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Machine Learning for Early Stage Building Energy Prediction: Increment and Enrichment
Abstract – Collecting data for machine learning (ML) development is a resource-intensive task that necessitates identifying an efficient data collection approach. This study focuses on ML models that provide quick energy results by dramatically reducing computational demand. The generalisation of such models for multiple building shapes is vital to early-stage energy prediction. Therefore, this article examines which approach of collecting new training samples improves generalisation more - increment of samples in a similar data range or enrichment with samples exhibiting novelty in shape. The first training dataset collects samples from a box-shaped building energy model (BEM). Distribution analysis suggests that they fill only a small portion of the design space. Using the same BEM, the increment approach collects samples that fill the same portion. In contrast, using three differently shaped BEMs, the enrichment approach collects samples well-distributed in the design space. The distribution of samples in a training dataset is quantified to assess their potential to improve generalisation. Using the same number of training samples, the enrichment approach fills the design space better than the increment, reducing the generalisation error (root-mean-square-error) by 58%, compared to 38% after the increment. Hence, the article suggests analysing the distribution of existing and prospective samples to identify an efficient data collection approach having a higher potential to improve generalisation. The developed method will be useful to save expensive data collection resources by focussing on a limited number of samples.
Keywords: energy performance; data collection; training data; generalisation error; data analysis.
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[bookmark: _Toc38825903]Introduction
The energy-efficient building design is essential to address global energy concerns and fulfil regulatory requirements [1]. Additionally, in the early design stages, decisions related to energy performance are most effective at the lowest costs for changes [2,3]. A designer analyses and compares several design options, primarily using thumb rules during an exploratory design process [4]. Building performance simulations (BPS) are used to predict energy performance and make such comparisons based on reliable information [5,6]. However, uncertainty in the design information requires simulating several building energy models (BEMs) to obtain BPS results for energy prediction [7] and decision-making [8,9]. The computational expensiveness renders dynamic energy simulation tools impractical in such situations and calls for computationally inexpensive metamodels or engineering-surrogate models [10].
Machine learning (ML) approaches are used extensively to approximate the input-output relationship exhibited by complex BEMs and develop simplified metamodels [11,12]. ML models provide quick BPS results at a slight loss of accuracy, representing a deliberate trade-off between computational time and accuracy [13]. Since the information available at the early stage is limited and uncertain, the objective of BPS is to compare and classify several options than precise energy predictions [14]. This situation makes time-efficient ML models suitable at the early design stages [15]. However, an ML model is required, which accurately predicts the energy demand of various design configurations. Hence, this article develops an ML model to substitute BEM at early design stages and focuses on improving its generalisation, i.e., prediction accuracy on cases different from the training data.
Early-stage BEMs are characterised by various design configurations that include different shapes and a wide range of technical specifications. The challenge is to develop an ML model that captures complex interactions between geometry and technical specifications and generalises well. The use of large training datasets to improve the generalisation is illustrated for other ML applications. However, BEMs have a few domain-specific complexities, such as the hierarchical structure of building components, non-linear interactions among parameters, transient thermal behaviour, and complex geometrical representation. These complexities separate BEMs from other ML applications; hence, it requires investigation into data collection approaches to improve the generalisation. This article examines how extending—increasing or enriching—the training datasets improves generalisation. By comparing two data collection approaches—increment and enrichment, this article highlights the need to improve distribution besides the number of training samples to improve generalisation. The distribution of samples is analysed and quantified to identify training datasets that have more potential to improve the generalisation.
Size of training dataset and the ML model generalisation
ML model generalisation refers to its ability to make accurate predictions on unseen data, i.e., the samples not used in the training process. There are a few methods to improve the generalisation, such as using a large dataset for training [16,17], feature engineering [18], an appropriate learning algorithm, and hyperparameter tuning [19]. With the development of advanced algorithms and computing resources that scale well on large datasets, data becomes a vital ingredient to developing ML models [20]. Banko and Brill have shown that increasing training data improves the accuracy of predictions [21]. In ML applications to image classification [22] and language processing and translation [23], training data volume improves accuracy significantly. Gelder, Janssen, and Roels have shown that the size of training data improves the accuracy of ML-based energy predictions [24]. The efficiency of several ML algorithms has been studied for different sizes of training datasets. These studies show that the model generalisation improves with the size of the training dataset irrespective of its learning algorithm. However, collecting new samples requires expensive resources. Researchers have studied the influence of a training sample on the prediction accuracy to analyse anomalies in the training dataset [25]. This approach highlights that not all the training samples are useful for improving the generalisation. However, its use in identifying prospective training samples that are useful to improve generalisation is not studied.
Good sampling schemes such as Latin hypercube [26] or Sobol [27] optimises the distribution of samples in the design space to capture parameter interactions [28,29]. Similarly, datasets with diverse training samples capture relevant parameter interactions and allow training a well-generalising ML model [30]. However, data collection approaches to collect diverse samples are specific to the domain. For example, in speech recognition, voice samples of different accents were collected to improve generalisation [31,32]. A similar data augmentation approach is used to improve the accuracy of text recognition [33] and image classification [34]. Westermann and Evins have used the data from several locations to train energy prediction models for different climatic zones [35]. 
Previous studies suggest that both large training datasets and diverse training samples are essential to improve model generalisation. Since the data collection approaches are domain-specific, it requires investigation into potential approaches for early-stage building energy prediction. Moreover, collecting new samples is a resource-intensive exercise making it imperative to identify an efficient data collection approach that improves the generalisation with a limited number of training samples. By analysing the distribution of prospective training samples, this article identifies an approach that has a higher potential to improve generalisation. 
State-of-the-art approaches to develop metamodel for early-stage BEM
