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Uncertainty is an uncomfortable position.  

But certainty is an absurd one. 

 

Voltaire 
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Abstract 
 

The need for sustainable production and consumption is strongly present in today’s 

society. To achieve this goal, a realistic quantification of environmental 

sustainability is needed. Calculating the environmental impact of products and 

processes can be done by conducting Life Cycle Assessments (LCA). The life cycle 

perspective ensures that all necessary inputs, processes and outputs are 

considered, and that environmental impacts are addressed at the point in the life 

cycle where they will most effectively reduce the overall impact. LCA results can 

guide the way for making decisions without the risk of burden shifting, but only if 

those results are robust and unambiguous. However, a few methodological 

shortcomings obstruct this, especially in the agri-food sector, such as only using 

central tendencies to calculate impacts thereby ignoring the possible range of input 

values; and the lack of consensus between the multiple possibilities that exist for 

allocating impacts between different products generated by the same system. In 

this PhD thesis, the focus lies on those two shortcomings using the apple agri-food 

chain as case study. 

Making conclusive decisions on what product or process is environmentally 

preferable is not possible when only using deterministic data. Yet, LCA results based 

on this kind of data is still being widely disseminated, meaning that uncertainty and 

variability are being ignored. Uncertainty and variability have a different origin and 

thus also a different implication, the combination is called “overall uncertainty”. 

While uncertainty shows lack of knowledge, which can be reduced, variability 

reflects the natural heterogeneity in the world, which will always be observed. 

Published LCA studied were assessed through a systematic review, to identify to 

which extent uncertainty and variability have been separately accounted for. This 

turned out to be very limited, with only eleven studies having some kind of 

visualization showing which dominates the results. All methods had drawbacks 

attached to them. Two-dimensional Monte Carlo simulations (2DMC) was 

identified as a possible approach that allows solve these drawbacks. 

2DMC was introduced in the Belgian apple chain, comparing Jonagold and Kanzi 

apples in the cultivation chain and comparing bulk and pre-packed apples in the 

post-harvest chain. 2DMC allows to separately portray uncertainty and variability 
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in LCA studies in a clear and representative way. This can help decision makers in 

judging the robustness of differences in product comparisons, while also indicating 

how the overall uncertainty can be reduced. Either the decision maker can already 

robustly conclude that one product could be preferred over the other, or it might 

be that the uncertainty and/or variability does not yet allow this. In the case that 

uncertainty is dominating, more knowledge should be gathered before making any 

decisions. In contrast, if variability is dominating, the only way to possibly reduce 

the overall uncertainty would be by examining the production system and making 

physical changes in the system itself. However, the latter is not always possible or 

even wanted.  

The second necessity for making accurate comparisons using LCA, is the 

equivalence of the system boundaries of the two options. However, equivalent 

system boundaries are currently lacking when organic crop production systems are 

compared to more conventional ones. Generally, when residual products from 

livestock systems get a second life as organic fertilizers, the impact of producing 

those residual products are ascribed to the livestock system, thus the system where 

it originates from. Meaning that no production impacts of those organic fertilizers 

are allocated to organic cultivation, the system where it is used and very much 

needed. This is in contrast with mineral fertilizers, used in conventional crop 

production systems, for which the production impact is allocated to the system 

where it is used. This inconsistency between organic and conventional crop 

production can lead to skewed LCA results. Multiple procedures exist to still 

allocate production impacts of organic fertilizers to organic cultivation, however, 

these can lead to very different results. 

Those different allocation procedures were therefore applied in an LCA of organic 

apple cultivation, to see where the difficulties for each procedure lies and to assess 

how much the results can be influenced by the chosen procedure. In the end, mass 

allocation was selected as the best way to approximate reality if a representative 

mass allocation factor is chosen that reflects the function of the organic fertilizers. 

The influence of factors from outside the system is limited for this procedure. 

In conclusion, the results show that with the discussed methodological 

improvements, comparing products and processes to assess their relative 

environmental impacts will be much more robust and conclusive. Clear decisions 

are much needed on industry, consumer and policy level to guide the way to 

sustainable production and consumption.
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Samenvatting 
 

De duurzaamheid van ons voedsel kwantificeren in een 

onzekere en variabele wereld 

Levenscyclusanalyse van de appelketen van boomgaard tot consument 

 

De nood aan duurzame productie en consumptie is sterk aanwezig in onze huidige 

samenleving. Om dit doel te bereiken, is een realistische kwantificering van de 

ecologische duurzaamheid nodig. Het berekenen van de milieu-impact van 

producten en processen kan door middel van een levenscyclusanalyse (LCA). Het 

levenscyclusperspectief zorgt ervoor dat alle noodzakelijke inputs, processen en 

outputs in rekening worden genomen en dat milieueffecten worden aangepakt op 

het punt in de levenscyclus waar ze de algehele impact het meest effectief zullen 

verminderen. De LCA-resultaten kunnen dus richtinggevend zijn bij het nemen van 

beslissingen zonder daarbij het risico te lopen dat de milieulasten worden 

verschoven, maar alleen als die resultaten robuust en eenduidig zijn. Er zijn echter 

methodologische tekortkomingen die dat in de weg staan, en dat vooral in de 

agrovoedingssector, zoals wanneer enkel centrummaten gebruikt worden om de 

milieueffecten te bereken waardoor de mogelijke range van inputwaarden 

genegeerd worden; en het gebrek aan consensus dat er is tussen de vele 

mogelijkheden die er zijn om effecten toe te wijzen aan verschillende producten 

die eenzelfde systeem produceert. In dit proefschrift ligt de focus op die twee 

tekortkomingen waarbij de appel agrovoedingsketen gebruikt wordt als casestudie. 

Overtuigende beslissingen nemen over welk product of proces de voorkeur 

verdient vanuit milieuoogpunt is niet mogelijk wanneer alleen deterministische 

gegevens worden gebruikt. Toch worden LCA-resultaten op basis van dit soort 

gegevens nog steeds op grote schaal verspreid, waarbij dus onzekerheid en 

variabiliteit worden genegeerd. Onzekerheid en variabiliteit hebben een 

verschillende oorsprong en dus ook een verschillende implicatie; de combinatie 

wordt "totale onzekerheid" genoemd. Terwijl onzekerheid wijst op een gebrek aan 

kennis, die kan worden verminderd, weerspiegelt variabiliteit de natuurlijke 

heterogeniteit in de wereld, die altijd zal worden waargenomen. 
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Gepubliceerde LCA-studies werden beoordeeld door middel van een systematische 

review, om na te gaan in hoeverre al met onzekerheid en variabiliteit afzonderlijk 

rekening is gehouden. Dit bleek zeer beperkt te zijn: slechts elf studies hadden een 

of andere vorm van visualisering waaruit bleek welke van de twee in de resultaten 

overheerst. Aan alle gebruikte methoden waren bovendien nadelen verbonden. 

Tweedimensionale Monte Carlo simulaties (2DMC) werd geopteerd als een 

mogelijke manier om die nadelen op te lossen. 

2DMC werd geïntroduceerd in de Belgische appelketen, waarbij Jonagold en Kanzi 

appels in de cultivatieketen, en bulk en voorverpakte appels in de naoogstketen 

vergeleken werden. 2DMC laat toe om onzekerheid en variabiliteit in LCA-studies 

op een duidelijke en representatieve manier apart weer te geven. Dit kan 

besluitvormers helpen bij het beoordelen van hoe robuust de verschillen zijn in 

productvergelijkingen, terwijl het ook aangeeft hoe de totale onzekerheid kan 

worden verminderd. Ofwel kan de besluitvormer al op robuuste wijze concluderen 

dat het ene product de voorkeur verdient boven het andere, ofwel kan het zijn dat 

de onzekerheid en/of variabiliteit dit nog niet toelaat. In het geval dat onzekerheid 

overheerst, moet eerst meer kennis worden vergaard voordat een beslissing kan 

worden genomen. Indien de variabiliteit overheerst, zou men enkel de totale 

onzekerheid eventueel kunnen verminderen door het productiesysteem te 

bestuderen en fysieke veranderingen in het systeem zelf aan te brengen. Dit laatste 

is echter niet altijd mogelijk of zelfs gewenst. 

De tweede vereiste voor het maken van accurate vergelijkingen met behulp van 

LCA, is de overeenkomstigheid tussen de systeemgrenzen van de twee opties. 

Momenteel ontbreekt het echter aan zulke overeenkomstige systeemgrenzen 

wanneer biologische cultivatiesystemen worden vergeleken met meer 

conventionele systemen. Wanneer restproducten van veeteeltsystemen een 

tweede leven krijgen als biologische meststoffen, worden de effecten van de 

productie van die restproducten doorgaans toegeschreven aan het 

veeteeltsysteem, dus aan het systeem waaruit ze afkomstig zijn. Dit betekent dat 

er geen milieu-impact van de productie van die organische meststoffen worden 

toegerekend aan de biologische teelt, het systeem waar ze worden gebruikt en 

hard nodig zijn. Dit in tegenstelling tot minerale meststoffen die worden gebruikt 

in conventionele teeltsystemen, waarvoor de productie-impact wel wordt 

toegerekend aan het systeem waar ze worden gebruikt. Deze inconsistentie tussen 

biologische en conventionele plantaardige productie kan leiden tot scheve LCA-
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resultaten. Er bestaan verscheidene procedures om de productie-impact van 

biologische meststoffen toch toe te rekenen aan de biologische teelt, maar deze 

kunnen tot zeer uiteenlopende resultaten leiden. 

Die verschillende procedures werden daarom toegepast in een LCA van biologische 

appelteelt, om te zien waar de moeilijkheden voor elke procedure liggen en om te 

beoordelen in hoeverre de gekozen procedure de resultaten beïnvloedt. 

Uiteindelijk werd een impacttoewijzing op basis van massa geselecteerd als de 

beste manier om de werkelijkheid te benaderen, maar enkel als een 

representatieve massatoewijzingsfactor wordt gekozen die de functie van de 

biologische meststoffen weerspiegelt. De invloed van factoren die buiten het 

systeem liggen, is bij deze procedure beperkt. 

Concluderend is er aangetoond dat met de besproken methodologische 

verbeteringen het vergelijken van producten en processen om hun relatieve 

milieueffecten te beoordelen, veel robuuster en overtuigender zal zijn. Er is grote 

behoefte aan duidelijke beslissingen op industrie-, consumenten- en beleidsniveau 

in onze weg naar duurzame productie en consumptie. 

 





Table of contents  xiii 

Table of contents 
 

Acknowledgments .....................................................................................................v 

Abstract ................................................................................................................... vii 

Samenvatting ............................................................................................................ ix 

Table of contents .................................................................................................... xiii 

List of figures .......................................................................................................... xix 

List of tables .......................................................................................................... xxiii 

Abbreviations and symbols ................................................................................... xxv 

PART I  Laying the foundations ................................................................................. 1 

Chapter 1 General introduction ............................................................................ 2 

1.1 Quantifying sustainable production and consumption ............................ 3 

1.2 The need for more transparency in LCAs ................................................. 7 

1.3 The ignorance towards uncertainty and variability .................................. 8 

1.4 Arbitrariness in the goal and scope of agri-food LCAs ............................ 13 

1.4.1 Choosing a representative functional unit ..................................... 14 

1.4.2 Defining the orchard life cycle in perennial food production ........ 16 

1.4.3 Dealing with multifunctionality issues related to organic fertilizers .. 

  ........................................................................................................ 21 

Chapter 2 Aim and objectives ............................................................................. 27 

PART II  Complementing uncertainty with variability ............................................. 33 

Chapter 3 How to decide and visualize whether uncertainty or variability is 

dominating in Life Cycle Assessment results: a systematic review ........................ 34 

3.1 Introduction ............................................................................................ 34 

3.2 Methods .................................................................................................. 38 

3.3 Results..................................................................................................... 41 

3.4 Discussion ............................................................................................... 50 



xiv  Table of contents 

3.4.1 Classification of parameters ........................................................... 51 

3.4.2 Propagation, visualizations and limitations .................................... 53 

3.5 Conclusions ............................................................................................. 69 

3.6 Recommendations based on the selected articles ................................. 71 

3.7 Finding a solution for the shortcomings ................................................. 72 

Chapter 4 Two-dimensional Monte Carlo simulations in LCA: an innovative 

approach to guide the choice for the environmentally preferable option. ........... 75 

4.1 Introduction ............................................................................................ 75 

4.2 Methods .................................................................................................. 76 

4.2.1 Two-dimensional Monte Carlo simulations .................................... 77 

4.2.2 Life Cycle Assessment of the post-harvest apple chain .................. 80 

4.3 Results..................................................................................................... 88 

4.3.1 Possible 2DMC outcomes for LCA................................................... 88 

4.3.2 2DMC results for the post-harvest apple chain .............................. 90 

4.4 Discussion ............................................................................................... 92 

4.4.1 Assigning uncertainty and variability .............................................. 92 

4.4.2 Basing decisions on the central tendency ...................................... 94 

4.4.3 Interpreting ratios ........................................................................... 95 

4.4.4 Communication consensus ............................................................. 96 

4.5 Conclusions ............................................................................................. 98 

Chapter 5 Comparing the environmental impact of an established and young 

apple cultivar by conducting two-dimensional Monte Carlo simulations for a large 

set of orchards ...................................................................................................... 101 

5.1 Introduction .......................................................................................... 101 

5.2 Methods ................................................................................................ 102 

5.2.1 Goal and scope definition ............................................................. 102 

5.2.2 Life Cycle Inventory of the cultivation chain ................................ 103 

5.2.3 Input probability distributions for cultivation parameters........... 104 



Table of contents  xv 

5.3 Results................................................................................................... 109 

5.3.1 2DMC results for apple cultivation ............................................... 109 

5.3.2 Comparing 2DMC with deterministic results ............................... 112 

5.4 Discussion ............................................................................................. 115 

5.4.1 From 2DMC results to decisions ................................................... 115 

5.4.2 Influence of the data source ......................................................... 118 

5.4.3 How do the 2DMC results fit in the current literature? ............... 119 

5.5 Conclusions ........................................................................................... 121 

PART III  Accounting for organic fertilizers ........................................................... 123 

Chapter 6 Why mass allocation with representative allocation factor is 

preferential in LCA when using residual livestock products as organic fertilizers 124 

6.1 Introduction .......................................................................................... 124 

6.2 Methodology ........................................................................................ 127 

6.2.1 Goal and scope definition ............................................................. 127 

6.2.2 Life Cycle Inventory ...................................................................... 128 

6.2.3 Allocation procedures and sensitivity analysis ............................. 129 

6.3 Results................................................................................................... 141 

6.3.1 Mass and economic allocation within the beef cattle system ..... 141 

6.3.2 Effect of all allocation procedures on apple cultivation ............... 144 

6.3.3 Price variations for economic allocation ...................................... 147 

6.4 Discussion ............................................................................................. 148 

6.4.1 Organic versus conventional apple cultivation............................. 148 

6.4.2 Excluding organic fertilizer production (residual product) ........... 149 

6.4.3 System expansion ......................................................................... 150 

6.4.4 Allocation methods based on a relationship ................................ 153 

6.5 Conclusion ............................................................................................ 159 

PART IV  Finishing up ............................................................................................ 161 

Chapter 7 General conclusions and future perspectives .................................. 162 



xvi  Table of contents 

7.1 Acknowledging both uncertainty and variability .................................. 162 

7.1.1 Identifying the methodological shortcomings .............................. 162 

7.1.2 Decision guidance through two-dimensional Monte Carlo 

simulations .................................................................................... 164 

7.1.3 Keeping the bigger picture in mind .............................................. 165 

7.1.4 A second illustrative case study: local vs. imported food products ... 

  ...................................................................................................... 166 

7.1.5 Finetuning 2DMC for LCA ............................................................. 168 

7.2 Connecting systems through allocation ............................................... 176 

7.2.1 Inconsistency between system boundaries due to multifunctionality

  ...................................................................................................... 176 

7.2.2 A preferential method for residual products from livestock systems 

  ...................................................................................................... 177 

7.2.3 A second illustrative case study: local vs. imported food products ... 

  ...................................................................................................... 178 

7.2.4 Further harmonization opportunities ........................................... 180 

7.2.5 Combining allocation with Monte Carlo simulations ................... 181 

7.2.6 What about recycling? .................................................................. 182 

PART V  References ............................................................................................... 185 

PART VI  Appendices ............................................................................................. 207 

Appendix A ............................................................................................................ 208 

A.1 Apple post-harvest inventory ............................................................... 208 

A.2 2DMC results for the post-harvest chain .............................................. 208 

Appendix B ............................................................................................................ 214 

B.1 Apple cultivation inventory .................................................................. 214 

B.2 2DMC results for the cultivation chain ................................................. 214 

Appendix C ............................................................................................................ 219 

C.1 Organic fertilizer allocation methodology ............................................ 219 

C.2 Median cultivation impacts for all allocation procedures .................... 219 



Table of contents  xvii 

C.3 Results of mass allocation for only blood meal .................................... 227 

C.3 Results of the influence of the livestock system .................................. 228 

PART VII  List of publications ................................................................................ 237 

 

 





List of figures  xix 

List of figures 
 

Figure 1-1 Phases of an LCA, adapted from ISO 14044 (2006a) and Hauschild et 

al. (2018). ............................................................................................. 4 

Figure 1-2 Identifying the very important or essential parameters by combining 

sensitivity and uncertainty/variability, based on Hauschild et al. 

(2018). ................................................................................................ 11 

Figure 1-3 Schematic overview of one-dimensional Monte Carlo simulations. . 12 

Figure 1-4 Main system boundaries for an LCA on fruit production and post-

harvest processes (cradle-to-grave), based on Notarnicola et al. (2015)

  ........................................................................................................ 18 

Figure 1-5 Possible definitions of system boundaries for the LCA of a perennial 

food production system. .................................................................... 19 

Figure 1-6 Decision tree for choosing the method for handling multifunctional 

outputs, based on FAO (2016) ........................................................... 24 

Figure 2-1 Flow chart of the Belgian apple chain for bulk and pre-packed (per 6) 

apples, based on Goossens et al. (2019). ........................................... 28 

Figure 2-2 Schematic overview of the research objectives and their related 

chapters.............................................................................................. 32 

Figure 3-1 Search strategy of the systematic review. ......................................... 39 

Figure 3-2 Flow of information through the different phases of the systematic 

review. ................................................................................................ 42 

Figure 3-3 Classification of the eleven included articles. .................................... 43 

Figure 3-4 Diagram showing the specific type(s) of uncertainty and variability 

accounted for in each article. ............................................................ 48 

Figure 3-5 Overview of the steps taken by the different articles to visualize 

uncertainty and variability in the results. .......................................... 55 

Figure 4-1 Diagram of how two-dimensional Monte Carlo simulations are 

conducted. ......................................................................................... 78 



xx  List of figures 

Figure 4-2 Graphical representation of the points needed to calculate ratios. .. 80 

Figure 4-3 System boundaries of the post-harvest apple chain. ........................ 81 

Figure 4-4 Three possible 2DMC outcomes when comparing two 

products/processes. ........................................................................... 89 

Figure 4-5 2DMC results for the postharvest chain. ........................................... 91 

Figure 5-1 2DMC results for the cultivation chain. ........................................... 110 

Figure 5-2 Deterministic (dots) and 2DMC (curves) results for Jonagold (colored) 

and Kanzi (greyscale) cultivation. ..................................................... 113 

Figure 6-1 System boundaries and associated inputs and outputs of the different 

allocation procedures. ..................................................................... 131 

Figure 6-2 Schematic overview of the amount of manure and blood meal that is 

produced by the representative beef farm in one year and used as 

fertilizer on the apple orchards........................................................ 134 

Figure 6-3 Schematic overview of the methodology used for allocating 

production impacts of organic fertilizers from the beef farm to an 

organic apple orchard. ..................................................................... 136 

Figure 6-4 Representation of the farming and meat processing chain and how the 

beef farm impacts are allocated to blood meal and manure using mass 

allocation factors. ............................................................................. 142 

Figure 6-5 Representation of the farming and meat processing chain and how the 

beef farm impacts are allocated to blood meal and manure using 

economic allocation. ........................................................................ 143 

Figure 6-6 Median impacts of three impact categories for organic apple 

cultivation with the different considered allocation procedures. ... 145 

Figure 6-7 Median Global Warming impacts for the four orchards that use blood 

meal, solid manure and semiliquid manure as organic fertilizers. .. 147 

Figure 7-1 Flowchart showing different questions that can arise during the LCA 

process regarding 2DMC. ................................................................. 168 

Figure 7-2 Nonoverlap statistics U1, U2 and U3 as defined by Cohen (1988). .... 174 

Figure A-1 2DMC results for the post-harvest chain. ........................................ 208 



List of figures  xxi 

Figure B-1 2DMC results for the cultivation chain. ........................................... 214 

Figure C-1 Median impacts of organic apple cultivation with different allocation 

procedures. ...................................................................................... 219 

Figure C-2 Representation of the farming and meat processing chain and how the 

beef farm impacts are allocated to blood meal only using mass 

allocation factors. ............................................................................. 227 

Figure C-3 Representation of the farming, dairy and meat processing chain and 

how the dairy farm impacts are allocated to blood meal and manure 

using mass allocation. ...................................................................... 228 

Figure C-4 Representation of the farming, dairy and meat processing chain and 

how the dairy farm impacts are allocated to blood meal and manure 

using economic allocation. ............................................................... 229 

Figure C-5 Median impacts of apple cultivation showing the influence of using a 

different livestock system (dairy instead of beef). .......................... 230 

Figure C-6 Median Global Warming impacts of apple cultivation showing the 

influence of price variations for economic allocation comparing beef 

to the dairy system. ......................................................................... 235 

 





List of tables  xxiii 

List of tables 
 

Table 1-1 Examples and reducibility of uncertainty and variability. .................... 9 

Table 3-1 Overview of the eleven selected articles (using the terminology of each 

individual paper). ................................................................................ 44 

Table 4-1  Summary of the post-harvest parameters and their categorization. 85 

Table 5-1  Summary of the cultivation parameters and their categorization. . 107 

Table 6-1 Parameters and assumptions needed for calculating the mass and 

economic allocation factors.............................................................. 138 

Table A-1 Deterministic impacts of the total post-harvest apple chain as reported 

on in the supplementary material of Goossens et al. (2019). .......... 213 

 

 





Abbreviations and symbols  xxv 

Abbreviations and symbols 
 

1DMC (one-dimensional) Monte Carlo simulations 

2DMC Two-dimensional (or second-order) Monte Carlo simulations 

AIC Akaike Information Criterion 

B2B Business to Business 

B2C Business to Consumer 

C Carbon 

CO2 Carbon dioxide 

DE Germany 

Distr. Chosen input probability distribution 

E Environment 

ES Spain 

EPS EuroPoolSystem 

eq Equivalent 

EU European Union 

FAO Food and Agricultural Organization 

FADN Farm Accountancy Data Network 

FR France 

GHG Greenhouse gas 

HH Human Health 

IC Impact Category 

ILCD International Reference Life Cycle Data System 

IPCC Intergovernmental Panel on Climate Change 

ISO International Organization for Standardization 

K Potassium 

LCA Life Cycle Assessment 

LCI Life Cycle Inventory 

LCIA Life Cycle Impact Assessment 

LPG Liquefied Petroleum Gas 

LUC Land use change 

N Nitrogen 

N2O Nitrous oxide 

N.A. Not applicable 



xxvi  Abbreviations and symbols 

NC North Carolina 

NH3 Ammonia 

NL The Netherlands 

NTP Novatein Thermoplastic Protein 

NZ New Zealand 

P Phosphorus 

P2O5 Phosphorus pentoxide 

PEF Product Environmental Footprint 

PEFCRs Product Environmental Footprint Category Rules 

PERT Program Evaluation and Review Technique 

POC Proof of concept 

PT Portugal 

UK United Kingdom 

UN United Nations 

US United States of America 

WA Washington state 

 

 

 



   

  1 

 

 

 

 

 

 

PART I 

 

Laying the foundations 

 

 



 

2  Chapter 1 

Chapter 1  

 

General introduction 
 

 

Since the global population keeps increasing and is expecting to reach an all-time 

high of 9.73 billion by 2050 (FAO, 2017; medium scenario), governmental bodies 

are focusing more and more on making sure that everyone has access to sufficient, 

nutritious and sustainable food (European Commission, 2020). In 2015, the United 

Nations agreed on new global Sustainable Development Goals for 2030. The second 

goal specifies the need to “end hunger, achieve food security and improved 

nutrition and promote sustainable agriculture”, while the twelfth wants to “ensure 

sustainable consumption and production patterns” (UN General Assembly, 2015). 

To achieve these goals, the European Commission recently launched – among other 

things – the European Green Deal (European Commission, 2020). With their Farm 

to Fork Strategy, the aim is to ensure that the food chain has a “neutral and positive 

environmental impact”.  

Meanwhile, there is also growing concern among consumers about the 

sustainability of their food consumption. However, they currently lack a uniform 

and consistent way of being informed on the sustainability aspects of their food 

choices. For example, Goossens et al. (2017b) discussed 16 eco-labels for fresh 

produce that are currently being used in Flanders (Belgium), none of which gave 

the consumer an adequate indication of the produce’s environmental friendliness. 

This illustrates the growing need for sustainable food production and consumption. 

But how can we know how sustainable something is? How can we identify which 

products or processes should be preferred over another and, how can we correctly 

communicate the consequences of their food choices to consumers or – 

alternatively – to decision makers? For this, the sustainability of the current food 

production and consumption needs to be quantified. Sustainability entails social, 

economic and environmental aspects, but for the purpose of this thesis, the focus 

will lie on environmental sustainability. 
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1.1 Quantifying sustainable production and consumption 

To quantify the sustainability of actual food production systems, accurate 

calculation methods are indispensable. The European Commission (2016) declared 

Life Cycle Assessment (LCA) as “the best framework for assessing the potential 

environmental impacts of products currently available”. LCA addresses the 

environmental aspects and potential environmental impacts (e.g., environmental 

consequences of emissions) throughout a product’s life cycle, from raw material 

acquisition, production, use, to final disposal (ISO, 2006a).  

Hauschild et al. (2018) described four main characteristics of an LCA. First, the life 

cycle perspective (e.g., cradle-to-grave) ensures that all processes required to 

deliver the studied function or product are considered. Second, the calculated 

environmental impacts are not limited to for instance climate change (such as for 

the carbon footprint) or water depletion (such as for the water footprint). LCA 

ensures a comprehensive coverage of environmental issues. Third, the quantitative 

nature of LCA makes it possible to compare the environmental impacts of different 

products or processes. As a last characteristic, Hauschild et al. (2018) emphasize 

that LCA is science based. It uses measurements and models that are based on 

proven or empirically observed causalities. 

ISO 14040/44 (2006a, 2006b) developed an LCA framework consisting of four 

iterative phases (Fig.1-1). In phase one, the Goal & Scope Definition, the reasons for 

carrying out the study, the intended audience, the product system to be studied, 

the functional unit1 (e.g., 1 ton apples leaving the farm; see section 1.4.1), the 

system boundary2, allocation3 procedures (see section 1.4.2), impact calculation 

methods, etc. are defined. The potential environmental impacts generated by LCAs 

are relative expressions since they are related to the functional unit of a product 

system. 

 
1 “Quantified performance of a product system for use as a reference unit” (ISO, 
2006a, 2006b) 
2 “Set of criteria specifying which unit processes that are part of a product system” 
(ISO, 2006a, 2006b) 
3 “Partitioning the input or output flows of a process or a product system between 
the product system under study and one or more other product systems” (ISO, 
2006a, 2006b) 
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Figure 1-1 Phases of an LCA, adapted from ISO 14044 (2006a) and Hauschild et al. (2018). 
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During the second phase of the LCA, a Life Cycle Inventory (LCI) is built (ISO, 2006a, 

2006b). This entails collecting all the input (e.g., energy inputs, raw material inputs, 

etc.) and output data (e.g., output products, waste, releases to air, etc.) within the 

system boundaries of the system being studied.  

This inventory is then used in the third phase, the Life Cycle Impact Assessment 

(LCIA), to evaluate the potential environmental impacts associated with each 

inventory in- and output (ISO, 2006a, 2006b). These are classified into specific 

environmental issues called impact categories4 [e.g., Climate Change (kg CO2 eq), 

Freshwater Eutrophication (kg P eq), Water Resource Depletion (m² water eq), etc.] 

and multiplied with their characterization factor5 (e.g., Global Warming Potential, 

P equivalents, water consumption equivalent, etc., respectively). This results in 

category indicator6 results (i.e., impact per functional unit).  

The chosen impact calculation method, or LCIA method, determines which impact 

categories will be included during the classification and which environmental 

mechanisms will be used as a basis for the characterization factors. For example, 

the ILCD method (which stands for “International Reference Life Cycle Data 

System”) was developed by the Joint Research Centre of the European Union and 

considers 16 impact categories (Wolf et al., 2012), while the ReCiPe method was 

developed in the Netherlands and considers 18 impact categories (Huijbregts et al., 

2017). This is – among other things – because the impact category “Ionizing 

Radiation” is split between its effect on human health and its effect on the 

environment in the ILCD method, which is not the case for the ReCiPe method. 

Furthermore, ReCiPe considers Terrestrial, Freshwater and Marine Ecotoxicity 

separately, while ILCD only acknowledges Freshwater Ecotoxicity. ILCD expresses 

Freshwater Ecotoxicity using CTUe as a unit, while ReCiPe uses kg 1,4-DCB. Next to 

ILCD and ReCiPe, Hauschild et al. (2018) list six other LCIA methods, all with their 

individual characteristics.   

 
4 “Class representing environmental issues of concern to which life cycle inventory 
analysis results may be assigned” (ISO, 2006a, 2006b) 
5 “Factor derived from a characterization model which is applied to convert an 
assigned life cycle inventory analysis result to the common unit of the category 
indicator” (ISO, 2006a, 2006b) 
6 “Quantifiable representation of an impact category” (ISO, 2006a, 2006b) 
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Finally, during the Life Cycle Interpretation, the LCI and LCIA results are summarized 

and discussed as a basis for conclusions, recommendations and decision-making; 

all in line with the goal and scope definition.  

LCA outcomes should ensure that impacts are addressed at the point in the life 

cycle where they will most effectively reduce overall environmental impact and 

resource use (European Commission, 2003). This will also reduce the chance of 

possibly inducing burden shifting, where a potential environmental burden is 

shifted between life cycle stages, individual processes or environmental issues 

(Hauschild et al., 2018; ISO, 2006a). For example, a single-use aluminum container 

has a large impact on e.g., depletion of elements, ozone layer depletion and human 

toxicity. Single-use polypropylene containers might be proposed as a better 

alternative, however, they perform worse when it comes to e.g. climate change, 

acidification and eutrophication (United Nations Environment Programme, 2021). 

A distinction is made between attributional and consequential LCAs. These two 

types of approaches answer very different questions, which were originally defined 

during the 2001 workshop on life cycle inventory data for electricity production 

(Curran et al., 2005). While the attributional approach seeks to answer the question 

“how are things (pollutants, resources and exchanges among processes) flowing 

within the chosen temporal window?”, the consequential approach attempts to 

answer, “how will flows change in response to decisions?”. To answer these 

questions, different types of data are needed i.e., average or marginal data, 

respectively. Average data represent the average environmental burdens 

connected to a product or process of the studied system. In contrast, marginal data 

reflect the effects of a small change in the outputs from a system on the 

environmental burdens of that system (Finnveden et al., 2009).  

The two different approaches can be illustrated with the research of Kua and 

Maghimai (2017) who studied the environmental performance of steel versus 

reinforced concrete using both an attributional and consequential life cycle 

perspective. Depending on the design of a building, 1 kg of structural steel can be 

replaced by either 1 or 4.25 kg of concrete. Kua and Maghimai (2017) used an 

attributional LCA on the one hand, to assess the environmental impact of using 

these two different amounts of reinforced concrete. On the other hand, they used 

a consequential LCA to consider the environmental impact of the possible short-

term and long-term change caused by the reduced consumption of steel and 
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increased consumption of concrete. For the long-term, this could lead to a new 

market equilibrium, causing an increased import of concrete’s constituents and a 

reduced import of steel. By considering these two types of perspectives, Kua and 

Maghimai (2017) could propose integrated technology policies to improve the 

sustainability of those building materials. In this PhD thesis, as in most studies, I will 

use attributional LCAs: I aim to compare potential impacts of current agriculture 

and food choices without introducing any changes. 

LCA can contribute to the analysis of the environmental performance of production 

and consumption patterns at various levels (European Commission, 2016). Many 

business associations and companies [such as BASF (2021), Colruyt Group (2021) 

and Unilever (2021)] already use the life cycle approach to help reduce the overall 

environmental burdens of their goods and services, to improve the competitiveness 

of their products, in B2B and B2C communication, and in communication with 

governmental bodies. LCA is used in benchmarking and decision making as a tool 

to improve product system and design [e.g., Tool to Optimize the Total 

Environmental impact of Materials (totem, 2018)] and in criteria setting [e.g., 

Environmental Product Declarations (EPD International, 2021)]. The public sector 

equally makes use of life cycle thinking in stakeholder consultations and policy 

implementation [e.g. LCA4Regions (Interreg Europe, 2021)], ensuring that the big 

picture is considered.  

1.2 The need for more transparency in LCAs 

LCA is a comprehensive assessment, which minimizes – at least in theory – the 

chance of ignoring or devaluing important environmental issues. It highlights 

potential environmental trade-offs and challenges conventional wisdom (Curran, 

2014). Though, this comprehensiveness comes with a cost, since it requires 

simplification and generalizations in the modeling of the considered system. LCA 

follows the “best estimate” principle, causing models to be based on the average 

performance of the product system and disregarding rare or very problematic 

events such marine oil spills or nuclear disasters (Hauschild et al., 2018). On top of 

that, there is often a lack of the lack of reliable, available inventory data (Curran, 

2014). This prevents the calculation of actual environmental impacts, rather it is 

more accurate to say that impact potentials are calculated (Hauschild et al., 2018). 

However, some environmental, ethical and societal impacts (e.g., animal welfare) 
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are not easily measurable and thus cannot yet be ranked in terms of environmental 

impact (Notarnicola et al., 2015).  

Furthermore, it is rare that LCA results identify a clear ‘winner’ between 

alternatives (Curran, 2014), especially since much of the interpretation is left to the 

person conducting the assessment, which can even result in producing different 

results for seemingly the same product (Notarnicola et al., 2015). LCAs can indicate 

which product or process is better for the environment, but it does not tell you if 

the better option is in fact “good enough” (Hauschild et al., 2018).   

The above-mentioned inadequacies and limitations underline the need for more 

transparency. ISO 14040/44 (2006a, 2006b) specifically states that “the results, 

data, methods, assumptions and limitations shall be transparent and presented in 

sufficient detail to allow the reader to comprehend the complexities and trade-offs 

inherent in the LCA”. However, the majority of LCA reports and publications lack 

such degree of transparency when it comes to the applied methodology and 

underlying data, making it difficult for other researchers to build upon the data 

and/or the results. Unambiguous descriptions of the methods and decisions in, e.g., 

appendices or online available material [such as in Goossens et al. (2019)], need to 

be urgently included, respecting confidentiality issues where applicable. The 

European Commission (2016) has stressed the need for more development and 

consensus of LCA methodologies by providing a platform to facilitate 

communication, and data and model exchange. 

The lack of an appropriate LCA implementation and transparency is especially the 

case for LCAs related with the agri-food chain. Its application is not as mature as 

LCAs for, e.g., solid waste and energy, which were the primary adoption drivers 

(McManus and Taylor, 2015), and thus not as comprehensive yet. Agri-food LCAs 

are especially challenging since plant and animal life in the agricultural stage comes 

with an inherent biological, and time and region dependent variability (Notarnicola 

et al., 2015). 

1.3 The ignorance towards uncertainty and variability 

When two products or processes are compared using LCA, this is sometimes based 

on one production cycle (which is further discussed in section 1.4.2 for perennial 

production systems). In such cases, the input values and the LCA results are often 
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seen as definite, while reality is much more dynamic and complex. For example, 

when comparing two crop production system, organic and conventional cultivation, 

it might be so that the results point to the conventional cultivation as having the 

lower environmental impact. However, it is quite possible that the reverse is true 

in the next year, just because the weather is different.  

This illustrates a major shortcoming in LCA where results are still being reported as 

deterministic, while in reality the used data is uncertain and variable (Table 1-1). 

(Epistemic) uncertainty is related to the assessor’s incomplete state of knowledge 

about the parameters that characterize the physical system that is being modelled 

and can therefore be reduced through further research efforts. Variability (or 

aleatory uncertainty) is an observable variation related to the inherent randomness 

of the natural world (Hauschild et al., 2018; Vose, 2008; Walker et al., 2003). Given 

enough resources, this variability could be mapped by measuring and quantifying 

the total population, but the observed variation cannot be reduced – if that is even 

wanted – by gaining more knowledge (Hauschild et al., 2018), only by making 

physical changes to the system (Vose, 2008). The combination of uncertainty and 

variability is called overall uncertainty (Pouillot et al., 2016).  

Table 1-1 Examples and reducibility of uncertainty and variability.  

This table is based on information from various sources (Hauschild et al., 2018; 

Vose, 2008; Walker et al., 2003). 

Type Example sources Possibly reducible through 

Uncertainty Systematic/random measurement 

errors, low measurement accuracy, 

ignorance, outdated information, 

subjective judgement, lack of data, 

lack of knowledge, etc. 

more literature research, 

more expert consultation, 

more precise emission 

factors, increasing 

measurement resolution, 

further measurements, 

refining models, etc. 

Variability Varying climate regions, time aspects, 

soil textures, management strategies, 

unpredictability of natural processes, 

human behavior/preferences, etc. 

making physical changes 

within the system 

While the theoretical difference between uncertainty and variability might be clear, 

the distinction might not be so straightforward in practice. For example, the 

Intergovernmental Panel on Climate Change (IPCC) defines an uncertainty range 
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around the emission factors of N2O from fertilizer application. However, this range 

might also include variation caused by variability due to differences in climate 

conditions or soil types (Groen, 2016).  

If the range of LCA results is dominated by uncertainty then more knowledge may 

be needed before one can robustly conclude that a product’s impact is significantly 

different from another. Omitting uncertainty from a study can thus lead to over-

interpretation and biased decisions (Verones et al., 2017).  In contrast, results with 

a high degree of variability show true differences among alternative production 

processes, supply chains, etc. This information can further guide system 

optimization, product development or policy (Steinmann et al., 2014).  

Thus, separating uncertainty and variability can help decision makers in judging the 

significance of the differences in product comparisons, in identifying options for 

product improvement and in assigning ecolabels (Huijbregts, 1998). Considering 

the rising importance and ambiguity of ecolabels (Goossens et al., 2017b), it is 

important to know how representative the results are when they are later 

expressed with one value. While the benefits of including uncertainty and 

variability are clear, they are still quite often unacknowledged in LCAs. Limited data 

availability and time constraints can cause a great hindrance in including them. 

Even when uncertainty is included, uncertainty and variability are almost always 

treated alike, even though their origin and implication clearly differ (Notarnicola et 

al., 2015).  

In recent LCA studies, attempts are being made at quantifying uncertainty and/or 

variability – still treated alike – using methods such as sensitivity analysis 

(Konstantas et al., 2018; Longo et al., 2017), uncertainty analysis (Bautista et al., 

2018; Romero-Gámez et al., 2017); or a combination of both (Jiao et al., 2019; Sykes 

et al., 2019). In an uncertainty analysis, the range of possible LCA results is 

quantified based on the uncertainty and/or variability range of the input 

parameters. In sensitivity analysis, the focus lies more on figuring out which input 

parameters have an important influence on the results, rather than the possible 

spread in the results (Hauschild et al., 2018; Igos et al., 2019).  

It is important to truly grasp this distinction. An input parameter may be very 

uncertain or variable, but if the LCA result is insensitive towards it (i.e., a change in 

the input value does not change the output), it would be a waste of time to improve 

the certainty of the parameter. On the other hand, if the model output is very 
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sensitive towards a specific input parameters, but this input parameter is very 

certain or even deterministic, better data would also not increase the robustness 

of the result (Fig. 1-2) (Hauschild et al., 2018).  

 

Figure 1-2 Identifying the very important or essential parameters by combining sensitivity 

and uncertainty/variability, based on Hauschild et al. (2018). 

