
Neural Networks 142 (2021) 661–679

m
F
c
i

t
r
e
a
s
o
P
g
g
s
w
e

p
(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Unsupervised learning of disentangled representations in deep
restricted kernelmachineswith orthogonality constraints
Francesco Tonin ∗, Panagiotis Patrinos, Johan A.K. Suykens
Department of Electrical Engineering, ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

a r t i c l e i n f o

Article history:
Received 12 November 2020
Received in revised form 24 May 2021
Accepted 19 July 2021
Available online 26 July 2021

Keywords:
Kernel methods
Unsupervised learning
Manifold learning
Learning disentangled representations

a b s t r a c t

We introduce Constr-DRKM, a deep kernel method for the unsupervised learning of disentangled data
representations. We propose augmenting the original deep restricted kernel machine formulation for
kernel PCA by orthogonality constraints on the latent variables to promote disentanglement and to
make it possible to carry out optimization without first defining a stabilized objective. After discussing
a number of algorithms for end-to-end training, we quantitatively evaluate the proposed method’s
effectiveness in disentangled feature learning. We demonstrate on four benchmark datasets that
this approach performs similarly overall to β-VAE on several disentanglement metrics when few
training points are available while being less sensitive to randomness and hyperparameter selection
than β-VAE. We also present a deterministic initialization of Constr-DRKM’s training algorithm that
significantly improves the reproducibility of the results. Finally, we empirically evaluate and discuss
the role of the number of layers in the proposed methodology, examining the influence of each
principal component in every layer and showing that components in lower layers act as local feature
detectors capturing the broad trends of the data distribution, while components in deeper layers use
the representation learned by previous layers and more accurately reproduce higher-level features.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The choice of the features on which a machine learning
ethod is trained on is crucial to achieve good performance.
inding representations of the data that make it easier to train
lassifiers or other predictors is the goal of representation learn-
ng (Bengio et al., 2013).

One desirable characteristic of good representations is disen-
anglement, which means that the learned representation sepa-
ates the factors of variations in the data (Bengio, 2009; Bengio
t al., 2013). In fact, in representation learning it is common to
ssume a low dimensional multivariate random variable z repre-
enting the meaningful factors of variations: a high dimensional
bservation x is then sampled from the conditional distribution
(x|z). For example, a model trained on faces may learn latent
enerative factors such as hairstyle, emotion, or the presence of
lasses. In this respect, the empirical success of deep learning in
upervised learning tasks is often linked to the ability of deep net-
orks to learn meaningful intermediate representations (Vincent
t al., 2010; Zeiler & Fergus, 2014).

∗ Corresponding author.
E-mail addresses: francesco.tonin@esat.kuleuven.be (F. Tonin),

anos.patrinos@esat.kuleuven.be (P. Patrinos), johan.suykens@esat.kuleuven.be
J.A.K. Suykens).
ttps://doi.org/10.1016/j.neunet.2021.07.023
893-6080/© 2021 Elsevier Ltd. All rights reserved.
Regarding the unsupervised learning setting, many benefits of
employing disentangled representations have been highlighted.
For example, they could be useful in (i) transfer learning, by
reusing meaningful representations on new tasks (Bengio et al.,
2013), (ii) semi-supervised learning (Schölkopf et al., 2012; Ran-
zato et al., 2007), (iii) few-shot learning (Ridgeway & Mozer,
2018), (iv) explainability, for instance in the medical domain
(Holzinger et al., 2019; Sarhan et al., 2019), and (v) reinforcement
learning (Lake et al., 2017).

However, unsupervised learning of disentangled representa-
tions is still a key challenge in artificial intelligence research
(Bengio et al., 2013; Lake et al., 2017; LeCun et al., 2015). State-
of-the-art models are mostly based on the generative adver-
sarial network (GAN) framework, such as InfoGAN (Chen et al.,
2016), or on variational autoencoders (VAEs) (Kingma & Welling,
2014), including β-VAEs (Higgins et al., 2017), FactorVAE (Kim
& Mnih, 2018) and β-TCVAE (Chen et al., 2018). Concerning
the former approaches, it has been observed that training In-
foGANs is difficult due to the training instability of the GAN
framework (Higgins et al., 2017). Approaches based on VAEs offer
training stability (Higgins et al., 2017), but a recent extensive
empirical evaluation has found that their disentangling perfor-
mance was not reliable as it varied widely with hyperparameter
selection, random seeds, and among datasets (Locatello et al.,
2019).

https://doi.org/10.1016/j.neunet.2021.07.023
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.07.023&domain=pdf
mailto:francesco.tonin@esat.kuleuven.be
mailto:panos.patrinos@esat.kuleuven.be
mailto:johan.suykens@esat.kuleuven.be
https://doi.org/10.1016/j.neunet.2021.07.023

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679
With respect to unsupervised feature extraction, principal
component analysis (PCA) is a standard methodology. More in
general, it is well established that kernel methods are stable to
train and give reliable performance, which contrasts sharply with
the issues outlined in the above paragraph. However, in contrast
to deep networks, they are shallow methods, so they cannot take
advantage of depth to hierarchically decompose a difficult target
function into a composition of simpler functions (Allen-Zhu & Li,
2020). Finally, currently there is no widely accepted technique to
promote disentanglement in kernel methods.

This paper introduces Constr-DRKM, a deep kernel method
for the unsupervised learning of disentangled representations.
Our approach is based on deep restricted kernel machines (deep
RKMs) (Suykens, 2017), which provide a framework rooted in
well-understood and reliable kernel methods. There has been
little investigation on the use of deep RKMs for unsupervised
learning. Moreover, while recent evidence suggests that shal-
low RKMs can achieve good disentangling performance (Pandey
et al., 2021), no previous study has investigated the potential
for unsupervised learning of disentangled representations in deep
RKMs.