A designer develops a mass model in an uncertain scenario at an early design stage [36]. Hence, it requires an ML model that accurately predicts energy performance for various design configurations, including different shapes [37]. Previous research works developed metamodels (using ML or other approaches) for a fixed building geometry or rectangular shape of flexible dimensions [38,39], which are not suitable for the early stage. Catalina, Virgone, and Blanco [18], Chou and Bui [40], and Li, Dai, Chen, and Lin [41] developed simple parametric metamodels, representing building shape by a characteristic parameter, such as compactness. A simple geometrical representation and parametric ML definition do not capture dependencies between geometry and thermal behaviour. Geyer and Singaravel proposed a component-based machine learning (CBML) approach based on the decomposition of design artefact into components [42]. It is flexible enough to adapt to new design cases without changing the model structure or re-training ML components. Therefore, CBML is used as an exemplary approach to developing the ML model for early-stage BEM. More details of CBML are provided in the methodology section.
Previous studies used a box-shaped BEM to collect samples for training CBML components. However, the samples from only box-shaped BEM are insufficient to capture the data diversity of the test samples that have a lot of diverse building shapes. This insufficiency results in a loss of accuracy for design cases outside of training data [43,44]. Singaravel, Suykens, and Geyer explained the well-generalising behaviour of a deep learning model based on its ability to identify the similarities between training and test samples [45,46]. The usefulness of differently shaped BEMs that allow collecting diverse training samples has not been studied in improving the generalisation. Hence, an investigation is required whether the training samples from differently shaped BEMs are diverse enough to capture the diversity of test samples and improves the ML model generalisation for early-stage energy predictions.
Problem statement and research objectives
The current approach of CBML to develop an early-stage energy prediction model requires better generalisation for various design configurations, primarily different shapes. Research studies from other ML applications argued that large training datasets containing diverse samples improve generalisation. Since approaches to collect new samples are domain-specific, it requires investigation into data collection approaches for the energy prediction model. Moreover, it lacks a method to identify new training samples that have a higher potential to reduce the generalisation error. The lack of such a method results in expensive data collection efforts that will improve the generalisation only a little. Hence, this study investigates two data collection approaches and proposes a method to identify the training dataset with a higher potential to improve generalisation using distribution analysis. From the perspective of improving ML model generalisation using large training datasets, an efficient approach collects diverse training samples that are different from the existing examples and well-distributed in the design space. This article measures the distribution of training samples by standard distance distribution based on Euclidean distance between two examples for multivariate data [47]. A higher distance between two samples signifies that the two samples are different, and the corresponding training dataset has well-dispersed samples [48]. 
The early-stage design configurations have different building shapes and a high range for technical specifications. The building shape is of particular interest in this article, structurally varied by components beyond parametrisation. While previous studies focus more on parametric technical specifications, this study focuses on shape and design. However, a relevant range of technical specifications is also considered to capture its interactions with the shape. Since the building shape of BEM is not parameterised, it requires a novel approach to collect diverse training samples. This article uses BEMs of different shapes to collect new training samples. A BEM of a basic architectural shape, box-shaped, easy to create and requires minimal resources to simulate, is used to collect samples for the first training dataset. A few more samples from the same box-shaped BEM are collected, by varying the parameters, including geometrical, to create increased datasets. This approach of collecting new samples refers to data increment. It is expected to increase the number of samples with a slight improvement in the distribution. Contrary to an increment approach, more samples are collected from differently shaped BEMs to create ‘enriched’ datasets, which requires additional efforts to create new BEMs. This approach of collecting new samples refers to data enrichment. It is expected to provide diverse samples, well-distributed in the design space. The ML models are trained on multiple increased and enriched datasets to assess their ability to improve generalisation. Besides developing an ML-based energy prediction model for early-stage design configurations, this article – 
a) Develops a method to identify training datasets that have well-distributed samples and allows more improvement in the generalisation.
b) Develops an efficient method to get well-distributed samples across the design space in the early-stage BEM context.
c) Compares two data collection approaches based on their ability to improve the distribution of training samples and the ML model generalisation.
The remaining article is organised into four sections. Section 2 describes the methodology for defining the design space for early-stage BEM context, approaches to collecting new training samples, and the component-based ML model structure. Section 3 documents the findings of this study, i.e., change in the distribution of samples and the corresponding change in the model generalisation using increment and enrichment approaches. Section 4 discusses the transferability and limitations of the proposed approaches to improve generalisation and possible future approaches. Section 5 provides conclusions of this study and the utility of data enrichment in a broader ML context.
[bookmark: _Ref56162096][bookmark: _Ref15562696][bookmark: _Toc38825904]Research methodology
The research methodology is described in four subsections. The first subsection provides the details of design space in the early stage BEM context. Section 2.2 mentions the two data collection approaches and a method to analyse the distribution of training samples. Section 2.3 documents the component-based approach for the training ML model. The last subsection provides the relevant details of the EnergyPlus simulation model used to collect training and test data.
[bookmark: _Ref51239962]Definition of design space and generalisation errors
This study develops an ML model for a typical medium-size office building in Munich as an example. In the early stage design context, the design space is defined by parametric constraints mentioned in Table 2. The selection of these parameters and their ranges is based on the previous studies, relevant German standards for energy-efficient design [56,57], and typical office buildings [15]. The ranges of parameters are only exemplary to demonstrate the proposed approach. The selected parameters represent building geometry, thermal properties of the building envelope, façade characteristics, building use, and system efficiency. These parameters are relevant to study their possible interaction with the building geometry. The design space represents possible variations in building shape, too; a few of them are shown in Figure 1. The random building shapes are generated by arranging squares of variable dimensions.
[bookmark: _Ref51320222][bookmark: _Ref56162130]Parameters for the design space and test building
	Parameters
	Unit
	Min
	Max

