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Abstract

Background

Food systems are both affecting and being affected by climate change. Anticipated

effects of climate change on microbial food safety are both direct (e.g., on microbial

prevalence) and indirect (e.g., increased risk of floods on water microbial contami-

nation).

Scope and Approach

This paper highlights the necessity to build a quantitative framework to evaluate the

effects of climate change on microbial food safety. The tools available from the fields

of climate modelling and predictive microbiology are analysed, knowledge gaps and

data needs are identified. Moreover, key sources of uncertainty are underlined by

emphasising on the importance of an integrated study of the uncertainties involved.

Key Findings and Conclusions

Due to the high complexity of both climate change and microbial dynamics, a

multidisciplinary research approach is essential. After selecting one food product

and location to focus on, the appropriate climate change projections relative to

microbial dynamics need to be determined and generated. The development of the

impact model is based on the relationship between environmental pathogen preva-
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lence and dispersal and climatic factors. This is linked with the impact of climatic

factors on microbial dynamics. These mechanisms remain poorly understood. The

knowledge gap of the mechanisms regarding food microbial contamination and the

role of climatic variables remains unexplored. Since controlled experiments on the

climate system are challenging, international collaboration is imperative to gather

the appropriate observational datasets. Moreover, identifying and evaluating the

sources of uncertainty is critical to build reliable models.

Keywords: Climate change, Food safety, Predictive microbiology, Impact

modelling

1. Introduction1

Climate change is considered the defining issue of our time, ranking as one of the2

biggest risks for both humans and the planet. Global warming is indisputable with3

unprecedented evidence. The rise in the atmospheric and oceanic temperatures, the4

decreased amounts of snow and ice, and the rise of the sea level are evidence of this5

phenomenon (IPCC, 2014). In 1896, the Swedish scientist Svante Arrhenius stated6

for the first time that the amounts of carbon dioxide released to the atmosphere by7

human activity could lead to warming of the earth (Arrhenius, 1896). Since then, a8

significant amount of research has been conducted and the underlying phenomenon,9

known as the greenhouse effect, has been explored.10

Current knowledge suggests that from the short-wave radiation (ultraviolet and11

visible light) from the sun that reaches the earth, an amount is reflected back12

and the remainder is absorbed by the planet. This radiation leads to the planet’s13

warmth and is called radiative forcing. In turn, water bodies and land radiate14

their warmth as long-wave infrared radiation. Atmospheric gases like water vapour,15

carbon dioxide, and methane (known as greenhouse gases, GHG), absorb part of16

this long-wave radiation and are warmed by it (Lean, 2009). This results in an17

increase of the atmospheric temperature. Without the greenhouse effect, the earth18

would be about 35 °C colder (AAS, 2015). Thus, it is an essential element for life19

on the planet.20

The industrial revolution accompanied by the combustion of fossil fuels started21

and accelerated the release of the stored carbon. This leads to the increase in22
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the concentration of GHG in the atmosphere, resulting in an amplified greenhouse23

effect. Consequently, temperatures have been increasing, reaching nowadays an un-24

precedented rate of global warming along with numerous implications. The current25

rate of warming is estimated to be 0.2 °C (±0.1 °C) per decade, which means that26

global warming reached 1° C above pre-industrial levels around the year 2017, and27

would reach 1.5 °C around the year 2040 (IPCC, 2018). Generally, a change in the28

climate may have many origins; it may be attributed to natural processes occurring29

internally, changes in the incoming amount of radiation in the planet, to anthro-30

pogenic shifts in the composition of the atmosphere or in the arrangement of land31

use.32

The World Economic Forum’s “Global Risks Report” of 2021 places climate33

action failure as the most impactful and second most likely long term risk (World34

Economic Forum, 2021). Apart from being an environmental issue, climate change is35

also a health issue with numerous associated health risks, such as infectious disease36

(Costello et al., 2009; Semenza, 2014; Lake & Barker, 2018). The food system37

is associated with one class of infectious diseases; foodborne diseases. Climate38

change and the food system are at the heart of the 17 Sustainable Development39

Goals (SDGs) as set by the United Nations (Schmidt-Traub et al., 2017). They are40

associated with the majority of the goals, e.g., zero hunger, climate action, good41

health and well-being, clean water and sanitation, life below water, etc.42

Since the early stages of our society, the food system has altered drastically.43

Food production, processing, and consumption have become commercial and spe-44

cialised activities that serve as sources of added value, jobs and incomes in both45

rural and urban areas. Food is reported to be the world’s largest economic sector46

in terms of employment (FAO, 2019). According to the Food and Agriculture Or-47

ganisation, FAO, (FAO, 2018), the term food system “encompasses the entire range48

of actors and their interlinked value-adding activities involved in the production,49

aggregation, processing, distribution, consumption and disposal of food products50

that originate from agriculture, forestry or fisheries, and parts from the broader51

economic, societal and natural environments in which they are embedded”. Based52

on this definition, the food system is beyond the food itself; it is more about the ac-53

tivities involving food production. Several sub-systems are defined, e.g., the farming54
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system, processing system, waste management system. The development of mod-55

els to describe food systems should follow such a holistic approach. This leads to a56

higher model complexity, but offers certain key benefits. Including the relationships57

between the several sub-systems yields more realistic models. These are appropriate58

for climate change action, mitigation, and adaptation planning, leading to resilient59

food systems.60

The Intergovernmental Panel on Climate Change, IPCC, is the United Nations61

body that serves as the link between the scientific community and the policy mak-62

ers. The IPCC releases regular scientific Assessment Reports about state-of-the-art63

knowledge on climate change: its causes, potential impacts, and response options.64

The Paris Climate Agreement of 2016 was initiated based on the scientific input of65

the IPCC’s Fifth Assessment Report. As a part of the Sixth Assessment Cycle, in66

2019 IPCC published the “Special Report on Climate Change, Desertification, Land67

Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas68

Fluxes in Terrestrial Ecosystems”, also known as the “Special Report on Climate69

Change and Land” (IPCC, 2019), including a chapter dedicated to food security.70

The food system is of particular significance since it is both affecting and being af-71

fected by climate change (Vermeulen et al., 2012). Food production has been in the72

spotlight since previous IPCC reports, however, little attention has been given in73

them to food safety. In general, climate change is expected to affect all four pillars74

of food security: (1) food availability, (2) access, (3) utilisation, (4) stability, and75

their interactions (Godfray et al., 2010). Food safety falls under food utilisation,76

which involves the nutrient composition of food, its preparation, and the overall77

state of the consumer’s health. According to the EU General Food Law Regulation78

(Regulation (EC) No 178/2002), food is deemed unsafe if it is considered to be:79

injurious to health or unfit for human consumption. While anticipated effects of80

climate change on food security are being thoroughly explored (Dawson et al., 2014;81

