
ARENBERG DOCTORAL SCHOOL
Faculty of Bioscience Engineering

Optimal Design of
Dynamic Experiments
in Bioscience Engineering

Arno Strouwen

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Bioscience
Engineering (PhD)

September 2021

Supervisors:
Prof. dr. Peter Goos
Prof. dr. ir. Bart Nicolaï





Optimal Design of
Dynamic Experiments
in Bioscience Engineering

Arno STROUWEN

Examination committee:
Prof. dr. ir. René De Mot, chair
Prof. dr. Peter Goos, supervisor
Prof. dr. ir. Bart Nicolaï, supervisor
Prof. dr. ir. Kristel Bernaerts
Prof. dr. ir. Wouter Saeys
Prof. dr. Julio Banga

(Instituto de Investigacións Mariñas-
Consejo Superior de Investigaciones Científicas)
Dr. ir. Philippe Nimmegeers

(Universiteit Antwerpen)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Bioscience
Engineering (PhD)

September 2021



© 2021 KU Leuven – Faculty of Bioscience Engineering
Uitgegeven in eigen beheer, Arno Strouwen, Kasteelpark Arenberg 30, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



Preface

During my bachelor studies as a bio-science engineer at KU Leuven, I followed a
course on optimal experimental design by Professor Peter Goos. In this course,
it became clear to me that statistical modeling is essential to properly describe
living systems, due to the inherently high variability of such systems. It also
became clear that carefully planned experiments are necessary to cope with this
variability. The knowledge I gained from this course made me quite popular
among my fellow bio-science engineering students, since the informative cost-
and time-efficient experiments I planned for them saved them multiple days
(and nights!) of lab work.

Thus, after completing my master studies, I knew immediately which direction
I wanted to give to my further career. I e-mailed Professor Goos about a
PhD in his research group. To my surprise, Professor Goos remembered me
as the only student in his academic career who did not fail his exam, but
nevertheless came to the ask feedback on their exam. Apparently, this left
a good impression and I could soon start working on the thesis you are now
reading. The first project Professor Goos suggested to me involved choice
experiments with mixture constraints. I was already quite interested in this
topic and was ready to agree to it, but, mostly out of curiosity, I asked whether
there existed experimental design research about dynamic systems, since my
master thesis focused heavily on dynamic systems and I had also considered
doing a PhD in control theory. Here, I must say that the stars aligned as
Professor Goos was just getting involved in a project about the metabolism of
pear during hypoxia (together with Professors Bart Nicolaï and Wouter Saeys),
which required dynamic experiments. I was truly lucky to be able to combine
my two research interests, control theory and experimental design, and I cannot
imagine a research topic that would have interested me more. And thus it came
to be that my thesis would be about optimal experimental design for dynamic
systems, applied to the storage of pear fruit, with Professor Goos advising
me on experimental design and Professor Nicolaï advising me on postharvest
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modeling. Peter, I must thank you for teaching me to write a sound scientific
manuscript. I am sitting besides a stack of all the drafts of our papers and they
easily tower above me. Bart, your practical knowledge of postharvest models
always rescued me when I got stuck in my PhD project.

Only a couple of months into my PhD, I was thrown to the lions of the Research
Foundation - Flanders (FWO) strategic basic research panel. Thankfully, I
made it out alive, and I am very grateful that the FWO believed in me and
decided to fund my research for four years.

I want to thank the members of my supervisory comity, Professors Kristel
Bernaerts and Wouter Saeys, for the constructive feedback throughout my PhD
project. In particular, the PhD thesis of Professor Bernaerts and her many
papers were a great starting point for my own research.

I also want to express my gratitude towards Professor Julio Banga and Doctor
Philippe Nimmegeers for agreeing to be part of my jury.

Professor Banga is further thanked for agreeing to a research visit of mine
to his research group in Vigo. I learned a lot about sensitivity analysis of
dynamic systems and global optimization during this visit.

I also want to thank the first master thesis student I supervised, Karel Van
Brantegem. Karel, you wrote an excellent master thesis and I am glad that you
decided to join our research group. As you know by now, I have more research
ideas than I could conceivable finish myself. So, it was really helpful to be able
to collaborate with you to tackle some of them.

The last person I must thank on the academic side of things is somebody
I have only communicated with in text, but was nevertheless instrumental in
bringing this thesis to a successful end. This is Doctor Christopher Rackauckas,
without whose scientific machine learning project, the text of this thesis would
probably be twice as long, and the computer source code, upon which it is
based, would be four times longer.

In the year 1993 my grandparents retired, but instead of enjoying their well-
deserved free time, they got a new job. A baby was born in their family and
the parents had very demanding careers. Bomma and Bompa without your love
and care I would never have achieved half as much.

Arno,
Hasselt 2021
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Abstract

Living systems are rife with variability. Well-chosen experimental designs are
necessary to deal with this variability when modeling such systems. Models for
living systems often rely on knowledge of physical, chemical and biological laws,
such as mass balances, transport phenomena and reaction kinetics, and are often
described by a system of non-linear differential equations. So, the structure of
a model can often be determined from first principles. However, the model will
generally also rely on parameters whose numerical values cannot be determined
from physical laws. These parameters must then be inferred from experimental
data before the model can be put to use. A well-chosen experiment can greatly
improve the estimation of the model parameters. However, there exist several
challenges for constructing such informative experiments for dynamic systems.
One challenge is the dependence of the optimal experiment on the true model
parameters, making it difficult to perform robust experiments that work well
regardless of the specific model parameter values. Another challenge is the
correlation of the observations due to the presence of process noise. The
central research topic of this thesis revolves around solving these challenges by
developing robust experimental design methodology for noisy dynamic systems.
My novel methodology is developed to improve postharvest and other bio-science
engineering applications, and is mainly applied to the estimation of respiration
and fermentation parameters of pear fruit. Experiments that precisely estimate
the model parameters of spring-mass-damper systems and compartment systems
are also constructed.

After a brief introduction on dynamic design of experiments and its application
areas, this PhD thesis deals with the estimation of respiration parameters of pear
fruit inside a jar, modeled by Michaelis-Menten kinetics. Air flowing into the jar
has to be controlled so that the parameters of the Michaelis-Menten model can
be estimated as precisely as possible. The quality of this parameter estimation,
and thus of the experimental design, is quantified using the determinant of the
Fisher information matrix, which is inversely related to the area of the confidence
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ellipse of the two Michaelis-Menten model parameters. The air flowing into the
jar must thus be optimized so that the determinant of the Fisher information
matrix is as large as possible. One major challenge here is the dependence of this
Fisher information matrix on the true, but unknown, parameters of the system.
The most commonly used method in the literature to deal with this issue is
locally optimal design, where a single initial guess is used for the true parameter.
One main conclusion from my work is that this optimal experimental design
technique outperforms several commonly used heuristic experimental techniques.

Subsequently, also fermentation of the pear fruit is taken into account. The
locally optimal design method only takes into account a single initial guess,
and may not perform well if this guess deviates substantially from the true
parameter values. Instead of a single initial guess, an entire distribution could
be used to quantify the prior knowledge and uncertainty on the unknown
parameters. Because of the use of a prior distribution, this method is called
Bayesian experimental design. Most current techniques in the literature only
allow for parametric prior distributions, such as normal distributions. The
prior information about respiration and fermentation, coming from a previously
gathered dataset, could not be summarized by any parametric distribution.
For this reason, I developed a novel experimental design technique based on a
Markov-chain Monte-Carlo (MCMC) analysis of this previously gathered data.
This method is thus able to approximate arbitrary distributions. I found that
this flexible experimental design technique is more robust than the commonly
used locally optimal design method and other robust methods.

The final part of the thesis focuses on robust and adaptive experimental design
techniques for dynamic systems with process noise. Current experimental
design techniques for dynamic systems generally only incorporate measurement
noise, but biological systems also often involve process noise. Calculating the
Fisher information matrix for such systems requires estimating the uncertain
dynamic states, using Bayesian filtering techniques. For linear dynamical
systems, the optimal filter is the Kalman filter. However, deriving the Fisher
information matrix for dynamic systems under process noise and then applying
the methodology from the previous chapters is not sufficient to construct
informative experiments. This is due to the difficulty in precisely predicting
such systems far into the future, which causes those future measurements
to contribute little to the Fisher information matrix. Adaptive experimental
designs are able to deal with this issue. Adaptive designs use the already
gathered data to re-optimize and thus adapt the remainder of the experiment.
The already gathered measurements can help by reducing the uncertainty on
the model parameters, which the optimal design depends upon. Adaptivity
is thus always a good design strategy, even when no process noise is present.

iv



But for systems with process noise, adaptivity is even more important, since
the already gathered measurements help increase the prediction accuracy of
future measurements, thus increasing the informativity of these measurements.
I found that taking into account process noise in the experimental design greatly
improves the quality of the experiment.
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Beknopte Samenvatting

Levende systemen worden gekenmerkt door een grote maat aan variabiliteit.
Goed gekozen experimentele ontwerpen zijn noodzakelijk om goed om te
gaan met deze variabiliteit. Modellen van levende systemen steunen vaak
op kennis van fysieke, chemische of biologische wetten, zoals massabalansen,
transportverschijnselen en reactiekinetiek, en worden vaak beschreven door een
systeem van niet-lineaire differentiaalvergelijkingen. Dus, de structuur van het
model kan vaak bepaald worden door eerste principes. Echter, het model zal
in het algemeen ook afhangen van parameters waarvan de numerieke waarden
niet kunnen vastgesteld worden door fysieke wetten. Deze parameters moeten
dan afgeleid worden uit experimentele data voordat het model toegepast kan
worden. Een goed gekozen experiment kan de schatting van deze parameters
sterk verbeteren. Er bestaan echter verschillende uitdagingen bij het opstellen
van zo een informatief experiment voor dynamische systemen. Een eerste
uitdaging is de afhankelijkheid van het optimale experiment van de waarden van
de modelparameters, wat het moeilijk maakt om robuuste experimenten op te
zetten die goed werken voor om het even welke modelparameterwaarden. Een
andere uitdaging is de correlatie tussen de observaties door de aanwezigheid
van procesruis. Het centrale onderzoeksthema van deze thesis draait rond
het aanpakken van deze uitdagingen door het ontwerpen van een robuuste
methodologie voor experimenteel ontwerp voor dynamische systemen met ruis.
Mijn nieuwe methodologie is ontworpen om naoogsttoepassingen en andere
toepassingen in het domein van de bio-ingenieurswetenschappen te verbeteren, en
is voornamelijk gericht op de schatting van respiratie- en fermentatieparameters
van peren. Experimenten die toelaten om de modelparameters van massa-veer-
demper systemen en compartiment systemen precies te schatten worden evenwel
ook opgesteld.

Na een korte inleiding over experimenteel ontwerp voor dynamische systemen
en de toepassingsgebieden ervan, behandelt deze doctoraatsthesis het schatten
van respiratieparameters van peer in een pot, gemodelleerd met behulp van
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Michaelis-Menten kinetiek. Lucht die de pot instroomt kan aangestuurd worden
zodat de parameters van het Michaelis-Menten model zo precies mogelijk
kunnen geschat worden. De kwaliteit van deze parameterschatting, en dus
ook het experimenteel ontwerp, wordt gekwantificeerd door middel van de
determinant van de Fisher informatiematrix, die omgekeerd gerelateerd is aan de
betrouwbaarheidsellips van de twee Michaelis-Menten modelparameters. Lucht
die de pot instroomt moet geoptimaliseerd worden zodat de determinant van de
Fisher informatiematrix zo groot mogelijk is. Een grote uitdaging is het feit dat
deze Fisher informatiematrix afhangt van de (onbekende) modelparameters. De
meest gebruikte techniek in de literatuur voor het omgaan met deze kwestie is
lokaal optimaal ontwerp, waarbij een enkele initiële gok wordt gebruikt voor de
echte parameters. De belangrijkste conclusie van mijn werk is dat dit optimaal
experimenteel ontwerp verscheidene vaak gebruikte heuristische methodes van
experimenteel ontwerp overtreft.

Vervolgens brengt de thesis ook de fermentatie van peerfruit in rekening. Het
lokaal optimaal ontwerp houdt alleen rekening met een enkele initiële gok, en
presteert doorgaans niet goed als deze gok substantieel afwijkt van de echte
parameterwaarden. In de plaats van een enkele initiële gok kan een ganse
kansverdeling gebruikt worden om de a priori kennis en onzekerheid omtrent de
modelparameters te kwantificeren. Omwille van het gebruik van een a priori
verdeling wordt deze methode Bayesiaans experimenteel ontwerp genoemd. De
meeste huidige technieken in de literatuur staan enkel parametrische a priori
verdelingen toe. De a priori informatie over respiratie en fermentatie, waarover
ik beschikte, kon niet samengevat worden door een parametrische kansverdeling.
Om deze reden ontwierp ik een nieuwe techniek gebaseerd op een Markov-chain
Monte-Carlo analyse van deze voorheen verzamelde data. Deze methode kan
arbitraire kansverdelingen benaderen. Ik ontdekte dat deze flexibele techniek
robuuster is dan de vaak gebruikte techniek van lokaal optimaal ontwerp, alsook
andere robuuste methodes.

Het laatste deel van de thesis richt zich op robuuste en adaptieve technieken voor
experimenteel ontwerp voor dynamische systemen met procesruis. De huidige
technieken voor dynamische systemen kunnen enkel omgaan met meetruis, maar
procesruis komt ook vaak voor in biologische systemen. Het berekenen van de
Fisher informatiematrix voor dergelijke systemen vereist het schatten van de
onzekere dynamische toestanden met behulp van Bayesiaanse filtertechnieken.
Voor lineaire dynamische systemen is de optimale filter de Kalman filter. Echter,
het afleiden van de Fisher informatiematrix voor dynamische systemen onder
procesruis en vervolgens de methodologie uit de voorgaande hoofdstukken
toepassen volstaan niet om informatieve experimenten op te stellen. Dit is te
wijten aan de moeilijkheid om dergelijke systemen ver in de toekomst nauwkeurig
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te voorspellen, waardoor metingen ver in de toekomst weinig bijdragen aan de
Fisher informatiematrix. Adaptieve experimentele ontwerpen zijn in staat om
dit probleem te remediëren. Adaptieve ontwerpen gebruiken de reeds verzamelde
gegevens om de rest van het experiment opnieuw te optimaliseren en dus aan te
passen aan de vrijgekomen informatie. De reeds verzamelde metingen helpen de
onzekerheid te verminderen omtrent de modelparameters, waarvan het optimale
ontwerp afhankelijk is. Adaptiviteit is dus altijd een goede ontwerpstrategie,
ook als er geen procesruis aanwezig is. Maar voor systemen met procesruis
is adaptiviteit nog belangrijker dan voor systemen zonder procesruis, omdat
de reeds verzamelde metingen de nauwkeurigheid van de voorspellingen van
toekomstige metingen helpen te vergroten, waardoor de informativiteit van
deze metingen toeneemt. In mijn derde hoofdstuk demonstreerde ik dat het
beschouwen van procesruis in het experimentele ontwerp de kwaliteit van het
experiment aanzienlijk verbetert.
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List of Abbreviations

BLUE best linear unbiased estimator

DCA dynamic controlled atmosphere

FIM Fisher information matrix. When used without further specification, refers
to the expected Fisher information matrix, as opposed to the observed
Fisher information matrix.

KL-div Kullback-Leibler divergence

MAP modified atmosphere packaging

MCMC Markov-chain Monte-Carlo

SSE sum of squared errors
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Chapter 1

Introduction

1.1 Motivation

Experimentation is required in almost all areas of bio-science engineering. A well
chosen experimental design can tremendously reduce this required experimental
effort. One area of bio-science engineering that requires a lot of experimentation
is the postharvest storage of fruit and vegetables.

Fresh fruit and vegetables are perishable and need to be stored at appropriate
conditions after their harvest. The temperature is typically set as low as possible
to reduce respiration, but above the freezing point of the product. Below this
point, massive cell damage occurs and the product no longer can be considered
as fresh. A further reduction of the respiration rate is possible by reducing the
O2 partial pressure of the storage atmosphere and increasing its CO2 partial
pressure.

The optimal storage conditions (temperature, O2 and CO2 partial pressures) of
fruit and vegetables depend on the species, cultivar, ripeness stage and many
other factors and must be experimentally determined. Traditionally, this has
been achieved by storing the product at many combinations of temperature, O2
partial pressure and CO2 partial pressure, and monitoring the change in quality
attributes during the storage period. This can be as much as one year for apple
and pear fruit.

As an alternative, a mathematical model based approach could be used to
optimize storage protocols. This approach relies on comprehensive mathematical
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models that describe the behavior of the product as a dynamical system
with inputs (temperature, O2 partial pressure and CO2 partial pressure) and
outputs (respiration and fermentation rate, quality attributes), based on physical,
chemical and biological laws. These mathematical models rely on parameters
whose numerical values cannot be determined from first laws, and must be
experimentally determined. The experimental effort then shifts from parameter
estimation for black box response surface models to parameter estimation for
mechanistically based differential equation models. We then no longer have
to independently test the fruit and vegetables at different storage conditions
via a factorial design. Instead, one single experiment involving time varying
O2 and CO2 partial pressures would allow us to estimate the respiration and
fermentation parameters of the differential equation models. The latter can
subsequently be used to simulate the behavior of the fruit in arbitrary storage
conditions, and the optimization of the storage process can then be done in
silico (Ho, Verboven, Verlinden, Herremans, et al. 2011). This shift towards
mathematical models also allows us to use model based experimental design
methods (Franceschini and Macchietto 2008). The challenge is to construct
optimal time-varying O2 and CO2 partial pressures such that the respiration
and fermentation parameters can be precisely estimated in a single experiment.

Besides improving postharvest experimentation, the methods we derive in this
thesis are much more broadly applicable and can be used to design experiments
for the precise estimation of model parameters in many differential equation
models in other fields of bio-science engineering and engineering.

1.2 Goals

The general goal of this thesis is to develop the statistical methodology required
to create dynamic inputs that lead to precise parameter estimation for non-
linear differential equation models. In Chapters 2 and 3, we apply this to the
estimation of respiration and fermentation parameters of pear fruit. In Chapter
4, experiments to estimate the model parameters of spring-mass-damper systems
as well as compartment systems are constructed. In doing so, several challenges
must be overcome:

• Challenge 1. Constructing optimal experiments for non-linear dynamic
systems is a circular problem, as the best experiment to learn about the
model parameters depends on the specific values of those parameters.
Some form of prior information about the model parameters is required
to solve this issue.
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• Challenge 2. If the prior information required in Challenge 1 were
perfect, then no further experiments would be needed. Generally,
however, there is substantial uncertainty concerning the prior information.
Therefore, a robust experimental design is desired that performs well
over a range of possible parameter values. Current robust experimental
design methods are only capable of achieving robustness when this prior
information is summarized well with a parametric distribution. However,
not all prior information can easily be summarized in such a way. To
overcome this challenge, a non-parametric method should be developed.