	Floor Area (each floor)
	m2
	250
	600

	Floor Height
	m
	3.0
	4.0

	No. of Floors
	-
	3
	5

	Orientation
	°
	0
	45

	u-value (Wall)
	W/m2K
	0.15
	0.35

	u-value (Ground Floor)
	
	0.15
	0.35

	u-value (Roof)
	
	0.15
	0.35

	u-value (Window)
	
	0.6
	1.0

	u-value (Internal Floor)
	
	0.2
	0.5

	g-value
	-
	0.4
	0.8

	Heat Capacity (Slab)
	kJ/kg K
	0.8
	1.2

	WWR 1
	-
	0.2
	0.8

	Internal Mass
	kJ/m2K
	60
	150

	Air Permeability 2
	m3/h·m2
	6
	9

	Operating Hours
	h
	8
	12

	Occupant Load
	m2/Person
	15
	20

	Light Heat Load
	W/m2
	4
	10

	Equipment Heat Load
	
	4
	10

	Heating COP
	-
	2
	5

	Cooling COP
	
	2
	5

	Boiler Efficiency
	
	0.85
	0.95

	1 WWR vary independently in each direction.

	2 The infiltration rate is calculated by (0.07×𝜌×A/0.8×V + 0.1) air changes per hour (ACH), as illustrated in EnEV (German) standard 18599. 0.07 is volume flow coefficient (standard value as per DIN EN ISO 13789), 𝜌 is air permeability at 50 pascals, A is total surface area, V is the external volume, and 0.8 is a factor to calculate net volume from external volume. 0.1 is added to account for infiltration through windows.
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[bookmark: _Ref56162168]Random building shapes for the test building
This study uses a test dataset consisting of 200 randomly generated samples in the design space to estimate generalisation errors. The design parameters mentioned in Table 2 are sampled using the Latin hypercube sampling scheme for the test dataset. We used three measures to estimate the generalisation errors - root-mean-square-error (RMSE), coefficient of determination (R2), and mean-absolute-percentage-error (MAPE). RMSE and R2 are second-order measures, sensitive to high-range values. At the same time, MAPE is a measure of the first order, sensitive to low-range values [49]. These two different order measures ensure that the reported errors are relevant for the entire range of predictions. Further, the model generalisation is expressed by scatter plots and error histograms.
[bookmark: _Ref51240127]Approaches to collect training samples and their effect on the distribution
We are studying different approaches to collect new samples that improve the ML model generalisation. The first training dataset consists of samples from a box-shaped BEM, referred to as the base case. It has 200 box-shaped building samples of varying dimensions, described by Shape 1 in Figure 2 and Table 3. Besides, the shape, length, width, and floor height represents the building geometry. Except for length and width, all design parameters have the same range as the test dataset, mentioned in Table 2.
[bookmark: _Ref56162282]Range of building dimensions for Shape1, Shape 2, Shape 3, and Shape 4
	
	Shape 1
	Shape 2
	Shape 3
	Shape 4

	
	Unit
	Min
	Max
	Min
	Max
	Min
	Max
	Min
	Max

	Length
	m
	16
	20
	18
	24
	18
	25
	18
	26

	Width
	
	16
	20
	18
	24
	18
	25
	18
	26
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[bookmark: _Ref56161809]Building shapes used in training datasets
Distribution of training samples in the design space
Since this study focuses on the shape characteristics, the range of other design parameters is kept the same for all the training datasets. The training datasets differ only based on the shape of BEM that is used to generate samples. Hence, the distribution of training samples is analysed based on the shape of BEM to identify vacant spaces in the design space. The shape of a BEM is represented by its floor plan using a 20×20-pixel black and white image. A pixel has a value of either 0 or 1 to represent a black or white pixel, respectively. A sample in this dataset, based on its shape, is represented by 400 dimensions/features. The visualisation of samples for such a multivariate dataset requires dimensionality reduction. Dimensionality reduction techniques extract important features to improve interpretability while minimising information loss [50].
Principal component analysis (PCA) is a statistical approach for identifying principal features based on the total variance [51]. It transforms the data to a new coordinate system such that the first axis of the new coordinate system captures the maximum variance, followed by the second and so on; thus, referring the direction of the first axis to the first principal component and so on. The exercise of dimensionality reduction using PCA captures the maximum variability along with a few principal components. A detailed explanation about the principal component analysis, its intuition, and its use in this study has been provided in Appendix 2.
Using PCA, the dimensionality of a sample image has been reduced from 400 (20×20) dimensions to two dimensions to allow visualising the samples in a two-dimensional space. Figure 3 shows a few building shapes from the design space and base case dataset, and Figure 4 shows the distribution of these samples in the design space. Principal components are calculated based on the samples from the design space that are used to transform all the datasets for visualisation. Both Figure 4 and Figure 6 use the same PCA transformation and scale for principal components.
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[bookmark: _Ref65960333]Building shapes from design space and base case dataset
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[bookmark: _Ref66015077]Distribution of training samples from base case dataset
Standard distance deviation (SDD) quantifies the distribution of samples for multivariate data. SDD is the average of Euclidean distances between the mean sample and training samples expressed by Eq. (1). The mean sample is calculated by taking the mean along each dimension of multivariate datasets. A black dot in Figure 4 and Figure 6 shows this mean sample for the respective dataset. It should be noted that SDD does not include the effect of the size of the training dataset. Hence, this article uses m×SDD (mSDD) to measure the distribution where m is the total number of samples in a training dataset. Hence, mSDD represents the total of Euclidean distances between the samples and their mean. Di is a Euclidean distance between the mean sample and ith training sample, as shown by grey lines in Figure 4 and Figure 6. A higher value of mSDD signifies the dissimilarity among samples or the better distribution of samples across the design space.

