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Abstract. Many contemporary applications have to deal with unex-
pected spikes or unforeseen peaks in demand for specific data objects –
so-called hotspot objects. For example in social networks, specific me-
dia items can go viral quickly and unexpectedly and therefore, properly
provisioning for such behavior is not trivial.
NoSQL databases are specifically designed for enhanced scalability, high
availability, and elasticity to deal with increasing data volumes. Although
existing performance benchmarking systems such as the Yahoo! Cloud
Serving Benchmark (YCSB) provide support to test the performance
properties of different databases under identical workloads, they lack
support for testing how well these databases can cope with the above-
mentioned unexpected hotspot object behaviour.
To address this shortcoming and fill the research gap, we present the de-
sign and implementation of a new YCSB workload that is rooted upon a
formal characterization of hotspot-based spikes. The proposed workload
implements the Pitman-Yor distribution and is configurable in a number
of parameters such as spike probability and data locality. As such, it
allows for more extensive experimental validation of database systems.
Our functional validation illustrates how the workload can be used to ef-
fectively stress-test different types of databases and we present our com-
parative results of benchmarking two popular NoSQL databases that are
Cassandra and MongoDB in terms of their response to spiked workloads.

Keywords: NoSQL databases · workload spikes · hotspot objects ·

YCSB workload · performance benchmark · Cassandra · MongoDB

1 Introduction

Context. Many cloud services are running on geographically distributed data
centers for offering better reliability and performance guarantees [28]. These
cloud services are inherently subject to fluctuations in demand. These fluctu-
ations often are seasonal and thus behave according to predictable patterns
(e.g. Christmas shopping patterns are largely similar every year). In such cases,
pattern recognition techniques or machine learning algorithms can be employed
to determine up front what is the most suited configuration. In the current state
of the art, using a wide array of techniques and tactics such as overprovisioning,
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autoscaling and self-adaptive tuning of servers, fluctuations in service load can
be dealt with efficiently, using a combination of reactive and proactive measures.

However, not all fluctuations are equal, and in some cases, the nature of the
demand increase can be both explosive and unexpected. One such example is the
behaviour of hotspot objects: these are objects in a database that experience a
sudden and substantial increase in demand (a.k.a spikes). The canonical example
is that of social media items (e.g., a tweet or a video) that have gone viral, but
other types of services may also experience similar unexpected peaks or spikes
in their respective workload, e.g., emergency service hotlines and information
systems during calamities will be faced with similar challenges.

Problem. Existing well-known performance benchmark systems such as the
Transaction Processing Performance (TPC) [25] and TPC-C [20] frameworks as
well as the Yahoo! Cloud Serving Benchmark (YCSB) [6] are designed to system-
atically evaluate different storage technologies in terms of how they cope with a
number of pre-defined workloads. Although different workloads exist to evaluate
how a certain service copes with increasing payloads and fluctuations, there is
currently no existing workload in these systems that approximates hotspot be-
haviour. As such, these existing benchmark systems do not provide us with a
clear way to assess the extent to which databases can cope with these types of
behavioural patterns and even though a database may be highly scalable and
elastic, it may not do so efficiently for the specific case of hotspot workloads.

Contribution. In this paper, we present the design and implementation of
a YCSB workload that allow us to systematically benchmark the capabilities
of a storage system in dealing with such hotspot-based spikes behaviour. The
proposed workload implements the Pitman-Yor distribution [22], which is more
effective for stimulating workloads with spikes and allows tuning the parameters
of (i) the powerlaw (to set the baseline popularity), (ii) the degree of structuring
of the records, (iii) the locality of objects over databases, (iv) the distribution
of write, read, update operations, (v) the desired variation in popularity, and
(vi) the magnitude and recurrence of spikes.

Validation. We have validated the proposed workload by benchmarking hotspot
objects behaviour in NoSQL databases (Cassandra and MongoDB) and compar-
ing the results with the core workloads of the YCSB benchmark. The validation
results show that the proposed workload generates (unexpected) spikes, which
can be used to assess the ability of databases to cope with peaks in demand
and hotspot behavior. In addition, we demonstrate the effectiveness of caching
strategies in these databases to meet demand considering unpredictable spikes.