We propose employing a deep RKM consisting of multiple
kernel PCA layers augmented by orthogonality constraints on
the latent variables to perform unsupervised extraction of disen-
tangled features. We explain that the orthogonality constraints
have two effects, called intraorthogonality and interorthogonality
effects, which encourage the deep RKM to learn a disentan-
gled representation of the data. As a result of the introduction
of the orthogonality constraints, we are able to avoid defining
a stabilized version of the deep RKM objective, which is in-
stead needed in the original formulation of deep RKMs (Suykens,
2017). Furthermore, we show how to train the proposed model
end-to-end, so that the components of lower layers can use
the representations learned by higher layers. To evaluate the
proposed methodology, we conduct experiments in the task of
disentangled feature learning. We quantitatively show that RKMs
can benefit from depth and that a two-layer Constr-DRKM ar-
chitecture performs similarly to the state of the art on several
disentanglement metrics when only a fraction of training points
are available while being more reliable in terms of sensitivity to
hyperparameter selection than β-VAE.

Our main contributions are as follows.

• We propose a novel deep kernel method called Constr-
DRKM by reformulating the deep RKM framework for kernel
PCA (Suykens, 2017) into a constrained optimization prob-
lem with orthogonality constraints on the latent variables so
that disentanglement is encouraged and optimization can be
carried out without first defining a stabilized objective.
• We propose an end-to-end training scheme, allowing lower

layers to exploit the representation learned by higher layers,
by illustrating the use of multiple constrained optimiza-
tion algorithms, including projected gradient and Cayley
Adam (Li et al., 2019). We also introduce a deterministic
initialization scheme to improve the reliability of training.
Furthermore, we present a denoising procedure for deep
RKMs.
• We show how to apply our proposed method to the

unsupervised learning of disentangled representations with-
out any prior knowledge on the generative factors, demon-
strating empirically that its learned representations perform
similarly overall compared to β-VAE in terms of multiple
disentanglement metrics on four benchmark datasets when
few training points are available. We also evaluate and dis-
cuss the influence of hyperparameters on the performance

of the proposed method, demonstrating that our approach is

662
less sensitive to hyperparameter choice than β-VAE: Constr-
DRKM’s disentangling performance tends to remain steady
as its hyperparameter γ varies, in contrast to the strong
influence of the hyperparameter β on β-VAE’s performance.
In particular, we show that deterministic initialization of
Constr-DRKM’s training algorithm considerably improves
the reproducibility of the results.
• Finally, we show the benefit of Constr-DRKM over kernel

PCA in denoising complex 2D data distributions. In addi-
tion, we study the influence of each principal component
by visualizing the concept learned by each component in
every layer. In this way, we illustrate the role of the dif-
ferent layers: the first layer performs lower-level feature
detection and focuses on, for example, edges and corners,
while the second layer employs those lower-level features
and captures more global features, which in turn allow for
more accurate reproduction of the details of the original
data distribution.

2. Related work

A conventional method to extract features in an unsupervised
manner is PCA (Jolliffe, 1986). As in the representation learning
setting introduced in the previous section, the underlying as-
sumption of PCA is that the input high-dimensional observations
lie in a lower-dimensional linear subspace. PCA works through
a linear transformation that projects the input observations in a
new coordinate system, where the direction of maximum vari-
ance is called the first principal component, the orthogonal di-
rection with the second-highest variance is called the second
principal component, and so on. The dimensionality reduction is
achieved by considering only the first s principal components.
Kernel PCA is an extension of PCA that introduces nonlineari-
ties by mapping the input observations to a higher dimensional
feature space using a kernel function (Schölkopf et al., 1998).
Linear PCA is then performed in that space. The conditions under
which we can define the mapping ϕ used in Schölkopf et al.
(1998) are given by Mercer’s theorem (Mercer, 1909): if k is
a positive-definite kernel function, then there exists a feature
map ϕ such that k(x, z) = ϕ(x)Tϕ(z). The choice of some kernel
function can be seen as choosing a suitable Reproducing Kernel
Hilbert Space (RKHS); in this setting, Gnecco and Sanguineti
(2009) studied suboptimal solutions to kernel PCA to handle
large datasets, which constitute a considerable computational
challenge to kernel methods. Another common approach to deal
with this challenge is to employ the Nyström method (Williams
& Seeger, 2001). Alternatively, under the assumption of sparse
source signals, Georgiev et al. (2007) formulated conditions un-
der which it is possible to recover a sparse signal using sparse
component analysis (SCA) with no independence condition on the
source signal, and Gnecco and Sanguineti (2010) examined sparse
suboptimal solutions to kernel PCA. Our proposed method builds
on multiple layers of kernel PCA and introduces orthogonality
constraints on the latent variables to promote disentanglement.
In contrast to our method, neither PCA nor kernel PCA exploits
depth or deals with disentanglement.

In deep learning, pre-training each layer of a deep network
in an unsupervised fashion before fine tuning the entire net-
work is a common technique. In this context, several works have
proposed unsupervised methodologies that learn data represen-
tations, including Ranzato et al. (2007), Vincent et al. (2008,
2010). For instance, Ranzato et al. (2007) proposed an unsu-
pervised encoder–decoder architecture that employed multiple
convolutions, sparsity constraints, and pooling to build a hier-
archical representation of the data and boost invariance; in fact,

pooling was shown to represent an information bottleneck that

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

c
i
o
w
l
f
s
d
d
f
a

i
e
i
m
m
I
t

e
u
a
t
z
t
a
g
i
p
d
s
w

(
o
q
p

L

L

m

an promote invariance (Achille & Soatto, 2018). Another example
s Vincent et al. (2010), where invariant representations were
btained using stacked denoising autoencoders. In that work, it
as shown that using those representations to train a classifier

ed to improved accuracy not only for deep networks but also
or support vector machines with radial basis function kernel,
upporting our hypothesis that kernel methods can benefit from
eep representations. Our method shares the idea of exploiting
epth with the mentioned works, but it applies that idea in the
ramework of kernel methods instead of neural networks and it
lso takes disentanglement of the learned features into account.
One early approach to build disentangled representations was

ndependent component analysis (ICA), which is a method to
xtract independent components from a signal (Comon, 1994). It
s based on the assumption that the observed signal is a linear
ixture of unknown latent signals that are non-Gaussian and
utually independent. However, it was shown empirically that

CA has poor disentangling performance compared to the state of
he art (Higgins et al., 2017).