The base case dataset has too many vacant portions, which implies that the training samples do not reflect design space variations. Therefore, this article looks into data collection approaches that provide training samples to fill the design space.
Data increment
The first approach is data increment which collects more samples from the same box-shaped BEMs. This approach requires only a little additional effort as the same BEM with parametric capabilities is used to collect samples. We created three increased datasets, I-1, I-2, and I-3, having 400, 600, and 800 samples to study their effect on the generalisation error. Figure 5 shows a few samples from the increased datasets, and Figure 6 shows their distribution and ability to fill the design space. The new training samples are close to the existing samples, increasing mSDD to 11.7 units for 16 samples.
Data enrichment
A few more samples are collected from differently shaped BEMs to create ‘enriched’ datasets. Additional simple shaped BEMs – Shape 2 (L), 3 (T) and 4 (plus), commonly used shapes in office buildings [52], are used to collect new samples. The details of these shapes are provided in Figure 2 and Table 3. This approach requires additional efforts to create new BEMs and more simulation time than box-shaped BEM. 200 samples are collected from BEM of each shape, resulting in 400, 600, and 800 samples for three enriched datasets, E-1, E-2, and E-3, respectively. The dimensions are also increased slightly for Shape 2 to 4 to include its effect. Few samples from enriched datasets are shown in Figure 5, and their ability to fill the design space is shown in Figure 6. The new training samples are better distributed than the increased datasets, increasing mSDD to 16.8 units for 16 samples.
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[bookmark: _Ref71101559]Building shapes from increased and enriched datasets
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[bookmark: _Ref66017052]Distribution of samples from increased and enriched datasets
Sobol sampling, a quasi-random sampling scheme, is used to generate samples for training datasets. This sampling scheme ensures a uniform distribution of samples in the parametric space [53]. The ML model is trained on the base case, increased, and enriched datasets to assess how the model generalisation changes with different data collection approaches. Further, the value of mSDD and the resulting generalisation is compared for different training datasets to find a correlation between the dispersion of training samples and the generalisation error.
CBML approach for developing an early-stage energy prediction model
This article uses component-based machine learning (CBML) as an exemplary approach for developing an ML-based energy prediction model. This approach overcomes the limitations of parametric modelling. It relies on the organisation of components to represent complex building geometries. CBML decomposes an energy model into components based on design and engineering information. Following the structure of an energy model, it assumes a building is composed of zones. The zones are composed of construction components such as floors, walls, windows, and roofs. There is an ML component corresponding to each element to represent its thermal behaviour. A new building shape is developed by composing these elements, as required. Besides representing complex building shapes, CBML has the benefits of interpretability, transferability of trained components to new design cases, and integration into the existing data structures, which has been discussed extensively in the mentioned references [42,54].
This study uses the CBML model structure, as shown in Figure 7. The decomposed ML model structure allows the transfer of representations learned from simpler building shapes to complex building shapes [55]. In simpler words, the CBML approach allows training ML components that can predict the energy performance of building shapes different from the training dataset. However, ML components trained on only box-shaped BEM are not able to capture the interaction between the building shape and its energy performance. By comparing the increment and enrichment approach, this study discusses the effect of diverse-shaped training samples on the generalisation of ML components for complex structures and improvement in the accuracy of predicted energy demand. There are ML components at three levels - element, zone and building. The element level models are heat flow models for wall & window, ground floor, roof, and infiltration. Area, thermal heat transfer coefficient (u-value) and heat capacity are used as input for heat flow models. Orientation and solar heat gain coefficient (g-value) are used additionally for wall & window heat flow components. The infiltration heat flow, caused by leakages and cracks, is predicted using the area, height, infiltration rate, and heat capacity of a zone. Zone level has heating and cooling load models which use area, internal heat gain, operating hours, heat capacity, and heat flows as input. The energy demand model utilises predictions from zone load models, boiler efficiency, and the coefficients of performance (COP). 
[bookmark: _Ref8217151][bookmark: _Toc38825908][image: ]
[bookmark: _Ref56162428]Structure of component-based machine learning model
[bookmark: _Ref9527979]The architecture of ML components and hyperparameters
Each ML component has a simple neural network architecture with one input, one hidden and one output layer. We used the Keras library with the TensorFlow backend for training ML components [56]. L2-regularisation [57] and early stopping [58] are used to restrict overfitting. After a few trials, the learning rate is fixed to 0.001, activation function as a rectified linear unit and batch size to one-tenth of the data. We tried three different values for the number of neurons in the hidden layer and the coefficient of regularisation for hyperparameter tuning. The values for the hyperparameters are mentioned in Table 4. A total of nine combinations of hyperparameters have been tried, and the combination that has the least validation error is kept for further research.
[bookmark: _Ref56162456]Values of hyperparameters
	Hyperparameter
	Values