Structure. The remainder of this paper is structured as follows: Section 2 dis-
cusses the relevant background and formulates the problem statement for this
paper. In Section 3, we present the design and implementation of our proposed
workload, which is an extension to the existing workloads supported in YCSB.
Then, Section 4 reports the results of functional validation and a more extensive
evaluation of two popular NoSQL databases (Cassandra and MongoDB) using
our proposed workload. Section 5 provides an overview of the related work, and
Section 6 concludes the paper.
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2 Background

This section provides the necessary background to keep the paper self-contained.
More specifically, Section 2.1 provides a summary of the terminology concerning
workload spikes and hotspot objects. In Section 2.2, we discuss the overall archi-
tecture of the Yahoo! Cloud Serving Benchmark (YCSB) and also describe dif-
ferent data distribution mechanisms and built-in workloads supported in YCSB.
Finally, Section 2.3 formally describes the problem statement of our paper.

2.1 Spikes

There are two types of workload spikes: (i) volume spikes and (ii) data spikes.
A volume spike is an unexpected sustained increase in the total volume of the
workload, whereas a data spike is a sudden increase in demand for certain ob-
jects or in general a marked change in the distribution of popularity of objects.
According to these definitions, a data spike should not be a volume spike and
vice versa. In practice, however, volume and data spikes often arise simultane-
ously. Based on the characterizations of Bodik et al. [4], we define hotspot objects
and spikes as follows:
Hotspot objects. An increasing fluctuation of spikes in workloads create
hotspot objects. For example, an object is denoted as a hotspot object if the
change of the workload of this specific object compared to before represents a
significant spike. More formally, an object is a hotspot object as 4i,Ts > D with
D a given threshold and 4i,Ts the change of the workload of the object i at the
starting point of the spike [4].
Workload Spikes. Four factors determine the spikes of a workload: (i) steep-
ness, (ii) magnitude, (iii) duration, and (iv) spatial locality. The steepness ex-
presses how fast the volume of the workload goes up. The magnitude is the
difference in popularity between the hotspot objects in the spikes and the nor-
mal workload. The duration determines how long the spike lasts. Finally, the
spatial locality of a spike defines where the hotspot objects are located. The
objects that correspond to spike and more specifically consider all these four
factors are called the hotspot objects.

A spike can be represented by a couple of parameters. The symbol s repre-
sents a spike. A spike in symbols is then equal to s = (t0, t1, t2, t3,M,L,N, V ).

A spike is determined byN the number of hotspot objects and V the variation
of the hotspot popularity. M defines the magnitude of the spike. The duration
is expressed by t0, t1, t2 and t3. The combination of M with t0, t1, t2 and
t3 determines the steepness. Finally, the L parameter determines the spatial
locality of the hotspot objects [4].

2.2 Yahoo Cloud Serving Benchmark (YCSB)

The Yahoo Cloud Serving Benchmark (YCSB) [6] is one of the most popular
and frequently-used benchmark systems to evaluate the performance of NoSQL
databases. It supports a wide range of NoSQL databases out of the box and
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is also extensible in this regard. Section 2.2.1 describes the overall architecture
of YCSB, while Section 2.2.2 describes different types of workloads currently
supported in YCSB.

2.2.1 YSCB architecture. As shown in Fig 1, the architecture of YCSB [6]
consists of four core components: (i) the Workload Executor, (ii) different
Client threads, (iii) the DB interface layer, and (iv) the Stats component.
The Workload Executor component is responsible for executing specific runs
of the benchmark, which involves creating and coordinating a specified number
of Client threads. These threads execute insert, read, update, delete (CRUD)
operations on the target database through the DB Interface layer. This layer in
turn makes an abstraction of the underlying database in order to support easy
switching to different database technologies. The Stats component collects all
the results (measured latencies) of the experiment.

Cloud Serving Store

YSCB
client

Workload
executor

Client threads

Stats

DB
 interface

layer

Fig. 1: Architecture of the YCSB benchmark system [6].