Myers et al., 2017), the understanding of how climate change may affect food safety82

remains unexplored (Vermeulen et al., 2012; King et al., 2017; FAO, 2020).83

Due to its high complexity, climate change is expected to have a variety of84

impacts on food safety, both directly (e.g., increased prevalence of pathogens and85

toxins) and indirectly (e.g., higher risk of flooding, increasing the environmental86
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dispersal of pathogens)(Herrera et al., 2016). Higher atmospheric and sea tempera-87

tures, changes in the precipitation patterns, increased frequency of extreme weather88

events, ocean acidification and sea level rise are some of the climate drivers expected89

to contribute to the vulnerability of the food system both in terms of food security90

and safety (FAO, 2020; IPCC, 2019; Miraglia et al., 2009; Tirado et al., 2010). For91

example, increasing atmospheric temperatures may impact dairy cattle by increas-92

ing animal diseases (Bett et al., 2017), and increasing animal heat stress (Polsky93

& von Keyserlingk, 2017), and consequently affecting milk production, safety, and94

quality (Rojas-Downing et al., 2017; Bett et al., 2017). On the other hand, extreme95

weather events (e.g., droughts or floods) may have an impact on feed and water96

quality, and availability, indirectly influencing milk production, safety and quality.97

Furthermore, there is an established relationship between mycotoxin presence on98

maize and wheat and climate change (Paterson & Lima, 2010; Battilani et al., 2016;99

Van der Fels-Klerx et al., 2016). This specific hazard can also propagate to other100

food products, e.g., contaminated milk that originates from bovine farms using con-101

taminated feed (Van der Fels-Klerx et al., 2019). Since most published research has102

a qualitative character, quantitative research on the climate change effects on food103

safety is limited (Uyttendaele et al., 2015; FAO, 2020). One example of such quan-104

titative effort is the EU FP7 “Veg-i-trade” project that was launched in 2010. It105

was aiming to study the impact of international trade and climate change on fresh106

produce safety by combining field studies, statistical analyses, scenario analyses and107

risk assessments (Jacxsens et al., 2010).108

Climate change poses major risks to the food system in the future. Risk analysis109

has proven to be one of the most valuable tools in decision making. The principles110

of risk analysis encourage the systematic assessment of risks. The risks can be111

quantified by utilising mathematical models that describe the system under study.112

Developing such a quantitative risk analysis framework is imperative to quantify the113

safety risks that the food system is expected to face due to climate change. This114

can be implemented by using models of the anticipated climatic state and models115

linking climatic factors with food safety aspects. Climate models provide future116

trajectories of climate variables (climate projections), which are in turn used by the117

climate-specific food safety models to predict future food safety risks due to climate118
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change. Such a framework can serve as a potential tool for policy making in order to119

mitigate risks, shifting from the reactive to the proactive approach, and eventually120

contributing to the resilience of the food system. As both the climate and the food121

system are highly diverse and complex, it is critical for decision making purposes122

to account for the uncertainties involved. When studying the impacts of climate123

change, the uncertainty grows at each step of the process, i.e., from GHG emission124

scenarios to the climate projections and to the impacts on the system under study125

(Seneviratne et al., 2018). Overall, uncertainty analysis is closely related to the126

model development process and is a key necessity in building reliable models.127

This paper focuses on presenting the necessary steps for building a quantitative128

framework to study the impacts of climate change on microbial food safety. Several129

considerations that need to be accounted for are presented. Primary needs are130

identified, existing quantitative tools that serve towards that goal are reviewed, and131

the main challenges that are involved in developing such a framework with respect132

to uncertainty analysis are presented. The paper is divided in three sections. The133

first section describes the quantitative methods to obtain future climate projections.134

The second section reviews the available quantitative tools to assess microbial food135

safety, and the third section deals with the main challenges in the uncertainty136

analysis techniques that are required to quantify the food safety risks.137

2. Numerical modelling of the climate system138

The climate system consists of the atmosphere, hydrosphere, cryosphere, litho-139

sphere, biosphere, and the interactions among them (Figure 1) (IPCC, 2014). Cli-140

mate’s definition is formed by the statistical description of the variability in the141

climate factors over a long period. The World Meteorological Organisation has de-142

fined this period as 30 years (WMO, 2018). These factors are related to the Earth’s143

surface, such as temperature, precipitation, and wind. Due to the statistical nature144

given to climate’s definition, climate change is considered in statistical terms as145

well. In the rest of this paper, climate change is considered as, “a change of climate146

which is attributed directly or indirectly to human activity that alters the composi-147

tion of the global atmosphere and which is in addition to natural climate variability148

observed over comparable time periods” (IPCC, 2019). The distinction between149
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climate variability and climate change lies in the analysis of anomalous conditions.150

One example of a shift belonging to climate change is when the occurrence of events151

that are considered rare is becoming persistent, e.g., higher incidence of heat waves152

during the summer period. These shifts are reflected in the probability distribution153

(either in its shape, center or both) of the occurrence of such events (Collins et al.,154

2018). This means that a sole event, such as a severe flood, cannot be considered as155

a result of climate change, and is attributed to climate variability. However, such156

sole extreme events can be valuable for evaluating their effects on the food system.157

In general, a mathematical model is the description of a system given in term158

of a set of mathematical equations. The model aims to produce an accurate repre-159

sentation (or simulation) of the system under study with the minimum complexity160

to avoid overfitting. Climate models are mathematical descriptions of the earth’s161

atmosphere taking into account its interactions with the other compartments of the162

climate system (e.g., hydrosphere, cryosphere, etc.) and the incoming solar radia-163

tion. Weather is a short term condition of the atmosphere for a period of a day, a164

week, a month or even a year. Climate is the long term summary of the weather for165

a particular location over a timespan of several decades. Thus, in climate modelling166

terms, weather is the solution of the climate model (or the state of the climate167

system) at a given time, whereas climate would be represented as the simulation of168

the climate model for a timespan of decades.169

Climate models aim to describe the fundamental physical laws governing the170

system, like conservation of momentum, mass, and energy. These describe phenom-171

ena from sea ice forming to the moisture exchange between soil and the air above172

it. Amongst the most important are the Navier-Stokes equations, which describe173

fluid motion in terms of velocity, pressure, temperature, and density. This set of174

partial differential equations (PDEs) can be applied to both the atmosphere and175

the ocean. The flows are computed spatio-temporally (the three spatial dimen-176

sions are latitude, longitude, and height) and the effect of the Earth considered as177

a rotating sphere is accounted for. Numerical methods are exploited to solve the178

discretised mathematical expressions. The Earth is split in the three spatial dimen-179

sions in boxes, referred to as grids. Each of these grids is considered homogeneous.180

The higher the resolution, the smaller the grid size of the climate model. Based181
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on their resolution, climate models can be classified into Global and Regional Cli-182

mate Models (GCMs and RCMs, respectively). The implementation of processes183

taking place in smaller scales than the grid size of the GCM (sub-GCMgrid scale)184

is called parameterisation (McFarlane, 2011). It is important to note that certain185

climate features, such as droughts, storms, etc., are generated in the simulation of186

the climate model as a result of all the individual processes implemented in the187

mathematical description of the climate system.188

In general, climate modelling serves two purposes: gaining insight into the cli-189

mate system and producing future climate projections. The focus of this work is190

on obtaining climate projections. These are generated by considering several dif-191

ferent alternative scenarios for future climate change mitigation. In the rest of this192

paper these scenarios are referred to as Climate Mitigation Scenarios (CMS). The193

development of the CMSs takes into account several alternatives for demographic,194

economic and technological advances, and patterns of governance (Cubasch et al.,195