• Challenge 3. Current experimental design methodology ignores process
noise. Often, all errors are attributed to measurement noise. In the
presence of process noise, the challenge lies in generalizing the definition of
the Fisher information matrix to deal with observations that are correlated
in time.

• Challenge 4. Adapting the experimental design using information from
measurements as they are being gathered is another way to deal with the
dependence of the optimal experiment on the true parameters. Current
experimental design methodology, in the context of differential equation
models in combination with process noise, is not suitable for online
computation. This is because of the growing complexity of the optimization
problem over time, particularly when also dealing with process noise. An
alternative experimental design method with constant memory and time
complexity therefore has to be developed.

1.3 Chapter by Chapter Overview

• Chapter 2 uses the traditional locally optimal experimental design
method to optimize oxygen input profiles, which lead to a precise
estimation of respiration parameters of pear fruit. This method deals
with the dependence of these input profiles on the true respiration
parameters, described in Challenge 1, by requiring an initial guess for
these parameters. This initial guess is provided by a parameter estimate
from the literature.

• Chapter 3 addresses Challenge 2 by developing a robust experimental
design method involving a quantification of the uncertainty about the
model parameters by applying a Markov-chain Monte-Carlo technique to
a prior data-set. This robust experimental design method is then used
to jointly optimize both O2 and CO2 input profiles to precisely estimate
both respiration and fermentation parameters of pear fruit.
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• Chapter 4 uses the Kalman filter to deal with Challenge 3 of
experimental design under process noise. This filter is used to track
an estimate of the hidden states over time. This estimate is required to
calculate the likelihood of the model parameters, which in turn is required
to calculate the Fisher information matrix for these more complicated
dynamic systems with process noise. The state estimate is also required
for Challenge 4 concerning adaptive designs, as we need information
about the true state of the system when redesigning the remainder of
the experiment. The issue of growing complexity of the optimization
problem over time is dealt with by using a combination of the observed
and expected Fisher information matrix.

• Chapter 5 presents an overarching conclusion of the work done in my
thesis. This chapter also gives an overview of alternative or related
experimental design strategies for dynamic systems, as well as an overview
of numerical methods that might improve the speed or precision with
which an optimized experiment can be constructed. I also discuss future
research prospects that might grow out of the techniques described in this
thesis.

4



Chapter 2

Optimizing Oxygen Input
Profiles for Efficient
Estimation of
Michaelis-Menten Respiration
Models

This chapter has been published in Food and Bioprocess Technology.1

Source code available upon request.

Abstract

Models based on mass balances and Michaelis-Menten respiration kinetics
are increasingly used to determine optimal storage conditions of fresh fruits
and vegetables. The model parameters are usually estimated from respiration
experiments at different, but fixed, gas conditions according to a response surface
design. This is a tedious procedure that requires a gas mixing facility or a series

1Strouwen, A., Nicolaï, B.M., Goos, P. (2019). Optimizing Oxygen Input Profiles
for Efficient Estimation of Michaelis-Menten Respiration Models. Food and Bioprocess
Technology, 12 (5), 769-780.
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of gas cylinders with appropriate composition. In this chapter, we consider a
simpler approach, in which the respiration kinetics of pear fruit are modeled
using a single experiment with a time varying O2 input profile. To optimize
the information content produced by the O2 profile, we apply optimal dynamic
experimental design principles and present a modified coordinate-exchange
algorithm to achieve this goal. Finally, we demonstrate the added value of
our approach by comparing the optimal O2 input profiles to several intuitive
benchmark experiments.

2.1 Introduction

Fresh fruit needs to be stored at appropriate temperature as well as O2 and CO2
conditions, after its harvest. The ideal storage conditions depend on the species,
cultivar, ripeness stage and many other factors, and must be experimentally
determined. Traditionally, this is achieved by independently storing fruit at
many different combinations of temperature as well as O2 and CO2 partial
pressures, and by monitoring the change of quality attributes during, the
sometimes year long, storage period (Fidler and North 1967). The optimal
storage conditions are then inferred from response surface modeling. This
method is black box in nature and labor intensive, due to the large number
of time-consuming experimental combinations that have to be tested (Saltveit
2003).

Many modern storage applications, such as modified atmosphere packaging
(MAP) (Jacxsens et al. 2000; Fonseca, Oliveira, and Brecht 2002a) and dynamic
controlled atmosphere (DCA) (Bessemans et al. 2016), rely on knowledge of mass
balances, transport phenomena and reaction kinetics, and use comprehensive
mathematical models that describe the behavior of the product as a dynamical
system with inputs (temperature, O2 and CO2 partial pressures) and outputs
(respiration and fermentation rate, quality attributes). The respiration kinetics
are a key feature of such dynamic models, and are generally described by a non-
linear model of the Michaelis-Menten type (Hertog et al. 1998a). The standard
Michaelis-Menten model contains two parameters: the maximum respiration
rate and the affinity or Michaelis-Menten constant (Peppelenbos and Leven
1996).

Michaelis-Menten kinetics are generally used to describe the kinetics of a
simple enzymatic pathway in which, first, a substrate-enzyme complex is
formed in a reversible way. In a second rate limiting step, the complex
dissociates into the reaction product and the enzyme (Michaelis and Menten
1913). Although respiration, and specifically O2 consumption, is a far more
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complex pathway, that contains both linear and circular routes and a multitude
of intermediate compounds (Berg, Tymoczko, and Gatto Jr 2002), it can
be described surprisingly well by Michaelis-Menten like kinetics at various
spatial scales, from the fruit tissue level to the intact fruit level (Ho, Verboven,
Verlinden, Herremans, et al. 2011). The maximum respiration rate and the
Michaelis-Menten constant should thus be considered as apparent parameters,
that summarize the behavior of the more complex pathway underneath. These
parameters are typically estimated from respiration experiments at various
combinations of temperature as well as O2 and CO2 partial pressure, which
are then kept constant throughout the experiment. Appropriate experimental
design techniques are then applied to reduce the number of experimental runs.
Typically, response surface designs, such as central composite designs, are used
to define the combinations to be tested, and response surface models are fitted
to the resulting data. However, even then, the experimental effort remains
considerable (Fidler and North 1967; Saltveit 2003).

Alternatively, dynamic experiments can be conceived in which the experimental
factors may vary over time in such a way that they maximize the information
content of the experimental data set. The shift from traditional response surface
modeling towards dynamic models for estimating respiration kinetics entails
unique challenges for designing experiments. As we explain below, this is due to
the fact that the former modeling approach is based on linear algebraic equations
and parameter estimation, while the latter requires differential equations and
non-linear parameter estimation.

The optimal design of dynamic experiments is an unexplored research topic
within postharvest research and fruit storage. It has, however, received a limited
amount of attention in other biological fields. One example is the construction
of an optimal temperature profile to aid the estimation of several kinetic growth
parameters in predictive microbiology (Bernaerts, Versyck, and Van Impe 2000;
Bernaerts, Servaes, et al. 2002; Balsa-Canto, Rodriguez-Fernandez, and Banga
2007). Another example can be found in food engineering, where temperature
profiles have to be optimized to better determine thermo-physical properties of
food products (Nahor, Scheerlinck, Verniest, et al. 2001a; Nahor, Scheerlinck,
Van Impe, et al. 2003). However, applications are not limited to temperature
profiles. For instance, during the identification of biochemical networks, the
input profile of several (bio-)chemical substances has to be controlled (Balsa-
Canto, Alonso, and Banga 2010). This is similar to our own problem, where an
O2 input profile has to be optimized.

In this chapter, we show how to design dynamic experiments to efficiently
estimate the two Michaelis-Menten respiration parameters of the specific oxygen
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consumption rate of pear fruit. First, in Section 2.2.1, we present a model for
pear fruit respiring inside a jar, with O2 as the sole time varying input. In
Section 2.2.2, we introduce the main concepts of optimal dynamic experimental
design and we subsequently apply them to our model to derive expressions for
quantifying the information content of an experiment. In Section 2.2.3, We
propose two methods to optimize the information content of the experiment,
based on the coordinate-exchange algorithm. In Section 2.3, we construct three
optimal designs for different admissible input profiles. The first proof of concept
design in Section 2.3.1 is constructed assuming that the O2 input level can only
be modified every 2 h, and is either in an on or an off state. In Section 2.3.2,
two optimal designs are constructed by relaxing the restrictions on the input
profile in two different ways. First, by allowing the input to be modified every
10 min. And secondly, by allowing 11 possible input levels. Our decisions on
how to quantify information, and on how to parametrize the input profile are
discussed in Section 2.4, as well as some alternatives. We also discuss further
research options in this section.

2.2 Methods

The methods section is divided into three parts. First, we propose a respiration
model for pear fruit, in an experimental unit: the jar. Next, we discuss the
main concepts of optimal dynamic experimental design and apply them to our
model. Finally, we adapt the coordinate-exchange algorithm to work better for
the dynamic experiments considered in this chapter.

2.2.1 Dynamic Model for Respiration

The respiration of pear fruit inside a jar was modeled using the following mass
balance,

Vj
dCm

dt
(t) = Q(t)(Cin − Cm(t)) − mpr(t), (2.1)

where Cm(t) is the modeled O2 concentration in the jar [mol m−3], at time t
[s]. The left-hand side of the equation shows the change of mass inside the jar,
with a volume Vj of 5 dm3. The right-hand side consists of two terms, the first
of which describes the air flowing in and out of the jar. The flow rate Q(t)
[m3 s−1] is the controllable input to the system. More specifically, we assumed
that air is blown into the jar with concentration Cin equal to that of regular
air (21 volume %), and that, air flows out of the system at the same rate Q(t)
and with the same O2 concentration Cm(t) as that inside the jar, due to the
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Figure 2.1: Graphical representation of the respiration jar measurement setup.

assumption of perfect mixing. The second term in the right-hand side models
the consumption of O2 inside the jar, which is proportional to the mass of the
pears, mp [kg]. Throughout the chapter, we assumed that all measurements
are performed on 4 kg of pears. The reaction rate r(t) [mol kg−1s−1], at time t
is described by the Michaelis-Menten kinetics model,

r(t) = VmaxCm(t)
Km + Cm(t) , (2.2)

in which the maximal respiration rate Vmax [mol kg−1s−1] and the Michaelis-
Menten constant Km [mol m−3] are the two unknown parameters. In using this
model, we ignored the effect of fermentation at low oxygen concentration. The
jar was assumed to be filled with (regular) air at the start of every experiment.
A representation of the model is given in Figure 2.1. Finally, we assumed that
the measured concentration C(t) only differs from the modeled concentration
by an additive white noise term ϵ(t):

C(t) = Cm(t) + ϵ(t). (2.3)

We also assume that the composition of the gas concentration in the jar is
measured after sampling by means of a syringe through a septum in the lid of
the jar.
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2.2.2 Optimal Experimental Design Methodology

Estimation of the parameter vector p =
[
Vmax Km

]′ was done by minimizing
the squared error identification functional:

J =
∫ tf

0
(C(t) − Cm(p, Q(t), t))2 d t, (2.4)

where tf [s] is the end time of the experiment. The functional J is often called
the cost function. This estimation problem was solved using the non-linear
least squares algorithm, which required a starting value p0 for the parameters.
Around that starting value, the model and J were linearized in the first iteration
of the algorithm. When using that approach, the contours of J are ellipses,
whose principal axes and surface area depend on the Fisher information matrix,

F =
∫ tf

0

(
dCm

dp

)′(dCm

dp

)
d t, (2.5)

(Fedorov and Leonov 2013).The derivatives in this expression are generally
referred to as parameter sensitivities:

dCm

dp =
[

∂Cm

∂Vmax

∂Cm

∂Km

]
. (2.6)

The larger the Fisher information matrix, the smaller the elliptic contours, and
the steeper the cost functional J around its minimum, and thus the better the
least squares identification problem is defined. The Fisher information matrix
also has a second interpretation due to the fact that it is the inverse of the
asymptotic variance covariance matrix of the best linear unbiased estimator
(BLUE) (Munack and Posten 1989). It summarizes the available information
about the quality of the parameter estimates. The connection between the two
interpretations of the Fisher information matrix is logical: the steeper the cost
function, the better the least squares estimates fit the data compared to other
parameter estimates. In that case, the quality of the estimates is large.

There exist more general definitions of the Fisher information matrix, which we
use in subsequent chapters, in Sections 3.2.2 and 4.2.3. The other definitions
would lead to the same optimal respiration experiments presented in this chapter.
However, the converse does not hold, the definition of the FIM in this chapter
leads to different results in the other chapters.

By modifying the input profile Q(t), the magnitude of the Fisher information
matrix, the steepness of the cost function and the surface areas of its contours
can be optimized. To measure how large the Fisher information matrix is,

10



different scalar functions of the Fisher information matrix have been proposed
in the literature. These functions can be used to compare and score different
experimental designs (Atkinson, Donev, and Tobias 2007b). In this chapter,
we used the determinant of the Fisher information matrix, |F|, to compare
different input profiles, which is referred to as the D-criterion. This criterion is
inversely related to the area of the confidence ellipses of the parameter estimates,
which should be minimal in an optimal experiment. Therefore, the optimized
experimental design should maximize the determinant |F| over all admissible
O2 input profiles Q(t):

argmax
admissible Q(t)

|F|. (2.7)

The parameter sensitivities d Cm/ d p cannot be calculated analytically but have
to be appended to the system of differential equations in equation (2.1), so they
can be solved numerically. This is different from non-dynamical experiments,
where analytical expressions exist for the sensitivities. The parameter sensitivity
for the maximal respiration rate can be calculated from the following differential
equation:

d
dt

(
∂Cm

∂Vmax

)
= ∂

∂Vmax

(
dCm

dt

)
(2.8)

= − 1
Vj

Q(t) ∂Cm

∂Vmax
−

1
Vj

mp


(

Cm(t) + Vmax
∂Cm

∂Vmax

)
(Km + Cm(t)) −

(
∂Cm

∂Vmax
VmaxCm(t)

)
(Km + Cm(t))2

 .

The parameter sensitivity for the Michaelis-Menten constant ∂Cm/∂Km can be
calculated in a similar manner:

d
dt

(
∂Cm

∂Km

)
= ∂

∂Km

(
dCm

dt

)
(2.9)

= 1
Vj

−Q(t) ∂Cm

∂Km
− mpVmax


∂Cm

∂Km
(Km + Cm(t)) −

(
1 + ∂Cm

∂Km

)
Cm(t)

(Km + Cm(t))2


 .

In our search for optimal input profiles, we solved these differential equations
using the Matlab implementation of the Dormand-Prince 45 method (Shampine
and Reichelt 1997). Whenever the solver reached a discontinuity in the input
profile, the solver was terminated and restarted again with initial conditions
equal to the previous final conditions. This prevented the adaptive time stepper
from remaining stuck on the discontinuity. The integral in the expression
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of the Fisher information matrix F in equation (2.5) and the squared error
identification functional J in equation (2.4) were calculated using the trapezoid
rule with the time points provided by the differential equation solver.

The sensitivities in equations (2.8) and (2.9) and thus also the information
matrix in equation (2.5) depend on the unknown parameters Vmax and Km.
Therefore, we needed a starting parameter vector p0, to be able to calculate D-
optimal designs. This technique is called locally optimal design, as the optimal
designs obtained, are only truly optimal for the specific starting parameters in
p0.

2.2.3 Information Optimization

To search for an optimal experimental design, we first had to characterize the
input profile Q(t), to form a set of admissible input profiles. This method is
called control vector parametrization in the optimal control theory literature
(Vassiliadis 1993). In that literature, methods for efficient numerical optimization
of dynamic experiments were suggested as well, with a focus on continuous
parameters (Telen, Logist, et al. 2012; Bauer et al. 2000). Our work is different
in that we work with an integer parametrization of the input profile.

In this chapter, we focused on experiments lasting 24 h. The input Q(t) could
take l equidistant different levels between a maximal input level, with a flow
rate of 10 l/h, and a minimal input level, with zero flow rate. In Section 2.3, we
first consider examples with l = 2. In these examples, only an on or off state
was allowed. Next, we also consider a scenario with l = 11, where the input
could take 11 values. The total time duration of the experiment was divided
into n equally long time-intervals. At the beginning of each of the n intervals,
the input could be changed from one input level to another. Note that this
does not mean that the input had to be changed at these time points. We first
consider a scenario in which the input could be changed every 2 h (n = 12).
Next, we also consider a case where changes were allowed every 10 min (n = 144).

Because a full enumeration of the design space is not feasible for larger values
of n and j, a numerical routine had to be used to optimize the experiment.
Popular choices in design of experiments are variants of the coordinate-exchange
algorithm (Meyer and Nachtsheim 1995). Therefore, we have also used a
coordinate-exchange algorithm. In its simplest variant, similar to the one
described in Goos and Jones (2011), a random feasible starting design was
generated first. Next, the most informative of the possible input levels during
the first of the n time-intervals was identified by comparing all l − 1 alternatives
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optimal profile = random feasible design;
for iteration = 1 to m do

generate random feasible design;
improvement = yes;
while improvement == yes do

improvement = no;
for k = 1 to n do

information = information of current profile;
for j = 1 to l − 1 other levels in interval k do

switch input of kth time-interval to jth other level;
new information = information of the resulting profile;
if new information > information then

accept change;
information = new information;
improvement = yes;

end
end

end
end
if information mth input profile > information optimal profile then

optimal profile = mth input profile
end

end

Figure 2.2: Initial coordinate-exchange algorithm.

to the original. If the best of the alternative levels led to a more informative
experiment, the change was accepted. Otherwise, the previous input profile
was reinstated. Subsequently, the same kind of change was evaluated for the
next time-interval. When all n intervals had been considered, the algorithm
evaluated the first time-interval again. This procedure was continued until no
more improvements could be made to the design, in a whole pass through the
entire set of n time points. This optimization was performed m times, where m
is a specified number of iterations. The best of the m results was selected as
the optimal input profile. Pseudo-code for this algorithm is shown in Figure 2.2.

