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The electric vehicle routing problem and its variations: A literature review 

Abstract 

Electric vehicle technology is promising to reduce both the costs and environmental impact of 

logistics operations. Consequently, much research is being carried out in this field. On the 

operational level, the electric vehicle routing problem (EVRP) has recently been introduced and 

deals with forming effective route plans for vehicles while satisfying a set of battery-related 

restrictions. This paper presents a comprehensive literature review on the EVRP and its 

extensions. In this context, 136 published papers that consider the routing of battery electric 

vehicles are reviewed. The EVRP is clearly defined, variations on the basic EVRP are 

discussed, a mathematical formulation, which also models several simple variations of the 

problem, is given, and developed solution approaches are discussed in detail. In addition, EVRP 

benchmark sets are presented, and, lastly, interesting future research directions are discussed. 

Keywords: Electric vehicles, vehicle routing, research directions, survey, classification 

1. Introduction 

Electric vehicles are promising to reduce both transportation costs and pollution effects in 

comparison to fossil-fuel-based engines. However, the limited cruising range, long charging 

times, and limited availability of charging facilities make the charging operations a more critical 

issue compared to the refueling operations for fossil-fuel-based vehicles (Jing et al., 2016; Juan 

et al., 2016; Margaritis et al., 2016; Pelletier et al., 2016). The electric vehicle routing problem 

(EVRP) is an extension of the traditional vehicle routing problem (VRP) that specifically deals 

with finding optimized routes for electric vehicles, taking battery constraints and charging 

operations into account (Keskin & Çatay, 2016; Schiffer & Walther, 2017; Schneider et al., 

2014). 

Following the increasing interest of the logistics community in incorporating electric vehicles 

in their fleets, academic studies on the EVRP have been increasing in tandem, as can be seen 

in Figure 1. This paper presents a comprehensive survey on the EVRP by taking into account 

136 journal papers (JP), conference proceedings (CP), theses (TH), and technical reports (TR). 

Table 1 gives an overview of the journals in which 84 academic papers have been published.  



 
Figure 1. Number of papers published by year 

Table 1. Number of papers published in academic journals 

Journal #Papers Published 

Advances in Operations Research 1 

Algorithms 1 

CBU Journal of Science 1 

Complex and Intelligent Systems 2 

Computers and Industrial Engineering 1 

Computers and Operations Research 7 

Electronic Notes in Discrete Mathematics 2 

EURO Journal on Transportation and Logistics 1 

European Journal of Operational Research 6 

Expert Systems With Applications 6 

IEEE Access 3 

IEEE Transactıons on Engıneerıng Management 1 

IEEE Transactıons on Smart Grıd 1 

IEEE Transactions on Cybernetics 1 

IEEE Transactions on Intelligent Transportation Systems  1 

IEEE Transactions on Transportation Electrification 1 

IET Intelligent Transport Systems 2 

International Journal of Advances in Agricultural & Environmental Engg. 1 

International Journal of Computer Integrated Manufacturing 1 

International Journal of Industrial Engineering Computations 3 

International Journal of Production Economics 1 

International Transactions in Operational Research 1 

Journal of Advanced Transportation 1 

Journal of Applied Research on Industrial Engineering 1 

Journal of Business Economics 1 

Journal of Cleaner Production 3 

Journal of Engineering Science and Technology Review 1 

Journal of Industrial and Systems Engineering 1 

Journal of the Operational Research Society 1 

Mathematical Problems in Engineering 4 

Networks 1 

Omega: The International Journal of Management Science 1 

Operations Research 1 

Operations Research Forum 1 

Statistics and Operations Research Transactions 1 

Sustainability 1 

Sustainable Cities and Society 1 
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TecnoLógicas 1 

Transport Research Arena 1 

Transportation in Developing Economies 1 

Transportation Letters 1 

Transportation Research Part B: Methodological 5 

Transportation Research Part C: Emerging Technologies 2 

Transportation Research Part D: Transport and Environment 1 

Transportation Research Part E: Logistics and Transportation Review 4 

Transportation Science 2 

Uludağ University Journal of The Faculty of Engineering 1 

The objective of this survey is to provide a comprehensive literature review of the EVRP and 

its extensions. First, existing studies are classified with respect to four criteria: objective 

function, energy consumption calculations, additional constraints considered, and fleet type. 

Following this classification, the mathematical formulations of the EVRP and its basic 

variations are presented. Finally, the existing solution approaches proposed for the EVRP and 

useful problem datasets are reviewed and introduced. This paper contributes to the literature as 

follows: 

 A comprehensive and detailed survey is presented by analyzing 136 publications. Until 

now, a literature review on electric vehicles (in which EVRP is included) or on EVRP 

was presented by Pelletier et al. (2016), Juan et al. (2016), Dammak and Dhouib (2019), 

Erdelić and Carić (2019), Ghorbani et al. (2020) and Qin et al. (2021). However, only a 

few papers on the EVRP were reviewed. Table 2 shows the papers reviewed in this study 

and points out the overlaps with other review papers. It can be observed from Table 2 

that 62 of the analyzed papers are not included in any of the existing literature review 

studies. 

 A systematic classification is introduced. 

 Existing solution approaches are summarized, and the performance of seven different 

solution methodologies is analyzed by comparing the results on a popular dataset. 

 Potential research directions are pointed out by discussing the existing research gaps. 



Table 2. Papers reviewed in the study 

Paper Type 

Reviewed in 

 

Paper Type 

Reviewed in  
Paper Type 

Reviewed in 
RP1 RP2 RP3 RP4 RP5 RP6 RP1 RP2 RP3 RP4 RP5 RP6 RP1 RP2 RP3 RP4 RP5 RP6 

Abdallah and Adel (2020) CP       Hulagu and Çelikoglu (2019) CP       Preis et al. (2012) CP       
Abdulaal et al. (2017) JP       Jia et al. (2021) JP       Raeesi and Zografos (2020) JP       
Afroditi et al. (2014) CP       Jie et al. (2019) JP       Rastani (2020) TH       
Aggoune-Mtalaa et al. (2015) JP       Kancharla and Ramadurai (2018) JP       Reyes-Rubiano et al. (2019) JP       
Aksoy et al. (2018) JP       Kancharla and Ramadurai (2020) JP       Rezgui et al. (2019) CP       
Almouhanna et al. (2020) JP       Karakatič (2021) JP       Rezgui et al. (2017) CP       
Arias et al. (2015) CP       Keskin, Akhavan-Tabatabaei, et al. (2019) CP       Roberti and Wen (2016) JP       
Arias et al. (2018) JP       Keskin and Çatay (2016) JP       Santos (2015) TH       
Barco et al. (2017) JP       Keskin and Çatay (2018) JP       Sayarshad et al. (2020) JP       
Basso et al. (2019) JP       Keskin et al. (2021) JP       Schiffer et al. (2018) JP       
Basso et al. (2021) JP       Keskin, Laporte, et al. (2019) JP       Schiffer and Walther (2017) JP       
Basso et al. (2016) CP       Keskin Özel et al. (2018) TR       Schiffer and Walther (2018a) JP       
Booth and Beck (2019) CP       Koç et al. (2019) JP       Schiffer and Walther (2018b) JP       
Breunig et al. (2018) TR        Kopfer and Vornhusen (2019) JP        Schneider et al. (2014) JP       
Breunig et al. (2019) JP        Kouider et al. (2018) CP        Setak and Karimpour (2019) JP       
Bruglieri et al. (2017) JP        Kouider et al. (2019a) CP        Shao et al. (2018) JP       
Bruglieri et al. (2015a) TR        Kouider et al. (2019b) CP        Shao et al. (2017) JP       
Bruglieri et al. (2015b) JP        Kullman et al. (2017) CP        Soysal et al. (2020) JP       
Ceselli et al. (2021) JP        Kullman et al. (2018) CP        Tahami et al. (2020) JP       
Chen et al. (2016) CP        Küçükoğlu and Cattrysse (2017) CP        Taş (2021) JP       
Conrad and Figliozzi (2011) CP        Küçükoğlu et al. (2019) JP        Taweepworadej and Buasri (2016) JP       
Cortés-Murcia et al. (2018) CP        Küçükoğlu and Öztürk (2016) JP        Verma (2018) JP       
Cortés-Murcia et al. (2019) JP        Lee (2020) JP        Wang et al. (2019) CP       
Cubides et al. (2019) JP        Li-ying and Yuan-bin (2015) JP        Wang and Cheu (2013) CP       
Çatay and Keskin (2017) CP        B. Li et al. (2019) CP        Wang et al. (2020) JP       
Desaulniers et al. (2016) JP        H. Li et al. (2020) JP        Worley et al. (2012) CP       
Ding et al. (2015) TR        J. Li et al. (2020) JP        Wu and Zhang (2021) JP       
Echeverri et al. (2018) CP        L. Li et al. (2019) CP        Xiao et al. (2019) JP       
Erdelić et al. (2019) CP        Lin et al. (2021) JP        Yamak (2019) TH       
Erdem and Koç (2019) JP        Lin et al. (2016) CP        Yang et al. (2015) JP       
Erdoğdu and Karabulut (2020) CP        Löffler et al. (2020) JP        Yang and Sun (2015) JP       
Felipe et al. (2014) JP        Lu et al. (2020) JP        Yang et al. (2021) JP       
Ferro et al. (2018) CP        Lu and Wang (2019) CP        R. Zhang et al. (2020) JP       
Froger et al. (2018) CP        Mao et al. (2020) JP        S. Zhang et al. (2020) JP       
Froger et al. (2019) JP        Mavrovouniotis et al. (2019) CP        S. Zhang et al. (2018) JP       
Froger et al. (2017) TR        Mavrovouniotisa et al. (2020) CP        X. Zhang et al. (2018) CP       
Futalef et al. (2020) CP        Meng and Ma (2020) JP        Zhao and Lu (2019) JP       
Ge et al. (2020) JP        Moghaddam (2015) TH        Zhao et al. (2020) JP       
Ghobadi et al. (2021) JP        Montoya et al. (2015) TR        Zhenfeng et al. (2017) CP       
Goeke (2019) JP        Montoya et al. (2017) JP        Zhou and Tan (2018) JP       
Goeke and Schneider (2015) JP        Montoya (2016) TH        Zhou et al. (2021) JP       
Granada-Echeverri et al. (2020) JP        Ouahmed et al. (2014) JP        Zhu et al. (2020) JP       
Hiermann et al. (2014) TR        Paz et al. (2018) JP        Zuo et al. (2019) JP       
Hiermann et al. (2016) JP        Pelletier et al. (2019) JP        Zuo et al. (2017) CP       
Hof et al. (2017) JP        Penna et al. (2016) CP                
Hulagu and Celikoglu (2020) JP        Pierotti (2017) TH                

RP1: Review paper of Pelettier et al. (2016)  
RP4: Review paper of Erdelić and Carić (2019) 

 RP2: Review paper of Juan et al. (2016) 
RP5: Review paper of Ghorbani et al. (2020) 

 RP3: Review paper of Dammak and Dhouib (2019) 
RP6: Review paper of Qin et al. (2021) 



2. Electric Vehicle Routing Problem 

The EVRP can be described as finding a set of vehicle routes. Each route services a set of 

customer nodes and starts and ends at a given depot node. The problem aims to find the best 

route plan for electric vehicles that minimizes a given cost function while satisfying a number 

of restrictions and operational procedures for electric vehicles. According to existing studies, 

the basic assumptions for the EVRP are as follows (Felipe et al., 2014; Lin et al., 2016; Paz et 

al., 2018): 

 Each route starts and ends at the depot node. 

 Each customer node is to be serviced by exactly one electric vehicle. 

 Electric vehicles can visit a charging station for recharging operations between any two 

customers. 

 Each charging station can be visited by more than one electric vehicle. 

 The location of the charging stations and traveling distance from any node to any 

charging station are known. 

 The battery level of an electric vehicle must always be between 0 and its battery 

capacity. 

 A vehicle’s battery is always fully charged when visiting a charging station. 