2013). Each CMS describes a different socio-economic narrative of the future (e.g.,196

strong or weak global corporation for climate action), which is translated into a197

trajectory of GHGs and aerosols concentrations. In turn, the trajectory is linked198

to a radiative forcing. These forcings act as input for GCMs and initialise them.199

Radiative forcings describe the residual energy absorbed by Earth after the reflec-200

tion of the solar radiation. When finer resolution is required (smaller grid size), the201

output of the GCMs is downscaled (Figure 2). The downscaling process transforms202

climate projections from the global scale to a local region scale and is analysed later203

in this section.204

Common practice in climate science is the development of impact models (IMs).205

When initialised with the output of climate models, they assess and quantify the206

risks associated with climate change (Figure 3). They can refer to both natural and207

human systems; in this case the IM describes the food system focusing on microbial208

food safety. The suggested approach for the development of the IMs is described in209

the second section by utilising predictive microbiology models.210

2.1. Global Climate Models211

GCMs serve as essential tools to delve into the mechanisms governing the cli-212

mate system. Different radiative forcings, especially those related to human activity213
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contributing to higher GHG concentrations in the atmosphere, are the inputs of the214

GCMs. Radiative forcings represent the amount of solar radiation that the Earth215

absorbs. GCMs are sophisticated models that represent the internal processes of216

the climate system elements, interactions, and feedbacks among them (Touzé-Peiffer217

et al., 2020; Adcroft et al., 2019). The start of what is called today climate modelling218

can be considered as the work of Manabe & Wetherald (1967). They published the219

first computer model that simulated the entire planet’s climate, by coupling atmo-220

spheric and oceanic models. Currently, the GCMs (also referred to as Earth System221

Models, ESMs) also include biogeochemical processes among the compartments of222

the climate system (Figure 1). Among others, they are able to reproduce the fluids223

circulation in the oceans and atmosphere, the annual seasonality cycle, heat trans-224

fer between soil and the air above it, the carbon and nitrogen cycle, ocean ecology,225

etc. Moreover, they account for land use changes by mathematically describing the226

effect of changes in vegetation on the climate system. This is achieved by including227

plant physiology models, which express light and moisture absorption from different228

vegetation types.229

GCMs act as a tool to gain knowledge on the causes of previous climate changes230

and to produce future climate change projections. These models are driven by the231

radiative forcings corresponding to the different socio-economic narratives consid-232

ered in the CMSs (Taylor et al., 2012). Thus, GCMs are suitable for assessing the233

impact of various different policies on stabilising the GHG emissions to a specific234

target, e.g., 1.5 °C global temperature increase. As a single model has not been235

identified as the best performing when simulating the climate system, a group of236

simulations, a model ensemble, should be considered. The climate change projec-237

tions needed to study the microbial food safety risks due to climate change should238

originate from a multi model ensemble. This comprises of a set of several different239

climate models that are considering the same CMS. Currently there are more than240

thirty modelling groups worldwide focusing on the development of climate models241

and the list is growing. Both the development and the assessment of climate mod-242

els are time and resource intensive processes. Thus, international collaboration is243

imperative. The Coupled Model Intercomparison Project (CMIP) of the World Cli-244

mate Research Programme is a global effort of climate scientists to share, compare245
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and analyse developed climate models by the different modelling groups around the246

world. CMIP is considered the state-of-the-art concerning climate modelling and is247

currently going through its sixth phase (CMIP6) (Eyring et al., 2016).248

In general, the grid size of each homogeneous box of a GCM lies between 100249

km and 500 km. The finer scales, which encompass the sub-GCMgrid heterogeneity250

of the climate system are ignored (Figure 4). Due to their coarse resolution, the251

estimates originating from GCMs are valid only for large timescales and on a global252

spatial scale. However, primary food production takes place in finer scales, making253

the resolution of a GCM inadequate. Increasing the resolution of a GCM comes254

with extremely high computational costs. Modelling the impacts of a changing255

climate on microbial food safety and the adaptation strategies required to deal with256

the emerging risks demands smaller, regional and national scales (Barsugli et al.,257

2013). Numerous techniques have been developed to downscale to the regional scale258

(Rummukainen, 2009; Tapiador et al., 2020). The downscaled models, called RCMs,259

provide climate projections for regional levels. Quantitative tools to obtain climate260

model projections adequate for regional scales, i.e., regional climate projections, are261

analysed in the following subsections.262

2.2. Regional Climate Models263

As the effect of climate change is unique for each region, it is necessary to264

also evaluate the potential impact of climate change for the location under study.265

Thus, the first step to assess the effects of climate change on microbial food safety266

is to define the region under study. Since each region is characterised by one or267

more primary production food categories, a number of them needs to be selected.268

Another approach is to determine one food category to focus on and select those269

regions that are associated with it. For example, there are specific regions around270

the world associated with primary coffee production. Once the regions and food271

categories have been defined, regional climate projections for the associated regions272

need to be obtained.273

The downscaling process incorporates sub-GCMgrid scale processes and hetero-274

geneities to the GCMs output, yielding to an enriched and more realistic simulation275

of the climate system (Gaur & Simonovic, 2019). Each RCM is explicitly devel-276

oped for one region. Downscaling methods derive fine scale climate projections on277
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both spatial (e.g., from a 500 km grid cell GCM output to a 20 km grid cell) and278

temporal (e.g., from monthly to daily timespans) aspects. One critical assumption279

under this framework is that the climate of the region is governed by the processes280

involved between the atmosphere (circulation, temperature, moisture, etc.) and the281

features (water bodies, mountains, etc.) of the region. Overall, the downscaling282

process is valuable for detailing the internal processes of the climate system and for283

evaluating the impact of climate change on smaller scale systems. The development284

of RCMs comes with a significant challenge: the accurate reproduction of the vari-285

ance of climatic variables as well as the reproduction of extreme events, not only286

in frequency but also in amplitude (IPCC, 2018). RCMs come with technical and287

scientific limitations, which need to be addressed carefully (Rummukainen, 2009;288

Giorgi, 2019). In terms of the CMIP6, RCMs fall under the Coordinated Regional289

Downscaling Experiment (CORDEX) (Gutowski et al., 2016).290

To quantify the effects of climate change on microbial food safety, the scale291

of the system, i.e., microbial dynamics throughout the food system, imposes the292

necessity to downscale. Critical considerations in this process include defining the293

appropriate temporal and spatial resolution required to study microbial dynamics,294

and screening the most influential climate variables. Simplifications can be made,295

such as selecting a limited number out of all the available CMSs. The set of GCMs296

that are going to be included in the model ensemble is a trade-off. More than one297