When changing the input at a certain time t′, the output Cm(t) for all t ≥ t′ is
affected. This distinguishes dynamic experiments from static experiments. Due
to this feature, running through the n time-intervals in order might lead the
coordinate-exchange algorithm to get stuck in a local minimum. Because our
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optimal profile = random feasible design;
for iteration = 1 to m do

generate random feasible design;
improvement = yes;
while improvement == yes do

improvement = no;
S = {1, 2, ..., n};
for i = 1 to n do

k = randomly selected element of S;
information = information of current profile;
for j = 1 to l − 1 other levels in interval k do

switch input of kth time-interval to jth other level;
new information = information of the new profile;
if new information > information then

accept change;
information = new information;
improvement = yes;

end
end

end
remove k from S

end
if information mth input profile > information optimal profile then

optimal profile = mth input profile
end

end

Figure 2.3: Modified coordinate-exchange algorithm.

initial coordinate-exchange algorithm indeed did get stuck in the same local
optima quite often, as shown in the examples in Section 2.3, we propose a
variant of the coordinate-exchange algorithm in which the optimization does not
start with the first time-interval and subsequently moves to the next interval,
but picks the n intervals in a random order, without repetition. This procedure
is repeated until no more improvements can be made. Pseudo-code of this
modified coordinate-exchange algorithm is shown in Figure 2.3.
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2.3 Results

In this section, we report results concerning three different optimal experimental
designs we constructed, each with their own parametrization of the input profile.
We start with a proof of concept example, where the input could only take two
levels (on/off) and the level can be changed every 2 h. The resulting optimal
experimental design is compared to several intuitive benchmarks. Next, we
explain how we refined the design space of our experiment in two different
manners to study the resulting increase in information. We first subdivide every
time-interval of 2 h into 12 intervals of 10 min each. Second, we allowed 11
different input levels.

As initial parameter vector p0 for all our computations, we used the respiration
parameter estimates for Conference pear, as reported by Lammertyn et al.
(2003). More specifically, we used a maximal respiration rate, Vmax, of
0.2324 mmol kg−1s−1, calculated at a temperature of 20 ◦C, and the value 5.9
% for the Michaelis-Menten constant Km. Concentrations in volume percentages
are calculated by assuming atmospheric pressure in the jar, and applying the
ideal gas law.

2.3.1 Proof of Concept Example

Optimal design

The optimal experimental design depicted in Figure 2.4a was found after an
exhaustive search over all 212 possible input profiles. The optimal input is a pulse
and only pumps air into the jar during a single time-interval, from 6 until 8 h.
The corresponding simulated output, the O2 concentration C(t) is depicted in
Figure 2.4b. The D-criterion value for the optimal design equals 3.56 × 1015.
No alternative optima with the same information content were found. Why
this input profile is optimal can be intuitively explained by the concentration in
the jar near the end of the experiment. That concentration is roughly equal to
the Michaelis-Menten constant Km, which determines the switching behavior
between the linear and saturated part of the Michaelis-Menten curve. Measuring
in this concentration range provides information about this parameter. If the
two-hour interval in which air is pumped into the jar would have started earlier,
the concentration in the jar at the end of the experiment would have dropped
even lower, and the information content of the experiment would decrease. This
is due to the fact that, in our model, which neglects fermentation, a very low O2
concentration means almost no respiration, and thus little information about
respiration parameters. Conversely, if the two-hour interval would start later,
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(a) Optimal O2 input profile. (b) O2 concentration in the jar.

Figure 2.4: Optimal design, assuming l = 2 and n = 12: pulse input after 6 h.

Figure 2.5: SSE contours for the optimal design in Figure 2.4a.

little information about the switching behavior would be gained.

While a full enumeration of the design space was feasible for our proof of
concept example, we also tested the performance of the initial and the modified
coordinate-exchange algorithm. In each case, we ran the algorithm 10, 000
times. When applying the initial algorithm, the optimal experiment was found
only ten times. So, while this simple algorithm performs well for response
surface models, it is clearly not appropriate for our dynamical models, with our

16



Experimental design D-criterion
Optimal design: pulse after 6 h 3.56 × 1015

Alternative design: Always on 9.37 × 107

Alternative design: Always off 2.66 × 1015

Alternative design: Switching on/off 2.64 × 1011

Alternative design: pulse after 4 h 3.16 × 1015

Table 2.1: D-criterion values for both the optimal design as well as several
benchmarks, assuming l = 2 and n = 12. These designs are shown in Figures
2.4 — 2.9.

specific parametrization of the O2 input profile. When applying the modified
algorithm, we obtained the global optimum in 1, 014 of the 10, 000 iterations of
the algorithm, a considerable improvement.

Comparison to benchmark designs

We now compare the first optimal experimental design of Figure 2.4a to four
intuitive benchmark designs, also considered in the full enumerative search.
More specifically, we provide a comparison with two constant input profiles,
a maximally dynamic profile and an alternative pulse. Table 2.1 lists these
benchmark designs and their D-criterion values.

We also performed a detailed graphical comparison by calculating the squared
error identification functional in Equation (2.5) for different parameter vectors,
in the neighborhood of the initial parameter vector p0. If other parameters
would fit the system almost equally well, the sum of squared errors (SSE)
would not vary substantially in the neighborhood of the initial parameters
values, suggesting imprecise parameter estimation. The SSE contours resulting
from the first optimal experimental design are shown in Figure 2.5. All values
larger than the maximum on the color bar are displayed in the same yellow
color as the maximum itself. The values on the axes are relative to the initial
parameter values. The function is steep in the vertical and horizontal direction,
indicating precise parameter estimates. However, the principal axes of the
ellipses are not parallel with the horizontal and vertical axes, and the contours
are elongated diagonally. This indicates that even the optimal experimental
design would result in correlated parameter estimates. In other words, the two
parameters cannot be estimated independently. This is a well-known problem
when estimating Michaelis-Menten models.

Figure 2.6b depicts the SSE contours resulting from the constant input profile
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that continuously pumps air into the jar, for the full duration of the experiment
in Figure 2.6a. The D-criterion corresponding to that experimental design
is much lower, 9.37 × 107. As a result, this benchmark experiment performs
considerably worse in terms of the quality of the estimates than the optimal
design in Figure 2.4: the SSE value is insensitive to the values of the parameters
Km and Vmax.

The other constant input profile we considered as a benchmark and which
is shown in Figure 2.7a, is the always off profile. This profile has a D-criterion
value much closer to that of the optimal design, namely 2.66 × 1015. The
resulting contours for the SSE value are shown in Figure 2.7b, and resemble
those in Figure 2.5. However, they have a slightly larger surface area.

Figure 2.8 demonstrates that the SSE contours produced by a maximally
dynamic input profile are quite different from the contours produced by the
optimal design. The maximally dynamic profile switches input every 2 h and
the D-criterion value equals 2.64 × 1011, for that profile. This demonstrates
that optimal dynamic design of experiments is not equivalent to changing the
input as frequently as possible.

In Figure 2.9, we show a pulse input function that occurs 2 h earlier than
the pulse in the optimal experimental design, as well as the SSE contours
corresponding to that input. This profile performs much better than the other
benchmark experimental designs. This is also reflected in the D-criterion value
of 3.16 × 1015, which shows that designs that are close to the optimal design
are also similar in information content.

(a) Oxygen input profile. (b) SSE contours.

Figure 2.6: First benchmark: an always-on input profile.

18



(a) Oxygen input profile. (b) SSE contours.

Figure 2.7: Second benchmark: an always-off input profile.

(a) Oxygen input profile. (b) SSE contours.

Figure 2.8: Third benchmark: a constantly switching input profile.

(a) Oxygen input profile. (b) SSE contours

Figure 2.9: Fourth benchmark: pulse input after 4 h.
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Optimal experimental design D-criterion
n = 12 and l = 2 3.56 × 1015

n = 144 and l = 2 5.15 × 1017

n = 12 and l = 11 5.13 × 1017

Table 2.2: D-criterion values for optimal experimental designs with different
parametrizations in Sections 2.3.2 and 2.3.2. These designs are shown in Figures
2.4, 2.10 and 2.11.

2.3.2 Refining the Design Space

We refined the parametrization of the proof of concept experimental designs
in two different ways. The D-criterion values of the optimal input profiles are
listed in Table 2.2.

Allowing more frequent input changes

For the construction of our second optimal experimental design, we allowed
the inputs to be changed every 10 min, instead of every 2 h, while still only
allowing an on or off input. As all admissible input profiles from the proof
of concept example are also admissible under the new settings, the second
optimal design problem generalizes the initial one, since 120 min is divisible
by 10 min. The set of admissible input profiles in our second optimal design
problem can thus be considered as a refinement of the first. To identify the
optimal experimental design for the new problem, we used 10, 000 iterations
of the modified coordinate-exchange algorithm. The unique best design found
by the modified coordinate-exchange algorithm is depicted in Figure 2.10a. It
was found in 45 of the 10, 000 iterations of the algorithm and involves two
short 10 min pulses during the second half of the experiment. The resulting
O2 concentration in the jar is shown in Figure 2.10b. The D-criterion value of
this design amounts to 5.15 × 1017, which is much better than the value of the
optimal design in the proof of concept example.

The new optimal profile differs substantially from the first in Figure 2.4a: instead
of one longer pulse from 6 to 8 h, two shorter 10 min pulses after 12 and 17 h
are preferred. The reason why this design is optimal is, however, very similar
to that of the previous example. After an initial decrease, the O2 concentration
in the jar keeps hovering around the value of the Michaelis-Menten constant
Km, providing information about the switching behavior of the system between
saturated and linear respiration. If the O2 concentration would drop even
lower, little respiration would occur and thus little information would be gained

20



(a) O2 input profile. (b) O2 concentration in the jar.

Figure 2.10: Optimal design, assuming l = 2 and n = 144: two short pulses
during the second half of the experiment.

concerning the two model parameters. The preference for two short pulses over
one longer pulse can be explained by comparing Figure 2.10 to Figure 2.4b. A
longer pulse increases the O2 concentration in the jar almost to the initial one.
Since the system always starts at atmospheric conditions, information about
maximal respiration is always present in the initial phase of the experiment.
Returning to that high concentration does not yield new information. Instead,
there is added value in studying the respiration at concentrations around Km.
Therefore, the optimal profile involving two shorter pulses focuses more on the
switching behavior instead of revisiting the region of saturated respiration.

Allowing more input levels

In our final optimization, we allowed the input to take 11 different levels, equally
spaced between the maximum and minimum input level. The input was only
allowed to be changed every 2 h, unlike in the previous example. Again, all
possible designs encountered during the first optimization, were considered in
this third optimization problem. So, this example also generalizes the proof
of concept example. The unique best design found using 10, 000 iterations of
the modified coordinate-exchange algorithm, is depicted in Figure 2.11a. That
input profile was found in 75 of the 10,000 iterations. The corresponding O2
concentration in the jar is shown in Figure 2.11b. The D-criterion value of
5.13 × 1017 is very similar to that of the input profile in Figure 2.10a, as can be
seen in Table 2.2.

A similar dynamic input, consisting of two pulses, seems to be preferred in the
last two examples. In the third, experiment the small pulses take the minimum
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(a) Optimal O2 input profile. (b) O2 concentration in the jar.

Figure 2.11: Optimal design, assuming l = 11 and n = 12: two small pulses
after 10 h and 16 h.

(a) Optimal design in Figure 2.10a. (b) Optimal design in Figure 2.11a.

Figure 2.12: SSE contours for the optimal experimental designs in Figure 2.10a
and 2.11a.

non-zero input value of 0.1, or 10 % of the maximum allowed flow rate. The
simulated outlet O2 concentrations shown on Figure2.10b and Figure 2.11b,
look remarkably similar, which shows that even with different parametrizations
of the input curve, a similar dynamic behavior can be achieved.

The SSE contours in Figure 2.12 correspond to the input profiles of Figure
2.10a and Figure 2.11a. As already noted, the designs involve similar dynamic
O2 concentration trends, have similar D-criterion values and thus also have
very similar contour plots. The contours in Figure 2.12 are also much steeper
than those in Figure 2.5, but they are still elongated diagonally. So, even a
refinement of the design space did not help to remove the correlation between
the two parameter estimates.
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2.4 Discussion

In Section 2.2.2, we mentioned that several design optimality criteria have been
proposed in literature. We opted for the D-criterion because it does not depend
on the chosen units to describe the model, unlike other criteria such as the
A-optimality criterion, which minimizes the average variance of the parameter
estimates. Another criterion that is independent from the chosen units is the
I-optimality criterion, which seeks to minimize the average prediction variance
over the family of all admissible input profiles (Goos and Jones 2011). However,
this criterion is computationally more expensive than the D-criterion, which,
combined with the already computationally intensive dynamic experimental
design idea, would lead to prohibitively long computation times.

In this chapter, we calculated locally optimal designs for a given set of initial
values p0. Most of the literature on design of experiments for non-linear models
focuses on locally optimal design (Fedorov and Leonov 2013). This is especially
so in the dynamic case (Bernaerts, Versyck, and Van Impe 2000; Bernaerts,
Servaes, et al. 2002; Balsa-Canto, Rodriguez-Fernandez, and Banga 2007; Balsa-
Canto, Alonso, and Banga 2010; Nahor, Scheerlinck, Verniest, et al. 2001a;
Nahor, Scheerlinck, Van Impe, et al. 2003). However, we often possess more
a priori information concerning a parameter than just a point estimate. For
instance, we might also have access to a confidence interval for each model
parameter. We could also incorporate this information into our design, with
a technique called Bayesian optimal design (Chaloner and Verdinelli 1995), at
the expense of a substantial amount of computing time.

In this chapter, we considered input profiles that are practically feasible.
More specifically, when determining the first optimal experimental design,
we parametrized our input profile, as a function that could only be on or off.
These kinds of input profiles can be easily implemented in practice. We improved
on this first design in two different ways: by allowing more than two input
levels, and by allowing the input to be switched more rapidly. Similar gains in
information were achieved by both improvements, so that there is flexibility in
how to perform an informative experiment.

In most of the existing literature, as well as in this chapter, only a single
input profile has been optimized (Bernaerts, Versyck, and Van Impe 2000;
Bernaerts, Servaes, et al. 2002; Balsa-Canto, Rodriguez-Fernandez, and Banga
2007; Balsa-Canto, Alonso, and Banga 2010; Nahor, Scheerlinck, Verniest, et al.
2001a; Nahor, Scheerlinck, Van Impe, et al. 2003). A useful extension of this
work would be to optimize multiple input profiles at the same time. Another
interesting avenue for future research would be to optimize input profiles for
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estimating distributed parameter models, which describe the dynamical system
by partial differential equations, instead of our lumped approach, which uses
ordinary differential equations. The assumption of perfect mixing can then
also be relaxed. Examples of such models are the reaction-diffusion models
developed by Ho, Hertog, et al. (2018). To optimize input profiles for such
models, however, we first need to develop measures for quantifying parameter
uncertainty in these models and for quantifying the information content of the
experiments used for collecting the data required for model estimation. (As
is often the case in statistics and data science, model development is ahead of
tools to verify model quality (Efron and Hastie 2016).)

2.5 Conclusion

This chapter presented a pioneering study about the usefulness of optimal
dynamic experiments for non-linear modeling in postharvest research. Three
D-optimal dynamic experimental designs for the estimation of the Michaelis-
Menten respiration parameters of Conference pear were constructed. Each
design was constructed using a different parametrization of the input profiles.

The design of protocols for controlled or modified atmosphere of fruit and
vegetables is increasingly based on dynamical models of their respiration.
Successful implementation depends on accurate knowledge of the model
parameters, since every fruit cultivar has to be stored under slightly different
conditions. Determining all these conditions is a labor-intensive activity,
and requires efficient experimentation. Our three optimal designs show that
optimal dynamic design of experiments increases the quality of the respiration
parameters’ estimates compared to some benchmarks. Therefore, optimal
dynamic design of experiments has the potential to facilitate the successful
implementation of controlled and modified atmosphere storage. As a matter of
fact, dynamic experimentation is a generic method: while our experiments were
optimized for Conference pear, a different choice of prior information can be
used to obtain optimal input profiles for different cultivars. However, in this
chapter, we only took respiration of pear fruit into account. We also used a
locally optimal experimental design method which may not be robust. In the
next chapter, we improve both these aspects.
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Chapter 3

Robust Dynamic Experiments
for the Precise Estimation of
Respiration and Fermentation
Parameters of Fruit and
Vegetables

This chapter has been written by Arno Strouwen with feedback from Professors
Goos and Nicolaï.

Source code available upon request.

Abstract

Dynamic models based on non-linear differential equations are increasingly being
used in many biological applications. Highly informative dynamic experiments
are valuable for the identification of these dynamic models. The storage of fresh
fruit and vegetables is one such application where dynamic experimentation
is gaining momentum. In this chapter, we construct optimal O2 and CO2 gas
input profiles to estimate the respiration and fermentation kinetics of pear fruit.
The optimal input profiles, however, depend on the true values of the respiration
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and fermentation parameters. Locally optimal design of input profiles, which
uses a single initial guess for the parameters, is the traditional method to
deal with this issue. This method, however, is very sensitive to the initial
values selected for the model parameters. Therefore, we suggest a Bayesian
experimental design approach to robustify our input profiles to the unknown
values of the parameters.

3.1 Introduction

Model-based approaches are commonly used in the analysis, control and
optimization of biological systems. These models rely on knowledge of physical,
chemical and biological laws, such as mass balances, transport phenomena and
reaction kinetics, and are often described by a system of non-linear differential
equations, with inputs and outputs. So, often, the structure of a model can be
determined from first principles. However, the model will generally also rely on
parameters whose numerical values cannot be determined from physical laws.
These parameters must then be inferred from experimental data before the
model can be put to use. The experiments required to estimate these parameters
are often laborious and cost prohibitive. It is therefore important to determine
experimental conditions that are rich in information and thus allow a precise
estimation of the unknown model parameters.

At present, the model parameters are often estimated from data collected
using multiple experiments at various combinations of input levels, which are
kept constant throughout each individual experiment. Even if an appropriate
experimental design technique is used to reduce the number of experiments
that have to be performed, the experimental effort remains considerable.
Alternatively, experiments in which the inputs vary in time can be conducted.
This has been shown to be a cost-effective way to generate a highly informative
data set (Versyck, Claes, and Van Impe 1997). Such experiments are called
dynamic. In optimal design of dynamic experiments, time-varying input profiles
are constructed to optimize the information content of a single experiment.

The major challenge for experimental design for any non-linear model is the
dependence of the optimal input profiles on the true values of the unknown
model parameters, whose estimation is the primary goal of the experiment. This
dependence is due to the non-linearity of the model. Most of the experimental
design literature uses a scalar function of the Fisher information matrix as the
measure of information content in an experiment, as this matrix is inversely
related to the covariance matrix of the model parameters. An informative
experiment thus ensures a small covariance matrix of the model parameters.
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Locally optimal design of input profiles uses initial guesses for the model
parameters to calculate this information matrix (Fedorov and Leonov 2013).
This method has already been used to construct informative time-varying
inputs in chemical engineering (Franceschini and Macchietto 2008) and in
biological fields such as systems biology (Balsa-Canto, Rodriguez-Fernandez,
and Banga 2007), predictive microbiology (Bernaerts, Versyck, and Van Impe
2000; Bernaerts, Servaes, et al. 2002) and food engineering (Balsa-Canto, Alonso,
and Banga 2010; Nahor, Scheerlinck, Verniest, et al. 2001b). However, an input
profile that is highly informative for one set of parameter values may lack
information for other parameter values. Thus, if the initial guesses for the
parameters differ substantially from the true values, then the locally optimal
design might not allow precise parameter estimates. So, locally optimal design
is sensitive to the initial parameter guesses and is thus not robust (S. Asprey,
Macchietto, and Pantelides 2000).