Following the assumptions above, Figure 2 presents an illustrative example of a solution to the 

EVRP involving 15 customer nodes (𝐶1, … , 𝐶15), five charging stations (𝑆1, … , 𝑆5), and the 

depot node that can also be used as a charging station. Four identical electric vehicles serve 

customer nodes by starting their tour at the depot node with a full charge. The percentage values 

on the arcs show the battery level of the electric vehicle when it arrives at a customer location 

or the depot node. Additionally, since the vehicles are fully charged at stations, battery levels 

after charging station visits are set to 100%. 
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Figure 2. An illustrative example for the EVRP 

In addition to the basic EVRP assumptions, other commonly used restrictions come from 

vehicle capacity constraints and time-related restrictions. Vehicle weight capacity or vehicle 

volume capacity can be taken into account as a constraint where the total weight or volume of 

the loads cannot exceed the vehicle’s weight or volume capacity, respectively. For the time-

related restrictions, there exist several assumptions that can be summarized into two groups: 

time windows for nodes and duration time limits. 

Time window restrictions state that each customer node must be serviced within a given time 

window, and each route must be completed within a given time window limit of a depot node 

(Bruglieri et al., 2015a, 2015b; Sassi et al., 2015; Schneider et al., 2014). Time duration 

constraints state that the total elapsed time for a route cannot exceed the duration time limit 

(Lin et al., 2016; Montoya et al., 2015). Similar to the vehicle routing problem with time 

windows (VRPTW), arc travel times, customer service times, and time windows are given 

beforehand and vehicle travel, waiting, and service times can be determined similarly as in the 

VRPTW. In addition, the re-charging time at charging stations is computed by using a function 

or constant value (Goeke & Schneider, 2015; Roberti & Wen, 2016; Schiffer & Walther, 2017). 

When the time-related constraints are taken into account for the EVRP, the charging operations 



at stations become more critical. Therefore, partial charging of electric vehicles is also studied 

in most of the papers. 

3. Classifications of the EVRP 

This section presents the existing studies on the EVRP and classifies them according to four 

criteria: objective function types, energy consumption computations, considered constraints in 

the EVRP, and fleet types. 

3.1. Objective Function 

Based on the traditional VRP, there exist several objective functions looking at total travel 

distance, the number of vehicles used for the operations, total travel time, and other operation-

dependent objectives (Eksioglu et al., 2009). As in the traditional VRP, some of the existing 

studies on the EVRP only consider the transportation cost related to the travel time or distance. 

Others take the cost of recharging and total consumed energy into account. In the EVRP 

literature, we identified seven different basic objective function components based on: 

(1) total number of electric vehicles used 

(2) total travel distance 

(3) total travel time 

(4) total number of used charging stations or station construction cost 

(5) total recharging cost or recharging time 

(6) total energy consumption 

(7) other operational costs 

The first three objective function types are typically used in most VRP studies. It follows that 

these objectives are also considered by most of the researchers of the EVRP. For studies only 

considering these objectives, the energy consumption and the battery serve as constraints for 

the route plans. Many papers combine several basic objective function components, both from 

the original VRP and more energy-related components. An overview is given in Table 3. 

Additionally, Figure 3 shows the number of times each of the objective function types is used. 

Similar to most VRP studies, minimization of the total traveled distance is taken into account 

in most of the papers. It should be noted that most of the studies considered the energy 

consumption of electric vehicles and their battery capacities. Whether these are taken into 

account explicitly in the objective function or not, the objective function value is directly 

impacted whatever the function type is. 

 



 

Figure 3. Number of times each of the objective function type is used
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Table 3. Classification of the objective functions 

Paper 

Objective Function  Combination of Objective Functions 
1 2 3 4 5 6 7 1-2 1-2-3-6 1-2-4 1-2-4-7 1-2-5 1-2-5-7 1-2-7 1-3 1-3-5-7 1-5 1-5-6-7 1-5-7 1-6 1-6-7 1-7 2-4 2-4-5 2-4-7 2-5 2-5-7 2-6 2-7 3-4 3-5 3-5-7 3-6 4-7 5-7 

Abdallah and Adel (2020)                                     
Abdulaal et al. (2017)                                     
Afroditi et al. (2014)                                     
Aggoune-Mtalaa et al. (2015)                                     
Aksoy et al. (2018)                                     
Almouhanna et al. (2020)                                     
Arias et al. (2015)                                     
Arias et al. (2018)                                     
Barco et al. (2017)                                     
Basso et al. (2019)                                     
Basso et al. (2021)                                     
Basso et al. (2016)                                     
Booth and Beck (2019)                                     
Breunig et al. (2018)                                     
Breunig et al. (2019)                                     
Bruglieri et al. (2017)                                     
Bruglieri et al. (2015a)                                     
Bruglieri et al. (2015b)                                     
Ceselli et al. (2021)                                     
Chen et al. (2016)                                     
Conrad and Figliozzi (2011)                                     
Cortés-Murcia et al. (2018)                                     
Cortés-Murcia et al. (2019)                                     
Cubides et al. (2019)                                     
Çatay and Keskin (2017)                                     
Desaulniers et al. (2016)                                     
Ding et al. (2015)                                     
Echeverri et al. (2018)                                     
Erdelić et al. (2019)                                     
Erdem and Koç (2019)                                     
Erdoğdu and Karabulut (2020)                                     
Felipe et al. (2014)                                     
Ferro et al. (2018)                                     
Froger et al. (2018)                                     
Froger et al. (2019)                                     
Froger et al. (2017)                                     
Futalef et al. (2020)                                     
Ge et al. (2020)                                     
Ghobadi et al. (2021)                                     
Goeke (2019)                                     
Goeke and Schneider (2015)                                     
Granada-Echeverri et al. (2020)                                     
Hiermann et al. (2014)                                     
Hiermann et al. (2016)                                     
Hof et al. (2017)                                     
Hulagu and Celikoglu (2020)                                     
Hulagu and Çelikoglu (2019)                                     
Jia et al. (2021)                                     
Jie et al. (2019)                                     
Kancharla and Ramadurai (2018)                                     



Kancharla and Ramadurai (2020)                                     
Karakatič (2021)                                     
Keskin, Akhavan-Tabatabaei, et al. (2019)                                     
Keskin and Çatay (2016)                                     
Keskin and Çatay (2018)                                     
Keskin et al. (2021)                                     
Keskin, Laporte, et al. (2019)                                     
Keskin Özel et al. (2018)                                     
Koç et al. (2019)                                     
Kopfer and Vornhusen (2019)                                     
Kouider et al. (2018)                                     
Kouider et al. (2019a)                                     
Kouider et al. (2019b)                                     
Kullman et al. (2017)                                     
Kullman et al. (2018)                                     
Küçükoğlu and Cattrysse (2017)                                     
Küçükoğlu et al. (2019)                                     
Küçükoğlu and Öztürk (2016)                                     
Lee (2020)                                     
Li-ying and Yuan-bin (2015)                                     
B. Li et al. (2019)                                     
H. Li et al. (2020)                                     
J. Li et al. (2020)                                     
L. Li et al. (2019)                                     
Lin et al. (2021)                                     
Lin et al. (2016)                                     
Löffler et al. (2020)                                     
Lu et al. (2020)                                     
Lu and Wang (2019)                                     
Mao et al. (2020)                                     
Mavrovouniotis et al. (2019)                                     
Mavrovouniotisa et al. (2020)                                     
Meng and Ma (2020)                                     
Moghaddam (2015)                                     
Montoya et al. (2015)                                     
Montoya et al. (2017)                                     
Montoya (2016)                                     
Ouahmed et al. (2014)                                     
Paz et al. (2018)                                     
Pelletier et al. (2019)                                     
Penna et al. (2016)                                     
Pierotti (2017)                                     
Preis et al. (2012)                                     
Raeesi and Zografos (2020)                                     
Rastani (2020)                                     
Reyes-Rubiano et al. (2019)                                     
Rezgui et al. (2019)                                     
Rezgui et al. (2017)                                     
Roberti and Wen (2016)                                     
Santos (2015)                                     
Sayarshad et al. (2020)                                     
Schiffer et al. (2018)           

*                          
Schiffer and Walther (2017)                                     
Schiffer and Walther (2018a)           

*                          
Schiffer and Walther (2018b)                                     



Schneider et al. (2014)                                     
Setak and Karimpour (2019)                                     
Shao et al. (2018)                                     
Shao et al. (2017)                                     
Soysal et al. (2020)                                     
Tahami et al. (2020)                                     
Taş (2021)                                     
Taweepworadej and Buasri (2016)                                     
Verma (2018)                                     
Wang et al. (2019)                                     
Wang and Cheu (2013)                                     
Wang et al. (2020)                                     
Worley et al. (2012)                                     
Wu and Zhang (2021)                                     
Xiao et al. (2019)                                     
Yamak (2019)                                     
Yang et al. (2015)                                     
Yang and Sun (2015)                                     
Yang et al. (2021)                                     
R. Zhang et al. (2020)                                     
S. Zhang et al. (2020)                                     
S. Zhang et al. (2018)                                     
X. Zhang et al. (2018)                                     
Zhao and Lu (2019)                                     
Zhao et al. (2020)                                     
Zhenfeng et al. (2017)                                     
Zhou and Tan (2018)                                     
Zhou et al. (2021)                                     
Zhu et al. (2020)                                     
Zuo et al. (2019)                                     
Zuo et al. (2017)                                     
*In addition to the charging station construction cost, investment cost for freight replenishment facilities is taken into account 

 

 



3.2. Energy Consumption Calculation 

The energy consumption calculation of the electric vehicles is one of the essential issues for the 

EVRP since it directly affects the route plans, computation times, required data, and, most 

importantly, the capability to execute it in practice. To obtain results that are more realistic for 

the EVRP, the energy consumption calculation needs to take into account several aspects, such 

as road conditions, technical features of the vehicle, vehicle load, and environmental conditions. 

However, each additional aspect makes the computations for energy consumption more 

complex. Therefore, choosing which aspects to take into account is a critical trade-off between 

acceptable computation times and the degree to which the solution can be executed in practice. 

In the existing studies, the energy consumption calculations can be categorized into three 

groups: linear deterministic functions, non-linear deterministic functions, and stochastic 

functions. The linear deterministic functions can be categorized into five subgroups based on 

the used equation parameters. Table 4 groups the existing studies according to the chosen 

energy consumption functions. 

The linear deterministic functions determine the energy consumption of an electric vehicle by 

using a constant parameter value for a given metric. For example, the distance-based equation 

determines the energy consumption by scaling an energy consumption rate for a given distance. 

Similarly, other linear functions use a set of parameters to compute the energy consumption. 

On the other hand, non-linear deterministic functions are considered to obtain more realistic 

results for the energy consumption of electric vehicles (Murakami, 2017). Goeke and Schneider 

(2015) introduced a comprehensive approach to determine the energy consumption in which 

air resistance force (𝐹𝑎), rolling resistance force (𝐹𝑟), and gravitational force (𝐹𝑔) factors were 

taken into account and converted to mechanical (𝑃𝑀) power using the following formulations: 

𝑃𝑀 = 𝐹𝑎 + 𝐹𝑟 + 𝐹𝑔 

𝑃𝑀 = (𝑚 ⋅ 𝑎 +
1

2
⋅ 𝑐𝑑 ⋅ 𝜌 ⋅ 𝐴 ⋅ 𝑣2 + 𝑚 ⋅ 𝑔 ⋅ 𝑠𝑖𝑛(𝛼) + 𝑐𝑟 ⋅ 𝑚 ⋅ 𝑔 ⋅ 𝑐𝑜𝑠(𝛼)) ⋅ 𝑣 

where 𝑚 denotes the total weight (vehicle plus current load), 𝑎 the acceleration, 𝑐𝑑 the 

aerodynamic drag coefficient, 𝜌 the air density, 𝐴 the frontal area of the electric vehicle, 𝑣 the 

speed, 𝑔 the gravitational constant, 𝑐𝑟 the rolling friction coefficient, and 𝛼 the gradient angle. 