2.2.2 YCSB workloads and distribution. Out of the box, YCSB supports
three distributions: (i) Uniform, (ii) Zipfian, and (iii) the Latest. In the case of
Uniform distribution, all records have an equal chance to occur in the next
operation. On the other hand, when Zipfian distribution is chosen, some records
are very popular (the head), whereas others are unpopular (the tail). The Latest
distribution is the same as Zipfian only the latest added results are set to be
the most popular ones. Next to these three distributions, YCSB also supports
Multinomial distribution, in which the probability can be configured on a per-
item basis. In addition, YCSB currently supports five distinct workloads: A,
B, C, D and E, each with their own characteristics. Table 1 summarizes these
workloads, indicating the type of distribution being used and the different types
of applications these workloads mimic.

1 The Zipfian distribution chooses the first key in the range and the Uniform distri-
bution determines the number of records to scan.
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Workload Operations Record selection Type of application

A: Update heavy
Read: 50%

Update: 50%
Zipfian

Session store recording recent actions
in a user session

B: Read heavy
Read: 95%
Update: 5%

Zipfian
Photo tagging; add a tag is an update,
but most operations are to read tags

C: Read only Read: 100% Zipfian
User profile cache, where profiles are
constructed elsewhere (e.g., Hadoop)

D: Read latest
Read: 95%
Insert: 5%

Latest
User status updates; people want to
read the latest statuses

E: Short ranges
Scan: 95%
Insert: 5%

Zipfian/
Uniform1

Threaded conversations, where each scan
is for the posts in a given thread
(assumed to be clustered by thread id)

Table 1: An overview of core workloads supported in YCSB [6].

2.3 Problem statement

Existing benchmark systems2 mainly focus on generating flat workloads and as
such lack support to simulate workloads with spikes. These systems do not take
into account the sudden change in the popularity of the objects. As an exam-
ple, some cold (unpopular) objects suddenly can become hot (popular) objects.
However, testing how a database deals with sudden and unpredictable spikes is
essential to evaluate the resilience and scaling capabilities of the systems. In ad-
dition, the current implementations (e.g., YCSB framework) rely extensively on
the Zipfian (or the derived Latest) distribution to determine the popularities of
the objects. These power-law distributions are insufficiently realistic. The popu-
larity of the most popular objects is not high enough or the tail of the distribution
falls too slow [4] and as such these distributions can not be used to benchmark
hotspot behaviour. In summary, there is a strong need for: (i) a new workload
that supports unpredictable spikes and (ii) a more realistic distribution.

3 YCSB workload for benchmarking hotspot object

In this section, we present our extension of YCSB by introducing a new work-
load that enables us to benchmark hotspot objects behaviour in different NoSQL
databases. As such, a new YCSB workload is introduced that is capable of gener-
ating spikes and thus imitating data and volume spikes. The proposed workload
uses a new generator that is based on the Pitman-Yor distribution [22]. In addi-
tion, extra functionality is added to support a more precise way of configuring
the objects in terms of locality and structure.

Fig 2 provides a graphical overview of our proposed architecture. As shown
(in bold), we have introduced a number of new components, which include (i) the
SpikesGenerator component, (ii) the ObjectDataStore component, (iii) the

2 In this paper, we mainly focus on YCSB. However, a more extensive discussion of
other benchmark systems is covered in Section 5.
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Fig. 2: Architecture of our proposed system, which extends YCSB [6] by introduc-
ing a new workload for benchmarking hotspot behaviour in NoSQL databases.

LocalityManager component, and (iv) the PropertyExporter component. In
addition, we have also modified the existing components of the YCSB bench-
mark. The rest of this section provides a high-level overview of the key features
of these new components, which are added in YCSB, while each component is
further discussed in detail in the following subsections.