Much recent research in experimental design for non-linear models aims at
robustifying the design to the true, but unknown, values of the model parameters.
A robust design provides a large information content regardless of the true values
of these parameters. For dynamic experiments, in particular, a min-max based
approach has been used by Bauer et al. (2000) and Körkel et al. (2004). Here,
the design is optimized for a worst case scenario. Fisher information matrices
are calculated for a set of possible parameter values and the experiment is scored
based on the least informative matrix in this set. In contrast, an expected
value approach is taken by Schenkendorf, Kremling, and Mangold (2009), Telen,
Logist, et al. (2012), and Nimmegeers et al. (2020). In this approach, the
average information content of the experiments over all possible parameter
values is optimized. The expected value approach tends to perform better for
a large subset of probable parameter values than the min-max approach, but
not for extreme sets of parameter values. The expected value approach is also
called Bayesian experimental design, because the possible parameter values can
be expressed using a prior distribution (Chaloner and Verdinelli 1995). The
expected value approaches of Telen, Logist, et al. (2012) and Nimmegeers et al.
(2020) rely on parametric distributions to describe the uncertainty on the model
parameters before the experiment has taken place. However, a parametric
distribution will often not be appropriate to fully quantify the uncertainty on
the model parameters, as we show in the examples in this chapter. Therefore, in
this chapter, we allow arbitrary distributions to quantify the model parameter
uncertainty. More specifically, we show how the results of a Bayesian analysis
of historical data using Markov-chain Monte-Carlo can be used as a prior
distribution. This Markov chain can then be used to calculate the average
Fisher information matrix, and has the advantage that it can represent arbitrary
distributions (Gelman et al. 2013).
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Postharvest storage of fresh fruit and vegetables is one biological application
where optimal experimental design is useful. The ideal storage temperature as
well as O2 and CO2 partial pressures depend on the respiration characteristics,
which in turn depend on species, cultivar, ripeness and multiple other
factors. Determining the ideal storage conditions therefore requires much
experimentation. Traditionally, this was done by independently storing the
product at many different combinations of temperature as well as O2 and
CO2 partial pressures, and by monitoring the respiration and fermentation
(Saltveit 2003). Many modern storage applications, such as modified atmosphere
packaging (Fonseca, Oliveira, and Brecht 2002b) and dynamic controlled
atmosphere (Bessemans et al. 2016), adopt a model-based approach, where
the product is described as a dynamic system with inputs and outputs. The
resulting models enable us to use the tools of optimal dynamic experimental
design to construct informative experiments. The respiration and fermentation
kinetics are generally described by a model of the Michaelis-Menten type
(Hertog et al. 1998b). Robust experimental design is particularly needed for
postharvest applications because of the large biological variability of fresh fruit
and vegetables. As a consequence of that variability, the parameters of the
aforementioned kinetic models vary substantially between seasons and origins
(Ho, Verboven, Verlinden, Herremans, et al. 2011). In this chapter, we therefore
focus on constructing robust experimental techniques to estimate the respiration
and fermentation kinetics of pear fruit. This chapter describes the first use of
robust optimal experimental design techniques in postharvest research.

This chapter is structured as follows. First, in Section 3.2, we present our
robust experimental design methodology. Next, in Section 3.3, we present a
state of the art dynamic respiration and fermentation model for pear fruit,
and quantify the initial uncertainty on the model parameters using a Markov-
chain Monte-Carlo analysis of a prior data-set from Ho, Verboven, Verlinden,
Lammertyn, et al. (2008). In Section 3.4, we construct both locally and Bayesian
optimal designs for this model. Finally, in Section 3.5, we end with a discussion
of alternative techniques.

3.2 Bayesian Optimal Experimental Design for
Dynamical Systems

In this section, we first present the type of dynamical models considered in
this chapter. Then, we show how to quantify the information gained from
measurements, using the Fisher information matrix. Next, we discuss how to
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maximize this information content using appropriate control inputs. Finally,
we explain how to make the optimal control inputs robust.

3.2.1 Dynamic Models

In this chapter, we consider experimental design for dynamic models of the
form:

d x

d t
= f(t, x, θ, u(t)), with x(t = 0) = x0;

yk = h(x(tk)) + ϵk,

(3.1)

where t denotes the time ranging from 0 to te, the end time of the experiment.
The column vector yk contains the measurements taken at time point tk, with
k ranging from 1 to N , the number of measurement times. The time between
measurements is equally spread, so that tk = kte/N. A measurement at the end
of the experiment is thus included, but not at the start. The measurements
are subject to independent zero mean Gaussian noise. More specifically, ϵk

is identically and independently multivarate normally distributed with zero
mean and covariance matrix R. The measurements depend on the dynamic
state column vector x(t) through the measurement function h. The states x(t)
have to be calculated from the system of ordinary differential equations f , with
initial conditions x0. This system depends on the unknown model parameter
column vector θ, and the controllable input column vector u(t).

3.2.2 Information Content of an Experiment

Our goal is to optimize the controllable inputs u(t) so that the measurements
yk contain as much information as possible about the unknown parameters θ.
A popular way to quantify the information content is the Fisher information
matrix (FIM) (Fedorov and Leonov 2013; Walter and Pronzato 1994):

F(θ, u(t)) =
N∑

k=1

∂x(tk)
∂θ

T
∂h

∂x

T

R−1 ∂h

∂x

∂x(tk)
∂θ

. (3.2)

The sensitivities of the states to the unknown parameters, ∂x(tk)/∂θ, cannot be
computed directly, as the evolution over time of the states x(t) is described
by the system of differential equations in Equation (3.1). However, these
sensitivities can be calculated from the forward sensitivity differential equations:

d
d t

∂x

∂θ
= ∂

∂θ

d x

d t
= ∂f

∂x

∂x

∂θ
+ ∂f

∂θ
, with ∂x(t = 0)

∂θ
= 0. (3.3)
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The FIM is the inverse of the Cramer-Rao lower bound of the variance of an
unbiased estimator of θ. This lower bound can be interpreted geometrically as
a hyper-ellipsoid defined by the eigenvectors and the inverse of the eigenvalues
of the FIM. We want this lower bound to be as small as possible, and thus the
eigenvalues of the FIM to be as large as possible, because this implies precise
estimates for θ are possible. Several scalar functions have been proposed to
quantify the size of the FIM (Atkinson, Donev, and Tobias 2007a). In our work,
we use the determinant of the FIM, also called the D-optimality criterion. This
criterion is inversely related to the volume of the hyper-ellipsoids, measuring
the uncertainty about the parameter vector θ.

3.2.3 Discretizing the Controls

Optimal experimental design for dynamic systems is an infinite dimensional
optimization problem since it requires finding optimal controls u(t) for every
t ∈ [0, te]. To make this problem tractable, the controls have to be discretized
in time. We utilize a bounded piecewise constant discretization allowing u(t)
to switch values at M equally spaced time points,

umin ≤ u(t) =
M∑

j=1
ujχ[(j−1)te/M,jte/M[(t) ≤ umax, (3.4)

where uj is the constant control vector during the interval [(j−1)te/M, jte/M[,
and χA is the indicator function,

χA(t) =
{

1 t ∈ A

0 t ̸∈ A,
(3.5)

and umin and umax are the minimum and maximum control values allowed.
Piecewise constant input profiles do not only have the benefit of making our
optimization problem tractable, but they are also easy to implement in practice.

3.2.4 Robustifying the Experiment

Another issue with experimental design for models that are non-linear in the
parameter vector θ, such as the model we described in Equation (3.1), is the
dependence of the FIM on θ. This presents us with a cyclic problem because we
are performing the experiment to quantify those parameters. Locally optimal
experimental design is the traditional method to deal with this issue. In this
approach, the FIM is calculated using a single initial guess θ∗ obtained from
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any available prior knowledge. A locally optimal experimental design is thus
given by:

arg max
u1...uM

|F(θ∗, u(t))| subject to umin ≤ u(t) ≤ umax. (3.6)

This method might give poor results if the initial guess deviates from the true
value, and is thus not robust. Bayesian optimal design offers a solution to this
robustness problem by averaging the information content of the experiment over
multiple possible values of the parameters, taking into account the likelihood of
each parameter value. More specifically, a weighted average is used to quantify
the information content, where the weights are given by a prior distribution of
the parameters p(θ). This distribution represents the knowledge of uncertainty
concerning these parameters, before the experiment has been performed. A
robust experimental design is therefore given by:

arg max
u1...uM

∫
|F(θ, u(t))| p(θ) d θ subject to umin ≤ u(t) ≤ umax. (3.7)

This criterion is also called the Bayesian D-optimality criterion (Chaloner and
Verdinelli 1995), because of the use of a prior distribution.

Generally, the integral in Equation (3.7) cannot be evaluated analytically.
To approximate it numerically, we draw R random model parameter vectors,
θr, from the prior p(θ) and average the D-criterion over these values:∫

|F(θ, u(t))| p(θ) d θ ≈ 1
R

R∑
r=1

|F(θr, u(t))| θr ∼ p(θ). (3.8)

The robust criterion in Equation (3.7) is thus calculated by averaging the FIM
over a sample drawn from the prior distribution. The details of the generation
of this sample are explained in Section 3.3.3.

3.2.5 Numerical Details

The entire optimization problem was implemented in the Julia programming
language (Bezanson et al. 2017). All differential equations were solved using
the Tsitouras 5/4 Runge-Kutta method (Tsitouras 2011), as implemented
in OrdinaryDiffEq.jl (Rackauckas and Nie 2017). The piecewise constant
control switches were implemented using a periodic callback, provided by
DiffEqCallbacks.jl. Note that u(te) in Equation 3.4 is undefined, but this value
does not influence the FIM.
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Because coding the sensitivity differential equations in (3.3) by hand is
quite laborious and error prone, we calculated them exploiting the automatic
differentiation capabilities of DiffEqSensitivity.jl (Rackauckas, Ma, Dixit, et al.
2018), more specifically its implementation of the discrete forward sensitivity
analysis method.

To solve the non-linear optimization problems, we used the box constrained
optimization capacities of Optim.jl (Mogensen and Riseth 2018), which utilizes
a log barrier interior point algorithm (Nocedal and Wright 2006). This
method requires the specification of an inner solver, for which we used the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, as also implemented in
Optim.jl. The required gradients for this method are calculated by the nested
differentiation capabilities of ForwardDiff.jl (Revels, Lubin, and Papamarkou
2016). This interior point optimization method requires an initial experimental
design to improve upon and is a local optimizer. Thus, it is not guaranteed
to find the absolute best experimental design. To deal with this issue, we
utilize multiple starts, each with a different initial design. The TikTak global
optimization algorithm (Arnoud, Guvenen, and Kleineberg 2019) can carefully
select these initial designs from the design space, using Sobol points. We use
1000 starts of the interior point optimization method in combination with the
TikTak implementation in MultiStartOptimization.jl.

3.3 Respiration and Fermentation Model of Pear
Fruit

In this chapter, we apply our robust experimental design methodology to
precisely estimate the respiration and fermentation characteristics of pear fruit.
First, we present a respiration and fermentation model of pear fruit inside a jar.
We then quantify the initial uncertainty concerning the various parameters in
this model using a published data-set.
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Figure 3.1: Schematic representation of the measurement setup.

3.3.1 Model Description

The respiration and fermentation of pear fruit inside a jar is modeled by two
mass balances for O2 and CO2:

Vj
d[O2]

dt
= Qin(t)[O2]in(t) − Qout(t)[O2] − mprO2(t),

Vj
d[CO2]

dt
= Qin(t)[CO2]in(t) − Qout(t)[CO2] + mprCO2(t).

(3.9)

The square brackets in these expressions represent concentrations in mol/m3.
These differential equations describe the change of O2 and CO2 concentrations
inside a jar with volume Vj , which will equal 5 dm3, in our examples in Section
3.4. A time varying air mixture with an oxygen concentration [O2]in(t) and
a carbon dioxide concentration [CO2]in(t) is blown into the jar with flow rate
Qin(t) (units: m3/h). These three time varying functions form the controllable
inputs to our system. Our measurement set up is schematically shown in Figure
3.1.

Since the pressure inside the jar should remain equal to the atmospheric pressure,
we can calculate the outflow Qout(t) from the jar using the ideal gas law:

Qout(t)
Patm

R̄T
= Qin

Patm

R̄T
− mprO2(t) + mprCO2(t), (3.10)

with R̄ the universal gas constant and Patm the atmospheric pressure.
Concentrations throughout the jar and at the outlet are considered to be
similar, due to the assumption of well mixing. In the constructed experiments
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in Section 3.4, the temperature equals 293.15 K, the amount of O2 consumed
and CO2 produced is proportional to the mass of the pears mp, taken to be 4
kg and the initial conditions for O2 and CO2 will be equal to regular air.

The respiration rates in Equation (3.10) are specified using models of the
Michaelis-Menten type (Hertog et al. 1998b):

rO2(t) = Vm,O2 [O2]
(Km,O2/R̄T + [O2])

(
1 + [CO2]

Kmn,CO2/R̄T

) ,

rCO2(t) = rqrO2(t) + Vm,f,CO2

1 + [O2]
Km,f,O2/R̄T

.

(3.11)

The models for these respiration rates contain six parameters that have to be
identified. Vm,O2 and Vm,f,CO2 are the maximum respiration and fermentation
reaction rates, respectively. The Michaelis-Menten constant Km,O2 represents
the saturation of respiration at high oxygen levels, whereas Kmn,CO2 models
the inhibition of respiration by CO2. The respiration quotient rq represents
the percentage of O2 that is converted to CO2 by respiration. Finally, Km,f,O2

models the inhibition of fermentation by O2. The three inhibition constants
are expressed in units of pressure, which will be required for the analysis in the
following section.

The measured gas concentrations [O2]m and [CO2]m at time point tk are
assumed to be equal to the true concentrations plus the additive Gaussian noise
terms ζk and ηk respectively:

[O2]m(tk) = [O2](tk) + ζk,

[CO2]m(tk) = [CO2](tk) + ηk.
(3.12)

Since both measurements are in the same range from 0 to 30 kPa, we assume
that the error terms are identically and independently distributed for both
outputs, and thus that variance, σ2, of the error terms ζk and ηk is equal. Since
the two gasses are measured with different sensors, we assume that the two noise
terms are independent. Several sensor principles are available for measuring O2
concentrations in a practical setting, including gas chromatography, zirconium
based sensors, paramagnetic sensors and fluorescence based optical sensors; CO2
concentrations can be measured using gas chromatography, infrared absorption
and chemical gas sensors.

Before considering experimental design for this model, we first checked whether
the model parameters can be correctly identified at all. This is because it is
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possible that two different model parameter values result in exactly the same
output behavior, making it impossible to distinguish the true value of the model
parameters from the data. We confirmed, using the STRIKE-GOLDD Matlab
toolbox (Villaverde, Barreiro, and Papachristodoulou 2016), that our respiration
and fermentation model is structurally identifiable even with constant input
levels, that do not change in time. Our piecewise constant input profiles form
a super-set of the set of constant input profiles, which thus ensures that our
experimental designs will result in an identifiable model.

3.3.2 Prior Information

Optimal experimental design for the non-linear model introduced in Section
3.3.1 requires prior information, concerning the six respiration and fermentation
parameters. Such prior information for pear respiration and fermentation can
be found in Ho, Verboven, Verlinden, Lammertyn, et al. (2008). We cannot
directly utilize the published results, as Ho, Verboven, Verlinden, Lammertyn,
et al. (2008) only report confidence intervals for each individual parameter, but
no correlations between estimates. To deal with this problem, we reanalyzed
50 time series data-sets, each containing O2 and CO2 measurements from a
single jar, made available to us by the authors. We used a Bayesian data
analysis technique to achieve this. More specifically, we utilized a Markov-chain
Monte-Carlo method to re-estimate the parameters and quantify the uncertainty
in the data (Betancourt 2017). The Markov chain stores values sampled from
the posterior distribution of the parameters. The chain can thus be utilized for
numerically approximating the expectation in the robust criterion in Equation
(3.7). In other words, we use the MCMC chain as an input to the expression in
Equation (3.8).

Because the data of Ho, Verboven, Verlinden, Lammertyn, et al. (2008) were
collected at different temperatures, our analysis took into account the effect of
temperature on the maximal respiration and fermentation rate by means of the
Arrhenius equations:

Vm,O2 = Vm,O2,Tr
exp

(
Ea,O2

R̄

(
1
Tr

− 1
T

))
,

Vm,f,CO2 = Vm,f,CO2,Tr
exp

(
Ea,CO2

R̄

(
1
Tr

− 1
T

))
,

(3.13)

where Vm,O2,Tr
and Vm,f,CO2,Tr

are the maximal respiration rates at a reference
temperature Tr of 293.15 K, and Ea,O2 and Ea,CO2 are activation energies that
describe how the reaction rates increase with the temperature T . The different
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This figure is continued on the next page.

temperatures in the data set influences the inhibition parameters in Equation
(3.11). These activation energies are nuisance parameters in our computation of
optimal input profiles in Section 3.4, as we only consider experiments at the
reference temperature.

Another difference between the experiments of Ho, Verboven, Verlinden,
Lammertyn, et al. (2008) and our experiments is that they used closed jars,
instead of flow through experiments. Their system dynamics thus differ:

Vj
d[O2]

dt
= −mprO2(t),

Vj
d[CO2]

dt
= mprCO2(t).