A more recent approach to the unsupervised learning of dis-
ntangled representations is InfoGAN (Chen et al., 2016). Building
pon the GAN framework (Goodfellow et al., 2014), InfoGAN uses
generator G that aims to produce a realistic observation from

he concatenation of a noise vector n with a latent representation
. Disentanglement in z is encouraged by adding a regularizer
o the typical GAN objective. The regularizer aims to maximize
lower bound of the mutual information between z and the
enerated observation G(n, z). In contrast to InfoGAN, our method
s based on kernel methods, which provide more stable training
rocedures compared to the GAN framework. Finally, InfoGAN’s
isentangling performance has been empirically shown to be
ignificantly lower than VAE-based methods (Higgins et al., 2017),
hich represent the state of the art.
Most VAE-based methods are based on the β-VAE approach

Higgins et al., 2017). In this setting, one assumes that the prior
ver the latent variables P(z) is Gaussian. Then, the posterior
φ(z|x), which is approximated using a deep neural network
arametrized by φ, is learned by maximizing

(θ, φ; x, z, β) = Eqφ(z|x) [log pθ (x|z)]− βDKL
(
qφ(z|x) ∥ p(z)

)
, (1)

where the likelihood pθ (x|z) is approximated by a deep neural
network parametrized by θ , β is a hyperparameter controlling the
degree of disentanglement and DKL is the Kullback–Leibler (KL)
divergence defined as DKL(r(x)|s(x)) = Er [log r/s]. In Higgins et al.
(2017) it is claimed that fixing β > 1 promotes disentanglement
because it imposes a stricter information bottleneck on the latent
factors z. Chen et al. (2018) extend this explanation by identifying
in (1) a total correlation term that was already known to be
related with the disentanglement of a representation (Achille
& Soatto, 2018; Ver Steeg & Galstyan, 2015). Similarly to Chen
et al. (2018), FactorVAE (Kim & Mnih, 2018) augments the VAE
objective (Eq. (1) with β = 1) with an approximation of the
total correlation. However, Locatello et al. (2019) performed a
large-scale experimental study analyzing six VAE-based meth-
ods, including β-VAE, β-TCVAE and FactorVAE, and concluded
that they cannot be used to reliably learn disentangled repre-
sentations in the unsupervised setting, as their disentangling
performance was shown to vary widely with hyperparameter
selection, random seeds and among datasets.

Regarding methods based on RKMs (Suykens, 2017), which
is the framework our work is built upon, Pandey et al. (2021)
has recently proposed a generative model called Gen-RKM, which
was experimentally shown to be able to produce disentangled

representations. Gen-RKM makes use of a single level of kernel

663
PCA expressed in the RKM framework to derive the latent repre-
sentations, while the method proposed in this paper introduces a
deep architecture made up of multiple kernel PCA objectives. In
fact, while Pandey et al. (2021) considered a single feature map
consisting of a deep convolutional neural network, in this paper
we consider several feature maps over multiple levels. In other
words, following the terminology used in Suykens (2017), in the
former case deep learning is only performed over layers, while
in the latter case depth is given by multiple levels, each associ-
ated with a different feature map possibly consisting of multiple
layers. For the sake of simplicity, in this paper the term ‘‘layer’’
is used instead of ‘‘level’’ when there is no ambiguity. Moreover,
Constr-DRKM introduces new disentanglement constraints on the
latent variables, defining in this way a constrained optimization
problem that eliminates the need for the stabilization of the loss
function used in Pandey et al. (2021) and Suykens (2017) and that
can handle explicit and implicit feature maps in the same manner.
Before introducing our proposed architecture, it is useful to first
briefly illustrate the deep RKM framework.

3. Background: deep restricted kernel machines

This section reviews the framework of deep RKMs, as Constr-
DRKM builds upon it. First, the RKM formulation of a single layer
of kernel PCA is explained. Then, deep RKMs are introduced by
means of an example. This section ends with the description of
an open problem in deep RKMs: performing end-to-end training
and promoting disentanglement at the same time.

3.1. Restricted kernel machine formulation of kernel PCA

The RKM formulation of kernel PCA gives another expression
of the Least-Squares Support Vector Machine (LS-SVM) kernel
PCA problem (Suykens et al., 2003) as an energy with visible and
hidden units that is similar to the energy of restricted Boltzmann
machines (RBMs) (Bengio, 2009; Fischer & Igel, 2014; Hinton
et al., 2006; Salakhutdinov, 2015). In this new formulation, con-
trary to RBMs, both the visible units vi and the hidden units hi
can be continuous. To derive this formulation, consider a training
set of N data points of dimension d, a feature map ϕ : Rd

→ RdF

and let s be the number of selected principal components. In the
S-SVM setting, the kernel PCA problem can be written as:

inimize
W ,ei

Jkpca =
η

2
Tr (W TW)−

1
2λ

N∑
i=1

eTi ei

subject to ei= W Tϕ(vi), i = 1, . . . ,N,

where W ∈ RdF×s is an unknown interconnection matrix, ei ∈ Rs

are the error variables and η and λ are hyperparameters. The RKM
formulation of kernel PCA (Suykens, 2017) is given by an upper
bound of Jkpca obtained by introducing the latent representations
hi ∈ Rs, i = 1, . . . ,N using:

1
2λ

eT e+
λ

2
hTh ≥ eTh, ∀e, h ∈ Rs.

This leads to the following objective:

Jt = −
N∑
i=1

ϕ(vi)TWhi +
λ

2

N∑
i=1

hT
i hi +

η

2
Tr

(
W TW

)
, (2)

which is the formulation of kernel PCA in the RKM framework.
The vi are called visible units because their states are observed,
while the hidden units hi correspond to feature detectors (Hinton,
2012). In the representation learning literature, hi is also known
as the latent representation or code of v ; we say that h consists
i i

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

o
t

P
a

N
a
l
i
a
l

w

f s latent or code variables or of s hidden features or units. Note
hat the first term of Jt is similar to the energy of an RBM.