	Number of neurons
	25, 50, 100

	Regularisation coefficient
	1×10-3, 3×10-3, 1×10-4


[bookmark: _Toc38825909][bookmark: _Toc38825912][bookmark: _Toc38825913][bookmark: _Toc38825914][bookmark: _Toc38826014][bookmark: _Toc38826015][bookmark: _Toc38826017]Details of the energy model used for collecting ML data
It requires a large number of samples to train and test the ML model. Since collecting such samples from an actual building will be impractical, a dynamic energy simulation tool - EnergyPlus, has been used. An EnergyPlus model has been created for the building, ‘Tausendpfund’. The heating and cooling energy demands were recorded for two years. The simulation results were validated against the measured energy consumption, and its findings have been documented in the appendix, A.1. The design parameters are modified to generate an energy model for each training and test sample. Other relevant details such as weather, thermal zones, and indoor climate are provided in the appendix.
[bookmark: _Ref37753209][bookmark: _Toc38826018]Results
The findings are presented in three subsections. The first subsection describes the changes in the distribution with data increment and enrichment. Subsection 3.2 documents the ML model generalisation changes with each increment and enrichment using scatter plots, error histograms, and numerical error measures. Subsection 3.3 compares the time required to collect data and train the ML model on various training datasets.
[bookmark: _Ref55045444][bookmark: _Ref8294015]Changes in the distributions of the training samples
The distribution of training samples from the base case, increased, and enriched datasets are analysed in this section. After using PCA for dimensionality reduction, the first two principal components capture around 50% of the variance. The principal components are calculated based on 200 test samples representing the design space. The training and test datasets are transformed using these principal components. Figure 8 and Figure 9 represents the distribution of samples in the design space for increased and enriched datasets, respectively. Both the figures use the same scale for the principal components to allow comparing the distribution of increased and enriched samples.
Test samples are overlaid to visualise the variability of building shapes in the design space. It shows that test samples are spread all over the design space, signifying that there are many different shapes in the test dataset. As evident from Figure 8, the samples from increased datasets are concentrated in one region, suggesting that these datasets have very low building shape variability. In contrast, the enriched datasets, which use BEMs of four different shapes, have samples dispersed away from each other. The well-dispersed training samples causes a higher increase in the value of mSDD for enriched datasets compared to increased datasets. The value of mSDD increases from 179 for the base case to 710 for the increased dataset (I-3), while it increases to 891 for the enriched dataset (E-3).
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[bookmark: _Ref56163153]Distribution of training samples in the increased datasets
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[bookmark: _Ref56163162]Distribution of training samples in the enriched datasets
[bookmark: _Ref55045434]Change in the ML model generalisation using increased and enriched datasets
The ML model is trained on each training dataset, and the generalisation error is calculated on the test dataset. Three measures – RMSE, R2, and MAPE, express the generalisation errors numerically. At the same time, scatter plots and error histograms visualise the error for individual test samples. Figure 10, Figure 11, and Figure 12 show the errors in the energy prediction for the base case, increased and enriched dataset, respectively. The black dashed line in the scatter plots represents an ideal case of making perfect predictions. Hence, test samples with a low prediction error lie close to this line. The error histogram shows the frequency of test samples in a specific range of error. A well-generalising model is characterised by the bars close to 0% error. The box-shaped test samples and other shapes are differentiated in both scatter plots and error histograms.
The generalisation error for the ML model trained on the base case dataset is shown in Figure 10. The scatter plot and histogram show that the ML model underpredicts the energy demand for many test samples. The model trained on this dataset has a large RMSE of 19.97 MWh/a, MAPE of 16.3%, and low R2 of 0.18. Around 50% of test samples have an error of more than ±15%. The box-shaped samples have slightly more accurate predictions than other shapes, as the box-shaped samples are close to the black dashed line and error bars for box-shaped samples are more in the range of ±10%.
[image: ]
[bookmark: _Ref71101695]Scatter plot and error histogram - ML model trained on base case dataset
Figure 11 shows that the generalisation errors for the model trained on increased datasets are reducing gradually. Training ML model on bigger datasets improves its ability to generalise. The points in the scatter plots are getting close to the black dashed line by increasing training samples. This observation is correct for both box-shaped and other shapes of test samples. For the ML model trained on the increased dataset (I-3), RMSE reduces around 38% to 12.47 MWh/a and R2 increases to 0.68 from the base case. The number of test samples with a higher prediction error reduces also, and MAPE reduces to 10.7% after the increment. The model corrects the underprediction of energy demand as there are more training samples. However, this improvement is relatively small beyond 400 samples.
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[bookmark: _Ref56163089]Scatter plot and error histogram - ML model trained on increased datasets
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[bookmark: _Ref56163100]Scatter plot and error histogram - ML model trained on enriched datasets
Figure 12 shows that there is a higher reduction in errors after data enrichment. The ML model correct most of the underpredictions, and the model trained on the E-3 dataset has more balanced predictions than other training datasets. For enriched dataset E-3, points on the scatter plots are relatively close to the black dashed line, and RMSE reduces around 56% from the base case to 8.85 MWh/a and R2 increases to 0.84. The histograms suggest the number of samples with high prediction error reduces sharply with each enrichment step. With data enrichment, the ML model has a higher prediction accuracy for both box-shaped and other shapes of test samples. This observation is evident through scatter plots and histograms as points get close to the black dashed line and bars get close to 0% error. Overall, MAPE reduces to 7.7% after the enrichment (E-3), compared to 10.7% for the increment (I-3).
[bookmark: _Ref67932067]Changes in the generalisation errors with increment and enrichment
	
	Data Increment
	Data Enrichment

	
	RMSE (MWh/a)
	R2
	MAPE (%)
	RMSE (MWh/a)
	R2
	MAPE (%)

	Base Case
	19.97
	0,18
	16.3
	19.97
	0.18
	16.3

	400 samples
	14.18
	0.59
	11.9
	10.96
	0.75
	9.0

	600 samples
	13.24
	0.64
	11.3
	9.86
	0.80
	8.5

	800 samples
	12.47
	0.68
	10.7
	8.85
	0.84
	7.7



The difference between the generalisation after increment and enrichment is assessed by comparing plots of Figure 11 and Figure 12. The numerical error measures for each increment and enrichment step are summarised in Table 5. The scatter plots show that the ML models trained on the enriched datasets have lower generalisation errors than the models trained on the increased dataset of the same size. This observation is well supported by a higher reduction in RMSE and MAPE and an increase in R2 for the enriched dataset than the increased datasets. A similar observation is also drawn by comparing error histograms. Around 25 samples out of 200 have an error of more than ±20% for the model trained on the I-3 dataset. However, the number of such samples is only 7 for the model trained on the E-3 dataset. As many as 145 predictions have an error of less than ±10% using the ML model trained on the E-3 datasets; similar predictions are around 100 for the model trained on the I-3 dataset. There are 85 predictions with less than ±5% error for the E-3 dataset and only 55 such predictions for the I-3 dataset.
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[bookmark: _Ref56163201]mSDD of training datasets and the generalisation errors
The value of mSDD quantifies the distribution of training samples in the design space. Figure 13 shows the value of mSDD for the increased and enriched datasets and the corresponding reduction in the generalisation error - RMSE. The value of mSDD increases for larger datasets as the value of m (the number of samples) increases. However, this value increases more for the enriched datasets than increased datasets. A higher increase in mSDD for the enriched datasets results in a lower generalisation error than the increased datasets, as evident from the figure.
[bookmark: _Ref51599161]Time required to collect data, train ML model, and make predictions
Collecting samples and training ML models on a large dataset requires additional time. Hence, it is important to compare the data collection approaches based on this additional time. This research used a 16-core CPU with a clock speed of 2.4 GHz to report the time. Table 6 presents the time required to collect samples and training seven ML components of the CBML model. Usually, the training time ranges from 18-24 minutes depending on the size of the training dataset, including hyperparameter tuning. It varies only a little across different datasets. However, the time required to collect training samples increases significantly with the size of training datasets. It requires around ten minutes to simulate 200 BEMs of Shape 1. The BEMs of complex shapes Shape 2 to 4 requires slightly higher time; for the sample, 200 BEMs of shape 2 require 12 minutes. Both I-3 and E-3 datasets use simulation of 800 BEMs; but, I-3 requires around 41 minutes and E-3 requires around 61 minutes.
[bookmark: _Ref56163225][bookmark: _Ref67998882]Data collection and training time (in minutes)
	[bookmark: _Ref15563015][bookmark: _Toc38826025]
	Data Increment
	Data Enrichment