The SpikesGenerator component is the key part of our system and is re-
sponsible for generating the spikes based on parameters such as the baseline
popularity. The ObjectDataStore component is an index that keeps information
about the intended role and the functionality of each generated object. Examples
are the baseline popularity, locality, etc. The LocalityManager component pro-
vides support for experiments over multiple databases. The PropertyExporter

component allows exporting these generated properties in order to support per-
forming an experiment with the same overall configuration, and thus increases
reproducibility. It also ensures that the information about the records and the
generated parameters are the same during the load and the run phase. All pa-
rameters have also a forced alternative. For example, the parameters powerlaw
(1.2) and maxPop (0.3) generate the baseline popularity, but the alternative pa-
rameter objForcedPopularity (0.1, 0.0, 0.2, . . . ) sets a fixed baseline popularity.

The YCSB components that were changed to accommodate for this new
workload type are (i) the Stats component and (ii) the DB interface layer.
The Stats component has been expanded so that more information about the
latencies of the hotspot objects can be reported, whereas the DB interface layer
needed minor changes to allow connections to different databases simultaneously.

The extension maximally adheres to the design principles of the YCSB, ex-
tending base classes and leveraging existing configuration facilities where possi-
ble. We discuss the introduced components (except for the PropertyExporter)
in further detail below.
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3.1 SpikesGenerator

The SpikesGenerator component consists of two classes: (i) PitmanYor-
SpikesGenerator and (ii) SpikesWorkload.

PitmanYorSpikesGenerator uses the Pitman-Yor distribution, as explained
in the paper of Bodik et al. [4], to determine the baseline popularity (B) of
the objects. These popularities are used to decide on which objects the opera-
tions execute when no spikes occur. The implementation adds an extra param-
eter maxPop that determines the mapping range from [0.0,maxPop] instead of
[0.0, 1.0]. At the end, a random permutation is taken from these popularities. The
process is called as PY (1/a, 0.5)) with a the configurable power-law parameter.

The PitmanYorSpikesGenerator is a YCSB generator that extends the ex-
isting abstract class NumberGenerator. However, a major difference between the
new generator and the existing generators is that it records the relevant proper-
ties of each object in the ObjectDataStore, which is explained in Section 3.2.

To support spikes, a hotspot popularity (H) is calculated with the Dirichlet
distribution [4]. The object popularities are set between 0.0 and 1.0, with their
sum equal to 1.0. With N the number of hotspot objects and V the variation
of the popularity of the hotspot objects (which ranges from 0.0 (equal) toN−1

N2

(heavy tailed)), the parameters for the Dirichlet distribution are calculated as
follows [4]:

αi =
N − 1− V ∗N2

V ∗N3

Then after N hotspot popularities are calculated, N objects are chosen with
the global locality parameter L to become the hotspot objects. The value of
L ranges from 0.0 to 1.0 meaning uniform and heavy-tailed selected over the
possible locations. Finally, the popularity P at time t with magnitude factor ct
(0 if normal, (M − 1)/M at peak of the spike) is equal to:

Pt = (1− ct)B + ctH

SpikesWorkload implements a workload class that is capable of simulating
spikes3. The SpikesWorkload class is an extension of the CoreWorkload which
is responsible for setting the parameters of this class. At pre-determined times,
the popularities of an object are switched from the baseline to the spike pop-
ularities and the scheduling of the operations is influenced correspondingly. In
this way, data and volume spikes can be generated. For this purpose, it uses
PitmanYorSpikesGenerator. The classes SpikeObject and LocalityObject are re-
sponsible to maintain the information about the spike and the locality on a
per-object basis. The SpikesWorkload generates the events of the spike in the
function doSpikeEvents. Possible events are (i) the start (t0), (ii) rising (t0− t1),
(iii) flat (t1− t2), (iv) declining (t2− t3), and (v) the end (t3) of the spike.

3 In the YCSB config, it will be used when the parameter workload is set to
site.ycsb.workloads.SpikesWorkload.
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3.2 ObjectDataStore

The ObjectDataStore component represents an index that keeps track of the
different properties of each generated object in the DataObject record. This
record consists of (i) an identifier, (ii) a boolean that indicates if the object is a
hotspot, (iii) the baseline popularity, (iv) the hotspot popularity, (v) the locality,
and (vi) a boolean to determine if the object is structured or not.