As in other energy-based models, the RKM energy for kernel
CA associates a scalar value to each configuration of the vari-
bles. As a consequence, given training points xi, i = 1, . . . ,N ,

training means clamping the visible units vi to the training points
xi and finding an energy function for which the observed con-
figurations of the visible units are given lower energies than
unobserved configurations (LeCun et al., 2006). To do so, one
characterizes the stationary points of Jt , which results in an
eigenvalue problem of the kernel matrix K ∈ RN×N , with Kij =

ϕ(xi)Tϕ(xj) (Suykens, 2017).

3.2. Deep restricted kernel machines

The theory of deep RKMs was initially proposed in Suykens
(2017) to introduce a new perspective on the connection be-
tween deep learning and kernel machines. Such deep RKMs are
obtained by coupling several RKMs in sequence, resulting in a
deep architecture. A possible configuration of a deep RKM that
extracts features of some data consists of two kernel PCA layers in
sequence. Each kernel PCA layer follows the description given in
Section 3.1. The architecture can be summarized in the following
manner.

• Layer 1 consists of kernel PCA using as input the observation
xi from the given data. The features extracted by this layer
are characterized by its hidden features h(1)

i .
• Layer 2 consists of kernel PCA using as input the hidden

features h(1)
i from the previous layer. The features extracted

by this layer are characterized by its hidden features h(2)
i .

ote that this architecture has a similar structure to stacked
utoencoders (Bengio, 2009): each layer performs unsupervised
earning and the hidden features produced by each layer serve as
nput to the next layer. The deep RKM is trained by considering
n objective function that joins the objectives of each kernel PCA
ayer. To formalize the training objective, let s1, s2 be the number
of selected principal components by the first and second layers of
kernel PCA, respectively. Then, let ϕ1 : Rd

→ RdF1 be the feature
map and of layer 1 and ϕ2 : Rs1 → RdF2 be the feature map
of layer 2. Also, let λ1, λ2, η1, η2 > 0 be hyperparameters. The
training objective of the above defined deep RKM is:

Jt,deep = J1 + J2,

where J1 and J2 are the objectives of a single layer of kernel PCA
in the RKM framework as defined in (2) using the suitable input.
That means:

J1 = −
N∑
i=1

ϕ1(vi)TW1h
(1)
i +

λ1

2

N∑
i=1

h(1)
i

T
h(1)
i +

η1

2
Tr

(
W T

1 W1
)

and

J2 = −
N∑
i=1

ϕ2(h
(1)
i)TW2h

(2)
i +

λ2

2

N∑
i=1

h(2)
i

T
h(2)
i +

η2

2
Tr

(
W T

2 W2
)
,

where W1 ∈ RdF1×s1 and W2 ∈ RdF2×s2 are the interconnection
matrices of layer 1 and layer 2, respectively, and h(1)

i ∈ Rs1

and h(2)
i ∈ Rs2 are the hidden features of layer 1 and layer 2,

respectively.
Training the above defined deep RKM means finding the inter-

connection matrices and the hidden features minimizing the en-
ergy Jt,deep. Since Jt,deep is unbounded below, to make the energy
suitable for minimization, Suykens (2017) proposed to instead
664
minimize a stabilized version of Jt,deep. Following Pandey et al.
(2021), this version is defined as:

Jt,deepstab = Jt,deep +
cstab
2

J2t,deep,

here cstab > 0 is a hyperparameter. It can be shown that
Jt,deep and Jt,deepstab share the same stationary points (Pandey et al.,
2021).

3.3. Effective algorithms for deep RKMs: an open problem

Deriving effective algorithms for training deep RKMs is an
open problem. In Suykens (2017) a layer-wise training procedure
was proposed for the case of linear kernels. However, previ-
ous research has stressed the importance of end-to-end training
in deep architectures to produce representations able to effi-
ciently approximate the target function (Allen-Zhu & Li, 2020).
The ability of deep learning methods to produce such efficient
representations is often linked to hierarchical learning because
deep networks can hierarchically decompose a difficult target
function into a composition of simpler functions (LeCun et al.,
2015). This ability has been recently explained by a mecha-
nism called ‘‘backward feature correction’’ (Allen-Zhu & Li, 2020),
which means that layers of lower abstraction can use the repre-
sentations learned by layers of higher abstraction to improve the
quality of their representation. ‘‘Backward feature correction’’ and
thus hierarchical learning cannot be achieved using layer-wise
training alone.

On the other hand, it is interesting to note that training a deep
RKM as the one described in Section 3.2 in a layer-wise manner
yields mutually orthogonal hidden features, as they are obtained
solving an eigenvalue problem of the symmetric kernel matrix K .
This is an advantage when it comes to the disentanglement of the
produced representations, as experimentally shown in Pandey
et al. (2021) in the single-layer case. However, as it was explained
in the previous paragraph, layer-wise training does not take full
advantage of the deep architecture, so one would like to perform
end-to-end training instead. In the end-to-end training case, one
cannot simply solve two eigenvalue problems in sequence, so the
mutual orthogonality of the hidden features is lost. Likely, this
loss would affect negatively the disentanglement of the learned
representations. In this context, the following section proposes
Constr-DRKM, which is a method that allows to perform end-
to-end training and to promote disentanglement at the same
time.

4. The Constr-DRKM method

In the previous section, two key issues in the development of
effective training algorithms for deep RKMs were identified: per-
forming end-to-end instead of layer-wise training and promoting
disentanglement in the hidden features at the same time. Accord-
ingly, this section aims to propose a method, based on deep RKMs,
for the unsupervised learning of latent representations of some
given data so that

• it promotes disentanglement in the learned hidden features,
and
• it carries out end-to-end training.