GCMs should be considered to get an accurate climate simulation. However, the298

more GCMs are included, the higher the computational costs. Additionally, the299

downscaling method used to develop the RCM has to be selected. These methods300

are explained in the next subsection.301

2.3. Downscaling Methods302

Overall, there are two broad downscaling approaches: dynamical and statisti-303

cal (Barsugli et al., 2013). In dynamical downscaling, the RCM is considered as a304

high resolution GCM. It is based on the same principles, but to reduce the com-305

putational costs, is limited to the studied region. These RCMs encompass (for the306

studied region, or period) detailed information about the climate system compo-307

nents, including the associated heterogeneities, that a GCM lacks. The output of308

the neighbouring grid cells of the GCM serves as an input for the defined RCM’s309
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boundaries of the area or period under study (Knutson et al., 2007). Since such a310

RCM is embedded in a GCM, its performance is connected to the chosen GCM and311

its accuracy (Bender et al., 2010; Knutson et al., 2013). Both the developed RCMs312

and GCMs are vulnerable to systematic errors (Rummukainen, 2009). To eliminate313

these errors, climate model projections need to be adjusted to mimic observed cli-314

mate statistics. This process is called bias correction (Maraun, 2016; Maraun et al.,315

2017). Hawkins et al. (2013) assessed methods for obtaining climate projections316

data for crop modelling, concluding that exploiting a variety of methods is essen-317

tial to ensure robustness and reliability. When conducting an impact study, it is318

crucial to avoid modifications in the output of the IM that originate from the bias319

correction process (IPCC, 2018).320

Statistical downscaling sets up empirical models relating past and/or current321

large-scale and small-scale climatic variables. The output of the GCM serves as322

input, and the climate variables are determined for the smaller scale in a black-box323

modelling approach (Dixon et al., 2016; Lau & Nath, 2012). This methodology324

imposes a critical assumption: the several different radiative forcings associated325

with future emission scenarios do not affect the relationship between large-scale326

and the small-scale characteristics (Lanzante et al., 2018). The bias correction of327

the output of a GCM is included in the statistical downscaling process. Madsen328

et al. (2012) presented a statistical downscaling methodology to obtain climate329

change projections. These were associated with impact models to evaluate the330

effect of climate change on mycotoxin presence in crops. Liu et al. (2015) applied331

the Delta method, a statistical downscaling method, to downscale climate projection332

data from two GCMs for four CMS to study the effect of climate change on the333

microbial safety of leafy green vegetables. They concluded that more GCMs are334

needed to obtain an accurate climate simulation.335

The choice of the downscaling method relies on the scientific expertise in climate336

modelling. Developing a dynamical RCM is similar to developing a GCM, needs337

collaboration, high level of technical expertise in climate science, and is computa-338

tionally expensive. Conversely, statistical downscaling approaches do not require339

high level of expertise, are computationally efficient, but are based on many as-340

sumptions, and should be applied with caution.341
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3. The food system and predictive microbiology342

Each primary food sector faces its own microbial risks and involves different343

levels of microflora richness. Addressing the effect of climate change should account344

for these unique characteristics. Thus, each IM should refer to one food sector.345

The modelling approach may differ based on the complexity and the origin of the346

microbial risks involved in the food class. For example, given that milk forms a347

suitable environment for the growth of many microbial species, studying the effect348

of climate change on these microbial communities is essential. For any food sector349

chosen, the IM should have as input future climate projections and as output the350

food safety risks associated with the food sector under study. The output of the351

downscaling process, i.e., regional climate projections, should be in the appropriate352

form to study the impacts of climate change on microbial food safety. Moreover,353

extreme weather events are expected to be more frequent due to climate change354

and the impact of these events on the microbial dispersal in the environment, and355

consequently on raw materials, is poorly understood. Before studying the impact of356

extreme weather events on the food category under study, which extreme weather357

events are expected to be more frequent for the region under study have to be358

determined. Overall, the knowledge of the future climate conditions for the region359

under study is essential. Based on this knowledge, food safety hazards need to be360

identified and evaluated, similarly to the risk analysis approach. In this section,361

predictive microbiology is introduced and evaluated as a tool for the quantification362

of the microbial food safety risks associated with climate change.363

According to the Regulation (EC) No 852/2004 on the hygiene of foodstuffs, food364

safety should be guaranteed throughout the food supply chain. The development of365

an IM should follow this concept and integrate the entire food chain, starting with366

primary production. The effect of climate change on microbial food safety at the367

time of consumption is influenced by the whole production process (e.g., level of368

contamination at the production and processing sites, effect on growth rate during369

storage etc.). Depending on the conditions that are met throughout the food chain,370

different types of model structures should be introduced, i.e., growth, growth/no371

growth, survival or inactivation models. The most commonly used method to as-372

sess and manage microbial food safety is the implementation of the risk analysis373
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approach, resulting in what is called Microbial Risk Assessment (MRA). Accord-374

ing to the Codex Alimentarius (FAO/WHO, 1999), MRA is a scientifically based375

process consisting of: hazard identification, characterisation, exposure assessment,376

and risk characterisation. Predictive microbiology forms an essential element in377

Quantitative Microbial Risk Assessment (QMRA). QMRA quantifies the exposure378

of a certain microbial hazard by building a model to describe its level throughout379

the life span of a food product (Membré & Boué, 2018). The relationship of cli-380

matic variables with the contamination levels and the prevalence of pathogens in381

raw food material is the linkage needed to build IMs in a risk analysis approach.382

Eventually, the developed IMs are climate oriented predictive microbiology models.383

These intend to have as input regional climate projections. The opted output of the384

IMs is a trajectory of quantified food microbial risks, linking climate change with385

microbial food safety.386

3.1. Modelling microbial dynamics in food387

A fundamental tool in quantifying microbial food safety is predictive microbi-388

ology, a sub-field of food microbiology. Predictive microbiology involves the use of389

mathematical models, that are intended for the description of microbial dynamics390

in food products. In terms of predictive microbiology, the system to be modelled is391

the microbial behaviour (e.g., growth, survival and inactivation) in food under the392

influence of intrinsic and extrinsic factors. Intrinsic factors comprise the physico-393

chemical properties of the food itself, e.g., pH, water activity, and redox potential,394

whereas extrinsic factors are the environmental factors not related to the food itself395

(e.g., temperature and relative humidity) (McKellar, 2004). Several of these fac-396

tors are directly (e.g., temperature) or indirectly (e.g., ocean acidification resulting397

in lower pH) linked with climatic factors, establishing a primary applicability to-398

wards the scope of this research. The onset of the field of predictive microbiology399

is considered to be the works of Bigelow & Esty (1920), Bigelow (1921) and Esty400

& Meyer (1922) involving the development of a model to predict the inactivation401

of spores of Clostridium botulinum during thermal processing. Since then, the do-402

main gained more attraction, in particular during the 1980s and 1990s, leading to403

intensive research in the field (McMeekin et al., 2002).404

Models are traditionally classified into two types based on the nature of the405
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information used to develop the model: mechanistic and empirical. Mechanistic406