As YCSB supports structured data and not unstructured data, a new pa-
rameter objStructProportion is introduced. It determines the proportion of the
structured items. The value ranges from 0.0 (all unstructured) to 1.0 (all struc-
tured). The extra information is stored in the DataObject class. When a new
record is constructed and the object is unstructured, all fields are concatenated
and stored in the first field. In this way, it is possible to simulate blobs.

3.3 LocalityManager

YCSB has been developed under the main assumption that an experiment only
involves a single database technology. A setup with multiple databases can be
tested through multiple independent experiments on each database. In this way,
there is no support to take the data locality aspect of hotspot objects into
account. This is necessary to know in detail what happens when spikes occur.

DBContainer solves the problem of supporting multiple databases by retain-
ing the different databases. If the parameter hosts is an array of IP-addresses,
a container with the corresponding databases is created. For each database op-
eration (insert, read, update, scan, and delete), new functions are implemented
with the DBContainer as a parameter instead of the DB. The database-specific
calls are determined at run-time through method overloading, where a specific
target database is chosen in the SpikesWorkload class by the information of the
DataObject class of the ObjectDataStore component.

As discussed in Section 3.1, the global locality parameter L is used to deter-
mine objects that have become the hotspot objects based on their location. The
global locality parameter objLocality defines if the objects must be grouped on
one database (1.0) or spread over different multiple databases (0.0). As such, it
determines the locality value where the first IP-address of hosts is mapped to 1,
the second to 2, etc.

4 Functional validation

As a functional validation, we illustrate the importance of our proposed work-
load in terms of benchmarking hotspot objects behavior in NoSQL databases.
More precisely, the goal of this functional validation is to show the differences be-
tween the core workloads of the YCSB benchmark (cf. Table 1 for more informa-
tion about different workloads supported in YCSB) and our proposed workload,
which is specifically designed to simulate hotspot behaviour in NoSQL databases
(cf. Section 3 for more details about our proposed workload). Section 4.1 gives
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an overview of the experimental setup and also provides details on software and
hardware used for the experiments. The subsequent section (Section 4.2) presents
the main results with a critical discussion.

4.1 Experiment Setup

In order to validate our approach, we implemented two application prototypes
that use different workloads. The first prototype (Prototype YCSB) is based on
the core workload of type A (workload A) of the YCSB benchmark (cf. Table 1),
which consists of 50 % read operations and 50 % update operations, generates no
spikes, and relies on the Zipfian distribution. The second prototype (Prototype
YCSBHotspot) is based on our proposed workload, which also consists of 50 %
read and 50 % update operations, but instead generates spikes and relies on
Pitman-Yor distribution. Moreover, in the current implementation, the proposed
workload contains one hotspot object (cf. Table2 (a)) for more details about
different hotspot object properties).

Table 2(a) describes the popularity and object parameters of our proposed
workload, while the spike and experiment parameters are listed in Table 2(b). For
both application prototypes, we have used 10 000 records and performed 100 000
operations with the same number of threads (10 threads) where the proportion
of read and update operations is 0.5 (50 %). The warm-up phase (first 10 000
operations in our case) is excluded from the presented results, as it involves
higher latencies and eventually leads to inconsistency in results.

The experiments are conducted in a client-server environment where the
client process runs application prototypes and the server process runs different
databases. In our case, both client and server processes run on a single-node
setup4, which consists of Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz x 4 pro-
cessor and 3.7 GB RAM with Ubuntu Bionic (18.04.4) installed. For all the
experiments, we have used both Cassandra and MongoDB with their default
configurations: cache is disabled in Cassandra by default, whereas enabled in
MongoDB. In addition, we have cleaned both databases at the start of every
new experiment.

4.2 Results

This section presents the results of our experiments for both Cassandra and
MongoDB databases. Section 4.2.1 presents and discusses the results of the
Cassandra database, while Section 4.2.2 outlines the results of the MongoDB
database followed by the discussion in Section 4.2.3.