To address both aspects, we propose augmenting the original
deep RKM formulation of two layers of kernel PCA, as described
in Section 3.2, by orthogonality constraints on the latent variables

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

o

t
o
i
s
t
f

t
b
h
e

f
p

t

w

∑

h
t
o
w
i

J

f both layers. The proposed optimization problem is:

minimize
W1,W2,h(1)i ,h(2)i

Jt,DRKM = J (1)t,DRKM + J (2)t,DRKM

= −

N∑
i=1

ϕ1(vi)TW1h
(1)
i +

λ1

2

N∑
i=1

h(1)
i

T
h(1)
i

+
η1

2
Tr

(
W T

1 W1
)

−

N∑
i=1

ϕ2(h
(1)
i)TW2h

(2)
i +

λ2

2

N∑
i=1

h(2)
i

T
h(2)
i

+
η2

2
Tr

(
W T

2 W2
)
,

subject to

[
H (1)T

H (2)T

] [
H (1) H (2)

]
= Is1+s2 ,

(3)

where H (1)
= [h(1)

1 , . . . , h(1)
N]

T
∈ RN×s1 , H (2)

= [h(2)
1 , . . . , h(2)

N]
T
∈

RN×s2 , Is1+s2 denotes the (s1 + s2)× (s1 + s2) identity matrix and
λ1, λ2, η1, η2 > 0 are regularization constants.

The orthogonality constraints have two effects. The first effect,
called the intraorthogonality effect, enforces the mutual orthogo-
nality of the hidden features learned by the first layer, as well
as the mutual orthogonality of the hidden features learned by
the second layer. The second effect, called an interorthogonality
effect, enforces the orthogonality between the hidden features
learned by the first layer and the hidden features learned by the
second layer so that the two layers are encouraged to learn new
features of the data instead of repeating the same features in both
layers. Both effects aim to push the deep RKM to learn a more
disentangled representation of the data.

By employing end-to-end instead of layer-wise training in
deep RKMs, lower layers can improve their representation by
exploiting the representation learned by higher layers. The multi-
layer architecture aims to encourage disentangled feature
learning as well, as it has previously been observed that a two-
level hierarchical structure can promote disentanglement (Es-
maeili et al., 2019). Note that the formulation shown in (3) can
be easily extended to more than two kernel PCA layers. One
reason for making use of more layers is that it might improve
the invariance of the learned representation, as invariance is
promoted by stacking layers (Achille & Soatto, 2018). Another
manner of boosting invariance would be to increase the informa-
tion bottleneck between each layer by selecting fewer principal
components (Achille & Soatto, 2018).

After having trained the model on all training data points xi
and having learned the hidden features h(1)

i and h(2)
i of each xi,

one can encode an out-of-sample data point x⋆ in the manner
proposed in Pandey et al. (2020) extended to the two-layer case.
The latent representation of x⋆ is computed by projecting it on
the latent space using:

h(1)⋆
=

1
λ1η1

N∑
i=1

h(1)
i k0(xi, x⋆), (4)

h(2)⋆
=

1
λ2η2

N∑
i=1

h(2)
i k1(h

(1)
i , h(1)⋆), (5)

where k0(x, y) = ϕ1(x)Tϕ1(y) and k1(x, y) = ϕ2(x)Tϕ2(y) are
he kernel functions for the first and second layer, respectively,
btained by means of the kernel trick. Instead of first defin-
ng a feature map ϕi and then deriving the kernel, one can
imply choose a positive definite kernel ki−1 due to Mercer’s
heorem (Mercer, 1909), which guarantees the existence of a
eature map φ such that k (x, y) = φ(x)Tφ(y).
i−1

665
4.1. A training algorithm for Constr-DRKM

In the energy-based interpretation of deep RKMs, the training
phase of Constr-DRKM consists of finding the interconnection
matrices W1 and W2 and the hidden units h(1)

i and h(2)
i so that the

observed configurations xi are given lower energies than unob-
served configurations. Training of Constr-DRKM can be therefore
performed by solving the equality constrained nonlinear opti-
mization problem (3). However, the number of variables of (3) is
large and depends on dF1 and dF2 , which are the dimensionalities
of the feature spaces used by ϕ1 and ϕ2. If, for instance, the Gaus-
sian kernel is used, the dimensionality of the feature space would
be infinite and therefore it would not be possible to directly
solve (3). To address this issue, we show how to rewrite Jt,DRKM
o eliminate the interconnection matrices W1 and W2. This can
e done considering each layer separately. The following shows
ow to eliminate the interconnection matrix for the first layer;
liminating W2 follows the same procedure.
First, recall that, when training RKMs, each visible unit vi is

ixed to the training point xi. Therefore, in training, the stationary
oint of Jt,DRKM with respect to W1 is given by:

∂ Jt,DRKM
∂W1

⏐⏐⏐⏐
vi=xi

= 0 H⇒ W1 =
1
η1

N∑
i=1

ϕ(xi)h
(1)
i

T
. (6)

Then, in order to eliminate the interconnection matrix W1,
wo terms in J (1)t,DRKM have to be rewritten:

∑N
i=1 ϕ(vi)TW1h

(1)
i

T
and

η1
2 Tr

(
W T

1 W1
)
. This is accomplished using (6). Using the kernel

trick, the latter term can be rewritten as follows:

η1

2
Tr

(
W T

1 W1
)
=

1
2η1

Tr

⎛⎝ N∑
i=1

N∑
j=1

h(1)
i ϕ1(xi)Tϕ1(xj)h

(1)
j

T

⎞⎠
=

1
2η1

Tr

⎛⎝ N∑
i=1

N∑
j=1

h(1)
i k0(xi, xj)h

(1)
j

T

⎞⎠
=

1
2η1

Tr
(
H (1)TK (0)H (1)

)
,

here K (0)
∈ RN×N such that K (0)

ij = k0(xi, xj).
The former term can be rewritten as follows:

N

i=1

ϕ1(vi)TW1h
(1)
i =

N∑
i=1

ϕ1(vi)T

⎛⎝ 1
η1

N∑
j=1

ϕ1(xj)h
(1)
j

T

⎞⎠ h(1)
i

=
1
η1

N∑
i=1

N∑
j=1

ϕ1(vi)Tϕ1(xj)h
(1)
j

T
h(1)
i

=
1
η1

N∑
i=1

N∑
j=1

k0(vi, xj)h
(1)
j

T
h(1)
i (kernel trick)