LCA studies that propagate the data uncertainty and/or variability, often do so 

using (one-dimensional) Monte Carlo simulations (1DMC) (Groen et al., 2014). In 

the 1DMC approach (Fig. 1-3), an iterative calculation process is performed using 

computer power. For each uncertain/variable input parameter, a probability 

distribution is specified containing all probable input values that the parameter can 

have (Vose, 2008). Ideally, interaction effects and correlation between input 

parameters are incorporated. Ignoring correlation during uncertainty propagation 

can lead to an under- or overestimation in the output variance. However, the 

knowledge about correlation coefficients is often not available (Groen and 

Heijungs, 2017), yet, a correlation matrix can be calculated when the distribution 

of several parameters are fitted at once [for example when using the Excel add-in 

@Risk (Palisade, NY, USA), see Chapter 5]. 

Once the input probability distributions (and correlations) are specified, a random 

sample is taken from the probability distribution for each input parameter. The 

complete set of samples is then analyzed in a deterministic model and the result is 

stored. This procedure is repeated several times, each time taking other random 

samples from the input probability distributions. After repeating the procedure for 

e.g., 10000 times, the 10000 different possible results form a probability 

distribution for the output (Vose, 2008). The output probability can then guide 
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decision making, after all, knowing the probability of making the wrong decision 

can alter the final decision you make (Heijungs, 2021).  

 

Figure 1-3 Schematic overview of one-dimensional Monte Carlo simulations. 

I1 to In represent the n number of iterations and R1 to Rn the resulting possible LCA 

results. The output can be graphically shown for each separate impact category 

using a histogram or cumulative probability curve. 

1DMC can only propagate variability or uncertainty, but not both separately at the 

same time when a parameter is both uncertain and variable. A notable attempt at 

a methodology for separating them in LCA was made by Steinmann et al. (2014), 

for the LCA of coal-fueled power generation. They used 1DMC to calculate a 

variability and an uncertainty ratio, separately. Further attempts that have been 

made in LCAs to account for uncertainty and variability separately will be identified 

through a systematic review and their methods thoroughly discussed in Chapter 3.  

It has been shown in quantitative risk assessment (Boué et al., 2017; Wu and Tsang, 

2004) that separating uncertainty and variability could potentially be done 

effectively by conducting two-dimensional (or second-order or two-stage) Monte 

Carlo simulations (2DMC). In 2DMC, the distributions reflecting uncertainty and the 

distributions reflecting variability are sampled separately, so they can be assessed 

separately in the output as well (Cohen et al., 1996; Pouillot and Delignette-Muller, 

2010). 2DMC has been applied in studies related to LCA, such as for the 

ecotoxicological impact assessment of down-the-drain products (Douziech et al., 

2019) which can be used to calculate the ecotoxicological results of an LCA. 

However, I found no indication of its application in a typical LCA as it is described in 

ISO 14040/44 (ISO, 2006b, 2006a). 
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1.4 Arbitrariness in the goal and scope of agri-food LCAs 

Turning now to food chain sustainability, the ‘Environmental Impacts of Products’ 

project of the EU Joint Research Center (Tukker et al., 2006) found that of all areas 

of consumption, ‘food and drink’ has the greatest impact throughout its life cycle 

(alongside private transport and housing), causing 20-30% of the environmental 

impact of private consumption. Moreover, several cradle-to-grave agri-food LCA 

studies show the agricultural stage as one of the most burdening (Svanes and 

Johnsen, 2019; Vinyes et al., 2017; Winkler et al., 2015).  

It is evident that the sustainability of the agri-food chain needs to increase. 

However, there are some challenges connected to this research field when it comes 

to LCA. Conducting an LCA of the agri-food chain is not as straightforward as when 

studying a typical non-biological industrial products or processes, due to their 

inherently different production systems (Notarnicola et al., 2015). For this reason, 

I will focus on the methodological improvement of agri-food LCAs in this PhD thesis. 

As a case study, I will built further on the apple agri-food chain of Flanders (Belgium) 

which was previously developed in our research group (Goossens et al., 2019, 

2017a) 

As I already pointed out in the sections 1.2 and 1.3, the lack of full transparency and 

not acknowledging variability together with uncertainty is especially a shortcoming 

when it comes to agri-food LCAs. I will now further focus on some additional 

challenges that arise when defining the goal and scope of agri-food LCAs, paying 

special attention to perennial fruit production systems.  

Ideally, the goal and scope should be aligned for all products to make comparisons 

possible. Comparing LCA results where the LCA practitioner defined different 

functional units, system boundaries, allocation procedures, LCIA methods, etc., is – 

quite honestly – meaningless. Complete uniformity is a prerequisite for fair 

comparisons. Guidelines in the form of Product Environmental Footprint Category 

Rules (PEFCRs) are slowly being provided to achieve the needed level of 

reproducibility and consistency for each product category. However, to this day, 

there has not been one provided for fruit products (European Commission, 2021). 
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1.4.1 Choosing a representative functional unit  

In LCA, the functional unit is used as a reference to fairly and quantitatively 

compare different products or processes that provide the same function, typically 

answering questions such as “what?”, “how much?”, “for how long?”, “how well?”, 

etc. (Hauschild et al., 2018). An LCA is in fact the environmental assessment of 

needs fulfillment, meaning that first a function from the perspective of the user 

should be identified (Hauschild et al., 2018). However, when it comes to agriculture, 

three functions could be envisioned: food production, land management and 

providing an income for the farmer (Nemecek et al., 2011).   

Cerutti et al. (2014) identified those three possible categories of functional units in 

LCAs of the fruit sector. The first category is mass based, which is the most 

commonly used in agri-food LCAs. Here the environmental impact is related to a 

specific amount of product that was produced. For fruit products, this is typically 

“1 ton of fruit at the farm gate” or “1 kg of fruit packed and delivered to the 

customer”, depending on the goal and scope of the study.  

The second type of functional unit is land based, where the impacts are related to 

the management of a specific amount of land (e.g., 1 hectare of orchard). An 

example of a land based functional unit from the study of Ferrari et al. (2018) is 

“the productivity per hectare of wine grapes in the thirty years of an espalier 

vineyard […]”.  

Mass and land based functional units are complementary in fruit production 

because they give different results and interpretations (Cerutti et al., 2014). While 

mass based units may lead to a preference for high input-high output systems, 

which can cause concentrated pollution problems on a regional scale; land based 

units will rank low input-low output systems better, decreasing impacts at a 

regional level but possibly creating the need for additional land use elsewhere (van 

der Werf et al., 2007). This can for instance lead to results that show a favorable 

environmental performance for organic cultivation when they are expressed per 

unit area, while conventional cultivation outperforms organic when results are 

expressed per product unit (Foteinis and Chatzisymeon, 2016; Meier et al., 2015). 

Mass based unit can thus indicate which production system is the most 

environmentally efficient and the land based unit could be useful when 

investigating the environmental impact in sensitive areas where a reduction in 

emissions is required (Cerutti et al., 2013). 
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The last category identified by Cerutti et al. (2014) is the economic value-based 

functional unit, where the environmental impact is related to a particular amount 

of grower income from wholesale fruit sales. This type of functional unit has a 

strong social dimension, seeing as the potential of the system (i.e., the farm) to 

generate money is assessed rather than its ability to grow food (Cerutti et al., 2013). 

While the results are very dependent on the local economic context, it does provide 

opportunities to account for product (i.e., fruit) quality, which is less 

straightforward in the other categories (Cerutti et al., 2011). In this context, 

Ponsioen and van der Werf (2017) recommend reporting environmental footprints 

per economic value (expressed in currency units). They state that this will reflect 

“the way a consumer values the different functionalities of the food or beverage 

and takes the possible rebound effects of spending saved money on other 

environmentally damaging activities into account”. 

Another possible category to assess food production are functional units related to 

the food’s nutritional function. However, this kind of functional unit is very 

complicated since food products supply a wide variety of micro and macro nutrients 

(Ponsioen and van der Werf, 2017). This kind of functional unit seems to be 

primarily researched for protein rich food products or to assess whole diets, it is 

not often seen when assessing individual fruit products. Functional units that have 

been proposed and that did include individual fruit products (sometimes as part of 

a food  basket) in the assessment were e.g., 100 g protein (Heller et al., 2013), 100 

kcal (Drewnowski et al., 2015; Masset et al., 2015), a dietary dependent nutrient 

quality index (Sonesson et al., 2019), the amount of fruit containing the daily 

reference energy intake for one person, the amount of fruit containing the 

reference daily intake for vitamin C for one person, and the amount of fruit 

containing the reference daily intake for dietary fiber for one person (Svanes and 

Johnsen, 2019). 

It is clear that when it comes to the functional unit of food products, no consensus 

has been reached and research is still actively going on. Depending on the 

perspective of the user (e.g., the farmer vs. the consumer), different functional 

units seem appropriate. While mass, land and economic value-based functional 

units might be more meaningful for the farmer, a nutritional functional unit would 

be more representative from a consumer-perspective (Notarnicola et al., 2015). 

Different food products can otherwise not be fairly compared when they constitute 

different nutritional roles in the diet (Heller et al., 2013; Ponsioen and van der Werf, 
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2017). Yet, these nutritional functional units also do not grasp the entirety of the 

functions of food, which also include pleasure, cultural values, social interaction, 

satiety, etc. (Heller et al., 2013; Sonesson et al., 2017). Since mass based functional 

units are the most commonly used in agri-food LCAs (Djekic et al., 2018) and are 

recommended by Cerutti et al. (2014) for profiling the environmental burdens of a 

fruit product, I will use “1 ton of fruit at the farm gate” and “1 kg of fruit purchased 

by the customer”, in this PhD thesis.  

1.4.2 Defining the orchard life cycle in perennial food production 

First and foremost, it is important that the system boundaries of a studied product 

reflect the goal of the LCA study. For fruit products, this can mean different stages 

of the fruit’s productive and logistic chain, but consumption and end-of-life can be 

included too (Fig. 1-4) (Notarnicola et al., 2015). The foreground processes [those 

processes that are specific to the studied product system and are largely modelled 

using data collected first hand by the LCA practitioner (Hauschild et al., 2018)] of 

the productive stage (i.e., the agricultural core) are those directly occurring on the 

cultivated land, such as fertilization, crop protection, irrigation,  etc. (Bamber et al., 

2020). In contrast, the background processes [those processes that are linked to 

the foreground system but also take part in many other product systems and are 

typically modelled using more generic data from LCI databases such as ecoinvent 

and agri-footprint (Hauschild et al., 2018)] include processes related to society’s 

electricity supply, the production of fertilizer products, etc. (Bamber et al., 2020).  

A lot of studies [e.g. Bamber et al. (2020), Ferrari et al. (2018), Goossens et al. 

(2017a) and, Romero-Gámes and Suárez-Rey (2020)] choose to focus on the 

productive part of the fruit chain, namely the perennial food production system. 

Unlike food crops (for which the life cycle is completed in under a year), perennial 

food production systems (such as apple orchards) involve plants with a variable life 

span, depending on crop and management practices (Cerutti et al., 2014). When 

looking at LCAs of perennial food production systems, different system boundaries 

[or “time boundaries” (Notarnicola et al., 2015)] for the orchard life span are being 

used, often depending on data accessibility. Cerutti et al. (2014) considered six 

stages that define fruit production (Fig. 1-5): 
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1. a nursery stage,  

2. establishment of the orchard (i.e., field preparation and planting),  

3. a low productive stage due to the orchard’s immaturity,  

4. a mature, full productive stage,  

5. a low productive stage due to plant senescence, and  

6. orchard destruction and disposal.  

Though, for economic reasons, the orchard is often already replaced at the end of 

stage 4. 

The productive life span of an orchard thus comprises three stages: the young, low 

productive stage, followed by full production and subsequently followed by an old, 

low productive stage (Cerutti et al., 2014; Goossens et al., 2017a). However, most 

commonly, the inventory used for conducting an LCA of a perennial food 

production system is limited to the production data of one year while the orchard 

is in full production (Fig.1-5a) (Ingwersen, 2012; Longo et al., 2017). To attenuate 

production fluctuations and external factors (e.g., varying weather conditions, pest 

occurrences, etc.), researchers also conduct LCAs on a dataset covering three or 

more years (Fig.1-5b) (Bartzas et al., 2017; Mouron et al., 2006). Cerutti et al. (2014) 

further suggests to collect field data in even numbers of years (at least four), to take 

into account the possible alternation of production (biennial bearing) of perennial 

crops. Bessou et al. (2016) tested how this partial modelling of a perennial crop 

cycle affected the LCA results. They deduced that the one-year model leads to very 

uncertain results and that a 3-year average model can still possibly be misleading 

as it is not sufficient at capturing the environmental impacts of the full perennial 

cycle. 

Thus, LCA practitioners generally only consider the mature trees, because data-

recovery for the nursery, establishment, low-yield and destruction stages is difficult 

(Notarnicola et al., 2015). Though, researchers are getting more and more aware of 

the increased representativeness of their results when they do not limit a perennial 

food production LCA to the full productive stage. Fruit production LCAs have been 

conducted that included e.g., the establishment, young and full productive stages 

(Vinyes et al., 2017, 2015); all three productive stages (Fig. 1-5c) (Goossens et al., 

2017a); and the full orchard life cycle  (Alaphilippe et al., 2015; Cerutti et al., 2013; 

Ferrari et al., 2018).  



 

18  Chapter 1 

 

 

Figure 1-4 Main system boundaries for an LCA on fruit production and post-harvest processes (cradle-to-grave), based on Notarnicola et al. (2015) 
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Figure 1-5 Possible definitions of system boundaries for the LCA of a perennial food production system.
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Alaphilippe et al. (2015) found that the unproductive stages of apple orchards 

entailed 9% to 28% of the environmental burdens, depending on the impact 

category. The contribution of the unproductive stages were generally lower for a 

semi-extensive orchard than for an intensive one, except for energy demand. The 

authors stated that the higher contribution for the intensive orchard could be 

explained by the longer duration of the establishment stage and by the shorter 

orchard lifespan.  

Similarly, Goossens et al. (2017a) discovered in our research group that including 

all three productive stages of the orchard life cycle in an agri-food LCA could lead 

to counterintuitive results. Our group found that a mere focus on high productive 

apple trees in comparison with the complete productive phase, leads, on average, 

to an underestimation of the environmental impact for conventional and integrated 

farming, yet to an overestimation for organic farming. The underestimation was 

mainly caused by young trees which are often associated with low yields in 

perennial production systems. To ensure good plant health and to transform young 

trees into highly productive trees for later years, a lot of agricultural inputs are 

needed. As such, the resulting impacts per ton of apple produced by young trees 

tend to be a lot higher than those of full productive trees, leading to an 

underestimation of the impact when they are not accounted for. The 

overestimation in organic cultivation was due to – among other things – a 

difference in orchard lifespans. Organic cultivation has a generally lower impact in 

the old, low productive phase which lasts longer (six years) than in the conventional 

and integrated orchards (two years). 

It should be noted here that the carbon storage of a fruit orchard is generally not 

accounted for, though it has been included more in case studies in recent years 

(Aguilera et al., 2015; Bamber et al., 2020; Pirlo and Lolli, 2019) and methods are 

actively being developed (Albers et al., 2020; Boone et al., 2018) and tested (Bessou 

et al., 2020; Goglio et al., 2015; Sevenster et al., 2020). Carbon storage in fruit 

orchards can be divided into two types (Notarnicola et al., 2015):  

• temporary storage in the above- and below ground tree biomass for the life 

cycle of the orchard, and 

• medium to long-term soil carbon stock change, which relates to a balance 

between inputs of organic matter in the soil in the form of senescent leaves, 

thinned fruits, pruning material, grass cover, dead roots, compost and manure; 

and output in the form of CO2 due to the degradation of organic matter. 
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The carbon stock variations of the trees and soil can be attributed to either land 

use change (LUC) or land management change (Notarnicola et al., 2015), but is 

limited in time until a new equilibrium is reached (Aguilera et al., 2015). 

In that regard, it is often not clear what happens to the trees when orchards are 

destructed. Notarnicola et al. (2015) describe in their general review of LCAs in the 

fruit sector, that “the trees are removed and usually burned for production of 

domestic heat or in open air” in the destruction stage. This is often not elaborated 

on in published case studies, again emphasizing the need for more transparency. 

Alaphilippe et al. (2015) only mention that their destruction stage encompassed the 

removal of trees and infrastructure, while Cerutti et al. (2013) limit the stage to 

needing “machinery and fuel”. Ferrari et al. (2018) just state that they include the 

“disposal” and leave it at that. When it comes to carbon storage accounting, it 

would be relevant to clearly know the end-of-life-treatment of the trees. 

Lastly, when including orchards in an LCA, Cerutti et al. (2014) recommend to 

always investigate at least three orchards per set of agronomic parameters (i.e., all 

aspects that make the plantation specific, such as production system, cultivar, etc.). 

This both for profiling the environmental burdens of a product, supply chain or 

production area, as well as when comparing different products or farming 

practices.  

1.4.3 Dealing with multifunctionality issues related to organic fertilizers 

To keep an LCA clear and feasible, system boundaries are established during the 

goal and scope definition phase to define the life cycle. Ideally, these system 

boundaries should include all unit processes that are required to deliver the 

reference flow defined by the functional unit (Hauschild et al., 2018). This can be 

difficult when dealing with processes that deliver more than one product or 

function. Typical examples are livestock systems that deliver both meat and milk 

or, energy production systems that deliver both electricity and heat These 

multifunctional processes cause a methodological challenge, because LCA is based 

on the idea of analyzing the environmental impact of the total system based on the 

primary function it provides (European Commission et al., 2010; Hauschild et al., 

2018). Appropriate methods are needed to partition the environmental impacts 

among the different functions of the system. 
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ISO 14044 (2006a) provides a hierarchy of methods to deal with this 

multifunctionality problem. First, allocation should always be tried to be avoided, 

preferably by subdividing the unit process into multiple sub-processes, collecting 

separate inventory data for each sub-process. This requires there to be a physical 

separation between the different processes within the system, which is not always 

the case (Hauschild et al., 2018). Alternatively, ISO (2006a) proposes to expand the 

product system to include the additional functions related to the co-products. In 

the case where two systems are compared, one of them being multifunctional, this 

can be achieved by adding the most likely alternative way of providing the 

additional function to the other system, thereby expanding its system boundaries 

(Hauschild et al., 2018). For example, when comparing two power plants, one of 

which co-generates heat and electricity while the other only generates electricity, 

an alternative way of generating heat is added to the second system.  

Sometimes a different approach is followed in this context where the first power 

plant is credited for the impacts that are avoided by providing the secondary 

function of producing heat, by subtracting the impacts of the alternative way of 

generating heat from the power plants’ impacts. Both approaches are 

mathematically equivalent (Hauschild et al., 2018). While system expansion is 

preferred over allocation, it is not commonly used in agri-food LCAs because of its 

complexity and high demand in data collection (Notarnicola et al., 2017).  

When those procedures are not possible, only then should allocation be considered 

according to ISO 14044 (2006a). The in- and outputs of the multifunctional process 

are then partitioned among the different products or functions based on an 

underlying physical relationship. Meaning that it should reflect the way in which 

the inputs and outputs are affected by quantitative changes in the products or 

functions that are delivered by the system. This physical relationship is preferably 

a causal relationship, and if not, a representative common physical parameter 

should be used (Hauschild et al., 2018). The physical property can be for example 

mass-, quantity-, volume-, length- or energy-based (European Commission et al., 

2010). Ponsioen and van der Werf (2017) emphasize here that a common 

relationship is not the same as a common property. It is not because two products 

have a mass, that they are therefore related. It is their common origin that 

determines the relationship between two co-products. They argue that the physical 

or biological mechanism reflecting the common origin should thus be used as the 

basis for their relationship. 
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Finally, when a physical relationship cannot be identified, ISO (2006a) suggests 

using other representative relationships such as the economic value of the 

products. The impacts are then partitioned based on the prices of each co-product, 

which strongly depend on the actual market situation, governmental policies and 

the producer-buyer relationship (Ponsioen and van der Werf, 2017). As it turns out, 

the last tier option of economic allocation is one of the most frequently used 

methods to solve multifunctionality problems in LCA (European Commission et al., 

2010; Pelletier et al., 2015; Wilfart et al., 2021). Ponsioen and van der Werf (2017) 

even recommend the method for environmental footprints of food and beverages, 

though (i) representative public statistics should be used, and when those are 

unavailable, that stakeholders should agree on the price statistics; and (ii) multiple 

year averages should be used.  

FAO (2016) developed a decision tree (Fig. 1-6), based on ISO’s allocation hierarchy, 

in their guidelines for the assessment of the environmental performance of large 

ruminant supply chains. The right part of the figure (“3. Split single production units 

into single products”) shows how different methods are chosen based on if the 

studied product is considered as waste, residual or co-product. This often depends 

on if the studied product has an (economic) value when leaving the system (FAO, 

2016; Ponsioen and van der Werf, 2017). These three options will be further 

discussed in Chapter 6. 

Whichever method is chosen in the end, it is obvious that the different procedures 

can lead to very different results (Notarnicola et al., 2017). Therefore, ISO (2006a) 

requires a sensitivity analysis to be conducted whenever several alternative 

allocation procedures seem applicable. Several studies have applied this 

recommendation. For example, in their study on the impact of using blood meal as 

a raw material in the production of a thermoplastic (NTP), Bier et al (2012) had LCA 

results ranging from 0.21 kg CO2 eq/kg NTP (substitution with urea) to 

14.52 kg CO2 eq/kg NTP (mass allocation for raw blood), depending on which of the 

five considered allocation procedure was selected.  
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Figure 1-6 Decision tree for choosing the method for handling multifunctional outputs, based on FAO (2016) 
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Similarly, Hermansson et al. (2020) compared twelve possible allocation methods 

for ascribing impacts to lignin. Their results ranged from -23 kg CO2 eq/kg lignin 

(credited for substituting cotton) to 4 kg CO2 eq/kg lignin (lignin is selected as main 

product to bear all burden). Houssard et al. (2020) found that their conclusions 

were sensitive to the use of mass versus economic allocation, causing whey to be 

allocated 29% to 47% for mass allocation on dry matter depending on the life cycle 

stage of the Greek yoghurt product being studied, and 0% or 17.5% for economic 

allocation depending on its potential value on the market. As a final example, the 

five allocation factors that Chen et al. (2017) used to partition livestock co-products 

at the slaughterhouse to human food ranged between 38% (using dry matter 

content) and 95% (using economic values).  

The previously mentioned studies illustrate how multifunctionality can cause 

problems in agri-food LCAs. For the case of fruit production, multifunctionality can 

for example cause problems when using organic fertilizers such as manure or 

compost since those are typically seen as residual products of which the future use 

is considered as having no impact on the production of it (Durlinger et al., 2017a; 

Notarnicola et al., 2015). This means that their realized environmental impacts are 

completely ascribed to the primary products of the systems of origin. Thus, the 

impacts of producing organic fertilizers are usually not accounted for within the 

agri-food LCAs where these products are used during cultivation [e.g., Goossens et 

al. (2017a) and Spångberg et al. (2011)]. 

This raises questions on how realistic comparisons are between conventional crop 

production systems that use mineral fertilizers and organic systems that use 

organic fertilizers. The flows of resources and associated impacts are not 

represented equivalently in both systems since, unlike for organic cultivation, the 

production impact of the (mineral) fertilizers they use, are typically included within 

the system boundaries of conventional crop production systems. It seems relevant 

to conduct extensive sensitivity analyses to see how the total impact of cultivation 

systems would change depending on the chosen allocation procedure. This way, 

the knowledge on how the different allocation procedures can influence results, 

can be advanced with the goal of finding a solution for the current skewed 

comparisons of organic and conventional crop systems. 
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Chapter 2  

 

Aim and objectives  
 

 

The overall aim of this PhD thesis is to lift LCA approaches to a higher scientific level, 

specifically for the agri-food sector and potentially for other sectors as well. I will 

do this by introducing more appropriate methods to calculate environmental 

sustainability and obtain more accurate potential environmental impacts. That 

way, conclusions and recommendations to decision makers will be more reliable, 

leading to more informed and effective decisions. Choosing the environmentally 

friendliest option will be more conclusive. 

I will use agri-food chains to present my methodological improvements, so I can 

focus on furthering an area of LCA that needs further development and 

improvement when it comes to obtaining accurate results. In Chapter 1, I described 

several improvement opportunities related to agri-food LCAs. In this thesis, I will 

mainly focus on furthering the research regarding uncertainty and variability, and 

regarding allocation of organic fertilizers.  

By using data from the Farm Accountancy Data Network (FADN), I can ascertain 

that no distinction is made between low and full productive systems. Thereby 

helping to eliminate the practice of excluding burdens in the low productive parts 

of the perennial production chain. Because of its significance for Flanders, I use fruit 

production, more specifically the apple agri-food chain, as a case study to test my 

research objectives. The apple is one of the most consumed fruit in Flanders, with 

9.8 kg/capita in 2015 (Platteau et al., 2016), and apple orchards cover 

approximately 32% of the Flemish fruit area (Danckaert et al., 2018). Throughout 

the research, the apple agri-food chain that was previously developed in our group 

(Goossens et al., 2019, 2017a), is used as my starting point (Fig. 2-1). 
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Figure 2-1 Flow chart of the Belgian apple chain for bulk and pre-packed (per 6) apples, based 

on Goossens et al. (2019). 
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Objective 1 – Review all the attempts that have been made in LCA to separately 

account for uncertainty and variability 

LCA results are typically reported as deterministic, while reality is uncertain and 

variable. Through a systematic review, all the methodologies that have already 

been used to assess both uncertainty and variability, as separate concepts, in the 

same LCA study will be identified and analyzed. An LCA study will only be included 

in the review if a clear distinction between uncertainty and variability is made 

within the life cycle inventory phase and the study results show some indication of 

either uncertainty or variability being dominant.  

Thus, the research question that I aim to answer with this systematic review is: 

“How can we methodologically assess how important both uncertainty and 

variability are in LCA results?” From the included methodologies, I will select the 

most appropriate one(s) that allow to decide whether uncertainty or variability is 

dominating in the results. Special attention will be given to how this is visualized. 

The systematic review can be found in Chapter 3 and will introduce Part II of this 

PhD thesis, where the focus lies on improving the LCA methodology by 

complementing uncertainty with variability in the assessments. 

 

Objective 2 – Increase the robustness of results by conducting two-dimensional 

Monte Carlo simulations for the first time in LCA 

The field of quantitative risk assessment has shown that 2DMC can be successful 

method when it comes to incorporating both data uncertainty and variability in an 

assessment. Therefore, the 2DMC method is introduced in LCA in Chapter 4, using 

the apple post-harvest chain as a case study, comparing bulk and pre-packed 

apples. Afterwards, the apple chain is completed in Chapter 5 with the cultivation 

part of the chain, comparing Jonagold and Kanzi cultivation. The research question 

that I wish to answer here is: “Can 2DMC be used to analyze and visualize 

uncertainty and variability in LCA results, and how does this differ to 2DMC used in 

risk assessments?” 

I believe Monte Carlo simulations will be a good fit for LCA. Firstly, because it is 

widely recognized in widely disparate fields [e.g., finance, project management, 

energy, manufacturing, engineering, research and development, insurance, oil & 

gas, transportation and the environment (Palisade, 2021)] and within the LCA 
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community as a valid technique, so its results are more likely to be accepted. Since 

1DMC is already being predominantly used – over other approaches such as Taylor 

series or fuzzy sets – in LCA (Igos et al., 2019; Lloyd and Ries, 2007), introducing 

2DMC is feasible. Secondly, software is commercially available to automate the 

tasks involved in the simulation, and correlations and other interdependencies can 

be modelled. Lastly, changes to the model can be made very quickly and the results 

compared with previous ones.  

Successfully separating and propagating data variability and uncertainty (using 

2DMC) will play an important role in the LCA interpretation phase, as this approach 

will clearly indicate whether the results demonstrate natural differences or if more 

data is needed. Additionally, when two products or processes are being compared, 

basing decisions on clearly separated model outputs is much more meaningful. 

Overlapping model outputs due to uncertainty and/or variability should be taken 

into consideration before making definite decisions. If the model outputs only 

depict a central tendency (e.g., mean or median), comparisons will not be as robust 

because the possible overlap is being ignored. 2DMC outputs will thus lead to more 

robust conclusions, accurate decisions, effective Life Cycle Management 

approaches, and so on. 

 

Objective 3 – Analyze the influence of the allocation choice in organic production 

systems 

One of the first prerequisites when comparing two systems is that the system 

boundaries should be equivalent. This prerequisite is often not fulfilled in agri-food 

LCAs when organic crop production systems are compared to more conventional 

ones. The impact of the production of residual products that are given a second life 

as organic fertilizers, are typically ascribed to the system of which they originate. 

This means that organic growers do not carry any share of the burdens of producing 

such organic fertilizers, even though they do definitely need them for cultivation. 

For more conventional crop production systems, the production of their fertilizers 

are included within their system boundaries, leading to skewed comparisons of the 

two systems. This mismatch of system boundaries is a serious shortcoming in the 

comparative LCAs of crop production systems, leading to the research question: 

“What is a representative allocation procedure for accounting for the production of 

organic fertilizers within cultivation LCAs?” 
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I therefore review the different allocation methods that could be used to include 

the production impact of organic fertilizers in the organic production system, 

thereby making sure that the system boundaries match. This will be the challenge 

of part III of the PhD thesis. In Chapter 6, sensitivity analyses for different possible 

allocation procedures are conducted and the most preferable one for further use 

in organic cultivation LCAs is subsequently selected. I again use the apple chain as 

a case study, however, this time the focus will specifically lie on the organic 

cultivation of apple. In Chapter 7, I will further reflect on how applicable the findings 

for the agri-food sector for industrial processes in the secondary sector. 

A schematic overview of the three research objectives and their related chapters in 

this thesis can be found in Figure 2-2. Finally, in part V of this PhD thesis, the general 

conclusions and reflections are presented, together with opportunities for future 

improvements (Chapter 7). Extensive and structured appendices are provided 

alongside my results, respecting confidentiality issues where applicable. Other LCA 

researchers will be able to easily build upon my research and to use my proposed 

methods and approaches, hopefully inspiring them to go for the same level of 

transparency.  
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Figure 2-2 Schematic overview of the research objectives and their related chapters. 
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Complementing uncertainty with 
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Chapter 3  

 

How to decide and visualize whether uncertainty or 

variability is dominating in Life Cycle Assessment 

results: a systematic review 
 

This chapter is based on: Michiels, F., Geeraerd, A., 2020. How to decide and visualize whether 

uncertainty or variability is dominating in life cycle assessment results: A systematic review. 

Environmental Modelling and Software, 133, 104841. https://doi.org/10.1016/j.envsoft.2020.104841 

Author’s contributions: Michiels F. performed the analysis and drafted the manuscript 

 

 

3.1 Introduction 

Proper uncertainty reporting is becoming more and more important in different 

research fields. Finding a straightforward and transferable methodology for that 

purpose can be challenging, especially since there are different viewpoints 

regarding the sources and classification of uncertainty. Additionally, variability is 

often not accounted for or even acknowledged, causing valuable information for 

stakeholders and decisions makers to be lost. 

Walker et al. (2003) distinguished between three dimensions of uncertainty. The 

first one, location of uncertainty, deals with where the uncertainty is located within 

the whole model complex (e.g., context, model and inputs). The second dimension 

was defined as the level of uncertainty, which expresses the degree of which 

something is known (from deterministic to total ignorance). The third dimension is 

the nature of uncertainty – and is the main focus of this systematic review – which 

focuses on how uncertainty relates with reality and more importantly, which 

strategy we can use to deal with it.  

https://doi.org/10.1016/j.envsoft.2020.104841
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By looking at the nature of uncertainty, a distinction can be made between 

epistemic uncertainty and variability (Walker et al., 2003). Epistemic uncertainty 

reflects the imperfection of our knowledge (Walker et al., 2003), i.e. “everything 

we do not know” (Hauschild et al., 2018). This includes systematic or random 

measurement errors, lack of data, outdated information, subjective judgement, 

etc. (Hauschild et al., 2018; Walker et al., 2003). Therefore, epistemic uncertainty 

can be reduced by gaining more knowledge through research (e.g., further 

measurement, literature research or consulting more experts) (Hauschild et al., 

2018; Huijbregts, 1998; Igos et al., 2019; Walker et al., 2003). 

In contrast, variability [also called “aleatory” or “ontic” uncertainty (Igos et al., 

2019; Walker et al., 2003)] stems from inherent variations in the natural world 

(Hauschild et al., 2018; Huijbregts, 1998; Igos et al., 2019; Walker et al., 2003), 

leading to a spread in the data that will always be observed (Hauschild et al., 2018). 

Therefore, it cannot be reduced through further study (Hauschild et al., 2018; Igos 

et al., 2019). As Warmink et al. (2010) mention, the distinction between epistemic 

uncertainty and variability is not always very clear. One can argue that random 

variation in the natural world can also be seen as a lack of knowledge, which in turn 

can be reduced given enough resources. However, it is unrealistic to assume 

unlimited available resources and variability is therefore seen as a variety of system 

behaviors taking into account a realistic amount of available resources. 

Life cycle assessment (LCA) is one of the research fields in which proper uncertainty 

reporting is becoming more and more important. LCA quantifies the potential 

environmental impacts (e.g., environmental consequences of resource use) 

throughout a product’s life cycle, from raw material to final disposal. LCA outcomes 

should ensure that impacts are addressed at the point in the life cycle where they 

will most effectively reduce overall environmental impact and resource use (ISO, 

2006a). ISO 14040/44 (2006a, 2006b) developed an LCA framework with four 

iterative phases: Goal & Scope Definition (defining the functional unit, system 

boundaries, etc.); Life Cycle Inventory (collecting relevant data with regard to the 

studied system); Life Cycle Impact Assessment [evaluating potential environmental 

impacts associated with the in- and outputs by classifying them into specific impact 

categories, e.g., climate change (kg CO2 eq)]; and Life Cycle Interpretation. 

Next to this framework, ISO 14040/44 (2006a, 2006b) also lists data quality 

requirements that should be addressed in an LCA. However, LCA results are still 

typically being reported as deterministic [e.g., Bosona and Gebresenbet (2018) and 
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Hajibabaei et al. (2018)]. Other studies do include an uncertainty analysis, but 

completely disregard the distinction between uncertainty and variability [e.g., 

Bautista et al. (2018) and Jiao et al. (2019)]. Data quality reporting is important to 

assess the reliability of the study results and to properly understand its outcome 

(ISO, 2006b). However, uncertainty is frequently used as a very broad concept, 

often including related concepts such as variability (Hauschild et al., 2018). This 

makes it difficult for LCA practitioners to clearly define and propagate uncertainty 

and variability in their analysis. Moreover, uncertainty and variability are often 

mentioned as factors complicating the interpretation of LCA outcomes (Huijbregts, 

1998). 

Huijbregts (1998) developed a classification system specifically for LCA to 

distinguish between different sources of uncertainty and variability, to which 

Björklund (2002) and Hauschild et al. (2018) extended upon. Huijbregts (1998) 

distinguished between six types of uncertainty and variability: 

1. parameter uncertainty, uncertainty due to a lack of knowledge of the “true” 

data (e.g., inaccuracy, unrepresentativeness and lack of data), 

2. model uncertainty, uncertainty due to a loss of information when modelling 

reality within the present LCA structure (e.g., assumption of linear 

relationships),  

3. uncertainty due to choices, uncertainty caused by unavoidable choices when 

performing LCAs (e.g., definition of functional unit),  

4. temporal variability, variations over time (e.g., seasons),  

5. spatial variability, variations across locations (e.g., regional differences in 

emission factors), and  

6. variability between sources and objects, inherent differences in a product 

system (e.g., different characteristics between factories).  

Björklund (2002) added: 

7. epistemological uncertainty, uncertainty caused by lack of knowledge on 

system behavior (e.g., ignorance about relevant aspects of the studied 

system), and  

8. mistakes (e.g., using wrong units)  
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to which Hauschild et al. (2018) added: 

9. relevance uncertainty, uncertainty of the representativeness of the used 

indicators for the decision at hand (e.g., completeness of relevant impact 

categories covered). 

Hauschild et al. (2018) stated that these nine types are essentially sub-classes of a 

wider used classification of uncertainty i.e., parameter, model and scenario 

uncertainty. In that case, parameter uncertainty consists of both uncertainty and 

variability in the model input parameters, and is the most accessible type (though, 

not necessarily the most important one) to be assessed and addressed in LCA 

(Hauschild et al., 2018).  

Thus, there are different viewpoints when it comes to classifying uncertainty 

(epistemic and aleatory), which are related to each other, but not completely 

compatible. Now, turning to the topic of this PhD thesis, the classification as 

defined by Huijbregts (1998) is used because when dealing with uncertainty and 

variability in LCA, this classification is often referred to (as of August 5, 2020, 

Huijbregts’ article (1998) has been cited 275 times). To be able to compare the 

different methodologies, we look at the different viewpoints from the perspective 

of  Huijbregts’ classification (1998), without trying to reconcile them or develop a 

new overarching school of thought.  

In this PhD thesis, the focus lies specifically on methodologies used to propagate 

‘parameter uncertainty’ and ‘variability between objects and sources’ – as defined 

by Huijbregts (1998) – because those two types of uncertainty and variability are 

the most feasible to be quantified in the inventory analysis by the LCA practitioner 

(Huijbregts, 1998).  

Through a systematic review, we aim to study which methodologies have already 

been used that allow to decide whether uncertainty or variability is dominating in 

LCA results. Quantifying uncertainty and variability separately in the same LCA 

study leads to the ability of distinguishing between them in the interpretation 

phase and making well-informed conclusions and decisions. A systematic review is 

a review that uses systematic and explicit methods to identify, select, and critically 

appraise relevant research to answer a clearly formulated research question, with 

the goal of minimizing bias (Moher et al., 2009). 
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There have been studies that surveyed [e.g., Lloyd and Ries (2007) who discussed 

the quantitative uncertainty analysis of 24 LCA studies] and discussed [e.g.,Groen 

et al. (2014), Heijungs and Lenzen (2014) and Igos et al. (2018)] methods for 

uncertainty analysis in LCA. In these articles, uncertainty and variability were 

quantified together (as if they were interchangeable) and not separately in the 

same LCA study. To our knowledge, there has been made no attempt to review all 

methodologies that allow to decide if either uncertainty or variability is dominating 

in the results. For each methodology identified and included in the systematic 

review, we will study which visualization options exist and what the limitations are. 

We aim to select the most appropriate one(s), which allow to clearly conclude 

whether uncertainty or variability is dominating in the results, for future use in LCA.  

3.2 Methods 

The search process and reporting of the systematic review is based on the PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement 

(Moher et al., 2009). This statement was very well-received as a tool for conducting 

systematic reviews (the PLoS Medicine publication has 20265 citations as of August 

5, 2020). 

For this systematic review, relevant published articles were identified by searching 

through the Web of Science Core Collection database, while “articles in press” were 

identified within Scopus. No restrictions were set for language or publication date. 

The reference lists of the articles included in the review were also checked for 

additional relevant studies. The last search was run on August 31, 2018. 

Four topics were defined that reflected the research question: uncertainty, 

variability, methodology and life cycle assessment. For each topic, a range of search 

terms was iteratively developed and tested. One search term of every topic had to 

be present in the title, abstract and/or keywords in order to be identified within the 

databases (Fig. 3-1).  

Eligibility criteria were specified in advance. These criteria were designed in a way 

to consecutively narrow down the pool of identified articles (thus criterion 1 has a 

much broader scope than criterion 4). Studies were found eligible to be included in 

the review if they met all of the following four criteria:  
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Figure 3-1 Search strategy of the systematic review. 

562 records were identified through database searching by combining search 

terms related to four main concepts (* represents any group of character(s), 

including no character; ? represents any single character; and $ represents zero 

or one character). 
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1. An LCA was conducted. The methodology needed to be usable within the LCA 

framework, and a fully worked out case study would provide valuable insights 

with regards to possibilities and limitations. Therefore, review papers or other 

types of assessments, such as risk assessment and assessments of fate, 

exposure and effects models, were excluded. 

 

2. A clear distinction was made between uncertainty and variability in the 

inventory phase. Some kind of difference needed to be notable based on the 

given definitions, descriptions, input tables and/or graphs. It had to be clear 

which – and possibly how – input data reflected uncertainty and/or variability. 

