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During embryonic development, neural stem/progenitor cells

generate hundreds of different cell types through the

combination of intrinsic and extrinsic cues. Recent data

obtained in mouse and human cortical neurogenesis provide

novel views about this interplay and how it evolves with time,

whether during irreversible cell fate transitions that neural stem

cells undergo to become neurons, or through gradual temporal

changes of competence that lead to increased neuronal

diversity from a common stem cell pool. In each case the

temporal changes result from a dynamic balance between

intracellular states and extracellular signalling factors. The

underlying mechanisms are mostly conserved across species,

but some display unique features in human corticogenesis,

thereby linking temporal features of neurogenesis and human

brain evolution.
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The cerebral neocortex is parcellated into numerous

layers and areas, each comprising dozens of distinct types

of neurons defined by specific patterns of gene expres-

sion, morphology, and most importantly, hodological

properties [1–5]. It is no surprise then that the developing

cortex has long been a fascinating model to study the

mechanisms that control how to generate neurons and

specify their diverse identities.
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Cortical neurogenesis starts as the neuroepithelial cells,

the primordial stem cells at the origin of all cortical

neurons, transform into radial glial cells (RGC) - the

major type of stem/progenitor cells that also serve as

scaffolds for neuronal migration [6–9]. Cortical pyramidal

neurons are then produced, either directly from the RGC,

or indirecty via additional progenitor populations, the

intermediate progenitor cells (IPC) present abundantly

in the cortex of all mammals, or the outer radial glia cells

(oRGC), particularly amplified in those with expanded

cortex such as the anthropoid primates [7,10].

A fundamental feature of cortical neurogenesis is tempo-

ral patterning [11]. This means that RGC change of

competence to produce sequentially different types of

neurons over the course of corticogenesis. As a result, the

first neurons generated from RGC will populate the

deepest layers of the cortex and express specific gene

expression profiles and hodological properties, while

those that are born at later stages of corticogenesis will

acquire different identities, corresponding to progres-

sively more superficial layers, together with distinct gene

expression and connectivity patterns [12,13].

In this frame it can be useful to conceptualize corticogen-

esis as a timely progression along two orthogonal temporal

axes (Figure 1), that RGC follow to undergo two main fate

transitions: one the one hand, neuronal generation

(‘vertical’ axis of neurogenesis), and on the other hand

neuronal subtype specification (‘horizontal’ axis of tem-

poral patterning of specification). Along the vertical axis

of differentiation, RGC undergo major fate switches to

become IPC and/or neurons, followed by further differ-

entiation/maturation of postmitotic neurons. Along the

‘horizontal’ axis of temporal patterning, RGC and their

progeny change their competence as embryonic develop-

ment proceeds, thereby generating distinct types of neu-

rons that will populate specific cortical layers.

The vertical temporal axis of neurogenesis:
from mitosis towards irreversible neuronal
fate commitment
The first axis of neurogenesis starts as a dramatic change

in cell identity, by which RGC stop self-renewing and

dividing, to convert eventually to postmitotic neurons.

This process was captured in real-time at the cellular level

almost twenty years ago using organotypic slices of the

mouse developing cortex [9], and involves a complex

cellular metamorphosis, including delamination of the

cell, a transient loss of its epithelial polarity, followed
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Figure 1
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Two orthogonal temporal axes to define the corticogenesis process.

Radial glial cells (RGC) differentiate into neurons directly or indirectly through the generation of progenitor subpopulations such as intermediate

progenitors (IPC), defining a ‘vertical’ temporal axis of neurogenesis. Another ‘horizontal’ temporal axis is defined by temporal changes taking

place in RGC and their progeny over embryonic development, leading to the sequential generation of distinct neuronal subtypes forming the

different cortical layers.
by initiation of radial migration and growth of neuritic

processes. Recently, single-cell RNA sequencing tech-

nologies led to reconstruct this massive fate transition

process at the transcriptional level [14,15]. However, the

logic linking the molecular and cellular events still

remains to be fully uncovered. In other words how does

the structure of the underlying developmental gene reg-

ulatory network actually controls the neurogenic

transition?