 



Table 4. Classification of the energy consumption computations 

Paper 

Linear Deterministic Functions  Non-Linear 

Deterministic 

Functions 

 
Stochastic 

Functions 
Traveled 

Distance 

Vehicle 

Speed 

Vehicle 

Load 

Road 

Gradient Time 

Abdallah and Adel (2020)          
Abdulaal et al. (2017)         

Afroditi et al. (2014)          
Aggoune-Mtalaa et al. (2015)          
Aksoy et al. (2018)          
Almouhanna et al. (2020)          
Arias et al. (2015)          
Arias et al. (2018)          
Barco et al. (2017)          
Basso et al. (2019)          
Basso et al. (2021)          
Basso et al. (2016)          
Booth and Beck (2019)          
Breunig et al. (2018)          
Breunig et al. (2019)          
Bruglieri et al. (2017)          
Bruglieri et al. (2015a)          
Bruglieri et al. (2015b)          
Ceselli et al. (2021)         

Chen et al. (2016)          
Conrad and Figliozzi (2011)          
Cortés-Murcia et al. (2018)          
Cortés-Murcia et al. (2019)          
Cubides et al. (2019)          
Çatay and Keskin (2017)          
Desaulniers et al. (2016)          
Ding et al. (2015)          
Echeverri et al. (2018)          
Erdelić et al. (2019)          
Erdem and Koç (2019)          
Erdoğdu and Karabulut (2020)          
Felipe et al. (2014)         

Ferro et al. (2018)          
Froger et al. (2018)          
Froger et al. (2019)          
Froger et al. (2017)          
Futalef et al. (2020)          
Ge et al. (2020)          
Ghobadi et al. (2021)          
Goeke (2019)          
Goeke and Schneider (2015)         

Granada-Echeverri et al. (2020)          
Hiermann et al. (2014)          
Hiermann et al. (2016)          
Hof et al. (2017)          
Hulagu and Celikoglu (2020)          
Hulagu and Çelikoglu (2019)          
Jia et al. (2021)          
Jie et al. (2019)          
Kancharla and Ramadurai (2018)          
Kancharla and Ramadurai (2020)          
Keskin, Akhavan-Tabatabaei, et al. (2019)          
Keskin and Çatay (2016)          
Keskin and Çatay (2018)          
Keskin et al. (2021)          
Keskin, Laporte, et al. (2019)          
Keskin Özel et al. (2018)          
Koç et al. (2019)          
Kopfer and Vornhusen (2019)          
Kouider et al. (2018)          
Kouider et al. (2019a)          
Kouider et al. (2019b)          
Kullman et al. (2017)          
Kullman et al. (2018)          
Küçükoğlu and Cattrysse (2017)          
Küçükoğlu et al. (2019)          



Küçükoğlu and Öztürk (2016)          
Lee (2020)          
Li-ying and Yuan-bin (2015)          
B. Li et al. (2019)          
J. Li et al. (2020)          
L. Li et al. (2019)          
Lin et al. (2021)          
Lin et al. (2016)          
Löffler et al. (2020)          
Lu et al. (2020)          
Lu and Wang (2019)          
Mao et al. (2020)          
Mavrovouniotis et al. (2019)          
Mavrovouniotisa et al. (2020)          
Meng and Ma (2020)          
Moghaddam (2015)          
Montoya et al. (2015)          
Montoya et al. (2017)          
Montoya (2016)          
Ouahmed et al. (2014)          
Paz et al. (2018)          
Pelletier et al. (2019)          
Penna et al. (2016)          
Pierotti (2017)          
Preis et al. (2012)          
Raeesi and Zografos (2020)          
Rastani (2020)          
Reyes-Rubiano et al. (2019)          
Rezgui et al. (2019)          
Rezgui et al. (2017)          
Roberti and Wen (2016)          
Santos (2015)          
Sayarshad et al. (2020)          
Schiffer et al. (2018)          
Schiffer and Walther (2017)          
Schiffer and Walther (2018a)          
Schiffer and Walther (2018b)          
Schneider et al. (2014)          
Setak and Karimpour (2019)          
Shao et al. (2018)          
Shao et al. (2017)          
Soysal et al. (2020)          
Tahami et al. (2020)          
Taş (2021)          
Taweepworadej and Buasri (2016)          
Verma (2018)          
Wang et al. (2019)          
Wang and Cheu (2013)          
Wang et al. (2020)          
Worley et al. (2012)          
Wu and Zhang (2021)          
Xiao et al. (2019)          
Yamak (2019)          
Yang et al. (2015)          
Yang and Sun (2015)         

Yang et al. (2021)          
R. Zhang et al. (2020)          
S. Zhang et al. (2020)          
S. Zhang et al. (2018)          
X. Zhang et al. (2018)          
Zhao and Lu (2019)          
Zhao et al. (2020)          
Zhenfeng et al. (2017)          
Zhou and Tan (2018)          
Zhou et al. (2021)          
Zhu et al. (2020)          
Zuo et al. (2019)          
Zuo et al. (2017)          

 



 

Based on the deterministic equations, it should be concluded from Table 4 that the linear 

equations are mostly preferred by researchers to formulate the EVRP as a Mixed Integer 

Programming (MIP) model. On the other hand, non-linear deterministic functions can be 

incorporated within heuristic approaches to simulate energy consumption more realistically. In 

this context, Goeke and Schneider (2015) introduced an adaptive large neighborhood search 

algorithm that uses non-linear formulations to determine the energy consumption amounts. The 

authors tested the performance of the algorithm on a benchmark dataset where the problem 

sizes vary from 10 to 100 customer nodes. Similarly, Preis et al. (2012) proposed an adaptive 

tabu search algorithm for the EVRP, which considers non-linear equations. The results of the 

studies show that the non-linear equations can be applied effectively for real-life EVRP 

applications using a heuristic approach. S. Zhang et al. (2018) introduced an ant colony 

optimization approach considering non-linear objective function equations in the algorithm. 

The authors compared the performance of their algorithm to an adaptive large neighborhood 

search proposed by Goeke and Schneider (2015). Their results show that the ant colony 

optimization algorithm is capable of finding better results for the EVRP in shorter 

computational times. In more recent studies, the non-linear deterministic functions are used in 

variable neighborhood search algorithm introduced by L. Li et al. (2019) and Wang et al. 

(2020), adaptive genetic algorithm introduced by J. Li et al. (2020), and bi-strategy based 

optimization algorithm introduced by Lu and Wang (2019). In addition to the deterministic 

functions, Pelletier et al. (2019), Reyes-Rubiano et al. (2019), Soysal et al. (2020), S. Zhang et 

al. (2020), and Basso et al. (2021) used stochastic approaches to estimate energy consumption 

amounts of the electric vehicles. 

3.3. Constraints 

In most of the studies related to the EVRP, the battery capacity of the electric vehicles and 

recharging policies are considered under different assumptions and formulated as such in the 

mathematical models. Conductive charging is the most common method of recharging electric 

vehicles. Recharging procedures can be categorized into two major policies: full charging and 

partial charging. In the full charging policy, a vehicle’s battery is always fully charged when 

visiting a charging station. In the partial charging policy, an electric vehicle can leave from a 

charging station at any charge level depending on the time spent charging. In addition to the 

recharging policy, the studies can be classified based on the charging technology used. In 



practice, there exist different types of available charging technologies depending on the vehicle 

type. Each of these has different construction costs, operational costs, charging times, and 

capacities. Some of the studies considered different charging technologies that allow slow, 

normal, or fast charging with different operational costs.  

An overview of the charging policies used in the reviewed papers is given in Table 5. Here, it 

should be noted that the column labeled N/A in Table 5 presents the papers in which recharging 

operations are not considered in the route plans. For these studies, commonly, it is assumed that 

the electric vehicle leaves the depot with a fully charged battery and completes its tour 

according to the battery limit restriction. Based on the conductive charging systems, full and 

partial charging strategies with identical charging technologies were investigated most often. 

Furthermore, some of the papers considered both strategies and ran computational experiments 

to compare their performance. In addition to charging stations with identical charging 

technologies, different types of charging technologies were considered mostly for the partial 

charging policy, where the full charging policy with different charging technologies is 

considered in a few studies. 

Table 5. Classification of the charging policies 

Paper N/A 

Full Charging Policy  Partial Charging Policy 

Battery 

Swapping 

Using Identical 

Technology 

Using Different 

Technology 

Using Identical 

Technology 

Using Different 

Technology 

Abdallah and Adel (2020)        

Abdulaal et al. (2017)        

Afroditi et al. (2014)        

Aggoune-Mtalaa et al. (2015)        

Aksoy et al. (2018)        
Almouhanna et al. (2020)        

Arias et al. (2015)        
Arias et al. (2018)        

Barco et al. (2017)        

Basso et al. (2019)        

Basso et al. (2021)        

Basso et al. (2016)        

Booth and Beck (2019)        
Breunig et al. (2018)        

Breunig et al. (2019)        

Bruglieri et al. (2017)        

Bruglieri et al. (2015a)        
Bruglieri et al. (2015b)        

Ceselli et al. (2021)        
Chen et al. (2016)        
Conrad and Figliozzi (2011)        
Cortés-Murcia et al. (2018)        

Cortés-Murcia et al. (2019)        

Cubides et al. (2019)        

Çatay and Keskin (2017)        

Desaulniers et al. (2016)        
Ding et al. (2015)        

Echeverri et al. (2018)        

Erdelić et al. (2019)        

Erdem and Koç (2019)        
Erdoğdu and Karabulut (2020)        
Felipe et al. (2014)        



Ferro et al. (2018)        
Froger et al. (2018)        

Froger et al. (2019)        

Froger et al. (2017)        

Futalef et al. (2020)        

Ge et al. (2020)        

Ghobadi et al. (2021)        

Goeke (2019)        

Goeke and Schneider (2015)        

Granada-Echeverri et al. (2020)        

Hiermann et al. (2014)        

Hiermann et al. (2016)        

Hof et al. (2017)        
Hulagu and Celikoglu (2020)        

Hulagu and Çelikoglu (2019)        

Jia et al. (2021)       

Jie et al. (2019)        

Kancharla and Ramadurai (2018)        

Kancharla and Ramadurai (2020)        

Karakatič (2021)        

Keskin, Akhavan-Tabatabaei, et al. (2019)        

Keskin and Çatay (2016)        

Keskin and Çatay (2018)        

Keskin et al. (2021)        

Keskin, Laporte, et al. (2019)        

Keskin Özel et al. (2018)        

Koç et al. (2019)        

Kopfer and Vornhusen (2019)        

Kouider et al. (2018)        

Kouider et al. (2019a)        
Kouider et al. (2019b)        

Kullman et al. (2017)        
Kullman et al. (2018)        

Küçükoğlu and Cattrysse (2017)        
Küçükoğlu et al. (2019)        
Küçükoğlu and Öztürk (2016)        
Lee (2020)        
Li-ying and Yuan-bin (2015)        
B. Li et al. (2019)        
H. Li et al. (2020)        
J. Li et al. (2020)        
L. Li et al. (2019)        
Lin et al. (2021)        
Lin et al. (2016)        
Löffler et al. (2020)        
Lu et al. (2020)        
Lu and Wang (2019)        
Mao et al. (2020)        
Mavrovouniotis et al. (2019)        
Mavrovouniotisa et al. (2020)        
Meng and Ma (2020)        
Moghaddam (2015)        
Montoya et al. (2015)        
Montoya et al. (2017)        
Montoya (2016)        
Ouahmed et al. (2014)        
Paz et al. (2018)        
Pelletier et al. (2019)        
Penna et al. (2016)        
Pierotti (2017)        
Preis et al. (2012)        
Raeesi and Zografos (2020)        
Rastani (2020)        
Reyes-Rubiano et al. (2019)        
Rezgui et al. (2019)        
Rezgui et al. (2017)        
Roberti and Wen (2016)        
Santos (2015)        
Sayarshad et al. (2020)        
Schiffer et al. (2018)        
Schiffer and Walther (2017)        



Schiffer and Walther (2018a)        
Schiffer and Walther (2018b)        
Schneider et al. (2014)        
Setak and Karimpour (2019)        
Shao et al. (2018)        
Shao et al. (2017)        
Soysal et al. (2020)        
Tahami et al. (2020)        
Taş (2021)        
Taweepworadej and Buasri (2016)        
Verma (2018)        
Wang et al. (2019)        
Wang and Cheu (2013)        
Wang et al. (2020)        
Worley et al. (2012)        
Wu and Zhang (2021)        
Xiao et al. (2019)        
Yamak (2019)        
Yang et al. (2015)        
Yang and Sun (2015)        
Yang et al. (2021)        
R. Zhang et al. (2020)        
S. Zhang et al. (2020)        
S. Zhang et al. (2018)        
X. Zhang et al. (2018)        
Zhao and Lu (2019)        
Zhao et al. (2020)        
Zhenfeng et al. (2017)        
Zhou and Tan (2018)        
Zhou et al. (2021)        
Zhu et al. (2020)        
Zuo et al. (2019)        
Zuo et al. (2017)        

 

Another method presented in Table 5 for charging electric vehicles is battery swapping. In 

battery swapping stations, the current battery in the electric vehicle is replaced with a fully 

charged one. The advantage is that swapping batteries requires only a small amount of time 

compared to recharging operations (Pelletier et al., 2016). A swapping operation can be 

executed in less than 10 minutes, which is similar to going to a fuel station for conventional 

vehicles (Yang & Sun, 2015). Yang and Sun (2015), Arias et al. (2015), and Hof et al. (2017) 

studied simultaneously siting the battery swap station locations and routing the electric vehicles. 