 

3. The effect of ‘parameter uncertainty’ and ‘variability between sources and 

objects’ were both considered, because – as stated before – those two types 

are the most feasible to be quantified in the inventory analysis (Huijbregts, 

1998). Though, keeping in mind the different viewpoints discussed in the 

introduction, it was not required for those specific terms to be used in the 

selected articles. However, it was required that there was a possibility to 

justifiably assume that those two types were included, even when a different 

viewpoint was taken or when the authors did not thoroughly specify the 

distinction. 

 

4. The applied methodology allowed the reader to conclude whether 

uncertainty or variability is dominating in the results. Thus, even when the 

authors did not specifically discuss that such a conclusion could be made, the 

reader would still be able to deduce it from the results shown in tables and/or 

graphs. 

Identified studies were consecutively read carefully and their eligibility assessed 

based on the title (e.g., LCA was also used as an abbreviation for “last common 

ancestor), abstract and, when the abstract did not lead to a clear judgment, the full-

text. The information found was structured as will be shown in the results section. 

One author was contacted because of unclearly reported information on the used 

methodology in their study, for which we got a response.  
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3.3 Results 

562 records were identified in Web of Science and Scopus based on the defined 

search strategy (Fig. 3-1 and 3-2). Not surprisingly, LCA was the limiting topic in the 

search strategy (Fig. 3-1). Four duplicates were excluded. Subsequently, 558 

records were screened on title and abstract, of which 397 records were excluded 

because the studies clearly did not meet the eligibility criteria. 161 records were 

assessed based on their full-text. For some articles, it was very clear from the full-

text if they needed to be excluded [e.g., Sastre et al. (2015) and Venkatesh et al. 

(2011) stated that even though uncertainty and variability are inherently different, 

they considered them jointly]. In other articles, it was not so clear if the authors 

used the two terms more as synonyms or if a clear distinction was made.   

The full-text eligibility check is provided in the online supplementary material of the 

published article of this systematic review. It shows the main reason why an article 

was excluded from the systematic review and why in the end we could designate 

11 out of 161 records as eligible. The three possible reasons, reflecting the eligibility 

criteria described in the methods section, were:  

1. the article does not make a distinction between uncertainty and variability, or 

only in passing,  

2. the article does not take both ‘parameter uncertainty’ and ‘variability between 

sources and objects’ into consideration, and  

3.  it cannot be concluded if either uncertainty or variability is dominating.  

It should be noted that the supplementary material only indicates the main reason 

why an article was not included, but that these three reasons are not mutually 

exclusive. This limited number of final articles illustrates that researchers often 

treat uncertainty and variability alike, even when mentioning the importance of 

separating them. The reference lists of the eleven selected articles were checked 

for additional relevant studies, however none were found outside the defined 

search strategy. 
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Figure 3-2 Flow of information through the different phases of the systematic review. 
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From the eleven included articles, eight studies conducted an LCA of an agricultural 

product and three on energy generation (Fig. 3-3). One of those articles (Yan and 

Boies, 2013) studied the environmental impact of a specific biofuel. The most 

recent article focused on pavements (AzariJafari et al., 2018). Hence, propagating 

variability seems especially relevant for LCAs of agricultural products, probably 

because of their inherently variable inventory data, e.g., different soil types, 

weather conditions, consumption patterns, etc. (Notarnicola et al., 2017). 

 

 

Figure 3-3 Classification of the eleven included articles. 

The classification is done by year, journal (distinguished by color) and sector 

(distinguished by patterns). 

Table 3-1 gives an overview of the eleven selected studies and their supplementary 

materials regarding their studied system, functional unit, system boundaries, 

geographical location, impact category, example sources of parameter uncertainty 

and variability between sources and objects, and on which information we could 

base the conclusion of whether uncertainty or variability is dominating. For 

readability, we will use the article ID’s, as defined in Table 3-1, throughout the 

remainder of the manuscript. The terminology used by the authors themselves is 

used in the table, illustrating the lack of harmonization. Nine (except ID 6 and 11) 

out of the eleven articles focused exclusively on the impact category climate 

change, using terms such as “global warming potential”, “carbon footprint”, 

“greenhouse gas intensity” and “(life cycle) greenhouse gas emissions”. 
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Table 3-1 Overview of the eleven selected articles (using the terminology of each individual paper). 

The table lists (i) the identification number (ID) used in the review, (ii) the source, (iii) the researched system, (iv) the functional unit, (v) 

the chosen system boundary, (vi) the geographical location of the system, (vii) the considered impact categories, (viii & ix) where the 

sources of parameter uncertainty and variability between sources and objects can be found in the selected articles and a few examples 

of those, and (x) where we could find the information to base the conclusion of whether uncertainty or variability is more dominating in 

the results, followed after “:” with the actual conclusion made, either formulated or explicitly discussed in the text or deduced by 

combining information in the paper. Further information on why and which assumptions we had to make regarding the classification of 

uncertainty and variability is given in the results section.  (Loc. = Location; GWP = Global Warming Potential; GHG = greenhouse gas; FU 

= functional unit). 

ID Source System Functional unit System 

boundary 

Loc. Impact 

category 

Sources of 

parameter 

uncertainty 

Sources of 

variability between 

sources/objects 

Uncertainty or 

variability 

dominating? 

1 (Basset-

Mens et al., 

2009) 

Milk 

production 

1 kg of New-

Zealand milk 

Cradle-to-farm-

gate 

NZ GWP Table 1: milk yield, 

feed supplements, 

etc. 

Table 1: milk yield, 

feed supplements, 

etc. 

Fig. 1, Table 3, section 

3.1: variability 

2 (Röös et al., 

2011) 

Refined 

wheat 

products 

1 kg of wheat 

before the 

milling processa 

Cradle-to-mill SE Carbon 

footprint 

Table 3: wheat 

yield, amount of N 

fertilizer, distance 

farm to mill, etc. 

Table 3: wheat 

yield, amount of N 

fertilizer, distance 

farm to mill, etc. 

Fig. 2, Table 5, section 

3.2: uncertainty (for 

the scenario for which 

soil N2O emission 

uncertainty was 

included), etc. 

a The study also included a functional unit of “1 kg of KGI (Kungsörnens Gammeldags Idealmakaroner, a common Swedish pasta variety) in paper packaging available for sale in 

a supermarket in Stockholm” with a cradle-to-retail functional unit, but was not used in the reviewed methodology for propagating uncertainty and variability separately and 

therefore not included in the overview 

 

 



   

Chapter 3  45 

Table 3-1  Continued 

ID Source System Functional unit System boundary Loc. Impact 

category 

Sources of 

parameter 

uncertainty 

Sources of 

variability between 

sources/objects 

Uncertainty 

or variability 

dominating? 

3 (Yan and 

Boies, 2013) 

Wheat 

ethanol 

1 MJ of final 

fuel energy 

produced 

Considered life cycle 

stages: agriculture, wheat 

transport and handling, 

biorefinery, ethanol 

distribution and potential 

land use change 

UK GHG 

intensity 

Table S3 Run 4-

6: embedded 

GHG in 

pesticide, 

transport 

distance, etc. 

Table S3 Run 1: 

grain yield, N 

application rate, etc. 

Fig. 2, section 

3: uncertainty 

4 (Steinmann 

et al., 2014) 

Coal-fueled 

power 

generation 

1 kWh of 

electricity 

generated at a 

plant or plants 

in a particular 

calendar year 

Mine to wire US Life cycle 

GHG 

emissions 

Table S1: 

electricity use 

for surface 

mining, diesel 

use truck, etc. 

Introduction p. 

1147: mine type, 

mode of transport, 

etc. 

Fig. 2, Fig. 4, 

section 3.1: 

variability 

5 (Hauck et al., 

2014) 

Gas power 

generation 

1 kWh of 

electricity 

generated at 

the power plant 

Well to wire US Life cycle 

GHG 

emissions 

S3: well life 

time, gas 

turbine heat 

rate, etc. 

Figure 1 caption: 

production practice, 

processing 

technology, etc. 

Fig. 2, Fig. 3, 

Fig. 4, section 

3.1: 

variability 

6 (Chen and 

Corson, 

2014) 

Dairy farms 1 ha of on-farm 

usable 

agricultural 

area & 1000 kg 

of fat-and-

protein-

corrected milk 

sold 

Cradle-to-farm-gate; with 

exclusion of all inputs, 

output and usable 

agricultural area of cash 

crops to retain only the 

milk-production subsystem 

for the “milk” functional 

unit 

FR Climate 

change, 

acidificatio

n, 

eutrophicat

ion 

Table 1: NH3 

from manure 

spreading, 

mineral 

fertilizer 

application, etc. 

Section 2.3: farm 

characteristics 

Fig. 2, section 

3.1, section 

4.1: 

variability (for 

eutrophicatio

n, for FU per 

ha of usable 

agricultural 

land), etc. 
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Table 3-1  Continued 

ID Source System Functional 

unit 

System boundary Loc. Impact 

category 

Sources of 

parameter 

uncertainty 

Sources of 

variability 

between 

sources/objects 

Uncertainty or 

variability 

dominating? 

7 (Zehetmeier 

et al., 2014) 

Dairy cow 

production 

systems 

1 kg of milk Dairy farm gate & 

system expansion: 

dairy farm gate and 

fattening systems 

farm gate 

DE GHG emissions Table 1: emission 

factor nitrogen 

input into soil and 

emission factor 

beef from suckler 

cow production 

Table 1: calving 

interval/ 

replacement 

rate 

Fig. 2, Table 4, 

section 3.1, 

section 3.2: 

uncertainty 

8 (Groen et al., 

2016) 

Pork 

production 

1 kg body 

weight of a 

growing pig 

Processes considered 

in the pig chain: 

production of crop 

inputs, feed 

processing, piglet 

production, manure 

management, pig 

housing, and enteric 

fermentation from 

pigs 

NL GHG emissions Section 2.5.4: N2O 

emissions of feed-

crop production, 

CH4 emissions of 

manure 

management, etc. 

Section 2.5.4: 

crop yield, feed 

intake, etc. 

Fig. 7: uncertainty 

9 (Wolf et al., 

2017) 

Milk 

production 

1 kg of energy 

corrected 

milk 

Cradle-to-farm gate DE GHG emissions Fig. 5: direct N2O 

crop cultivation, 

CH4 manure, etc. 

Fig. 5: milk 

yield, 

replacement 

rate, etc. 

Fig. 5, Fig. 6: 

uncertainty 
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Table 3-1  Continued 

ID Source System Functional unit System 

boundary 

Location Impact 

category 

Sources of 

parameter 

uncertainty 

Sources of 

variability between 

sources/objects 

Uncertainty or 

variability 

dominating? 

10 (Clavreul et 

al., 2017) 

Open-field 

tomato 

production 

1 ton fresh tomato Farm gate ES & PT Carbon 

footprint 

Table 2: N2O 

direct 

emissions, 

GHG 

emissions 

from fertilizer 

production, 

etc. 

Table 1: nitrogen 

input, diesel use, 

etc. 

Fig. 5, Fig. 6, 

section 3.2: 

variability 

11 (AzariJafari 

et al., 2018) 

Pavements Providing a path for 

traffic service for 

20000 Annual Average 

Daily Traffic including 

5% of the truck, over 1 

km length of a two 

lanes road in Quebec 

urban area and for a 

50-year lifespan 

Cradle-to-

grave 

CA Midpoint & 

endpoint 

impact 

categories of 

IMPACT 

2002+ 

Table S7: 

equipment, 

electricity, 

etc. 

Section 2.2.4.2: 

pavement lifetime, 

variation in 

materials, etc. 

Fig. 4, Fig. 5, 

section 3.2: 

uncertainty (for 

ecosystem 

quality), etc. 
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Figure 3-4 shows in which of the included articles a conclusion can be drawn 

regarding specific type(s) of uncertainty and variability. The type is either (i) 

propagated on its own, (ii) propagated alongside another type because it was not 

feasible (or relevant) to separate the types, or (iii) the type was not considered. A 

type was only included if the type [as defined by Huijbregts (1998)] was explicitly 

mentioned by the article or if we could deduce it based on the given definitions. 

For example, the study done by Zehetmeier et al. (2014) (ID 7) presented a clear 

table showing how each parameter was classified to a certain type or several types 

of uncertainty and variability. 

 

 

Figure 3-4 Diagram showing the specific type(s) of uncertainty and variability accounted for 

in each article. 

The Venn-diagram shows in which articles (using article IDs as defined in Table 3-

1) a conclusion can be drawn regarding specific type(s) of uncertainty and 

variability (note: an article ID such as 7, can appear more than once in a specific 

type depending on how the different input parameters are classified). 

If the authors used a different viewpoint for the uncertainty classification, the 

sources of uncertainty and variability were interpreted from the perspective of 

Huijbregts’ classification (1998). If no clear terminology or definitions were given, 

then it was deduced based on context and other information given in the study. 

Sometimes, some assumptions had to be made regarding the sources of 

uncertainty and variability to compare and assess the effectiveness of the 

methodology. For example, Clavreul et al. (2017) (ID 10) distinguished between the 

“primary data”, described as the variability in farmer’s inputs, and the “secondary 
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data”, which they described using both “model uncertainties” and “uncertainty in 

model parameters”. However, they did not give an explicit definition about these 

terms. Even though the primary data can also include parameter uncertainty, in this 

systematic review they were classified as variability between sources and objects 

based on their given description. The secondary data were classified as having 

parameter uncertainty.  

Yan and Boies (2013) (ID 3) refer to the uncertainty and variability classification 

shown in Lloyd and Ries (2007), where uncertainty and variability sources can be 

classified according to three possible LCA modeling components i.e., parameter 

(input date), scenario (normative choice) or model (mathematical relationships). 

However, they used an unreferenced subclassification for parameter uncertainty 

(consisting of both uncertainty and variability for this classification), i.e.: “statistical 

uncertainty”, “temporal/spatial variability”, “data limitation” and “scientific 

uncertainty”. Based on the used classification and the given definitions, we 

classified “statistical uncertainty” as variability between sources and objects; and 

“data limitation” and “scientific uncertainty” as parameter uncertainty. Groen et al. 

(2016) (ID 8) and Wolf et al (2017) (ID 9) based their classification on Walker et al. 

(2003), thus distinguishing between “epistemic uncertainty” and “variability 

uncertainty”. 

Furthermore, Chen and Corson (2014) (ID 6) added uncertainty in emission factors 

to a study done by van der Werf et al. (2009) which already included variability in 

farm characteristics. Their aim was to assess how the inclusion of a different type 

of uncertainty to an already existing LCA study changes the interpretation. 

However, they stated that, because of the references they used, epistemic 

uncertainty and variability could not be clearly separated in the uncertainty ranges 

of the emissions factors. Nevertheless, seeing as they specifically wanted to 

separate the two sources of uncertainty and because, in this systematic review, we 

are especially interested to see which methodologies are used to propagate that 

separation, it was chosen to classify the emission factors as belonging to parameter 

uncertainty.    

ISO 14040/44 (2006a, 2006b) did not provide specific definitions and classifications 

for uncertainty and variability. It is clear that since then, no consensus has been 

reached regarding the terminology and definitions for the different types of 

uncertainty and variability.  
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Typical parameter uncertainty sources were electricity use and emissions, while 

variability between sources and objects was often found in yield data and lifetimes 

(Table 3-1). Next to this, uncertainty due to choices was the most frequently 

assessed (fig 3-4). The most prominent source of that uncertainty type was related 

to the choice of the impact assessment method (ID 1, 4, 5 and 11). Especially the 

choice of the Global Warming Potential (GWP) time horizon, which varied between 

20, 100 and 500 years (ID 1, 4 and 5), was often taken into account. While the LCA 

practitioner can deal with parameter uncertainty and variability between sources 

and objects through e.g., propagation, dealing with uncertainty due to choices is 

more study-specific and often related to following guidelines and standards. 

3.4 Discussion 

It is clear that the origin and implications of epistemic uncertainty and variability 

differ. By assessing the nature of uncertainty, we can know if the quality of the 

output can be improved by additional research, which is only the case for epistemic 

uncertainty (Walker et al., 2003). However, variability can also further guide system 

optimization, product development or policy (Steinmann et al., 2014). A clear 

distinction between epistemic uncertainty and variability may help decision makers 

to judge differences in product comparisons, options for product improvements or 

the assignment of ecolabels (Huijbregts, 1998).  

For example, regarding options for product improvements, we noticed in Goossens 

et al. (2017a) that it is possible to produce 1 ton apples with low impacts across all 

impact categories, thereby illustrating the importance of assessing the variability in 

managerial influence. If variability would have been included within the broad 

concept of uncertainty, then this feature would not have been noticeable during 

the interpretation phase. Outliers would have been considered as inherent to the 

uncertainty and actors would not have known that it is caused by a real variation. 

Moreover, regarding product comparisons, separating uncertainty and variability is 

also especially relevant when comparing bio-based products, derived from natural 

systems, with abiotic ones, for which conditions are controlled and often 

standardized. Bio-based products are subject to environmental conditions, which 

can cause a lot of variability in the data (Milà i Canals et al., 2011). When comparing, 

for example, LCAs of biofuels with fossil fuels, it is likely that variability will 

dominate the biofuel’s LCA results, while uncertainty will dominate the ones of 
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fossil fuel. In that case, the distinction will only be noticeable after clear separation 

of uncertainty and variability, and suitable decisions can only be drawn after proper 

communication to decision makers. These examples illustrate the general need for 

quantifying uncertainty and variability in LCA.  

3.4.1 Classification of parameters  

As stated previously, the goal of this systematic review is to study which 

methodologies have been used in LCA to separately account for uncertainty and 

variability in the results. For this we will first discuss the classification of the 

parameters used by the eleven included articles because it impacts the review. 

Whereas people may expect that definitions are clear, it became obvious during 

our study that the classification of parameters as belonging to one or more of the 

different types of uncertainty and variability in the data inventory phase, is study-

specific (see example sources of parameter uncertainty and variability between 

sources and objects in Table 3-1). It depends on goal and scope definition 

(Huijbregts, 1998) and data quality. 

In the goal definition, researchers define the reasons for carrying out their study 

(ISO, 2006a). As can be seen in Table 3-1 and Figure 3-4, this has prominent 

consequences on which types of uncertainty and variability will be taken into 

consideration. For example, Basset-Mens et al. (2009) (ID 1) set out to calculate the 

Global Warming Potential  (GWP) of New-Zealand milk, because decision makers 

seek to understand the significance of changing milk production due to refining 

New Zealand’s agricultural management. By using national statistics, they explicitly 

propagated variability between sources and objects (i.e., farms), which inherently 

included spatial variability. However, rather than focusing on geographical location 

(e.g., compare the GWP caused by the milk production in the North Island with the 

South Island), only the inter-farm variability was relevant for their goal. 

The scope definition comes into play by defining the back- and foreground system 

and the functional unit (ISO, 2006a). The foreground system is commonly defined 

as comprising those processes of a system that are specific to it, and are largely 

modelled using primary data i.e., data collected first-hand by the LCA practitioner. 

In  contrast, the background system is commonly defined as those processes of a 

system that are not specific to it, and are typically modelled using life cycle 

inventory databases (Hauschild et al., 2018). This distinction influences the choice 
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of classifying data as either deterministic, uncertain, variable or both uncertain and 

variable.  

Data collected in the foreground system for one individual life cycle tend to be more 

easily accepted as being deterministic by LCA practitioners or are expected to have 

a very low uncertainty given that the LCA practitioner should have made sure that 

the collected data is reliable. Yet, data in the foreground system can also be 

uncertain and variable, though that information is often not considered or 

unavailable during collection. LCA practitioners can also use an extensive 

foreground system, containing different individual life cycles, which can be in itself 

an indication for variability. For example Steinmann et al. (2014) (ID 4) and Hauck 

et al. (2014) (ID 5) used the deterministic data of a relatively large number of plant-

specific life cycles to calculate a variability ratio. Thus, their input parameters were 

either deterministic or had an uncertain distribution assigned to it, but not a 

variable one.  

In contrast, the background system should – in theory – always include uncertainty 

and variability, seeing as it is not specific to the studied system. However, the data 

quality of the database determines if that kind of information is available. It might 

not be that relevant to even put in the time to find qualitative background data, 

since the decision maker will be more inclined to base their decision on results from 

the foreground data, since they can influence it more. The LCA practitioner also has 

more control over the foreground system to make it truly representative, which is 

less the case for the background system. Lastly, a lot of product/process 

comparisons have a common background system. By limiting the uncertainty there, 

one can effectively focus on the prevalent differences between the two product 

systems found in the foreground system. 

The classification of parameters is also hampered by certain parameters that can 

be classified as parameter and/or model uncertainty. For example, emissions can 

either be measured relative to a specific functional unit and incorporated as 

parameters or they can be modeled mathematically in relation to input parameters 

(Lloyd and Ries, 2007). In the selected articles, Yan and Boies (2013) (ID 3) clearly 

define soil N2O emission from fertilizer use as “scientific uncertainty” (i.e., 

parameters that are currently highly uncertain with the best available science) 

which they defined as being part of parameter uncertainty. Clavreul et al. (2017) 

(ID 10) considered direct N2O field emissions as having “model uncertainties”. 

However, as stated in the results, due to unclear terminology and non-reported 
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definitions, we classified it as parameter uncertainty. Zehetmeier et al. (2014) (ID 7) 

classified the emission factor of nitrogen input into soil as having both model 

uncertainty and parameter uncertainty.   

It is clear that distinction between the different types of uncertainty is not 

straightforward, often because an input parameter can be considered as belonging 

to different types, or insufficient data is available. Several authors (ID 2, 4 and 6) 

stated that it was not feasible for them to clearly separate uncertainty and 

variability in their parameters, and the parameter was subsequently considered as 

uncertain.  

It may be interesting to further subdivide variability between sources and objects 

in inter-individual [as defined by the U.S. EPA (Wood et al., 1997)] and technological 

variability [as used by Steinmann et al. (2014) (ID 4) and Hauck et al. (2014) (ID 5)], 

because technological variability can provide information on how processes can be 

improved, as opposed to inter-individual variability. 

3.4.2 Propagation, visualizations and limitations 

The chosen methodology has a big influence on how the distinction between 

uncertainty and variability can be made, how it can be propagated and analyzed, 

how it can be visualized and what kind of conclusions can be drawn regarding the 

dominance of either uncertainty or variability. All the included methodologies in 

this systematic review generally follow the different steps for treatment of 

uncertainty (which includes variability) of LCA models, as described by Igos et al. 

(2018):  

1. characterization, i.e., the qualitative and quantitative description of 

uncertainties from the model and inputs,  

2. uncertainty analysis, i.e., the propagation of uncertainty to the outputs, 

3. sensitivity analysis, i.e., the analysis of the influence of input uncertainty on 

output uncertainty, and  

4. communication, i.e., the ability to inform the audience about uncertainty.  

Each methodology that was used in the articles to propagate the different types of 

uncertainty and variability – in particular focusing on parameter uncertainty and 

variability between sources and objects – is qualitatively analyzed in the following 

sections. Uncertainty analysis and sensitivity analysis are distinct but related 
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disciplines and often conflated in literature (Saltelli et al., 2019). The different 

methodologies were therefore categorized as uncertainty and variability 

propagation, local sensitivity analysis, screening method and global sensitivity 

analysis; to clearly distinguish between the different types of analyses. 

Since LCA results are becoming more and more disseminated [e.g., for the Product 

Environmental Footprint (European Commission, 2018), by companies (BASF, 2021; 

Unilever, 2021), etc.], clear communication of the uncertainty component 

(including variability) is required to avoid biased interpretations from non-experts 

(Igos et al., 2019). Therefore, a proper LCA study should communicate all different 

components related to the uncertainty and variability quantification, from defining 

the concepts and identifying the sources, to the propagation of these sources 

(Hauschild et al., 2018; Igos et al., 2019). The chosen communication form should 

be understandable and clear for the target audience. It should enhance the 

interpretation and lead to robust conclusions, keeping in mind that the same 

information can be interpreted differently depending on the audience’s context 

and their familiarity with the concepts (Hauschild et al., 2018).  

Hauschild et al (2018) list four different, complementary ways to present 

uncertainty information:  

1. qualitatively (e.g., reporting sources of uncertainty/variability and their 

potential influence on results),   

2. descriptively (e.g., summary statistics), 

3. graphically and 

4. numerically (e.g., ranges, probability distributions of results or statistical 

results).  

In the following review, all these ways are considered, but the focus lies especially 

on graphical visualization, because it allows to show a lot of information in a concise 

and structured way. However, it also bears the risk of being suggestive and easily 

misinterpreted (Hauschild et al., 2018), or it might be too complex or conversely, 

too simple, depending on the degree of detail and nuance included. Figure 3-5 

shows how the results were visualized in the selected studies for the specific 

methodologies used for all the considered types of uncertainty and variability. The 

data used in the visualization options, part of Figure 3-5, has no link with the data 

in the eleven included articles, only with their methodologies. These illustrative 

data were chosen to always have variability be the most dominating.  
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Figure 3-5 Overview of the steps taken by the different articles to visualize uncertainty and 

variability in the results. 

The different articles are indicated by ID’s as defined in Table 3-1. The used data 

in the visualization options is fictional and chosen to have variability dominating. 

Striped frames show visualizations where statistical measures are applied. 
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3.4.2.1 Uncertainty and variability propagation 

Processing uncertainty in LCA is usually done by using either a sampling method or 

an analytical method (Heijungs and Lenzen, 2014; Igos et al., 2019), however other 

methods such as scenario analysis, interval calculations and fuzzy set theory were 

also occasionally used (Igos et al., 2019; Lloyd and Ries, 2007).  

The aim with sampling methods is to simulate several result possibilities 

represented by a probability distribution, by sampling inputs from probability 

distributions (Hauschild et al., 2018; Igos et al., 2019). In contrast, in the analytical 

approach the first-order approximation of the Taylor series expansion is usually 

used to determine the variance of the output based on the variances of the 

uncertain inputs. Its main advantages are calculation speed and smaller data 

requirements. The drawback are that less uncertainty information can be obtained 

from the result and that it is predominately applicable for simple models with small 

uncertainties (Groen et al., 2014; Heijungs and Lenzen, 2014).  

Scenario analysis for uncertainty analysis leads to a range of possible LCA results 

calculated from different model formulations (Igos et al., 2019). Fuzzy sets – which 

is an extension of interval calculations (Igos et al., 2019) – simulate the way an 

expert reasons by degrees of plausibility or possibility, rather than frequency, of an 

uncertain parameter value. This is mostly displayed by triangular or trapezoidal 

distributions, based on a lower and upper bound (support) and a most plausible 

value or interval (core), respectively. Narrower intervals of this distribution at any 

given degree of possibility α (from 0 to 1), are called α-cuts, which can be 

manipulated using interval arithmetic. The computational effort is limited, seeing 

as only a few α-cuts are needed (e.g., 20) to give insight into the output uncertainty. 

The result of this method is a possibility function – combining the inventory results 

at all α-cuts – with a core value (of height equal 1) and a lower and upper bound, 

for which the resolution is determined by the number of propagated α-cuts (Groen 

et al., 2014; Igos et al., 2019; Tan, 2008). In the selected articles, only sampling 

methods i.e., Monte Carlo simulations, were used to propagate uncertainty and 

variability separately. Therefore, the other possible methods for uncertainty 

propagation in LCA are not further discussed; more extensive overviews can be 

found in e.g., Groen et al., (2014), Hauschild et al. (2018), Heijungs and Huijbregts 

(2004), Igos et al. (2018) and Lloyd and Ries (2007). 
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Monte Carlo simulations 

The most commonly used sampling method in LCA is Monte Carlo simulation 

(Groen et al., 2014; Hauschild et al., 2018; Igos et al., 2019), available in all major 

LCA software (Hauschild et al., 2018). The method was used in ten out of the eleven 

included studies (all except ID 8). The basic principle of this sampling method is 

conducting iterations of model calculations using values sampled from defined 

probability distributions for each input parameter. Therefore, the model output can 

be represented by a probability distribution as well (Hauschild et al., 2018; Igos et 

al., 2019) as illustrated in the first graph in light blue on the left of Figure 3-5.  

Basset-Mens et al. (2009) (ID 1) highlighted the difficulty of defining appropriate 

probabilistic distributions for the input parameters. The lack of statistics for 

inventory data result in an additional and time-consuming phase for estimating 

their probabilistic functions based on a set of data, literature references or expert 

judgement. Moreover, the aggregated nature of available datasets make it difficult 

to define potential correlations between parameters (Yan and Boies, 2013).  

Any Monte Carlo simulation has the same basic, iterative process, but the way 

values are randomly sampled from the probability distribution can vary (Hauschild 

et al., 2018). Sampling can be done using e.g., Monte Carlo sampling, Latin 

Hypercube sampling (Groen et al., 2014; Hauschild et al., 2018; Heijungs and 

Lenzen, 2014) and Quasi-Monte Carlo sampling (Groen et al., 2014; Igos et al., 

2019); with the last two having a faster convergence rate (Igos et al., 2019). One of 

the selected articles (ID 1) specifically stated that they used Latin Hypercube, 

because the stratified sampling without replacement leads to a quicker stabilization 

of the results (Basset-Mens et al., 2009). 

Characterization 

Monte Carlo simulations are in the selected studies most often used to firmly 

separate the different types of uncertainty and variability, with scenario-like 

outcomes (ID 1 – 3, 10 and 11). One or more types are considered as deterministic, 

while the other considered types are sampled from during the iterations, and the 

combined effect of all types is often propagated as well (ID 10 and 11). 

Propagating parameter uncertainty in the selected articles by means of Monte 

Carlo simulations was done by sampling exclusively from distributions reflecting 

uncertainty (ID 1 – 6, 10 and 11). A distinction can be made between studies that 
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propagate specific parameters as only being uncertain (ID 3 – 6 and 10), and studies 

that assign uncertainty distributions and variability distributions to each parameter 

(ID 1 and 2). The assigned distributions are: uniform, triangular or beta-PERT, 

depending on available values (ID 3 – 5 and 10); normal or lognormal, using the 

standard error of the mean (ID 1); or lognormal, using arithmetic metrics (ID 5), 

using geometric metrics (ID 2, 4 and 5), or using the uncertainty factors of the 

pedigree matrix (ID 11).  

Propagating variability between objects and choices is done similarly as parameter 

uncertainty. Monte Carlo simulations were conducted, sampling exclusively from 

distributions reflecting variability (ID 1, 3, 7, 10 and 11). The assigned distributions 

are: discrete (ID 10), uniform (ID 11), or normal or lognormal, using the standard 

deviation (ID 1, 3, 7 and 10) as opposed to using the standard error of the mean for 

propagating parameter uncertainty (ID 1). 

Some studies propagated parameter uncertainty and variability between sources 

and objects alongside each other during Monte Carlo simulations. There are three 

distinct methods used:  

1. sampling from both uncertainty distributions and variability distributions, after 

having conducted simulations for each separately (ID 10 and 11), which – of 

course – causes a larger spread in the results, 

2. conducting two Monte Carlo simulations, sampling exclusively from 

uncertainty distributions and sampling from both distribution types (ID 2), and 

3. conducting two Monte Carlo simulations, sampling exclusively from variability 

distributions and sampling from both distribution types (ID 7).  

The impact of uncertainty and variability in method 2 and 3 is measured by how 

much the spread increases in the resulting probability distribution by also 

propagating variability and uncertainty respectively. 

Visualization 

Exclusively sampling from uncertainty distributions versus variability distributions 

leads to scenario-like outcomes. In this case, a choice needs to be made about 

which kind of statistic, based on the resulting probability distribution, is a proper 

indication to determine whether uncertainty or variability is most dominating. The 

resulting probability distribution of the Monte Carlo simulations are expressed in 

the selected articles using: median values (ID 3), standard deviation (ID 1 and 10), 
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ranges [e.g., 5th – 95th percentiles (ID 1 and 3), 2.5th – 97.5th percentiles (ID 2), 0th – 

100th percentiles (ID 1)] and skewness (ID 1).  

For the graphical visualization, only one of the included articles (ID 1) visualized the 

results from the simulations with probability distributions and three (ID 3, 5 and 10) 

used box plots (first and second illustrative graph in light blue on the left of Fig. 3-

5, respectively). 

Pairwise analysis 

AzariJafari et al. (2018) (ID 11) sampled exclusively from one type of uncertainty or 

variability, but had a slightly different approach. They conducted a pairwise 

analysis, meaning that they took the relative uncertainty and/or the relative 

variability of two products (option A and option B; see third illustrative graph in 

light blue on the left of Fig. 3-5) into consideration by subtracting their impacts from 

each other during the simulations (A-B). Instead of having two outputs (one for 

each product), only one is generated showing how many times option A performed 

better (negative values) or worse than B (positive values). They did this same 

analysis multiple times, once only propagating parameter uncertainty, once only 

propagating variability and once propagating all uncertainty and variability.  

For each impact category, their analysis shows if relative uncertainty and/or 

relative variability is a dominating factor in the selection of the preferred product 

(i.e., in how many iterations has option A less impact than option B when 

considering only relative uncertainty or only relative variability). For example, in 

100% of the iterations, option A had less impact on climate change than option B, 

when only considering uncertainty. In contrast, when only considering variability, 

option A was the preferred option regarding climate change in only a little more 

than 50% of the iterations. 

Number of iterations 

The accuracy of Monte Carlo simulations output increases when more iterations 

are conducted (Hauschild et al., 2018; Igos et al., 2019). However, the number of 

iterations performed is generally stated as being a trade-off between acceptable 

accuracy and needed computation time (Chen and Corson, 2014; Hauschild et al., 

2018; Igos et al., 2019). An insufficient number of iterations will not give a reliable 

output, because the full range of possible input values will not be sampled from nor 

will the shape of the probability distribution be adequately represented. Yet, there 
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is no specific amount of iterations that is generally large enough, rather it depends 

on when convergence is reached in the output of a specific model (Hauschild et al., 

2018). Nevertheless, a rule of thumb of 10000 iterations is normally applied to 

ensure stable variance (Ciroth et al., 2004; Igos et al., 2019).  

Hauschild et al. (2018) suggest repeatedly increasing the number of iterations until 

the difference of two subsequent uncertainty measures (e.g., mean or standard 

deviation) is acceptably low [i.e., numerical stability is reached (US EPA Technical 

Panel, 1997)]. This is however also a subjective measure and the question then 

arises, what is “acceptably low”? Robust estimators (e.g., median or extreme 

percentiles) might produce an “acceptably low” difference with a lower increase in 

iterations. Though, since skewed distributions are commonly used in LCA (e.g., 

lognormal), solely using robust estimators should be avoided. This illustrates how 

the choice of number of iterations is practitioner-specific as well as study-specific 

(Hauschild et al., 2018).  

In the selected studies, the number of iterations varied from 1000 to 50000. One 

article (ID 2) did not mention the number of iterations that was used. Only two (ID 

4 and 6) studies verified if increasing the number of iterations leads to an 

unacceptable difference compared to the smaller number. Steinmann et al.  2014) 

(ID 4) took a ten-fold of their chosen number of iterations (i.e., 10000 instead of 

1000 runs) and concluded that the difference in uncertainty ratio (see section 

Statistical measure) was smaller than 1%. Chen and Corson  2014) (ID 6) specified 

that increasing their 1000 iterations to 5000 increased the computation time from 

30 to 90 minutes for each farm, a difference considered unacceptable when 

compared to the corresponding increase in stability of estimates of the mean 

values.  

In this context, it seems relevant to reflect on what a long computation time really 

looks like. Although computation time might appear long (say hours), it may in fact 

be relatively short compared to the time needed to complete, for example, the data 

inventory analysis. Hence, it seems unbalanced to limit computation time to hours, 

even days, given the importance of appropriate uncertainty and variability 

assessments. Lack of computational power and time should not be used to justify 

lack of convergence. For example, actual (super)computer capabilities exist able to 

solve thousands of parallel nonlinear differential equations for weather 

predictions. Therefore, the number of iterations should be increased accordingly to 
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ensure that convergence is obtained (Hauschild et al., 2018). If needed, one can 

look for appropriate computational solutions at software or hardware level. 

Communication 

Monte Carlo simulations give a probability distribution as output, which might be 

challenging to disseminate to a broader audience. Communication can be simplified 

by using summary statistics or by taking specific values from the output distribution 

and using them to calculate a single value. Of the articles selected in this systematic 

review, Chen and Corson (2014)  (ID 6) calculated coefficients of variations and 

Steinmann et al. (2014) (ID 4) and Hauck et al. (2014) (ID 5) calculated uncertainty 

and variability ratios to facilitate communication.  

Statistical measure: Coefficient of variation 

Chen and Corson (2014) (ID 6) conducted Monte Carlo simulations, only 

propagating uncertainty, for each individual life cycle [which together reflect 

variability and was already assessed in the study of van der Werf et al. (2009) on 

which Chen and Corson built further, see section 3.3] and calculated the 

coefficients of variation for each life cycle as a measure for uncertainty. The degree 

of scatter among the calculated coefficients of variations reflects the inter-

individual variability in the coefficients of variations. Thus, the measure of 

variability is dependent on Monte Carlo simulations propagating uncertainty. It is 

difficult to conclude if either uncertainty or variability is dominating in the results, 

because two different, incomparable measuring systems (i.e., coefficient of 

variation and degree of scatter of individual life cycles) are used. Still, an indication 

is given by visualizing the strip plots (blue striped framed graph at the bottom left 

in Fig. 3-5).   

Statistical measure: Uncertainty ratio (ρ) and variability ratio (r) 

Steinmann et al. (2014) (ID 4) and Hauck et al. (2014) (ID 5) conducted Monte Carlo 

simulations, only propagating uncertainty, for each “individual” life cycle and for 

the “comprehensive” life cycle (encompassing all of the individual life cycles). They 

divided the 97.5th percentile by the 2.5th percentile, thereby creating an 

“uncertainty ratio ρ” for the comprehensive life cycle (equation 3-1): 

𝜌 =
𝑞0.975({𝑌})

𝑞0.025({𝑌})
       (Equation 3-1) 
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With the numerator being the 97.5th percentile of the Monte Carlo simulation 

results for the ‘comprehensive system’ {Y} and the denominator the 2.5th percentile 

of the same (Hauck et al., 2014). Steinman et al. (2014) (ID 4) also calculated that 

uncertainty ratio for each individual life cycle (see blue lines in the right blue striped 

framed graph in Fig. 3-5).  

Subsequently, Steinman et al. (2014) (ID 4) and Hauck et al. (2014) (ID 5) calculated 

a “variability ratio r” (equation 3-2): 

𝑟 =
𝑞0.975({𝐸(𝑦)})

𝑞0.025({𝐸(𝑦)})
       (Equation 3-2) 

by dividing the 97.5th percentile by the 2.5th percentile of a set of arithmetic means 

{E(y)} taken from the probability output distributions that were generated by 

conducting Monte Carlo simulations for each individual life cycle (though both used 

median values in their graphical visualization instead of arithmetic means; see red 

line in blue striped framed graph in Fig. 3-5).  

The uncertainty ratio and variability ratio show whether uncertainty or variability 

was the primary cause of the range in the results. If the ratio equals 1, then there 

is no effect upon the LCA results of uncertainty or variability respectively. If the 

uncertainty ratio is the biggest ratio, then further research may reduce the range 

in the LCA results. If the reverse is true, then further research will not substantially 

reduce the range, rather physical changes must occur, if possible (Steinmann et al., 

2014). 

Only uncertainty and variability ratios make it possible for the reader to make a 

clear-cut conclusion regarding which is more dominating. Other methodologies are 

not as straightforward and can lead to more ambiguous conclusions [for example 

the incomparable measuring systems of Chen and Corson (2014) (ID 6)].  

The variability ratio is based on an extensive database of deterministic values 

recorded for each included individual life cycle. Thus, calculating uncertainty and 

variability ratios is only possible if such widespread deterministic data is available 

for each individual life cycle. Moreover, Steinmann et al. (2014) (ID 4) pointed out 

that it was not always feasible to completely disentangle uncertainty and 

variability. They specified parameters as uncertain in their modeling approach, 

even though the influence of variability could not be fully excluded. However, even 

if they were able to completely distinguish between uncertainty and variability, 
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their used methodology of calculating uncertainty and variability ratios does not 

seem to allow the presence of strictly variable parameters. Thus, even though 

variability and uncertainty ratios allow for a clear distinction and conclusion, it 

requires a high degree of quality of the data, which is often not available.  