Neurogenesis is regulated by a complex interplay

between extrinsic and intrinsic cues acting on neural

progenitors, which control the balance between their

differentiation and self-renewal. The proneural transcrip-

tion factors, most strikingly Neurogenins in the cerebral

cortex, constitute the key intrinsic factors promoting

neurogenesis, through reciprocal antagonism with the

Notch pathway [16,17]. On the other hand, most classical
Current Opinion in Neurobiology 2021, 66:195–204 
morphogens, including Wnts [18–21], Sonic Hedgehog

[22,23], and Fibroblast Growth factors [24–26], act as

extrinsic cues that globally tend to favour self-renewal

over neurogenesis (reviewed in Ref. [27]) (Figure 2).

Adding another layer of complexity is the fact that each

round of RGC division can be symmetrical, whether it is

proliferative or differentiating, or asymmetrical [28,29].

Altogether this interplay aims at generating neurons in

the right number and type, through the timed balance of

differentiation versus self-renewal.

One fundamental question is therefore: what drives the

switch from a proliferative behaviour of cortical progeni-

tor cells to cell-cycle exit and the terminal differentiation

of neuronal progeny? Intriguingly, it has been long pro-

posed that postmitotic cells ongoing neuronal differenti-

ation become insulated from extrinsic signaling [30],

which could ensure irreversible conversion to neuronal
www.sciencedirect.com
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Figure 2
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Neurogenesis and the balance of extrinsic and intrinsic cues.

During differentiation, progenitors become insulated from extracellular proliferative cues (such as Notch, Wnts, FGFs, SHH), to ensure an

irreversible commitment towards neuronal identity. Mechanistically, the switch from proliferation to differentiation of cortical progenitors is

promoted by proneural factors like Neurogenin 2, together with Bcl6 repressor activity that ensures the insulation from the extrinsic proliferative

cues.
fate despite the presence of morphogen cues. But this has

remained largely hypothetical and the molecular mecha-

nisms have remained unknown.

The extrinsic cues that act on cortical progenitors to

promote expansion and self-renewal come from many

different sources (Figure 2): these include in particular

the embryonic cerebrospinal fluid through secretion from

the choroid plexus [31], but also cortical progenitors and

neurons themselves in the cortical plate [27]. Thus, while

the delamination of the progenitors outside their niche in

the ventricular zone might partly enable them to escape

from the influence of these cues, one would predict

additional mechanisms by which differentiating cortical

cells become insulated from these proliferative pathways.

The Bcl6 transcriptional repressor was recently shown to

fulfill this role during mouse cortical neurogenesis [32�].
Bcl6 was previously identified as a proneurogenic factor,

acting as potently as conventional proneural factors to

convert RGC into neurons in vitro, through direct repres-

sion of Notch downstream effectors Hes genes [33].

Recently a more complete spectrum of Bcl6 targets was

determined by combining transcriptome and ChIP-seq

analyses downstream of Bcl6 in cortical cells [32�]. This

led to the surprising finding thatBcl6actsa potent and direct

transcriptional repressor of a selective repertoire of genes

belonging to signaling components of all extrinsic cues

known to promote self-renewal: Notch, Shh, Fgf/Igf, and
www.sciencedirect.com 
most strikingly the Wnt pathway. Bcl6 appears to

target genes corresponding to all levels of signalling, from

morphogen ligands and receptors to downstream effectors,

including some, such as Cyclind1/2 genes, that act as critical

effectorsat theconvergenceofall thesepathways(Figure2).

These data suggest a model whereby Bcl6 ensures irrevers-

ible differentiation initiatedby proneural factors, bymaking

the differentiating cells unable to respond to the cues that

would maintain them in a proliferative state (Figure 2).