4.2.1 Results of the Cassandra database. The results of all the experi-
ments where application prototypes use the Cassandra database are presented
in Fig 3. The left-hand side of the Fig 3 (Figs 3a and 3b) represents the results

4 The experiments for a multi-node setup will be considered in the future work.
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baseline popularity

powerlaw 1.2

maxPop 0.3

hotspot popularity

objForced-
PopularitySpike

[1.0, 0.0,
0.0, . . . ]

all objects

objLocality 1.0

hotspot objects

L 1.0

all objects

recordcount 10000

fieldcount 10

fieldlength-
distribution

uniform

fieldlength 35

minfieldlength 25

objStructProportion 1.0

(a) Popularity and object parameters.

one spike

t0 20000

t1 26666

t2 33333

t3 40000

all spikes

t 50000

M 3

waitingT ime-
OperationNoSpike

100

characteristics
experiment

operationcount 100000

read-
proportion

0.5

update-
proportion

0.5

threads 10

(b) Spike and experiment parameters

Table 2: Different parameters of our proposed workload, which generates spikes
and contains one hotspot object.

of prototype YCSB, which is based on the core workload of type A (workload A)
of the YCSB benchmark (cf. Table 1), whereas the right-hand side of the Fig 3
(Figs 3c and 3d) shows the results of prototype YCSBHotspot, which is based on
our proposed spike workload.

Figs 3a and 3c display the operation latencies, while Figs 3b and 3d present
the number of processed operations per discrete time bucket in terms of through-
put. The rainbow visualization of these graphs ensures a better visualization of
the bars and does not have any functional meaning. The black dots in Fig 3c
and Fig 4c present respectively t0, t1, t2 and t3 of the spike as explained in
Section 2.1. As visible in the results, Cassandra is optimized for the write-heavy
workloads. The maximum latencies of prototype YCSBHotspot are much higher
when the spikes occur [(91830µs, 92037µs) vs (37066µs, 37293µs)]. The aver-
age latencies of prototype YCSBHotspot are much lower than prototype YCSB
[(711µs, 694µs) vs (782µs, 764µs)]. This goes against intuition, but the small
waiting time before each operation to simulate spikes and the relatively small
time period of spikes explains it. The comparison of the x-axis of Fig 3a with
Fig 3c makes it clear that prototype YCSB requires less time [+/-7000µs vs. +/-
15000µs] to execute all operations.

4.2.2 Results of the MongoDB database. The results of all the experi-
ments where application prototypes use the MongoDB database are presented
in Fig 4. The left-hand side of the Fig 4 (Figs 4a and 4b) presents the results of
Prototype YCSB, which is based on the core workload of type A (workload A)
of YCSB (cf. Table 1), while the right-hand side of the Fig 4 (Figs 4c and 4d)
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Fig. 3: Results of both application prototypes (prototype YCSB and prototype YCSBHotspot) which
include (i) operation latencies in µs and (ii) number of processed operations per discrete time bucket
of 60 µs (throughput) for the Cassandra database.

displays the results of Prototype YCSBHotspot, which is based on our proposed
workload. As clearly visible in the results, MongoDB is optimized for the read-
heavy workloads. As shown, prototype YCSBHotspot again performs better than
prototype YCSB [avg:(228µs, 257µs) vs. (483µs, 498µs) and max: (13144µs,
13427µs) vs. (33009µs, 30891µs)]. The reason that prototype YCSBHotspot per-
forms better than prototype YCSB is that the new Pitman-Yor distribution
(baseline popularity) is, in this case, generating a small amount of very popular
items, so that less swap caching occurs. The peaks of the latencies when a spike
occurs are clearly visible between the black dots indicating the spikes in Fig 4c.

4.2.3 Discussion. Due to space constraints, this section only focuses on the
functional validation of the generation of spikes. Hence, the proof of the func-
tional correctness of the generated popularity, locality and the structure/size of
the objects by the corresponding parameters are left out. Figs 3d and 4d clearly
show that the workload generates spikes in the throughput that are visible be-
tween the black dots indicating the spikes. The corresponding latencies when the
spikes occur are also visible in 3c and 4c (indicated with the black dots), and
these illustrate the resulting increase in read and write latencies.

