0] == a2[0] requires in1 == in2

Two Program Analysis and Transformation Tools

Why do we need an integer set library?

◮ Equivalence checker
◮ Checks the equivalence of two programs represented in the

polyhedral model
◮ Proves output is the same given that input is the same
◮ Maintains maps between statement iterations of both

programs that should be proven to produce the same result

Requirements
◮ manipulations on integer sets/maps
◮ explicit support for existentially quantified variables

Two Program Analysis and Transformation Tools

Why do we need an integer set library?

◮ Equivalence checker
◮ Checks the equivalence of two programs represented in the

polyhedral model
◮ Proves output is the same given that input is the same
◮ Maintains maps between statement iterations of both

programs that should be proven to produce the same result

Requirements
◮ manipulations on integer sets/maps
◮ explicit support for existentially quantified variables

◮ CLooG
◮ Generates code for scanning integer points in polyhedra

(iteration domains)

Requirements
◮ manipulations on integer sets

⇒ remove redundant constraints/code
◮ explicit support for existentially quantified variables

⇒ replace some loops by guards

CLooG Example

S1: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ j = i}
S2: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ i ≤ j ≤ n}
S3: {(i , j) | 1 ≤ i ≤ m ∧ j = n ≤ m}

i

j

CLooG Example

S1: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ j = i}
S2: {(i , j) | 1 ≤ i ≤ n ≤ m ∧ i ≤ j ≤ n}
S3: {(i , j) | 1 ≤ i ≤ m ∧ j = n ≤ m}

i

j
for (i=1;i<=m;i++) {

if (i <= n) {

S1(i,i);

}

for (j=i;j<=n;j++) {

S2(i);

}

S3(i,n);

}

Required Operations

◮ Basic operations

◮ Union
◮ Intersection
◮ Set difference
◮ . . .

◮ Operations required by equivalence checking

◮ Integer affine hull
◮ . . .

◮ Operations required by CLooG

◮ Projection (rational)
◮ Ordering
◮ Convex hull (rational)
◮ Simplification
◮ . . .

Why not use a double description based library?

E.g., PolyLib, PPL, (polymake)

◮ Who needs vertices anyway?
◮ Very useful for LattE macchiato/barvinok style counting

(but neither equivalence checking or CLooG needs any
counting)

◮ Some operations can be performed more efficiently on explicit
representation
But:

◮ Computing the dual can be costly
◮ Double description requires more space

⇒ trade-off

(sets used in equivalence checking and CLooG usually have few
constraints)

Why not use a double description based library?

E.g., PolyLib, PPL, (polymake)

◮ Who needs vertices anyway?
◮ Very useful for LattE macchiato/barvinok style counting

(but neither equivalence checking or CLooG needs any
counting)

◮ Some operations can be performed more efficiently on explicit
representation
But:

◮ Computing the dual can be costly
◮ Double description requires more space

⇒ trade-off

(sets used in equivalence checking and CLooG usually have few
constraints)

◮ Usually focus on rational values

◮ Little/no support for existentially quantified variables

Why do we need existentially quantified variables?

◮ Modeling some problems
Which array elements are accessed in this loop?

for (j = 1; j <= p; ++j)

for (i = 1; i <= 8; ++i)

a[6i+9j-7] = a[6i+9j-7] + 5;

S(s) = {l ∈ Z | ∃i , j ∈ Z : l = 6i+9j−7∧1 ≤ j ≤ s∧1 ≤ i ≤ 8}

Why do we need existentially quantified variables?

◮ Modeling some problems
Which array elements are accessed in this loop?

for (j = 1; j <= p; ++j)

for (i = 1; i <= 8; ++i)

a[6i+9j-7] = a[6i+9j-7] + 5;

S(s) = {l ∈ Z | ∃i , j ∈ Z : l = 6i+9j−7∧1 ≤ j ≤ s∧1 ≤ i ≤ 8}

◮ Especially integer divisions/remainders
E.g., i % 10 <= 6

i − 10

⌊

i

10

⌋

≤ 6

Why do we need existentially quantified variables?

◮ Modeling some problems
Which array elements are accessed in this loop?

for (j = 1; j <= p; ++j)

for (i = 1; i <= 8; ++i)

a[6i+9j-7] = a[6i+9j-7] + 5;

S(s) = {l ∈ Z | ∃i , j ∈ Z : l = 6i+9j−7∧1 ≤ j ≤ s∧1 ≤ i ≤ 8}

◮ Especially integer divisions/remainders
E.g., i % 10 <= 6

i − 10

⌊

i

10

⌋

≤ 6

i − 10α ≤ 6

with i − 9 ≤ 10α ≤ i

Why do we need existentially quantified variables?