At the molecular level, Bcl6 repression involves the recruit-

ment of the Sirtuin-1 (Sirt1) deacetylase, followed by

specific Histone deacetylation, thereby providing a stable

and selective epigenetic repression of Bcl6 targets, leading

to differentiation.

Could such a model be generalized to other systems? Bcl6

was also found as a proneurogenic factor in the cerebellum,

where it promotes granule neuron fate through the repres-

sion of Shh effectors Gli1/2 [34], but on the other hand it is

absent from most other brain regions, suggesting that either

only some classes of progenitors need such an intrinsic

system to undergo irreversible neurogenesis, or that other

molecular actors could be at play. These may include the

transcription factor Myt1l, recently found to act in a similar

way as a pan-repressor of non-neuronal fate during neuronal

differentiation and reprogramming [35], but also additional

chromatin remodelling factors, such as the BAF chromatin
Current Opinion in Neurobiology 2021, 66:195–204
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remodeling complexes that repress the Wnt pathway in

cortical progenitors undergoing neurogenesis [36].

One puzzling feature of Bcl6 is that it is expressed in

progenitors (RGC and IPC) but at even higher levels in

developing newborn neurons [33]. One could speculate

that this sustained expression in neurons prevents de-

differentiation, even though at least some of the mecha-

nisms ensuring terminal differentiation can be imprinted

in stem/progenitor cells [37]. Alternatively this could

suggest that part of the neurogenic fate commitment

process is still occurring after mitosis. Earlier studies

suggest that the decision to become a neuron is largely

taken before mitosis, in particular during the G1 phase of

the mother cell, the length of which can influence the

outcome of the next division [38,39]. Could it be that part

of the decision to become a neuron is also made after

mitosis? This would be coherent with the mechanisms of

asymmetric cell fate acquisition that by definition occur

postmitotically [28,29].

This issue was examined recently in a different context,

involving mitochondria dynamics, the process by which

mitochondria undergo fission and fusion, that has recently

emerged as an instructive modulator during cell fate

decisions in many systems [40–42]. Using live cell imag-

ing in vitro and a novel system of high-throughput track-

ing of mitotic RGC, it was found that right after RGC

have divided, their daughter cells can display a dual

pattern of mitochondria dynamics, which is tightly corre-

lated with cell fate: cells that will become neurons display

high levels of mitochondria fission, while those that will

undergo self-renewal as cortical stem cells will undergo

rapid mitochondria fusion [43�]. Most importantly, the

forced induction of mitochondria fusion shortly after

mitosis, whether in vitro or in the mouse embryonic cortex

in vivo, alters the balance of cell fate, leading most RGC

to undergo self-renewal instead of neuronal differentia-

tion. These data identify a postmitotic critical period of

plasticity during which fate switch can still occur, thus

revising the classical view that the decision for neural

stem cells to commit to neuronal fate precedes mitosis

[30,38]. Interestingly the effect of mitochondria on neu-

rogenesis appears to be mediated in part through the

NAD+ sensor Sirt1, also involved in Bcl6-mediated neu-

rogenesis as above mentioned. It will be interesting to test

further the implied model that the final, postmitotic,

commitment to neuronal fate occurs as a result of the

coincident detection of metabolic signals from the mito-

chondria and nuclear gene expression.

The horizontal axis of neurogenesis: temporal
patterning of competence, commitment, and
plasticity
These data overall point to the importance of the inter-

play of intrinsic and extrinsic components along the

‘vertical’ temporal axis of neurogenesis. But how about
Current Opinion in Neurobiology 2021, 66:195–204 
the second ‘horizontal’ axis, that is, the temporal pattern-