=
1
η1

Tr
(
H (1)TK (0)

xv H (1)
)
,

where K (0)
xv ∈ RN×N such that (K (0)

xv)ij = k0(vi, xj). Note that
ere W1 was replaced using (6) by its expression in terms of the
raining points xi, but the term ϕ(vi) was not expressed in terms
f the training points. Keeping ϕ(vi) expressed in vi is useful
hen, after training, the visible units are taken as unknowns. For

nstance, in RBMs this is the case in data generation.
Combining the above rewrites, J (1)t,DRKM becomes:

¯(1)
t,DRKM = −

N∑
ϕ1(vi)TW1h

(1)
i +

λ1

2

N∑
h(1)
i

T
h(1)
i +

η1

2
Tr

(
W T

1 W1
)

i=1 i=1

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

N
t
o

Q

w
o
i
c
m
t
s
m
o
e
b
s
u
p
t
q
N

t
g

H

w
t
v
S
A
c
a
o
a

g

= −
1
η1

N∑
i=1

N∑
j=1

ϕ1(vi)Tϕ1(xj)h
(1)
j

T
h(1)
i +

λ1

2

N∑
i=1

h(1)
i

T
h(1)
i

+
1

2η1
Tr

⎛⎝ N∑
i=1

N∑
j=1

h(1)
i ϕ1(xi)Tϕ1(xj)h

(1)
j

T

⎞⎠
= −

1
η1

N∑
i=1

N∑
j=1

k0(vi, xj)h
(1)
j

T
h(1)
i +

λ1

2

N∑
i=1

h(1)
i

T
h(1)
i

+
1

2η1
Tr

⎛⎝ N∑
i=1

N∑
j=1

k0(xi, xj)h
(1)
i h(1)

j
T

⎞⎠
= −

1
η1

Tr
(
H (1)TK (0)

xv H (1)
)
+

λ1

2
Tr

(
H (1)H (1)T

)
+

1
2η1

Tr
(
H (1)TK (0)H (1)

)
.

The optimization problem of Constr-DRKM in (3) can finally be
rewritten by taking the sum of the expressions for the first and
second layers after weight elimination. Given that in training
K (0)
xv = K (0), as the visible units vi are clamped to the training

points xi, and because H (1)TH (1)
= I and H (2)TH (2)

= I due to the
orthogonality constraints, one can write:

minimize
h(1)i ,h(2)i

J̄ t,DRKM = −
1

2η1
Tr

(
H (1)TK (0)H (1)

)
−

1
2η2

Tr
(
H (2)TK (1)(H (1))H (2)

)
subject to

[
H (1)T

H (2)T

] [
H (1) H (2)

]
= Is1+s2 ,

(7)

where K (1)
∈ RN×N is the kernel matrix of the second layer de-

fined on the hidden features of the previous layer as K (1)
ij (H (1)) =

k1(h
(1)
i , h(1)

j). The optimization problem (7) has at least one global
minimum due to the Weierstrass theorem, as the objective func-
tion is continuous and the feasible set is compact, and it may
have multiple local minima since it is a non-convex problem.
Compared to (3), it does not have the interconnection matrices as
variables. This means that not only training is more efficient but
also that Constr-DRKM can deal with explicit and implicit feature
maps in the same manner, even if their feature space has infinite
dimensionality. Furthermore, as a consequence of the introduced
constraints and of the elimination of the interconnection ma-
trices, it is not necessary to define a stabilized version of the
objective to make it suitable for minimization, as it was instead
needed in the original formulation of deep RKMs as explained in
Section 3.2 with the additional hyperparameter cstab.

End-to-end training of the proposed deep RKM can be per-
formed by solving the equality constrained nonlinear optimiza-
tion problem (7). The constraint set of (7) is a Stiefel manifold
St(s1 + s2,N), so one of the algorithms that has been proposed
for optimization on the Stiefel manifold could be employed. For
example, one could use Newton’s method on the Stiefel manifold
developed in Edelman et al. (1998) and Smith (1993, 1994). This
algorithm generates points along the geodesic, which is expensive
to compute because it uses matrix exponentials. Alternatively,
one could avoid computing the geodesic by instead exploiting
the Cayley transform to determine the search curve, such as in
the algorithms proposed in Wen and Yin (2013), Zhu (2017).
However, these methods could also be computationally heavy
because the complexity of determining the search curve at each
iteration is dominated by a matrix inversion.

A simple algorithm avoiding expensive matrix computations
is the quadratic penalty optimization algorithm with warm start.
666
Algorithm 1 Example algorithm for training a two-layer Constr-
DRKM with a quadratic penalty optimization algorithm with
warm start. (h(1)

i)
s
k denotes the starting point h(1)

i at iteration k.
ote that Q also depends on the hyperparameters η1, η2 and on
he kernel functions k0 and k1, which need to be chosen before
ptimization.

1: function Train((h(1)
i)

s
0, (h

(2)
i)

s
0, µ0 > 0, τ0 > 0, p > 1)

2: for k← 0, 1, 2, . . . do
3: h(1)

i ← (h(1)
i)

s
k

4: h(2)
i ← (h(2)

i)
s
k

5: repeat
6: Update {h(1)

i , h(2)
i } ← ADAM(Q (h(1)

i , h(2)
i ;µk))

7: until
∇Q (h(1)

i , h(2)
i ;µk)

 ≤ τk

8: τk+1 ← τk/2
9: µk+1 ← p ∗ µk

10: (h(1)
i)

s
k+1 ← h(1)

i

11: (h(2)
i)

s
k+1 ← h(2)

i
12: end for
13: return h(1)

i , h(2)
i

14: end function

It works by first defining a function combining the objective of
(7) with an additional term penalizing solutions violating the or-
thogonality constraints. One such function is called the quadratic
penalty function Q (h(1)

i , h(2)
i ;µ) and is defined as

(h(1)
i , h(2)

i ;µ) = J̄ t,DRKM +
µ

2


[
H (1)T

H (2)T

] [
H (1) H (2)