(3.14)

Figure 3.2 provides a summary of the results of our Bayesian analysis. On
the diagonal of this figure, histograms of the Markov chain values of the six
model parameters of interest (Vm,O2 , Km,O2 , Kmn,CO2 , rq, Vm,f,CO2 , Km,f,O2)
are shown. Above the diagonal, two-dimensional heatmaps are shown, which
visualize the correlation between the Markov chain values for pairs of model
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Figure 3.2: Summary of the Bayesian data analysis of the data in Ho, Verboven,
Verlinden, Lammertyn, et al. (2008) for the parameters of interest. This figure
is stretched over two pages. The diagonal contains histograms of the Markov
chain values of the six model parameters of interest. The orange dots denote the
means. Above the diagonal, two-dimensional heatmaps are shown, visualizing
the correlation between the Markov chain values for pairs of model parameters.
Similarly, below the diagonal, scatter plots for 100 Markov chain points are
shown.

parameters. The figures below the diagonal provide similar information, but
show only 100 pairs of values from the Markov chain. Histograms of the
Markov chain values for the nuisance parameters Ea,O2 , Ea,CO2 , and σ are
depicted in Figure 3.3. The estimation of the respiration inhibition parameter,
Kmn,CO2 , from the available data was problematic. For this reason, we had
to reparametrize the model using the inverse of Kmn,CO2 . As can be seen in
the third histogram in Figure 3.2. K−1

mn,CO2
takes values close to zero, which

means Kmn,CO2 tends to infinity. The lack of information about K−1
mn,CO2

can be explained as follows: to precisely estimate this parameter, both high
O2 and CO2 concentrations are needed. A high O2 concentration is required
because otherwise there is no respiration that can be inhibited, and a high CO2
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concentration is required because otherwise the inhibition has a negligible effect.
Data points in which both gasses posses a high concentration do not occur in
the data of Ho, Verboven, Verlinden, Lammertyn, et al. (2008). The issues
with the uncertainty about Kmn,CO2 were the catalyst for the development of
our robust experimental design method. We found no other reliable way to
quantify the uncertainty on this parameter, except working with a Markov
chain. Km,f,O2 is the second hardest parameter to identify, from the data of Ho,
Verboven, Verlinden, Lammertyn, et al. (2008), because the O2 concentration
needs to be in a specific range for this parameter to have an effect on the
outputs. An O2 concentration much higher than Km,f,O2 means no fermentation
is happening at all, and an O2 concentration much lower than Km,f,O2 implies
maximal fermentation. The third most difficult parameter to identify is Km,O2 ,
because the model is only sensitive to this parameter when O2 concentrations
are close to the value of this parameter.

Figure 3.3: Summary of our Markov-chain Monte-Carlo analysis of the data in
Ho, Verboven, Verlinden, Lammertyn, et al. (2008) for the nuisance parameters
Ea,O2 , Ea,CO2 and σ2.

3.3.3 Markov chain Details

The data analysis was performed using the No U-Turn Sampling Markov-chain
Monte-Carlo algorithm (Hoffman and Gelman 2014), as implemented in Turing.jl
(Ge, Xu, and Ghahramani 2018). We ran 4 parallel Markov chains each starting
from the maximum likelihood estimates of the parameters, and each chain
comprises 1500 steps. We utilized a flat prior in the physically possible regions
of the unknown parameters. For all parameters this means that only positive
values are possible, with rq being at most 1.

We used the posterior distribution resulting from this Bayesian analysis of
the experiments in Ho, Verboven, Verlinden, Lammertyn, et al. (2008) as a prior
distribution for the generation of the robust designs in this chapter. However, as
calculating Bayesian optimal designs with the entire Markov chain is numerically
quite intensive, we discarded the first 500 step, and thinned the remaining 1000
by a factor 40. This gave us 100 samples to calculate the Bayesian D-optimality
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criterion in Equation (3.7). These are also the 100 values shown in the top right
half of Figure 3.2.

3.4 Results

In our examples, we consider experiments lasting 24 h with measurements
taken every 5 minutes, i.e. te = 24 h and N = 288. The maximum and
minimum flow rates are equal to 1 l h−1 and 0.1 l h−1, respectively. The input
gas concentrations are allowed to vary between 0 kPa and 21 kPa. We did not
use a minimum flow rate of 0 l h−1, because at zero flow there is no difference in
system response between a maximal or minimal gas input concentration. This
implies that the design selection criteria from Equations (3.6) and (3.8) are flat
in certain directions, causing numerical issues for gradient based optimizers.
Working with a strictly positive minimum flow rate avoids this issue. Another
reason to use strictly positive flows is to ensure that there is an outflow that
can be measured.

3.4.1 Locally Optimal Designs for the Respiration and
Fermentation Model

We take the average values of the Markov chains of the parameters of interest,
as well as the average of the Markov chain values of the measurement variance
σ2 to evaluate the local D-criterion in Equation (3.7). These values are shown
in Table 3.1, and indicated by a bullet in the histograms on the diagonal of
Figure 3.2. We start by analyzing the effect of an increasing refinement of the
discretization of the inputs u(t). In Figure 3.4, which shows the local D-criterion
value as a function of the number of times the input signal is allowed to switch,
we see that the D-criterion no longer improves noticeably after M = 48, which
corresponds to a switch every half hour. The experimental design obtained
with M = 12, which corresponds to a switch every two hours, already performs
well. Therefore, in the remainder of this chapter, we consider O2, CO2 and
flow rate inputs that remain constant for two-hour time periods. The locally

Vm,O2 Km,O2 Kmn,CO2 rq Vm,f,CO2 Km,f,O2 σ2

µmol kg−1 s−1 kPa kPa - µmol kg−1 s−1 kPa mol2 m−6

0.320 5.61 484.4 0.655 0.121 0.224 0.186

Table 3.1: Parameters used for the optimization of the construction of the
locally optimal designs.
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Figure 3.4: Convergence of the local D-optimality criterion for finer
discretizations of the controls.

optimal design for the scenario in which the inputs are allowed to vary every
two hours is shown in more detail in Figures 3.5a and 3.5b, together with
the simulated outputs in Figure 3.5c, evaluated at the values of the model
parameters used to optimize the design. The gas concentrations are converted
to pressures to aid interpretation. During the interval from 2 h to 4 h, both
O2 and CO2 are pumped into the jar, which causes high concentrations of the
two gasses to be present at the same time. We noted before that, due to the
lack of such conditions in Ho, Verboven, Verlinden, Lammertyn, et al. (2008),
it was impossible to estimate Kmn,CO2 well from their data. However, the O2
concentration cannot remain high throughout the entire experiment, as then
there would be insufficient information about non-saturated respiration, i.e.
to estimate Km,O2 precisely. The O2 concentration must decrease further to
levels at which fermentation starts to occur for Km,f,O2 to become estimable.
This explains why air, with zero O2 inlet concentrations is pumped into the
jar in the interval between 10 h and 12 h. The CO2 inlet concentration is also
zero during that time interval due to the fact that the CO2 concentration is
not allowed to run up too high, as this compromises the ability to precisely
determine the fermentation parameters. This can be intuitively understood by
considering the system in an extreme scenario where the atmosphere in the jar
consists entirely of CO2. In this scenario, the outflow will also be pure CO2
regardless of the values of the fermentation parameters. Information about the
fermentation parameters is then only incorporated in the outflow rate, but this is
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(a) Input flow. (b) Input gasses.

(c) Output gasses.

Figure 3.5: Locally optimal experiment and simulated output, with control
input switches every two hours.

not a measured output. This illustrates how optimal experiments automatically
take into account the specifics of the measurement setup. The pumping action
at 18 h, again involving zero O2 and CO2 concentrations, is performed for
similar reasons. Figure 3.6a shows the coefficients of variation of all six model
parameters, defined as the ratio of the standard errors, as given by the diagonal
elements of the inverse of the FIM, and the model parameter values used for
the generation of the local optimal design. The three inhibition parameters
(Km,O2 , Kmn,CO2 and Km,f,O2) remain the most difficult ones to estimate. Now,
however, in our experiment involving a single jar, instead of using the data from
50 jars, made available to us by Ho, Verboven, Verlinden, Lammertyn, et al.
(2008), the model parameters can be estimated much more precisely. Figure
3.6b shows a map of the absolute values of the correlations of the estimates that
would be obtained if the locally optimal experiment were to be used. Because
there are no strong correlations between the first three parameters and the last
three parameters, we can thus visualize the FIM in Equation (3.2) using two
ellipsoids. The axes of the first ellipsoid are in the directions of the eigenvectors
of the inverse of the top left quarter (a 3 by 3 matrix) of the FIM, and the
lengths of the axes are the corresponding eigenvalues. The second ellipsoid
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(a) coefficients of variation (b) absolute value of correlations

Figure 3.6: Summary of the information gained from the locally optimal
experiment in Figure 3.5, with local D-criterion equal to 8.67 × 108.

is similarly based on the bottom right quarter. These ellipsoids are shown in
Figures 3.7a and 3.7b for the experiment allowing changes in inputs every two
hours, and are compared to the ellipsoids in blue resulting from the heuristic
experimentation technique used by Ho, Verboven, Verlinden, Lammertyn, et al.
(2008) with the volume of the jar, mass of pears, initial conditions, sampling
times and total experimentation time equalized between the two methods. The
volume of the ellipsoids of the locally optimal experiment are smaller.

(a) first three parameters
(Vm,O2 , Km,O2 , Kmn,CO2).

(b) last three parameters
(rq, Vm,f,, Km,f,O2).

Figure 3.7: 95% confidence ellipsoids comparing the locally optimal experimental
design (red) and the heuristic experimental design technique from Ho, Verboven,
Verlinden, Lammertyn, et al. (2008) (blue).
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3.4.2 Bayesian Optimal Designs for the Respiration and
Fermentation Model

We now continue by searching a more robust design than the locally optimal
design in Figure 3.5. Instead of optimizing the determinant of the FIM in
Equation (3.2) for the means of the Markov chain values, we optimize the
mean determinant for a thinned version of the Markov chain. These values are
graphically shown by the blue bullets in the lower left hand part of Figure 3.2,
these values can also be found in Appendix A. The design found by maximizing
the robust optimality criterion in Equation (3.8) is shown in Figures 3.8a and
3.8b. The simulated output for all values of the thinned Markov chain is shown
in Figure 3.8c. The robust design exhibits several similarities to the locally
optimal design, but also some key differences. The occurrence of a pumping
action in the time interval between 2 h and 4 h as well as the interval between
10 h and 14 h is similar to that in the locally optimal design in Figure 3.5a.
Furthermore, there are no differences in O2 and CO2 input concentrations
between the robust and locally optimal design. One main difference between the
robust experimental design and the locally optimal one is that, in the former,
the first pumping action is less intense, i.e. the flow rate only amounts to 0.5
lh−1, as opposed to 0.8 lh−1, in the locally optimal design. A second main
difference is the absence of the third pumping action in the robust design. We
hypothesize this is because less pumping actions must occur to ensure a high
CO2 concentration when inhibition of respiration by CO2 only happens at high
CO2 concentrations, which is possible, since we have little prior knowledge
about Kmn,CO2 .
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(a) Input flow. (b) Input gasses.

(c) Output, evaluated at each of
the model parameter values from the
thinned Markov chain.

Figure 3.8: Robust optimal experiment and simulated output, obtained using
100 parameter values from the Markov chain and control input switching every
two hours.

Figure 3.9 shows the difference in performance between the robust and the
locally optimal experiment. More specifically, the histogram shows the difference
between the determinant of the FIM in Equation (3.2) for both the robust and
locally optimal design at all 6000 model parameter values from the Markov
chain. For many possible model parameter values, the locally optimal and
robust design perform almost equally well. However, the histogram clearly
has a heavy right tail, showing that, for some parameter values, the Bayesian
design performs significantly better. As the histogram does not posses a heavy
left tail, the reverse is not true. The robust design is thus substantially less
sensitive to the exact values of the model parameters. It therefore provides
better guarantee for a highly informative experiment than the locally optimal
design. Since this result holds for the entire Markov chain and not just the
thinned version, we can be confident that the thinned version is sufficient to
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summarize the prior uncertainty, and that the resulting robust design only works
well for the specific model parameter values used to evaluate the optimality
criterion in Equation (3.8). Finally, the positive mean value for the difference in
determinants, indicated by the orange dot in Figure 3.9, proves that Bayesian
design is expected to do better for the region of prior uncertainty.

Figure 3.9: Histogram of difference in determinants of the FIM of the robust
and locally optimal designs for 6000 parameters from the prior distribution.
Positive values mean the robust design performs better.

In Table 3.2, we also compare our robust experimental design method based on a
Markov-chain Monte-Carlo chain, which can approximate arbitrary distributions,
to the robust experimental design method of Telen, Logist, et al. (2012), which
uses 13 sigma points to summarize the uncertainty on the model parameters,
and is thus computationally less intensive. The latter results in a design that
performs worse than the locally optimal design, showing that sigma points do
not always provide good summary of the uncertainty in the model parameters.

45



Markov-chain Monte-Carlo locally sigma point
optimal design optimal design optimal design

Robust
D-criterion 1.26×1010 1.22×1010 9.83×109

Table 3.2: Parameters used for the optimization of the construction of the
locally optimal designs

3.5 Discussion and Future Work

3.5.1 Alternative Information Criteria

In this chapter, we presented a robust experimental design methodology
for dynamic models and applied that methodology to precisely estimate
the respiration and fermentation parameters of pear fruit. We achieved
this by quantifying the information content of the experiments using the
determinant of the Fisher information matrix averaged over a prior distribution,
represented by a Markov-chain. However, the Fisher information matrix is
only an approximation of the inverse of the model parameter covariance matrix.
Schenkendorf, Kremling, and Mangold (2009) suggest another approach to
approximate the covariance matrix based on simulating multiple possible
data-sets, and estimating the model parameters from each data-set. This
approach is numerically much more intensive than an approach based on
the FIM, and is therefore infeasible in the context of optimal experimental
design. Another promising approach would be to quantify information based
on the expected Kullback-Leibler divergence (KL-div) between the prior and
posterior distributions (Lindley 1956). For experiments with a large number
of observations, the expected KL-div is asymptotically equal to our robust D-
optimality criterion. For a small number of measurements, the KL-div approach
might be superior as it does not utilize normal approximations. One major
downside of using the KL-div is its computational complexity, as it involves
calculating a high dimensional integral over all possible outcomes y of the
experiment. This is generally done using a double loop Monte-Carlo integration
method (Ryan et al. 2016). Some research has been done using this method
for determining optimal sampling times of dynamic systems (Overstall, Woods,
and Parker 2019), but this work does not consider optimal control. Therefore,
the dynamic system in Overstall, Woods, and Parker (2019) does not need to be
solved repeatedly for different control actions. Instead, only a single dynamic
system needs to be solved that can be evaluated at different possible sampling
times. Selection of input profiles based on the KL-div is considered in Liepe et al.
(2013), but only for a small discrete set of possible input profiles. In contrast,
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in our paper, we optimize the experimental design over a large continuous
space of possible experimental designs. Recently, advances have been made in
lowering the computational burden of the KL-div based approach by considering
surrogate functions that approximate the KL-div based on polynomial chaos
expansions (Paulson, Martin-Casas, and Mesbah 2019). Another approach to
lower the computational burden is based on variational Bayesian techniques
(Foster, Jankowiak, Bingham, et al. 2019), where the inner Monte Carlo loop is
replaced by optimizing a variational distribution. This technique then allows
for jointly optimizing the design and variational parameters (Foster, Jankowiak,
O’Meara, et al. 2020). In future work, we will employ these variational Bayesian
techniques for adaptive dynamic experiments, where the design is modified
online as data is collected.

3.5.2 State Discretization

In this chapter, we discretized only the controls u, but not the states x. The
discretization of states is applied using multiple shooting and collocation based
dynamic optimization approaches (Biegler 2010). Generally, these methods
lead to optimization problems that are faster to solve, as they do not require
repeatedly solving differential equals, but which might lead to less accurate
results. The is because we found that solving the dynamic system with model
parameters values equal to those of the heavy right tail in Figure 3.9 requires
many more steps than the other parameter values form the Markov chain.
Thus unless the discretization is chosen fine enough, the approximation for
the troublesome parameters in the tail might not suffice. Besides the faster
computing time, one additional reason to consider discretization of the states
would be the presence of additional constraints on the states. This is because
violations of such constraints are difficult to check without a discretization.
Our optimization problem did not involve any such additional state constraints.
Nimmegeers et al. (2020) provide a more detailed discussion on the incorporation
of constraints into optimal dynamic experiments.

3.5.3 Reverse Automatic Differentiation

We used forward mode automatic differentiation to calculate the sensitivities to
the unknown parameters θ, required to obtain the FIM in Equation (3.2), and
this was further nested to calculate the gradient of the D-criteria in Equations
(3.6) and (3.8) with respect to the control parameters u. Forward mode
automatic differentiation generally performs well for functions with a small
number of inputs, relative to the number of outputs. For our respiration model,
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it thus was a good choice for calculating the unknown parameter sensitivities
present in the FIM. Reverse mode automatic differentiation performs better for
functions with many more outputs than inputs. It thus seems like a natural
choice to calculate the gradients necessary for the optimization of the control
parameters. However, there is currently not yet a mature implementation of
reverse over forward mode automatic differentiation in the Julia ecosystem
(Rackauckas, Ma, Dixit, et al. 2018).

3.6 Conclusion

This chapter presented a pioneering study about the usefulness of robust optimal
dynamic experiments for non-linear modeling in postharvest research. Robust
designs work well for a range of possible model parameter values. Robust design
methods require the specification of a prior distribution for the model parameters.
Current methods in the literature only work for parametric prior distributions.
The available prior information about respiration and fermentation of pear fruit
could not be adequately summarized using a parametric distribution, thus we
developed a novel experimental design methodology based on a Markov-chain
Monte-Carlo analysis of a prior data-set. This Markov chain can approximate
arbitrary distributions. We used this methodology to construct robust D-optimal
dynamic experimental designs for the estimation of the Michaelis-Menten
respiration and fermentation parameters of Conference pear. These robust
designs perform better than locally D-optimal designs, which are optimized
using a single initial guess for the model parameters, and also outperform other
robust methods.
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Chapter 4

Adaptive and Robust
Experimental Design for
Linear Dynamic Models using
the Kalman Filter

This chapter has been written by Arno Strouwen with feedback from Professors
Goos and Nicolaï.

Source code available upon request.

Abstract

Current experimental design techniques for dynamic systems often only
incorporate measurement noise, while dynamic systems also involve process
noise. To construct experimental designs we need to quantify their information
content. The Fisher information matrix is a popular tool to do so. Calculating
the Fisher information matrix for linear dynamic systems with both process
and measurement noise involves estimating the uncertain dynamic states using
a Kalman filter. The Fisher information matrix, however, depends on the true
but unknown model parameters. In this paper we combine two methods to
solve this issue and develop a robust experimental design methodology. First,
Bayesian experimental design averages the Fisher information matrix over a prior
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distribution of possible model parameter values. Second, adaptive experimental
design allows for this information to be updated as measurements are being
gathered. This updated information is then used to adapt the remainder of the
design.

4.1 Introduction

Control, optimization and analysis of dynamic systems are increasingly being
performed using parametric models (Findeisen and Allgöwer 2002). High-quality
data are needed to precisely identify these models. Optimal input design for
dynamic systems deals with the cost-effective collection of these data (Goodwin
and Payne 1977).