ing of cortical neuron subtype specification? It has been

debated whether the specification of neurons was either

predefined early in progenitors (premitotic model) or

defined at the progenitor-neuron transition (postmitotic

model) [44]. Although many genes were identified allow-

ing to distinguish neurons of distinct layers [1], it had

remained difficult to decipher a temporal transcriptional

code in cortical progenitors [45,46]. Single-cell RNA-seq

analyses of mouse and human cortical progenitors and

neurons at high temporal resolution along the two axes of

neurogenesis [14,47�], have now provided substantial

evidence for the premitotic model. Indeed single-cell

RNA-seq of timed RGC reveal specific temporal patterns

of gene expression across different embryonic stages,

which then appear to be transmitted to the daughter

neurons for further postmitotic refinement [47�]. Impor-

tantly, the detected changes are not just bystanders of the

temporal patterning, as they can actually influence fate

acquisition: for instance the Ezh2 epigenetic factor, found

to be expressed at higher levels in early than late RGC, is

required for the proper temporal specification of early

cortical neurons [47�]. Finally, one core difference

between early and late RGC resides in the expression

of genes related to extrinsic signalling, which tend to be

upregulated in late progenitors, suggesting that late pro-

genitors tend to be more ‘extraverted’, that is, more

responsive and exposed to extrinsic cues as cortical

development proceeds [47�] (Figure 3).

As the differentiation progresses, RGC temporal patterns

are then transferred to neurons: these likely include post-

transcriptional mechanisms through which genes already

transcribed in RGC become only active in neurons by

increased stability or translation [48–50].

In addition and importantly, this nascent developmental

program of neuronal specification will be then further

refined to drive the neurons towards their final identity

[47�], indicating influence of specification cues also on

postmitotic neurons. For instance, the final laminar fate

acquisition of deep layer neurons may be influenced by

Wnt signals emanating from pioneer subplate neurons

[51,52], while the identity of neurons of the upper layers

can be influenced by their final position within the

cortical plate [53]. Thus the final identity of pyramidal

neurons of the developing cerebral cortex can still be

influenced significantly at postmitotic stages. Interest-

ingly such a mixed premitotic and postmitotic model is

also proposed as the source of diversity of the other

population of cortical neurons, the GABAergic inhibitory

interneurons, despite their distinct progenitor origins in

the ganglionic eminences [54,55].

The core program of cortical neuron specification is

initiated in the RGC, followed by further refinement in

postmitotic neurons. But is the temporal patterning
www.sciencedirect.com
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Figure 3
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Timing of fate specification revealed by heterochronic transplantations.

Isochronic and heterochronic transplantation experiments reveal that late radial glial cells can regain their ability to generate early deep-layer

neurons while intermediate progenitors have a fixed identity that cannot be respecified by transplantation.
intrinsic to the RGC, or is it driven by extrinsic cues in the

ever-changing embryonic brain environment? And sec-

ondly, are these changes irreversible, or can for instance

the competence of late RGC be rejuvenated to generate

normally early born neurons? These questions have long

been puzzling the field. On the one hand, in vitro experi-

ments using cortical progenitors derived from the mouse

brain [56] or pluripotent stem cells (PSC) [57] demon-

strated that cortical progenitors, even cultured as single

cells [57], can generate sequentially pyramidal neurons

corresponding to all six layers identity (although with a

different proportion, biased towards deep layer fates),

indicating that the whole process of cortical neuron spec-

ification is encoded within the cell lineage. At the other

edge of the experimental spectrum, heterochronic trans-

plantations experiments in the ferret had concluded that

cortical progenitors could be respecified by the embryonic

environment, but in a time-specific way: early progenitors

could be respecified following transplantation at later

stages, but not the other way around, suggesting that

temporal patterning was under extrinsic influence, and

this was in part the result of a restriction in the fate

potential of late RGC [58,59].