	
	Data Collection
	Training Time
	Data Collection
	Training Time

	Base Case
	10.3
	18.4
	10.3
	18.4

	400 samples
	20.5
	21.2
	22.6
	20.0

	600 samples
	30.8
	21.1
	37.7
	22.5

	800 samples
	41.0
	21.0
	61.0
	24.1


The prediction time is the same for all the ML models, irrespective of the size of the training dataset. Assuming that it requires 1000 samples to make probabilistic energy predictions for decision-making at the early stage, the simulation time is 3075 seconds. The same task takes 49.25 seconds to predict energy demand using the pre-trained ML model. Thus, the pre-trained ML model reduces the prediction time to 1.6% at a slight loss of accuracy.
[bookmark: _Ref79441979]Discussion
By comparing the two data collection approaches in the early stage BEM context, this study highlights the importance of dispersed training samples in the design space to improve the generalisation. The increment approach collects new samples similar to the existing samples. In contrast, the enrichment approach collects samples that are significantly different from the existing samples. The distribution plot shows while the samples in the increased datasets are located close to each other, enriched datasets have diverse training samples that are well-distributed in the design space. A better distribution of samples allows training better generalising ML components and reduces the generalisation errors for enriched datasets than increased datasets, as demonstrated by the reduced RMSE and MAPE and increased R2 for the test samples.
Previous studies suggested bigger size training datasets allow training better generalising ML models. Since collecting new examples is a resource-intensive exercise, this study developed a method to identify the prospective training samples that has a higher potential to improve the generalisation. By focussing on the distribution, an efficient data collection approach reduces the generalisation error more using a limited number of training samples. As shown in the early stage BEM context, both increment and enrichment approaches use the same number of samples to train the ML model. Compared to new samples of increased datasets that keep filling the same region already filled by the existing samples, new samples of enrichment datasets fill the vacant regions of the design space. We found that new samples of increased datasets are close to the existing samples of the base case dataset, which led to an increase in the dispersion (mSDD) to 710 from 179. However, different shaped BEMs, as in the case of enrichment, led to more dispersed samples, increasing this value to 891 for the same number of samples. Training datasets with well-dispersed training samples capture the characteristics of the test samples and result in a higher reduction in generalisation errors than others. Hence, this article suggests distribution analysis of existing samples to identify vacant parts in the design space. Then, develop an approach to collect new samples that are diverse and fills the design space. The ability of various approaches to reduce the generalisation error can be assessed using distribution analysis. In this way, an efficient approach to data collection can be identified from the perspective of improving the generalisation. 
Furthermore, increased and enriched datasets differ only based on the building shape of training samples. Both increased and enriched datasets, after three data collection steps, have 800 samples. An enrichment approach represents an efficient strategy that collects diverse training samples and has a higher potential to reduce generalisation error. With the same number of training samples, the generalisation error is lower for the enriched datasets. Hence, enrichment in comparison to increment reduces the generalisation error more without collecting an additional number of samples.
The reduction in RMSE is significant after the first increment, given that the training dataset has only 400 samples. The reduction in RMSE is 29% using 400 samples compared to 38% using 800 training samples for increased datasets. This observation suggests that collecting a sufficient number of samples from the box-shaped BEM will significantly improve generalisation in the beginning. However, once there is a sufficient number of box-shaped samples, a reduction in the generalisation error is not significant. In this scenario, training samples that have different characteristics than the existing samples should be collected. In the early-stage BEM context, it means using BEMs of other shapes than a box. In other data-driven ML applications, it means collecting samples from diverse data sources. Samples from a new source may be analysed to ensure that new samples are away from the existing samples and fill the vacant parts of the design space. The dispersion of samples in a training dataset may be quantified using standard distance deviation to ensure its ability to train a better generalising model. The distribution of the existing samples can also be used to identify the characteristics of new samples to be collected. 
It is interesting to note that the training samples from enriched datasets do not completely fill the design space. There is a possibility to reduce the generalisation error further by collecting training samples from more diverse shaped BEMs. However, this article is limited to identifying an efficient data collection strategy to reduce the generalisation error with a limited number of samples. The article develops a method to identify training datasets using distribution analysis that has a higher potential to improve generalisation. By collecting new training samples through three increment and enrichment steps, it proves that the enriched datasets contain samples that are more diverse and fill the design space better than the increment approach, leading to a lower generalisation error. 
The model trained on enriched datasets shows an error of 7.7% (MAPE) and 8.79 MWh/a (RMSE). However, there is a question of whether this trained model is suitable to replace dynamic simulations at the early design stage without affecting the decision-making. An answer to this question cannot be provided within the scope of this article and requires further research. There are a few research works that compare the effect of ML model accuracy on decision-making [3,14,15]. Moreover, the desired accuracy of the ML model depends on the purpose of the BPS results.