Most experimental design literature for precisely estimating model parameters of
dynamic systems focuses on models with only measurement noise (Franceschini
and Macchietto 2008), or on models with only process noise, when dealing with
autoregressive models for time-series modeling (Hjalmarsson 2005; Pintelon
and Schoukens 2012). The two previous chapters also only took into account
measurement noise. Relatively little literature exists about designing informative
experiments when both measurement and process noise are present. One
approach that does combine process and measurement noise for experimental
design is that of Telen, Houska, et al. (2013). These authors use a heuristic
extension of the Fisher information matrix used by Franceschini and Macchietto
(2008) to deal with process noise. Our approach differs as we use the formal
definition of the Fisher information matrix, based on the variance of the score,
which is the gradient of the log-likelihood function. The main challenge that
arises in this approach is that estimating the unknown model parameters also
requires the hidden dynamic states to be estimated.

Estimating such hidden states for continuous-time non-linear stochastic
differential equations generally has no analytical solution (Särkkä and Solin
2019). In this chapter, we focus on linear discrete-time dynamic systems with
both measurement and process noise. For these models analytical results exist.
Particularly, the Kalman filter is used to estimate the dynamic state. The
Kalman filter has hardly been used in the context of optimal experiments.
Titterington (1980) uses the steady state Kalman filter to construct continuous
optimal designs, which are asymptotically optimal when a large amount of data
is gathered. This is in contrast to exact designs, which are optimized for a
finite number of measurements, and which we use in this chapter. Because of
our focus on a finite number of measurements, our chapter also does not rely
on the steady state prediction error covariance. Stojanovic et al. (2016) use
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a robust Kalman filter to generate optimal inputs for autoregressive models
with non-Gaussian noise. Instead of autoregressive models, we work with linear
state space models, where the matrices describing such a state space model
may depend on model parameters that must be estimated as precisely as possible.

The Fisher information matrix (FIM) is a popular tool to quantify the quality
of an experiment, as it is related to the inverse of the covariance matrix of
the model parameter estimates (Fedorov and Leonov 2013). An informative
experiment makes a scalar measure of the FIM as large as possible. The major
issue with optimal experimental design is the dependence of the FIM, and thus
also the optimal inputs for the experiment, on the true, but unknown, model
parameters. This presents us with a circular problem as the experiment is needed
to precisely estimate the parameters. Locally optimal design, where inputs
are optimized for a single initial guess for the parameters, is the traditional
method to deal with this issue (Atkinson, Donev, and Tobias 2007a). However,
this method can be very sensitive to the single initial guess. Generally, there
exist two directions to improve on the locally optimal design method, namely
robustifying the experiment against the uncertainty in the model parameters
and making the experiment adaptive (Walter and Pronzato 1994).

Robustifying the experiment can be achieved in various ways. One popular
approach is min-max experimental design (Körkel et al. 2004). In this method,
the experiment is optimized under the assumption of a worst case scenario. This
means that Fisher information matrices are calculated for all elements of a set
of possible parameter values and the quality of the experiment is judged based
on the least informative matrix in this set. This guarantees that, regardless the
true parameter values, the experiment will always have a minimal information
content. Another popular approach is Bayesian optimal design, which uses an
expected value approach (Chaloner and Verdinelli 1995). A prior distribution for
the model parameters is then used, and the experiment is designed to perform
well on average for this prior.

In the second approach to improve on the locally optimal design method,
the measurements obtained during the execution of the experiment are used to
improve on the initial guess of the model parameters. This is called adaptive or
sequential experimental design. A new locally optimal design is then based on
the updated model parameters and this process is repeated.

In our work, we combine the Bayesian robustification approach with adaptive
experimental design and construct optimal adaptive Bayesian experiments.
After every measurement, we update our knowledge of the unknown parameters
using Bayesian statistics. A new Bayesian optimal design for the remainder
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of the experiment is then constructed based on the updated prior distribution.
Adaptive designs have an additional benefit for dynamic systems in the presence
of process noise. This is because it is difficult to predict the dynamic state of
such systems far into the future, because of the process noise. This causes these
future measurements to be uninformative and contributing little to the Fisher
information matrix. When adaptively designing an experiment, the estimate
of the dynamic state based on the already gathered data will also reduce the
prediction variance of future observations, meaning these future observations
become more informative.

4.2 Modeling the Information Content of a Dynamic
Experiment

4.2.1 The Model

Our goal is to find dynamic inputs u1:T which lead to a precise estimation of
the static model parameters θ of a linear time-invariant discrete-time dynamic
system with Gaussian noise,

xk = F (θ)xk−1 + B(θ)uk + wk, 0 < k ≤ T

yk = H(θ)xk + vk.
(4.1)

In these equations, yk represents the measured outputs at time-step k. We
assume that the experiment ends after T time-steps, and thus k can range from 1
to T . The measured output is dependent on the dynamic states xk through the
output matrix H(θ). These states completely determine the stochastic evolution
of the system over time. The transition of the states from one time-step to
the next is impacted by the state matrix F (θ), as well as the inputs at that
time-step, uk, through the input matrix B(θ). All three of these matrices F (θ),
B(θ) and H(θ) can depend on the model parameters θ.

Noise is present in both the measurements and the state transitions. We
make the following assumptions about the measurement noise vk and the
uncontrollable and unobserved process noise wk at time-step k:

wk ∼ N (0, Q(θ)),

vk ∼ N (0, R(θ)),

Covar(wk, vl) = 0,

Covar(wk, wl) = Covar(vk, vl) = 0, k ̸= l.

(4.2)
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We thus assume that vk and wk both follow a multivariate normal distribution
with zero mean and covariance matrices equal to Q(θ) and R(θ), respectively.
These covariance matrices may also depend on the unknown static parameters
θ. The measurement and process noise are independent of each other, and there
is also no correlation over time, neither for measurement nor process noise.

The initial state of the system is also assumed to be multivariate normally
distributed, with mean m0 and covariance matrix P0. This state is independent
of all later noise. So,

x0 ∼ N (m0, P0),

Covar(x0, vk) = Covar(x0, wk) = 0.
(4.3)

4.2.2 Parameter Estimation

Before presenting our experimental design methodology, we first discuss how to
estimate the model parameters θ of the model in Equation (4.1). One popular
approach for parameter estimation is based on the likelihood of the unknown
parameters given the observations y1:T . Here, yk:l denotes the measured outputs
from time-step k to l, with both endpoints included and k ≤ l. We use a similar
notation for other vectors. The log-likelihood after k observations have been
collected can be computed with the recursive factorization

Lk(θ, u1:k, y1:k) = log p(y1:k|θ, u1:k) (4.4)

= log p(yk|θ, u1:k, y1:k−1) + log p(y1:k−1|θ, u1:k−1). (4.5)

The first term in this expression can further be computed as

p(yk|θ, u1:k, y1:k−1) =
∫

p(yk|xk, θ)p(xk|θ, u1:k, y1:k−1) d xk. (4.6)

In this equation, the first factor of the integrand p(yk|xk, θ) corresponds to
N (H(θ)xk, R(θ)), while the second factor, p(xk|θ, u1:k, y1:k−1), called the
state predictive distribution, can be calculated as

p(xk|θ, u1:k, y1:k−1) =
∫

p(xk|xk−1, θ, uk)p(xk−1|θ, u1:k−1, y1:k−1) d xk−1.

(4.7)
In this equation, the first factor of the integrand, p(xk|xk−1, θ, uk), can
be calculated as N (F (θ)xk−1 + B(θ)uk, Q(θ)), while the second factor,
p(xk−1|θ, u1:k−1, y1:k−1), is called the state filtering distribution. This
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distribution can be computed by Bayes’ law,

p(xk|θ, u1:k, y1:k) = p(yk|xk, θ)p(xk|θ, u1:k, y1:k−1)
p(yk|θ, u1:k, y1:k−1) . (4.8)

The denominator of this fraction can be thought of as a normalization factor,
ensuring that the state filtering distribution for time-step k integrates to one.
The second factor in the numerator is the state predictive distribution. The
state filtering distribution thus depends on the state predictive distribution,
which in turn depends on the state predictive distribution at the previous
time-step. These two recurring equations are known as the Bayesian filtering
equations. If the state filtering distribution at time-step k − 1 is normally
distributed as p(xk−1|θ, u1:k−1, y1:k−1)) = N (mk−1, Pk−1), then the state
predictive distribution is also normally distributed p(xk|θ, u1:k, y1:k−1) =
N (F (θ)mk−1 + B(θ)uk, F (θ)Pk−1F ′(θ) + Q(θ)). If the state predictive
distribution is normally distributed as p(xk|θ, u1:k, y1:k−1) = N (m−

k , P −
k ),

then the joint state and measurement prediction distribution is also normally
distributed,

p(xk, yk|θ, u1:k, y1:k−1) = N
([

m−
k

H(θ)m−
k

]
,

[
P −

k P −
k H(θ)′

H(θ)P −
k H(θ)P −

k H(θ)′ + R

])
.

(4.9)
The state filtering distribution is then also normal and can be calculated from
the conditional distribution of a partitioned multivariate normal distribution
(Von Mises 2014):

p(xk|θ, u1:k, y1:k) = N (mk, Pk),

mk = m−
k + P −

k H(θ)′(H(θ)P −
k H ′(θ) + R(θ))−1(yk − H(θ)m−

k ),

Pk = P −
k − P −

k H(θ)′(H(θ)P −
k H ′(θ) + R(θ))−1H(θ)P −

k .
(4.10)

The first state predictive distribution p(x1|θ, u1) is normally distributed
since the initial state distribution p(x0) is normally distributed, and thus all
subsequent state predictive and filtering distributions are normally distributed
as well. The above derivation for state predictive and filtering distributions
is equivalent to the Kalman filter, with an explicit dependence on the model
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parameters θ (Särkkä 2013). The recursion can thus also be written as:

m−
k = F (θ)mk−1 + B(θ)uk,

P −
k = F (θ)PkF (θ)′ + Q(θ),

p(xk|θ, u1:k, y1:k−1) = N (m−
k , P −

k ),

vk = yk − H(θ)m−
k ,

Sk = H(θ)P −
k H(θ)′ + R(θ),

Kk = P −
k H(θ)′S−1

k ,

mk = m−
k + Kkvk,

Pk = P −
k − KkSkK ′,

p(xk|θ, u1:k, y1:k) = N (mk, Pk).

(4.11)

In these equations vk, Sk and Kk are called the innovation gain residual,
innovation gain covariance and optimal Kalman gain, respectively. The Kalman
filter recurses back to the initial state distribution in Equation (4.3). Since
we know that p(yk|xk, θ) = N (H(θ)xk, R(θ)) and p(xk|θ, u1:k, y1:k−1) =
N (m−

k , P −
k ), it is easy to see that p(yk|θ, u1:k, y1:k−1) =

N (H(θ)m−
k , H(θ)P −

k H ′(θ) + R(θ)). This leads to the following expression for
the log-likelihood of the model parameters:

Lk(θ, u1:k, y1:k) = Lk−1(θ, u1:k−1, y1:k−1) − 1
2 log |2πSk| − 1

2v′
kS−1

k vk, (4.12)

where Sk and vk come from the Kalman filter recursion. The likelihood at a
certain model parameter value θ can thus be updated at every time-step by
running a Kalman filter, with that particular value of θ.

4.2.3 The Fisher Information Matrix

One common approach to quantify the quality of the inputs u1:T for precisely
estimating the static parameters θ is the expected Fisher information matrix
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(FIM):

I(θ, u1:T ) = Ey1:T |θ,u1:T

(
∂ log p(y1:T |θ, u1:T )

∂θ

∂ log p(y1:T |θ, u1:T )
∂θ

′)
,

= −Ey1:T |θ,u1:T

(
∂2 log p(y1:T |θ, u1:T )

∂θ2

)
.

(4.13)
In this equation, y1:T |θ, u1:T denotes the joint distribution of all the
measurements, given the parameters θ and the inputs u1:T . In addition,
∂ log p(y1:T |θ,u1:T )

∂θ is the gradient of the log-likelihood, and ∂2 log p(y1:T |θ,u1:T )
∂θ2 is

the Hessian matrix of the log-likelihood. Formally, the Cramér-Rao bound states
that the inverse of the expected FIM is a lower bound, by Loewner ordering,
of the covariance matrix of an unbiased estimator of θ. This lower bound can
be visualized by an hyperellipsoid. The directions and lengths of the principal
axes are determined by the eigenvectors and eigenvalues of the inverse of the
expected FIM, respectively. The inputs u1:T should thus be chosen such that
this hyperellipsoid is as small as possible.

We can also explain the expected FIM in the following way: we want to
chose inputs u1:T such that the true parameter θ will fit the obtained data
well, while other parameters should fit poorly. This is equivalent to saying that
we want the log-likelihood function log p(y1:T |θ, u1:T ) to exhibit a sharp peak
around the true model parameter value θ. When the Hessian matrix in the FIM,
has large negative eigenvalues, the peak is sharp. Of course, when planning the
experiment we do not know the outcomes y1:T of the experiment yet. Therefore,
the expectation should be taken with regard to all possible outcomes. So, it
requires solving a high-dimensional integral.

Calculating the expected FIM for arbitrary non-linear models is often intractable,
because generally no analytical results are available for the high-dimensional
integral that is involved in this calculation. These integrals are then often
numerically approximated using Monte Carlo methods (Ryan et al. 2016).
However, our model in Equation (4.1) only contains linear transformations, and
multivariate normal distributions remain normal under such transformations.
As a result, the measurements y1:T |θ, u1:T also follow a multivariate normal
distribution. More specifically, the expected value and covariance of the
measurements can be calculated by using following recursion relations, as
adapted from Cavanaugh and Shumway (1996) to allow for models with control
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inputs u1:T :

E(yr|θ, u1:T ) = H(θ)E(xr|θ, u1:T ),

E(xr|θ, u1:T ) = F (θ)E(xr−1|θ, u1:T ) + B(θ)ur,

E(x0|θ, u1:T ) = m0,

Var(yr|θ, u1:T ) = H(θ) Var(xr|θ, u1:T )H(θ)′ + R(θ),

Covar(yr|θ, u1:T ; ys|θ, u1:T ) = H(θ)F r−s Var(xs|θ, u1:T )H(θ)′, ∀r > s,

Covar(yr|θ, u1:T ; ys|θ, u1:T ) = Covar(ys|θ, u1:T ; yr|θ, u1:T )′, ∀r < s,

Var(xr|θ, u1:T ) = F (θ) Var(xr−1|θ, u1:T )F (θ)′ + Q(θ),

Var(x0|θ, u1:T ) = P0.
(4.14)

The names Var and Covar are somewhat arbitrary in these equations. For
example, if yk is bivariate, then the matrix Var yk is a two by two matrix.
We make the distinction between Var and Covar to stress the correlation of
measurements over time.

The expected FIM for multivariate normal data is well known (Fedorov and
Leonov 2013), its [i, j]th element is

I(θ, u1:T )[i, j] = ∂E(y1:T |θ, u1:T )′

∂θ[i] Covar(y1:T |θ, u1:T )−1 ∂E(y1:T |θ, u1:T )
∂θ[j]

+

1
2tr
(

Covar(y1:T |θ, u1:T )−1 ∂ Covar(y1:T |θ, u1:T )
∂θ[i]

Covar(y1:T |θ, u1:T )−1 ∂ Covar(y1:T |θ, u1:T )
∂θ[j]

)
.

(4.15)
In this equation, square brackets are used to select an element of a vector or
matrix. This equation does not only involve the expectation and covariance of all
the observations, but also the derivative of these quantities with respect to the
parameters θ. Similar recursions as in Equation (4.14) exist for these parameter
sensitivities. We do not explicitly state these recursions as we calculate them
by applying forward mode automatic differentiation on this recursion; see the
numerical details in Section 4.4.
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4.3 D-optimal Experimental Design

To find an optimal experimental design, we thus have to optimize the inputs
u1:T such that the expected FIM is as large as possible, as this leads to precise
model parameter estimates. But generally, the expected FIM is not a scalar,
and we thus need to define what constitutes a large matrix. Since the definition
of the expected FIM involves Loewner ordering, it seems natural to also use
this ordering to compare the quality of different inputs. However, Fedorov and
Leonov (2013) demonstrate why it is impossible to directly use this partial
ordering of positive semi-definite matrices, and that instead a scalar function
of the expected FIM is needed. A popular choice is the determinant of the
expected FIM, |I(θ, u1:T )|. This criterion is known as D-optimality and it is
related to the inverse of the volume of the confidence hyperellipsoid.

4.3.1 Locally Optimal Experimental Design

One of the main difficulties in experimental design is the dependence of the
expected FIM in Equation (4.13) on the true parameters of the system, which
are exactly those parameters that the experiment should inform us about. This
leads to a circular problem. The simplest way to deal with this issue is by using
a single initial guess θ∗ for the parameters at the start of the experiment, and
to compute D-optimal designs as

arg max
umin≤u1:T ≤umax

|I(θ∗, u1:T )| . (4.16)

This method is called locally optimal design as the design only performs well if
this single initial guess for the model parameters is close to the true value. In
Equation (4.16), umin and umax are the minimal and maximal allowed control
values, respectively.

4.3.2 Robust Experiments

To make the design more robust, so that it provides much information if the
initial guess is not very close to the true value of the model parameters, we
can replace the single initial guess θ∗ with a prior probability distribution p(θ),
which represents our knowledge of possible values of θ before the experiment
has started. We want the experiment to perform well over the parameter
values in the domain of p(θ), where the most likely parameter values have the
largest weight. Averaging the determinant of the expected FIM over this prior
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distribution and then optimizing this average achieves this:

arg max
umin≤u1:T ≤umax

∫
|I(θ, u1:T )| p(θ) d θ ≈ arg max

umin≤u1:T ≤umax

1
N

N∑
i=1

∣∣I(θi, u1:T )
∣∣ ,

draw θi from p(θ).
(4.17)

So, the expectation is approximated by Monte Carlo integration with N draws
from the prior distribution p(θ), each draw having the same weight, 1

N . Besides
Monte Carlo integration, other methods to numerically calculate this robust
D-criterion exist, such as the sigma-point based method of Telen, Logist,
et al. (2012). However, these methods complicate the updating of the weights
for adaptive experimental design in the following section, and might not be
compatible with the jittering described in the discussion section.

Due to the use of a prior distribution, this technique is also called pseudo-
Bayesian optimal design (Chaloner and Verdinelli 1995). We want to stress
that the optimality criterion is only pseudo-Bayesian, and not fully Bayesian.
This is because, while the prior information is used to construct the inputs, it
is not directly used to influence the estimation of the parameters. Only the
information coming from the measurements acquired from the experiment is
incorporated in the information criterion.