(also referred to as deductive or white box) models are developed based on general407

laws of physics and the understanding of the underlying phenomena governing the408

system. Nonetheless, mechanistic models, are rarely used in predictive microbiol-409

ogy. In contrast, empirical models (also mentioned as inductive or black box) are410

strongly dependent on available data and solely aim to describe the observed system411

response. Thus, black box models are valid only for the range of conditions associ-412

ated with the dataset used to construct them. Therefore, they are preferred in cases413

where a priori knowledge is limited, but obtaining experimental data does not re-414

quire significant efforts. A common practice in this field is to couple mechanistic and415

empirical approaches leading to the so-called grey box model or semi-mechanistic416

models.417

Microbial dynamics are studied at three scales: macroscopic, mesoscopic, and418

microscopic level (Figure 5). In the macroscopic approach, the population is con-419

sidered homogeneous and is modelled as a whole. The mesoscopic approach takes420

into consideration the heterogeneity among populations, whereas in the microscopic421

approach microbial cells are modelled individually. Multi-scale models serve as a422

linkage between the different spatial levels (Van Impe et al., 2013).423

3.2. Macroscopic microbial modelling424

At the macroscopic level, the information gained refers to the characteristics of425

the overall microbial population and its behaviour. Macroscopic models provide426

accurate predictions of microbial population dynamics under close to optimal con-427

ditions. Thus, they are the basic tool to quantify microbial dynamics in food. The428

four phases of a typical microbial population are (1) the lag phase, defined as an429

adjustment period during which the cells adapt to the new environment, followed by430

(2) the exponential growth phase, in the end of which the population reaches (3) the431

maximum population density (stationary phase), and finally (4) the decline phase432

due to, e.g., nutrient unavailability (Figure 6). Insights obtained from macroscopic433

models may form the a priori knowledge to quantify the effect of climate change on434

microbial dynamics. The scientific understanding of microbial dynamics assumes435

that the increase of the population is proportional to the population size (Van Impe436

et al., 2005), expressed as:437
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dN(t)

dt
= µ(·) N(t) (1)

N(t) [CFU/mL] represents the concentration of microorganisms at time t [h] and438

µ(·) [1/h] the specific growth rate. µ(·) depends on process conditions (e.g., tem-439

perature), atmospheric conditions (e.g., relative humidity), food properties (e.g.,440

pH) and components governing microbial interactions. µ(·) is positive in the case441

of microbial growth and negative in the case of population decrease. According to442

Bernaerts et al. (2004), microbial behaviour in time can be expressed as:443

dNi(t)

dt
= µ(Ni(t), < env(t) >,< phys(t) >,< P (t) >,< S(t) >,< Nj(t) >, ...)Ni(t)

(2)

Ni(t) [CFU/mL] represents the microbial population of the species i at time t [h].444

µ [1/h], the specific growth rate, which is determined by the physicochemical envi-445

ronmental conditions < env(t) >, the physiological state of the cells < phys(t) >,446

concentration of the metabolic products < P (t) >, availability of the substrate447

< S(t) >, and the interactions with other species < Nj(t) >. Each of these factors448

can be represented as an additional building block in models describing microbial449

dynamics (Van Impe et al., 2005). Expanding our knowledge on the influence of450

climatic factors, such as relative humidity and atmospheric carbon dioxide, on mi-451

crobial dynamics means, in practise, establishing a relationship between them and452

µ(·) by adding the associated building blocks.453

Macroscopic microbial models can be classified into: (1) primary models de-454

scribing microbial responses, such as population growth, in relation to time; (2)455

secondary models, which describe the kinetic parameters of the primary models456

in relation to the changes of intrinsic and extrinsic factors; (3) tertiary models,457

which include the primary and secondary models in the form of software tools. One458

approach to exploit predictive microbiology models to assess the effect of climate459

change on microbial behaviour is to modify the secondary models to describe the ef-460

fect of climatic factors on microbial dynamics. Coupling them with primary models461
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will be valuable to determine the effect of climate change on microbial prevalence462

both in the environment and in raw materials.463

Secondary models may have a major contribution to the scope of this research,464

i.e., quantifying the effect of climate change on microbial behaviour. Concerning465

predictive microbiology secondary models, there are two different modelling ap-466

proaches. In the first approach, the developed models describe the effect of intrinsic467

and/or extrinsic factors simultaneously using a polynomial equation, leading to the468

response surface models. In the second approach, each factor is individually de-469

scribed and a general model can be used for the combined effects of the factors.470

This approach involves the use of the gamma hypothesis introduced by Zwietering471

et al. (1992), describing the growth rate in relation to its maximum value at the472

optimal influencing conditions for growth. This can be expressed as:473

µmax(e) = µopt

E∏
k=1

γek(ek) (3)

E is the number of the influencing conditions e, γek(ek) is the reduction of the474

growth rate due to a non-optimal value of one of the influencing conditions e, and475

µopt is the optimal growth rate, which is reached if all influencing conditions e476

are at their optimal values. Akkermans et al. (2018a) propose a novel gamma-477

interaction model for describing the effect of temperature, pH and water activity on478

the microbial growth rate. Akkermans & Van Impe (2018) developed a model of the479

inhibitory effect of pH on microbial growth by including the effects of the lag and480

stationary growth phases on microbial growth rate as independent gamma factors.481

Dolan et al. (2019) developed a secondary model, following the gamma hypothesis,482

for the effect of diffused carbon dioxide in the context of modified atmosphere483

packaging. Similarly, the gamma factors associated with climatic variables, such as484

relative humidity and atmospheric carbon dioxide, can be introduced to describe485

their impact on microbial dynamics.486

Secondary models may be valuable tools in the effort to quantify the effect of487

climate change on microbial dynamics. Liu et al. (2015) present an illustrative488

application of downscaled climate projections on secondary models. As presented489

in Figure 7, expressing the effect of temperature on the growth rate of different490
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microorganisms (in this case Bacterium1 and Bacterium2) with secondary models491

can be useful to compare differences in microbial growth dynamics. In this illus-492

trative example, for a given temperature T1, Bacterium1 appears do be dominant493

with a higher growth rate compared to Bacterium2. However, at a higher temper-494

ature, T2, Bacterium2 has a higher growth rate. Thus, from the microbial food495

safety perspective, with an increase in temperature experts are able to quantify and496

eventually identify the emergence of pathogen species.497

Another approach focuses on evaluating the growth boundary conditions. The498

reasoning behind this approach states that the range of each factor affecting mi-499

crobial growth are finite, indicating that growth can decline abruptly with a small500

increase or decrease in one of the factors (McKellar, 2004). Models under this501

category are known as probabilistic models or logistic type models and include502

growth/no growth models, survival/death models, recovery/no recovery models,503

and spoilage/no spoilage models. These models can be modified to characterise the504

boundaries by quantifying the probability of growth, survival, recovery or spoilage505

as a function of a set of the influencing factors (Ratkowsky & Ross, 1995). In506

mathematical terms this can be expressed as:507

logit(P ) = ln

(
P

1 − P

)
(4)