◮ Modeling some problems
Which array elements are accessed in this loop?

for (j = 1; j <= p; ++j)

for (i = 1; i <= 8; ++i)

a[6i+9j-7] = a[6i+9j-7] + 5;

S(s) = {l ∈ Z | ∃i , j ∈ Z : l = 6i+9j−7∧1 ≤ j ≤ s∧1 ≤ i ≤ 8}

◮ Especially integer divisions/remainders
E.g., i % 10 <= 6

i − 10

⌊

i

10

⌋

≤ 6

i − 10α ≤ 6

with i − 9 ≤ 10α ≤ i

◮ May appear in original code
◮ May be introduced by (PIP-based) dependence analysis

Why not use the Omega library?

◮ focuses on integer values

◮ has explicit support for existentially quantified variables

◮ very fast on small problems due to extensive use of heuristics

Why not use the Omega library?

◮ focuses on integer values

◮ has explicit support for existentially quantified variables

◮ very fast on small problems due to extensive use of heuristics

But:

◮ not supported for many years (until recently)

◮ accuracy limited by machine precision

◮ different way of handling existentially quantified variables

◮ some heuristics favor speed over accuracy

Why not use the Omega library?

◮ focuses on integer values

◮ has explicit support for existentially quantified variables

◮ very fast on small problems due to extensive use of heuristics

But:

◮ not supported for many years (until recently)

◮ accuracy limited by machine precision

◮ different way of handling existentially quantified variables

◮ some heuristics favor speed over accuracy

Omega Calculator v2.1 (based on Omega Library 2.1, July,

AffineHull {[a,b] : a=b && 1 <= a <= 162};

AffineHull {[a,b] : a=b && 1 <= a <= 162};

{[a,a]}

AffineHull {[a,b] : a=b && 1 <= a <= 163};

AffineHull {[a,b] : a=b && 1 <= a <= 163};

{[In_1,In_2]}

⇒ completely unacceptable for equivalence checking

Internal Representation

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

R(s) = { (x1, x2) ∈ Z
d1 × Z

d2 | ∃z ∈ Z
e : A1x1 + A2x2 + Bs + Dz ≥ c }

◮ “basic” types: “convex” sets and maps (relations)

◮ equality + inequality constraints
◮ parameters s
◮ (optional) explicit representation of existentially quantified

variables as integer divisions

⇒ useful for aligning dimensions when performing set operations
(e.g., set difference)

⇒ can be computed using PIP
⇒ already available if obtained from PIP-based dependence

analysis

◮ union types: sets and maps

⇒ (disjoint) unions of basic sets/maps

Parametric Integer Programming

R(s) = { (x1, x2) ∈ Z
d1×Z

d2 | ∃z ∈ Z
e : A1x1+A2x2+Bs+Dz ≥ c }

Lexicographic minimum of R:

lexminR = { (x1, x2) ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric Integer Programming

R(s) = { (x1, x2) ∈ Z
d1×Z

d2 | ∃z ∈ Z
e : A1x1+A2x2+Bs+Dz ≥ c }

Lexicographic minimum of R:

lexminR = { (x1, x2) ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer programming computes lexminR in the form

lexminR =
⋃

i

{ (x1, x2) ∈ Z
d1 × Z

d2 | ∃z′ ∈ Z
e′ : Aix1 + Bis ≥ ci ∧

z′ =

⌊

Pix1 + Qis + ri

m

⌋

∧

x2 = Tix1 + Uis + Viz
′ + wi }

◮ explicit representation of existentially quantified variables

◮ explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Programming

R(s) = { (x1, x2) ∈ Z
d1×Z

d2 | ∃z ∈ Z
e : A1x1+A2x2+Bs+Dz ≥ c }

Lexicographic minimum of R:

lexminR = { (x1, x2) ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer programming computes lexminR in the form

lexminR =
⋃

i

{ (x1, x2) ∈ Z
d1 × Z

d2 | ∃z′ ∈ Z
e′ : Aix1 + Bis ≥ ci ∧

z′ =

⌊

Pix1 + Qis + ri

m

⌋

∧

x2 = Tix1 + Uis + Viz
′ + wi }

◮ explicit representation of existentially quantified variables

◮ explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Programming

R(s) = { (x1, x2) ∈ Z
d1×Z

d2 | ∃z ∈ Z
e : A1x1+A2x2+Bs+Dz ≥ c }

Lexicographic minimum of R:

lexminR = { (x1, x2) ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer programming computes lexminR in the form

lexminR =
⋃

i

{ (x1, x2) ∈ Z
d1 × Z

d2 | ∃z′ ∈ Z
e′ : Aix1 + Bis ≥ ci ∧

z′ =

⌊

Pix1 + Qis + ri

m

⌋

∧

x2 = Tix1 + Uis + Viz
′ + wi }

◮ explicit representation of existentially quantified variables

◮ explicit representation of range variables

Technique: dual simplex + Gomory cuts

isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉 + 〈bi , s〉 ≥ ci) })

isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉 + 〈bi , s〉 ≥ ci) })