]
− Is1+s2


2

F

,

here µ is a penalty parameter penalizing violations of the
rthogonality constraints. The constrained optimization problem
s then replaced by a sequence of unconstrained ones with in-
reasing µ. In the kth unconstrained problem, the h(1)

i and h(2)
i

inimizing Q (h(1)
i , h(2)

i ;µk) are sought, with starting point set
o the minimizers found in the (k − 1)-th problem. The uncon-
trained problems can be then solved by some unconstrained
inimization algorithm; e.g., Adam (Kingma & Ba, 2015). On the
ne hand, if these subproblems were solved to global optimality,
very limit point of the sequence generated by Algorithm 1 would
e a global minimizer of (7). On the other hand, only computing
tationary points approximately for the subproblems prevents
s from showing global optimality, so in general the quadratic
enalty algorithm employed in Algorithm 1 does not converge to
he global solution of (7). Detailed convergence properties of the
uadratic penalty method are given in Theorems 17.1 and 17.2 in
ocedal and Wright (2006).
Optimizing (7) can also be addressed with more efficient op-

imization algorithms. An alternative algorithm is the projected
radient algorithm, whose iterates are specified by

k+1 = ΠSt(s1+s2,N)(Hk − γk∇ J̄ t,DRKM(Hk)),

here Hk = [H
(1)
k H (2)

k], ΠSt(s1+s2,N) is the Euclidean projec-
ion onto the Stiefel manifold, and γk is the stepsize selected
ia backtracking. The projection is computed using the compact
VD of Hk. Another suitable optimization algorithm is Cayley
dam (Li et al., 2019), which can exploit the structure of the
onstraint set of (7). It approximates the Cayley transform iter-
tively requiring no matrix inversion. For Constr-DRKM training,
ne could for instance take five iterations for the Cayley transform
pproximation.
Contrary to the quadratic penalty method, projected gradient

ives feasible iterates and does not need an outer optimization

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

l
o
j
A
r
o
a

u
m
h
P
w
A
o
v
o

N
a
o

4

n
i
f
t
s
b
D
i
i
t

S
C
t
ϕ

F
s
c
c
T
o

P

w
S
(

P

T
p
m

r

5

o
t

oop, which is not needed for Cayley Adam either. The iteration
f projected gradient is the most expensive one due to the pro-
ection step. From this perspective, quadratic penalty and Cayley
dam are more suited to large-scale problems, even if they may
equire more iterations than projected gradient. The source code
f multiple optimization algorithms for Constr-DRKM is available
t https://github.com/taralloc/deeprkm.
In all algorithms, initialization can be done with random val-

es drawn from the standard normal distribution or with deter-
inistic layer-wise kernel PCA initialization, such that the initial
idden features of each layer are computed locally using kernel
CA. The kernels’ hyperparameters can be optimized together
ith the latent variables by adding them as variables in (7).
lternatively, kernels’ hyperparameter selection can be carried
ut by fixing a validation set and selecting the hyperparameter
alues that perform best on it. When it comes to the scalability
f solving (7), the size of both K (0) and K (1) grows quadratically in

N . On the other hand, their size does not depend on the dimen-
sionality d of the input space. Regarding the unknown matrices
H (1) and H (2), their size does not depend on d, but it depends on
, as well as on the number of selected principal components s1
nd s2, respectively. In addition, K (1) is computed from H (1), so
ptimization might suffer from the increased non-linearity.

.2. Denoising and Constr-DRKM

This section presents a reconstruction procedure that can de-
oise a test point x⋆. As in principal component analysis, denois-
ng is carried out by keeping only the first s principal hidden
eatures because one can assume that noise is concentrated in
he components of lower variance. Performing reconstruction is
traightforward in PCA because it is just a basis transformation,
ut the deep architecture and non-linear feature maps of Constr-
RKM pose a greater challenge. In fact, it is possible that a point
n the feature space used by ϕ1 does not have a pre-image in the
nput space. Moreover, multiple non-linear mappings have to be
aken into account during reconstruction.

We adapt the approach proposed in Mika et al. (1999) and
chölkopf et al. (1999) in the context of kernel PCA to a two-layer
onstr-DRKM. Extending the following procedure to more than
wo layers is straightforward. Call F1 the feature space used by
1 and assume that the mapped data points are centered in F1.
irst, h(2)⋆, the latent representation of x⋆ characterized by the
econd layer, is computed following (5). Similarly, h(1)⋆ is then
omputed following (4). Employing this representation, only s1
omponents are kept, discarding the components that are noisier.
he reconstruction of x⋆ from its projections zk, k = 1, . . . , s1
nto the first s1 principal components in F1 is

s1ϕ1(x⋆) =
s1∑
k=1

zkvk, (8)

here vk
∈ F1 is the kth principal component. As explained in

chölkopf et al. (1998), vk lies in the span of ϕ1(x1) . . . ϕ1(xN), so
8) can be written as

s1ϕ1(x⋆) =
s1∑
k=1

zk
N∑
i=1

αk
i ϕ1(xi). (9)

he denoised point in the input space is computed by finding a
oint x̂⋆ such that ϕ1(x̂⋆) approximates Ps1ϕ1(x⋆). To this aim, we
inimize

(x̂⋆) =
ϕ (x̂⋆)− P ϕ (x⋆)

2
.
1 s1 1 f

667
Fig. 1. Denoising a square and a half circle. The noisy dataset is plotted as
smaller black points, its denoised version as larger blue points. The number of
selected principal components is s1 = 2 for the first layer and s2 = 1 for the
second layer. In this experiment, σn = 0.1.