P is the probability of the studied phenomenon for a given set of values of the508

influencing factors. This can be related to macroscopic secondary models, such as509

response surface models. Such a response surface model with two influencing factors510

can be described as:511

logit(P ) = b0 + b1X1 + b2X2 + b3X
2
1 + b4X

2
2 + b5X1X2 (5)

X1, X2 are the influencing factors and b0-b5 are the regression coefficients to be512

estimated. This approach can be utilised to evaluate the effect of multiple climatic513

factors (temperature, relative humidity, carbon dioxide etc.) on the growth limits514

of microorganisms in complex microbial niches such as soil etc.515
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3.3. Beyond the macroscopic modelling approach516

The above mentioned models fall short of describing more realistic conditions,517

e.g., under stress environments. These models are developed based on experiments518

with liquid systems, mainly considering factors such as temperature, pH, etc. Ex-519

treme weather events, e.g., droughts, could be integrated into the predictive micro-520

biology framework as stress environments. Furthermore, climate change is expected521

to play a role in population heterogeneity (Cavicchioli et al., 2019) and is a key driver522

for stress adaptation. Integrating complex features, such as background flora, stress523

adaptation etc., is challenging but essential to study the effect of climate change.524

In this subsection we describe predictive microbiology modelling approaches that525

aim to integrate such complex features: mesoscopic, macroscopic, and multi-scale.526

IMs that are developed based on these modelling approaches aim to link climatic527

variables and these complex features.528

The mesoscopic modelling approach falls under the category of the top-down529

approaches. The macroscopic models are expanded by including information associ-530

ated with differences in cell behaviour from the microscopic level. Mesoscopic mod-531

elling focuses on parts of the microbial population like sub-populations or colonies.532

The resulting models are also referred to as population balance models, since en-533

vironmental or population heterogeneity is considered. Observed differences in the534

microbial responses are described, when following such a modelling approach. Since535

the population is no longer considered homogeneous, the behaviour of the microbial536

cells is classified accordingly, e.g., the population can be subdivided into growing537

and nongrowing groups (McKellar, 1997) or into heat-sensitive and heat-resistant538

subpopulations (Van Derlinden et al., 2009).539

In the case of the microscopic modelling approach, biomass units or micro-540

bial cells are considered individual units and spatial aspects among them are inte-541

grated. In this bottom-up approach, the microbial dynamics materialise from the542

behaviour and interactions among them. These intercellular interactions can be543

integrated when the microbial cells are represented in the form of discrete entities544

in individual- or agent-based models (IbM/AbM). IbMs describe the global dynam-545

ics of a system in terms of its composing individuals or agents (Tack et al., 2017).546

In this case, the key advantage is that the population dynamics originating from547
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the model are not implemented explicitly but arise from the modelled processes548

at the microscopic level. A high level of detail is included; spatial and microbial549

differences, randomness, interactions etc. (Tack et al., 2015). This approach is550

valuable to study population heterogeneities and describe microbial behaviour in551

complex environments, such as soil etc. Another potential application of IbMs is552

environmental stress adaptation. IbMs can contribute significantly to two research553

directions. Firstly, exploring the climate change potential as a key stress adapta-554

tion driver. Secondly, unravelling the cross-protection mechanisms that take place555

when adaptation to one environmental factor, e.g., extreme temperature, induces556

adaptation to several other factors related to food products and processes, e.g., pH557

(Cavicchioli et al., 2019; FAO, 2020). Furthermore, IbMs can be utilised to assess558

spatial differences in environmental microbial dispersal and prevalence.559

Cavicchioli et al. (2019) suggest that elevated temperatures due to climate560

change may lead to shifts in carbon intake from microorganisms. In the context of561

microbial food safety, the use of metabolic network models (Van Impe et al., 2013)562

may be useful. These models study the behaviour of microorganisms in relation563

to their metabolism, i.e., biochemical reactions taking place inside the cell. The564

depth of detail of these metabolic networks may vary from describing only the most565

important reactions of the metabolism to a more involved network. This modelling566

approach integrates knowledge originating from the microscopic level, as expressed567

through the metabolic network, with macroscopic level models, composing what is568

called multi-scale modelling.569

3.4. Towards modelling the impact of climate change on microbial dynamics570

Even though the above mentioned models can be exploited and serve as valuable571

tools to evaluate the effect of a number of climatic factors on microbial food safety,572

the knowledge gap is apparent. Before quantifying the effect of climate change on573

microbial behaviour, the effect of climate has to be studied in detail. It is important574

to broaden the understanding of the effect of climate variables (or climatic factors)575

besides temperature, such as relative humidity, precipitation, carbon dioxide etc.,576

on microbial population dynamics. This knowledge will aid in determining which577

climatic variables are the most influencing, and thus should be included in the study,578

for each food category. In principle, an IM should describe the relationship between579
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those climatic variables and microbial responses throughout the life span of the food580

product.581

Liu et al. (2016) in their attempt to determine the climatic factors that play a role582

in the Escherichia coli contamination of leafy greens concluded that temperature583

ranks first. Medina-Mart́ınez et al. (2015) describe Pseudomonas spp. growth584

on baby lettuce as a function of several climatic variables, such as variations in585

temperature, relative humidity, rainfall spells, and wind. López-Gálvez et al. (2018)586

revealed a positive effect of increased relative humidity levels on the survival of587

Salmonella spp. on plants. In another study relative humidity and solar radiation588

demonstrated a positive relationship with Pseudomonas spp. presence (Truchado589

et al., 2019). Pang et al. (2017) studied the influence of climatic factors on the590

prevalence of Listeria spp. A black-box modelling approach was applied to develop591

models predicting the risk of contamination for the pathogen.592

It is essential to expand current knowledge on the relationship between climate593

factors and microbial prevalence and dispersal in the environment. Thus, the im-594

plementation of secondary models describing the effect of intrinsic and extrinsic595

factors on microbial dynamics needs to be further studied. One approach would596

require the re-estimation of the model parameters of already developed and vali-597

dated models, given that the studied environment will be different, i.e., the food598

matrix. One example of such change in the food matrix is climate change affecting599

raw milk composition characteristics. However, the existing model structures will600

most likely still be applicable for this new application. Another approach could be601

to focus on the proliferation of microorganisms in the environment, i.e., air, soil,602

and water by incorporating the spatial dimension. Predictive microbiology adopts603

an additional dimension, yielding predictive environmental microbiology. Another604

approach could integrate climate change information by focusing not only on the605

factors that are considered most relevant with regard to microbial dynamics but606

also with regard to the likelihood and magnitude of change they are expected to607

have due to climate change.608

Furthermore, studying the effects of extreme events, such as floods, on microbial609

food safety is essential, since these events are expected to be more frequent and610

severe due to climate change. Castro-Ibáñez et al. (2015) in their work concluded611
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that flooding comprises a risk factor for microbial contamination of leafy greens.612