=
⋃

i

(S1 ∩ { x | 〈ai , x〉 + 〈bi , s〉 ≤ ci − 1 })

isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉 + 〈bi , s〉 ≥ ci) })

=
⋃

i

(S1 ∩ { x | 〈ai , x〉 + 〈bi , s〉 ≤ ci − 1 })

=
⋃

i

(S1 ∩
⋂

j<i

{ x | 〈aj , x〉 + 〈bj , s〉 ≥ cj }

∩ { x | 〈ai , x〉 + 〈bi , s〉 ≤ ci − 1 })

isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩
⋂

j<i

{ x | 〈aj , x〉 + 〈bj , s〉 ≥ cj }

∩ { x | 〈ai , x〉 + 〈bi , s〉 ≤ ci − 1 })

isl Operation: Set Difference

S(s) = { x ∈ Z
d | ∃z ∈ Z

e : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

◮ no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉 + 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩
⋂

j<i

{ x | 〈aj , x〉 + 〈bj , s〉 ≥ cj }

∩ { x | 〈ai , x〉 + 〈bi , s〉 ≤ ci − 1 })

◮ with existentially quantified variables
⇒ compute explicit representation

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉+〈bi , s〉+

〈

di ,

⌊

〈p, x〉 + 〈qi , s〉 + r

m

⌋〉

≥ ci }

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

PolyLib way:

1. Compute H = conv.hull(S1 ∪ S2)
2. Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl Operation: Set Coalescing
After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
⇒ try to combine several basic sets into a single basic set

S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

PolyLib way:

1. Compute H = conv.hull(S1 ∪ S2)
2. Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl way:
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise

isl Operation: Set Coalescing
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise

isl Operation: Set Coalescing
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise
2. Recognize cases

◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

isl Operation: Set Coalescing
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise
2. Recognize cases

◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise
2. Recognize cases

◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

isl Operation: Set Coalescing
1. Classify constraints

◮ redundant: min 〈ai , x〉 > ci − 1 over remaining constraints
◮ valid: min 〈ai , x〉 > ci − 1 over S2

◮ separating: max 〈ai , x〉 < ci over S2

special cases:
◮ adjacent to equality: 〈ai , x〉 = ci − 1 over S2

◮ adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj) − 1 over S2

◮ cut: otherwise
2. Recognize cases

◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Set Coalescing

2. Recognize cases
◮ non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped
◮ no separating constraints and cut constraints of S2 are valid

for cut facets of S1 (similar to BFT2001)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by basic set with all valid constraints

◮ single adjacent pair of an inequality (S1) and an equality (S2)
+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

isl Operation: Closed Convex Hull

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

1. using elimination
◮ convex hull of polyhedra

⇒ sum of cones in homogeneous space

H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

1. using elimination
◮ convex hull of polyhedra

⇒ sum of cones in homogeneous space

H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

1. using elimination
◮ convex hull of polyhedra

⇒ sum of cones in homogeneous space

H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

isl Operation: Closed Convex Hull

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

1. using elimination
◮ convex hull of polyhedra

⇒ sum of cones in homogeneous space

H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

⇒ very inefficient!

isl Operation: Closed Convex Hull

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

1. using elimination
◮ convex hull of polyhedra

⇒ sum of cones in homogeneous space

H = { x | ∃x1, x2, z1, z2 : x = x1 + x2 ∧ 1 = z1 + z2 ∧

Ax1 ≥ cz1 ∧ z1 ≥ 0 ∧ Bx2 ≥ dz2 ∧ z2 ≥ 0 }

◮ eliminate x1, x2, z1, z2 using Fourier-Motzkin elimination

⇒ very inefficient!
2. using “wrapping”

◮ S1 and S2 are polytopes
⇒ wrap facets around ridges until all facets found (FLL2000)

◮ H is pointed
⇒ change perspective

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ −R2)

◮ S1 or S2 has non-trivial lineality space
⇒ project out lineality S1 and lineality S2

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

Compute a = min x2 + y2 s.t.