This article develops an ML-based energy prediction model for different building shapes but for a fixed location and building use. The article presents a proof of concept of how identifying an efficient data collection approach saves efforts required for data collection that can be extended to other ML applications. For example, to develop an ML model for multiple locations, data enrichment will require collecting new samples from locations characterised by different climates.
[bookmark: _Toc38826026][bookmark: _Ref42523336]This article used a component-based machine learning approach to develop an ML model for the early-stage BEM, which has seven ML components arranged in a hierarchical structure to predict energy demand. With this approach, we used the ML components trained on simpler design cases to predict energy demand for more complex design cases or the cases which were not present in the training datasets. It shows the benefit of being applicable to design cases that are unknown when training ML components as long as their representation is possible through the ML model structure. Moreover, only a limited number of design cases are required to train ML components. As in this study, four different shaped BEMs are used to train ML components, and the test dataset contains many more different shapes. The initial selection of these four shapes is based on architectural understanding. However, before using these shapes to collect training data, the dispersion of the samples is assessed to ensure that the samples are different from the existing samples and well-distributed in the design space.
[bookmark: _Ref55581844]Conclusions
Designing an energy-efficient building at the early stage requires quick probabilistic building performance simulation results. Thus, computationally intensive dynamic simulation tools call for substitution by a time-efficient machine learning model, which generalises for various design configurations, including multiple shapes and an acceptable range of technical specifications. This study develops an efficient data collection approach to improve the model generalisation for the early-stage building energy predictions. After comparing two approaches to collect new samples, this study finds that the training samples that are significantly different from the existing samples and fill the design space have a higher potential to improve the generalisation than others. The distribution of existing samples should be analysed to identify the characteristics of new samples before embarking on the data collection exercise. The objective of collecting new samples should be to improve the dispersion of training samples that capture the parameter interactions. New samples, similar to the existing training samples, have little potential to improve the model generalisation. A similar study needs to be carried out to improve the generalisation of the machine learning model for various building uses, climate types, and building systems in future research works.
This article also paves the way for developing an efficient data collection approach for other machine learning applications. A similar approach of defining a design space, analysing the distribution of existing samples to find vacant spots, and collecting diverse data samples that fill the vacant spots is expected to have a similar effect on the generalisation. It will allow focussing on samples relevant to improving the ML model generalisation and saving expensive resources used in the data collection exercise.
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Appendix 1: Validation of EnergyPlus Model for Early Design Stage
We used energy data of a medium-sized office building Tausendpfund, located in Regensburg near Munich, to validate the EnergyPlus model. The heating and cooling energy requirement are measured for two years to validate the simulation results. Details of the building energy model have been provided in the following text:
[bookmark: _Ref70930969]Details of building energy model
The building has a box-shaped structure with external dimensions of 14.7m × 27.0m × 9.75m. This building has the same floor plan for each floor and has a total area of 1200 m2. Only 725 m2 (60%) space is used as an office; the remaining part accounts for walls, corridor and service spaces. The window-to-wall ratio in each direction is 0.33. One-zone-per-floor is used to create thermal zones considering an early design stage, as shown in Figure 14 [54,60]. Other technical specifications are mentioned in Table 7.
[image: ]
[bookmark: _Ref63257410]Floor plan of Tausendpfund building
The u-values of walls, ground floor and roof are measured based on the thickness of each material layer and its thermal conductivity. The building has a heat pump to provide heating and cooling with coefficients of performance (COP) of 2.8 (heating) and 3.6 (cooling) and a boiler with an efficiency of 0.95 to provide additional heating during the winter. A few parameters cannot be measured, such as infiltration, occupancy and light heat gains etc. We have taken the approximate value of these parameters based on the standards or made reasonable assumptions. We considered permeability of 6 m3/h.m2 for Category-II construction, as per the DIN-18599 standard. The heat capacity of the internal partition is assumed to be 90 kJ/m2K and an additional 30 kJ/m2K for furniture in a medium-furnished office. The light heat gain of 8 W/m2 is approximated based on the illuminance requirement of 500 lux. An approximate equipment heat gain is 12 W/m2. Both light and equipment heat gains are reduced to 10% during non-working hours. The building is assumed to be operated for 11 hours a day, with around 50 persons (24 m2/person) occupying the building during working hours. The heating setpoint is 20℃, and the cooling setpoint is 25℃. The setback temperatures are 15℃ (heating) and 30℃ (cooling). We assume natural ventilation by opening windows as the temperature is more than 23℃ but less than 25℃.
[bookmark: _Ref63431245]Technical specifications of Tausendpfund building
	Parameters
	Unit
	Value