3.4.2.2 Local sensitivity analysis 

ISO 14040/44 (2006a, 2006b) defines sensitivity analysis as: “systematic procedures 

for estimating the effects of the choices made regarding methods and data on the 

outcome of a study.” However, sensitivity analysis is often used more broadly than 

how it is defined by ISO 14040/44 (2006a, 2006b). The sensitivity of a model also 

describes to which extent the variation of an input parameter leads to variation in 

the model result. Thus, a model is sensitive toward a parameter if a small change 

in the parameter results in a large change in the model result (Hauschild et al., 2018; 

Pianosi et al., 2016). A local sensitivity analysis can be considered as the effect of a 

certain predefined change in input on the output, while keeping the others 

constant (Björklund, 2002; Hauschild et al., 2018; Igos et al., 2019; Pianosi et al., 

2016; Wolf et al., 2017). 

Scenario analysis 

Scenario analysis (first green visualization option in Fig. 3-5) is a typical sensitivity 

analysis as defined by ISO 14040/44 (2006a, 2006b), where possible changes to the 

LCA results caused by discrete choices are calculated (Hauschild et al., 2018; Igos et 

al., 2019). In the selected studies, it was only used to evaluate uncertainty due to 

choices [i.e., allocation procedures (ID 3 and 7), functional units (ID 6), Life Cycle 

Inventory assumptions (ID 11) and Life Cycle Impact Assessment methods (ID 1, 4, 

5 and 11)], temporal variability (ID 2, 4 and 10) and spatial variability (ID 4). Not one 

specific visualization option exists, rather the visualization that is used to show the 

analysis results is repeated for each scenario. It is only feasible to maintain an 

overview when a limited amount of scenario’s is being compared. Therefore, it is 

not an advisable method for considering parameter uncertainty and variability 

between sources and objects, because of their high number of possible scenarios. 

One-at-a-time approach 

Perturbation analysis with a one-at-a-time approach can be regarded as a local 

sensitivity analysis. Thus, interaction effects between parameters are ignored 
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(Saltelli and Annoni, 2010). Groen et al. (2016b) mention two weaknesses 

associated with this method, i.e., the number of inputs parameters assessed is 

usually a subset of all input parameters and the arbitrary choice of the predefined 

change may not reflect the actual uncertainty range.  

This last issue is somewhat countered to by the two articles (ID 4 and 10) that used 

perturbation analysis with a one-at-a-time approach in their study. Steinman et al. 

(2014) (ID 4) used sequential perturbation analysis to assess the sensitivity of the 

results with respect to the uncertain parameters (since only those can be reduced 

by additional research), using the 2.5th and 97.5th percentiles of the assigned 

probability distribution as a predefined change. Similarly, Clavreul et al. (2017) (ID 

10) used the minimum and maximum values of the assigned probability distribution 

as a predefined change for their one-factor-at-a-time perturbation analysis. Results 

were visualized with error bars on a bar plot, showing the minimal and maximal 

results obtained when testing each parameter (ID 10) or with a tornado diagram 

(ID 4), where the longer bars at the top represent the parameters with the largest 

influence on the output (first two green graphs in Fig. 3-5). Clavreul et al. (2017) (ID 

10) underlined their primary data parameters (containing variability in farmer’s 

input) in contrast with the secondary data parameters (classified as parameter 

uncertainty), in their bar plot allowing for a quick assessment for which the model 

output was most sensitive.  

Multiplier method  

Groen et al. (2016b) and Wolf et al. (2017) (ID 8 and 9) used the multiplier method 

(lowest green graph in Fig. 3-5) as a local sensitivity analysis. The multiplier method 

uses first-order partial derivatives to quantify the effect of a small change around 

the default value of each input parameter on the result. The obtained multipliers 

can be interpreted as how much and in which direction a 1% increase in the input 

will affect the output (in %) (Groen et al., 2016; Wolf et al., 2017). Groen et al. 

(2016b) (ID 8) chose the multiplier method because it includes all input parameters, 

which is not necessarily the case in a one-at-a-time approach. Both studies (ID 8 

and 9) distinguished in the inventory between uncertainty and variability, making 

it possible to assess if the biggest multipliers (in absolute values) correspond to 

either uncertain or variable parameters. The visualization of this multiplier method 

was done in a table (ID 8) or bar plot (ID 9) (last two green visualization options in 

Fig. 3-5). 
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3.4.2.3 Screening method 

Method of elementary effects 

Next to the multiplier method, Groen et al. (2016b) (ID 8) also used the method of 

elementary effects, a kind of sensitivity analysis belonging to the area of screening 

methods (Igos et al., 2019; Saltelli et al., 2008). A screening method can be seen as 

an intermediate tool between local and global sensitivity analysis (see 4.2.2 and 

4.2.4 respectively) to find approximate sensitivity information at a lower 

computational cost than global sensitivity analyses (Wei et al., 2015), and should 

be followed by a more detailed sensitivity analysis for the selected parameters 

(Mutel et al., 2013; Wei et al., 2015). The method is specifically convenient when 

there is a large number of parameters in the model (Saltelli et al., 2008). Local 

sensitivity analyses and screening methods can be used as a preliminary step to 

identify for which parameters the model is sensitive, and on which the focus should 

thus lie when gathering more representative data for more computationally 

intensive analyses [such as in Mutel et al. (2013)]. 

Characterization and method description 

The method of elementary effects systematically varies all input parameters in 

series within their minimum and maximum values, instead of keeping all but one 

constant, to explore the full range of model outcomes (Igos et al., 2019; Mutel et 

al., 2013). Thus, the whole input space is explored rather than just a selection, as is 

the case in most local sensitivity analyses (Saltelli et al., 2008). It therefore gives 

more reliable and informative results than local sensitivity analyses (Igos et al., 

2019). For this, trajectories are constructed in which each point represents a set of 

parameter values. One parameter value varies with each trajectory step between 

preselected values (Mutel et al., 2013).  

The method calculates for each input parameter a number of incremental ratios, 

called “Elementary Effects” [i.e., the output variation divided by the input variation 

that is observed on each point of the chosen trajectories (Igos et al., 2019)], from 

which two sensitivity measures are computed: the average and the standard 

deviation (Campolongo et al., 2007). The average of an input’s elementary effects 

reflects how sensitive the model is to that parameter, while the standard deviation 

is an indication for the interaction or non-linear effects within the model 

(Campolongo et al., 2007; Igos et al., 2019; Saltelli et al., 2008). Groen et al. (2016b) 
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(ID 8) used the (absolute) mean of the average elementary effects [as refined by 

Campolongo et al. (2007)] to estimate the “importance” (see further) of a 

parameter, which they visualized in a bar plot (pink in Fig. 3-5).  

Visualization 

Generally speaking, while sensitivity analyses give information on the influence of 

a certain parameter on the result, an uncertainty analysis (including variability) 

shows how the spread in the input is reflected as spread in the output (Hauschild 

et al., 2018).  It is possible that a highly uncertain input parameter has a negligible 

influence on the output uncertainty (i.e., the model output is insensitive to this 

parameter). Thus, changes within the uncertainty range will not lead to noteworthy 

changes in the result and improving the reliability of that parameter might 

therefore be redundant. Similarly, the fruitfulness of trying to improve the 

reliability of a very sensitive parameter is dependent on the degree of its certainty 

(Hauschild et al., 2018; Heijungs, 1996). Ideally, both types of information are 

studied to judge on which parameters the focus should lie. 

Turning now to Groen et al. (2016b) (ID 8), these authors combined the results of 

the multiplier method (|η|) and the (absolute) mean of the average elementary 

effects (μ*) obtained by the method of elementary effects in a graph to identify 

their so called “essential” parameters (dark grey at the bottom right of Fig. 3-5). 

This graph is adapted from Heijungs (1996), which distinguishes between data that 

is uncertain and data for which the final result is sensitive. The multipliers (|η|) are 

ranked on the horizontal axis as “influence” [which Heijungs (1996) called 

“contribution” and Hauschild et al. (2018) called “sensitivity”], while the 

elementary effects (μ*), defined as “importance”, are ranked on the vertical axis 

[a.k.a. “uncertainty” (Hauschild et al., 2018; Heijungs, 1996)]. Four classifications of 

a parameter are identified, depending on where the parameter is ranked on the 

axes. 

1. If a certain parameter ranks low for both sensitivity analyses, then those are 

defined as “minor parameters” [a.k.a. “not a key issue” (Heijungs, 1996) or 

“negligible parameters” (Hauschild et al., 2018)].  

2. An “influential parameter” ranks low on the vertical axis and high on the 

horizontal axis [a.k.a. “perhaps a key issue” (Heijungs, 1996) or “possibly 

important parameter” (Hauschild et al., 2018)]. Those parameters could have 

the most impact if they are reduced (Groen et al., 2016).  
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3. An “important parameter” ranks high on the vertical axis and low on the 

horizontal axis [Heijungs (1996) and Hauschild et al. (2018) use the same 

terminology as for the “influential parameters”]. These are the most important 

parameters to the output uncertainty, caused by either variability or 

uncertainty (Groen et al., 2016).  

4. Lastly, parameters that rank high on both axes (i.e., in the upper right corner) 

are defined as the “essential parameters” [a.k.a. “a key issue” (Heijungs, 1996) 

or “very important parameter” (Hauschild et al., 2018)], which can be used to 

identify mitigation strategies (Groen et al., 2016).  

By distinguishing between uncertain and variable parameters in the inventory 

phase, it is possible to identify if the mitigation strategies for the essential 

parameters should focus on e.g., improving reliability or adapting management 

strategies respectively (Groen et al., 2016). Groen et al. (2016b) (ID 8) stated that 

the use of the method of elementary effects is limited because it is only based on 

minimum and maximum values, excluding a distribution function or an average 

value. They instead recommend using a global sensitivity analysis to rank the 

“importance” of a parameter, which was later done by Wolf et al. (2017) (ID 9). 

3.4.2.4 Global sensitivity analysis 

It is clear that Monte Carlo simulation is the preferred method for propagating 

uncertainty and variability in LCA, often in combination with a sensitivity analysis 

to quantify the contribution to variance of the input parameters. This is sometimes 

defined as global sensitivity analysis (Groen et al., 2016; Igos et al., 2019; Wolf et 

al., 2017), which evaluates the sensitivity of the outputs to the variability and/or 

uncertainty of the entire input space (Igos et al., 2019; Pianosi et al., 2016). These 

more data-intensive global sensitivity methods are suitable to include correlations 

among input parameters (Groen et al., 2016).  

Rank correlation and standardized regression coefficients 

A simple global sensitivity analysis consists of a correlation analysis (i.e., calculating 

Spearman’s rank correlation coefficients or regression coefficients) based on the 

sampled results from uncertainty propagation (e.g., Monte Carlo sampling) (Igos et 

al., 2019). Because of this, full knowledge of the input parameters is required (Wolf 

et al., 2017) and the effect of uncertainty is included within the analysis (Hauschild 
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et al., 2018). While correlation quantifies the strength of a linear relationship 

between two variables, regression expresses the relationship using an equation 

(Bewick et al., 2003). 

Correlation methods use the correlation coefficient between the output and each 

of the input parameters as a sensitivity measure (Pianosi et al., 2016), which is 

calculated from the rank of values in the case of Spearman’s rank correlation (Igos 

et al., 2019). For regression analysis, regression coefficients are calculated from the 

slope of the output in response to the input samples. The regression coefficients 

are standardized when input parameters have different units (Pianosi et al., 2016). 

For both methods, the contribution to variance of a specific parameter can then be 

obtained by  dividing its squared correlation or its regression coefficient by the sum 

of all coefficients (Hauck et al., 2014; Igos et al., 2019).  

After conducting Monte Carlo simulations, Yan and Boies (2013) [ID 3; using Crystal 

Ball (Oracle, CA, USA)], Hauck et al. (2014) (ID 5; using Crystal Ball) and Chen and 

Corson (2014) [ID 6; using R (R Foundation for Statistical Computing, Vienna, 

Austria)] used Spearman rank correlation coefficients to assess the contribution to 

variance of each uncertain parameter (orange in Fig. 3-5). The resulting statistics 

can be interpreted as the percentage of variance that may be explained by each 

uncertain input parameter (Hauck et al., 2014). 

Standardized regression coefficients were calculated to assess the contribution to 

variance (orange in Fig. 3-5) by Zehetmeier et al. (2014) [ID 7; using @Risk (Palisade, 

NY, USA)] and Basset-Mens et al. (2009) (ID 1; using @Risk). A regression coefficient 

predicts a standard deviation change in the output for one standard deviation 

change in the input parameter. Zehetmeier et al. (2014) (ID 7) expressed those 

coefficients in contribution percentages. Basset-Mens et al. (2009) (ID 1) calculated 

regression coefficients for the uncertainty distributions and the variability 

distributions separately. Thus, they could assess if the key input parameters were 

ranked the same for both the “uncertainty” and “variability” analysis. Zehetmeier 

et al. (2014) (ID 7) calculated the regression coefficients based on the Monte Carlo 

sampling that was done when both uncertainty and variability were propagated 

alongside each other. Because they clearly showed which parameters had which 

type of uncertainty and/or variability in their inventory, the reader could decide 

which was dominating in the results based on their relative contribution to the 

variance. 
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Statistical measure: Total sensitivity index 

Wolf et al. (2017) (ID 9) conducted Monte Carlo simulations, which they used to 

determine the output variance. Thereafter, they calculated the standardized 

regression coefficients (which they adjusted for correlated input parameters) to 

determine the parameters’ contribution to the output variance, which they used as 

a proxy to calculate total sensitivity indices (orange striped framed graph in Fig. 3-

5). The sensitivity index represents the sensitivity of each input parameter and is 

given by a ratio explaining how much each input parameter contributes to the 

output variance (Groen and Heijungs, 2017).  

Wolf et al. (2017) (ID 9) used the same graphical visualization as Groen et al. (2016b) 

(ID 8). However, instead of using the vertical axis to show elementary effects, they 

identified their “important” parameters by using the total sensitivity indices (ŜT; 

dark grey in Fig. 3-5). Thus, their “essential” parameters have a big multiplier and a 

high total sensitivity index. Because Wolf et al. (2017) strictly distinguished in the 

inventory between uncertain and variable parameters, it was possible to assess if 

the most important or essential parameters are affected by either uncertainty or 

variability. 

Identifying the essential parameters through the use of the multiplier method and 

sensitivity indices is a methodologically sound and visually appealing way to analyze 

uncertain and variable parameters separately, but evidently it is only possible if 

there is a clear distinction made in the inventory phase. The sensitivity indices do 

not necessarily have to be derived from standardized regression coefficients. 

According to Groen et al. (2016a) the sampling-based methods squared Spearman 

correlation coefficients and Sobol’s indices (Sobol, 2001) or the analytical method 

key issue analysis (Heijungs, 1996) can also be used for global sensitivity analysis in 

LCA, in which case the choice depends on the available data, the magnitude of its 

uncertainties and the aim of the study.  

3.5 Conclusions 

A first observation made during the preparatory phase of this research is that even 

in this era, no consensus on definitions and viewpoints on the terms uncertainty 

and variability could be found in the selected articles. Classification of the different 

types of uncertainty and variability clearly depended on the goal and scope 

definition and on the quality of the data, and was on some occasions open for 
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interpretation. Regardless, the most important thing is that uncertainty and 

variability are both considered and propagated in some way. While some studies 

effectively focused on separating uncertainty and variability, with others it seemed 

more coincidental or as an after-thought. Properly accounting for and dealing with 

uncertainty and variability should be a part of the LCA process from the very start. 

A large number of studies combine a variety of methodologies to propagate and 

analyze uncertainty and variability through the different LCA phases, often 

following a multi-step approach as described by Igos et al. (2018). Based on the 

used methodologies in the included articles, the different steps for the treatment 

of uncertainty and variability (Igos et al., 2019) can be categorized as follows: 

1. characterization using multiple scenario’s, predefined changes, ranges around 

a default value or probability distributions,  

2. uncertainty and variability propagation using Monte Carlo simulations,  

3. (a) local sensitivity analysis using scenario analysis, one-at-a-time approach or 

the multiplier method, 

(b) screening method using the method of elementary effects, or  

(c) global sensitivity analysis by calculating rank correlation coefficients or 

regression coefficients, and  

4. visualization using summary statistics, ranges, coefficients of variation, 

uncertainty and variability ratios, contribution to variance percentages, 

sensitivity indices and essential (i.e., both important and influential) 

parameters. 

Regarding characterization, the challenge lies in representing the uncertain and 

variable data as realistically as possible. It is essential that uncertainty and 

variability are already sufficiently taken into consideration during the inventory 

phase, and not just as an after-thought once the assessment has been completed. 

While defining multiple scenarios can be effective for a limited number of 

scenarios, a clear overview can be lost quickly when that number increases. 

Moreover, a range around a default value can be useful to get a first impression of 

the results and to identify where the focus should lie. Still, using probability 

distributions is the most preferable of the four characterization options used in the 

included articles. Although it requires much effort and time to gather the required 

input information, rich information is returned, and correlations can be included. 

Local sensitivity analyses and screening methods can be used as a preliminary step 
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to identify the most influential parameters on which the focus should lie for 

gathering more data for further analyses.  

Regarding uncertainty and variability propagation, only the Monte Carlo method – 

a sampling method – was used in the selected articles of the systematic review. 

Monte Carlo simulation outputs – where either uncertainty, variability or both are 

propagated – can be used to conclude if either uncertainty or variability is 

dominating in the results. Output probability distributions and their statistics can 

be visualized and compared. However, each uncertain and/or variable input 

parameter should then have an appropriate probability distribution assigned to it 

during the inventory phase. It is advisable to combine uncertainty analysis with a 

sensitivity analysis. Sensitivity analysis can be used after the uncertainty and 

variability propagation to determine how much influence the highly uncertain 

parameters have, and thus where uncertainty reduction is most desirable.  

In contrast, global sensitivity analysis is more of an extension of an uncertainty 

analysis. Hence, the conclusion of which is dominating can also be based on a global 

sensitivity analysis in combination with a local sensitivity analysis. Measures of 

sensitivity can be visualized and compared by clearly showing which input 

parameter is uncertain and which is variable. Thus, this method also requires a clear 

distinction to be made between uncertainty and variability in the inventory phase. 

Predefined changes, uncertainty ranges or probability distributions for Monte Carlo 

sampling need to be defined for each uncertain and/or variable input parameter. 

3.6 Recommendations based on the selected articles 

Based on the methodologies used by the eleven selected articles and keeping the 

need for clear communication in mind, we strongly recommend Monte Carlo 

simulations visualized in (i) uncertainty and variability ratios and/or (ii) total 

sensitivity indices through global sensitivity analysis for future use in LCA. On one 

hand, ratios allow to clearly decide whether uncertainty or variability is most 

dominating. The two ratios are clearly separated from each other, they can be easily 

compared because the outcome is a single value, and they are calculated based on 

probability output distributions from Monte Carlo simulations, making them 

representative towards the reality. On the other hand, total sensitivity indices (or 

another suitable index calculated by global sensitivity analysis) in combination with 

the results of a local sensitivity analysis (such as the multiplier method), allow to 
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identify the essential parameters and whether these are predominantly uncertain 

or variable. Combining uncertainty/variability and sensitivity measures allows for a 

clear communication to the actors on which parameters the focus should lie in 

further decision making regarding e.g., uncertainty reduction and system 

improvement. Depending on the goal and scope of the LCA study, either 

methodology can be a good option, provided that the outcomes are interpreted 

within the study-specific choices made during classification.  

3.7 Finding a solution for the shortcomings 

In this systematic review, the most important shortcoming that was identified, was 

the fact that an input parameter was either categorized as uncertain or variable but 

could not be both. It is however possible that a parameter is influenced by both. 

For example, sorting apples at the auction can be both uncertain and variable. It 

can be uncertain because the auction does not have an accurate system in place to 

measure the amounts of apples that are sorted out (due to spoilage or quality 

requirements). It can be variable, due to the biological nature of apples, causing 

different percentages of apples to be spoiled each batch and causing a lack of 

uniformity for the quality requirements. In the case where a parameter is identified 

as being both uncertain and variable, it is often categorized under uncertainty (as 

in ID 4), possibly leading to aberrant decisions. An alternative method is needed 

which allows to classify one parameter as being both uncertain and variable, and 

which subsequently propagates them separately for that parameter. 

Additionally, one of the recommended methods (visualizing Monte Carlo 

simulations through uncertainty and variability ratios) required the availability of a 

large dataset of individual systems. This kind of extensive data is often not available 

to the LCA practitioner, too time-consuming to construct themselves, or the LCA 

study might not even require this type of data source when it comes to the goal 

and scope of the study. An alternative method is needed that can be applied for 

both extensive databases that contain multiple individual life cycles and survey data 

from one life cycle only. 

A solution to these two drawbacks can be found in the field of quantitative risk 

assessment (Nauta, 2000; Vose, 2008), where two-dimensional Mont Carlo 

simulations (2DMC) are used, for example, for simulating: 
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• the risk of environmental hazards [e.g., for salmonid embryo survival (Wu 

and Tsang, 2004), Escherichia coli contamination during the cattle slaughter 

process (Cummins et al., 2008) and the potential ecotoxicological impacts 

of shampoo (Douziech et al., 2018)], 

•  the risk of food hazards [e.g., the possible daily exposure to a carcinogenic 

substance in breast milk and powder infant formula (Boué et al., 2017) and 

the risk of acquiring Listeria monocytogenes when consuming smoked fish 

(Vásquez et al., 2014)], and 

• health risks [e.g., radiological risk for the public and workers near the 

vicinity of a field radiological system (Jang et al., 2009) and indoor exposure 

to semi-volatile organic compounds (Pelletier et al., 2017)]. 

2DMC also allows for a clear and straightforward visualization of uncertainty 

and variability in the results. However, 2DMC comes with its own difficulties of 

having to define which parameters are uncertain and/or variable, what 

probability distributions should be used, and how the results can be interpreted 

and communicated. We need to identify how 2DMC can be used for LCA, which 

might differ from its use in other domains. In Chapter 4 and 5, the applicability 

of this method for propagating uncertainty and variability separately in LCA is 

analyzed by conducting 2DMC simulations for a case study, using two types of 

data sources: surveys and large datasets, respectively. 
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4.1 Introduction 

In Chapter 3, we extensively discussed the need to take uncertainty and variability 

separately into account in order to communicate about reality in a representative 

way, and to fully and correctly understand the study results and their reliability. 

(Epistemic) uncertainty refers to the imperfection of our knowledge, while 

variability represents the inherent heterogeneity of the natural world that will 

always be observed (Hauschild et al., 2018; Walker et al., 2003). In quantitative risk 

assessment, the combination of uncertainty and variability is called overall 

uncertainty (Pouillot et al., 2016). 

While the difference in origin of uncertainty and variability is clear, LCA results are 

still quite often reported as deterministic [e.g., Bosona and Gebresenbet (2018)]. 

Even if uncertainty is accounted for, variability is often treated alike or even left 

unacknowledged [e.g., Jiao et al. (2019)]. Because of this, when products or 

processes are compared in an LCA study – usually using deterministic input values 

– researchers are often unable to make an unambiguous conclusion on which is 

environmentally preferable [e.g., when comparing conventional and organic 

cultivation systems (Chatzisymeon et al., 2017; Tasca et al., 2017)]. This often leads 
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to the general recommendation of the need for more data. And even when a 

tentative recommendation is made, questions quickly arise on how robust the LCA 

results are. Is the chosen option always environmentally preferable? What if we 

account for variability (e.g., data from a different cultivation period with more 

severe weather)? What if we account for uncertainty (e.g., when estimations were 

used instead of accurate measurements)? Does the decision stay the same? 

Answering such questions is where the focus of this chapter lies.  

In this chapter, we aim to introduce a novel approach, two-dimensional Monte 

Carlo simulations (2DMC), in LCA that allows to decide if either uncertainty or 

variability is dominating in the results. We aim to clarify in full details the 2DMC 

procedure using a fully detailed proof of concept model, available on our website 

(Michiels and Geeraerd, 2021), and a realistic case study, comparing two products, 

with special attention on how data uncertainty and variability is assigned to 

different input parameters. Lastly, we aim to interpret the 2DMC results in an LCA 

context to see how it can influence decision making by reflecting on the above-

mentioned questions. 

4.2 Methods 

Propagating uncertainty and variability separately can be done by conducting two-

dimensional Monte Carlo simulations, which has been shown in the field of 

quantitative risk assessment [e.g., Wu and Tsang (2004), Vásquez et al. (2014) and 

Boué et al. (2017)]. Monte Carlo simulations are a sampling method in which 

iterations of model calculations are performed using randomly sampled input 

values from probability distributions, causing the output to be represented as a 

probability distribution as well (Hauschild et al., 2018; Igos et al., 2019). One-

dimensional Monte Carlo simulations (1DMC) can propagate either uncertainty or 

variability, but not both separately at the same time when a parameter is both 

uncertain and variable. Separate 1DMC simulations can be conducted each time in- 

or excluding either uncertainty or variability. However, the question then arises on 

which statistic measure the decisions on which is dominating, should be based. This 

is one of the shortcomings that was identified in Chapter 3 (Michiels and Geeraerd, 

2020) when we reviewed which methodologies have already been used in LCA that 

allow to decide whether uncertainty or variability is dominating in the results. 
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2DMC does allow to propagate uncertainty and variability simultaneously as well 

as disentangle their influence on the results. In 2DMC, the distributions reflecting 

uncertainty and the distributions reflecting variability are sampled separately, so 

they can be assessed separately in the output as well (Cohen et al., 1996; Pouillot 

and Delignette-Muller, 2010). We have found no indication as of yet that 2DMC has 

been applied in an LCA study previously. Though, it has been applied in studies 

related to LCA, such as for the ecotoxicological impact assessment of down-the-

drain products (Douziech et al., 2019) which can be used to calculate the 

ecotoxicological results of an LCA. 

The first part of the Methods section describes the general 2DMC methodology, 

focusing on what kind of information is needed for it, how the calculations are 

performed and how the results can be synthesized. For the interested reader, a 

proof of concept (POC) model was constructed for this section, which is available 

online (Michiels and Geeraerd, 2021). The second part of the Methods section 

introduces the goal, scope and life cycle inventory of the realistic case study i.e., 

the post-harvest chain of apple in Flanders (Belgium), for which the 2DMC method 

was applied. In Chapter 5, 2DMC is applied for the apple cultivation chain. 

4.2.1 Two-dimensional Monte Carlo simulations 

2DMC consists of two 1DMC loops (Fig. 4-1), where the outer loop consists of n 

simulations of model parameters to simulate the knowledge uncertainty; and the 

inner loop consists of m iterations of input variables to simulate system variability 

(Wu and Tsang, 2004). First the input parameters need to be divided into four 

categories: deterministic parameters, variable parameters, uncertain parameters 

and parameters that reflect both variability and uncertainty (Pouillot et al., 2016). 

The categorization of these parameters is dependent on the kind of data that can 

be gathered through measurements, surveys, expert consultation and literature 

search. The possibility to consider a parameter as being both uncertain and variable 

is a major benefit of 2DMC, however, separate distribution data is needed for the 

uncertain part and the variable part of the input parameter.  

For each model input that is not deterministic, a probability distribution (e.g., 

Uniform, Binomial, PERT, etc.) is specified based on the distribution of the gathered 

data (Vose, 2008). This is a very important and elaborated step for which a lot of 

information is needed, as will be detailed in sections 4.3.1. The uncertain 
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parameters are randomly sampled from their respective distributions and 

considered as a set of fixed values while performing 1DMC simulations with random 

values from the variable parameters (m iterations). This process is repeated several 

times (n simulations), where each time new random values of the uncertain 

parameters are fixed before running 1DMC simulations using the variable 

parameters (Pouillot et al., 2016). This results in a two-dimensional model output 

of 2DMC curves, where each curve in the 2DMC output represents the variability 

within the chain for one dimension of uncertainty. The dispersion of the different 

curves shows the influence of uncertainty, while the steepness is an indication of 

variability (Vose, 2008).  

 

Figure 4-1 Diagram of how two-dimensional Monte Carlo simulations are conducted. 

This figure was adapted from Cummins (2016). S = simulation, I = iteration, U = 

unique set of fixed uncertainty parameters, V = possible LCA output. 

In this PhD thesis, 10 000 iterations and 250 simulations were conducted, leading 

to 2 500 000 possible LCA outcomes shown in 250 2DMC curves. The number of 

iterations was chosen because 10 000 iterations are often seen as a rule of thumb 
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in Monte Carlo simulations (Ciroth et al., 2004; Igos et al., 2019). The number of 

simulations was chosen for compatibility reasons with Microsoft Excel, after making 

sure that it provided a good sampling of the full range and shape of each input 

probability distribution. The total number of 2DMC runs provided a good 

representation of all possible LCA results. A further discussion on an adequate 

number of Monte Carlo runs can be found in section 7.1.5. The Excel add-in @Risk 

(Palisade, NY, USA) was used to conduct these 2DMC simulations, using the default 

Latin Hypercube sampling and Mersenne Twister generator. To ensure 

repeatability of the sampling between different products and impact categories, a 

fixed initial seed value was used, which was different for each of the 250 

simulations. 

2DMC results may have a cumbersome look given the large number of cumulative 

curves. Therefore, they typically are further synthetized using ratios, more 

specifically variability, uncertainty and overall uncertainty ratios (combination of 

uncertainty and variability) as described in Pouillot et al. (2016) and proposed by 

Özkaynaka et al. (2009). These ratios allow to clearly decide if either uncertainty or 

variability is dominating the overall uncertainty. The ratios can be calculated as 

followed (Fig. 4-2): 

• Variability Ratio: B / A  

• Uncertainty Ratio: C / A  

• Overall Uncertainty Ratio: D / A 

For which: A is the median of uncertainty for the median of variability; B is the 

median of uncertainty for the 97.5th percentile of variability; C is the 97.5th 

percentile of uncertainty for the median percentile of variability and D is the 97.5th 

percentile of uncertainty for the 97.5th percentile of variability.  

An extensive manual explaining the 2DMC procedure for a POC model using @Risk 

is available on our website (Michiels and Geeraerd, 2021). In the POC model, two 

products are compared using fictious parameters. Each parameter is assigned an 

uncertainty type and a probability distribution (if needed). These parameters are 

then combined in LCA input processes and 2DMC simulations are run, leading to 

LCA outputs reflecting uncertainty and variability. The 2DMC results can be 

visualized in a cumulative probability graph, using either macros in Excel or an R 

script (The R Foundation, Vienna, Austria). 



 

80  Chapter 4 

 

Figure 4-2 Graphical representation of the points needed to calculate ratios. 

Variability ratio = B/A, uncertainty ratio = C/A and the overall uncertainty ratio = 

D/A (Özkaynaka et al., 2009; Pouillot et al., 2016). 

4.2.2 Life Cycle Assessment of the post-harvest apple chain 

4.2.2.1 Goal and scope definition 

We implemented 2DMC in an existing attributional LCA of the Belgian (Flanders) 

apple, developed by Goossens et al. (2019), which describes the apple food chain 

from farm gate till consumer disposal of food waste. The post-harvest chain consists 

of activities at the auction, sorting center, distribution center, supermarket and 

consumer (Fig. 4-3). The functional unit is 1 kg of apples purchased by the 

consumer, either bulk or pre-packed (per 6).  

Calculations were performed using SimaPro 9.0.0.49 (Pré Sustainability, the 

Netherlands) and Microsoft Excel 2016 (Microsoft, WA, USA). The ILCD [2011 

Midpoint+; EC-JRC Global, equal weighting] method was used as impact assessment 

method. Input processes were collected from the database ecoinvent 3.5, using 

“allocation, at point of substitution”. 
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Figure 4-3 System boundaries of the post-harvest apple chain. 

CA = Controlled Atmosphere. 
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4.2.2.2 Life Cycle Inventory 

Goossens et al. (2019) gathered information on the apple post-harvest chain by 

interacting with two auctions and a retailer through surveys. The chain starts with 

apples being transported from the farm to the auction. The apples undergo a 

cooling and storing phase in case they are not sold to the retail immediately, after 

which they are sorted at the auction, farm or an external facility. Apples fit for sale 

are packaged in cardboard boxes or plastic crates. Next, the apples are transported 

to the distribution center of the retailer. Apples, intended to be sold pre-packaged, 

are packaged per six using a cardboard tray and plastic film. All apples remain 

shortly in a cold space in the distribution center, before being transported to the 

supermarket. There, the apples are placed in a cold room where they are bought 

by consumers. Upon arrival at home, the apples are stored and consumed. Food 

waste and packaging waste disposal is taken into consideration along the complete 

post-harvest chain. A more detailed description of the post-harvest chain can be 

found in Goossens et al. (2019). 

The study of Goossens et al. (2019) was based on “most likely” data. However, next 

to the “most likely” data, they did also inquire about minimum and maximum data 

for all parameters in their surveys, which can be used to quantify variability. 

Additionally, they inquired about how certain the companies are of their given data 

using uncertainty ratings based on the Product Environmental Footprint (PEF) 

quality criteria (European Commission, 2012), ranging from no uncertainty to very 

high uncertainty, which can be used to quantify uncertainty. With this data we can 

conduct a 2DMC analysis. 

4.2.2.3 Input probability distributions for the post-harvest parameters 

As we discussed in the 2DMC methodology (section 4.2.1), the first step of a 2DMC 

analysis is done by categorizing the input data into one out of four categories: 

deterministic, uncertain, variable and, uncertain and variable. Appropriate 

probability distributions need to be selected for the last three categories. 

The parameters were categorized as deterministic, uncertain, variable and, 

uncertain and variable, depending on the kind of data that was provided and 

available in literature. A summary of the parameters, together with their 

categorization, is given in Table 4-1. In general, variability was attributed to those 

parameters that described management choices, different production 
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sites/companies, biological variation and consumer behavior. Parameters were 

considered uncertain when the auction and retail indicated being uncertain of the 

provided data. It is possible that the companies are uncertain over the data of a 

variable parameter, making it uncertain and variable. If no variable or uncertain 

data were provided and that information could not be found in literature, then the 

parameter was considered deterministic. Thus, in this case study, the choice of a 

parameter being considered as deterministic is purely driven by data availability 

(this is further discussed in section 4.4.1).  

For example, storage time at the shop is deterministic since no uncertain or variable 

data was provided. It is, however, quite possible that the amount of apples stored 

in the supermarket varies a lot. The same could be said for the storage electricity 

at the consumer. We could have guessed/estimated how much those parameters 

will vary, thereby introducing uncertainty ourselves. In the end we chose to 

exclusively use the available data, without making any expert opinions ourselves.  

For the parameters for which the auctions and retailer did provide variable data, 

PERT (based on provided min, most likely and max data) or uniform (in case there 

was not a most likely value provided) distributions were constructed. The PERT 

(Program Evaluation and Review Technique7) distribution is similar to a triangular 

distribution but is preferred over it because of its curved density, emphasizing most 

likely values more (Palisade, 2016a).  

Additionally, the data of both auctions was taken into account [as opposed to one 

in the study of Goossens et al. (2019)], by combining their estimates in a discrete 

distribution, for which we assumed that they were both equally likely to occur. For 

example, both auctions provided deterministic data on their storage electricity, 

causing that parameter to be variable. Another discrete distribution reflecting 

variability was the percentage of apples sold each month throughout the year, 

which in turn influenced storage time and the percentage of apples lost at the 

auction. 

Variability was also found in all parameters concerning the consumer phase. 

Several literature sources (Bernaert et al., 2018; DEFRA, 2010; Johnson et al., 2008) 

were used to construct a plausible uniform distribution that reflects the percentage 

of food waste by the consumer. This parameter could also be seen as uncertain, 

 
7 A statistical tool originally used in project management to analyze the time 
needed to finish the planned tasks. 
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since the data is based on estimates from households. However, since there is no 

data on the certainty and since the parameter is very dependent on consumer 

behavior and biological variation, it was classified as being variable. Consumer 

transport was accounted for by combining a probability distribution of how far 

people usually live from the shop (provided by the retailer) with data from the 

government on the percentage of car use based on the travel distance (FOD 

Mobiliteit, 2017). Other variable parameters were the storage time in the fridge 

before consumption, and the percentage of consumers that compost at home or 

participate in a municipal collection of biowaste. 

Packaging data was generally considered as deterministic, since the production of 

those has been fine-tuned [e.g. EPS size M and H plastic crate weight (Euro Pool 

System, 2017)]. However, the weight of apples transported by paloxes, cardboard 

boxes or plastic crates could vary. Additionally, regarding the lifetime of the plastic 

crates, a conservative reusability scenario of 10 years and a technical scenario of 20 

years (Barthel et al., 2007) was considered using a uniform variability distribution. 

Uncertainty was taken into account by using the uncertainty ratings of the PEF 

quality criteria (European Commission, 2012). For example, the distribution center 

was not certain about how much electricity they needed during storage, and 

therefore provided an uncertainty rating for that parameter, making it an uncertain 

parameter. These ratings were used to construct PERT distributions. The most likely 

value was the given deterministic or a variable amount, while the min and max were 

based on the provided percentage of uncertainty.  

For example, the loss of pre-packaged apples at the supermarket for which the 

retailer provided a deterministic value (x) and very low uncertainty rating (≤ 10%; 

for which 5% was used), has distribution [x*Pert(1-5%; 1; 1+5%)]. The parameter is 

then considered strictly uncertain. In the case where the given amount is variable, 

x is replaced by a probability distribution, allowing separate sampling later on. Such 

is the case for the percentage of apples lost at the distribution center when 

packaging apples per 6, which is then categorized as being uncertain and variable. 

This means that the apple loss during packaging varies constantly and that there is 

no system in place in the distribution center to measure this varying loss. 
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Table 4-1  Summary of the post-harvest parameters and their categorization. 

The parameters are categorized into deterministic, uncertain, variable and 

uncertain & variable, with a short explanation on how the type was reflected by 

the data and which source was used in case the data did not come from surveys. 

All information for each separate parameter can be found in Appendix A.1. 

Input parameter Type Data (and literature source) 

Apple consumption Variable Varies over the year 

Apples loss along the chain 

Apple loss @ auction Variable Varies over the year & data from two auctions 

Apple loss @ distribution 

center (only for pre-packed 

apples) 

Uncertain & 

variable 

Variable data with uncertainty rate 

Apple loss @ shop Uncertain Deterministic value with uncertainty rate 

Apple loss @ consumer Variable Consumer dependent, based on different 

sources (Bernaert et al., 2018; DEFRA, 2010; 

Johnson et al., 2008) 

Storage and sorting 

Electricity mix Deterministic Deterministic wind, solar and grid percentages 

Sorting data Deterministic Deterministic annual electricity, water use and 

apple weight 

Storage electricity @ auction Variable Data from two auctions 

Storage time @ auction Variable Variable data from two auctions 

Storage electricity @ 

distribution center 

Uncertain Based on uncertain electricity data and 

deterministic storage space for apples 

Storage time @ distribution 

center 

Variable Variable data 

Packaging data Uncertain Based on uncertain annual electricity, 

uncertain share of machine used and uncertain 

apple weight 

Storage electricity @ shop Uncertain & 

variable 

Based on variable share of cold room for 

apples, uncertain electricity data, uncertain 

annual apple sales and the amount of shops 

Storage time @ shop Deterministic No uncertain or variable data provided 

Storage electricity @ 

consumer 

Deterministic Based on electricity and storage volume from 

PEFCR (European Commission, 2018) 

Storage time @ consumer Variable Consumer dependent 

Packaging production, transport and waste 

Weight packaging material Deterministic Deterministic weights for palox, pallet (Barthel 

et al., 2007), cardboard box, plastic crates [EPS 

M & H (Euro Pool System, 2017)], pulpsheet, 

plastic bag, cardboard tray and plastic foil 

Weight of apples that fit in 

packaging material 

Variable Weight varies when using palox, cardboard box 

and plastic crate 
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Table 4-1  Continued 

Input parameter Type Data (and literature source) 

Packaging production, transport and waste 

Weight of apples on pallet Deterministic No uncertain or variable data provided 

Share of cardboard box vs. 

plastic crates used 

Deterministic No uncertain or variable data provided 

Distance from packaging 

production sites 

Deterministic Set distances from the packaging production 

sites 

Packaging production Deterministic Deterministic production processes 

Washing water plastic crates Deterministic Based on Barthel et al. (2007) 

Loss of packaging material Variable Variable reusability of plastic crates with a 

deterministic breakage rate (Barthel et al., 

2007) and variable loss of plastic bags, 

cardboard trays and plastic foil 

Waste of packaging material Deterministic Deterministic share of wasted packaging 

material when packaging apples per 6 

% of packaging material used 

for apples 

Deterministic Deterministic share of plastic bag, cardboard 

tray and plastic foil, used for packaging apples 

Distance to waste facilities Deterministic Set distances to the waste facilities 

Distribution 

Transport distances Variable Location dependent (farm, auction, 

distribution center, shop, consumer) & data 

from two auctions 

% of tractor vs. truck for 

farm-auction 

Variable Data from two auctions 

% of apples sorted @ farm, 

auction or sorting facility 

Variable Data from two auctions 

Volume consumer car Deterministic Based on PEFCR (European Commission, 2018) 

% car use by consumer Deterministic Based on mobility data (FOD Mobiliteit, 2017) 

Biowaste 

Distance to digestion facility 

after sorting 

Variable Depends on where the apples are sorted (farm, 

auction, external sorting facility) & data from 

two auctions 

Distance to digestion facility 

from distribution center 

Deterministic Set distance to digestion facility 

% to municipal biowaste 

collection @ consumer 

Variable Based on deterministic opportunity percentage 

(De Groof et al., 2015) and variable participa-

tion rate of consumers (Goossens et al., 2019) 

% to compost @ consumer Variable Data based on two sources (Goossens et al., 

2019; M.A.S. et al., 2012) 

% to household waste 

collection @ consumer 

Variable Based on variable percentages of municipal 

biowaste collection and compost 

Compost emissions Deterministic Based on Colón et al. (2010) 
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Regarding the (potential) relationship between different parameters, we 

envisioned three ways to include them in the model: 

• Building the relationships into the model, based on logic or knowledge (e.g., 

apples bought in the summer have a long storage time and a higher loss 

percentage at the auction). 