A similar problem is also considered by Zhou and Tan (2018), where battery swap station 

locations and electric vehicle routing problems are simultaneously optimized for planning 

material handling operations at automotive assembly plants. Chen et al. (2016) proposed a 

mixed-integer mathematical model formulation for the EVRP with battery swapping operations 

for a given number of uncapacitated battery swapping stations. Paz et al. (2018) studied both 

the conductive charging and battery swapping methods for electric vehicles. The authors 

introduced three different mathematical formulations regarding three strategies: one for 

conductive charging in which electric vehicles are recharged at customer locations or 

conventional charging stations, one for battery swapping in which the electric vehicles can be 



recharged at conventional charging stations, and lastly, one for both conductive charging and 

battery swapping possibilities in which the conventional charging stations are used for battery 

swapping while customer locations are used for conductive charging. Multiple recharging 

options are also taken into account by Mao et al. (2020), Meng and Ma (2020), Raeesi and 

Zografos (2020), and Verma (2018). Jie et al. (2019) considered battery swapping operations 

for a two-echelon capacitated EVRP in which different battery capacitated electric vehicles are 

taken into account in each echelon. Another related study is introduced by Sayarshad et al. 

(2020), in which the dynamic routing problem of electric taxis with battery swapping stations 

is solved using a Markov decision process. 

In addition to the battery capacity-related restrictions, most of the studies on the EVRP also 

consider the most commonly used VRP restrictions. Table 6 gives an overview of constraints 

considered in the reviewed papers, excluding the studies of Lee (2020), Taweepworadej and 

Buasri (2016), and Yamak (2019), in which only battery capacity restrictions are considered. 

Most papers consider volume or weight capacity constraints as encountered in the capacitated 

VRP. In addition to the vehicle capacity, some of the papers considered a special station 

capacity constraint, which limits the number of vehicles allowed to be present simultaneously 

at a charging station. Other frequently used constraints for the EVRP are time window 

constraints, which significantly affect the route plans if the charging operations are very time-

consuming. A time limit is often enforced on a vehicle’s tour duration. This is usually the result 

of the maximum timespan that the driver is allowed to work that day. The duration time limit 

is also used in multi-period EVRP by Echeverri et al. (2018), Kouider et al. (2018), Kouider et 

al. (2019a), and Kouider et al. (2019b). In multi-period EVRP, electric vehicles are allowed to 

service all customer nodes in a number of periods, where each time period has a duration time 

limit. Time-related constraints in the reviewed papers are limited to these time windows and 

duration time constraints. However, the break times of the drivers should also be integrated 

with the EVRP to make route plans more applicable in practice (Coelho et al., 2016; Kopfer et 

al., 2016; Sahoo et al., 2005). Interestingly, break times are also not often investigated in the 

VRP literature. However, for the daily plans, the legal breaks of the drivers have to be taken 

into account in real-life applications. The break times of the drivers should take the charging 

plans into account since the drivers are often waiting a considerable time during charging in the 

EVRP. In addition, the EVRP has also been extended with the following restrictions: 



 EVRP with Pickup and Delivery: Each customer has three demand options (pickup, 

delivery, or both pickup and delivery), where the pickup and delivery requests have to 

be satisfied in a single visit. 

 EVRP with Backhauls: The customers are divided into two groups. The first group 

contains the linehaul customers, each requiring a given quantity of products to be 

delivered. The second group contains the backhaul customers, where a given quantity 

of products is transported to the depot node. 

 EVRP with Simultaneously Routing and Siting: The problem considers the routing of 

electric vehicles and siting decisions for charging stations simultaneously. 

 EVRP with Simultaneously Vehicle Recharging and Customer Service: Customer 

service is provided while the electric vehicle is recharged at a public charging station or 

private charging station established at the customer location. 

 EVRP with Multiple Depots: Customer demands are satisfied through more than one 

depot, where each depot has its own fleet consisting of electric vehicles. Each electric 

vehicle starts and finishes its tour at its home depot. 

 Time/Speed Dependent EVRP: Discharging amount of the electric vehicle is variable 

according to the speed of the vehicle or the travel speed is dependent on the current 

time. 

 



Table 6. Considered additional restrictions for the EVRP 

Paper 

Constraint Type 

Vehicle Weight 

Capacity 

Station 

Capacity 

Time 

Windows 

Duration 

Time 

Pickup 

and Delivery Backhauls 

Simultaneously 

Routing 

and Siting 

Simultaneously Vehicle 

Recharging and 

Customer Service 

Multiple 

Depots 

Time/Speed 

Dependency 

Abdallah and Adel (2020)           
Abdulaal et al. (2017)           
Afroditi et al. (2014)           
Aggoune-Mtalaa et al. (2015)           
Aksoy et al. (2018)           
Almouhanna et al. (2020)           
Arias et al. (2015)           
Arias et al. (2018)           
Barco et al. (2017)           
Basso et al. (2019)           
Basso et al. (2021)           
Basso et al. (2016)           
Booth and Beck (2019)           
Breunig et al. (2018)           
Breunig et al. (2019)           
Bruglieri et al. (2017)           
Bruglieri et al. (2015a)           
Bruglieri et al. (2015b)           
Ceselli et al. (2021)           
Chen et al. (2016)           
Conrad and Figliozzi (2011)           
Cortés-Murcia et al. (2018)           
Cortés-Murcia et al. (2019)           
Cubides et al. (2019)           
Çatay and Keskin (2017)           
Desaulniers et al. (2016)           
Ding et al. (2015)           
Echeverri et al. (2018)           
Erdelić et al. (2019)           
Erdem and Koç (2019)           
Erdoğdu and Karabulut (2020)           
Felipe et al. (2014)           
Ferro et al. (2018)           
Froger et al. (2018)           
Froger et al. (2019)           
Froger et al. (2017)           
Futalef et al. (2020)           
Ge et al. (2020)           
Ghobadi et al. (2021)           
Goeke (2019)           
Goeke and Schneider (2015)           
Granada-Echeverri et al. (2020)           
Hiermann et al. (2014)           
Hiermann et al. (2016)           
Hof et al. (2017)           
Hulagu and Celikoglu (2020)           
Hulagu and Çelikoglu (2019)           



Jia et al. (2021)           
Jie et al. (2019)           
Kancharla and Ramadurai (2018)           
Kancharla and Ramadurai (2020)           
Karakatič (2021)           
Keskin, Akhavan-Tabatabaei, et al. (2019)           
Keskin and Çatay (2016)           
Keskin and Çatay (2018)           
Keskin et al. (2021)           
Keskin, Laporte, et al. (2019)           
Keskin Özel et al. (2018)           
Koç et al. (2019)           
Kopfer and Vornhusen (2019)           
Kouider et al. (2018)           
Kouider et al. (2019a)           
Kouider et al. (2019b)           
Kullman et al. (2017)           
Kullman et al. (2018)           
Küçükoğlu and Cattrysse (2017)           
Küçükoğlu et al. (2019)           
Küçükoğlu and Öztürk (2016)           
Li-ying and Yuan-bin (2015)           
B. Li et al. (2019)           
H. Li et al. (2020)           
J. Li et al. (2020)           
L. Li et al. (2019)           
Lin et al. (2021)           
Lin et al. (2016)           
Löffler et al. (2020)           
Lu et al. (2020)           
Lu and Wang (2019)           
Mao et al. (2020)           
Mavrovouniotis et al. (2019)           
Mavrovouniotisa et al. (2020)           
Meng and Ma (2020)           
Moghaddam (2015)           
Montoya et al. (2015)           
Montoya et al. (2017)           
Montoya (2016)           
Ouahmed et al. (2014)           
Paz et al. (2018)           
Pelletier et al. (2019)           
Penna et al. (2016)           
Pierotti (2017)           
Preis et al. (2012)           
Raeesi and Zografos (2020)           
Rastani (2020)           
Reyes-Rubiano et al. (2019)           
Rezgui et al. (2019)           
Rezgui et al. (2017)           
Roberti and Wen (2016)           
Santos (2015)           
Sayarshad et al. (2020)           



Schiffer et al. (2018)           
Schiffer and Walther (2017)           
Schiffer and Walther (2018a)           
Schiffer and Walther (2018b)           
Schneider et al. (2014)           
Setak and Karimpour (2019)           
Shao et al. (2018)           
Shao et al. (2017)           
Soysal et al. (2020)           
Tahami et al. (2020)           
Taş (2021)           
Verma (2018)           
Wang et al. (2019)           
Wang and Cheu (2013)           
Wang et al. (2020)           
Worley et al. (2012)           
Wu and Zhang (2021)           
Xiao et al. (2019)           
Yang et al. (2015)           
Yang and Sun (2015)           
Yang et al. (2021)           
R. Zhang et al. (2020)           
S. Zhang et al. (2020)           
S. Zhang et al. (2018)           
X. Zhang et al. (2018)           
Zhao and Lu (2019)           
Zhao et al. (2020)           
Zhenfeng et al. (2017)           
Zhou and Tan (2018)           
Zhou et al. (2021)           
Zhu et al. (2020)           
Zuo et al. (2019)           
Zuo et al. (2017)           

 



3.4. Fleet Type 

In the EVRP, similar to the VRP or its extensions, one can consider a homogeneous fleet or a 

heterogeneous fleet (Eksioglu et al., 2009; Lin et al., 2014). Simply put, a homogeneous fleet 

consists of vehicles that are all identical, while the heterogeneous fleet includes different types 

of vehicles with regards to their capacity, operating cost, environmental impact, charging 

technology, battery capacity, energy consumption per distance unit, etc. 

Most of the reviewed papers consider a homogeneous fleet, while only 16 of 136 papers deal 

with a heterogeneous fleet (see, e.g., Arias et al. (2018), Breunig et al. (2018), Erdem and Koç 

(2019), Futalef et al. (2020), Hiermann et al. (2016), Jie et al. (2019), Lin et al. (2016), Kopfer 

and Vornhusen (2019), or Penna et al. (2016)). It should be stated for both the VRP and EVRP 

that heterogeneous fleets increase the problem complexity for both exact solvers and heuristics. 

The selection of a vehicle type for a route directly affects the traveling cost/time or may cause 

a violation of a constraint such as capacity or other related restrictions (Jiang et al., 2014).  On 

the other hand, a heterogeneous fleet has the potential to decrease total transportation cost or 

energy consumption by selecting more appropriate vehicles for the routes (Küçükoğlu & 

Öztürk, 2016). 

4. Mathematical model of the EVRP and its basic variations 

As indicated in the previous sections, there are many considerations influencing the exact nature 

of the EVRP. This section presents a mathematical formulation of the EVRP and its commonly 

used variations in the literature. The following mathematical models are derived from the work 

of Schneider et al. (2014), Keskin and Çatay (2016), Roberti and Wen (2016), Hiermann et al. 

(2016), and Schiffer and Walther (2017). 

A mathematical formulation of the basic EVRP that only considers battery capacity as a 

constraint can be stated as follows. 