	u-value (Wall)
	W/m2K
	0.18

	u-value (Ground Floor)
	
	0.19

	u-value (Roof)
	
	0.15

	u-value (Window)
	
	0.87

	g-value
	
	0.35

	Heat Capacity (Slab)
	kJ/kg K
	0.8

	Air Permeability
	m3/h.m2
	6

	Internal Mass
	kJ/m2K
	120

	Operating Hours
	h
	11

	Occupant Load
	m2/Person
	24

	Light Heat Load
	W/m2
	6

	Equipment Heat Load
	
	12

	Heating COP
	-
	2.8

	Cooling COP
	
	3.6

	Boiler Efficiency
	
	0.95


Comparison of simulated and actual energy consumption
Figure 15 presents the simulated and actual energy consumption. The simulated energy consumption of the building is 43.98 MWh/a. In 2017, the energy requirement was 42.08 (36.4 heating + 5.7 cooling) MWh/a, which is around 4.3% less than the simulated value. In 2018, the energy requirement was 45.9 (36.2 heating + 9.7 cooling) MWh/a, which is around 4.3% more than the simulated value. On average, the actual energy consumption is 43.97 MWh/a, which is 0.03% less than the simulated value.
[image: ]
[bookmark: _Ref63431539]Comparison of simulated and actual energy consumption
EnergyPlus model used for validation is available on Mendeley datasets – Singh 2021, “Validation of Early Design Stage EnergyPlus Model for Office Building (one-zone-per-floor model” [61].
Appendix 2: Principal component analysis for dimensionality reduction of images
Principal component analysis (PCA) is a statistical approach for identifying principal features based on the total variance [51]. It transforms the dataset to a new coordinate system such that the first axis of the new coordinate system captures the maximum variance, followed by the second and so on; thus, referring the direction of the first axis to the first principal component and so on [62]. It is useful in transforming a high dimensional dataset into a lower-dimensional dataset by extracting principal features along with principal components.
[bookmark: pbm]An example of transforming a two-dimensional dataset into a one-dimensional dataset using linear PCA is shown in Figure 16. Part (a) shows a two-dimensional dataset that has two dimensions (features) x1 and x2 and ten data points. Based on these data points, principal components are calculated using singular value decomposition [63–65]. The two principal components for the given dataset are shown by the red and blue dashed lines. Intuitively, the direction of the 1st (red-dashed line) principal component represents the axis that maximises the variance of the dataset. As in this case, the ratio of variance explained by the 1st and 2nd principal components are 88% and 12%, respectively. As the original dataset has only two dimensions, two principal components will capture the entire variance. The dataset is shown in part (b) is rotated so that the direction of the principal components become axes of the cartesian plane. For the purpose of reducing dimensionality, the data points are projected onto the principal components. Grey lines from a data point (×) on a red-dashed line show these projections. After the dimensionality reduction, the data points are represented by (·) that has only one dimension. The value represented by a (·) on the red dashed line is the first principal feature of the corresponding sample. For example, the sample (0) that is earlier represented by [0.79, 0.41] is represented by [-0.11] after the dimensionality reduction. However, the transformed dataset will have reduced variance, i.e. 88% of the original dataset.
[image: ]
[bookmark: _Ref79665016]Illustration of principal component analysis using two-dimensional data
A similar understanding of linear PCA can be extended to any n-dimensional dataset to reduce its dimensions to m, such that m ≤ n. Thus, PCA reduces dimensionality, increasing interpretability while minimising the loss of information [50]. There are more sophisticated techniques for dimensionality reduction, such as Kernel PCA [66], auto-encoders [67], and t-stochastic neighbour embedding [68]. However, linear PCA is a widely used and simpler dimensionality reduction technique for complex datasets [50]. Sonka, Hlavac, and Boyle describe the application of PCA for dimensionality reduction of images in detail [69]. Several researchers have used PCA to compress images by extracting important features. This method of image compression heavily relies on the ability of PCA to extract the most important features that allow image reconstruction [51,70]. PCA found its application to preprocess image data for machine learning models by extracting important features [71,72]. Hence, PCA reduces the dimensionality of images by extracting the most relevant features to improve their interpretability.
In this study, PCA is used for the dimensionality reduction of the samples represented by an image of 20×20 pixels. It reduces the dimensions from 400 (20×20) to two dimensions so that these samples can be visualised in a two-dimensional space. Figure 17 shows ten selected shape samples. Black and white pixel have the value of 0 and 1, respectively, in this figure.
[image: ]
[bookmark: _Ref79665027]Samples represented by its shape using 20×pixels black & white image
PCA is used to transform this image dataset by extracting two principal features. Figure 18 shows the transformation matrix that is used to extract the principal features. The extracted feature is the weighted sum of a pixel value of the sample (shown in Figure 17) and the value corresponding to its location in the matrix (shown in Figure 18). Thus, a higher value (or black pixel) in the transformation matrix suggests that a specific feature focuses on a specific region of the sample. Figure 18 highlights the regions focussed by the first and second principal features using black-dashed lines. It suggests that the first principal feature analyses the value of a pixel in the region bounded by a black-dashed line, as shown in Figure 18 (a). Similarly, the second principal feature focuses on other regions, as shown in Figure 18 (b). 
[image: ]
[bookmark: _Ref79750332]20×20 transformation matrix used to extract principal features
Figure 19 shows the transformed samples, shown in Figure 17, in two-dimensional space. As it can be noticed in this figure after PCA, the samples can be analysed easily. There are three identifiable clusters of samples (1, 8); (2, 3, 4, 5); and (6, 7, 9, 10). A quick screening of Figure 17 also suggests the same. Thus, PCA has extracted important features that are useful for analysing data. It allows identifying samples of similar nature by plotting the transformed data in an interpretable two-dimensional cartesian plane. Moreover, the samples of similar nature are close to each other, i.e. the Euclidean distance between two similar samples is small. This concept is used in this study for analysing large datasets for the similarity among samples based on their shape.
[image: ]
[bookmark: _Ref79664974]Visualisation of samples from Figure 17 in two-dimensional space using PCA
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a. Data Increment b. Data Enrichment
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a. Dataset: Base Case (R²=0.18, RMSE=19.97 MWh/a, MAPE = 16.3%)
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a. Dataset: I-1 (R²=0.59, RMSE=14.18 MWh/a, MAPE = 11.9%)
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b. Dataset: I-2 (R²=0.64, RMSE=13.24 MWh/a, MAPE = 11.3%)
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c. Dataset: I-3 (R²=0.68, RMSE=12.47 MWh/a, MAPE = 10.7%)
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a. Dataset: E-1 (R²=0.75, RMSE=10.96 MWh/a, MAPE = 9.0%)
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b. Dataset: E-2 (R²=0.8, RMSE=9.86 MWh/a, MAPE = 8.5%)
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c. Dataset: E-3 (R²=0.84, RMSE=8.79 MWh/a, MAPE = 7.7%)



40 20 0 20
Error in Prediction (%)



0



10



20



30



40



50



Nu
m



be
r o



f S
am



pl
es



Box-Shaped
Other Shapes











image13.emf



Base Case



Data
Increment



Data
Enrichment











image14.emf



N



One-Zone-Per-Floor



27.0 m
14



.7
 m











image15.emf









image16.emf



1st Principal 
Component



2nd Principal 
Component



Rotated 
Data Points



Data Points 
Transformed to
One-Dimension



Original
Data Points Projection on 



1st Principal
Component 



(b) Transformed Data Set(a) Original Data Set











image17.emf



(6) (7) (8) (9)



(1) (5)(4)(2) (3)



(10)











image18.emf



 (a) Transformation matrix to extract
the 1st principal feature



(b) Transformation matrix to extract
the 2nd principal feature











image19.emf