• Letting @Risk calculate a correlation matrix while the distributions for several 

parameters (for which a correlation is assumed) are being fitted at the same 

time. This is only possible when multiple data units (e.g., measurements) are 

available for one parameter, which is not the case for the post-harvest chain 

but is for the cultivation chain (see Chapter 5). 

• Specifying correlations directly in the model using correlation coefficients. We 

assume that correlations were present between several parameters, but we 

were unable to specify them for the case study due to a lack of data. For 

example, one of the auctions specified that the transport distance from the 

farm to the auction varied between 1 and 75 km (25 km most likely), and that 

in 65% of the cases a tractor is used instead of a truck. It is plausible that for 

farther distances, a truck is more often used for transportation. Though, we did 

not have any data on that, so the possible correlation was not incorporated. 

The quality of the data was assessed using the PEF Data Quality Ratings (European 

Commission, 2012). Data quality refers to the characteristics of data that relate to 

their ability to satisfy stated requirements (ISO, 2006b). This includes various 

aspects such as technological, geographical and time-related representativeness, 

completeness and precision of the inventory data (European Commission, 2012). 

We want to note here that when the data is rated to be of excellent quality, this 

does not mean it is deterministic data. It is more an indication of how well the data 

approximates reality and covers the complete system at hand. Thus, data variability 

and uncertainty can still be present. 

All the necessary parameters, data sources, (non-confidential) data, probability 

distributions, types of uncertainty and variability, data quality ratings and SimaPro 

processes can be found in Appendix A.1. Of the 145 parameters in total, 77 were 

categorized as deterministic, 41 as variable, 17 as uncertain and 10 as uncertain 

and variable. The POC model (Michiels and Geeraerd, 2021) shows how uncertainty 

and variability can be differentiated in the @Risk software, and how input 

probability distributions can lead to probability distributions in the LCA output. 
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4.3 Results 

The results section is divided into two parts. In section 4.3.1, three hypothetical 

outcomes when using 2DMC for the comparison of two options within an LCA 

context are illustrated. These possible outcomes are further illustrated using real-

life data for the apple post-harvest chain in section 4.3.2. The POC model and 

manual (Michiels and Geeraerd, 2021) explain how the 2DMC results can be 

visualized and synthetized using ratios. 

4.3.1 Possible 2DMC outcomes for LCA 

When using 2DMC in quantitative risk assessment, the total range of 2DMC results 

are often sufficient to allow management decisions to be taken. For example, when 

estimating the possible daily exposure to a carcinogenic substance in breast milk 

and powder infant formula (Boué et al., 2017) or the risk associated with the 

consumption of smoked salmon potentially contaminated with the pathogen 

Listeria monocytogenes (Vásquez et al., 2014), the maximum possible estimation is 

often of utmost importance. Therefore, obtaining the 2DMC curves of one product 

is generally sufficient and the focus lies on the probability that the estimation will 

be above a certain critical value. Two possible 2DMC outputs for this were already 

illustrated in Fig. 4-2. 

In contrast, the comparison between two products or processes is an important 

LCA goal. For comparative LCAs, the inventory data are often based on 

deterministic data from one location during a specific time [e.g., comparing 

conventional and organic cultivation using data from one cultivation period from 

one farm each (Chatzisymeon et al., 2017)]. These data are used to choose the 

environmentally preferable option. However, as already addressed in the 

introduction, some questions quickly arise in those cases. Is the chosen option 

always environmentally preferable? What if we account for variability (e.g., data 

from a different cultivation period with more severe weather)? What if we account 

for uncertainty (e.g., when estimations were used instead of accurate 

measurements)? Does the decision stay the same? 

2DMC can be used in LCA to make the choice between two products or processes 

more robust. Generally, there are three possible 2DMC outcomes in LCA. These are 

illustrated in Fig. 4-4 for fictitious data (based on the POC model), showing the 

cumulative probability of a specific impact category reaching a certain impact.  
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Figure 4-4 Three possible 2DMC outcomes when comparing two products/processes. 

There are three possible outcomes when comparing two products or processes 

(P1 and P2) using two-dimensional Monte Carlo simulations in LCA. The two 2DMC 

curves can be either clearly separated for the two products (outcome 1) or there 

can be overlap (outcome 2 and 3), which causes the results to be inconclusive. In 

case of overlap, this can be caused by high uncertainty in the data (outcome 2) or 

high variability (outcome 3), which can be clearly deduced from the ratios (UR = 

uncertainty ratio, VR = variability ratio and OR = overall uncertainty ratio). 
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First, the curves of the 2DMC results could show no overlap between the two 

products, meaning that one product (the one with its curves at the left of the other) 

consistently performs better. This allows to base the decision on the central 

tendency comparison, namely, by looking at their respective positions, left or right, 

for that specific impact category. Secondly, the 2DMC could show overlap either 

due to high uncertainty (high uncertainty ratio) or, thirdly, it could show overlap 

due to high variability (high variability ratio) in the input data. This implies that the 

most environmentally friendly option, still with respect to that specific impact 

category, cannot yet be decided upon. Instead, the range of the input data needs 

to be reduced by reducing the uncertainty or variability, respectively. For uncertain 

data, this means collecting more information, for variable data, a change in the 

physical system is required (Vose, 2008). 

4.3.2 2DMC results for the post-harvest apple chain 

Almost all impacts of the post-harvest chain for bulk and pre-packed apples show 

clearly divided 2DMC curves when being compared in one graph (except for a small 

overlap in the tail ends), with bulk apples being environmentally preferable. This is 

illustrated in Figure 4-5a for Climate Change (the remaining impact categories can 

be found in Appendix A.2), clearly showing that the impact category can be 

categorized as a typical outcome 1 ‘No overlap’ of Figure 4-4. There is only one 

impact category, Ionizing Radiation (Human Health), for which the 2DMC curves do 

show an overlap (Fig. 4-5b). Variability has here the higher ratio compared to 

uncertainty; therefore, the impact category is categorized under outcome 3 

‘Overlap with variability dominating’ of Figure 4-4. No impact category from the 

apple post-harvest chain could be categorized under outcome 2 ‘Overlap with 

uncertainty dominating’. 

When looking at the ratios of all impact categories, variability is dominating the 

overall uncertainty in the complete post-harvest chain. Bulk apples show a higher 

variability ratio for all categories compared to pre-packed apples. The uncertainty 

ratio, in contrast, was almost always the same for each packaging method with a 

maximum ratio of 1.02. This means that the overall uncertainty ratio is dominated 

by variability. 
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Figure 4-5 2DMC results for the postharvest chain. 

The bulk apples are colored and the pre-packed are shown in greyscale. 
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It is interesting to put these results into the perspective of the original 

(deterministic) results, as calculated by Goossens et al. (2019). These deterministic 

results generally fall between 15% and 55% cumulative probability. For Climate 

Changes this was 0.28 kg CO2 eq/kg en 0.35 kg CO2 eq/kg for bulk and pre-packed 

respectively (cumulative probability of 39% and 51%); and for Ionizing Radiation 

(Human Health) this was 0.086 kBq U235 eq/kg and 0.094 U235 eq/kg respectively 

(cumulative probability of 17% and 16%).  

4.4 Discussion 

4.4.1 Assigning uncertainty and variability 

The aim of this chapter was to introduce 2DMC as a potential successful method for 

simultaneously propagating uncertainty and variability separately in LCA. To test 

the method, we used a previously developed case study from our research group 

(Goossens et al., 2019) for which we already had uncertain and variable data 

available. All parameters for which that information was not available and could 

not be readily found online, were considered as being deterministic. Though, this 

in itself is a kind of uncertainty. We are uncertain if these parameters are in fact 

deterministic, but we choose to analyze them that way based on data availability. 

We also run the risk of mislabeling either uncertainty or variability as being 

dominant, because an influential parameter was considered deterministic and 

therefore its variability or uncertainty range, respectively, was not accounted for. 

In general, parameters were considered uncertain in this PhD thesis when the 

surveyed people (i.e., auction and retail) indicated being uncertain of the provided 

data. For example, when it came to sorting data (provided by the auction) and 

packaging data (provided by the retailer), similar data was provided (e.g., annual 

electricity use, apple weight that is sorted or packaged respectively, etc.). However, 

while the auction rated their uncertainty for these different inputs, the retailer did 

not; hence the packaging data were considered as deterministic. Variability was 

attributed to those parameters that described biological variation, consumer 

behavior, management choices and different production sites/companies. For 

example, the distance between two specific companies is deterministic, but when 

several different companies deliver the same goods (e.g., different growers 

bringing their apple yield to the auction) the distance is seen as variable.  
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This is not how an LCA practitioner would normally go about. When starting an LCA 

for a specific case study, the LCA practitioner will probably first focus on identifying 

which parameters are part of the life cycle. Then he/she might decide to use a local 

sensitivity analysis or screening method (Igos et al., 2019; Michiels and Geeraerd, 

2020) to identify for which parameters the model is sensitive. Thereby identifying 

on which parameters the focus should lie when gathering uncertain and/or variable 

data for conducting 2DMC simulations. It is thus probable that first the highly 

influential parameters are categorized into being uncertain and/or variable, before 

starting to gather the necessary data. This is the reverse of what we did in this case 

study, namely categorizing parameters based on the already available data. The 

LCA practitioner would then most likely categorize the remaining, low influential 

parameters as deterministic. So, there would still be uncertainty connected to 

those parameters because they could still be uncertain and/or variable. However, 

the LCA practitioner would at least know that these parameters do not really 

influence the results that much. 

To be able to actually propagate uncertain and/or variable parameters, data 

needed to construct probability distributions have to be available/provided. The 

definition of the fore- and background system can play an important role in that. 

On the one hand, foreground data is more easily accepted as being deterministic 

by the LCA practitioner (Michiels and Geeraerd, 2020). On the other hand, the 

foreground system is where the LCA practitioner can be in direct contact with the 

data provider, creating the opportunity for gathering specific data, being 

potentially uncertain and/or variable. Therefore, it is crucial that the LCA 

practitioner takes uncertainty and variability into consideration from the very start 

of the LCA process (Michiels and Geeraerd, 2020).  

Data in the background system is generally more uncertain and variable, as it is 

usually not product, process or location specific. However, the data quality of the 

database determines if reliable data is available. Though, one might wonder if the 

background system is really where the focus should lie when looking for qualitative 

data. Oftentimes in product/process comparisons, the systems share background 

processes, and the absolute uncertainty from those can cloud the relevant 

differences. Rather the relative uncertainty found in the foreground system is of 

importance to discern between the two options (Bamber et al., 2020; Henriksson 

et al., 2015).  
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Moreover, the foreground system is more interesting for both LCA practitioners as 

well as the stakeholders. LCA practitioners can influence the foreground system 

more, really making sure that the chain they built is representative and realistic. For 

the stakeholders, they want to use LCA as a decision-making tool, thus for them it 

is more relevant that the focus lies on the foreground system since there they have 

more power to intervene (if necessary). Again with this, sensitivity analyses might 

be useful to see where the focus should lie, either on the foreground or background 

system.  

When a sufficient amount of data is available/provided, the distinction between 

uncertainty and variability is not always a clear-cut decision. Warmink et al. (2010) 

mention that random variation in the natural world can arguably also be seen as a 

lack of knowledge, which subsequently can be reduced given enough resources. 

However, we have to keep in mind that Monte Carlo simulations are a simplified 

model of reality and therefore never meant to be a perfect description of the real 

world (von Brömssen and Röös, 2020). It is unrealistic to assume unlimited available 

resources and variability is therefore seen as random system behavior when a 

realistic amount of available resources are considered (Warmink et al., 2010). This 

thought process was followed when distinguishing uncertainty from variability in 

this case study.  

A major advantage of 2DMC is the possibility of categorizing a parameter as being 

both uncertain and variable, provided that the necessary data is available for that. 

This was a possibility that was lacking when we reviewed in Chapter 3 which 

methodologies have already been used in LCA that allow to decide whether 

uncertainty or variability is dominating in the results. As stated in chapter 3, one of 

the most promising methodologies was used by Hauck et al. (2014) and Steinmann 

et al. (2014). They calculated uncertainty and variability ratios using one-

dimensional Monte Carlo simulations. The limitations in their methodology were 

the need for an extensive database of deterministic values for different individual 

life cycles (in this case power plants) to account for variability and the impossibility 

for a parameter to be uncertainty and variability. It is clear that the 2DMC approach 

introduced here does not have these shortcomings. 

4.4.2 Basing decisions on the central tendency 

While LCA improves the understanding of the environmental impacts associated 

with each product or process, it is rare that the results identify a clear ‘winner’ 
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between alternatives (Curran, 2014). 2DMC can help in that regard because basing 

decisions on model outputs that are clearly separated is much more meaningful. 

This is what generally showed to be happening for the post-harvest chain in our 

case study. For each impact category, the 2DMC outputs show no crossing or 

overlap (except in the extremities of some curves) between the bulk and pre-

packed apples, with buying bulk being consistently environmentally preferential. In 

this case, the central tendency or the deterministic impact are robust enough to 

base conclusions and decisions on, e.g., the median impact of the impact categories 

can be reduced by switching to a larger share of bulk apples. 

4.4.3 Interpreting ratios  

When 2DMC results of two products or processes do show overlap – as is the case 

for Ionizing Radiation (Human Health) in this case study – it is important to look at 

uncertainty and variability to make informative decisions. Reducing the overall 

uncertainty by reducing uncertainty and/or variability could lead to more robust 

conclusions when it comes to recommending one product or process over another. 

The different origin of uncertainty and variability leads to different steps that need 

to be taken to be able to reduce the overall uncertainty of the model. Uncertainty 

is everything we do not know and how far off we are from the truth (Hauschild et 

al., 2018). Therefore, if the range of LCA results is dominated by uncertainty 

(represented by a high uncertainty ratio), then gathering more knowledge through 

e.g., further measurements, literature research and expert consultations 

(Hauschild et al., 2018; Huijbregts, 1998; Igos et al., 2019; Walker et al., 2003), may 

be needed before two products or processes can robustly be compared.  

In contrast, variability is the effect of chance (Vose, 2008). Thus, a high degree of 

variability (represented by a high variability ratio) implicates true differences 

between the two products or processes, and therefore cannot be reduced by 

further study (Hauschild et al., 2018; Igos et al., 2019). Collecting more information 

would just be a waste of time (Vose, 2008). However, having a closer look at the 

physical system and examining the differences between different management 

practices can lead to system optimization, product development or policy 

(Steinmann et al., 2014).  

When the 2DMC curves of two scenarios overlap, it is always advisable to interpret 

the ratios and to see how to possibly reduce the spread and range of the curves. In 

the case of apple post-harvest chain, it is the variability ratio that dominates the 
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overall uncertainty of Ionizing Radiation (Human Health). This implies that it would 

be a waste of time to try to reduce uncertainty by collecting more information. This 

is an interesting and valid observation as it shows that gathering more data is not 

always the way to go. Instead, the results indicate that reducing the overall 

uncertainty could be achieved by examining and changing the physical system. 

When looking at the results of Goossens et al. (2019), it is not a surprise that overlap 

between the 2DMC results can be seen for this impact category. Goossens et al. 

(2019) considered a scenario in their LCA study where they examined how the 

impact of purchasing 1 kg apples evolved throughout the year for each packaging 

method. Ionizing Radiation (Human Health) turned out to be the only impact 

category (of the ones that were included in the results) for which pre-packed apples 

could lead to a lower impact than bulk apples, depending on the moment of 

purchase. 

With the three possible outcomes (Fig. 4-4), the recommended decision can differ 

for each impact category due to differences in overlap and ratios. In this case, 

Ionizing Radiation (Human Health) is the only one for which a clear-cut decision 

cannot be made, and the overwhelming majority of impact indicators points at the 

selection of bulk apples as the environmentally preferable option. 

4.4.4 Communication consensus 

2DMC results can be visualized and communicated on in two ways: either by 

looking for overlap in the graphs or by comparing ratios. At least, that is how we 

propose to deduce conclusions from the results in this chapter. Of course, there are 

alternative ways to do this for both. 

4.4.4.1 Comparing simulation results using statistical tests 

When it comes to comparative LCAs, recent literature has discussed different 

methods on how the preferential product can be chosen when uncertainty is 

present (Gregory et al., 2016; Heijungs, 2021; Mendoza Beltran et al., 2018b). 

Heijungs (2021) reviews following approaches that can be used to single out the 

superior option of two (or more) products when uncertainty is propagated using 

(1D) Monte Carlo simulations:  

• null hypothesis significance testing (e.g., comparing mean scores using the t-

test or median scores using the Wilcoxon-Mann-Whitney test), 
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• standardized mean difference (measures how many standard deviations the 

two means are separated) 

• “modified” null hypothesis significance testing (with a required minimum 

threshold difference similar to the standardized mean difference, in the H0 

hypothesis), 

• nonoverlap statistics (measures the degree of overlap or the similarity between 

probability distributions; more information in section 7.1.5), and 

• comparison indicator/discernability analysis (pairwise analysis that counts how 

many times one product is preferred to another; more information in section 

7.1.5). 

Yet, even more variations and measures are possible to assess the superiority of 

one product over another (Gregory et al., 2016; Heijungs, 2021; Mendoza Beltran 

et al., 2018b). In the end, Heijungs (2021) concludes that two questions need to be 

answered to select the best product alternative out of two options: (i) “What is the 

probability that a randomly selected specimen of product A performs better than a 

randomly selected specimen of product B?” and (ii) “How much will a randomly 

selected specimen of product A perform better than a randomly selected specimen 

of product B?”. He proposes the use of a “modified comparison index” to answer 

these questions, for which a minimum threshold value is used to assess the 

superiority of option A and of option B. 

The hurdle when it comes to these methods, is that they start with one output 

probability distribution for each product. Further analyses are thus needed to see 

to which degree these methods can be applied when each product has multiple 

output probability distributions, such as with 2DMC, and if they subsequently 

provide meaningful results. 

4.4.4.2 Alternative uncertainty and variability ratios 

To communicate about uncertainty and variability in a clear way, we used the 50th 

and 97.5th percentiles to calculate uncertainty and variability ratios as described in 

Pouillot et al. (2016) and proposed by Özkaynaka et al. (2009). However, we could 

have chosen to use other ratios, such as the ones calculated from the 10th and 90th 

percentiles, as was done by Douziech et al. (2019) and Huizer et al. (2012). We could 

even have used the 2.5th and 97.5th percentiles, as to be more in line with the ratios 

calculated by Hauck et al. (2014) and Steinmann et al. (2014) (section 3.4.2.1).  
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One might also wonder if the variability ratio is truly representative for the 

steepness of all output probability distributions, since the ratio is calculated using 

the data from only one curve (i.e., the 50th percentile or median of uncertainty). It 

might be interesting to see how the variability ratio would differ if another 

percentile was used, for example the 97.5th percentile of uncertainty (i.e., D/C in 

Fig. 4-2). In the case of the apple post-harvest chain, this difference is fairly limited 

with a maximum decrease of 0.02 and maximum increase of 0.01 of the variability 

ratios across all impact categories. It might be good practice to consistently 

calculate the variability ratios of a set of percentiles of uncertainty (i.e., a specific 

set of curves), as to quantify the uncertainty of the steepness of the curves. 

Whichever ratios are chosen, the used percentiles should always be equivalent for 

the uncertainty ratio and the variability ratio, so they can be consistently compared. 

Of course, in the future, there will need to come a consensus among LCA 

practitioners on which tests and ratios will be used for further communication. 

Once a communication consensus is established, distinguishing between 

uncertainty and variability in LCAs may help decision makers in judging the 

significance of the differences in product comparisons, options for product 

improvement or the assignments of ecolabels (Huijbregts, 1998). In the 2DMC 

method, Monte Carlo simulations were used for visualizing overall uncertainty and 

using this information in decision support when comparing the environmental 

impact of different products or services. According to von Brömssen and Röös 

(2020) this is one of the few correct ways to apply Monte Carlo simulations in LCA 

while it should not be used for inferential statistics 8. 

4.5 Conclusions 

To the best of our knowledge, this was the first time 2DMC was used in LCA to 

separately propagate data uncertainty and variability. 2DMC is a useful approach 

to integrate in LCA, allowing decision makers to judge the significance of the results 

and to make robust decisions. We recommend to always conduct 2DMC in an LCA 

when comparing two products or processes, provided that the data availability 

allows to do so and if time permits it. For this reason, uncertainty and variability 

should be taken into consideration from the very start of the LCA process. Sufficient 

 
8 Combining descriptive measures with probability theory to make generalizations 
about a population based on a data sample (von Brömssen and Röös, 2020) 
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data quality can only be attained if information on uncertainty and variability is 

collected already during the LCI and/or by collecting additional data. Both 

approaches were followed in this chapter. 

2DMC outcomes allow to first see if the 2DMC curves of the two 

products/processes overlap in any way. If not, an unambiguous conclusion can be 

made on which would be environmentally preferable based on the central 

tendency. When the 2DMC curves de show overlap, it would be more advisable to 

first try to reduce the overall uncertainty. The ratios indicate if that can be achieved 

by gathering more knowledge (and thus reducing uncertainty) or if the system 

should be examined more closely (and thus reducing variability by making physical 

changes in the production process). For the results of this case study, the best 

general advice to give to a consumer – at this moment – would be to buy bulk 

apples. 

In the next chapter, we conduct 2DMC for an LCA of the apple cultivation chain. To 

this end, the Farm Accountancy Data Network will be used, which is a large 

database containing data on cultivation in- and outputs. This will be in contrast with 

the case study on the post-harvest chain, which was reported on in this chapter, for 

which the inventory mainly consists of survey data. 
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Comparing the environmental impact of an 

established and young apple cultivar by conducting 

two-dimensional Monte Carlo simulations for a large 

set of orchards  
 

This chapter is based on: Michiels, F., Geeraerd, A. (article in preparation). Comparing the 

environmental impact of an established and young apple cultivar by conducting two-dimensional 

Monte Carlo simulations for a large set of orchards. 

Author’s contributions: Michiels F. performed the analysis and drafted the manuscript 

 

 

5.1 Introduction 

In Chapter 4, the possible added value of conducting two-dimensional Monte Carlo 

simulations (2DMC) in an LCA context is explained and illustrated. 2DMC was 

introduced using the apple post-harvest chain as case study. That part of the apple 

chain was based on surveys conducted by two auctions and a retailer, for which the 

answers were gathered during the study of Goossens et al. (2019). In contrast, the 

cultivation part of the apple chain in the study of Goossens et al. (2019, 2017a) was 

based on an extensive database of the in- and outputs of different apple orchards 

located in Flanders. It seems relevant to study how this type of inventory can be 

used for 2DMC in an LCA context.  

Thus, our aim in this chapter is two-fold. First, we aim to complete the 2DMC 

analysis for the apple chain by conducting simulations for the cultivation part. The 

packaging method (i.e., bulk vs. pre-packed) was compared in Chapter 4. In this 

chapter, a comparative LCA for two different apple cultivars (i.e., Jonagold and 
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Kanzi) will be conducted. Second, we aim to illustrate the different approach that 

needs to be taken when using such a different type of inventory (i.e., an extensive 

database with individual records for each orchard). 

5.2 Methods 

5.2.1 Goal and scope definition 

A 2DMC analysis was conducted for an updated version of an existing attributional 

LCA of the Belgian (Flanders) apple cultivation (Goossens et al., 2017a). The 

cultivation chain goes up to the farm gate (excluding the tree seedling nursery) and 

consists of all orchard management operations, including manufacturing, transport 

and use of energy, water, pesticides and fertilizers; and excluding construction, 

manufacturing and maintenance of farm buildings, infrastructure, machinery, 

equipment and materials (Goossens et al., 2017a). All orchards were based on 

dwarf rootstocks. Cultivation was done using Integrated Pest Management (IPM). 

Direct field emissions from fertilizers, pesticide and energy use were calculated 

using the IPCC guidelines (Garg and Weitz, 2019; Hergoualc’ et al., 2019), the Agri-

footprint manual (Durlinger et al., 2017b), ecoinvent reports (Nemecek and 

Schnetzer, 2011), the Product Environmental Footprint Category Rules (European 

Commission, 2018) and the air pollutant emission inventory guidebook (European 

Environment Agency, 2016). The functional unit is 1 ton of apples leaving the farm. 

No distinction was made based on the quality or purpose of the apples; all apples 

were assumed to be consumed as whole fruit. The inventory includes all inputs to 

cultivate both harvested and lost apples, therefore field losses are accounted for. 

Calculations were performed using SimaPro 9.0.0.49 (Pré Sustainability, the 

Netherlands), JMP Pro 15 (SAS Institute Inc., NC, USA) and Excel 2016 (Microsoft, 

WA, USA). The ILCD [2011 Midpoint+; EC-JRC Global, equal weighting] method was 

used as impact assessment method. Input processes were collected from the 

databases ecoinvent 3.5 and Agri-footprint 4.0., using “allocation, at point of 

substitution” and “economic allocation” respectively. For the 2DMC analysis, 

10 000 iterations and 250 simulations are conducted, leading to 2 500 000 possible 

LCA outcomes shown in 250 2DMC curves (see section 7.1.5). The Excel add-in 

@Risk (Palisade, NY, USA) was used to conduct these 2DMC simulations. 
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5.2.2 Life Cycle Inventory of the cultivation chain 

Cultivation data was obtained from the EU Farm Accountancy Data Network 

(FADN). The detailed cultivation data includes anonymized company data (e.g., area 

in production, yield, etc.) and orchard records. Each orchard record holds 

information on the yield and on the fertilizer, pesticide, energy, water and land use 

of a specific cultivar during a specific year in a specific farm. As stated above, the 

cultivation chain of apple in this PhD thesis is based on an updated version of the 

apple LCA conducted by Goossens et al. (2017a). More specifically, in the updated 

version reported on in this PhD thesis, the used FADN database contained 

cultivation data for a period of 11 years [from 2005 to 2015 instead of 2012 as in 

Goossens et al. (2017a)], the 2019 refinement to the 2006 IPCC guidelines was used, 

pesticide production was included, the European Commission’s (2018) guidelines 

for pesticide emission was followed and newer, more relevant database input 

processes were used when possible. 

Two apple cultivars were studied: Jonagold (and its mutants), an established 

cultivar (created around 1970) in Belgium, and the relatively young Kanzi (from 

2004; a hybrid of Gala and Braeburn). 973 Jonagold orchard records spread over 70 

farms and 36 Kanzi orchard records spread over 6 farms were selected, cultivated 

between 2005 and 2015. The yields ranged from 1 to 166 t/ha for the Jonagold 

orchards, and from 4 to 61 t/ha for Kanzi orchards, including low, full and mixed 

productive stages [as defined in Goossens et al. (2017a)]. For all field operations, 

the manufacturing, transport and use of energy carriers, water, pesticides and 

fertilizers, were considered.  

The FADN database does not provide any indication of how certain the apple 

growers are when providing the amount of products that they used during 

cultivation. Therefore, a small survey was conducted among twelve Flemish apple 

growers asking them how big the maximum error would be when we would ask 

them to give the amount of specific energy, water, pesticide and fertilizer products 

or product groups used in their orchards. The apple growers were asked to rate 

their uncertainty according to the Product Environmental Footprint (PEF) quality 

criteria (European Commission, 2012), ranging from no uncertainty to very high 

uncertainty. Since the FADN database is completely anonymous and we could 

therefore not contact the farmers from the 76 selected farms, we surveyed apple 

growers during the “Open day pit fruit” of pcfruit (test center for fruit cultivation). 
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Five of those twelve apple growers indicated that they participate in the FADN 

database. 

By combining all the information of the FADN database and the uncertainty ratings 

of the apple growers, we now have an inventory for the cultivation chain than 

includes quantifiable uncertainty and variability. With this data we can conduct a 

2DMC analysis.  

5.2.3 Input probability distributions for cultivation parameters 

For the first step of the 2DMC analysis, the input data are categorized into four 

categories: deterministic, uncertain, variable and, uncertain and variable. 

Appropriate probability distributions are selected for the last three categories. 

For the cultivation chain, the amount of input products used for energy, water, 

pesticide (considering active ingredients instead of products) and fertilizer could be 

considered as being both variable and uncertain. They are variable because the 

1009 selected orchards all used different products and different amounts. This can, 

for example, be caused by the varying soil type underneath the different orchards, 

leading to different fertilizer and water needs. To account for this variability caused 

by the diverging management practices of the apple growers, distributions were 

fitted with @Risk for each product, during which the correlations between the 

different products are calculated and a correlation matrix is generated. That way, if 

there are specific product combinations being used, that will be accounted for 

during sampling. For the distribution fitting, the lower bound was set to zero and 

the Akaike Information Criterion (AIC) test statistic was used. This generally led to 

an exponential distribution being chosen, and occasionally a lognormal or logistic 

distribution. 

On a sidenote, it could be argued that variability does not need to be accounted for 

in the cultivation chain, because the extensive FADN database actually provides a 

rather large amount of deterministic data on the management practices. However, 

here we look at the apple chain from the perspective of the consumer, who does 

not know from which orchard or orchards the apples come from. Stated differently, 

our approach for the energy, water, pesticide and fertilizer inputs illustrates how 

variability can be accounted for from a large dataset of deterministic values. 

For the uncertainty aspect of the amount of input products, twelve apple growers 

provided data on how certain they would be when giving the amount of different 
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energy sources, water, pesticide and fertilizer products or product groups used in 

their orchards. The uncertainty ratings were used to construct PERT distributions, 

which need a min, most likely and maximum amount. The most likely amount was 

the amount given in the FADN database, while the min and max were based on the 

provided percentage of uncertainty.  

For example, the grower indicates that he would have a very low uncertainty (≤ 

10%; for which 5% was used) when giving the amount of tap water that was used 

during cultivation. The amount of tap water is represented by a variable probability 

distribution (as explained above), which is consecutively sampled from generating 

x amount of tap water used. Just as explained in Chapter 4, this can be combined 

in following formula: [x*PERT(1-5%; 1; 1+5%)], where x represents the variable 

probability distributions and the PERT function represent the uncertain probability 

distribution. Thus, for the amount of input products used, the variable distribution 

(which was fitted based on the products used in the FADN database) and the 

uncertain distribution (which was based on uncertainty surveys) were derived 

separately, allowing multiplication and separate sampling later on.  

Apple growers often chose different uncertainty ratings for the same product. If we 

consider tap water again, three apple growers rated it as having “no uncertainty”, 

four “very low uncertainty”, two “low uncertainty”, one “fair uncertainty, one “high 

uncertainty” and one blank (which was excluded). A discrete distribution was 

constructed to combine these estimates (i.e., the PERT distributions) from several 

people (Palisade, 2016b). 

How uncertainty and variability was further taken into consideration is explained 

for each input category separately. An overview of all parameters is given in Table 

5-1. More details on the methodology and used data can be found in Appendix B.1.  

Energy: Manufacturing, transport and emissions of energy products used by the 

grower for farm equipment and transportation was accounted for. The units used 

in the FADN database for the different energy carriers were (usually) not the same 

as the ones used in the corresponding SimaPro processes. Since the FADN database 

always included the amount of MJ for each energy source, we decided to use that 

unit for the further calculation. Therefore, the units used in SimaPro needed to be 

conversed to MJ (if needed) to match with the FADN database. For some energy 

sources, the conversion factors already reported on within FADN database itself 

could be used, which were then deterministic (Table 5-1). For others, uncertain 
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conversion factors from literature were selected (CREG, 2018; IFA, 2020; World 

Nuclear Association, 2018), leading to uniform input distributions. The emissions to 

air from energy use also included, where possible, uncertainty distributions based 

on data found in the IPCC guidelines (Buendia et al., 2019) and the air pollutant 

emission inventory guidebook (European Environment Agency, 2016). Emissions 

factors are generally classified as uncertain (Michiels and Geeraerd, 2020).  

Water: Water is used in apple orchards for e.g., irrigation and frost protection. Four 

sources of water were used for these purposes i.e., groundwater, rainwater, 

surface water and tap water.  

Pesticides: Plant protection and sanitation measures were accounted for, using 250 

different active ingredients for Jonagold and 148 for Kanzi. Pesticide use was 

included as 90% active ingredient emitted to the agricultural soil compartment, 9% 

emitted to air and 1% emitted to water, following the Product Environmental 

Footprint Category Rules (PEFCRs) (European Commission, 2018).  

Fertilizers: 786 fertilizers products for Jonagold and 125 for Kanzi were used during 

cultivation in the different orchards. The uncertainty of emission factors was 

propagated when calculating the emissions from fertilizer use to air from NH3, N2O 

and CO2 and to water from NO3
- and P (Durlinger et al., 2017b; European 

Commission, 2018). Uncertain PERT distributions were based on data from the IPCC 

guidelines (Hergoualc’ et al., 2019), supplemented with deterministic data found in 

the Agri-footprint manual (Durlinger et al., 2017b). When calculating the emissions 

of heavy metals to soil and water (Durlinger et al., 2017b), the heavy metal content 

of the organic fertilizers was considered variable, where possible, for which 

distributions were based on various literature sources. Oftentimes minimum, 

default, maximum and standard deviation data was available, which lead to the 

construction of a normal distribution (using the default as a mean, and the standard 

deviation) which was truncated using the minimum and maximum values. 
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Table 5-1  Summary of the cultivation parameters and their categorization. 

The parameters are categorized into deterministic, uncertain, variable and 

uncertain & variable, with a short explanation on how the type was reflected by 

the data and which source was used. All information for each separate parameter 

can be found in Appendix B.1. 

Parameter Type Data and sources 

Energy 

Conversion to MJ for 

gasoline, butane, charcoal, 

LPG and propane 

Deterministic  Already present in SimaPro with MJ unit or 

deterministic data from the FADN database 

Conversion to MJ for natural 

gas, diesel, fuel oil, methane 

gas and petroleum 

Uncertain Uncertain literature data (CREG, 2018; IFA, 

2020; World Nuclear Association, 2018) 

Emission factors for 

stationary combustion 

Uncertain Uncertain data from volume 2 chapter 2 of the 

IPCC guidelines (Garg and Weitz, 2019) 

Emission factors for on-road 

diesel machinery 

Uncertain Uncertain data from 1.A.3 of the air pollutant 

emission inventory guidebook (Ntziachristos et 

al., 2018) 

Emission factors for off-road 

diesel machinery 

Deterministic Deterministic data from 1.A.4 of the air 

pollutant emission inventory guidebook 

(Winther et al., 2017) 

Amount Uncertain & 

Variable 

Uncertainty ratings from apple growers (this 

PhD thesis) & varying management practices 

(FADN)  

Water 

Amount Uncertain & 

Variable 

Varying management practices (FADN) & 

uncertainty ratings from apple growers (this 

PhD thesis) 

Pesticide 

Emission factors Deterministic Based on the PEFCRs (European Commission, 

2018) 

Amount Uncertain & 

Variable 

Varying management practices (FADN) & 

uncertainty ratings from apple growers (this 

PhD thesis) 
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Table 5-1  Continued 

Parameter Type Data and sources 

Fertilizer 

Emission factors Uncertain Uncertain data from volume 4 chapter 11 of the 

IPCC guidelines (Hergoualc’ et al., 2019) 

Fraction of fertilizer that 

volatilizes 

Uncertain Uncertain data from volume 4 chapter 11 of the 

IPCC guidelines (Hergoualc’ et al., 2019) 

Fraction of N that is lost due 

to leaching or runoff 

Uncertain Uncertain data from volume 4 chapter 11 of the 

IPCC guidelines (Hergoualc’ et al., 2019) 

Fraction of P that is lost due 

to leaching or runoff 

Deterministic Deterministic data from Agri-footprint manual 

(Durlinger et al., 2017b) 

Heavy metal content of 

mineral fertilizers 

Deterministic Deterministic data from the Agri-footprint 

manual (Durlinger et al., 2017b) 

Heavy metal content of the 

organic fertilizers animal 

manure and champost 

Variable Variable data for animal manure and champosta 

(Jordan et al., 2008; Klein and Roskam, 2018; 

Moreno-Caselles et al., 2002; Römkens and 

Rietra, 2008) 

Heavy metal content of the 

organic fertilizers compost, 

digestate, green manure and 

sewage sludge 

Deterministic Only deterministic data found for compost, 

digestate, green manure and sewage sludge 

(Amlinger et al., 2004; Goossens et al., 2017a; 

Mels et al., 2008; Sager, 2007) 

Deposition of heavy metals Deterministic Deterministic data from the Agri-footprint 

manual (Durlinger et al., 2017b) 

Heavy metal content of apple Deterministic Deterministic literature data (Delahaye et al., 

2003; Stefanut et al., 2007) 

Heavy metal leaching to 

groundwater 

Deterministic Deterministic data from the Agri-footprint 

manual (Durlinger et al., 2017b) 

Amount Uncertain & 

Variable 

Varying management practices (FADN) & 

uncertainty ratings from apple growers (this 

PhD thesis) 
a The Hg content of champost is deterministic (Delahaye et al., 2003) 
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5.3 Results 

5.3.1 2DMC results for apple cultivation 

A representative selection of the 2DMC results reflecting the three possible 

outcomes (Fig. 4-4) is shown in Figure 5-1. The results for the remaining impact 

categories can be found in Appendix B.2. 

The 2DMC curves for Jonagold and Kanzi cultivation are clearly separated (except 

for sometimes a small overlap in the tail ends) for half of the impact categories: 

Climate Change, Human Toxicity, Particulate Matter (Fig. 5-1a), Photochemical 

Ozone Formation, Freshwater Eutrophication, Freshwater Ecotoxicity and Land 

Use, with Jonagold being environmentally preferable. This corresponds with 

possible outcome 1 “No overlap” as shown in Figure 4-4 (section 4.3.2). 

For some of the other impact categories where the 2DMC curves do overlap, one is 

still able to distinguish a certain tendency of Jonagold having a generally smaller 

impact than Kanzi, such as for Ozone Depletion, Acidification (Fig. 5-1b) and 

Terrestrial Eutrophication. However, for Water Resource Depletion and Mineral, 

Fossil & Renewable Resource Depletion (Fig. 5-1c) this is not the case. A 

pronounced overlap between the two cultivars can be observed here. 

When comparing the ratios of Jonagold and Kanzi, the overall uncertainty ratio and 

the variability ratio is always higher for Kanzi than for Jonagold except for the 

impact categories Land Use and Mineral, Fossil & Renewable Resource Depletion. 

For the uncertainty ratio, there is an equal division of the impact categories being 

higher for either Jonagold or Kanzi. For Kanzi itself, variability is clearly always 

dominating the overall uncertainty. This is the same for Jonagold with Marine 

Eutrophication (Fig. 5-1d) being the exception of having a larger uncertainty than 

variability ratio.  

Thus, for the impact categories that do show overlap, this is mainly dominated by 

variability (Fig. 5-1b and 5-1c) as in possible outcome 3 shown in Figure 4-4. The 

impact category Marine Eutrophication is the odd man out, since the overlapping 

2DMC results are due to dominating uncertainty for Jonagold and dominating 

variability for Kanzi (Fig. 1d). It is therefore a combination of possible outcome 2 

and 3 of Figure 4-4. 
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Figure 5-1 2DMC results for the cultivation chain. 