Notations 

0, 𝑁 + 1  Depot nodes 

𝐹 Set of charging stations 

𝐹′ Set of dummy nodes required to allow multiple visits to a charging station 

in the set 𝐹 

𝑉 Set of customers; 𝑉 = {1,2, … , 𝑁} 



𝑉0, 𝑉𝑁+1 Set of customers and depot node; 𝑉0 = 𝑉 ∪ {0}, 𝑉N+1 = 𝑉 ∪ {𝑁 + 1}  

𝑉′ Set of customers and charging stations; 𝑉′ = 𝑉 ∪ 𝐹′ 

𝑉0
′, 𝑉𝑁+1

′ , 𝑉0,𝑁+1
′  Set of customers, charging stations, and depot node; 𝑉0

′ = 𝑉′ ∪ {0}, 𝑉N+1
′ =

𝑉′ ∪ {𝑁 + 1}, 𝑉0,N+1
′ = 𝑉′ ∪ {0} ∪ {𝑁 + 1} 

𝐾 Set of vehicles 

𝑑𝑖𝑗 Traveling distance from node i to node j; ∀𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′  

ℎ Energy consumption rate of the vehicles per unit distance 

𝑄 Battery capacity of the vehicles 

Decision Variables 

𝑥𝑖𝑗
𝑘  Binary variable and equal to 1 if vehicle k travels from node i to node j, 0 otherwise; 

∀𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗,   𝑑𝑖𝑗 > 0,   ∀𝑘 ∈ 𝐾 

𝑦𝑖
𝑘 Decision variable to track the battery level of vehicle k on arriving at node i; ∀𝑖 ∈

𝑉0
′,   ∀𝑘 ∈ 𝐾 

Objective Function 

𝑀𝑖𝑛 𝑧 = ∑ ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑁+1
′𝑖∈𝑉0

′

                                                                                                             (1) 

Subject to 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑁+1
′

= 1                ∀𝑖 ∈ 𝑉                                                                                                       (2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾𝑗∈𝑉𝑁+1
′

≤ 1                 ∀𝑖 ∈ 𝐹′                                                                                                     (3) 

∑ 𝑥0𝑗
𝑘

𝑗∈𝑉′

≤ 1                           ∀𝑘 ∈ 𝐾                                                                                                     (4) 

∑ 𝑥𝑖𝑗
𝑘

𝑖∈𝑉0
′

= ∑ 𝑥𝑗𝑖
𝑘

𝑖∈𝑉𝑁+1
′

             ∀𝑗 ∈ 𝑉′,          ∀𝑘 ∈ 𝐾                                                                            (5) 

𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − (ℎ ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗
𝑘 + 𝑄(1 − 𝑥𝑖𝑗

𝑘 )      ∀𝑖 ∈ 𝑉,                 ∀𝑗 ∈ 𝑉𝑁+1
′ ,          ∀𝑘 ∈ 𝐾                (6) 

𝑦𝑗
𝑘 ≤ 𝑄 − (ℎ ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗

𝑘                                  ∀𝑖 ∈ 𝐹′ ∪ {0},       ∀𝑗 ∈ 𝑉𝑁+1
′ ,         ∀𝑘 ∈ 𝐾               (7) 



𝑦0
𝑘 ≤ 𝑄                                                             ∀𝑘 ∈ 𝐾                                                                            (8) 

The objective function (1) aims to minimize the total distance of electric vehicles. Constraints 

(2) handle the connectivity of the customer nodes. Constraints (3) ensure that each dummy 

charging station can be visited at most once. Constraints (4) make sure that each electric vehicle 

can be used only in one route plan. Constraints (5) ensure that the total number of outgoing arcs 

is equal to the total number of incoming arcs at customer and charging station nodes, which 

provide continuity in the routes. Constraints (6)-(8) track the battery level of the electric 

vehicles and battery state after the recharging operations at the charging stations following a 

full charging policy. 

In case of a partial charging policy, constraints (7)-(8) should be replaced by constraints (9)-

(10) by defining a new decision variable 𝑌𝑖 that represents the battery level of the vehicle before 

departure from node 𝑖 where 𝑖 ∈ 𝐹′ ∪ {0}. 

𝑦𝑗
𝑘 ≤ 𝑌𝑖 − (ℎ ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗

𝑘 + 𝑄(1 − 𝑥𝑖𝑗
𝑘 )        ∀𝑖 ∈ 𝐹′ ∪ {0},      ∀𝑗 ∈ 𝑉𝑁+1

′ ,        ∀𝑘 ∈ 𝐾                (9) 

𝑦𝑖
𝑘 ≤ 𝑌𝑖 ≤ 𝑄                                                    ∀𝑖 ∈ 𝐹′ ∪ {0}                                                              (10) 

In the case of a capacitated EVRP, constraints (11) should be added to the model where 𝐶 is 

the weight/load capacity of the vehicles and 𝑞𝑖 is the demand amount of customer 𝑖, where ∀𝑖 ∈

𝑉. These constraints guarantee that the total amount of goods in a vehicle cannot exceed the 

vehicle load capacity. 

∑ ∑ 𝑞𝑖𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′𝑖∈𝑉

≤ 𝐶             ∀𝑘 ∈ 𝐾                                                                                                   (11) 

The electric vehicle routing problem with time windows (EVRPTW) is a common variation of 

the EVRP, and the above formulation can be turned into a formulation for the EVRPTW by 

defining the following new parameters and decision variables. 

𝑡𝑖𝑗 Travel time from node i to node j; ∀𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′  

𝑒𝑖 Earliest time to start service allowed at node i; ∀𝑖 ∈ 𝑉0,𝑁+1
′  

𝑙𝑖 Latest time to start service allowed at node i; ∀𝑖 ∈ 𝑉0,𝑁+1
′  

𝑠𝑖 Service time at node i; ∀𝑖 ∈ 𝑉0 

𝑔 Recharging rate of the electric vehicles 



𝑝𝑖 Decision variable to track service start time at node i; ∀𝑖 ∈ 𝑉0,𝑁+1
′  

Using the parameters and decision variables defined above, the EVRPTW can be formulated 

by adding constraints (12)-(14) to the EVRP formulation. Constraints (12)-(14) track the times 

between the nodes, determine the charging times at charging stations following a full charging 

policy and ensure feasibility with regard to the time windows. In particular, constraints (12) 

and (13) ensure the time feasibility of the arcs leaving from the customers (and depot node) and 

the charging stations, respectively. Constraints (14) enforce the time windows of the nodes. 

 𝑝𝑖 + (𝑡𝑖𝑗 + 𝑠𝑖) ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

≤ 𝑝𝑗 + 𝑙0 (1 − ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

)               ∀𝑖 ∈ 𝑉0,    ∀𝑗 ∈ 𝑉𝑁+1
′                       (12) 

𝑝𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑔(𝑄 − 𝑦𝑖

𝑘) ≤ 𝑝𝑗 + (𝑙0 + 𝑔 ⋅ 𝑄)(1 − 𝑥𝑖𝑗
𝑘 )  ∀𝑖 ∈ 𝐹′,    ∀𝑗 ∈ 𝑉𝑁+1

′ ,     ∀𝑘 ∈ 𝐾  (13) 

𝑒𝑖 ≤ 𝑝𝑖 ≤ 𝑙𝑖                                                                                 ∀𝑖 ∈ 𝑉0,𝑁+1
′                                       (14) 

Constraints (13) determine the time of the electric vehicles before leaving the charging stations 

considering the full charging policy. In the case of a partial charging policy, constraints (13) 

should be replaced by constraints (15), in which the charging time of vehicle 𝑘 at station 𝑖 is 

determined using the decision variables 𝑌𝑖 and 𝑦𝑖
𝑘. 

𝑝𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑔(𝑌𝑖 − 𝑦𝑖

𝑘) ≤ 𝑝𝑗 + (𝑙0 + 𝑔 ⋅ 𝑄)(1 − 𝑥𝑖𝑗
𝑘 )  ∀𝑖 ∈ 𝐹′,   ∀𝑗 ∈ 𝑉𝑁+1

′ ,     ∀𝑘 ∈ 𝐾   (15) 

To consider a heterogeneous fleet, parameters 𝑄, 𝐶, ℎ, and 𝑔 should be modified to allow 

different technical specifications per vehicle: 𝑄𝑘, 𝐶𝑘, ℎ𝑘, and 𝑔𝑘. Constraints (16)-(18), (19)-

(20), (21), (22), and (23) should be used in the case of a heterogeneous fleet instead of 

constraints (6)-(8), (9)-(10), (11), (13) and (15), respectively. 

𝑦𝑗
𝑘 ≤ 𝑦𝑖

𝑘 − (ℎ𝑘 ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗
𝑘 + 𝑄𝑘(1 − 𝑥𝑖𝑗

𝑘 )     ∀𝑖 ∈ 𝑉,                  ∀𝑗 ∈ 𝑉𝑁+1
′ ,     ∀𝑘 ∈ 𝐾      (16) 

𝑦𝑗
𝑘 ≤ 𝑄𝑘 − (ℎ𝑘 ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗

𝑘                                  ∀𝑖 ∈ 𝐹′ ∪ {0},     ∀𝑗 ∈ 𝑉𝑁+1
′ ,     ∀𝑘 ∈ 𝐾      (17) 

𝑦0
𝑘 ≤ 𝑄𝑘                                                              ∀𝑘 ∈ 𝐾                                                              (18) 

𝑦𝑗
𝑘 ≤ 𝑌𝑖 − (ℎ𝑘 ⋅ 𝑑𝑖𝑗)𝑥𝑖𝑗

𝑘 + 𝑄𝑘(1 − 𝑥𝑖𝑗
𝑘 )       ∀𝑖 ∈ 𝐹′ ∪ {0},     ∀𝑗 ∈ 𝑉𝑁+1

′ ,     ∀𝑘 ∈ 𝐾      (19) 

𝑦𝑖
𝑘 ≤ 𝑌𝑖 ≤ 𝑄𝑘                                                    ∀𝑖 ∈ 𝐹′ ∪ {0}                                                   (20) 

∑ ∑ 𝑞𝑖𝑥𝑖𝑗
𝑘

𝑗∈𝑉𝑁+1
′𝑖∈𝑉

≤ 𝐶𝑘             ∀𝑘 ∈ 𝐾                                                                                        (21) 



𝑝𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑔𝑘(𝑄𝑘 − 𝑦𝑖

𝑘) ≤ 𝑝𝑗 + (𝑙0 + 𝑔𝑘𝑄𝑘)(1 − 𝑥𝑖𝑗
𝑘 )  

∀𝑖 ∈ 𝐹′,      ∀𝑗 ∈ 𝑉𝑁+1
′ ,     ∀𝑘 ∈ 𝐾      (22) 

𝑝𝑖 + 𝑡𝑖𝑗𝑥𝑖𝑗
𝑘 + 𝑔𝑘(𝑌𝑖 − 𝑦𝑖

𝑘) ≤ 𝑝𝑗 + (𝑙0 + 𝑔𝑘𝑄𝑘)(1 − 𝑥𝑖𝑗
𝑘 )        

∀𝑖 ∈ 𝐹′,      ∀𝑗 ∈ 𝑉𝑁+1
′ ,     ∀𝑘 ∈ 𝐾      (23) 

5. Solution Approaches 

As an extension of the well-known VRP, the EVRP additionally deals with planning the 

charging station visits while determining the customer orders in a route. Since the VRP is an 

NP-hard problem and the EVRP is a generalization of the VRP, the EVRP can equally be 

considered NP-hard in the strong sense (Desaulniers et al., 2016; Ferro et al., 2018; Roberti & 

Wen, 2016; S. Zhang et al., 2018). Furthermore, adding the restrictions described in the 

previous sections makes the problem considerably more complex to solve (Afroditi et al., 2014; 

Desaulniers et al., 2016; Goeke & Schneider, 2015). Solution methodologies proposed in the 

literature can be classified into either exact or heuristic approaches. However, due to the 

complexity of the problem, the number of studies in which exact approaches are used as solution 

approach is very small. Tahami et al. (2020) proposed a branch-and-cut algorithm to solve well-

known EVRP. Desaulniers et al. (2016) introduced an exact branch-price-and-cut algorithm to 

solve four variants of the EVRP: at most a single recharge per route with a full charging policy, 

multiple recharges per route with a full charging policy, at most a single recharge per route with 

a partial charging policy, and multiple recharges per route with a partial charging policy. 

Similarly, a branch-price-and-cut algorithm was used by Pierotti (2017) to solve the EVRPTW 

with heterogeneous recharging stations. Ceselli et al. (2021) provided a branch-and-cut-and-

price algorithm for the EVRP with multiple charging technologies, where the proposed 

algorithm relies upon a path-based formulation. Lee (2020) introduced a branch-and-price 

method to optimally solve an extended version of the EVRP with non-linear charging time. The 

branh-and-price method is also considered by Wu and Zhang (2021)  to solve two-echelon 

EVRP. Besides these methods, commercial solvers are commonly employed to find the optimal 

solution for the EVRP and its extensions. Paz et al. (2018) and Küçükoğlu and Öztürk (2016) 

extended the EVRPTW with different assumptions and solved their small-sized problems 

(including 5, 10, and 15 customer nodes) using CPLEX, a commercial solver. CPLEX was also 

used to solve different EVRP variations (see, e.g., Hulagu and Çelikoglu (2019), Keskin, 

Akhavan-Tabatabaei, et al. (2019), Lin et al. (2016)). GUROBI, another commercial solver, 

was used for the EVRP by Aksoy et al. (2018), Chen et al. (2016), Cubides et al. (2019), Froger 



et al. (2017), Froger et al. (2018), Froger et al. (2019), Granada-Echeverri et al. (2020), 

Moghaddam (2015), Montoya et al. (2015), Schiffer and Walther (2017), and Wang et al. 

(2019). 