Shiraz et al. (2020) conducted flooding experiments in strawberries production,613

detecting generic E. coli in soil samples up to 48 hours after flooding.614

4. Handling Uncertainty615

Whether dealing with the climate system or microbial dynamics, confidence in616

projections (when it comes to climate models) or predictions (when it comes to617

predictive microbiology models) is of utter importance. At its core, modelling is618

an approximation of reality. Thus, uncertainty is an ever-present phenomenon.619

Furthermore, the model parameters are estimated from experimental data, i.e., a620

process where uncertainty is an inherent property, and in some cases, exogenous621

disturbances are not accounted for. Uncertainty derives from the lack of knowledge622

and is often classified into aleatory and epistemic (Oberkampf et al., 2002).623

Aleatory uncertainty or stochastic uncertainty (or variability) is present due to624

inherent variation or randomness of the studied system, often referred to as noise.625

For microbial behaviour, the term variability refers to the heterogeneity of the micro-626

bial cells. One of the major sources of variability is related to biological variability627

(Akkermans et al., 2018b). According to Membre et al. (2005), variations in growth628

rates have been reported for different strains of several pathogens, such as Liste-629

ria monocytogenes, Salmonella spp., E. coli, Clostridium perfringens and Bacillus630

cereus. Epistemic uncertainty originates in the lack of knowledge (Oberkampf et al.,631

2002).632

The approach followed to handle uncertainties differs depending on the definition633

of probability. The two main approaches are the frequentist and the Bayesian.634

The latter is based on the definition of probability being related to the degrees of635

belief. The Baye’s theorem is the tool used to update probability distributions by636

taking into account new knowledge. In this way, the probability distributions of the637

parameters and model outputs become more reliable. In contrary, according to the638

frequentist approach, probability is associated with the frequency of the occurrence639

of an event. Following this approach means that point estimates of the parameters640

are used, and uncertainty is quantified with confidence intervals.641

If possible, it is advised to characterize biological variability separately from642
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uncertainty, especially in the framework of conducting a QMRA (Busschaert et al.,643

2011). The key difference is that biological variability can always be quantified,644

but never eliminated, whereas experimental uncertainty can often be reduced sig-645

nificantly. The framework proposed by Garre et al. (2020) is tackling this issue by646

introducing multi-level models that account for the different sources of uncertainty.647

In their work, microbial dynamics are described with probabilistic predictive mi-648

crobiology models and uncertainties are handled using the Bayesian approach. The649

main objection to the Bayesian approach is that when using prior distributions,650

which is part of the Baye’s rule, the subjective element is introduced in the process651

of assigning the prior. This means that ending up with reliable models comes with652

a great cost linked to the prior knowledge. In the case of biological applications,653

such as this, adequate prior knowledge, in terms of data requirements, is not always654

necessarily available or accessible.655

In general, sources of uncertainty in model outputs vary. They may be related656

to: (1) the model inputs (e.g., parameters, initial conditions, boundary conditions,657

forcings), (2) the model structure either due to unmodelled system phenomena658

or due to impossible discrimination between competing model structures, (3) to659

computational costs that are limiting the number of model iterations, and (4) to660

computational errors (Ghanem et al., 2016). Hence, uncertainty propagation is an661

important step in building reliable models. Uncertainty propagation can be per-662

formed in two directions; forward and backward. Forward uncertainty propagation663

techniques propagate the uncertainty from model inputs through the mathemati-664

cal model to the model outputs (or responses) to quantify the uncertainty on the665

model responses, while backward uncertainty propagation techniques start from the666

experimental data and model simulation results estimating parameter uncertainty.667

Akkermans et al. (2018c) studied the influence of both parameter estimation and668

several uncertainty propagation methods on the calculation of model prediction669

uncertainty in the context of predictive microbiology. Uncertainty propagation is670

typically performed with Monte Carlo simulations, while other techniques include671

the linear approximation method, polynomial chaos expansion method, and the672

sigma point method (Bhonsale et al., 2018). In the case of probabilistic models, un-673

certainty propagation can be also performed by Bayesian approaches. Van Boekel674
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(2020) compares the application of Bayesian methods for uncertainty propagation675

and parameter estimation with the frequentist approach. Some of the key conclu-676

sions are that Bayesian methods offer better interpretation of model parameters,677

direct estimation of the confidence intervals in model predictions, and, in general,678

more intuitive results. However, the authors point out at the prerequisite of back-679

ground in probability theory, as well as at the requirement for well-established prior680

knowledge. Thus, the choice of the method depends on the model’s computational681

efficiency, the modeler’s expertise in probability theory, and the needed data avail-682

ability.683

4.1. Climate models and uncertainty684

Typically, the uncertainties involved in climate projections are quantified with685

the use of ensembles of climate model simulations, however, the sources of uncer-686

tainty should always be noted (Moss et al., 2010). There are multiple key sources of687

uncertainty in climate modelling. Firstly, uncertainty related to input data referring688

to the lack of knowledge of the boundaries and the inherent noise of the data used in689

climate simulations. Secondly, parametric and structural uncertainties, originating690

from the lack of knowledge about processes leading to different parameterisations691

and model structures. Moreover, errors in observational data, which include noise692

and the lack of knowledge of the covariance structure of the data. Uncertainty693

related to the downscaling process and the uncertainty introduced by the off-line694

coupling of climate models and impact models, due to the fact that it permits only695

a certain number of linkage variables, thus key feedbacks may be eliminated. Fur-696

thermore, uncertainty related to the tuning process, i.e., forcings used for climate697

projections are very different to those used for tuning, and uncertainty related to698

the bias correction process of the output of the GCM. Recent advances in address-699

ing uncertainty in climate models include the work of Sherwood et al. (2020), which700

narrows down uncertainty associated with climate sensitivity. Uncertainty is com-701

pounded with the downscaling process. Thus, quantifying uncertainty is considered702

as a trade off in finer-resolution projections. Furthermore, a major challenge in703

producing reliable climate projections is related to proper uncertainty propagation704

analysis at each phase, e.g., from radiative forcings to global climate models, from705

global to regional climate models, from regional climate models to impacts at the706
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ecosystem level, etc (IPCC, 2018).707

4.2. QMRA and uncertainty708

Biological variability includes both the heterogeneity in individual cell behaviour,709

known as cell variability, as well as the inherent diversity in microbial behaviour of710

strains of the same species undergoing the same conditions, known as strain vari-711

ability (Koutsoumanis & Lianou, 2013). Traditionally, the effect of extrinsic factors712

on biological variability can be addressed by using probability distributions for the713

model parameters. The resulting models are also known as stochastic predictive714

microbiology models (Koutsoumanis et al., 2016). Codex Alimentarius guidelines715

underline the importance of taking uncertainty into consideration and performing716

sensitivity analysis when conducting a MRA, especially for a QMRA (Thompson,717

2002). Sensitivity analysis aims to characterise the different sources of uncertainty718

by assessing how each one contributes to the uncertainty of the output of the model.719