These aspects were recently re-examined using hetero-

chronic transplantation experiments in the mouse, com-

bined with exhaustive characterization of the trans-

planted cells [60�] (Figure 3). This revealed that the

RGC can actually display a higher degree of plasticity

than previously thought, as late RGC transplanted in the

early mouse cortex could regain competence to generate

neurons displaying all cellular and molecular properties of

early generated deep layer neurons. But importantly, this

plastic behaviour could not be detected among trans-

planted IPC, consistent with the notion that the
www.sciencedirect.com 
commitment to a specific neuronal fate is acquired irre-

versibly in these cells [61]. As IPC are much more

abundant in higher mammals like the ferret cortex, this

may explain the discrepancy with earlier experiments,

where most of the transplanted cells at late stages might

have been committed IPC [58,59]. It would be interesting

to test further this hypothesis by performing heterochro-

nic transplantation in the ferret like previously, but

followed by a modern analysis of the molecular and

hodological properties of the transplanted neurons.

The molecular mechanisms underlying the plasticity of

RGC remain to be fully understood, but appear to impli-

cate Wnt signalling, which displays a higher tonus in early

RGC, and is required for the respecification of late RGC

by the early cortical environment [60�]. Interestingly,

effects of the Wnt pathway on cortical neuron laminar

specification were also observed in human in vitro sys-

tems (in monolayer cultures and organoids), though at

later stages, suggesting multiple levels of regulation by

this pleiotropic morphogen family [51,62].

Links between the timing of neurogenesis and
human cortical evolution
A major biological question related to cortical neurogen-

esis is human brain evolution. While many of the above-

discussed mechanisms are likely to be largely conserved

in all mammals, neurogenesis is expected to display

species-specific features as well. Indeed the human brain

is characterized by an increase in size and complexity of

the cerebral cortex, which is thought to be linked in part

to changes in the developmental program of neurogenesis

[10,63,64]. Species differences in cortical neurogenesis

have been linked in particular to increased diversity of

cortical progenitors, including IPC that are thought to
Current Opinion in Neurobiology 2021, 66:195–204
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Figure 4

(a)

(b)
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Species differences in the developmental timing of cortical neurogenesis.

(a) Cortex expansion may rely on increased number and diversity of progenitor subpopulations (IPC: intermediate progenitor cells and oRGC:

outer radial glial cells), as well as protacted steps of initial proliferation of stem/progenitor cells (NE: neuroepithelial cells, RGC: radial glial cells)

and neurogenesis. (b) The latter is partly controlled by the human-specific NOTCH2NL genes that increase the self-renewal of cortical progenitors

and their subsequent neuron output, by stimulating Notch signaling through a cell-autonomous mechanism.

Current Opinion in Neurobiology 2021, 66:195–204 www.sciencedirect.com
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constitute an important drive of cortical expansion in

mammals compared with non-mammalian amniotes

devoid of neocortex and that also lack IPC [65], and most

strikingly the oRGC that display highly increased expan-

sion potential in the human cortex [7,10]. On the other

hand, the timing of cortical neurogenesis is considerably

prolonged in human corticogenesis - from the initial

proliferation of the neuroepithelial cells, to subsequent

neurogenesis from RGC, which typically takes about a

week in the mouse but almost four months in the human

embryonic cortex for instance (Figure 4). This has been

proposed as another important mechanism of cortical size

increase, by enabling more rounds of self-renewing divi-

sions to occur, and thereby increase neuronal production

during corticogenesis. What could be at the origin of these

different temporal patterns of neurogenesis across spe-

cies? Interestingly, the prolonged timescale of human

corticogenesis compared with other species appears to

be largely conserved in in vitro systems from pluripotent

stem cells (PSC), whether using two dimensional mono-

cultures or mixed cultures of cortical progenitors [66,67].