In addition to exact solution approaches, meta-heuristic algorithms are widely used as a solution 

approach for the EVRP. Table 7 gives an overview of the meta-heuristic algorithms used in the 

reviewed papers: ant colony optimization (ACO), cuckoo search (CS), differential evolution 

algorithm (DEA), genetic algorithm (GA), iterated local search (ILS), large neighborhood 

search/adaptive large neighborhood search (LNS/ALNS), memetic algorithm (MA), simulated 

annealing (SA), tabu search/adaptive tabu search/granular tabu search  (TS/ATS/GTS) 

algorithm, and variable neighborhood search/adaptive variable neighborhood search 

(VNS/AVNS). The last column of Table 7 also presents the additional procedures integrated 

with the meta-heuristic algorithms. Additionally, a pair of meta-heuristic algorithms marked in 

a row in Table 7 denotes the hybrid structure of the two algorithms. Based on the algorithms 

given in Table 7, Figure 4 presents the relative occurrence of these approaches. From Table 7 

and Figure 4, it can be observed that LNS/ALNS, VNS/AVNS, GA, and TS/ATS/GTS are the 

most common metaheuristics for the EVRP. 

 

 
Figure 4. The usage rates of the ten principal algorithms for the EVRP 

ACO
7%

CS
1% DEA

1%

GA
16%

ILS
6%

LNS/ALNS
28%

MA
1%

SA
6%

TS/ATS/GTS
16%

VNS/AVNS
18% ACO

CS

DEA

GA

ILS

LNS/ALNS

MA

SA

TS/ATS/GTS

VNS/AVNS



Table 7. Meta-heuristic solution approaches used for the EVRP 

Paper ACO CS DEA GA ILS LNS/ALNS MA SA TS/ATS/GTS VNS/AVNS Integrated with 

Abdallah and Adel (2020)            

Abdulaal et al. (2017)           Markov Decision Process 
Aggoune-Mtalaa et al. (2015)            

Almouhanna et al. (2020)           Biased Randomization 

Barco et al. (2017)            
Breunig et al. (2018)            

Breunig et al. (2019)           Local Search 

Bruglieri et al. (2017)           Matheuristic 

Bruglieri et al. (2015a)           Matheuristic 

Bruglieri et al. (2015b)           Matheuristic 
Cortés-Murcia et al. (2019)           Local Search and Set Partitioning 

Ding et al. (2015)            

Erdelić et al. (2019)            
Erdem and Koç (2019)           Local Search and Set Partitioning 

Erdoğdu and Karabulut (2020)           Local Search 
Felipe et al. (2014)            

Futalef et al. (2020)            

Ge et al. (2020)           Clarke and Wright's Saving Method 
Ghobadi et al. (2021)            

Goeke (2019)            

Goeke and Schneider (2015)           Local Search 

Granada-Echeverri et al. (2020)            

Hiermann et al. (2014)           Dynamic Programming 
Hiermann et al. (2016)           Dynamic Programming 

Hof et al. (2017)            

Jia et al. (2021)            
Jie et al. (2019)           Column Generation 

Kancharla and Ramadurai (2018)            

Kancharla and Ramadurai (2020)            

Karakatič (2021)            

Keskin and Çatay (2016)            
Keskin and Çatay (2018)           Matheuristic 

Keskin et al. (2021)            

Keskin, Laporte, et al. (2019)           Matheuristic 
Keskin Özel et al. (2018)           Matheuristic 

Koç et al. (2019)           Matheuristic 
Kouider et al. (2019a)            

Kouider et al. (2019b)            

Küçükoğlu and Cattrysse (2017)           Branch-and-Bound 
Küçükoğlu et al. (2019)           Dynamic Programming 

Li-ying and Yuan-bin (2015)            

B. Li et al. (2019)           Constraint Programming 
H. Li et al. (2020)            

J. Li et al. (2020)           Hill Climbing Search 

L. Li et al. (2019)            

Lin et al. (2021)            
Löffler et al. (2020)            
Lu et al. (2020)           Local Search 

Lu and Wang (2019)           kNN-based Heuristic 

Mao et al. (2020)           Local Search 



Mavrovouniotis et al. (2019)            

Mavrovouniotisa et al. (2020)            

Meng and Ma (2020)            

Montoya et al. (2017)           Local Search and Set Partitioning 
Montoya (2016)           Local Search and Set Partitioning 

Ouahmed et al. (2014)            

Pelletier et al. (2019)           Local Search and Set Partitioning 
Penna et al. (2016)           Local Search and Set Partitioning 

Preis et al. (2012)            
Raeesi and Zografos (2020)           Dynamic Programming 

Rastani (2020)            

Reyes-Rubiano et al. (2019)            
Rezgui et al. (2019)           Local Search 

Rezgui et al. (2017)           Local Search 

Roberti and Wen (2016)           Dynamic Programming 

Schiffer et al. (2018)           Local Search 

Schiffer and Walther (2018a)           Dynamic Programming 
Schiffer and Walther (2018b)           Dynamic Programming 

Schneider et al. (2014)            

Setak and Karimpour (2019)            
Shao et al. (2018)           Dynamic Dijkstra 

Shao et al. (2017)           Dynamic Dijkstra 
Verma (2018)           Local Search 

Wang and Cheu (2013)            

Wang et al. (2020)            
Yamak (2019)            

Yang et al. (2015)            

Yang and Sun (2015)            
R. Zhang et al. (2020)            

S. Zhang et al. (2020)           Local Search 
S. Zhang et al. (2018)            

X. Zhang et al. (2018)            

Zhao and Lu (2019)            
Zhao et al. (2020)            

Zhenfeng et al. (2017)            

Zhou and Tan (2018)            

Zhou et al. (2021)           Dynamic Programming 

Zhu et al. (2020)           Space Saving Heuristic 

 

 



For the heuristic-based solution methodologies, one of the essential issues that directly affects 

the search performance is the solution representation. As in the classical VRP, the permutation 

ordered integer array is commonly employed in the existing solution approaches to represent a 

solution (Goeke & Schneider, 2015; Küçükoğlu & Öztürk, 2016; Roberti & Wen, 2016; 

Schiffer & Walther, 2018a; Schneider et al., 2014). For VRPs, an integer array consisting of 

customer locations enriched with the earliest arrival, earliest departure, latest arrival, and latest 

departure times enables the development of efficient local search algorithms (Mitrović-Minić 

& Laporte, 2004). However, a solution for the EVRP additionally requires charging station 

visits in the route plans. Since the number of visits to charging stations is not restricted for a 

route, a vehicle can make none, one or more visits to charging stations. Furthermore, it is even 

possible to make multiple charging station visits between a single pair of customer nodes. 

Moreover, if a partial charging policy is followed, the recharge amount at the charging stations 

is another critical decision. Especially for the EVRP with time windows constraints, recharging 

times at the charging stations need to be well planned to meet the time window restrictions of 

the customers. Therefore, a feasible route construction is considerably more difficult for the 

EVRP than for the VRP. To make a feasible route plan with respect to battery capacity, there 

exist two main approaches in the literature: heuristic and optimal charging station insertion 

approaches. 

Heuristic charging station insertion approaches search the solution space for insertions in a 

straightforward way. The most common approach is consecutively applying a removal and 

insertion procedure for the charging stations. This is successfully applied to the EVRP in a 

number of studies (Felipe et al., 2014; Goeke & Schneider, 2015; Keskin & Çatay, 2015, 2016; 

Schiffer & Walther, 2018a; Schneider et al., 2014). This procedure requires a solution 

representation consisting of both customer and charging stations. For the removal operations, a 

number of stations are removed from the route according to heuristic rules such as random 

selection, selecting the station that causes a high travel distance, selecting the station that causes 

a high battery usage, etc. Similarly, the charging stations are inserted into the routes to restore 

battery feasibility. 

As an alternative to the heuristic charging station insertion approaches, a forward labeling 

algorithm on the basis of dynamic programming was applied in a number of studies (see, e.g., 

Hiermann et al. (2014), Hiermann et al. (2016), Jie et al. (2019), Küçükoğlu et al. (2019) Pierotti 

(2017), and Roberti and Wen (2016)). The labeling algorithm works through a solution 



consisting of only customer locations and tries to insert the charging stations into the route in 

an optimal way while maintaining feasibility with regard to battery capacity or other constraints 

such as time windows. The algorithm starts with an initial label at the depot node (with a full 

battery level) and creates a set of feasible labels at each step by inserting possible charging 

stations between the customer nodes. The algorithm provides an optimal set of charging station 

insertions for a given route of customers nodes (Roberti & Wen, 2016). When compared to 

heuristic charging station insertion approaches, the labeling algorithm is much more time-

consuming. However, if sufficient computational time is available, solutions generated by this 

labeling algorithm typically generate better solutions than using the heuristic approaches. 

Similar to the study of Roberti and Wen (2016), Kullman et al. (2017), and Kullman et al. 

(2018) introduced a dynamic decision-making procedure for the single electric vehicle routing 

problem with uncertain charging station availability. The computational complexity of the 

charging station insertion for a given customer-only route has not been identified before. 

However, it is highly likely that the problem is NP-hard in the strong sense since the insertion 

problem is similar to the resource-constrained shortest path problem, which aims to find a 

minimum cost-directed path from a source to a destination while satisfying the resource 

constraints (Horváth & Kis, 2016; Strehler et al., 2017). 

6. Problem Datasets 

The most widely used EVRP dataset is introduced by Schneider et al. (2014) and consists of 

small and large-sized instances with up to 100 customer locations. All these instances are 

generated based on the benchmark dataset for the VRPTW of Solomon (1987). The VRPTW 

dataset is divided into three classes based on geographical distribution: random customer 

distribution (R), clustered customer distribution (C), and a mixture of both R and C classes 

(RC). Moreover, these classes are divided into two groups with respect to the scheduling 

horizon where R1, C1, and RC1 form the first group with a short scheduling horizon while R2, 

C2, and RC2 form the second group with a long scheduling horizon. Based on the VRPTW 

instances, Schneider et al. (2014) propose a set of 56 large-sized instances consisting of 100 

customer locations and 21 charging stations, and a set of 36 small-sized instances consisting of 

5, 10, and 15 customer locations. The charging stations in each instance are determined as 

follows: One of the charging stations is located at the depot node. The remaining charging 

stations are located randomly with the assumption that each customer can be reached from the 

depot using at most two charging stations. On the other hand, the battery capacity of the electric 

vehicles is determined by considering the maximum of the following two values: the charge 



needed to travel 60% of the average route length of the best-known VRPTW solution for the 

instance and twice the charge required for the longest arc distance between a customer and a 

station. Finally, the time window data is re-generated to obtain feasible instances using a 

procedure as described in Solomon (1987). 

Many solution procedures make use of the EVRPTW dataset introduced by Schneider et al. 

(2014). Therefore, this section also presents the best-found solutions for the instances in the 

existing studies and compares the solution quality of the different solution approaches. Table 8 

shows the existing results for the small-sized instances based on the studies of Schneider et al. 

(2014), Küçükoğlu and Öztürk (2016), and Schiffer and Walther (2017). Schneider et al. (2014) 

compare their proposed VNS/TS algorithm with exact solutions obtained by CPLEX in a two-

hour time limitation. The other two studies proposed by Küçükoğlu and Öztürk (2016) and 

Schiffer and Walther (2017) introduce optimal solutions obtained by both the CPLEX and 

GUROBI solvers, respectively. According to the exact solver results shown in Table 8, each 

study finds the same solution for most of the instances. However, the results presented by 

Küçükoğlu and Öztürk (2016) obtain the minimum average objective function values with 

much shorter CPU times by using a better formulation. On the other hand, the VNS/TS is able 

to obtain the same results as the optimal solutions or better than the best-bound integer solutions 

of the exact solver in even shorter processing times. 

Table 8. Results of the small-sized EVRPTW instances 

Inst. 