The Jonagold apples are colored and the Kanzi apples are shown in greyscale. 
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Figure 5-1 Continued 
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5.3.2 Comparing 2DMC with deterministic results 

It is interesting to also study how impacts calculated using 2DMC and impacts 

calculated using solely deterministic input values approximate each other. 

Therefore, next to 2DMC, a separate scenario was considered were all uncertain, 

variable and uncertain ánd variable parameters were assumed to be deterministic. 

Instead of using probability distributions, the data in the FADN database was 

considered deterministic for each orchard record and default and most likely values 

were used for the remaining input values. We can then compare the 2DMC curves 

with the calculated deterministic impacts (973 for Jonagold and 36 for Kanzi, 

represented by respectively orange and black dots in Fig. 5-2).  

For the Jonagold orchards, there are outlier impacts that are not represented by 

the 2DMC curves (Fig. 5-2a). In contrast, the 2DMC impact range for Kanzi is often 

much larger than its deterministic impact (Fig. 5-2b), except for Human Toxicity 

Non-Cancer Effects, Marine Eutrophication (Fig. 5-2c) and Mineral, Fossil and 

Renewable Resource Depletion, where 1 Kanzi orchard has a larger impact than 

simulated by 2DMC. 

The 973 Jonagold orchards can give the most complete indication of how well the 

deterministic values approximate the 2DMC curves. The slope of the Jonagold 

deterministic impacts is generally steeper for the smaller probabilities, compared 

to the 2DMC results. Though, the curve of the deterministic impacts bends sooner, 

crossing the 2DMC results approximately between the 80% and 90% cumulative 

probability. This is illustrated in Figure 5-2d for Climate Change. However, when the 

uncertainty ratio is relatively high (around 1.20 and higher), the deterministic 

impacts follow the 2DMC curves more accurately (Fig. 5-2e). 
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Figure 5-2 Deterministic (dots) and 2DMC (curves) results for Jonagold (colored) and Kanzi 

(greyscale) cultivation. 
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Figure 5-2 Continued 
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Figure 5-2 Continued 

5.4 Discussion 

5.4.1 From 2DMC results to decisions 

A clear conclusion can be made for half of the impact categories of the cultivation 

chain, where it seems that the established Jonagold apple is preferable over the 

younger Kanzi cultivar when it comes to lowering environmental impacts. This can 

possibly be due to Kanzi having a higher economic value than Jonagold apples. In 

2018, apple growers received an average of 93 eurocent per kg of Kanzi apples, 

while they only received 65 eurocent per kg of Jonagold apples. Additionally, Kanzi 

is a so-called “club breed”, meaning that growers need to have permission and pay 

a fee to be allowed to grow them (Vilt, 2018). It is possible that due to Kanzi being 

more exclusive and causing more financial gains, that the grower will be more 

inclined to invest more resources in its cultivation (e.g., fertilizers) and protection 

(e.g., against frost), compared to Jonagold. The 2DMC outcomes do show overlap 

for Jonagold and Kanzi apples for the other 8 of the 16 impact categories. In those 
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cases, it is important to look at uncertainty and variability to make informed 

decisions.  

When the 2DMC curves of two scenarios overlap, it is always advisable to interpret 

the ratios and to see how to possibly reduce the spread and range of the curves, 

even when there is still a clear general tendency of which might be preferable (such 

as in Fig. 5-1b). In the case of apple cultivation, it is almost always the variability 

ratio that dominates the overall uncertainty for both cultivars. This is in accordance 

with the results of the post-harvest chain in Chapter 4. Though, the variability ratios 

were generally smaller there, with a maximum of 2.49. The maximum variability 

ratio for the cultivation chain is 7.10. This difference probably stems – among other 

things – from the limited number of companies that were included in the post-

harvest chain on the input side i.e., two auctions and one retailer. However, the 

analysis is still representative for the whole of Flanders since the post-harvest chain 

represents a standardized industrial process. For example, the storage of fruit is 

maintained using an optimized controlled atmosphere – depending on the fruit 

quality – which is generally applied by the auctions.  

In contrast, apple growers generally have small businesses and are more inclined 

to use their own management strategies and techniques, which are less optimized. 

Additionally, they are much more dependent on biological processes, making 

standardization a challenge. The FADN database does not allow to identify different 

management techniques (except for integrated vs. organic farming), otherwise it 

would have been possible to further select on the different variations in the 

production techniques, thereby reducing variability and introducing scenario 

uncertainty (see Chapter 3). 

Because variability is dominating, it implies that it would be a waste of time to try 

to reduce uncertainty by collecting more information. Instead, the results indicate 

that reducing the overall uncertainty could be achieved by examining and changing 

the physical system. The variability shows that apples could be produced at a low 

impact, but for some reason this does not always happen. However, it depends on 

the source of the variability if changing the system is possible.  

For example, variability could be reduced by making changes to the management 

strategies of Kanzi cultivation. It is plausible that the management of the new Kanzi 

apple is not as uniform and efficient yet as it is for the established Jonagold apple, 

leading to more variability and a generally larger impact. Optimizing the 
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management strategies for pruning, fertilizer, pesticide, energy, etc. could reduce 

this variability. There are, however, also sources of variability that cannot 

(realistically) be reduced. For example, variability due to weather occurrences, 

differences in the productive stage of the orchards (see section 1.4.2), or the 

location (and thus soil type) of the orchard. 

The only case where gathering more knowledge would lead to more conclusive 

results, is for Marine Eutrophication. For Jonagold apples, more precise emission 

factors, more accurate measurements, etc., should be gathered to lower the overall 

uncertainty ratio for that impact category. 

For the cultivation chain, the recommended decision differs for each impact 

category, due to differences in overlap and ratios. Therefore, it might be advisable 

to focus on those impact categories that are deemed important or noteworthy for 

the studied product or process. For example, Marine Eutrophication shows high 

overlap between Jonagold and Kanzi 2DMC curves (Fig. 5-1d) and it is 

recommended to trying to reduce the overall uncertainty for Jonagold and Kanzi. 

However, Helmes et al. (2020) suggest in their proposal for Hortifootprint Category 

Rules (based on representative product studies), that the most important impact 

categories for apples are: Climate Change, Particulate Matter, Photochemical 

Ozone Formation, Acidification, Terrestrial Eutrophication and Mineral, Fossil and 

Renewable Resource Depletion. Since Marine Eutrophication is not part of this list, 

the decision maker might decide to discard the recommendation because the 

impact category is not relevant enough.  

Another way to select relevant impact categories is by looking at the goal and scope 

of the LCA study. In this LCA, we studied the environmental impact of Flemish apple 

cultivation, so we could decide to select impact categories that are relevant for 

Flanders on a local scale. In that case, eutrophication would probably be chosen 

because there is too much nitrogen deposition in the region. In 2018, 64% of the 

area protected under Natura 2000 had a nitrogen deposition exceeding the critical 

deposition value9 (Flemish Government, 2021). If we did a study that was more 

 
9 The critical deposition value is the amount of nitrogen deposition (kg N per ha per 
year) for a certain ecosystem below which, according to the current scientific 
knowledge, no meaningful change in biodiversity will occur in the long term 
(Flemish Government, 2021). 
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focused on the global scale, other impact categories might be more relevant, such 

as Climate Change. 

5.4.2 Influence of the data source 

The outcome of the Monte Carlo results - just as with LCA results - needs to be 

interpreted considering the quality of the input data (von Brömssen and Röös, 

2020). To account for uncertainty and variability in the post-harvest chain 

(Chapter 4) and some parts of the cultivation chain, distributions were based on 

lower tendency, most likely and higher tendency data, gathered through surveys or 

literature. In contrast, the amounts of the used energy, water, pesticide and 

fertilizer products in the cultivation chain was taken into consideration through 

distribution fitting using individual orchard data from a large database. While in the 

first case, outliers are generally not included in the distributions, this was not the 

case when fitting distributions for the cultivation chain, sometimes leading to 

higher-than-expected outcomes.  

For example, when calculating the environmental impacts for the impact category 

Freshwater Ecotoxicity for Kanzi using only deterministic input values [such as in 

Goossens et al. (2017a)] –  completely disregarding uncertainty and variability – we 

see that 3 of the 36 orchards can be identified as “far out” outliers (using Tukey’s 

fences10), which is 8% of the results (fig. 5-2b). For Jonagold on the other hand (fig. 

5a), only 58 of the 973 orchards are shown as being “far out” outliers (6%). The 

difference of “far out” outlier percentages can be even higher, with for example 

only 4% (39 “far out” outliers) for Jonagold and 14% (5 “far out” outliers) for Kanzi 

for the impact category Freshwater Eutrophication. A high degree of outliers can 

influence the 2DMC results because more “extreme” results will have larger 

influence when fitting input probability distributions, possibly leading to right-

skewed probability distributions and over-sampling of higher input values.  

In such cases, we have to keep in mind that Monte Carlo simulations are a simplified 

model of reality and therefore never meant to be a perfect description of the real 

world (von Brömssen and Röös, 2020). A possible solution to counteract these 

outliers is by excluding the outlier simulations and only showing the simulations 

between 2.5% and 97.5% [as in Vásquez et al. (2014)]. These percentiles are used 

 
10 A “far out” outlier is any observation lying outside the range [Q1 – 3(Q3 – Q1); 
Q3 + 3(Q3 – Q1)], with Q1 and Q3 being the lower and upper quartiles respectively. 
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when calculating the ratios which do not show to be much influenced by the outlier 

inputs.  

Another possibility is to exclude the orchards that have “far out” deterministic 

impacts, before proceeding with distribution fittings. It is possible that these 

outliers had low yields due to bad weather or because the orchards were very 

young and therefore not fully productive yet (this is further discussed in section 

5.4.3). However, such outliers might just lead to valuable information and insights 

on how the process can be improved and the impacts lowered and, therefore, we 

did not omit them from our 2DMC simulations. We specifically chose to use all 

available inputs and to show all results in order to be as transparent as possible (see 

section 1.2). Especially, since we aim to introduce the 2DMC method to other LCA 

practitioners. When communicating the results to stakeholders, a simplification of 

the results might be more fitting. 

In conclusion, 2DMC is more suitable for large datasets. When using a relatively 

small dataset to account for variability, 2DMC results can be unexpectedly large. 

We therefore advise to look at the results more critically when such a dataset is 

being used and to identify if any outliers are present in the input data. It would be 

relevant to conduct further research on the effect of using 2DMC for small datasets 

and the different outlier treatment options.  

5.4.3 How do the 2DMC results fit in the current literature? 

Finally, we look at how our 2DMC results and deterministic results compare with 

the state-of-the-art when it comes to apple cultivation impact. We compare the 

literature results for the Climate Change impact category for the Jonagold results 

(Fig. 5-2d). The large orchard dataset for Jonagold includes a wide range of possible 

management strategies. Do keep in mind that the system boundaries between the 

discussed studies and the one reported on in this chapter are not completely 

equivalent and that different LCIA methods might have been used.  

Jonagold cultivation has a deterministic Climate Change impact between -150 and 

3045 kg CO2 eq per ton apples with an average of 153 kg CO2 eq/t and a median of 

99 kg CO2 eq/t, while the 2DMC results range between 1 and 920 kg CO2 eq/t, and 

had an average of 133 kg CO2 eq/t and a mean of 122 kg CO2 eq/t. This range of 

results included impacts for all low productive and the full productive stages (see 
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section 1.4.2). The wide range of deterministic values can be caused by multiple 

reasons:  

• there might be a loss of yield due to extreme weather events resulting in high 

impacts,  

• the orchard might still be very young or very old, only providing a minimum of 

yield, 

• negative impacts can be caused by using a lot of inputs for which the chosen 

(sometimes proxy) input processes in SimaPro have a negative Climate Change 

impact, such as: 

o “Nitrogen fertiliser, sludge from pulp and paper production, 

landfarming” to account for the impact of paper sludge, 

o “Biogas, from grass” to account for the impact of digestate, 

o “Nitrogen fertiliser, nutrient supply from vinasse, from fermentation of 

sugar beet” to account for the impact of Monterra (see Chapter 6), and 

o “Rapeseed oil methyl ester” to account for the impact of the growth 

regulator 

• the apple grower might have incorrectly registered their data in the FADN 

database, 

• etc. 

These results are further compared to results published in apple LCAs in the last 

few years. Longo et al. (2017) calculated an impact of 125 kg CO2 eq/t for apples 

grown in Northern Italy. They based this on data from an experimental field and 

expert opinions, and focused on the full production stage. Bartzas et al. (2017) 

conducted interviews to gather the primary data of 28 fully productive orchards 

covering multiple production years to calculate the Greek apple impact, leading to 

89 kg CO2 eq/t using average weighted input data. Vinyes et al. (2017) considered 

a multiyear approach for a specific Spanish orchard, leading to an impact of 111 kg 

CO2 eq/t for the agricultural stage.  

Alaphilippe et al. (2015) focused on two specific French orchards, which had an 

impact of 89.8 kg CO2 eq/t for the intensive one and of 75.2 kg CO2 eq/t for the 

semi-extensive one. They considered the full orchard life cycle including the nursery 

and destruction phases. Basset-Mens et al. (2016) also considered the full orchard 

life cycle in France and found an impact of 67.8 kg CO2 eq/t. They mostly used 
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expert knowledge as a source supplemented with a large sample of field survey 

data for crop protection. 

For the conventional Canadian (Nova Scotia) apple production, Keyes et al. (2015) 

send surveys to thirty farmers, of which ten completed it. The authors stated that 

the received data represented around 15% of the total conventional apple growing 

area in Nova Scotia. They calculated an impact of 64.1 kg CO2 eq/t using the 

weighted average of the input data, which included inputs for land preparation, 

infrastructure and farm equipment. These were not included in the study reported 

on in this chapter. Excluding those inputs led to an impact of 51.4 kg CO2 eq per ton 

Canadian apple. 

Bamber et al. (2020) calculated impacts ranging between 122 and 192 kg CO2 eq/t 

depending on the apple production treatment (with or without bark mulch as a soil 

amendment) in a Canadian orchard. They considered parameter uncertainty using 

Monte Carlo simulations in their assessment which led to higher mean results, 

ranging between 250 and 360 kg CO2 eq/t. Their lowest possible result was -577 

and their highest 1473. 

In general, we see that just as in our results, there is a wide range of Climate Change 

results among the published studies, however their range is generally not as broad. 

This is most probably due to them oftentimes using survey data/expert opinions, 

only studying full productive orchards, limiting the study to a limited number of 

orchards and mostly not including any uncertainty or variability. Only Bamber et al. 

(2020) conducted an uncertainty analysis, leading to a wide range of possible 

impacts, just as was the case for our apple cultivation study. Variability could have 

been included in a couple studies (Bartzas et al., 2017; Keyes et al., 2015) but 

weighted average input data was used instead.  

5.5 Conclusions 

This assessment completes the apple chain by calculating the environmental 

impacts of the cultivation part of the chain. It is shown that 2DMC can – next to 

input values from surveys – also be used when the data source consists of a large 

database with individual deterministic input values. Though, care needs to be taken 

when interpreting the 2DMC results, especially for small datasets that contain 

outlier input values. 
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The shape and location of the 2DMC curves lead to different conclusions and thus 

have a different implication on decision/policy level. The 2DMC results indicate that 

for half of the impact categories a first conclusion can be made on which would be 

environmentally preferable based on the central tendency. For the results of this 

case study, the conclusion might be to cultivate more Jonagold apples. However, 

this might be a too general conclusion seeing as for the other half of the impact 

categories, the 2DMC curves of the Jonagold and Kanzi apples do overlap. When 

the 2DMC curves show overlap, it would be more advisable to first try to reduce 

the overall uncertainty. The ratios indicate that such a thing can mainly be achieved 

by examining the system more closely (and thus reducing variability by making 

physical changes in the production process). Seeing as the different impact 

categories lead to different results and thus, different future steps to take, the 

decision maker might have to decide which impact categories are relevant enough 

to retain to base their final conclusions on. 

 

 



   

123 

 

 

 

 

 

 

PART III 

 

Accounting for organic fertilizers 

 

 

 



 

124  Chapter 6 

Chapter 6  

 

Why mass allocation with representative allocation 

factor is preferential in LCA when using residual 

livestock products as organic fertilizers 
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fertilizers. Journal of Environmental Management, 297, 113337. 
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6.1 Introduction 

Life Cycle Assessment (LCA) is a standardized method to calculate the potential 

environmental impact arising throughout the life cycle of a product or process. Each 

production system has a primary function, but secondary functions can emerge 

throughout the life cycle. These secondary functions to the determining function 

are often of low relevance, however, they can be of high relevance when used as 

input (material or energy) in other processes (European Commission et al., 2010; 

Hauschild et al., 2018; ISO, 2006a). These production systems are called 

multifunctional because they provide more than one good/service.  

A typical example is animal husbandry, where meat is the primary output in the 

beef system or milk in the dairy system. Secondary products of these systems 

include hides, bones, blood and manure, which can also lead to economic gains, 

but are not the primary/determining function of the systems. Multifunctionality 

causes a challenging methodological issue in LCA, since LCA is based on analyzing a 

single system to determine its environmental impacts, and such isolation becomes 

problematic as soon as a secondary product emerges. When the secondary product 

https://doi.org/10.1016/j.jenvman.2021.113337
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is used in other systems, the original system becomes part of another process as 

well. The environmental impact can then no longer reasonably by ascribed to the 

original system only (European Commission et al., 2010; Hauschild et al., 2018), 

instead, a proper assignment (allocation) of shared inputs and emissions are 

needed between the different products of the multifunctional process (FAO, 2016).  

This multifunctionality causes especially a problem for agricultural products. When 

looking at cultivation, organic fertilizers such as manure or compost are typically 

seen as residual products of which the future use is considered as having no impact 

on the production of it (Durlinger et al., 2017a; Notarnicola et al., 2015). Because 

of this, the impacts of producing such organic fertilizers are usually not accounted 

for within agricultural and horticultural LCAs where the application of these organic 

fertilizers is considered [e.g., Goossens et al. (2017) and Spångberg et al. (2011)]. 

This is in accordance with the “default option” when it comes to exporting manure 

from a livestock farm (European Commission, 2018). In those cases, manure is seen 

as a residual product where the manure does not lead to economic gain at the farm 

gate. The emissions related to manure management up to that point are allocated 

to the other outputs of the livestock system (European Commission, 2018; FAO, 

2016) whereas the subsequent transformation of the manure in a useful product 

(e.g., organic fertilizer) and the emissions on the field are assigned to the crop 

production system (FAO, 2016).  

Alternatively, manure can be seen as a waste product if it has to be disposed of or 

when it is applied as an organic fertilizer in excess of crop nutrient requirements 

(FAO, 2016; Leip et al., 2019), for which mineral fertilizers are considered as a 

“wasteful” application before organic material is considered to be in excess as well 

if nutrient requirements are still exceeded (FAO, 2018a). In those cases, all the extra 

emissions are ascribed to the other products within the livestock system (FAO, 

2016). 

Lastly, manure can be considered a co-product of the livestock system when it leads 

to economic gain at the farm gate, in which case part of the environmental impact 

of the livestock system should be allocated to it (European Commission, 2018; FAO, 

2016). These three categories (residual, waste and co-product) can be extended to 

include other organic fertilizers originating in the livestock system, such as blood 

meal. ISO 14044 (ISO, 2006a) designed an allocation hierarchy to solve these kinds 

of multifunctionality problems for co-products. FAO’s decision tree (FAO, 2016) 

based on this hierarchy for large ruminants is shown in Figure 1-6. 
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Firstly, allocation should be tried to be avoided by dividing the unit process into two 

or more sub-processes. This subdivision should clearly separate the production 

between the different co-products, which is often not possible.  

Allocation can also be avoided by doing system expansion (ISO, 2006a). This can be 

interpreted by adding another, not provided function to the system to make it 

comparable; or by crediting the product system with the impacts of an alternative 

product/process which is avoided because of the emergence of the secondary 

function (European Commission et al., 2010; Hauschild et al., 2018). These avoided 

impacts have also been used to substitute/replace the impact of the co-product, 

especially when the use of the co-product elsewhere is considered (Bier et al., 2012; 

Nguyen and Hermansen, 2012). Notarnicola et al. (2015) specifically proposes to 

use the quantity of avoided mineral fertilizers to account for the production impact 

of organic fertilizers used during fruit production.  

If allocation cannot be avoided, ISO (2006) advices to partition the system between 

the different co-products in a way that reflects the underlying physical relationships 

between them [such as mass or energy content (European Commission et al., 

2010)] or – as a last resort – based on another relationship such as the economic 

value of the products. The choices made when allocating impacts is crucial since 

each allocation procedure produces different results and thus different 

interpretations and comparisons (Martínez-Blanco et al., 2014; Nguyen and 

Hermansen, 2012).  

ISO’s allocation hierarchy has since been interpreted in general (European 

Commission, 2018; European Commission et al., 2010) and in focused [e.g. pigs 

(FAO, 2018b), animal feed (FAO, 2014), large ruminants (FAO, 2016), dairy (IDF, 

2015) and livestock (FAO, 2018a)] LCA guidelines, and the sensitivity of the results 

to the different approaches has been tested in several case studies, such as: 

• thermoplastic production from blood meal comparing five approaches (Bier et 
al., 2012),  

• ethanol production from molasses comparing four approaches (Nguyen and 
Hermansen, 2012),  

• biodiesel production from soybean comparing three approaches (Esteves et al., 
2018) or from waste cooking oil comparing five approaches (Caldeira et al., 
2016),  

• lignin production comparing twelve approaches (Hermansson et al., 2020),  
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• compost application in crop sequence comparing two approaches (Quirós et 
al., 2015),  

• the dairy sector comparing four (Battini et al., 2016) and seven approaches (Gac 
et al., 2014; Rice et al., 2017), and 

• the meat sector comparing three (Vergé et al., 2016) and four approaches 
(Cherubini et al., 2018). 

Even this year, Wilfart et al. (2021) found that despite the many guidelines and 

scientific articles that have been published since the release of the ISO standard, no 

consensus has been reached regarding a preferential allocation rule.   

The fact that manure is generally seen as a residual product, with no production 

impacts ascribed to it, raises questions on how realistic comparisons are between 

conventional crop production systems that use mineral fertilizers and organic 

systems that use organic fertilizers such as manure and blood meal. The flows of 

resources and associated impacts are not represented equivalently in both systems. 

It is, therefore, relevant to review the different allocation procedures that could be 

used to include the environmental impact of organic fertilizers in the organic 

production system. 

The aim of this study was to conduct sensitivity analyses for the possible allocation 

procedures – and the choices within each procedure – that can be used for organic 

fertilizers stemming from a livestock system. We will address these questions using 

the cultivation of organic apples in Flanders (Belgium) as a case study. We aim to 

select the most preferable allocation procedure, leading to a realistic 

approximation, for future use in organic cultivation LCAs. This study might also be 

of interest for other LCAs where agricultural residues/waste/co-products are used 

as a resource for, e.g., feedstocks for value-added products such as biofuels and 

bioplastics. 

6.2 Methodology 

6.2.1 Goal and scope definition 

The goal of this LCA is to evaluate the effect of different allocation procedures on 

the environmental impact of organic fertilizer production within organic apple 

cultivation. We intend to assess the influence of the chosen procedure on the total 
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environmental impact and will identify difficulties and uncertainties associated 

with each procedure.  

An attributional cradle-to-gate LCA (excluding the nursery) of the organic apple 

cultivation in Flanders was conducted based on an updated version of the study of 

Goossens et al. (2017). The functional unit is 1 ton of organically cultivated apples 

leaving the farm. All annual orchard management operations are included using 

data on energy carriers, water, pesticides and fertilizers use, unless otherwise 

specified. 

Calculations were performed using SimaPro 9.0.0.49 (Pré Sustainability, the 

Netherlands), JMP Pro 15 (SAS Institute Inc., NC, USA) and Excel 2016 (Microsoft, 

WA, USA). The ReCiPe [2016 Midpoint (H) V1.03 / World (2010) H] method was 

used as impact assessment method, and all of its 18 impact categories were 

considered. Input processes were collected from the databases ecoinvent 3.5 and 

Agri-footprint 4.0., using “allocation, at point of substitution” and “economic 

allocation” respectively, as a standard. Other choices made because of the different 

allocation procedures are specified in section 6.2.3. 

6.2.2 Life Cycle Inventory 

Cultivation data for the apple orchards was obtained from the EU Farm 

Accountancy Data Network (FADN). In Flanders, 650 agricultural holdings are part 

of FADN (Departement Landbouw en Visserij, 2018). Approximately 1.4% of the 

Flemish agricultural area in 2019 was organically cultivated or in transition 

(Timmermans and Van Bellegem, 2020). The detailed primary production data in 

FADN includes anonymized company data and orchard records, which refers to all 

areas within a farm where the same apple cultivar is grown. One orchard record 

holds the information on the yield and on the fertilizer, pesticide, energy, water 

and land use of a specific cultivar during a specific year on a specific farm.  

Four organic apple orchard records were selected in which Jonagold or its mutants 

(i.e., Jonagored, Decosta and Novajo) were cultivated in 2011, with yields ranging 

from 2.4 t/ha to 72.8 t/ha, including both low and full productive tree stages [as 

defined in Goossens et al. (2017)]. Due to this high variability in yield, median 

impacts are reported on for the purpose of the allocation study reported on in this 

article.  
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The grower uses fossil energy and lubricants for farm equipment and 

transportation. Only the cumulative amounts of specific energy categories were 

included within the FADN dataset. Thus, energy use cannot be subdivided between 

field operations and transportation steps (which will have implications as shown 

below). Twenty fertilizer products including blood meal, solid cow manure and 

semiliquid cow manure were used in the different orchards. Allocation procedures 

for the organic fertilizers are described in detail in section 2.3.  

Direct field emissions from fertilizers and energy use (including pesticide and 

fertilizer application) were calculated using the IPCC guidelines (Garg and Weitz, 

2019; Hergoualc’ et al., 2019), the Agri-footprint manual (Durlinger et al., 2017b), 

ecoinvent reports (Nemecek and Schnetzer, 2011), the Product Environmental 

Footprint Category Rules (European Commission, 2018) and the air pollutant 

emission inventory guidebook (European Environment Agency, 2016).  

For the sake of transparency and data traceability, detailed descriptions of the input 

processes and emission calculations for the energy, water, pesticide and fertilizer 

use can be found in Appendix B.1.  

6.2.3 Allocation procedures and sensitivity analysis 

A scenario analysis, which is a kind of local sensitivity analysis (Hauschild et al., 

2018; Michiels and Geeraerd, 2020), was conducted for the methodological choice 

of the allocation procedures for the three organic fertilizers stemming from a 

livestock system. Considering the organic fertilizers as residual products was taken 

as the base scenario (see 6.2.3.1), to which system expansion (see 6.2.3.2), mass 

allocation (see 6.2.3.4) and economic allocation (see 6.2.3.5) were compared. For 

those last three allocation procedures, the organic fertilizers are considered as co-

products of the livestock system. 

6.2.3.1 Excluding organic fertilizer production (residual product) 

In this base scenario, the impact of the production of the organic fertilizers is not 

included because they are seen as residual products pertaining to the life cycle of 

their original system (Notarnicola et al., 2015). This approach has also been called 

the “waste assumption” [as in Bier et al (2012)]. No impacts of farming and meat 

processing are attributed to blood meal and manure. However, the transformation 

of blood into blood meal through blood drying is taken into consideration (Bier et 
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al., 2012; Goossens et al., 2017a). The management and use phases of the manure 

and blood meal are included within the main boundaries of the apple cultivation 

system as energy inputs and as emissions from fertilizer use (see 6.2.2). In Figure 6-

1, the processes belonging to the base scenario are indicated by the blue area (the 

input processes used in SimaPro can be found in Appendix C.1). 

6.2.3.2 System expansion 

In system expansion through substitution, the impacts of an equivalent, alternative 

product are allocated to the studied system. Two possible substitution products 

were selected for blood meal and manure. A mineral fertilizer, in accordance with 

the suggestion of Notarnicola et al. (2015), and an organic plant-based fertilizer. 

For the mineral fertilizer, a general NPK compound was selected from Agri-

footprint. For the organic fertilizer, the 100% vegetable fertilizer Monterra Bio Malt 

NPK 4.5-2.5-8 (MeMon, 2019; Servaplant, 2018) was chosen. The product is 

composed out of malt sprouts, corn gluten, vinasse and molasses (Servaplant, 

2018); the exact subdivision not being a fixed value (composition in Appendix C.1). 

Because of its availability in the databases, vinasse was chosen as the NPK supply 

source.  

To ensure the relevance of our calculations, the amount of active N supplied to the 

orchards by the mineral and organic plant-based fertilizer needed to be equivalent 

to the amount of active N that was actually supplied by blood meal and the two 

kinds of manure (active N percentages can be found in Appendix C.1). It was 

impossible to completely align the composition (e.g., P, K and C) of the substitute 

fertilizers to the organic fertilizers. A discussion on this can be found in section 

6.4.3. Fertilizer transports by the grower were already considered within the energy 

use. Packaging was not considered since that was also the case for the other 

fertilizer products. 
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Figure 6-1 System boundaries and associated inputs and outputs of the different allocation 

procedures. 

“Other fertilizers” are fertilizers not stemming from the livestock system. 
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The impacts of the use of the substitution products were calculated using the same 

methodology as the other fertilizer products (see 6.2.2). The transformation of 

blood into blood meal and the field emissions due to the use of blood meal and 

manure are not considered in this scenario. All impacts related to blood meal and 

solid and semiliquid cow manure are replaced by impacts from a substitute product 

(purple in Fig. 6-1). We assume here that system expansion would also be used for 

the livestock system, meaning that the system would be credited for the avoided 

impacts of the substitution products by subtracting them there. That way, there is 

no double-counting. 

6.2.3.3 Allocation based on a relationship: the background beef system 

For allocation based on a relationship (green in Fig. 6-1), the organic fertilizers are 

seen as co-products of the livestock system and a fraction of the impacts of the 

livestock system is thus added to the impacts of the base scenario (see section 

6.2.3.1). Regarding allocation based on a physical relationship, we only use mass 

allocation in our case study. Other physical relationships exist and will be discussed 

in section 6.4.4. 

Amount of organic fertilizer used in Flemish agriculture 

Agri-footprint’s input processes using mass and economic allocation are 

respectively used for the mass and economic allocation conducted in this research. 

As mentioned previously, three kinds of organic fertilizers were used in the apple 

orchards: solid cow manure, semiliquid cow manure and blood meal. The same 

livestock system could be used for both manure and blood, since we assumed that 

the blood supplied for the production of blood meal originated from beef cattle. 

We assumed that only 68% of the manure production was kept as manure, while 

the rest was spread on the pasture during grazing, following ERM and Universiteit 

Gent (2011).  

Additionally, the Flemish manure report of 2019 (VLM, 2019) states that 92% of all 

produced bovine manure is used in Flemish agriculture in 2018. This was equivalent 

to 65 million kg N and 26 million kg P2O5. We assume that the same percentage can 

be extended to the usage of the manure produced in one beef farm. For the 

remaining 8%, the impact of anaerobic digestion for biowaste was added to the 

beef system. Thus, when calculating allocation factors, only 63% of the total 
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manure production is considered as a possible co-product (Fig 6-2). For blood meal, 

the impact of the slaughterhouse was also accounted for.  

A representative beef farm  

To represent the impact of the beef system, Agri-footprints’ process “beef cattle for 

slaughter” (Durlinger et al., 2017b) was used, which was built using the Irish beef 

study of Casey and Holden (2006). The beef system was based on a specialist beef 

farm with a herd consisting of 60 bovines (including calves, cows, bulls and heifers) 

with the intention to produce beef. Each year, the herd produces 616000 kg 

manure (Table 6-1, Fig. 6-2) and 18 animals from the beef farm are slaughtered, 

equivalent to a total live weight of 11700 kg (Durlinger et al., 2017b). Irish beef 

production systems are predominantly grass based (Casey and Holden, 2006), while 

in a typical Belgian beef system the female bovines are kept outside for long periods 

of time while the males are kept inside (ERM and Universiteit Gent, 2011). Although 

the Irish beef system is not completely equivalent to the Belgian beef system, we 

identified it as the best proxy available in LCA databases. Further details can be 

found in Appendix C.1.  

It was assumed that the manure and blood meal, produced on that beef farm, were 

used in the organic apple orchard. The impacts of the beef system are expressed in 

“per kg live weight for slaughter”. By multiplying this with the annual amount of 

live weight that is slaughtered for the beef farm, we know the total annual impact 

of the specific beef farm used in Agri-footprints’ process. Using mass or economic 

allocation factors, a part of that impact is then ascribed to the organic fertilizers 

that are produced by the beef farm during one year (Fig. 6-3).  
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Figure 6-2 Schematic overview of the amount of manure and blood meal that is produced by 

the representative beef farm in one year and used as fertilizer on the apple 

orchards. 
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Amount of organic fertilizer needed for apple cultivation 

Not all manure and blood meal produced by the considered beef farm in one year 

is needed to fertilize the apple orchard. Of the 63% of the total manure production 

that ends up being used in agriculture, 0.41% of the solid manure and 10.59% of 

the semiliquid manure would have been sufficient for apple cultivation, while of all 

the blood meal that could be produced from the considered beef farm in one year, 

81.45% would have been sufficient (Fig 6-2). These percentages are based on the 

median amount of organic fertilizers that were applied on the four orchards (on 

which combinations of solid manure, semiliquid manure and blood meal were 

used). Therefore, only those parts of the impacts ascribed to the organic fertilizers 

are allocated to organic apple cultivation (Fig. 6-3).  

Since we don’t know what happens with the surplus of blood meal and kept manure 

produced on the beef farm, it can either be considered as residual (in which case 

all production impacts are allocated to the beef farm) or as a co-product used as a 

resource in another system (in which case part of the production impacts is 

allocated to that system). Since there are several allocation factors that could be 

used for mass and economic allocation, ISO 14044’s recommendation (ISO, 2006a) 

of assessing the consequences of using different appropriate allocation factors by 

conducting a sensitivity analysis, was followed. 

We now know how much manure and blood meal is produced and subsequently 

applied on the apple orchards. In the following sections, we will use this in our 

calculations of mass and economic allocation factors, which will divide the impact 

of the beef farm among its co-products. 
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Figure 6-3 Schematic overview of the methodology used for allocating production impacts of 

organic fertilizers from the beef farm to an organic apple orchard. 

The calculation of the allocation factors is the focus of this research. The 

remaining organic fertilizers (and their impact) can be handled as either a residual 

product or a co-product. 
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6.2.3.4 Allocation based on a physical relationship: mass allocation 

In mass allocation, the associated environmental impacts are quantified based on 

the mass proportions between input and output variables. There are multiple 

masses from the livestock system that could be considered as valid options for 

calculating mass proportions. Several were considered in this case study with, on 

the side of the organic fertilizer, two possibilities:  

• either the mass of the fertilizer [“kg fertilizer”; which is especially relevant for 

blood meal (Bier et al., 2012), but less so for manure], or  

• the mass of N in the fertilizer (“kg N in fertilizer”);  

and on the side of the beef cattle system four possibilities:  

• the mass of the total live weight for slaughter and the mass of the annual 

manure production used in agriculture [“kg (live weight + manure)”], or  

• the mass of the total live weight for slaughter (“kg live weight”), or  

• the mass of the live weight and the mass of N in the manure (“kg live weight + 

kg N in manure”), or  

• the mass of N in the live weight and the N in manure [“kg N in (live weight + 

manure)”].  

Only the realistic mass allocation factors will be considered, where the allocation 

percentage turns out to be less than 100%. Otherwise, more than the total impact 

that is normally ascribed to the total beef cattle system would be allocated to the 

organic cultivation system. The mass allocation factors will be visually represented 

in section 6.3.1. Depending on the outcomes, a first selection on which factors are 

representative will be made there. For example, the partitioning of the beef system 

impact should still reflect that the determining function of the system is beef 

production and not organic fertilizer production. The necessary data for all the mass 

proportions can be found in Table 6-1 (calculations underlying the allocation factors 

can be found in Appendix C.1).  
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Table 6-1 Parameters and assumptions needed for calculating the mass and economic 

allocation factors. 

Parameter Value Unit Source 

Blood meal related 

Amount blood produced 

by cattle 

0.055 L blood/kg live weight (Reynolds, 1953) 

Blood density 1.06 kg blood/L blood  

Amount of blood meal 

produced from blood 

180 kg blood meal/t blood (Luske and Blonk, 2009) 

N content in blood meal 0.13 kg N/kg blood meal FADN database 

Price of blood meal 0.49 €/kg blood meal FADN database 

Manure related 

Annual manure production 

in the beef farm 

616000 kg/year See Table C-3 in appendix 

C.1 

Manure distribution 32 % spread during grazing (ERM and Universiteit Gent, 

2011) 60 % kept as solid manure 

8 % kept as semiliquid 

manure 

Kept manure used in 

Flemish agriculture 

92 % (VLM, 2019) 

N content in semiliquid 

manure 

0.0048 kg N/kg semiliquid 

manure 

FADN database 

N content in solid manure 0.0071 kg N/kg solid manure FADN database 

Price of manure 10.74 €/t manure (Wageningen University & 

Research, 2020): 2018 

Price of mineral fertilizer 

(for N) 

1037 €/t product as published in the 

European CAPRI database 

and used by FAO (2018) 

and Leip et al. (2019) 

Animal related 

Age at slaughter 24 Months (Durlinger et al., 2017b) 

based on the breeds 

Charolais, Simmental and 

Limousin as studied by 

(Casey and Holden, 2006) 

Final live weight of 1 

animal 

650 kg live weight/animal 

Annual live weight for 

slaughter in the beef farm 

11700 kg live weight/year 

Cold carcass weight 66.37 % of live weight (Ministry of the Flemish 

Community, 2002) 

N content of beef cattle ≥ 

454 kg 

2.4 %N of bodyweight (FAO, 2018a) 

Price of live animal 210.72 €/100 kg live weight (Department of Agriculture 

and Fisheries, 2020): 2019 

average for a “well-formed” 

bull 
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Table 6-1  Continued 

Parameter Value Unit Source 

Animal related 

Price of cold carcass 363.25 €/100 kg cold carcass 

weight 

(Department of Agriculture 

and Fisheries, 2020): 2019 

average for a bull carcass 

classified as “very good” 

Four orchards used both manure and blood meal for fertilization purposes and are 

discussed in this article. However, there were eight other orchards that only used 

blood meal as an organic fertilizer stemming from the livestock system. An 

additional analysis of the mass allocation factors that are possible when solely using 

blood meal is included in appendix C. An LCA practitioner might still consider 

manure as a residual product while considering blood as a co-product of the beef 

system, especially since – according to the FADN database – manure can often be 

received for free in Flanders, which is not the case for blood meal.  

6.2.3.5 Allocation based on another relationship: economic allocation 

In economic allocation, the associated environmental impacts are quantified based 

on the economic value of input and output variables. Four possible allocation 

factors were considered, using the annual output data of the beef farm. For the first 

three, the allocation factor is based on the price of the fertilizer (“€ fertilizer”) 

versus:  

• the price of the live weight at farm gate [“€ live weight”; option I (European 

Commission, 2018)],  

• live weight and manure [“€ (live weight + manure)”; option II], or  

• cold carcass weight [“€ carcass”; option III; as in Bier et al (2012)]. 

The fourth allocation factor (option IV) was calculated using the nutrient value of 

the organic fertilizers (FAO, 2018a; Leip et al., 2019). The nutrient value of the 

organic fertilizer is estimated by the amount of mineral fertilizer that the farmer 

would have to purchase in case the manure was not available to provide the 

required nutrients. The so-called pragmatic approach (Leip et al., 2019) was 

followed in which this “nutrient equivalent” is calculated based on the losses of 

nutrient – in this case N – to the atmosphere and hydrosphere of the mineral 

fertilizer versus the organic fertilizer, while also taking manure management 
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practices into consideration. It was assumed that the organic fertilizers were not 

used in excess of crop nutrient needs and were therefore not considered as waste.  

The nutrient equivalent turned out to be 89% for blood meal and 38% for manure 

(calculation details in Appendix C-1). This means that for manure 38% of its total 

amount of nutrient is needed for a mineral fertilizer to be equivalent.  

A mineral fertilizer (for N) price was then used of € 1037 per ton product [as 

published in the European CAPRI database and used by FAO (2018) and Leip et al. 