Uncertainty and sensitivity analyses should be conducted together (Saltelli et al.,720

2007). Traditionally, when conducting a QMRA two approaches can be followed to721

address uncertainty; either applying robust or stochastic methods. Robust methods722

are based on formulating a worst-case scenario, while stochastic methods charac-723

terise uncertainty with probability distributions that formulate expected outcomes724

and chance constraints. Once the mathematical model is developed and the variabil-725

ity of the input factors and the model parameters is estimated through a distribu-726

tion, forward uncertainty propagation methods can be implemented to consider the727

distribution of possible outcomes for different values of the input factors. Bayesian728

methods have also been exploited for performing a QMRA (Ancelet et al., 2012).729

Beaudequin et al. (2015) reviewed several such applications and underline the ben-730

efits and the needs of developing Bayesian networks for risk assessments.731

Both the climate system and microbial behaviour are highly complex and involve732

multiple uncertainties, which need to be addressed properly to produce reliable733

knowledge. Ongoing climate research investigating the highly complex interactions734

and feedbacks of the climate system aims to cover knowledge gaps pertaining to735

GCM outputs and the downscaling process. The uncertainty analysis becomes736

further involved due to uncertainties that are introduced from microbial dynamics.737

The inherent biological variability of microbial behaviour should be characterised738
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and be separated from other sources of uncertainty. At each step, starting from739

the future scenarios to the GCMs, then further to the downscaled projections, and740

to the system described by IMs that includes microbial responses, new sources of741

uncertainty are introduced. This, in combination with the fact that multiple likely742

future scenarios are considered, indicates the necessity to implement an integrated743

study of the uncertainties involved.744

5. Conclusion745

The IPCC identifies the following as key challenges in coupling climate projec-746

tions with impact models: (1) the result of the impact model of the system under747

study, driven by the output of the climate model, should not be affected by the bias748

correction of the climate model, (2) conducting the downscaling process having749

regard to physical consistency of the downscaled information, and (3) the develop-750

ment of an integrating framework to perform uncertainty analysis. Moreover, the751

model ensemble approach is necessary to assess the stochastic nature of climate752

models. Thus model intercomparison projects, such as the CMIP, are invaluable.753

The paramount need, in terms of climate modelling, is the increase of resolution of754

GCMs, so that the downscaling process, which introduces uncertainty, is omitted.755

Equally important is to pursue efforts to narrow down uncertainty in climate pro-756

jections data following the example of Sherwood et al. (2020). Focusing on tackling757

these challenges, the involvement of climate specialists is essential.758

Furthermore, there is a clear knowledge gap of the impact of climate factors,759

such as precipitation, wind speed, and carbon dioxide, both on microbial behaviour760

and contamination levels of raw food. Another important aspect remained to be761

studied is the impact of extreme weather events, such as floods. A characteris-762

tic of Earth sciences, also applied to this research, is that performing experiments763

under controlled conditions is extremely demanding. An observational dataset is764

much more easily accessible. Therefore, to study the influence of climatic fac-765

tors on microbial dynamics and microbial environmental dispersal and prevalence,766

international initiatives on gathering microbial prevalence-specific observations is767

imperative. One example of these observations is a dataset containing soil micro-768

bial population levels of selected pathogenic bacteria (e.g., Listeria monocytogenes)769
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for decadal time spans. The soil samples should originate from different regions770

(e.g. countries of Sweden, Belgium, and Greece), which are expected to experience771

differently the climate change effects. Analysing such datasets in relation with the772

associated climate observations referring to the same timespan will make the onset773

on the establishment of the intended relationship.774

Identifying the most climate change relevant microbial food safety risks for spe-775

cific food products or processes and assessing the emergence of pathogens is crucial.776

Remote sensing data from different regions can be utilised. This will lead to a777

spatio-temporal modelling approach that will ultimately link microbial responses778

with geoinformatics. This can be the onset of a brand new multi-scale modelling779

aspect and will yield to the modelling of the distribution and spread of pathogenic780

bacteria as a function of climate change factors. The selection of appropriate model781

structures for the current application is a data-driven process; i.e., its efficiency782

and accuracy are determined by the quality and quantity of the data available.783

Nonetheless, acquiring such a specific, both microbial responses and climate ori-784

ented dataset is challenging and requires international efforts. In silico studies785

exploiting the limited observational data that are currently available will prove a786

valuable tool. Due to the complexity of both the climate system and microbial787

dynamics a multidisciplinary research approach is the most suitable.788

Nevertheless, in developing computational tools, identifying sources of uncer-789

tainty is a key element in the process. Especially when the studied system is of790

biological nature, separating uncertainty from biological variability is imperative.791

Uncertainty propagation may be computationally expensive when dealing with such792

complex systems and large scale nonlinear models. To cope with such issues, differ-793

ent uncertainty propagation methods (e.g., sigma point method instead of Monte794

Carlo simulations) have to be implemented. Uncertainty is introduced at each step795

of the process. Additionally, several different scenarios, each one accompanied with796

its associated uncertainty levels, are considered. Therefore, developing tools to797

conduct an integrated study of the uncertainties involved is crucial.798

Finally, taking a food systems approach is an essential strategy, which considers799

the high complexities of the systems under study. Overall, quantification of the800

food safety risks associated with climate change by implementing such a holistic801
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approach is the adequate tool for policy making to mitigate these risks. Neverthe-802

less, food safety is only one aspect of the food system. Climate change is expected803

to affect food security and food quality as well. Adapting the quantitative frame-804

work presented in this paper to consider the link between climate and food quality805

traits, e.g., raw cow milk fat content, and food security characteristics, e.g., raw806

cow milk yield, will give a multifaceted view of the anticipated changes to come.807

This approach will contribute to the shift from the reactive to the proactive ap-808

proach. Eventually, the international effort to achieve the goal of shaping resilient809

food systems will be benefited.810
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Figures1194

Figure 1: Schematic view of the components of the climate system, their processes and interactions.
Source: Le Treut et al. (2007).
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Figure 2: Work flow of climate models simulations based on IPCC (2018).
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Figure 3: The impact modelling framework based on IPCC (2018).
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Figure 4: Illustration of the European topography at: (a) resolution of 87.5 Ö 87.5 km; (b) same
as (a) but for a resolution of 30.0 Ö 30.0 km. Source: Cubasch et al. (2013).

45



Agent-based/
Individual-based

models

Distribution-
based population

models

Deterministic
population

models

Macroscopic

Mesoscopic

Microscopic

Homogeneous
population

Single
cell

Heterogeneous 
subpopulations

Figure 5: Description of the different scales in multi-scale microbial modelling based on Van Impe
et al. (2013).
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Figure 6: Illustration of the four phases of a typical microbial population. 1: lag phase, 2:
exponential growth, 3: stationary phase, 4: decline phase.
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Figure 7: Effect of temperature on microbial growth dynamics: a toy example.
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