The different results of Cassandra and MongoDB can entirely be attributed
to caching: in this case, the results confirm that object caching is a suited tactic
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Fig. 4: Results of both application prototypes (prototype YCSB and prototype YCSBHotspot) which
include (i) operation latencies in µs and (ii) number of processed operations per discrete time bucket
of 60 µs (throughput) for the MongoDB database.

when spikes occur. As such, we show that the proposed benchmark is an enabler
for experimenting with and optimizing different tactics (e.g. caching or adaptive
provisioning such as autoscaling) for specific spike-based workload profiles.

5 Related work

Existing benchmarks such as TPC-C [16,20] and TPC-E [26] focus on emulating
database applications to compare different relational database management sys-
tems (RDBMS). These benchmarks use predefined queries, which are executed
within the context of transactions to measure the performance (e.g., through-
put) of different RDBMS. Similarly, Difallah et al. [10] proposed an extensible
and easy-to-use testbed, which contains fifteen workloads that all differ in com-
plexity and system demands for benchmarking relational databases. Cloud ser-
vice benchmark such as YCSB [6], on the other hand, is designed to evaluate
the performance of distributed databases. Although YCSB is the de-facto stan-
dard for evaluating the performance properties of distributed database systems
(e.g., NoSQL databases), it fails to adequately mimic the hotspot behaviour in
these databases. More specifically, the Zipfian (or the derived Latest) distri-
butions of YCSB mainly focus on generating flat workloads and as such lack
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support to simulate workloads with spikes. In addition, these distributions do
not take into account the locality of objects and also lack in supporting sudden
and unexpected change of popularity in objects.

In recent years, significant research efforts focus on extending YCSB in a
number of different ways to support and evaluate other properties of distributed
databases. For example, YCSB++ [19] is designed to evaluate non-transactional
access to distributed key-value stores. It extends the API to achieve bulk load-
ing of data into databases such as HBase and Accumulo. YCSB+T [9], an ex-
tension of YCSB is designed with the ability to wrap multiple database op-
erations into transactions and to improve performance understanding and de-
bugging of advanced features such as ingest speed-up techniques and function
shipping filters. Dayarathna et al. [8] conducted an in-depth study focusing on
existing benchmarks for graph processing systems, graph database benchmarks,
and bigdata benchmarks with graph processing workloads. One such example is
XGDBench [7], a benchmarking platform, which is designed to operate in both
current cloud service infrastructures and future exascale clouds. XGDBench ex-
tends YCSB and mainly tends to focus on benchmarking graph databases (such
as AllegroGraph, Fuseki, Neo4j, OrientDB), which are beyond the scope of this
work. Kumar et al. [15] proposed a system that extends YCSB in order to enable
users to select the right storage system for a given application by evaluating the
performance and other tradeoffs such as consistency, latency, and availability.

Barahmand et al. [3] proposed BG, a benchmark system that rates different
databases for processing social networking actions using pre-defined SLAs. BG is
also inspired by prior benchmark systems such as YCSB and YCSB++ and can
be used for multiple purposes such as comparing different databases and quan-
tifying the performance characteristics in the presence of failures. Sidhanta et
al. [24] introduced Dyn-YCSB, a system that is built upon YCSB and eliminates
the need for users to manually change the workload configurations whenever the
workload parameters are changed. According to user-specified functions, Dyn-
YCSB automatically varies the parameters in YCSB workloads. BSMA [29] is
mainly designed for benchmarking the performance of analytical queries over
social media data. In comparison to existing benchmark systems (e.g., YCSB)
that only provide a synthetic data generator, BSMA is different in the sense that
it also provides a real-life dataset with a built-in synthetic data generator. The
real-life dataset contains tweets of 1.6 million users and also allows to generate
both social networks and synthetic timelines.