Best 

Solution  

CPLEX1 

 

CPLEX2 

 

GUROBI 

 

VNS/TS 

OFV 

CPU 

Time (s) OFV 

CPU 

Time (s) OFV 

CPU 

Time (s) OFV 

CPU 

Time (s) 

c101_5 257.75  257.75 81.00  257.75 0.98  257.75 0.29  257.75 0.21 
c103_5 176.05  176.05 5.00  176.05 0.18  176.05 0.11  176.05 0.12 

c206_5 242.55  242.55 518.00  242.55 1.15  242.55 0.90  242.55 0.14 

c208_5 158.48  158.48 15.00  158.48 1.57  158.48 0.24  158.48 0.11 
r104_5 136.69  136.69 1.00  136.69 0.79  136.69 0.07  136.69 0.13 

r105_5 156.08  156.08 3.00  156.08 0.62  156.08 0.09  156.08 0.11 

r202_5 128.78  128.78 1.00  128.78 0.34  128.78 0.11  128.78 0.11 
r203_5 179.06  179.06 5.00  179.06 0.42  179.06 0.29  179.06 0.15 

rc105_5 241.30  241.30 764.00  241.30 1.60  241.30 1.07  241.30 0.14 

rc108_5 253.93  253.93 311.00  253.93 0.88  253.93 1.55  253.93 0.17 
rc204_5 176.39  176.39 54.00  176.39 1.74  176.39 0.27  176.39 0.15 

rc208_5 167.98  167.98 21.00  167.98 0.72  167.98 0.27  167.98 0.13 

 
c101_10 393.76  393.76 171.00  393.76 8.09  393.76 11.60  393.76 0.77 
c104_10 273.93  273.93 360.00  273.93 2.60  273.93 6.31  273.93 0.95 

c202_10 304.06  304.06 300.00  304.06 1.07  304.06 85.90  304.06 0.71 

c205_10 228.28  228.28 4.00  228.28 0.16  228.28 0.35  228.28 0.49 
r102_10 249.19  249.19 389.00  249.19 0.61  249.19 7.76  249.19 0.65 

r103_10 207.05  207.05 119.00  207.05 4.80  207.05 1382.00  207.05 0.72 
r201_10 241.51  241.51 177.00  241.51 3.34  241.51 39.30  241.51 0.78 

r203_10 218.21  218.21 573.00  218.21 2.07  218.21 4.59  218.21 0.71 

rc102_10 423.51  423.51 810.00  423.51 0.66  423.51 0.94  423.51 0.69 
rc108_10 345.93  345.93 39.00  345.93 0.48  345.93 4.48  345.93 0.90 

rc201_10 412.86  412.86 7200.00  412.86 69.00  412.86 4661.00  412.86 0.90 

rc205_10 325.98  325.98 399.00  325.98 0.50  325.98 0.60  325.98 0.81 
 

c103_15 384.29  384.29 7200.00  384.79 7200.00  384.29 7200.00  384.29 15.37 

c106_15 275.13  275.13 17.00  275.13 23.74  275.13 1.52  275.13 14.94 



c202_15 383.61  383.62 7200.00  383.62 2384.00  383.62 955.00  383.61 13.41 

c208_15 300.55  300.55 5060.00  300.55 153.00  300.55 11.50  300.55 11.08 

r102_15 413.93  413.93 7200.00  413.93 7200.00  413.93 7200.00  413.93 19.55 
r105_15 336.15  336.15 7200.00  336.15 10.09  336.15 27.80  336.15 13.35 

r202_15 358.00  358.00 7200.00  358.00 7200.00  358.00 740.00  358.00 13.17 

r209_15 313.24  313.24 7200.00  313.24 39.54  313.24 2254.00  313.24 13.73 
rc103_15 397.67  397.67 7200.00  397.67 4456.00  397.67 7200.00  397.67 14.62 

rc108_15 370.25  370.25 7200.00  370.25 7200.00  370.25 7200.00  370.25 12.92 

rc202_15 394.39  394.39 7200.00  394.39 640.00  394.39 116.00  394.39 12.74 
rc204_15 384.86  407.45 7200.00  384.86 7200.00  394.47 7203.00  384.86 15.57 

Avg. 283.65  284.28 2483.25  283.66 1216.97  283.92 1286.64  283.65 5.03 

Note: CPLEX1 and VNS/TS results are introduced by Schneider et al. (2014). CPLEX2 and GUROBI solutions are introduced by Küçükoğlu 
and Öztürk (2016) and Schiffer and Walther (2017), respectively. 

OFV: Objective Function Value 

For the large-sized instances, Table 9 shows the results of seven different solution approaches 

and presents the best-found solution for each instance. It should be noted that for this table, the 

first objective of the EVRPTW proposed by Schneider et al. (2014) is to minimize the total 

number of electric vehicles used for the routes. The secondary objective is to minimize the total 

travel distance of electric vehicles. Therefore, a solution, which has a smaller number of routes, 

can be identified as a better solution than another solution with a smaller total travel distance. 

With regards to solution quality, the ALNS algorithm proposed by Goeke and Schneider (2015) 

is the best algorithm compared to the other six solution approaches. In addition to the results 

shown in Table 9, shorter distances are established for the EVRPTW by Schiffer and Walther 

(2018a) and Kancharla and Ramadurai (2018). However, these results are not taken into account 

in this study because the total number of electric vehicles used for the routes is not given by the 

authors. 

Table 9. Comparison of different solution approaches on the large-sized EVRPTW instances 

Inst. 

 

Best Solution 

 

VNS/TS1 

 

VNS/TS2 

 

TS 

 

ALNS1 

 

ALNS2 

 

Branch-and-

Price 

 

ALNS3 

NV OFV NV OFV NV OFV NV OFV NV OFV NV OFV NV OFV NV OFV 

c101  12 1053.83  12 1053.83  12 1053.83  12 1053.83  12 1053.83  12 1053.83  12 1053.83  12 1053.83 

c102  11 1051.38  11 1057.16  11 1056.47  11 1069.35  11 1051.38  11 1057.16  11 1051.38  11 1056.12 

c103  10 1034.86  10 1041.55  11 1002.03  10 1134.36  10 1034.86  10 1044.15  - -  11 1001.81 

c104  10 951.57  10 980.82  10 988.77  10 979.63  10 961.88  10 984.61  - -  10 951.57 

c105  11 1075.37  11 1075.37  11 1075.37  11 1079.69  11 1075.37  11 1075.37  11 1075.37  11 1075.37 

c106  11 1057.65  11 1057.87  11 1057.87  11 1057.87  11 1057.65  11 1057.65  11 1063.11  11 1057.65 

c107  11 1031.56  11 1031.56  11 1031.56  11 1033.08  11 1031.56  11 1031.56  11 1083.12  11 1031.56 

c108  10 1095.66  10 1100.32  11 1015.73  11 1015.73  10 1095.66  10 1109.45  11 1150.51  11 1015.68 

c109  10 1033.67  10 1051.84  10 1036.64  10 1051.36  10 1033.67  10 1051.50  - -  10 1069.16 

c201  4 645.16  4 645.16  4 645.16  4 645.16  4 645.16  4 645.16  - -  4 645.16 

c202  4 645.16  4 645.16  4 645.16  4 645.16  4 645.16  4 646.52  - -  4 645.16 

c203  4 644.98  4 644.98  4 644.98  4 644.98  4 644.98  4 644.98  - -  4 644.98 

c204  4 636.43  4 636.43  4 636.43  4 636.43  4 636.43  4 638.32  - -  4 636.43 

c205  4 641.13  4 641.13  4 641.13  4 641.13  4 641.13  4 641.13  - -  4 641.13 

c206  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  - -  4 638.17 

c207  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  - -  4 638.17 

c208  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  4 638.17  - -  4 638.17 

 
r101  17 1859.51  18 1672.55  18 1673.12  18 1670.80  18 1665.62  18 1663.04  17 1859.51  18 1679.06 

r102  15 1659.87  16 1535.81  16 1522.84  16 1495.31  16 1487.41  16 1488.97  15 1659.87  16 1519.80 

r103  13 1267.35  13 1299.64  13 1299.17  13 1348.25  13 1271.35  13 1285.96  13 1267.35  13 1312.50 

r104  11 1088.43  11 1088.43  11 1143.69  11 1097.09  11 1088.43  11 1097.82  - -  12 1071.89 

r105  14 1442.35  14 1473.59  15 1401.24  14 1514.36  14 1442.35  15 1433.92  14 1471.98  15 1383.29 

r106  13 1321.08  13 1344.66  13 1395.18  13 1369.55  13 1324.10  13 1363.25  13 1321.08  14 1276.15 

r107  12 1148.43  12 1154.52  12 1158.13  12 1162.90  12 1150.95  12 1165.33  12 1170.87  12 1148.43 



r108  11 1050.04  11 1065.89  11 1061.91  11 1056.84  11 1050.04  11 1067.43  - -  11 1051.59 

r109  12 1261.31  12 1294.05  12 1341.01  12 1308.62  12 1261.31  13 1245.89  13 1311.19  13 1214.72 

r110  11 1119.50  11 1143.52  11 1141.90  11 1126.74  11 1119.50  11 1155.64  - -  12 1097.89 

r111  12 1106.19  12 1124.06  12 1107.52  12 1123.96  12 1106.19  12 1120.48  12 1145.34  12 1109.14 

r112  11 1016.63  11 1026.52  11 1033.97  11 1047.92  11 1016.63  11 1043.79  - -  11 1038.74 

r201  3 1264.82  3 1264.82  3 1264.82  3 1266.26  3 1264.82  3 1269.52  - -  3 1265.67 

r202  3 1052.32  3 1052.32  3 1053.11  3 1052.65  3 1052.32  3 1053.93  - -  3 1052.32 

r203  3 895.54  3 912.86  3 914.68  3 914.10  3 895.54  3 897.12  - -  3 895.54 

r204  2 779.49  2 790.57  2 801.56  2 790.68  2 779.49  2 788.67  - -  2 780.98 

r205  3 987.36  3 988.67  3 1000.96  3 997.15  3 987.36  3 1002.00  - -  3 987.36 

r206  3 922.19  3 925.20  3 926.94  3 928.26  3 922.19  3 922.70  - -  3 922.70 

r207  2 845.26  2 852.73  2 848.53  2 855.99  2 845.26  2 859.78  - -  2 847.14 

r208  2 736.12  2 736.60  2 737.05  2 741.44  2 736.12  2 740.24  - -  2 736.12 

r209  3 867.05  3 872.36  3 877.40  3 874.74  3 867.05  3 890.69  - -  3 871.22 

r210  3 843.65  3 847.06  3 850.41  3 848.44  3 846.20  3 863.53  - -  3 843.65 

r211  2 827.89  2 866.21  2 860.32  2 861.17  2 827.89  2 873.67  - -  3 761.56 

 
rc101  15 1823.23  16 1731.07  16 1766.44  16 1753.35  16 1726.91  16 1726.91  15 1823.23  16 1731.07 

rc102  14 1659.53  15 1554.61  15 1556.08  15 1559.95  15 1552.08  14 1659.53  14 1661.76  15 1551.69 

rc103  13 1350.09  13 1353.55  13 1351.15  13 1355.36  13 1350.09  13 1369.34  13 1366.96  13 1351.73 

rc104  11 1227.25  11 1249.23  11 1267.55  11 1280.82  11 1227.25  11 1229.82  - -  11 1232.45 

rc105  14 1473.24  14 1483.38  14 1475.31  14 1479.56  14 1475.31  14 1478.67  14 1502.65  14 1473.24 

rc106  13 1425.70  13 1440.19  13 1469.99  13 1437.96  13 1427.21  13 1436.61  13 1425.70  14 1414.99 

rc107  12 1274.89  12 1275.89  12 1280.44  12 1284.47  12 1274.89  12 1283.52  13 1431.56  12 1283.05 

rc108  11 1197.83  11 1238.81  11 1227.88  11 1209.61  11 1197.83  11 1204.87  - -  11 1209.11 

rc201  4 1444.94  4 1447.20  4 1444.94  4 1446.03  4 1444.94  4 1464.33  - -  4 1446.84 

rc202  3 1410.74  3 1412.91  3 1418.79  3 1425.17  3 1410.74  3 1437.02  - -  3 1450.34 

rc203  3 1055.19  3 1078.28  3 1077.16  3 1084.66  3 1055.19  3 1084.71  - -  3 1069.27 

rc204  3 884.80  3 889.22  3 886.03  3 889.22  3 884.80  3 902.69  - -  3 887.45 

rc205  3 1273.55  3 1321.75  3 1353.54  3 1360.39  3 1273.55  3 1282.58  - -  3 1277.60 

rc206  3 1188.63  3 1191.13  3 1204.93  3 1207.77  3 1188.63  3 1218.79  - -  3 1207.64 

rc207  3 985.03  3 995.52  3 1015.60  3 1010.66  3 985.03  3 1016.12  - -  3 994.48 
rc208  3 836.23  3 838.03  3 838.41  3 838.03  3 836.23  3 847.89  - -  3 841.34 

Avg.  7.80 1078.32  7.88 1078.77  7.93 1080.27  7.89 1083.54  7.88 1068.61  7.89 1080.94  12.90 1344.82  8.04 1066.60 

Notes: VNS/TS1, VNS/TS2, and TS algorithms are proposed by Schneider et al. (2014). ALNS1, ALNS2, Branch-and-Price, and ALNS3 

algorithms are proposed by Goeke and Schneider (2015), Hiermann et al. (2014), Hiermann et al. (2016), and Keskin and Çatay (2016), 

respectively. VNS/TS1 uses a SA solution acceptance procedure, and VNS/TS2 accepts only improved solutions. 