Even more strikingly, early human cortical progenitors

transplanted in the mouse neonatal cortex will only start

to generate upper-layer neurons several weeks following

transplantation, thus following their own scale of tempo-

ral patterning, suggesting that intrinsic cues may be

central to control the timescale of cortical neurogenesis

[66]. Several comparative genomic, epigenomic and tran-

scriptomic analyses have revealed divergent gene expres-

sion patterns in the developing human cortex compared

with non-human primate species, using fetal tissue and

PSC-derived organoids [68�,69�,70–72]. These studies

nicely documented a prolonged developmental time line

in human cortical cells, thus confirming at the gene

expression and chromatin levels what was known at

the cellular level. They have also started to reveal spe-

cies-specific gene regulatory mechanisms that could

underlie some of the characteristics of human corticogen-

esis, such as the specific upregulation of the mTOR

pathway in human cortical progenitors (in particular

oRGC) compared with non-human primate counterparts

[68�], which may underlie some of their unique expansion

capacities.

Moreover, highly conserved pathways may be modified in

a species-specific way to allow more prolonged patterns of

neurogenesis. This is exemplified by recent studies

exploring the impact of the NOTCH2NL gene family

[73�,74�,75] (Figure 4). These comprise four hominid-

specific genes (NOTCH2NLA/B/C/D), three of which are

human-specific, which emerged very recently as segmen-

tal, partial duplications of the ancestral NOTCH2 gene

[73�,74�]. Two of the NOTCH2NL paralogs (A/B) are

highly expressed in human cortical progenitors (both

RGC and oRGC). Furthermore they are found within a

specific chromosomal interval of 1q21.1, close to an

intriguing locus highly enriched in human-specific genes,
www.sciencedirect.com 
and where copy number variants (CNV) are associated

with pathological changes in brain size, with microdupli-

cations associated with macrocephaly, and microdeletions

associated with microcephaly [76].

Functional studies with PSC-derived human cortical

cells, taking advantage of clonal analyses, revealed that

NOTCH2NL paralogs significantly expand human corti-

cal progenitors by extending their self-renewal, which

ultimately results in an increased neuronal production at

the clonal level [74�]. The impact of NOTCH2NL genes

thus strikingly parallels the expected features of human

corticogenesis compared with non-human primates, that

is, prolonged self-renewal and increased neuronal out-

put. Conversely, loss of function of two of the

NOTCH2NL paralogs resulted in accelerated develop-

ment of neural organoids [73�]. Mechanistically,

NOTCH2NL gene products interact directly with the

Notch pathway and increase Notch signaling in a cell-

autonomous fashion. Finally, fine mapping of 1q21.1

microdeletions and microduplications found in patients

with microcephaly and macrocephaly further revealed

that the recombination breakpoints were located at the

level of the same two NOTCH2NLA/B genes [73�].
Overall these findings point to the role of human-spe-

cific, cell-intrinsic modifiers of the highly conserved

Notch pathway that may be in part responsible for the

expansion of human cortical neurogenesis, and thereby

increased cortical size.

Additional timing mechanisms beyond human-specific

genes must distinguish human neurogenesis form other

species. For instance, when examining the impact of

mitochondria on RGC fate choice as discussed above

[43�], the critical period of postmitotic fate plasticity

was found to be doubled in the human compared with

the mouse (6 hours instead of 3 hours). While the signifi-

cance of these findings remains to be explored further, it

is tempting to speculate that the observed differences in

mitochondria-dependent fate plasticity may be linked to

species-specific developmental timing of cortical neuro-

genesis. This would echo with known species differences

in global metabolic rates, that are so far linked to differ-

ences in life span and aging [77], and with species

differences in protein turnover that have been recently

linked to mouse versus human differences in develop-

mental timing of motor neuron differentiation and somite

segmentation clock [78–80].

As a conclusion, cortical neurogenesis articulates along

two major temporal axes of neuronal differentiation and

specification, which result from the close interplay of

intrinsic and extrinsic cues in both neural progenitors

and their differentiated progeny. A major challenge will

be to extract new mechanistic hypotheses from the mas-

sive amount of molecular data now available from deep-

sequencing studies in different species and systems [81],
Current Opinion in Neurobiology 2021, 66:195–204
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and to test these functionally in vivo and using cellular

models of corticogenesis, in order to elucidate the molec-

ular logic linking gene expression, cell dynamics, and fate

acquisition.
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