x1 + y1 = 1 ∧ Ax ≥ cx0 ∧ x0 ≥ 0 ∧ By ≥ dy0 ∧ y0 ≥ 0

(Cone of hull is sum of cones in homogeneous space)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

Compute a = min x2 + y2 s.t.

x1 + y1 = 1 ∧ Ax ≥ cx0 ∧ x0 ≥ 0 ∧ By ≥ dy0 ∧ y0 ≥ 0

(Cone of hull is sum of cones in homogeneous space)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

x1

x2

•

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective

◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

isl Operation: Closed Convex Hull—Wrapping

H = conv.hull(S1∪S2) S1 = { x | Ax ≥ c } S2 = { x | Bx ≥ d }

◮ S1 and S2 are polytopes (FLL2000)
◮ Assume x1 ≥ 0 defines a facet and x2 ≥ 0 a ridge on the facet
◮ Wrap facet around ridge ⇒ new facet constraint x2 ≥ ax1

◮ Repeat for all ridges
◮ Ridges found through recursive application
◮ Repeat for new facets until all facets found

◮ H is pointed ⇒ change perspective
◮ Consider cones in homogeneous space
◮ Take other homogeneous direction ⇒ union of polytopes
◮ Compute convex hull
◮ Convert back

◮ S1 and S2 are pointed (Ri recession cone of Si)
⇒ project out lineality H = lin.hull(R1 ∩ − R2)

◮ S1 or S2 has non-trivial lineality space
⇒ project out lineality S1 and lineality S2

Improved Code Generation using CLooG
Using PolyLib as a backend:

for (p1=0;p1<=floord(8*N+63,32);p1++) {

for (p3=max(max(max(max(0,ceild(-32*p1-27,4)),

ceild(512*p1-128*N-975,16)),ceild(28*p1-7*N-20,36)),

ceild(60*p1-15*N-44,68));

p3<=min(min(floord(4*M+47,16),floord(24*p1+5*M+36,20)),

floord(136*p1+31*M+224,124));p3++) {

if ((p1 >= 0) && (p1 <= floord(N-1,4))) {

for (p5=max(0,4*p3);p5<=min(M-1,4*p3+3);p5++) {

for (p7=max(0,4*p1);p7<=min(N-1,4*p1+3);p7++) {

S9(p3,p5,p1,p7); /* ... */

Improved Code Generation using CLooG
Using PolyLib as a backend:

for (p1=0;p1<=floord(8*N+63,32);p1++) {

for (p3=max(max(max(max(0,ceild(-32*p1-27,4)),

ceild(512*p1-128*N-975,16)),ceild(28*p1-7*N-20,36)),

ceild(60*p1-15*N-44,68));

p3<=min(min(floord(4*M+47,16),floord(24*p1+5*M+36,20)),

floord(136*p1+31*M+224,124));p3++) {

if ((p1 >= 0) && (p1 <= floord(N-1,4))) {

for (p5=max(0,4*p3);p5<=min(M-1,4*p3+3);p5++) {

for (p7=max(0,4*p1);p7<=min(N-1,4*p1+3);p7++) {

S9(p3,p5,p1,p7); /* ... */

Using isl as a backend:

for (p1=0;p1<=floord(N+7,4);p1++) {

for (p3=max(0,ceild(4*p1-N+1,4));

p3<=min(floord(M+11,4),floord(4*p1+M+3,4));p3++) {

if (p1 <= floord(N-1,4)) {

for (p5=4*p3;p5<=min(M-1,4*p3+3);p5++) {

for (p7=4*p1;p7<=min(N-1,4*p1+3);p7++) {

S9(p3,p5,p1,p7); /* ... */

CLooG Speed Comparison

PolyLib-64 PolyLib-gmp isl-gmp

Example from previous slide
(from Harald Devos)

0.15s 0.31s 0.18s

CLooG test suite 5.1s 11.4s 7.5s
Simple tiling example 1.11s 2.63s 1.11s
Extreme tiling example 14.6s 28.5s 5.15s
LU example 0.86s 1.88s 0.35s
Sobel example (from Harald
Devos)

0.62s 1.64s 0.15s

(Tiling examples from Uday K Bondhugula)

Conclusion

◮ isl: a new integer set library

◮ currently used in
◮ equivalence checking tool
◮ CLooG

◮ Produces better code than PolyLib backend
◮ Comparable in speed or faster than PolyLib backend

◮ explicit support for existentially quantified variables

◮ uses PIP for solving (P)ILP problems

◮ all computations in exact integer arithmetic using GMP

◮ built-in incremental LP solver

◮ released under LGPL license

	Motivation
	isl