4.3.3 Adaptive Experiments

Concept

In the local optimal design criterion in Equation (4.16) and the pseudo-
Bayesian optimal design criterion in Equation (4.17), prior information was
only incorporated at the start of the experiment. But as soon as the experiment
has started, knowledge is accumulating. That additional information can be
exploited to optimize the remainder of the experiment. To formalize this, we
now assume that we have already performed an experiment with inputs u1:k
and measured outputs y1:k. These measurements are used to form an updated
prior distribution after k measurements, p(θ|u1:k, y1:k), which represents our
belief in the possible values of the model parameters θ given the additional
information the first k measurements contain. We use this updated prior to
optimize the remaining inputs uk+1:T of the experiment:

arg max
umin≤uk+1:T ≤umax

∫
|I(θ, u1:T )| p(θ|u1:k, y1:k) d θ.
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Computational Challenges

This approach, however, has the drawback that optimizing the remaining
N − k input vectors for every time-step is computationally much too expensive,
especially at the beginning of the experiment, as the behavior of the system
then has to be predicted far into the future, using the recursions in equation
(4.14). To reduce the computational burden, we only optimize the expected
FIM for the next e measurements:

arg max
umin≤uk+1:k+e≤umax

∫
|I(θ, u1:k+e)| p(θ|u1:k, y1:k) d θ.

While this criterion does not require predicting very far into the future, due to
the moving horizon k + 1 : k + e, it is still problematic for online computation,
as the time and memory required in calculating the expected FIM increases
at every time-step, as the dimension of the covariance matrix of y1:k+e keeps
growing (Cavanaugh and Shumway 1996). This is because, the expected FIM
in Equation (4.13) involves an expectation over y1:k+e|θ, u1:k+e, even when the
outputs y1:k have already been measured.

Computational Shortcut

A computationally feasible alternative approach uses the observed Fisher
information matrix, rather than the expected Fisher information matrix. This
observed FIM does not require averaging over all possible measurements. Instead,
it uses the actually observed values y1:k,

J (θ, u1:k, y1:k) = −∂2 log p(y1:k|θ, u1:k)
∂θ2 . (4.18)

The observed FIM has been argued to be a superior tool to quantify the variance
of the model parameter estimates (Efron and Hinkley 1978), and has already
been used in sequential experimental design by Lane (2017) to produce more
precise parameter estimates than a method purely based on the expected FIM.
A straightforward solution to keep the optimization cost constant at every time-
step would be to combine both the observed FIM, to quantify the information
of the k already performed measurements, and the expected FIM, to quantify
the information of the e future observations. This leads to the following optimal
design criterion at time-step k:

arg max
umin≤uk+1:k+e≤umax

∫
|J (θ, u1:k, y1:k) + I(θ, uk+1:k+e)| p(θ|y1:k, u1:k) d θ.

(4.19)
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To calculate the expected FIM I(θ, uk+1:k+e) only an expectation over yk+1:k+e

is needed. So,

I(θ, uk+1:k+e)[i, j] =

∂E(yk+1:k+e|θ, y1:k, u1:k+e)′

∂θ[i] Covar(yk+1:k+e|θ, y1:k, u1:k+e)−1 ∂E(yk+1:k+e|θ, y1:k, u1:k+e)
∂θ[j]

+

1
2tr
(

Covar(yk+1:k+e|θ, y1:k, u1:k+e)−1 ∂ Covar(yk+1:k+e|θ, y1:k, u1:k+e)
∂θ[i]

Covar(yk+1:k+e|θ, y1:k, u1:k+e)−1 ∂ Covar(yk+1:k+e|θ, y1:k, u1:k+e)
∂θ[j]

)
.

(4.20)
The recursion formulas in Equation (4.14) must thus also be changed to not
recurse all the way back to time point 0. The recursion instead should end at
time k, with the state mean mk and covariance estimate Pk coming from the
Kalman filter in Equation (4.11):

E(yr|θ, u1:k+e, y1:k) = H(θ)E(xr|θ, u1:k+e, y1:k),

E(xr|θ, u1:k+e, y1:k) = F (θ)E(xr−1|θ, u1:k+e, y1:k) + B(θ)ur,

E(xk|θ, u1:k+e, y1:k) = mk,

Var(yr|θ, u1:k+e, y1:k) = H(θ) Var(xr|θ, u1:k+e, y1:k)H(θ)′ + R(θ),

Covar(yr|θ, u1:k+e, y1:k; ys|θ, u1:k+e, y1:k) =

H(θ)F r−s Var(xs|θ, u1:k+e, y1:k)H(θ)′, ∀r > s,

Covar(yr|θ, u1:k+e, y1:k; ys|θ, u1:k+e, y1:k) =

Covar(ys|θ, u1:k+e, y1:k; yr|θ, u1:k+e, y1:k)′, ∀r < s,

Var(xr|θ, u1:k+e, y1:k) = F (θ) Var(xr−1|θ, u1:k+e, y1:k)F (θ)′ + Q(θ),

Var(xk|θ, u1:k+e, y1:k) = Pk.

(4.21)

The integral in Equation (4.19) can again be approximated by Monte Carlo
integration:

arg max
umin≤uk+1:k+e≤umax

N∑
i=1

∣∣J (θi
k, u1:k, y1:k) + I(θi

k, uk+1:k+e)
∣∣wi

k. (4.22)
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In this equation, the weights wi
k and the model parameters θi

k come from the
recursion:

wi
k =

p(yk|θi
k−1, u1:k, y1:k−1)wi

k−1∑N
j=1 p(yk|θj

k−1, u1:k, y1:k−1)wj
k−1

,

θi
k = θi

k−1,

wi
0 = 1

N
,

θi
0 drawn from p(θ).

(4.23)

These weights are thus updated to give higher importance to model parameters
according to their likelihood. This adaptive experimental design routine only
works when using the same Monte Carlo draws θi

k at each time-step. If different
values were used at every time-step the likelihoods would have to be calculated
again from the beginning, instead of relying on the recursive Equation (4.12).

Final Algorithm

Putting together all these computations leads to the following Algorithm 1
which summarizes all the steps of the algorithm for adaptively generating a
robust experiment to estimate the model parameters of a linear dynamic system
in the presence of both process noise and measurement noise.
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Algorithm 1: Robust and adaptive experimental design algorithm for
dynamic systems in the presence of both process and measurement noise
initialize at step zero
for i = 1 through N do

draw θi
0 from p(θ)

set initial state distribution mi
0 = m0 and P i

0 = P0

set initial state distribution sensitivities ∂mi
0

∂θ

∣∣∣
θ=θi

0

= 0, ∂2mi
0

∂θ2

∣∣∣
θ=θi

0

= 0,
∂P i

0
∂θ

∣∣∣
θ=θi

0

= 0, ∂2P i
0

∂θ2

∣∣∣
θ=θi

0

= 0

set log-likelihood L(θi
0) = 0

set observed FIM J (θi
0) = 0

set weight wi
0 = 1

N

end
run the experiment
for each time-step k = 0 through T do

optimize next e controls uk+1:k+e using Eq (4.22), with expected FIM
from Eq (4.20)

use control uk+1
perform measurement yk+1
for i = 1 through N do

Push forward Kalman filter (using hyper-dual numbers) in Eq (4.11)
with θi

k−1
Use results (and intermediate results) from Kalman filter to:
1) update state distribution mean mi

k and covariance P i
k

2) update state distribution sensitivities ∂mi
0

∂θ

∣∣∣
θ=θi

k−1

, ∂2mi
0

∂θ2

∣∣∣
θ=θi

k−1

,

∂P i
0

∂θ

∣∣∣
θ=θi

k−1

and ∂2P i
0

∂θ2

∣∣∣
θ=θi

k−1

3) update log-likelihood using Eq (4.12)
4) update observed FIM using Eq (4.18)
5) update weights wi

kusing Eq (4.23)
6) update model parameters θi

k using Eq (4.23)
end

end

4.4 Numerical details

The entire Algorithm 1 was implemented in the Julia programming language
(Bezanson et al. 2017). The recursion in Equation (4.21) can be efficiently
calculated in batch form. This batch form can easily be adapted from the
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results in Cavanaugh and Shumway (1996). These authors, however, do not
give a batch form of the expected FIM in Equation (4.20). For batch form of
the Fisher information matrix for normally distributed data see Fedorov and
Leonov (2013).

For the sensitivities required to calculate the expected FIM, forward mode
automatic differentiation is used. In forward mode automatic differentiation,
every variable is replaced with a dual number containing both the value of
that number and the partial derivatives of that variable with respect to θ.
Operators are then overloaded to correctly propagate the partial derivatives
(Griewank and Walther 2008). For example, if in the original code there is
an expression c = a ∗ b, and we know the partial derivatives of a and b, these
numbers are replaced by the dual numbers (a, ∂a

∂θ ) and (b, ∂b
∂θ ) and multiplication

is overloaded as (a, ∂a
∂θ ) ∗ (b, ∂b

∂θ ) = (a ∗ b, a ∗ ∂b
∂θ + b ∗ ∂a

∂θ ) = (c, ∂c
∂θ ). Variables

that do not depend on θ have zero partial derivatives, and the ith element of
θ is initialized with one for the ith partial derivative and zero for the other
partial derivatives. For the observed FIM, second order derivatives are needed.
These can also be calculated using forward mode automatic differentiation using
hyper-dual numbers, see Revels, Lubin, and Papamarkou (2016) for details how
these are implemented in Julia.

Sequential quadratic programming, as implemented in NLopt (Johnson 2014),
is used to solve the optimization problem (Kraft et al. 1988; Kraft 1994) in
Equation (4.22). The optimal controls found at the previous time-step, are
reused as a hot starting point. A random value between umin and umax is
selected for the controls at the end of the optimization horizon. The optimization
algorithm is allowed a maximum of 20 function evaluations before termination,
except for the first time-step where 120 evaluations are allowed. Gradients of
the control objective are again calculated using hyper-dual numbers.

4.5 Case Studies

4.5.1 Mass-Spring-Damper System

Problem description

In the first case study, we consider experimental design for the mass-spring-
damper system depicted in Figure 4.1. Mass-spring-damper systems are
commonly used in bio-mechanics (Pieczywek and Zdunek 2017). The discretized
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linear dynamics of this system are:

xk =
[

1 ∆t
−∆tK

M
−∆tC

M + 1

]
xk−1 +

[
0

∆t
M

]
Fk + wk,

wk ∼ N

([
0
0

]
,

[
q∆t3

3M2
q∆t2

2M2
q∆t2

2M2
q∆t
M2

])
,

yk =
[
1 0

]
x + vk,

vk ∼ N (0, 0.1).

(4.24)

In these equations, K and C are the spring and damper constant, respectively.
These are the two unknown model parameters that must be estimated. Their
true values are assumed equal to 1 and 2, respectively. The prior distributions
we use for them are independent normal distributions centered around 1.4 and
4, with variances assumed equal to 0.2 and 2. The parameters q and M are the
spectral density of the process noise and mass respectively, which we assume to
be known and equal to 0.05 and 1. Finally, ∆t is the time between measurements,
assumed equal to 0.1. The position and velocity are the two states, but only
the position is measured, with measurement noise on top of it. The initial
state distributions are assumed to be independent normal distributions with
means equal to zero and variances equal to 0.1. The controllable input at the
kth time-step is a force Fk, which must be optimized such that K and C can
be estimated as precisely as possible from the position measurements. The
maximum absolute value of the force that can be applied is 1.

M

y

K

C
F

Figure 4.1: Schematic representation of mass spring damper system.

Optimal Versus Random Design

We start by comparing the performance of our optimal experimental design
strategy to a random input signal. Both experiments last T = 100 time-steps.
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The optimal experiment is generated with N = 100 draws from the the prior
distribution of the model parameters, and looks e = 3 steps ahead for optimizing
the controls. In Figure 4.2a, the inputs for both experiments are shown, and
the corresponding measurements are shown in Figure 4.2b. An always maximal
or minimal control action (bang-bang control) seems to be preferred, since
the optimal experimental design switches twice between the maximum and
minimum allowed force. The influence of these optimal controls is clearly visible
on the measurements, where the position is clearly lower after a negative force
has been applied, and clearly higher after a positive force has been applied.
The controls seem to switch from positive to negative and vice versa after the
position stagnates around position values of 1 and −1. This is logical since,
once the position stagnates, nothing can be learned anymore about the damping
constant.

(a) Input. (b) Output.

Figure 4.2: Comparison of optimal inputs compared to random inputs and the
corresponding output behaviors.

In Figure 4.3, we show the evolution of the online maximum likelihood estimates
as the experiment progresses. The optimal experiment hovers around the true
model parameters after only 50 time-steps, while the random experiment can not
even correctly estimate these parameters after 100 time-steps. The likelihood
at the end of the experiment for the 100 parameters drawn from the prior
distribution for the model parameters is shown in Figure 4.4. We see that
the maximum likelihood estimate for the optimal experiment is one of the
closest grid points to the true model parameter values, while this is not the
case for the random experiment. Furthermore, for the optimal experiment
the relative likelihood of other model parameters compared to the maximal
likelihood estimate decreases rapidly when moving away from this estimate.
This means that for the optimal experiment only model parameter values close
to the true values fit the data well. For the random experiment the likelihood
does not decrease rapidly when moving away from the maximum likelihood
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estimate, which means almost all values fit the data almost equally well and we
can not discern the true model parameter values from the data.

Figure 4.3: Online maximum likelihood estimates for both the optimal
experiment and the random experiment. The optimal experiment converges
faster to the true parameters.

(a) Optimal experiment. (b) Random experiment.

Figure 4.4: Likelihood grids at the end of the experiment. The likelihood
decreases sharply away from the true parameters for the optimal experiment,
unlike in the random experiment. The maximum likelihood estimate of the
optimal experiment is much closer to the true value than the random experiment.

67



Added Value of the Robustness and Adaptivity

The above discussion already shows the value of experimental design
methodology compared to random inputs. We now continue by showing the
combined added value of robustness and adaptivity. In Figure 4.5, we study the
behavior of Algorithm 1 for a variety of combinations of control horizon length e,
number of model parameters drawn from the prior N , and number of time-steps,
T . For each combination of e, N and T the experiment is repeated 100 times and
the mean and variance of the online maximum likelihood estimates are plotted.
Figures 4.5a and 4.5b show the same combination as was used before, in Figure
4.4, for the optimal experiment and random experiment, respectively. This
allows us to confirm that the optimal experiment performs much better than
the random experiment over an ensemble of 100 experiments, and, thus, that
the better estimates of the experimental design methodology were not by chance.

In Figure 4.5c, the control horizon length, e, is reduced from 3 to 1. This
causes this experiment to perform almost as bad as the random experiment.
Increasing the control horizon length to 6, however, does not greatly increase
the performance of the experiment, as shown in Figure 4.5d. Increasing the
control horizon thus has diminishing marginal returns, which is good to know
since a short horizon keeps the size of the matrices involved in the calculation of
expected FIM in Equation (4.20) manageable. The lack of additional information
when increasing the control horizon is probably due to the increased variance
of the predictions further into the future.

The effect of the number of parameters drawn from the prior distribution,
N , is shown in Figures 4.5e and 4.5f. For the non-robust experiment, the mean
of the prior distribution of the model parameters was used in the calculation
of the Fisher information matrices in Equations (4.20) and (4.18), instead of a
single random value from this distribution. The effect of reducing robustness
is much less pronounced than the effect of reducing the control horizon. Only
the convergence of the estimate of the damper constant is slower. Increasing
the number of draws from the prior distribution from 100 to 500 also seems to
have little added value past a certain point. This is because the Monte Carlo
integration involved in Bayesian optimal design is already adequate.

We also compare our adaptive experimental design technique to the non-
adaptive strategy from Equation (4.17), in Figure 4.5g. In the beginning
of the experiment, the non-adaptive experiment performs equally well as our
adaptive strategy. However, later on in the experiment, between time-steps
50 and 75, the estimation of the damper constant is clearly performing worse
than the adaptive experiment. An additional shortcoming of the non-adaptive
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design is the large computational time required to generate this design. This
is because the non-adaptive experiment requires predicting 100 steps into the
future. The optimization of this design was much slower than the adaptive
designs with a short control window, due to the presence of large matrices in
the expected FIM in Equation (4.20).

Finally, the effect of a larger number of time-steps is shown in Figure 4.5h. The
Figure shows that, also here, there are diminishing marginal returns for longer
experiments.
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(a) Optimal experiment. (b) Random experiment.

(c) Reduced control horizon. (d) Increased control horizon.

(e) Non-robustness experiment. (f) Increased robustness.

(g) Non-adaptive experiment. (h) Increased time.

Figure 4.5: Mean and variance of online maximum likelihood estimates for
different combinations of e, N and T in Algorithm 1.

70



4.6 Two Compartment System

In the second case study, we consider experimental design for a two compartment
system. Compartment systems are common in postharvest modeling (Léchaudel
and Joas 2007; Yoneyama et al. 2016), and pharmacokinetics (Fedorov and
Leonov 2013). The discretized linear dynamics of this system are:

xk =
[
1 − ∆t(K1,0 + K1,2) ∆tK2,1

∆tK1,2 1 − ∆tK2,1

]
xk−1 +

[
∆t
∆t2

2

]
uk + wk,

wk ∼ N

([
0
0

]
,

[
q∆t q∆t2

2
q∆t2

2
q∆t3

3

])
,

yk =
[
∆tK1,0 0

]
x + vk,

vk ∼ N (0, 0.0001).

(4.25)

In these equations, K1,2, K2,1 and K1,0 are the unknown model parameters
that determine the flows between the two compartments and the flow from
the first compartment to the environment. Their true values are assumed to
all equal 0.2. The prior distributions we use for them are independent normal
distributions centered around 0.22, with variances assumed equal to 0.0016. The
time between measurements, ∆t, is assumed equal to 0.1. The outflow of the first
compartment to the environment is the measured output, with measurement
noise on top of it. The initial distributions for the two compartments are
assumed to be independent normal distributions with means equal to 10 and 1,
and variances equal to 0.01 and 0.00001, respectively. The controllable input
at time-step k, uk, is a flow towards the first compartment. This input is
constrained between 0 and 10. There is also an unknown stochastic input wk

to the first compartment, represented by a discretization of Brownian motion
with spectral density q equal to 0.001. Brownian motion is a continuous time
stochastic process whose increments are independent, stationary and normally
distributed. The variance of the increments is determined by the spectral density.

This example shows the added value of working with arbitrarily parametrized
state space models, instead of linear autoregressive models. Some parameters,
such as K1,0, occur multiple times in the system dynamics. This is contrary to
autoregressive models, where the output is assumed to be a linear combination
of previous measurements and inputs, and each parameter of this linear
combination is allowed to vary freely in the parameter estimation.

Figure 4.6 depicts the progression of the online maximum likelihood estimate
as time goes on. The optimal experiment was generated with N = 1000 draws
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from the prior distribution, and looks e = 3 steps ahead. The parameters are
estimated precisely after roughly 50 time steps, while the random experiment
does not correctly estimate the model parameters even after 200 steps.

(a) Optimal experiment. (b) Random experiment.

Figure 4.6: Online maximum likelihood estimates for the two compartment
model.