OFV: Objective Function Value, NV: Number of Vehicles 

With regard to CPU times, it is difficult to make a fair comparison between the algorithms since 

the computations are performed on different technological environments given in Table 10. The 

computations for the branch-and-price algorithm proposed by Hiermann et al. (2016) are 

performed with an eight-hour time limitation, and, for most of the instances, the results are 

obtained at the end of the time limit. For the other algorithms, the average CPU times are similar 

except for the ALNS algorithm proposed by Goeke and Schneider (2015), which outperforms 

the algorithms proposed by Schneider et al. (2014), Hiermann et al. (2014), Hiermann et al. 

(2016), and Keskin and Çatay (2016). 

Table 10. Technological environments used in the EVRP studies 

Algorithm Processor Memory Operating System Average Time (min) 

VNS/TS with SA Acceptance 

Schneider et al. (2014)  

Intel Core i5 750 

with 2.67 GHz 

4 GB Windows 7 Professional 15.34 

     
VNS/TS 

Schneider et al. (2014)  

Intel Core i5 750 

with 2.67 GHz 

4 GB Windows 7 Professional 16.22 

     
TS 
Schneider et al. (2014)  

Intel Core i5 750 
with 2.67 GHz 

4 GB Windows 7 Professional 16.01 

     
ALNS 

Goeke and Schneider (2015)  

Intel Core i7 

with 2.8 GHz  

8 GB Windows 7 Enterprise 2.78 

(on a single core) 

     
ALNS 

Hiermann et al. (2014) 

Intel Core2 Quad CPU Q6600 

with 2.4 GHz 

4 GB 64-bit Linux 15.92 

(shared between 4 cores) 



     
Branch-and-Price 

Hiermann et al. (2016)  

Intel Xeon 2643 

with 3.3 GHz  

Up to 7 GB Linux 360.73 

(on a single core) 

     
ALNS 
Keskin and Çatay (2016) 

Intel Xeon E5 
with 3.3 GHz 

32 GB 64-bit Windows 7 12.26 

 

The computations and their results mentioned above for the EVRPTW all consider a full charge 

policy for the charging operations at stations. Some of the papers address a partial charge policy 

applied on the problem dataset of Schneider et al. (2014) to test their methodology. Since partial 

charging requires less operational time for the electric vehicles with respect to full charging, 

the problem dataset for the EVRPTW can be used without any issue. Following a partial 

charging policy, Keskin and Çatay (2016) proposed 33 optimal solutions for the small-sized 

EVRPTW instances by using CPLEX with a two-hour time limitation. Furthermore, the authors 

applied their ALNS algorithm on small and large-sized instances and reported average savings 

on the total distance of up to 1.64% with respect to the EVRPTW solutions. In addition, a 

reduction in the number of used electric vehicles is observed for some of the instances. Similar 

results for the small-sized EVRPTW with partial charge are found by Schiffer and Walther 

(2017). However, they were able to obtain the optimal solution for 32 instances, albeit with a 

higher average CPU time. The authors also extended the dataset of Schneider et al. (2014) for 

another extended version of the EVRP called robust electric location-routing problem with time 

windows and partial recharging (Schiffer & Walther, 2018a, 2018b). This dataset is used in 

another study by Schiffer et al. (2018) to test an ALNS introduced for the location-routing 

problem with intra-route facilities. 

The dataset of Schneider et al. (2014) is also used for the EVRPTW with a heterogeneous fleet. 

For this extension, Hiermann et al. (2014) and Hiermann et al. (2016) modified the original 

instance by adopting different electric vehicle types into the problem data by using the instance 

set defined by Liu and Shen (1999) for mixed vehicle routing problem with time windows. The 

same extension is taken into account by Küçükoğlu and Öztürk (2016). The authors modified 

the original small-sized EVRPTW dataset by using the real-life technical information of eight 

different electric vehicles. According to their computational results obtained with CPLEX, a 

5.55% average reduction on total distance can be obtained by using a heterogeneous fleet. 

Desaulniers et al. (2016) modified the dataset of Schneider et al. (2014) for their proposed four 

variants of the EVRPTW that are described in the previous section. The authors introduced 

detailed solutions to the problems solved by a branch-price-and-cut algorithm. 



Distinct from the EVRPTW dataset of Schneider et al. (2014), some of the researchers formed 

their own dataset for the considered EVRP problems. For instance, Felipe et al. (2014) 

generated a new problem set consisting of 60 instances for the EVRP with multiple technologies 

and partial charging, where the number of customers varies between 100 and 400 and are 

randomly located with uniform geographical distribution. Goeke and Schneider (2015) adapted 

the dataset proposed by Demir et al. (2012) for the pollution routing problem to the routing 

problem of a mixed fleet of electric and conventional vehicles. The modified dataset consists 

of nine instance sets grouped according to the problem size varying between 10 and 200 

customers, where each set contains 20 instances. S. Zhang et al. (2018) introduced 40 instances 

for the EVRP where the objective of the study is the energy minimization of the electric vehicles 

instead of distance minimization. Yang and Sun (2015) used four well-known capacitated 

vehicle routing problem datasets for the battery swap station location and routing problem by 

assuming that all nodes are candidate battery swap stations. These problems are also used by 

Hof et al. (2017). Based on the battery swapping technology, Jie et al. (2019) introduced a new 

dataset for the two-echelon capacitated electric vehicle routing problem. Another useful dataset 

is introduced by Roberti and Wen (2016) for the electric traveling salesman problem with time 

windows to test their GVNS algorithm. The authors generated two sets of test problems where 

the first group consists of 50 small-sized instances with 20 customer locations, and the second 

group consists of 50 large-sized instances with 150 and 200 customer locations. Moreover, each 

group is divided into two subsets with respect to the number of charging stations (5 and 10) in 

the problems. The small and large-sized instances are derived from the traveling salesman 

problem with time window instances proposed by Gendreau et al. (1998) and Ohlmann and 

Thomas (2007), respectively. The proposed GVNS is tested on the dataset both with a full and 

a partial charge policy. Hof et al. (2017) and Montoya et al. (2017) introduced different kinds 

of datasets for their more specific problems: the battery swap station location-routing problem 

with capacitated electric vehicles and the electric vehicle routing problem with non-linear 

charging functions, respectively. As one of the more recent studies, Karakatič (2021) extended 

the dataset proposed by the Cordeau et al. (2001) for the multi-depot EVRPTW with addition 

of charging stations for each instance, where each charging station has same charging speed. 

7. Conclusions and Future Research Directions 

In this study, we have presented a comprehensive and up-to-date review of existing studies on 

the EVRP. Looking just at electric vehicle routing, we have analyzed 136 different papers 

consisting of journal papers, conference proceedings, technical reports, and theses. We have 



discussed these studies on the basis of different aspects. The mathematical formulations of the 

EVRP and its basic variations are given, the most successful solution approaches are presented, 

useful problem datasets for the EVRP are summarized, and computational tests comparing 

several successful approaches are discussed. Considering current studies on the EVRP, the 

following conclusions and future research directions can be expressed: 

 As in the traditional vehicle routing problems, most of the researches related with EVRP 

aim to minimize distance-based performance metrics while a few of them take into 

account the total consumed energy or the number of used charging stations. With 

growing interest in green logistics concepts, the objective functions more related to the 

consumed energy or charging operations are of interest to be studied in the EVRP. 

However, in practice, a logistics company is primarily concerned with the bottom line. 

Therefore, the real-life objective in most applications is to minimize the total cost, which 

consists of the energy usage, driver cost, and vehicle cost. Energy usage is a function of 

distance, speed, vehicle load, and vehicle type. Driver cost is dependent on the total 

route duration, and special attention should be given to possible overtime costs. Vehicle 

cost can be addressed in a primary objective that minimizes the number of vehicles or 

minimizes the weighted number of vehicles of a given type. Alternatively, vehicle cost 

can be expressed as depreciation which is a function of distance and vehicle type. These 

objectives can be combined in a single objective expressed in monetary terms. 

 In almost all works, the amount of energy consumed by an electric vehicle for a given 

distance is determined by using a constant energy usage per distance unit. However, in 

real-life driving conditions, the energy consumption amount of an electric vehicle is 

affected by different conditions, such as road conditions, traffic conditions, weather 

conditions, driver performance, and topography, and vehicle load. Therefore, these 

conditions should be taken into account to obtain more realistic results for the route 

plans. Furthermore, regeneration of the energy while going downhill or braking is 

possible and should be taken into account. Moreover, the energy usage of heating or air 

conditioning systems of the electric vehicles with respect to weather conditions can be 

analyzed. Since optimization algorithms will optimize to the limit, some routes will 

have battery levels nearing zero when arriving at a charging station or depot. Therefore, 

disregarding or oversimplifying energy consumption aspects has a large probability of 

resulting in routes that are infeasible to execute in practice. Since it is impractical to 

model energy usage exactly in large-scale applications, it might be interesting to 



investigate when such infeasibilities appear when simplifying some aspects. This can 

then be used to determine a safety buffer on the battery dependent on the EVRP instance 

type or even route characteristics. 

 Heterogeneous fleets consisting of different types of pure electric vehicles should be 

analyzed by taking different technical details of electric vehicles into account. 

Moreover, a mixed fleet of conventional and pure electric vehicles is a relevant research 

topic since it seems more applicable for the logistics companies in the coming years, 

considering that any shift to electric vehicles will be gradual. Additionally, as several 

cities in Europe are introducing low-emission zones, additional benchmark instances 

are required where certain (geographically clustered) customers are allowed to be served 

only by electric vehicles.  

 As in the energy consumption computations, the charging amounts or times at the 

charging stations are computed by using a constant rate in most of the papers. Yet, the 

charging amount of the electric vehicle is not linearly proportional to the charged battery 

level (Margaritis et al., 2016; Rahman et al., 2016). Non-linear formulations for the 

charging operations at stations should be adopted to better approach reality. 

 In addition to the computations for the charging operations, different charging 

technologies can be considered for the charging plans. Depending on the charging 

power, charging technologies are divided into three levels: Level I-III (Awasthi et al., 

2017). Level I and Level 2 are referred to as slow or normal charging modes, while 

Level III is a fast charging mode, and its usage is typically limited to public charging 

stations (Xu et al., 2017). Regarding the different charging technologies, charging 

operations at customer locations should be studied more comprehensively by analyzing 

their limitations, required investments, and efficiency. 

 Using non-linear calculations for the energy consumption amounts or charging times 

considerably increases the computation times of the algorithms. Especially for large-

sized instances, long computational times are required to achieve a satisfactory result. 

To reduce redundant computations, heuristic solution approaches should be enriched by 

preprocessing steps. Providing an efficient preprocessing, some non-linear calculations 

can be avoided during optimization but retrieved from a “distance” matrix. 

 Besides the battery capacity of the electric vehicles, vehicle capacities and time 

windows of the customer nodes are typically considered in the EVRP. Station capacity, 

duration time of the vehicles, and simultaneous routing and siting are investigated in a 



limited number of works. However, other real-life constraints for the EVRP pose 

interesting research challenges. Investigating the synergy of abiding by legal break time 

rules for the drivers and scheduling charging operations during such breaks could yield 

interesting insights. Furthermore, allowing charging operations before, during, or after 

service can be another future research topic. Of course, considering such additional 

decisions requires more realistic benchmark instances, and providing such (large-scale) 

benchmarks can be a valuable contribution to the literature by itself. 

 It should be noted that LNS/ALNS, VNS/AVNS, GA, and TS/ATS/GTS based heuristic 

approaches are capable of finding high-quality solutions for the existing EVRP 

problems in computational times acceptable in practice. As the problems get larger or 

more complex, improving these algorithms or devising new schemes remain worthwhile 

research endeavors. Additionally, existing local search or station insertion procedures 

should be studied to improve their efficiency. As parallel computing becomes ever 

cheaper and easier, research in effectively parallelizing EVRP local search algorithm is 

warranted. 
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