Smartbench [14] evaluates the suitability level of RDBMS in supporting both
real-time and analysis queries in Internet of Things (IoT) settings. BigBench [13]
is an end-to-end benchmark that contains data model and synthetic data gener-
ator to address different aspects (volume, velocity, and variety) of big data. In
comparison to previous research efforts that mainly focus on structured data,
BigBench also takes into account semi-structured and unstructured data. To
accomplish this, the BigBench data model is adopted from the TPC-DS bench-
mark [18, 23], which is enriched with semi-structured and unstructured data
components. BigBench V2 [12] is a major rework of BigBench where a new data
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model and the generator is proposed that rather reflects simple data models
and late binding requirements. In contrast to the previous work, BigBench V2 is
completely independent of TPC-DS with a new data model and an overhauled
workload. BigFUN [21] is a micro-benchmark that is based on a synthetic social
network scenario with a semi-structured data model to evaluate the performance
of four representative Big Data management systems (BDMSs): MongoDB, Hive,
AsterixDB, and a commercial parallel shared-nothing relational database sys-
tem. BigDataBench [11] compares the performance of systems for analyzing
semi-structured data, including their ability to efficiently process machine learn-
ing algorithms in a map/reduce setting. These frameworks focus specifically on
evaluating the performance and scalability factors of databases. To cope with
the challenge of testing ACID properties, Waudby et al. [27] presented a set of
data model-agnostic ACID compliance tests for graph databases.

There also exist other recent works that deal with spikes and variation in
workload. Arasu et al. [1] proposed Linear Road, a benchmark to compare
the performance of Stream Data Management Systems (SDMS) with relational
databases. As such, it simulates a toll system for motor vehicles in a large
metropolitan area. This benchmark can mimic a form of spike behaviour that is
very use-case specific. Hereby, the solution is not applicable to other use cases.
However, our proposed solution can easily be extended and applied to a wide
range of use cases. Similarly, other benchmark systems use traces from the past
that are reused to simulate the expected behaviour. An example of such a sys-
tem is Linkbench [2], which provides a realistic and challenging test for persistent
storage of social and web service data. The solution ensures testing of the reused
spikes, but completely new and unexpected sudden spikes are out of the scope.
In comparison, our work focuses on the imitations of different traces on the
hand of the new parameters. In this way, new kinds of spikes that never oc-
curred before and are difficult to anticipate in advance can also be simulated. Lu
et al. [17] presented AutoFlow, a hotspot-aware system that supports dynamic
load balance in distributed stream processing. AutoFlow contains a centralized
scheduler, which monitors the load in the dataflow dynamically and implements
state migrations accordingly. HotRing [5] is a hotspot-aware system that lever-
ages a hash index, which provides fast access to hot objects by moving head
pointers closer to them. These systems generate a flat workload and do not take
into account the locality of objects.

In summary, benchmark frameworks described in this section are mostly
designed to address different aspects (performance, scalability, availability, etc) of
big data management systems as well as big data processing frameworks. As such,
these systems mainly focus on generating flat workloads. Other recent works
focus on dealing with spikes and variations in workloads. However, they fail to
predict (unexpected) sudden spikes that have not occurred previously. In essence,
none of these existing systems are designed to approximate hotspot behaviour
in databases, particularly distributed NoSQL databases. This highlights and
confirms the need for a configurable benchmark to mimic the hotspot behaviour
in distributed databases, such as the workload proposed in this paper.



A YCSB Workload for Benchmarking Hotspot Object Behaviour in NoSQL 15

6 Conclusion

The current state of NoSQL benchmark systems does not appear to be sufficient
to mimic spikes. To bridge this gap, we extended YCSB [6] by introducing a new
workload that supports the generation of spikes with hotspot behaviour and uses
a similar approach described by Bodik et al. [4]. Besides, a number of new pa-
rameters have been introduced in the workload, which makes it easy to generate
the requested volume and/or data spikes. The workload has been validated, in
comparison to the core workloads of YCSB on the default configuration of Cas-
sandra and MongoDB databases. The results show that our proposed workload
can be used to test the resilience of NoSQL databases caused by hotspot objects
behaviour, which is currently lacking in the existing workloads of the YCSB
benchmark system.
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