(2019)] to calculate the monetary value related to the nutrient value of the organic 

fertilizers. It should be kept in mind that this price can vary a lot depending on the 

considered mineral fertilizer, but for consistency sake, we use the same one as in 

the case study of FAO (2018) and Leip et al. (2019). If this allocation factor ends up 

being used as a standard, a consensus would have to be reached about the source 

of the mineral fertilizer price.  

The economic allocation factor for each organic fertilizer is calculated by dividing 

its nutrient value by the nutrient values of all organic fertilizers and the price of a 

carcass. The methodology was developed specifically to account for manure as a 

co-product and was adapted in this case study to also include blood meal as a co-

product. All economic allocation calculation details can be found in Appendix C.1. 

The necessary data for the economic allocation factors are also shown in Table 6-1. 

Finally, to consider the effect of price variations (using a recent, minimum and 

maximum scenarios), a sensitivity analysis was conducted for two of the four 

allocation factors: price of the fertilizer as a fraction of the price of a live animal on 

one hand, and as a fraction of the price of a carcass on the other hand. For blood 

meal, the prices as found in the FADN database (2005-2011) were used. Using the 

database was not an option for manure, since oftentimes growers can get manure 

for free. Therefore, Dutch published prices from 2002-2018 were used, with the 

most recent price being € 10.74 per ton cattle manure (Wageningen University & 

Research, 2020). For the live adult animal and cold carcass, the price variation 

between 2011 and 2019 was considered (Department of Agriculture and Fisheries, 

2020). Calculation details can be found in Appendix C.1. 
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6.3 Results 

6.3.1 Mass and economic allocation within the beef cattle system 

Figure 6-4 and 6-5 show respectively the possible mass and economic allocation 

factors that were considered and how the total impact of the beef cattle system 

would be allocated to organic apple cultivation when manure and blood are co-

products. As indicated already higher, two additional options were also initially 

considered (“kg organic fertilizer/kg live weight” and “kg N in organic fertilizer/kg 

N in live animal”), however, these lead to an allocation factor bigger than 100% for 

manure. They were thus unrealistic and therefore excluded from the analysis. 

Additionally, it would not make sense to put “kg fertilizer” in the nominator and “kg 

N in fertilizer” in the denominator or vice versa. 

Furthermore, using “the mass of the organic fertilizer” seems appropriate for blood 

meal (Bier et al., 2012), but this cannot be said for manure since the amount of 

manure that is generated in the farm largely outweighs the amount of meat and 

blood that is produced, causing disproportionate allocation factors. For two 

allocation options in Fig. 6-3 [option A “kg organic fertilizer/kg (live weight + 

manure)” and option B “kg N in organic fertilizer/kg N in (live animal + manure)”] 

less than 13% of the beef cattle system impact is allocated to meat. Since the 

determining function of the beef system is to produce beef, these two mass 

allocation factor do not seem like a good representation of the real world. They are 

therefore not considered anymore in the remainder of the results section. Instead, 

only the two final mass allocation factors [option C “kg N in organic fertilizer/kg live 

weight” and option D “kg N in organic fertilizer/(kg live weight + kg N in manure)] 

are considered as realistic options to allocate the impacts within the beef cattle 

system, resulting in less than 16% of the impact being allocated to organic 

fertilizers. 

The four possible allocation factors for economic allocation are shown in Fig. 6-5. 

They all have a maximum of 12% of the beef farm impact allocated to organic 

fertilizers. The one option that is not further considered in the results section is 

option II “€ organic fertilizer/€ (live animal + manure)”, because – according to the 

FADN database – manure can be freely available for Flemish apple growers. 

Therefore, manure does not always lead to an economic gain at the farm-gate and 

the allocation would become unrealistically large. 
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Figure 6-4 Representation of the farming and meat processing chain and how the beef farm 

impacts are allocated to blood meal and manure using mass allocation factors. 

The impacts allocated to the organic fertilizers can be divided into the parts that 

are allocated to the organic apple orchard (this study; see Fig. 6-3) and the 

remaining impacts that can be considered as residual or as a co-product used in 

another system. The options in the striped frame are withhold as realistic option. 
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Figure 6-5 Representation of the farming and meat processing chain and how the beef farm 

impacts are allocated to blood meal and manure using economic allocation. 

Option IV is calculated based on the fertilizers’ nutrient equivalence and the 

mineral fertilizer price (FAO, 2018a; Leip et al., 2019). The impacts allocated to the 

organic fertilizers can be divided between the apple orchard (this study; see Fig. 

6-3) and the remaining impacts that can be considered as residual or as a co-

product used elsewhere. The framed options are withheld as realistic option. 
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6.3.2 Effect of all allocation procedures on apple cultivation 

Figure 6-6 shows the impact for the organic apple cultivation when manure is 

considered a residual product, or when manure is considered a co-product. For the 

last option, the effect of mass allocation, economic allocation and system 

expansion is shown. The allocation factors for mass (option C and D) and economic 

allocation (option I, II and IV) that were selected in 6.3.1 are used and for system 

expansion, an organic plant-based fertilizer and a mineral fertilizer were considered 

as possible substitute products. 

When looking at the overall results in Figure 6-6, a first observation from the Global 

Warming impact is that the apple cultivation excl. organic fertilizer production 

always shows a smaller impact than mass and economic allocation. This is an 

evident observation: parts of the impacts of the beef cattle system (see pie charts 

in Fig. 6-4 and 6-5) are added to the impact of apple cultivation excl. organic 

fertilizer production for mass and economic allocation. Figure 6-6 shows this by 

stacking the impacts of blood meal, solid manure and semiliquid manure on top of 

the impact obtained for apple cultivation excl. organic fertilizer production. The 

impacts of the two possible substitute products are shown stacked upon the impact 

of apple cultivation excl. organic fertilizer production as well as use, meaning that 

this time, all impact related to blood meal and manure (i.e., use emissions and 

blood drying) was excluded. 

The following two graphs in Figure 6-6 show the impact categories (ICs) where using 

an allocation procedure would lead to the biggest changes compared to when 

organic fertilizer production is excluded. For Land Use, blood meal and manure 

contribute the most to the total impact, more than 94%. It needs to be kept in mind 

here that no land transformation was considered for the apple orchards [as in 

Goossens et al. (2017a) see Appendix B.1]. Marine Eutrophication is where the 

substitute products in system expansion contribute the most to the total impact, 

more than 98%. The graphs of the other ICs are shown in appendix C.2. 
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Figure 6-6 Median impacts of three impact categories for organic apple cultivation with the 

different considered allocation procedures. 

The considered allocation procedures are shown for the four apple orchards using 

blood meal, solid and semiliquid manure. 
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Figure 6-6 Continued 

System expansion generally (11 of the 18 ICs) leads to the highest total impact, with 

the substitute option mineral fertilizer mainly (8 ICs) having the largest total impact. 

For the impact categories Ozone formation, Freshwater ecotoxicity, Marine 

ecotoxicity, Human non-carcinogenic toxicity, Land use and Water consumption, 

mass and economic allocation cause the higher total impact. For those ICs, the 

economic allocation option I “€ organic fertilizer/€ live weight” consistently lead to 

the largest total impact. This illustrates how the ranking associated with the chosen 

allocation procedure varies between the different ICs and how important the 

choice of the allocation factor is. Different factors may lead to very different results. 

Additionally, the amount of the fertilizer used determines how big the impact is. 

While the allocation factors for solid manure is higher than those of semiliquid 

manure, the amount of semiliquid manure used on the orchards is approximately 

three times bigger. Blood meal was used in the lowest amount. 
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6.3.3 Price variations for economic allocation 

Prices can vary over the year, and this needs to be considered when determining 

economic allocation factors. Figure 6-5 shows the allocation factors when recent 

prices for the fertilizers, live animal and cold carcass (which is economically more 

valuable) are considered. Figure 6-7 shows the results for possible price variations 

for Global warming, comparing a minimum and maximum scenario with the recent 

scenario (see Table C-8 in Appendix C.1 for the allocation factors). While the 

allocation factors for blood meal are almost equal for all six scenarios (ranging from 

0.21 to 0.25%), relatively big differences can be observed when it comes to manure 

(ranging from 1.50% to 10.63% for solid manure and from 0.20% to 1.42% for 

semiliquid manure). Manure is cheaper than blood meal, however, much more is 

produced per live weight or per carcass. Therefore, manure’s allocation factors are 

generally larger than those of blood meal. In Figure 6-7, the difference due to the 

price variation is mostly visible for semiliquid manure because this fertilizer is 

applied in the highest amount on the apple orchards. The recent prices lean more 

towards the maximum scenario of the price variations. 

 

 

Figure 6-7 Median Global Warming impacts for the four orchards that use blood meal, solid 

manure and semiliquid manure as organic fertilizers. 

Price variations (minimum, maximum and recent scenario) for economic 

allocation are taken into consideration. 
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6.4 Discussion 

The results show that the choice of an adequate multifunctionality solution cannot 

be arbitrary but should be based on a clear motivation related to the goal and scope 

of the studied system (Pelletier et al., 2015; Vergé et al., 2016). Transparency is key 

when it comes to making these decisions (Pelletier et al., 2015). We have to keep 

in mind that allocation procedures are an artificial construct and therefore, none is 

perfect (Wilfart et al., 2021). 

6.4.1 Organic versus conventional apple cultivation 

For Global Warming, the median impact of the Belgian organic apple cultivation 

ranged between 202 and 684 kg CO2 eq per ton (Fig. 6-6), depending on which 

allocation procedure was chosen. We compared this result to published LCA 

studies, though, keep in mind that the system boundaries between all the different 

studies are not completely equivalent.  

Longo et al. (2017) calculated that organic apple cultivation in Northern Italy had 

an impact of 102 kg CO2 eq per ton apples, while for conventionally cultivated 

apples this was 125 kg CO2 eq/t. They stated that nitrogen organic fertilizers and 

mineral fertilizers were used in the organic and conventional farms, but they did 

not specify anything further. These results are lower than the results reported on 

in Fig. 6-6, however, Longo et al. (2017) only focused on the full production orchard 

stage. The study reported on in this chapter also included orchards in their low 

productive stage. For apple cultivation excl. organic fertilizer production, the four 

considered organic orchards had Global Warming potentials of 38, 39, 364 and 938 

kg CO2 eq/t.  

For the Canadian apple production (Keyes et al., 2015), 64.1 kg CO2 eq/t was 

attributed to conventional cultivation and 73.2 kg CO2 eq/t to organic cultivation. It 

was not clear if this included the production impacts for manure. Alaphilippe et al. 

(2013) did state that the production of organic fertilizers (compost and feather 

manure) were included in their study on the French apple cultivation, though they 

did not specify how. They calculated results ranging from 32 to 38 kg CO2 eq/t for 

conventional cultivation and from 50 to 84 kg CO2 eq/t for organic cultivation in 

different regions and for different varieties for the full production orchard stage. 

Thus, only in the study of Longo et al. (2017) was the impact of organic apples lower 

than conventional ones. 
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6.4.2 Excluding organic fertilizer production (residual product) 

When it comes to the different allocation procedures studied in this chapter, apple 

cultivation excl. organic fertilizer production could be justified if the total impacts 

from a unit process depend solely on the demand for the main product. Thus, it 

assumes that the amount of beef cow farming is independent of the demand of 

blood meal (Bier et al., 2012) or other organic fertilizers.  

However, what would then happen if the demand of the main product decreases? 

What if we looked at for example co-produced animal foods within the hypothetical 

scenario where everyone decides to eat less meat? This would cause a change in 

beef production which would also affect milk production since beef can evidently 

also be from the dairy type (Barré et al., 2018). Barré et al. (2018) calculated that 

the reduction of ruminant meat would be limited in the hypothetical diet due to co-

production constraints since the dairy consumption stayed stable. In that scenario, 

meat becomes the residual product that is eaten because of its availability. Not 

using it would in the end be introducing a new form of waste. This illustrates that 

as long as other bovine (derived) products, such as gelatin, hides, rennet, blood 

meal and manure are commonly used, the co-production constraints prevent 

completely detaching the demand of the main product from that from a residual 

product. It would be another story if all bovine (derived) products are substituted 

such as agar-agar for gelatin, faux leather, etc. While more and more of such kinds 

of alternatives are getting commercially available, it is not realistic (yet) to assume 

this as the “new normal”. 

Additionally, excluding organic fertilizer production does not allow for a clear 

distinction when it comes to environmental impact, between processes where a 

low-value residual product is used instead of disposed of (Bier et al., 2012). This 

could possibly curtail waste-avoiding incentives. Also, when excluding organic 

fertilizer production, organic growers have an advantage over growers using more 

conventional mineral fertilizers for which fertilizer production is being included in 

the system boundaries. Organic growers do not carry any of the burdens of the 

production of something they clearly regularly use and require for a successful 

yield. 

Though, it needs to be noted that organic agriculture does provide services for 

which they are (at the moment) not rewarded. These (ecosystem) services include 

biological control of pests, mineralization of plant nutrients, soil formation, carbon 
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accumulation, nitrogen fixation, pollination, aesthetic, etc. (Sandhu et al., 2008). 

Conventional agriculture also provides those services but to a (much) lesser extent. 

Ideally, all the different kinds of products and services are included when the 

sustainability of two systems are compared. Boone et al. (2019) proposed a 

procedure to divide the environmental impact over the whole set of delivered 

agricultural outputs, meaning between the harvested product and other (such as 

regulating, maintaining and cultural) ecosystem services. That way the 

environmental impact of organic and conventional farming could potentially be 

compared more fairly.  

6.4.3 System expansion 

6.4.3.1 Choosing a substitute product 

In system expansion, instead of the originally used organic fertilizers (i.e., blood 

meal and manure), the impacts of a substitute are attributed to the studied system 

(i.e., the apple orchard). Often, several substitution possibilities for the co-product 

are available, leading to multiple scenarios and different results (Heijungs and 

Guinée, 2007). Though, finding a true, representative replacement is difficult.  

Notarnicola et al. (2015) proposed to consider the quantity of avoided mineral 

fertilizers in system expansion. A mineral fertilizer is not a perfectly suitable 

substitute, since the growers are (generally) not allowed to use it in organic 

cultivations. Though, it is possible that the organic fertilizers originate from 

conventional livestock farms, meaning that the bovines are fed with conventionally 

grown crops. Moreover, while mineral fertilizers are soluble and thus rapidly 

available to the plants, the nutrient release of organic fertilizers is rather slow. 

Mineral fertilizers also have a much higher nutrient content, so a smaller supply is 

needed to fertilize the plant than with an organic fertilizer (Chen, 2006; Roba, 

2018). 

The LCA results (section 6.3.2) show that ICs for which organic fertilizers have a 

relatively high contribution to the total impact (e.g., Land use, Human non-

carcinogenic toxicity and Water consumption) are generally different from those 

where the mineral fertilizer has a high contribution (e.g., Stratospheric ozone 

depletion, Freshwater/Marine eutrophication, Human carcinogenic toxicity and 

Fossil/Mineral resource scarcity). Thus, using a mineral fertilizer for system 



 

Chapter 6  151 

expansion does not lead to realistic results for organic cultivation and can even 

distort decisions for reducing the environmental impact.  

Since we are dealing with organic cultivation in this case study, we also searched 

for a clear-cut organic fertilizer (i.e., an organic plant-based fertilizer) as 

replacement. If a suitable replacement is found, the necessary data also must be 

available or has to be obtained for its impact to be included in the system. In this 

study, Monterra Bio Malt was used which consists of an unspecified composition of 

malt sprouts, corn gluten, vinasse and molasses (Servaplant, 2018). However, only 

vinasse was available in the LCA databases as an input process, and we were unable 

to find applicable data in literature for the other ingredients. Therefore, it was 

assumed that all NPK was supplied by vinasse. This assumption causes the impact 

of Monterra to be more of a rough estimate, illustrating how lack of data can be a 

serious hindrance when choosing for system expansion. Additionally, malt sprouts, 

corn gluten, vinasse and molasses are all by-products as well. For example, 

molasses, a by-product of the sugar production, is used as feed and in ethanol 

production (Nguyen and Hermansen, 2012). System expansion can therefore lead 

to further multifunctionality problems and system expansions (European 

Commission et al., 2010). 

Just finding a suitable alternative is often not sufficient, transportation, energy use 

and equipment need to be considered as well. The FADN database did not allow us 

to distinguish for which purpose the energy was used. This probably led to an 

overestimation of energy use in the system expansion scenario, since less machine 

operations are needed when applying the substitute products to the orchards vs. 

spreading manure, given the difference in N-content (15% N for the mineral 

fertilizer and 4.5% for Monterra versus 0.71% and 0.48% for solid and semiliquid 

manure respectively). On the other hand, blood meal has an N-content closer to 

that of the mineral fertilizer (13% N), which may cause the difference in energy use 

to be more balanced. 

6.4.3.2 Aligning the product quantities 

Nitrogen was chosen as the common denominator to align the quantities of the 

original fertilizer products with the replacement products (Knudsen et al., 2010), 

since N was a common quantitative element in all fertilizer products and the right 

amount of N is crucial for a good apple yield (Bloksma, 2003). N also had the largest 

content percentage in manure and blood meal. Alternatively, P or K could have 
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been used, however, blood meal does not contain those elements according to the 

FADN database (in reality, it might contain low amounts of P and K), and all fertilizer 

products need to contain the chosen element. This means that the amount of P and 

K provided by the substitute products were not equivalent to those of the original 

fertilizers.  

Additionally, the use of organic fertilizers can affect soil organic carbon dynamics. 

For example, Aguilera et al. (2015) assumed, in their LCA of Spanish fruit tree 

orchards, that 30.5% of the carbon contained in external organic inputs (e.g., 

manure and manufactured organic fertilizers) is incorporated in the soil, thereby 

contributing to the net carbon accumulation. This effect on soil quality and thus on 

apple yield, was also not taken into account when selecting substitute products and 

amounts. Though, this aspect might become more relevant when the impact of soil 

organic carbon is incorporated into LCA (see section 1.4.2) or when carbon farming 

(EU, 2021) is introduced (see section 7.2.2).  

It is clear that it is virtually impossible to find a substitution product for which the 

composition can be aligned to the original product, and that we have to make peace 

with the fact that – when choosing system expansion – the overall fertilization will 

never be completely equivalent. 

6.4.3.3 Attributional vs. consequential approach 

Knudsen et al. (2010) found no markedly different results for their three studied ICs 

when using system expansion compared to considering manure as a livestock waste 

in their consequential LCA on organic soybean. However, in our study, substantial 

differences were found. When looking at the organic plant-based fertilizer, a 

realistic substitute product for organic cultivation, system expansion led to the 

largest total impact of all possible allocation procedures (excluding mineral 

fertilizer as a substitute) in only 4 of the 18 ICs. This illustrates why system 

expansion is especially useful in consequential LCAs, while its appropriateness for 

attributional LCAs is questionable (Bier et al., 2012; Pelletier et al., 2015). Those 

results raise the question if growers should not permanently switch to more use of 

Monterra as their main organic fertilizer. However, the cost for the grower for 

replacing the original fertilizers with Monterra needs to be taken into account. 

According to the FADN database, the Flemish apple grower was frequently able to 

use manure for free and the price for blood meal was between 0.35 and 0.75 €/kg, 

giving a max price of 11.54 €/kg active N. Meanwhile, the price for Monterra Bio 
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Malt is 0.89 €/kg (Servaplant, personal communication, June 2020) or 30.43 €/kg 

active N, which could cause an unacceptable price increase for the grower. 

The main problem of system expansion, according to Heijungs and Guinée (2007), 

is the accumulation of ‘what if’ argumentations. System expansion relies on factors 

that lie outside the coverage of the studied system (Bier et al., 2012). In contrast, 

allocation methods require fewer data and not a whole new system of avoided 

processes (Heijungs and Guinée, 2007).  

6.4.4 Allocation methods based on a relationship 

6.4.4.1 General observations: from the ideal situation to realism  

With mass and economic allocation, manure and blood are not considered as 

residual products but rather as valuable co-products. Therefore, part of the impacts 

of the livestock system is ascribed to the system that uses the co-product as a raw 

material. It can be argued that when manure is freely available for the apple 

grower, it cannot be seen as a co-product. In regards to this, it is bizarre that 

allocation based on physical relationships is ranked above economic allocation, 

while still using an economic criterium to determine wheter a product can be 

classed as a co-product (Mackenzie et al., 2017; Wilfart et al., 2021). 

The ideal situation would be for the LCA practitioner to consider the livestock 

system as part of the foreground system and collect all the necessary data to 

calculate the related impacts first-hand. However, this is often not realistic due to 

time-constraints and data unavailability. Different databases or published studies 

can, in that case, be chosen as the source of the impacts of the livestock system, if 

those are in fact available. In this study, the livestock system of all three organic 

fertilizers was the same (which might not necessarily be the case), making it rather 

straightforward to align system boundaries and LCIA methods. It goes without 

saying that when LCIA methods don’t align, then the results of different studies 

cannot readily be combined. 

Furthermore, choosing an adequate livestock system is crucial. In this study, the 

beef cattle system was chosen because of its high supply in blood that can be used 

for blood meal. Alternatively, the dairy cow system would also have been a realistic 

option because of its relatively higher supply in manure per animal. Milk would then 

be considered as part of the valuable co-products. We tested the influence of this 
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in appendix C, which generally led to smaller total impacts for mass allocation and 

diverging total impacts for economic allocation. 

Next to mass and economic allocation, biophysical allocation is also often used for 

meat and dairy farming systems, which is based on the feed energy required to 

produce the milk and meat (IDF, 2015). When manure is a valuable output of the 

farm, the FAO (2016) proposes to also apply a biophysical approach based on the 

energy for digestion needed to utilize the nutrients and create manure. In their 

example, they calculated an allocation factor of 77.5% for milk, 7.2% for meat and 

15.3% for manure. For this study, we were unable to find how the consumed feed 

could also be transformed into an adequate allocation factor for blood meal. We 

could consider using the mass of blood per kg live weight to partition part of the 

impact biophysically allocated to beef, to blood meal. However, mass and 

biophysical allocation would then be combined, which may lead to inconsistencies 

in the methodology [as FAO (2016) also warns about when biophysical and 

economic allocation are used for different parts of the system]. 

6.4.4.2 Mass allocation  

Choosing representative functions 

Mass allocation requires the choice of appropriate masses to be used in the mass 

allocation factors (Bier et al., 2012). The chosen physical characteristics should 

relate to the use or purpose of the product. This characteristic should be relevant 

and common between the different low-value co-products, making it possible for 

competing products delivering the same function to be compared (Pelletier et al., 

2015). Fig. 6-4 shows that depending on which masses are chosen, the results can 

differ between 13.39% and 95.76% of the beef farms’ impact allocated to the 

organic fertilizers.  

When only blood meal is used as an organic fertilizer, there are more mass 

allocation factors possible that could lead to credible results (analyzed in appendix 

C). For manure, however, they would lead to unrealistic results of allocating more 

than 100% of the beef farms’ impact to the organic fertilizers, since their total mass 

would be used as basis. Thus, even though several mass allocation factors can be 

appropriate for different organic fertilizers, it might be a challenge to find a 

common one that leads to realistic results. Ideally, this would in the future by 
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provided by guidelines such as the Product Environmental Footprint Category Rules 

(PEFCRs) for fertilizers, livestock and fruit products (European Commission, 2021). 

Just as for system expansion, N was in the end chosen as a common quantitative 

element of which the right amount is crucial for a good apple yield (Bloksma, 2003). 

Thus, providing N is a representative function of the organic fertilizers. When 

looking at the possible mass allocation factors (Fig. 6-4), three options use the N 

content of the organic fertilizer as a basis. The first option, where the N content in 

the live animal and manure is used as the denominator is not considered as a 

realistic allocation factor for two reasons.  

First, 87.21% of the beef cattle systems’ impact would in that case be allocated to 

the organic fertilizers, which we interpret as not being an appropriate reflection of 

the real world seeing as beef production is the determining function of the beef 

system. Additionally, the organic fertilizers are secondary products which would 

(probably) be wasted if they were not used for organic cultivation. Allocating such 

a high percentage to the organic cultivation system could be unacceptable for the 

growers, possibly leading to the adverse effect of them avoiding the use of organic 

fertilizers from livestock systems.  

Second, while the N content is a representative function of fertilizers, this is not the 

case for the beef cattle system. If we solely look at the beef cattle system (excluding 

any processing steps), the representative function of the beef cattle system is the 

mass of the live animal. A representative function for the beef system might also 

be “the mass of the meat” or “the protein available in the meat”, if the 

slaughterhouse system is included within the system boundaries. Additionally, 

when the agricultural residues would be used in other systems, for example as 

feedstocks for biofuels, the approach we propose in this manuscript would be 

valuable as well, pending the search for another basis representative of the biofuel 

function. 

In this study, we considered the mass of the live animal as being the most 

representative function for the beef cattle system. However, we need to keep in 

mind that for mass allocation, manure is considered a co-product of the beef cattle 

system and should therefore be included within the representative function (the N 

in blood meal is already included within the live weight). We therefore consider 

option D “kg N in organic fertilizer/(kg life weight + kg N in manure)” as the 

allocation factor which will lead to the closest approximation to the real world.  
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Mass allocation as the (un)preferred method in literature  

When allocation procedures are scored objectively, allocation based on a physical 

relationship often comes out on top. Mass allocation using liveweight or carcass 

weight in a milk-meat system were preferred in the study of Rice et al. (2017) 

because those had the best pedigree scores. Wilfart et al. (2021) found that while 

literature and stakeholders of the meat supply chain generally do not prefer 

physical allocation, when the stakeholders scored the allocation rules on six criteria 

(i.e., ISO compliance, recognition, consistency, use of the results, applicability and 

stability of the results), physical allocation had the highest score. 

FAO (2016) does not recommend basing allocation on physical parameters (but 

rather economic value) when the functions on the market differ between the 

different co-products (e.g., beef for nutrition and manure for fertilization). Indeed, 

physical relationships do not necessarily reflect the reason of existence of a 

process. Bier et al. (2012) argue that mass allocation does not take into account 

that meat production is the incentive for the existence of a beef system and not a 

low-value co-product such as blood meal. However, in the end they concluded that 

mass allocation based on blood meal as a fraction of all slaughter products 

excluding waste and losses, together with the option of excluding organic fertilizer 

production (or “waste assumption” as they call it), was the most appropriate 

method to consider the impact of blood meal in the production of a renewable 

thermoplastic.  

Vergé et al. (2016) also recommend using mass allocation, because the individual 

animal is at the origin of the environmental impact and this way it is an “indivisible” 

component in the agricultural system. It does not make sense to assume that either 

meat, manure or hides cause a larger environmental impact, rather it is the animal 

“as a whole” that causes it. 

It is important here to reflect on the perspective of different LCA practitioners. 

Either the allocation problem stems from having to allocate the impact of a studied 

system between different co-products, or the LCA practitioner uses a co-product 

from another system and introduces it in their studied system (as was the case in 

this study). FAO’s recommendation (FAO, 2016) is especially relevant for the first 

case. In our study, finding a common function for the different beef system 

products is less of an issue than finding a common function for the organic 

fertilizers. The question arises if these two perspectives could be aligned in some 
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way. It is essential that all burdens are accounted for, without omitting or double-

counting, when several LCAs are combined to obtain an aggregated view of a larger 

system (FAO, 2016). A clear consensus on the used methods and models is needed 

for this.  

The methodology in the PEFCR (European Commission, 2018) using the relative 

economic value of manure on the one hand, and the methodology in Leip et al. 

(2019) using nutrient value on the other hand, consider to first allocate a part of 

the livestock systems’ impact to manure after which a biophysical allocation is 

applied for allocating the remaining impact between the other co-products (i.e., 

milk and live animals). This can be a good first step to a consensus. Though, FAO 

(2016) warns for inconsistencies that may arise in the methodology when 

biophysical and economic allocation are used for different parts of the system. 

Additionally, both methods focus on manure specifically and more study is needed 

for allocating other organic fertilizers and co-products.   

6.4.4.3 Economic allocation 

Economic allocation makes sense in the way that production is stimulated by an 

incentive of financial income. As such, a low-value co-product should be allocated 

an equally low share of impacts compared to the primary product with high market 

value (Hauschild et al., 2018; Vergé et al., 2016). That way, economic allocation can 

be an incentive to ascertain that secondary products generate economic gains, and 

consequently reduce/avoid waste, because the more impacts allocated to the 

those products, the less impacts are allocated to the determining function or main 

product (Vergé et al., 2016). However, allocating impacts this way is questionable 

since the production of the by-products are dependent on the demand of the main 

product.  

A difficulty encountered with economic allocation is the selection of an appropriate 

price for each related product (Bier et al., 2012). Unlike with allocation based on a 

physical relationship (using units such as kg, J, etc.), economic allocation uses 

monetary units (such as euro, dollar, etc.) which have no universal value. In addition 

to this, the value of an output often changes from region to region. It will probably 

be easier, and thus cheaper, to get animal-related fertilizer products in regions with 

a high livestock density. Results are therefore very much location dependent. 

However, economic allocation does allow to reflect the changing value and even 

status of a product (from waste to co-product or vice versa). For example, when the 
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increase in livestock density of a country leads to price reductions for animal-

related fertilizer products. Yet, the economic revenue may also be an artefact of 

regulatory policy (Leip et al., 2019). This is why Leip et al. (2019) used the price of a 

mineral fertilizer instead and took the nutrient equivalent of manure (which defines 

the amount of mineral fertilizers that provides the same amount of nutrients) into 

consideration, when calculating the nutrient value of the organic fertilizer. 

This also means that economic allocation is (evidently) sensitive to market 

fluctuations. Prices vary based on various external factors, independent from the 

manufacturing process (e.g. subsidies, climatic events, etc.) and economic 

fluctuations can vary between co-products (Bier et al., 2012; Martínez-Blanco et al., 

2014; Vergé et al., 2016), making it challenging or even impossible to do 

comparisons or research trends (Vergé et al., 2016). However, Cherubini et al. 

(2018) researched the effect of an arbitrarily ±50% price variation, causing only a 

little variation in the mean and standard deviation of their results. In this study, 

while the choice of mass allocation factor leads to big differences in impact (Fig. 6-

4), the differences in results from economic allocation are relatively more 

contained (Fig. 6-5 and 6-7).  

Economic allocation assumes a positive correlation between environmental impact 

and market price (European Commission et al., 2010), essentially saying that 

something cheap equals environmentally benign (Pelletier and Tyedmers, 2011) or 

even friendly, and thus has a low or no environmental impact. The danger 

connected to this is that relative ecological efficiency of alternative systems 

providing the same product, might be overlooked (Pelletier et al., 2015), and there 

would be less incentive for a company to introduce impact-reducing measures. The 

function of the product needs to be considered from an environmental perspective 

and not from their use in human society (Vergé et al., 2016). Therefore, using 

monetary values for allocating the impact of organic fertilizers does not seem like 

a good fit. Of course, this statement would need to be revised if it would become 

common practice to include the cost of the environmental impact of a product into 

its price, as has recently been experimented with in the German supermarket 

Penny (REWE Group, 2020). Next to the selling price, they also advertised the real 

cost of the product (including environmental end climatological damage) making 

meat, for example, 188% more expensive and apples 12%. 
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6.5 Conclusion 

The diverging results of the different allocation procedures underline the 

importance of avoiding arbitrary choices and selecting an appropriate method. 

Each procedure has its pros and cons and leads to different results for the same 

product.  

Excluding organic fertilizer production does not allow the livestock system from 

receiving the environmental benefits of valorizing its waste as a co-product. When 

looking at the system that uses the residual product, organic growers do not carry 

any environmental burden for a product they need for fertilization, unlike more 

conventional growers. Excluding organic fertilizer production is therefore not 

advised as a realistic allocation method, especially when different crop production 

systems are compared. 

System expansion causes too many uncertainties in attributional agri-food LCAs. 

Speculative scenarios and subjective choices of factors that lie outside the studied 

system, can lead to distorted results. Economic allocation implies that the impact 

of an output changes with its price, while in practice, the manufacturing process 

stays the same. Next to the choice of which possible economic allocation factor 

should be considered, prices also vary within the factor. 

In the end, we selected mass allocation using a representative allocation factor 

[such as “kg N in organic fertilizer/(kg live weight + kg N in manure)”] as the least 

bad option for allocating production impacts to organic fertilizers. Following the 

allocation hierarchy of ISO (ISO, 2006a), we conclude that there are possible 

allocation options using “a physical relationship” as a basis, so there is – in theory 

– no reason to go to the last tier option of using an economic value instead. 

Additionally, mass allocation will lead to the most stable and closest approximation 

of the real world, since no parameters from outside the system are needed. This 

approximation of reality is crucial when looking for impact-reducing solutions. Yet, 

it is clear that more research needs to be done when it comes to finding an 

appropriate allocation procedure that can be harmonized for all systems – if it exists 

at all. 
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Chapter 7  

 

General conclusions and future perspectives 
 

 

The need for sustainable production and consumption is strongly present in todays’ 

society. To achieve this goal, an accurate quantification of environmental 

sustainability is needed. LCA results can guide the way for making decisions without 

the risk of burden shifting, but only if those results are robust and unambiguous. 

The aim of this PhD thesis was to lift LCA to a higher scientific level with the goal of 

generating more representative results and making the choice of the most 

environmentally friendly option more conclusive, and this specifically with a focus 

on the agri-food sector. Two methodological shortcomings were tackled, the 

methodological ignorance towards uncertainty and variability in part II and the 

inconsistency between the system boundaries of organic and more conventional 

cultivation in part III. 

7.1 Acknowledging both uncertainty and variability 

7.1.1 Identifying the methodological shortcomings 

Making conclusive decisions on what product or process is environmentally 

preferable is not possible when only using deterministic data. Yet, LCA results based 

on this kind of data is still being widely disseminated. LCA is a decision-making tool, 

so the results on which all sectors concerned with environmental impact (e.g., 

farmers, industry, consultants, research groups, consumers and governmental 

bodies) base their decisions should be as reliable as possible to make informed 

decisions. If those decisions are solely based on some kind of central tendency (e.g., 

mean or median), comparisons would not be as robust because the possible 

overlap due to uncertainty and/or variability is being ignored. Uncertainty and 

variability have a different origin and therefore also a different implication. While 

uncertainty shows lack of knowledge, which can be reduced, variability reflect the 

natural heterogeneity in the world, which will always be observed. 
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It is clear that including uncertainty and variability in LCA results could lead to a 

wealth of information. However, including them is only possible if data quality and 

quantity allows it, and if defined methods are available and known to the LCA 

practitioner. A first step was therefore, to identify the different attempts that had 

been made in the past to separately account for uncertainty and variability in LCA. 

A systematic review was conducted for this and the results were discussed in 

Chapter 3. 

A first observation from the systematic review was the lack of consensus on 

viewpoints, definitions, terminology and classification of uncertainty and 

variability. As it turned out, of the 562 records that were identified through 

database searching, only for 11 studies it was possible for the reader to conclude 

whether uncertainty or variability dominated the LCA results. While some studies 

effectively focused on separating uncertainty and variability, in others it seemed 

more as an after-thought, making it more of a happy accident that the reader could 

deduce which was dominating. Properly taking uncertainty and variability into 

account should be a part of the LCA process from the very start.  

In general, (one-dimensional) Monte Carlo simulations were conducted to 

propagate uncertainty and variability, often in combination with some kind of 

sensitivity analysis. Two methods were specifically recommended in the end: (i) 

Monte Carlo simulations visualized in either variability and uncertainty ratios to 

identify which is dominating or (ii) Monte Carlo simulations extended with global 

sensitivity analysis to identify the most essential parameters. Each of the 

recommended methods still had its advantages and shortcomings, but the final 

choice between the methods depends on the goal and scope of the LCA study at 

hand. 

The focus in this PhD thesis was on how uncertainty and variability can be 

propagated separately in LCA with the goal of identifying the dominating one in the 

results. Therefore, I specifically looked deeper into the methodological 

shortcomings associated with the first recommended method. In this method, the 

ability to characterize a parameter as both uncertain and variable was lacking and 

the visualization of uncertainty and variability in the results could be improved 

upon. The data source could also be limiting, since the method required a large 

dataset of individual systems, which is not always available or is not required for 

the goal and scope of the study. Thus, LCA practitioners in all research fields 

urgently need a method for propagating uncertainty and variability separately, in 
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order to have more representative results. Two-dimensional Monte Carlo 

simulations (2DMC) was identified as a possible approach that allows to improve 

upon these shortcomings. 

7.1.2 Decision guidance through two-dimensional Monte Carlo simulations 

2DMC was applied in an agri-food LCA. This, because the agricultural sector is 

largely influenced by variability, while this is less the case for industrial processes 

in the secondary sector due to optimizations and standardizations. Nevertheless, 

2DMC is a useful method and applicable in all LCA fields. In this thesis, 2DMC was 

used in the LCA of the Belgian apple chain where it was illustrated how it can be 

applied using different kinds of data sources, with (post-harvest) data mainly 

stemming from surveys in Chapter 4 and (cultivation) data from a large dataset in 

Chapter 5.  

2DMC allows to separately portray uncertainty and variability in LCA studies in a 

clear and representative way. This can help decision makers in judging the 

robustness of differences in product comparisons, while also indicating how the 

overall uncertainty can be reduced. In Chapter 4, possible 2DMC outcomes for 

comparative LCAs are demonstrated. In contrast to risk assessment for which the 

absolute values of the 2DMC results are of utmost importance, the relative 2DMC 

results of several options are of more significance for LCAs. The shape and location 

of the 2DMC curves lead to different conclusions and thus have a different 

implication on decision/policy level.  

When comparisons are being made between two (or more) products or processes, 

2DMC first allows to check if the model outputs are clearly separated or not. Basing 

decisions on clearly separated model outputs is much more meaningful. When this 

is the case, a decision maker could robustly conclude that one option is preferable 

over the other. However, whenever the model outputs do show overlap, the overall 

uncertainty should first be reduced before making any definite decisions. Here, the 

uncertainty and variability ratios, that can be calculated from the 2DMC results, 

come into play. This means, when the uncertainty ratio is high, and uncertainty is 

thus dominating the results, more knowledge should be gathered before making 

any decisions. In contrast, if the variability ratio is high, and variability is thus 

dominant, this can – in theory – not be reduced. Even when more information is 

gathered, the variation will always be observed. The only way to possibly reduce 

the overall uncertainty would be by examining the production system and making 
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physical changes in the system itself. However, the latter is not always possible or 

wanted.  

7.1.3 Keeping the bigger picture in mind 

Decision makers might conclude from Chapter 5 that a switch should be made from 

the cultivation of Kanzi to Jonagold apples, seeing as Jonagold is clearly 

environmentally preferable for half of the impact categories. Caution is advised 

when drawing such ill-considered conclusions. Instead of drawing the conclusion 

that only Jonagold should be cultivated, another conclusion could be that there is 

an opportunity for improving the cultivation of Kanzi apples. From its high 

variability, it is clear that cultivating Kanzi apples with a low environmental impact 

is possible, it just does not always happen for some reason. Those reasons should 

be identified first. Below, I will discuss five sources of variability that can either be 

reduced or where reduction is not possible or wanted. 

Since the cultivation of Kanzi apples is dominated by variability, it is possible that 

the management strategies of Kanzi is not as optimized and uniform yet as it is for 

the Jonagold apples. In that regard, it could be advised to look into possible 

improvements of the pruning, fertilizer, pesticide, water and energy strategy used 

during cultivation. This would make it possible to reduce variability by making 

changes in the different management strategies.  

The variability in Kanzi cultivation might also be due to the difference in productivity 

related to tree age between the different orchards. Since the Kanzi apple is not as 

old yet as the Jonagold apple and less orchards (only 36 in comparison to 973) were 

included in the assessment, it is probable that a higher percentage of trees are still 

in their young and low productive years, which is related to a general higher 

environmental impact (Goossens et al., 2017a). I specifically chose not to exclude 

those orchards, as to not contribute to the practice of excluding low productive 

orchards from agri-food LCAs and because I consider the impact of apples from the 

viewpoint of the consumer, who does not know from which orchard the apples 

originate. Variability due to age cannot be reduced, unless by waiting several years 

for the orchards to reach full productivity without establishing any new orchards in 

the meantime. Moreover, variability due to weather circumstances can also not be 

reduced.  
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Variability can also be caused by differences in soil type. The soil type could 

influence the productivity of the orchard and the amount of inputs that an apple 

grower needs to make for an optimal yield, since it determines – among other 

things – the presence of water and nutrients in the soil and their availability to the 

orchard. This variation due to soil type could theoretically be reduced by uprooting 

and replanting all orchards in one spot. This change in the physical system is, 

however, unwanted and unrealistic. 