4.7 Discussion and Conclusion

In this chapter, we presented a novel robust and adaptive experimental design
method to estimate the model parameters of discrite-time linear state space
models. We achieved this by quantifying the information content of an
experiment using a combination of the expected and observed Fisher information
matrix. In future research, we want to extend these results to non-linear
dynamics. The Kalman filter must then be replaced with another Bayesian
filter, such as the extended Kalman filter, sigma-point filter or particle filter.
Continuous-time dynamics is another interesting direction for future research,
as almost no literature exists on experimental design for stochastic differential
equation models.

To be able to optimize our experiments adaptively, we were forced to evaluate
the likelihood of the model parameters at the same location (in the model
parameters space) at every time-step. Most locations quickly become very
unlikely, as seen in Figure 4.4a. It would be better if this sample could slightly
move towards regions of higher probability at every time-step. Kantas et al.
(2009) give an overview of methods that allow for such jittering of the location of
the model parameters, but none of the methods discussed are completely online.
Since these authors are only interested in online parameter estimation, this is
not a major issue for them. But when also considering adaptive experimental
design, where an optimization over the input space has to be ran at every
time-step, the jittering of the model parameters must be very efficient. Very

72



recently He, Khedher, and Spreij (2021), published a promising method for
online parameter estimation for linear dynamic systems based on the Kalman
filter, that could be used for this purpose, and which we plan to incorporate in
future research.
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Chapter 5

Conclusion and Outlook

5.1 Overarching Conclusion

The general goal of this thesis is to show the usefulness of dynamic experiments
for bio-engineering applications. The case studies in Chapters 2 and 3 focus
on postharvest modeling and show that dynamic experiments indeed lead to
a much more precise and robust estimation of respiration and fermentation
parameters of pear fruit with reduced experimental effort. Chapter 4 focuses on
experimental design methodology for linear dynamical systems in the presence
of process noise. This methodology leads to improved experiments for models
commonly used in bio-mechanics and pharmacokinetics.

To reach this general goal, multiple challenges had to be overcome:

• Challenge 1: The optimal experiment depends on the true values of the
model parameters which the experiment aims to learn about. Some form
of prior information about these parameters is thus always required to
begin optimizing the experiment. In Chapter 2, we solved this issue
by taking parameter estimates from the literature and used them to
construct locally optimal designs. Using this methodology, experiments
to estimate Michaelis-Menten respiration parameters for pear fruit were
constructed. These experiments perform better than heuristic techniques
used in postharvest experimentation.

• Challenge 2: Robust experimental designs perform well over a wide
range of possible parameter values. Bayesian experimental design is a
popular technique to achieve robustness, where the prior information is
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quantified using a probability distribution. The design is then optimized
to perform well on average, where the information content is averaged over
this prior distribution. Available Bayesian experimental design techniques
from the literature only allow for parametric distributions to quantify
this prior information, and these techniques were found to be insufficient
to adequately describe the prior information we had available for the
respiration and fermentation of pear fruit. In Chapter 3, an experimental
design methodology was developed that can deal with arbitrary prior
distributions obtained by using a Markov-Chain Monte-Carlo integration
technique. This methodology was then found to perform better than the
traditional locally optimal design method used in Chapter 2. It was also
demonstrated to perform better than other robust experimental design
methods, that use parametric distributions as prior information. This
methodology was then used to construct robust experiments to estimate
the respiration and fermentation of pear fruit.

• Challenge 3: Little experimental design literature exists on how to deal
with dynamic systems with both process and measurement noise. In
Chapter 4, the Fisher information matrix (FIM) is derived for linear
dynamical systems with both kinds of noise. The use of this FIM in an
experimental design context is new to the literature. The key discovery
here is that experimental design for dynamic systems with hidden dynamic
states requires tracking these hidden states using an appropriate Bayesian
filter, which for linear systems equals the Kalman filter.

• Challenge 4: Adaptive experimental design techniques are needed when
the prior information about model parameters is poor. These adaptive
techniques re-optimize the remainder of the experimental design after
every measurement. However, the optimization problem that occurs in the
traditional experimental design technique, which is based on the expected
Fisher information matrix, keeps growing in complexity at every time-step.
In Chapter 4, this issue is solved by developing a novel experimental
design criterion based on a combination of the observed and expected FIM.
The observed FIM is computationally less expensive as it only utilizes the
actually observed measurements, thus making it well suited for quantifying
the information from the already gathered measurements. The expected
FIM requires an expectation over all possible observations, making it well
suited to quantify the information of future observations. A combination of
these two types of Fisher information matrices results in an experimental
design methodology that requires the same amount of computation at
every time-step, which is a necessity for adaptive experimental design.
Such a combination of the observed and expected FIM has not yet been
used for dynamic experimentation.
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5.2 Outlook

In this thesis, I developed novel experimental design methodology for dynamic
systems. I believe that more interesting and important research can still be
done in this area, including research on experimental design methodology for
more complicated dynamic models, novel ways to quantify uncertainty and
more efficient numerical techniques. In this section, I discuss some possible
perspectives on future research.

5.2.1 Model Selection

It is commonly assumed in the experimental design literature that the entire
model structure is known. However, it is often more realistic that:

• Competing model structures exist to explain a certain phenomenon.

• Only part of the model structure is known, and there are missing
components in the model.

Appropriate experimental design techniques should be developed that can deal
with both model parameter and model structure uncertainty.

Model Discrimination

Some experimental design techniques for model discrimination in dynamic
systems exist (Chen and S. P. Asprey 2003), mostly based on the Hunter and
Reiner criterion (Hunter and Reiner 1965). A weakness of this approach is that
it is not robust, since it does not account for parameter uncertainty. Instead,
the method only compares models at point estimates of the parameters. If
there is much parameter uncertainty, the Hunter and Reiner method will be
overly optimistic in its ability to discriminate models. Instead of this method,
a Bayesian optimal design method, similar to the one used in Chapter 3, could
be developed, where an information criterion, averaged out over a joint prior
distribution for the model structure and the model parameters, is optimized.
The challenge here is to generalize the Markov-Chain Monte-Carlo integration
technique to deal with both the continuous model parameters and the discrete
model structures.
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Missing Model Components

Another form of model uncertainty occurs when only part of the model structure
is known. One method to deal with missing model components is to replace them
with a black box model, such as a Gaussian process or neural network. Replacing
parts of a differential equation with a surrogate model is currently a hot topic
within machine learning (Rackauckas, Ma, Martensen, et al. 2020; Dandekar
et al. 2020). Optimal experimental design techniques have not been used by
machine learning communities, as they often deal with large observational
datasets. However, when combining the black box modeling approach from
machine learning and mechanistic models for biological systems, in scenarios
where acquiring experimental data is cumbersome and time-consuming, there is
a need for carefully crafted experiments. Instead of quantifying the uncertainty
of a finite dimensional parameter space, here the challenge lies in quantifying
the uncertainty of an infinite dimensional function space. To achieve this,
methodological concepts from optimal design of computer experiments can
be borrowed, where the Fisher information and entropy based criteria have
already been combined with Gaussian processes (Santner et al. 2003). Of
course, computer simulations are often deterministic, while biology is rife with
variability.

Throughout this thesis we assumed that Michaelis-Menten reaction kinetics
perfectly summarize the respiration and fermentation behavior of pear fruit.
However, in reality this is just a summary of a much larger biological pathway,
and diffusion also plays a role, leading to a high dimensional partial differential
equation model. Instead of working directly with this more complicated model,
the misspecification on the lumped model could be taken into account through
a Gaussian process (Kennedy and O’Hagan 2001), but experimental design for
such misspecified systems has not yet been considered in literature.

5.2.2 Process Noise

In chapter 4, I developed an experimental design method to deal with process
noise for discrete-time linear dynamical systems. For such systems, the Fisher
information matrix has a tractable form, involving the Kalman filter to estimate
the hidden state. The next step here is replacing the linear dynamics with
non-linear dynamics. The Kalman filter then no longer suffices to estimate the
hidden state. A more complicated filter, such as an extended Kalman, unscented
or particle filter must then be used, greatly increasing the computational cost.
If we then also consider continuous time models, we arrive at the unexplored
research topic of experimental design for stochastic differential equation models.
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5.2.3 Kullback-Leibler Divergence

In this thesis, I used the Fisher information matrix (FIM) to quantify the
information content of an experiment. The Kullback-Leibler divergence (KL-
div) is another method to quantify the information content. Unlike the FIM, the
KL-div does not involve normal approximations, and might be a better criterion
for small sample sizes. The major drawback is that the KL-div is numerically
much more intensive to calculate. This is generally done using a double loop
Monte-Carlo integration method (Ryan et al. 2016). Recently, advances have
been made in lowering the computational burden of the KL-div based approach
by considering variational Bayesian techniques (Foster, Jankowiak, Bingham,
et al. 2019), where the inner Monte-Carlo loop is replaced by optimizing a
variational distribution. This technique then allows for jointly optimizing the
design and variational parameters (Foster, Jankowiak, O’Meara, et al. 2020).

5.2.4 Koopman Expectation

In Chapter 3 of this thesis, we calculated the expectation required for
Bayesian experimental design by pushing forward the uncertain extended state
distribution in time, and then calculating some quantity of interest at each
time point. Gerlach et al. (2020) recently proposed a new method to calculate
expectations for dynamic systems that instead pulls back this quantity of interest
in time, using the Koopman operator which relies on the change of variable
formula. This idea is analogous to the back propagation (adjoint sensitivity
analysis) of gradients for optimization. Calculating the expectation using the
Koopman operator is thus generally a good choice when a low number of
expectations have to be calculated, such as the expectation of a scalar function
as opposed to the expectation of a vector function. In Bayesian experimental
design, such an expectation of a scalar function of the FIM is calculated. This
means calculating the expectation using the Koopman operator should be
favorable from a computational cost perspective.

5.2.5 Fully Risk Averse Experimental Design

In this thesis, we took an expected value approach to deal with uncertainty,
in the sense that uncertainty on the model parameters was quantified using a
probability distribution, and experiments were optimized for the average of an
information criterion over this distribution. Experimental design techniques
that instead assume a worst case scenario for the model parameter uncertainty
also exist, such as the techniques developed by Bauer et al. (2000). Here, the
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experimental design is optimized for the minimum of an information criterion
over the set of possible model parameters. This method, however, only uses
the worst case scenario to deal with parameter uncertainty, but there is, of
course, also uncertainty in the measurements, and other model disturbances
such as process noise. If these errors are bounded, we can also assume a worst
case scenario here. There exist parameter estimation techniques that produce
the entire set of model parameters that are consistent with the measurements,
while eliminating those that are not possible (Jaulin et al. 2001). However,
these set based techniques have only recently been used for experimental design
(Jauberthie et al. 2018). It would in particular be interesting to combine these
methods with reachability analysis for dynamic systems (Bogomolov et al. 2019),
which are techniques to numerically solve differential equations, which return
a tube in which the true solution is guaranteed to exist. Fully risk averse
experimental design techniques would particularly be of interest for designing
experiments that guarantee the true model parameters lie within a set of a
chosen size.

5.2.6 Goal Driven Experimental Design

Most experimental design literature for dynamic systems focuses on a precise
estimation of all model parameters, putting equal importance on each parameter.
Often, the reason for estimating the model parameters is to use the resulting
model in the control and optimization of the bioprocess. To achieve an optimal
control or to find the optimal input settings for a bioprocess, not all model
parameters are equally important. Instead, it is typically a non-linear function of
a subset of the model parameters that matters. More effort should therefore be
spent on precisely estimating the relevant functions of the influential parameters.
The challenge here is transforming the variability of the parameters into a
variability of optimal operation levels. Experiments then must be constructed
to minimize this latter uncertainty.

This topic of precisely estimating a non-linear function has only been briefly
explored in the dynamic experimental design literature, more specifically by
Houska et al. (2015). These authors started by using the Fisher information
matrix to quantify the uncertainty about the model parameters and then
linearize the effect that the model parameters have on the optimal conditions
and transform the parameter uncertainty into an uncertainty on the optimal
conditions, using the delta method. However, they did not use this technique
to find an optimal point in the design region, which would be a particularly
interesting application of this technique. Li, Ng, and Tan (2020) suggested a
method to achieve this, but only for generalized linear models. Their method
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splits the Kullback-Leibler divergence into two parts: (i) the Kullback-Leibler
divergence between the observations and the unknown parameters, and (ii)
an information loss term between the unknown parameters and the optimal
conditions quantified by the data processing inequality theorem (Cover and
Thomas 2012). However, this technique has not yet been used in combination
with dynamic systems.
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Appendix A

Markov chain details

Table A.1: 100 Markov-chain points used to generate robust designs in Chapter
3

Vm,O2 Km,O2 Kmn,CO2 rq Vm,f,CO2 Km,f,O2
µmol kg−1 s−1 kPa kPa - µmol kg−1 s−1 kPa

0.319 6.048 1 509.965 0.660 0.120 0.219
0.337 6.499 360.728 0.647 0.118 0.262
0.302 4.127 381.998 0.660 0.123 0.158
0.314 5.376 1 879.107 0.665 0.122 0.213
0.318 6.080 705.206 0.660 0.119 0.245
0.320 5.973 547.186 0.654 0.119 0.248
0.325 6.075 613.318 0.657 0.122 0.226
0.333 6.303 3 993.319 0.652 0.122 0.249
0.315 4.735 151.390 0.657 0.123 0.195
0.335 6.457 1 880.454 0.649 0.121 0.248
0.318 5.968 486.791 0.657 0.121 0.255
0.315 4.927 116.835 0.667 0.122 0.212
0.314 5.219 668.050 0.656 0.122 0.199
0.301 4.779 2 834.253 0.655 0.122 0.203
0.315 4.875 524.641 0.652 0.121 0.207
0.325 5.432 206.583 0.656 0.122 0.200
0.318 5.796 4 876.479 0.664 0.119 0.218
0.321 5.465 866.089 0.650 0.119 0.194
0.316 5.487 626.561 0.651 0.121 0.233
0.302 4.511 1 211.476 0.652 0.120 0.185
0.313 5.468 1 396.073 0.661 0.121 0.207
0.331 5.756 361.899 0.646 0.122 0.253
0.332 6.102 519.659 0.665 0.118 0.203
0.306 5.271 2 050.857 0.663 0.121 0.184
0.326 5.582 198.514 0.663 0.122 0.234
0.326 5.777 351.813 0.655 0.122 0.230
0.322 5.462 803.832 0.648 0.120 0.213
0.318 5.383 271.911 0.656 0.121 0.215
0.326 5.675 399.561 0.645 0.121 0.236
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0.332 6.148 372.446 0.647 0.122 0.245
0.318 5.310 2 123.003 0.649 0.120 0.222
0.309 5.137 30 722.240 0.646 0.121 0.219
0.328 5.600 498.991 0.646 0.122 0.224
0.317 5.981 672.748 0.667 0.118 0.235
0.320 5.796 1 353.348 0.657 0.120 0.226
0.335 6.163 4 266.786 0.650 0.119 0.258
0.329 6.398 566.697 0.668 0.121 0.215
0.328 5.797 1 096.313 0.641 0.121 0.275
0.309 5.046 270.633 0.670 0.119 0.186
0.317 5.619 1 594.171 0.659 0.121 0.223
0.315 5.645 669.299 0.657 0.120 0.214
0.321 5.087 158.819 0.656 0.118 0.218
0.313 4.938 663.970 0.659 0.118 0.189
0.328 6.045 247.834 0.660 0.122 0.252
0.349 6.201 311.906 0.647 0.121 0.266
0.297 4.986 898.951 0.673 0.122 0.193
0.311 5.414 8 614.486 0.655 0.120 0.258
0.320 5.571 378.320 0.648 0.122 0.244
0.305 5.507 18 510.410 0.661 0.121 0.220
0.325 5.906 799.309 0.655 0.121 0.235
0.327 5.999 1 192.227 0.659 0.123 0.215
0.319 5.343 256.175 0.651 0.124 0.232
0.315 5.440 1 012.412 0.659 0.122 0.205
0.309 4.567 1 305.077 0.632 0.120 0.200
0.313 5.530 866.167 0.653 0.121 0.217
0.309 5.321 1 812.792 0.657 0.122 0.232
0.320 5.389 448.156 0.663 0.120 0.216
0.311 5.271 782.166 0.658 0.120 0.217
0.348 6.598 263.406 0.649 0.122 0.275
0.313 5.537 1 784.753 0.663 0.120 0.217
0.321 5.734 300.298 0.662 0.122 0.202
0.310 5.047 187.941 0.658 0.122 0.210
0.330 6.206 664.203 0.659 0.119 0.218
0.339 5.822 194.900 0.650 0.119 0.227
0.327 5.900 5 201.394 0.639 0.119 0.231
0.315 5.178 254.046 0.658 0.122 0.201
0.321 5.563 954.128 0.642 0.122 0.236
0.313 5.277 863.780 0.646 0.121 0.231
0.294 4.660 10 601.054 0.643 0.121 0.208
0.323 5.549 47 663.943 0.649 0.121 0.215
0.316 5.374 826.334 0.657 0.122 0.194
0.332 6.346 590.861 0.660 0.122 0.249
0.324 6.544 2 189.372 0.656 0.121 0.266
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0.321 5.571 390.299 0.650 0.122 0.207
0.328 5.707 530.657 0.650 0.121 0.251
0.320 5.234 898.434 0.650 0.122 0.223
0.333 6.075 280.156 0.664 0.121 0.215
0.322 6.318 1 230.360 0.656 0.120 0.249
0.325 5.732 525.615 0.654 0.121 0.233
0.314 5.543 1 315.741 0.651 0.121 0.191
0.324 5.600 885.672 0.655 0.118 0.218
0.295 4.898 4 308.873 0.664 0.123 0.190
0.325 6.019 463.202 0.673 0.124 0.210
0.320 6.088 589.510 0.666 0.121 0.213
0.322 5.743 3 817.629 0.655 0.120 0.229
0.316 5.669 2 696.075 0.642 0.121 0.253
0.333 5.819 464.960 0.656 0.121 0.243
0.315 4.842 366.880 0.666 0.119 0.183
0.317 5.487 8 669.237 0.662 0.120 0.202
0.304 4.372 130.306 0.673 0.123 0.170
0.317 5.227 857.621 0.639 0.121 0.243
0.343 5.837 116.378 0.664 0.118 0.250
0.310 5.175 501.003 0.662 0.120 0.241
0.325 5.520 432.656 0.647 0.122 0.230
0.313 5.108 308 870.950 0.648 0.122 0.210
0.312 5.604 829.501 0.653 0.122 0.232
0.338 6.572 3 040.241 0.638 0.119 0.264
0.315 5.569 132 026.342 0.644 0.123 0.231
0.301 5.042 2 842.465 0.667 0.121 0.182
0.313 5.452 8 565.545 0.677 0.120 0.191
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