Finally, a difference in legislation between regions and countries can be a source of 

variability. For example, legislation dictates the maximum allowed fertilization dose 

per hectare and per year, for which a distinction is made between sandy and non-

sandy soils (VLM, 2021). Given the complicated decision process at legislative or 

policy level, reducing variability through legislation might be unrealistic as well. 

As a final note, I also want to emphasize that when it comes to making policy 

decisions regarding the preference of one variety over another, consumer 

preference cannot be disregarded. Uniformity should not be strived to when it 

comes to fruit varieties. 

7.1.4 A second illustrative case study: local vs. imported food products 

In this thesis, I used the apple agri-food chain as a case study to “try out” the studied 

methodological improvements. I will now use a second case study to illustrate the 

wider applicability of the methodologies, and how they can be used for solving 

specific problems. The second part of the case study, regarding allocation, is 

discussed in section 7.2.4. 

“Buy local” is an often-used slogan these days. People generally perceive local food 

as being more healthy, safe and good for the environment (Feldmann and Hamm, 

2015). We can look at the environmental aspect of buying our foods locally since 

this can be measured by using LCAs, which is increasingly being done (Frankowska 

et al., 2019a, 2019b; Goossens et al., 2019; Loiseau et al., 2020; Stoessel et al., 2012; 

Webb et al., 2013). Preliminary research in our research group (Ghysen, 2020) has 

for example shown that when it comes to fruit and vegetables bought in Belgium, 

it might be environmentally preferable to buy products that are produced in 

Belgium or its neighboring countries.  

What our preliminary study especially highlighted was that to truly compare a local 

and imported product, all different agricultural areas, management practices, post-
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harvest processes, transportation routes and transportation modes, and 

seasonality should be taken into account and this for both the home country as well 

as the country from which products are imported. It is clear that this already 

inherently entails a lot of uncertainty and variability. Yet, the overall uncertainty in 

this case is often even larger since local, qualitative data from each origin country 

is often lacking, especially in case more products and origin countries are included 

in one study. Finding good sources (such as farmers), with which there is no 

language barrier, can be quite difficult. LCA practitioners frequently use general 

data instead, often from a published database. If the practitioner is lucky, the 

studied origin country is at least available in the database, however these land-

specific processes are often based on single-point values or central tendencies, 

assumed to be applicable for the whole country. If the country is as big as the 

United States of America, China or Brazil, with their variety of different climates 

and soils within one country, one can already deduce that a lot of variability will be 

ignored. If the LCA practitioner is not so lucky, and proxy data needs to be used for 

the product (e.g., apple cultivation represents pear cultivation) or the origin 

country (e.g., the United Kingdom is substituted by The Netherlands), additional 

uncertainty will also be introduced. 

Such a study requires extensive and thorough research, which is not always 

possible. In case the study is more focused and limited in time, the LCA practitioner 

first has to identify which part of the life cycle chain is responsible for the order of 

magnitude of the potential environmental impact. That would be the part where 

including uncertainty and variability will be most relevant. It depends on the 

question which part of the chain that is. For example, if Belgian apples are 

compared to imported New Zealand apples, then the focus could lie on the mode 

of transport, since that is a big contributor to the New Zealand apple impact 

(Goossens et al., 2019). In contrast, if Belgian apples are compared to imported 

French ones, the emphasis will most probably lie on including overall uncertainty 

for the agricultural part of the chain.  

Nauta (2000) illustrated for risk assessment that improperly quantifying the 

separation of uncertainty and variability may be better than not separating them 

at all. The same might be true for LCAs. Meaning that, even introducing a small 

indication of uncertainty and variability, might already lead to more conclusive 

results. 2DMC offers the opportunity to propagate this uncertainty and variability 
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through the LCAs of the studied products and countries, leading to more conclusive 

results on if higher yields compensate the added impacts due to transport. 

7.1.5 Finetuning 2DMC for LCA 

In this PhD thesis, 2DMC was introduced as an innovative approach to propagate 

uncertainty and variability separately in LCA. While the basic methodology and 

outcome possibilities are shown in Chapter 4, the method could still be improved 

upon and finetuned for LCA. The topics that will be further discussed are shown in 

Fig. 7-1. 

 

 

Figure 7-1 Flowchart showing different questions that can arise during the LCA process 

regarding 2DMC. 

Building the 
inventory

• What is uncertainty and what is variability?

• Should uncertainty and variability in other LCA phases be included?

• What are the critical data?

• How to treat input outliers?

Conducting 
calculations

• What is an adequate number of 2DMC runs

• Can 2DMC be used in a pairwise analysis?

Interpreting  
results

• When are ratios “too big”?

• Can nonoverlap statistics make the conclusions even more robust?

Making 
decisions

• What er the most relevant impact categories?

• Which parameters are essential?
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What is uncertainty and what is variability? 

In Chapter 3, we identified the lack of uniformity and consensus when it comes to 

viewpoints, terminology and classification of uncertainty and variability. This lack 

of harmonization should be rectified to facilitate future product comparisons and 

communication, preferably in a focused session with LCA experts from all the 

different fields. 

Should uncertainty and variability in the other LCA phases be included? 

In this thesis, I focused on uncertainty and variability of the inventory phase, 

because this is the data that is (usually) gathered first-hand by the LCA practitioner 

and (usually) represents the bulk of their work. However, there is also uncertainty 

and variability in the other phases, such as the chosen time horizon for Global 

Warming Potential and the uncertainty of the lifetime of substances during the LCIA 

phase (Hauschild et al., 2018). For a complete list of examples for each LCA phase, 

I refer to Hauschild et al. (2018).  

It would be interesting to see how broad the range of potential environmental 

impacts would be if all sources of uncertainty and variability in all LCA phases were 

included within one study. Though, in general, this would often not be very relevant 

or useful. If it would be done, there should still be a way to separate the different 

phases from each other, because they each give information to different 

stakeholders. If the LCA is being conducted for a client, such as a company or an 

association, the results from the inventory phase are relevant since they can 

directly influence that through improvements in the chain. In contrast, results from 

the LCIA phase would probably lead to confusion and miscommunication. Those 

results would, however, be very relevant for LCA database developers and the 

researchers concerned with the environmental mechanisms that underlies each 

impact category. It could be an incentive for them to focus on improving specific 

models or principles that are being used. So, it depends on the stakeholders which 

LCA phase should be studied regarding uncertainty and variability; one, two, or 

maybe even all of them. 
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What are the critical data? 

2DMC is only possible when enough data is available to construct input probability 

distributions and when there is enough time to do so. It is therefore advised to take 

uncertainty and variability into consideration from the very start of the LCA process. 

Sufficient data can only be obtained if information on uncertainty and variability is 

collected already during the LCI and/or by collecting additional data. When there 

are limitations to gathering all the necessary data, and to be time-efficient, a LCA 

practitioner might wish to focus on only gathering the truly critical data. We have 

to keep in mind that we are constructing a relatively simple model to represent a 

very complex reality. Decisions need to be made on which data can be left out as 

insignificant, perhaps without sufficient evidence to back this up (Vose, 2008). Local 

sensitivity analyses and screening methods could in that case be used as a 

preliminary step to identify the most influential parameters on which the focus 

should lie for gathering more data. It would be interesting to study if doing this 

preliminary step truly leads to equivalent results and where the border lies for 

gathering the sufficient amount of additional data.  

How to treat input outliers? 

In Chapter 5, the cultivation of Kanzi apple showed some unexpectedly large 2DMC 

results. This was caused by the small dataset of “only” 36 orchards that was used. 

The smaller dataset caused input outliers to have a larger influence, leading to 

right-skewed input probability distributions when those distributions are fitted. 

Outliers can, for example, stem from data that was incorrectly registered in the 

database or from small yields. Several outlier treatment options were proposed 

such as removing those outliers beforehand, or only showing a limited part of the 

2DMC results. However, in each of those cases possibly valuable data is being 

omitted and some transparency is lost. Therefore, the different outlier treatment 

methods should be tested out (and potentially more identified) to analyze how 

small datasets can still lead to adequate 2DMC results. 

What is an adequate number of 2DMC runs? 

In this PhD thesis, 10 000 iterations and 250 simulations were conducted, leading 

to 2 500 000 possible LCA outcomes shown in 250 2DMC curves. This total number 

of runs was chosen after some preliminary tests to have a good sampling of the full 

range and shape of each input probability distribution and for compatibility with 
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Microsoft Excel (Excel can only plot a maximum of 255 data series per graph). R 

could have been used to solve this restriction. However, the chosen settings 

seemed large enough to get a full representation of all possible LCA results. 

The accuracy of Monte Carlo simulations output increases when the number of 

iterations increase, up to an unknown plateau level. There is no general specific 

number of iterations that is large enough, rather it depends on when convergence 

is reached in the output of a specific model. Though, this differs for each model and 

there is a lack of consensus of when convergence is actually reached (i.e., when a 

subjective measure is acceptably low). Von Brömssen and Röös (2020) state that “it 

is easy to get significant results by doing enough simulation runs, even though no 

new information is added and no generalizations can be made from the results.” In 

this regard, Heijungs (2020) suggests to limit the number of Monte Carlo runs to a 

number not greater than the sample size of the input parameters, because an 

excessive amount of Monte Carlo runs will optimize precision while ignoring 

inaccurate inputs. However, this very recent suggestion would mean that in 

Chapter 5 for the Kanzi orchards, we should only have conducted 36 Monte Carlo 

runs (for the iterations or simulations or in total), ignoring the fact that distributions 

by themselves should be identified based on their representativeness and link with 

reality. Von Brömssen and Röös (2020) blatantly call Heijungs’ suggestion incorrect 

since the simulations are a theoretical construct and therefore there is no way to 

determine the right number of simulation runs. Vose (2008) recommends to use 

the carnal rule that to produce a model that is both accurate and realistic, every 

iteration should be a scenario that could be observable in real life. It is clear that 

there is still some controversy going on when it comes to the adequate number of 

Monte Carlo runs; and that what applies for 1DMC, cannot necessarily be applied 

for 2DMC. 

In the end, the chosen number of iterations is often a trade-off made by each LCA 

practitioner individually between acceptable accuracy and needed computation 

time (Hauschild et al., 2018; Igos et al., 2019). In Chapter 3, we argued that even 

though computation time might appear long, it may be relatively short compared 

to the time needed to complete, for example, the data inventory analysis. 

Additionally, computational power is increasingly improving, and solutions exist on 

software and hardware level. Further research is needed to find a clear balance 

between computation power, convergence, precision, accuracy and realism, when 

it comes to the number if iterations and simulations in 2DMC. 
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Can 2DMC be used in a pairwise analysis? 

LCA is most frequently used in a comparative analysis. There are several ways to do 

this. In Chapter 4 and 5, we compared the absolute results (i.e., the two-

dimensional cumulative probability distributions) of two products. In Chapter 3, we 

saw that AzariJafari et al. (2018) used a pairwise analysis for their comparative LCA. 

They took the relative uncertainty and the relative variability of two products 

(option A and option B) into consideration by subtracting the results of option B 

from option A. That way, the results showed in how many of the (one-dimensional) 

Monte Carlo iterations, option A had less impact than option B. This method has 

the advantage that the uncertainty of correlated parameters will be the same in 

both options and will therefore not contribute to the uncertainty of the difference 

between the two options (Hauschild et al., 2018). According to Hauschild et al. 

(2018), there are two frequently used methods for this, either subtracting (A-B) or 

dividing (A/B). Thus, option A has a lower impact than option B when A-B<0 or 

A/B<1, respectively. It would be interesting to conduct such pairwise analysis using 

2DMC, to see if uncertainty and variability can still be visualized the same way and 

if the ratios show a noteworthy change. 

When are ratios “too big”? 

In Chapter 4, we advised that the uncertainty and variability ratio should be looked 

into when the 2DMC results of the product or processes that are being compared, 

overlap. It might also be relevant to look into the data uncertainty and variability 

when the ratios are “too big”. The question then arises: when is a ratio “big”? In 

Chapter 4, for the apple post-harvest chain, the maximum uncertainty ratio was 

1.02 and the maximum variability ratio 2.49. In Chapter 5, for the cultivation chain, 

the maximum uncertainty ratio was 2.31 and the maximum variability ratio 7.10. It 

might be interesting to look into a possible maximum limit for each ratio that 

indicates when definite choices cannot be made (even when the 2DMC results do 

not overlap) without looking into the source of the uncertainty and/or variability 

first. 

Can nonoverlap statistics make the conclusions even more robust? 

In this thesis, cumulative probability plots were used to visualize 2DMC LCA results. 

The cumulative probability plots of the two options could either show no overlap 

or overlap. We judged that the first scenario leads to a robust conclusion and the 
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second one indicates which steps to take – based on the ratios – to reduce the 

overlap. We need to reflect here that if the 2DMC output was shown as histograms, 

all impact categories for both comparisons (bulk vs. pre-packed and Jonagold vs 

Kanzi) would show overlap. It’s not because there is no overlap of the cumulative 

probability curves, that a randomly chosen 2DMC LCA result from option A and 

from option B cannot be equal. The probability that the randomly chosen bulk or 

Jonagold result is lower than their counterpart is – of course – higher, but it is still 

for example possible that a Kanzi orchard performs better when it comes to 

Particulate Matter impact than a Jonagold one (Fig. 5-1). In our studies in Chapter 

4 and 5, we thus focused on the difference in cumulative probability of the options. 

It is possible that conclusions can be made even more robust by calculating 

nonoverlap statistics of the histogram outputs. 

Cohen (1988) defined three such measures for the degree of nonoverlap (U1, U2 

and U3; Fig. 7-2) for cases where the histogram distributions being compared are 

normal with an equal standard deviation. U1 is the area that does not show overlap. 

Thus, when U1 = 0 there is 100% overlap or 0% nonoverlap between option A and 

B. U2 is defined as the percentage of the higher distribution that exceeds the same 

percentage in the lower distribution. For example, the highest 60% of option B 

exceeds the lower 60% of option A. Lastly, U3 is the percentage of the lower 

distribution that is exceeded by the upper half of the cases of the higher 

distribution. This means that the upper 50% of option B exceeds, for example, 90% 

of the values of option A.  

Variations of Cohen’s measures (1988) have been published since (Grice and 

Barrett, 2014; McGraw and Wong, 1992). In case of non-normal distributions, 

Bhattacharyya coefficient might be used (the coefficient is 0 for perfectly separated 

distributions and 1 for distributions that perfectly coincide) or variations thereof 

(Heijungs, 2021; Qin and Suh, 2018). Though, Heijungs (2021) argues that the 

decision maker might have difficulty interpreting those results.  

It will have to be studied how these kinds of nonoverlap statistics can be adapted 

for 2DMC [e.g., which curve(s) should be used] and if these statistics can actually 

contribute to the robustness of 2DMC LCA results. If that is the case, meaningful 

thresholds should be defined that indicate when a certain measure shows a 

significant difference between the two alternatives. It should then also be 

researched if/how the measures can be used when more than two options are 

being compared. 
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Figure 7-2 Nonoverlap statistics U1, U2 and U3 as defined by Cohen (1988). 

The two distributions represent option A and option B, with B having a larger line 

width. The grey indicated areas represent consecutively U1, U2 and U3. Graphs are 

adapted from the supplementary material of Heijungs (2021).  
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What are the most relevant impact categories? 

In Chapter 4 and 5, we saw that the overall uncertainty should be reduced before 

taking definite decisions for 1 out of the 16 impact categories for the apple post-

harvest chain and for 8 out of the 16 for the cultivation chain, respectively. One 

might wonder if it is really worth the effort and resources of looking into the overall 

uncertainty of those select few impact categories, when a definite decision can 

already be made on which product is environmentally preferable from the majority 

of all impact categories. In such cases, it could be beneficial to identify the most 

relevant impact categories first. For the Product Environmental Footprint 

(European Commission, 2018), the most relevant impact categories are defined as 

all impact categories (at least three) for which the normalized and weighted results 

contribute to at least 80% of the total environmental impact. However, 2DMC 

provides a range of results, making this method not so straightforward. Further 

research is needed to find a suitable method for the identification of relevant 

impact categories using 2DMC results or a consensus needs to be reached on which 

impact categories are relevant for each product/process separately. Normally, this 

should be achieved when Product Environmental Footprint Category Rules are 

provided for all products (European Commission, 2021).  

Which parameters are essential? 

Determining the output variance, using 2DMC, is much more meaningful if it can be 

combined with a sensitivity rating. As we saw in Chapter 1 and 3, the parameters 

towards which the model output is sensitive and that are highly uncertain, are the 

essential parameters to look further into. Wolf et al. (2017) identified those 

respectively by combining  a local and a global sensitivity analysis. For the global 

sensitivity analysis, they first conducted (one-dimensional) Monte Carlo 

simulations to determine the output variance. Then they calculated the 

standardized regression coefficients to determine the parameters’ contribution to 

the output variance, which they used as a proxy to calculate total sensitivity indices. 

They used this to explain how much each input parameter contributes to the output 

variance (Groen and Heijungs, 2017). Further research is needed to determine how 

2DMC can potentially be used in a global sensitivity analysis and how it can be 

combined with a local sensitivity analysis, in order for the essential parameters to 

be determined. 
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7.2 Connecting systems through allocation 

In this section, the second methodological shortcoming regarding the allocation 

issue arising when organic fertilizers are used, is discussed. First, the inconsistency 

in LCA between organic and conventional cultivation for fertilizers is clarified. In the 

following section, I explain why mass allocation is preferred to other allocation 

methods. Third, the second case study on local vs. imported food products is used 

to illustrate how the different allocation procedures can cause issues in a broader 

context. Fourth, I focus on the need for harmonization and regulation when it 

comes to using these allocation procedures to connect different systems. In the 

fifth section, I question if allocation should and can be included into Monte Carlo 

simulations. In the final section, organic fertilizers are compared to recycled 

materials.  

7.2.1 Inconsistency between system boundaries due to multifunctionality 

Comparing options to reduce environmental impacts is only effective when the 

system boundaries of the different options are consistent. That is often not so 

straightforward, seeing as most processes are multifunctional, while LCA is based 

on analyzing single systems. Several methods exist to have different multifunctional 

systems approximate each other’s system boundaries i.e., subdivision, system 

expansion and allocation. 

Equivalent system boundaries are lacking when organic crop production systems 

are compared to more conventional ones. Generally, when residual products from 

livestock systems get a second life as organic fertilizers, the impact of producing 

those residual products are ascribed to the livestock system, thus the system where 

it originates from. Meaning that no production impacts of those organic fertilizers 

are allocated to organic cultivation, the system where it is used and very much 

needed. This is in contrast with mineral fertilizers, used in conventional crop 

production systems, for which the production impact is allocated to the system 

where it is used. This inconsistency between organic and conventional crop 

production can lead to skewed LCA results. To solve this issue, more insight is 

needed on how to handle issues concerning system boundaries, multifunctionality 

and allocation in agricultural systems. 
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7.2.2 A preferential method for residual products from livestock systems 

In Chapter 6, we studied the effect of excluding versus including the production 

impacts from blood meal and manure (residual products from the beef system), 

and how the different allocation procedures can lead to very diverging results for 

organic apple cultivation in Flanders. Next to subdivision, which was not possible 

for this case study, ISO (2006a) proposes system expansion to avoid having to use 

allocation for such a multifunctionality problem. It was clear that this method leads 

to too many subjective choices and arbitrary assumptions for attributional LCAs. 

For organic cultivation specifically, an alternative product that could realistically be 

used during crop production is a plant-based fertilizer. However, these kinds of 

fertilizer are often themselves created from residual products, causing again 

problems regarding multifunctionality.  

Alternatively, a mineral fertilizer could be assumed as a possible substitute, but this 

product would not be allowed for fertilizing organic orchards. The mineral fertilizer 

also often led to opposite results when compared to the plant-based fertilizers or 

the results obtained using the allocation methods. For example, the Global 

Warming impact for organic apple cultivation using a mineral fertilizer as substitute 

led to an impact of twice as large compared to all the other considered procedures. 

This is contradictory to the goal of approximating reality. 

The next method recommended by ISO (2006a) in their allocation hierarchy, is 

allocation based on a physical relationship. Several possible relationships were 

studied, based on different mass flows. When choosing a mass allocation factor, it 

is most important that it is representative for the function performed by the 

residual products. This to guarantee that comparison of similar products from other 

systems is possible. The mass allocation should also not cause any burden shifting 

from the primary function to the co-product. Thus, the chosen mass allocation 

factor should still reflect that beef production is the purpose of the beef farm and 

not fertilizer production; again with the goal of generating representative results. 

No parameters from outside the studied systems were needed to calculate the 

mass allocation factors, thereby reducing the influence of unrelated factors. This is 

not the case when conducting economic allocation, which is the last tier option of 

ISO’s allocation hierarchy (2006a). In theory, this option did not even need to be 

explored seeing as mass allocation lead to reasonable results. However, it was 

included seeing as it is one of the most used methods for solving multifunctionality 
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problems. Economic allocation implies that the price of a product is somehow a 

valuation of its environmental impact, which is clearly not true. For example, when 

comparing two pig farms, one who uses a low ammonia emission stable system and 

one who has not, the first farm will have a lower (among others) acidification 

impact than the latter. Yet, the price for pork remains the same. The most 

important here to remember is that we strive towards the most accurate 

calculation of environmental impacts and – at the moment – mass allocation seems 

the best way to do that.  

In mass allocation, the N content of the organic fertilizers was used to calculate the 

allocation factor, since it represents the function of the fertilizers. However, this 

could potentially change in the future if carbon farming is introduced. Carbon 

farming is a new way of farming to sequestrate carbon11 in the soil (EU, 2021). There 

are several ways to do this, from small adjustments on farm level, such as applying 

fertilizers rich in carbon, to big changes in the entire farming system, such as 

agroforestry. With carbon farming, farms would be able to receive certificates that 

allow to emit greenhouse gasses, which they can use themselves or sell to other 

companies (EU, 2021). If this system is introduced, not only the N supply to the 

orchard, but also the C supply to the soil (if it is supplied well, ensuring carbon 

sequestration), would represent a relevant function of the organic fertilizers. In that 

case both the N and C content of the organic fertilizers could be seen as 

representative functions of the organic fertilizers and the mass allocation factor 

would need to be adapted. 

7.2.3 A second illustrative case study: local vs. imported food products 

Another example of a possible incompatibility of the defined system boundaries is 

when local food products are compared to imported ones. The same skewed LCA 

results can occur when comparing the cultivation impact of different countries. The 

management strategies in both countries will most probably substantially differ 

based on which resources are available and fits the farmers’ budget. It is possible 

that the export country mainly relies on manure for fertilization. If organic fertilizer 

production is then excluded during the impact assessment, it could lead to skewed 

results when comparing with conventional crop production in the home country. 

 
11 Carbon sequestration is the long-term storage of carbon in plants, soils, geologic 
formations and the ocean. It typically refers to carbon that has the immediate 
potential to become carbon dioxide gas (Selin, 2019). 
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System expansion would in this case lead to even more subjectivity and 

assumptions, since multiple substitute fertilizers are needed/possible. It would not 

be realistic to assume that both countries have the access to and need for the same 

substitute fertilizer. 

In Chapter 6, we argued that the value of an output can change between regions. 

This is definitely the case for manure, for which the price – among other things – 

depends on the livestock density of the region. This means that in one country the 

farmer might be able to get manure for free, while in the other country the farmer 

has to pay for it. In the case of economic allocation, this would lead to 0% allocation 

factor for the first country which would not be the case for the second. Or it might 

even go further than that. It could mean that in one country, the manure would be 

considered as residual while in the other country, it would be a co-product. 

Different allocation approaches would then be used for the same product. The 

recommended procedure in this thesis would solve this issue. By using mass 

allocation for which the allocation factor represents the function of the fertilizers, 

a representative comparison can be guaranteed. It is possible that the impact of 

the livestock system differs substantially between the two countries, and by using 

the proposed mass allocation procedure, this can be taken into account as well. 

As a side note, it should be mentioned that it is also quite possible that organic and 

mineral fertilizers are used alongside each other. Organic fertilizers increase the 

organic matter content in the soil which improves the soil structure and the 

exchange capacity of nutrients. They also – among other things – enhance soil 

biological activity, colonization of mycorrhizae, root growth and the growth of 

beneficial micro-organisms and earthworms. However, they have a comparatively 

low nutrient content, which is slow to release, and which might not contain all 

necessary plant nutrients in the sufficient quantity for maximum crop growth. Their 

composition is highly variable, making accurate application of nutrients to match 

crop needs difficult (Chen, 2006; Roba, 2018).  

Mineral fertilizers, on the other hand, have a high nutrient content which is usually 

immediately available for the plants, causing a fast effect. This can also lead to 

negative effects if the fertilizer is overapplied, possibly resulting in leaching, 

pollution of water resources, acidification, increased crop susceptibility to disease 

attacks, destruction of soil organisms, etc. Mineral fertilizers enhance the 

decomposition of soil organic matter, causing a degradation of the soil structure 

and a reduced fertilizer efficiency (Chen, 2006; Roba, 2018). 
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Different studies have shown that the combined application of the fertilizers can 

be a sustainable and cost-effective way to increase soil fertility and productivity, 

while reducing the negative impact of mineral fertilizers on the environment. The 

long-term benefits of organic fertilizers are then combined with the short-term 

ones of mineral fertilizers (Chen, 2006; Roba, 2018). Again for this example, if a 

combined application is the case in an LCA study, then both production impacts 

should ideally be accounted for to be consistent. 

7.2.4 Further harmonization opportunities  

LCA practitioners typically focus on the system that is being studied when solving 

multifunctionality problems. This means that the perspective when the 

multifunctionality problem stems from one system producing different co-

products, is different from the perspective when a co-product from another system 

is introduced in the studied system. For example, allocating impacts between 

different co-products in the dairy farm (e.g., meat and milk) versus introducing 

manure, a co-product from the livestock system, in the apple cultivation system. 

For the first, a common function for the different dairy system products is needed 

and for the second a common function for the fertilizers. The difficulty also lies in 

the lack of data. Typically, when researching the beef system, there is no real data 

available on where the different co-products are used. The same goes for the 

orchard system. It is not clear from what type and which livestock system the 

organic fertilizers originate. Connecting these two systems is therefore very 

challenging, with a lot of assumptions as a consequence.  

Further research must therefore focus on finding suitable and realistic allocation 

procedures that can be used for each possible co-product a system produces. 

Oftentimes, the focus still lies on the high-value co-products in multifunctional 

systems, such as meat and milk in dairy systems. However, the low-value by-

products must not be dismissed, and the procedure must also be applicable for e.g., 

manure, blood, hides, tallow, etc. Ideally, a uniform LCA for each system in each 

agricultural region will eventually be available that can be used as a standard 

system data source when certain co-products of that system are needed but the 

real origin is unknown. At the same time, general assumptions for each co-product 

destination are needed for each region as well. Clear regulations are needed on 

where the system boundaries should lie for each system to ensure that proper 

comparisons can be made. 
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7.2.5 Combining allocation with Monte Carlo simulations 

In Chapter 5, we saw that integrated cultivation for Jonagold led to 2DMC results 

ranging between 1 and 920 kg CO2 eq/t. In Chapter 6, the organic cultivation of 

Jonagold apples excluding organic fertilizer production caused a potential impact 

of 202 kg CO2 eq/t. The recommended mass allocation method would have led to 

267 kg CO2 eq/t. One might wonder how relevant the application of an appropriate 

allocation method is, when there is already such a range of potential impacts by 

included uncertainty and variability in the inventory phase. Is the extra 65 kg 

CO2 eq/t resulting from the recommended allocation method really where the 

focus should lie in the grand scheme of things? Though, to be consistent, one should 

not then just add the absolute production impact, but also consider the uncertainty 

and variability in the livestock system. This in turn could also lead to a wide range 

of potential impacts that then have to be added to the range of impacts of the apple 

orchard. So, the difference might not be that small after all. 

Moreover, the maximum impact for the organic apple cultivation would have been 

received by using system expansion with mineral fertilizer as substitute product, 

leading to 684 kg CO2 eq/t. This is a substantial difference from the 202 kg CO2 eq/t 

from the “excluding production impact” approach. Should we then include the 

uncertainty due to choice caused by the different allocation possibilities in our 

assessment?  

In the past, this has been done by Mendoza Beltran et al. (2018a, 2016) using (one-

dimensional) Monte Carlo simulations. For each applicable allocation procedure 

that could be used in their LCA, they assigned a “methodological preference”. If 

only one procedure is applicable for a multifunctional process, then the preference 

is 100%. If three procedures are applicable then they each get a percentage p1, p2 

and p3, all adding up to 100%, which represent three ranges [0 to p1; p1 to p1 + p2; 

p1 + p2 to p1 + p2 + p3]. Then, during the Monte Carlo simulations, a uniform 

distribution (from 0 to 100) is sampled alongside the probability distributions from 

parameter uncertainty. If, for example, the sampled value is smaller than p1, the 

first allocation procedure is used; otherwise, one of the other two is used, 

depending on in which range the sampled value belongs. This leads to a Monte 

Carlo output probability distribution that shows the effect of both choice and 

parameter uncertainty. Other discrete choices could also be included in the Monte 

Carlo simulation this way (for example, the choice of different time horizons for 

Global Warming Potential). The contribution of the choice uncertainty versus 
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parameter uncertainty to the overall uncertainty could potentially be identified 

through a global sensitivity analysis (Mendoza Beltran et al., 2016).  

Again here, as in section 7.1.5, it depends on the stakeholder how useful and 

relevant this information is. Just as with the data inventory phase, an LCA 

practitioner has a lot of influence when it comes to choosing the allocation 

procedure, as it is part of the goal and scope definition phase (by using the method, 

two LCA phases would be mixed). However, the influence of the allocation 

procedure does not provide relevant information to the stakeholder, since it is not 

something they can control, rather it is something on which a consensus should be 

reached by the LCA community. This consensus might be to keep using the method 

proposed by Mendoza Beltran et al. (2016) or to use one allocation approach 

instead. 

7.2.6 What about recycling? 

In this thesis, I specifically focused on methodological improvements for agri-food 

LCAs, and in the case of allocation, the focus was on organic fertilizers. One might 

wonder how applicable the considered allocation procedures are for other sectors. 

The applicability for feedstocks for biofuels was already mentioned in Chapter 6, 

though, this is still related to the agricultural sector. When looking broader to more 

industrial multifunctional processes in the secondary sector, the 

recycling(/reuse/recovery) of end-of-life products and of waste is a prevalent 

allocation issue. A product to be recycled has two functions: first the function(s) the 

product is primarily made for and secondly the function of providing secondary 

resources for use in subsequent life cycles or systems (European Commission et al., 

2010). 

The question thus arises for products such as wastepaper, waste glass, scrap steel, 

etc., if production impacts are allocated to them, how many recycling rotations 

should then be considered and for how long? The recycled products are (generally) 

not usable forever, there are always some losses in quality and/or quantity that 

should be accounted for. For example, wastepaper fibers keep getting shorter and 

more damaged each time they are recycled. Regarding the time aspect, it is possible 

that, for example, metal based products (e.g., aluminum windows) will only be 

recycled in ten, twenty or even more years, assuming that the material will even 

still be in demand by then (Frischknecht, 2010). Allocating impacts to such “waste” 

products would mean introducing a lot of assumptions and subjectivity. So, there 
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is ground for allocating all impacts to the original production and considering 

recycled material as burden-free. Though, from the perspective of attributional 

modelling, it is appropriate to assign a share to both the system that generates the 

end-of-life product or waste and to the one that uses it as a secondary good 

(European Commission et al., 2010).  

A clear distinction here between organic fertilizers and products to be recycled, is 

that organic fertilizers are only used once and (normally) very soon after its 

production (depending on which fertilizer). Thus, the question of how many times 

it is recycled and when is not relevant here. This makes allocating impacts much 

more straightforward. And yet, theoretically, one might say that the nutrients 

resident in manure actually are recycled. They are the same nutrients that were 

applied to the crops that were fed to the livestock. Crop production and manure 

are thus linked via the nutrients available in feed. Applying manure could, in that 

case, be regarded as a recycling situation. Should manure then also be allocated an 

impact share from the fertilizer that was applied on the feed crop? And how far 

back should that go? This would differ based on the kind of fertilizer that was 

assumed to be used to fertilize the feed crop. If a mineral fertilizer is assumingly 

used, then only the one-time impact of producing the mineral fertilizer would be 

relevant. However, if it would be assumed that manure is used, then this could lead 

to a loop of “feed leading to manure leading to feed leading to manure” … This can 

occur between farms or within the same farm, applying an integrated crop-

livestock farming system (FAO, 2021).  

Looking further forward, since we considered apple cultivation as a case study, the 

recycling would stop since the apples – and thus the nutrients – are (presumably) 

eaten by humans and human feces are (in Belgium) not used as a fertilizer. Human 

feces are treated at sewage treatment plants, where the nutrients end up in the 

sludge. It is prohibited in Belgium to use this sludge on agricultural land (VLM, 

2021). Thus, it would not be necessary to account for future recycling of the 

nutrients since they don’t end up on agricultural soil again, only for past ones. But 

again, this would mean introducing a lot of assumptions and subjectivity.  
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Frischknecht (2010) argues that the allocation modelling approach should also be 

chosen based on it representing weak or strong sustainability12. He uses climate 

change emissions of aluminum manufacture as a case study and explains that the 

end-of-life recycling approach (which is equivalent to the “crediting” approach of 

system expansion i.e., the livestock system is credited for avoided burdens of a 

mineral fertilizer product) would represent weak sustainability since the 

concentrated metal that is potentially recycled in the future is considered 

equivalent to the natural capital represented by the avoided climate change 

impacts. Meanwhile, the recycled content approach (or cut off approach, which is 

equivalent to considering organic fertilizers as residual products) accounts for the 

environmental impacts at the time they occur and is, thus, in line with strong 

sustainability since natural capital (climate change credits) is not replaceable by 

man-made capital (concentrated aluminum). The recommended approach for 

organic fertilizers, mass allocation, would then also be seen as strong sustainability, 

since the production impacts are also accounted for at the time they occur. 

To sum up, I believe that for organic fertilizers we should account for the production 

impacts at the moment they occur since they are not a typical recycled product and 

to avoid making too many assumptions. Thus, use the recommended mass 

allocation method. The same conclusion could potentially hold for other processes, 

like scrap steel. Nevertheless, separate and focused research is advised to come to 

robust approaches that lead to representative results for the secondary sector. 

In conclusion, I have shown that with the discussed methodological improvements, 

comparing products and processes to assess their relative environmental impacts 

will be much more robust and conclusive. Though, further research is needed to 

finetune 2DMC for LCA and to further harmonize the system boundaries and 

allocation methods when multifunctional processes come into play. Nevertheless, 

every improvement that is made for approximating reality has an added value when 

choices have to be made regarding sustainability. Clear decisions are much needed 

on industry, consumer and policy level to guide the way to sustainable production 

and consumption. 

 
12 Weak sustainability: total capital shall remain constant, depletion of natural 
capital can be compensated by a surplus in man-made capital vs. strong 
sustainability: natural capital shall remain constant, independent of man-made 
capital (Frischknecht, 2010; Neumayer, 2013). 
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A.1 Apple post-harvest inventory 

Please refer to the electronic supplementary material. 

A.2 2DMC results for the post-harvest chain 

 

 

Figure A-1 2DMC results for the post-harvest chain. 

The bulk apples are colored and the pre-packed apples are shown in greyscale. UR 

= uncertainty ratio, VR = variability ratio and OR = overall uncertainty ratio. 

https://kuleuven-my.sharepoint.com/:b:/g/personal/freya_michiels_kuleuven_be/EZ7UWcUWheJFvO2pB7LWQTIBn8s28g3zap5jsVagKb4QAA?e=BPylK5
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Figure A-1 Continued 
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Figure A-1 Continued 
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Figure A-1 Continued 



 

212  Appendix A 

 

 

 

Figure A-1 Continued 
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Table A-1 Deterministic impacts of the total post-harvest apple chain as reported on in the 

supplementary material of Goossens et al. (2019). 

LCA impact category LCA unit Bulk Per 6 

Climate change kg CO2 eq 2.77E-01 3.49E-01 

Particulate matter kg PM2.5 eq 1.59E-04 2.04E-04 

Ionizing radiation (Human Health) kBq U235 eq 8.58E-02 9.39E-02 

Photochemical ozone formation kg NMVOC eq 9.53E-04 1.16E-03 

Acidification molc H+ eq 1.30E-03 1.67E-03 

Terrestrial eutrophication molc N eq 3.45E-03 4.14E-03 

Freshwater eutrophication kg P eq 7.72E-05 1.11E-04 

Marine eutrophication kg N eq 3.23E-04 3.92E-04 

Mineral, fossil & renewable resource depletion kg Sb eq 4.44E-05 5.35E-05 
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B.1 Apple cultivation inventory 

Please refer to the electronic supplementary material. 

B.2 2DMC results for the cultivation chain 

 

 

Figure B-1 2DMC results for the cultivation chain. 

The Jonagold apples are colored and the Kanzi apples are shown in greyscale. 

https://kuleuven-my.sharepoint.com/:b:/g/personal/freya_michiels_kuleuven_be/EZ7UWcUWheJFvO2pB7LWQTIBn8s28g3zap5jsVagKb4QAA?e=BPylK5
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Figure B-1 Continued 
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Figure B-1 Continued 
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Figure B-1 Continued 
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Figure B-1 Continued 
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Appendix C 

C.1 Organic fertilizer allocation methodology 

Please refer to the electronic supplementary material for details on the chosen 

SimaPro processes, the assumptions and the calculations for the different 

allocation procedures. It also contains the methodology that was used for 

calculating mass allocation factors when only blood meal is used (results shown in 

Fig. C-2) and for assessing the influence of choosing a different livestock system 

(dairy instead of beef; results shown in Figures C-3 to C-6).  

C.2 Median cultivation impacts for all allocation procedures 

 

Figure C-1 Median impacts of organic apple cultivation with different allocation procedures. 

The considered allocation procedures are shown for the four apple orchards using 

blood meal, solid and semiliquid manure. 

https://kuleuven-my.sharepoint.com/:b:/g/personal/freya_michiels_kuleuven_be/EZ7UWcUWheJFvO2pB7LWQTIBn8s28g3zap5jsVagKb4QAA?e=BPylK5
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Figure C-1 Continued 
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Figure C-1 Continued 
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Figure C-1 Continued 
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Figure C-1 Continued 
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Figure C-1 Continued 
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Figure C-1 Continued 
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Figure C-1 Continued 
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C.3 Results of mass allocation for only blood meal 

 

Figure C-2 Representation of the farming and meat processing chain and how the beef farm 

impacts are allocated to blood meal only using mass allocation factors. 

A median of 487% of the total annual blood meal production of the beef farm is 

used to fertilize the apple orchards, meaning that five beef farms are needed to 

supply the required blood meal. All blood from the considered beef farm is thus 

assumed to be used for fertilizing the apple orchard. 
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C.3 Results of the influence of the livestock system 

 
Figure C-3 Representation of the farming, dairy and meat processing chain and how the dairy 

farm impacts are allocated to blood meal and manure using mass allocation. 

The impacts allocated to the fertilizer can be divided into the parts that are 

allocated to organic apple cultivation (see Fig. 6-3) and the remaining impacts. The 

options in the striped frame are withhold as realistic option. 
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Figure C-4 Representation of the farming, dairy and meat processing chain and how the dairy 

farm impacts are allocated to blood meal and manure using economic allocation. 

The impacts allocated to the fertilizer can be divided into the parts that are 

allocated to organic apple cultivation (see Fig. 6-3) and the remaining impacts. The 

options in the striped frame are withhold as realistic option. 
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Figure C-5 Median impacts of apple cultivation showing the influence of using a different 

livestock system (dairy instead of beef). 

For the beef system, “kg N in fertilizer/kg (live weight + N in manure)” was used 

as mass allocation factor and for the dairy system, “kg N in fertilizer/kg (live weight 

+ milk + N in manure)”. For economic allocation for the beef system, “€ fertilizer/€ 

live weight” was used as allocation factor and for the dairy system, “€ fertilizer/€ 

(live weight + milk)”. 
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Figure C-6 Median Global Warming impacts of apple cultivation showing the influence of 

price variations for economic allocation comparing beef to the dairy system. 

The beef system is represented by “€ fertilizer/€ live weight” and “€ fertilizer/€ 

carcass”. For the dairy system, the allocation factor “€ fertilizer/€ milk” is 

considered. 
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