Using (9), the above can be rewritten as

r(x̂⋆) =
ϕ1(x̂⋆)

2
− 2ϕ1(x̂⋆) · Ps1ϕ1(x⋆)+

Ps1ϕ1(x⋆)
2

= k0(x̂⋆, x̂⋆)− 2
s1∑
k=1

zk
N∑
i=1

αk
i k0(x̂⋆, xi)+

Ps1ϕ1(x⋆)
2

.
(10)

Given that, by Eq. (17) of Schölkopf et al. (1998),

zk =
N∑
i=1

αk
i k0(xi, x

⋆),

that, in the LS-SVM formulation of kernel PCA, αi = 1/λ1 ei
(Suykens et al., 2002, 2003) and that ei = λ1h

(1)
i in restricted

kernel machines (Suykens, 2017), one can rewrite (10) in terms
of the hidden units as

r(x̂⋆) = k0(x̂⋆, x̂⋆)− 2
N∑
i=1

βik0(x̂⋆, xi)+
Ps1ϕ1(x⋆)

2
, (11)

where

βi =

s1∑
k=1

zkαk
i =

s1∑
k=1

⎛⎝ N∑
j=1

αk
j k0(x̂⋆, xj)

⎞⎠αk
i

=

N∑
j=1

s1∑
k=1

αk
j α

k
i k0(x̂⋆, xj) =

N∑
j=1

s1∑
k=1

(h(1)
j)k(h

(1)
i)kk0(x̂⋆, xj).

In general, standard gradient descent methods can be employed
to minimize (11); in this case, note that the last term of (11) is
independent of x̂⋆. In the case of the RBF kernel, Mika et al. (1999)
proposed the following iteration scheme for x̂⋆:

x̂⋆
t+1 =

∑N
i=1 βi exp

(
−

x̂⋆
t − xi

2
/(2σ 2

1)
)
xi∑N

i=1 βi exp
(
−

x̂⋆
t − xi

2
/(2σ 2

1)
) .

In denoising, the starting point is set to the noisy observation x⋆.

. Experimental evaluation

The goal of the experimental evaluation is to test the feasibility
f the proposed method for denoising and to assess the advan-
age of its architecture in the task of unsupervised disentangled

eature learning.

https://github.com/taralloc/deeprkm

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

5

c
s

m
L
A
a
γ

i

w
a
s
h
P
i
e
t
e
e

s
t
d
o
t
w
w
i

l
e
o
n
p
t
i
s
t

.1. Comparison of optimization algorithms

First, we evaluate the multiple optimization algorithms dis-
ussed in Section 4.1 in terms of speed and quality of the found
olution. We train a Constr-DRKM model on a subset of N = 1000
of the MNIST dataset (LeCun et al., 2010). The model has two RBF
layers (σ 2

= 50) with s1 = 10 and s2 = 5. For the penalty
ethod, we set τ0 = 0.00001, p = 8, µ0 = 1 and we use
-BFGS to solve the subproblems. The learning rate for Cayley
dam is 5 × 10−5. The termination condition for Cayley Adam
nd projected gradient is ∥Hk+1 − Hk∥ /γk ≤ 5 × 10−8 where
k is the stepsize, and for the outer loop of quadratic penalty
s

HT
k+1Hk+1

 ≤ 10−9. The results are shown in Table 1. All
algorithms achieve a similar final cost and all computed solutions
show good feasibility. The lowest average cost is found by Cayley
Adam. As expected, projected gradient and Cayley Adam require
significantly fewer iterations than quadratic penalty. The iteration
of Cayley Adam is about ten times cheaper than the one of pro-
jected gradient due to the computationally expensive SVD used in
the latter. Even though in this experiment the iteration of Cayley
Adam was less costly than the one of quadratic penalty, while
performing the experiments in 5.3 we observed that quadratic
penalty scaled better in terms of the number of unknown weights
and is therefore more suitable for large scale problems. The
training procedure described in Algorithm 1 is employed in the
experiments in the following subsections.

5.2. Denoising

We applied the denoising procedure explained in Section 4.2
to complex 2D synthetic datasets. Each dataset is generated by
668
selecting 3000 points as a training set and 750 additional points
as a validation set. In this set of experiments, the noise n is
hite Gaussian with zero mean and standard deviation σn varying
mong different values. The number of selected components is
1 = 2 for the first layer and s2 = 1 for the second layer; the
idden units are initialized in a layer-wise manner with kernel
CA. All η and λ are set to 1. The kernel function employed
n both layers is the RBF kernel and its bandwidth is selected
mploying the validation set. Constr-DRKM is first trained on
he noisy points to find their latent representations and then
ach xi is denoised by computing its pre-image minimizing the
xpression in (11).
First, a half circle and a square, depicted in Fig. 1, are con-

idered. It can be seen that Constr-DRKM successfully captures
he structure of the data distributions for both shapes. Note that
enoising was effective even though the chosen overall number
f principal components was higher than the dimensionality of
he datasets. This would not have been the case with linear PCA,
hich performs perfect reconstruction, hence does not denoise,
hen using as many components as the dimensionality of the

nput data.
Secondly, two additional more complicated datasets were ana-

yzed to study the role of each layer. The result of the influence of
ach component in every layer can be shown by denoising using
nly that component. For a dataset with a square and a spiral
ext to it, three plots, shown in Fig. 2, were produced. The first
lot is the result of denoising using only the first component of
he first layer: it learns the shapes, but has a few outliers and
s still noisy around the center of the spiral. The second plot
hows the denoised dataset using only the second component of
he first layer: it does not show outliers and better reproduces
Fig. 2. Study of the influence of each component in every layer for a data distribution consisting of a square and a spiral. The number of selected principal components
is s1 = 2 for the first layer and s2 = 1 for the second layer.
Fig. 3. Study of the influence of each component in every layer for a data distribution consisting of two squares, a spiral and a ring. The number of selected principal
components is s1 = 2 for the first layer and s2 = 1 for the second layer.

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

T
C
m

able 1
omparison of multiple training algorithms for Constr-DRKM on the MNIST dataset. Mean (standard deviation) over five initializations. Lower is better on all
etrics.
Algorithm Final cost Final feasibility Nr. iterations Runtime (s)

Quadratic penalty −605.8447 (0.00014) 1.37 ×10−11 (10−12) 191993 (1493) 5784 (309)
Projected gradient −605.8461 (0.00036) 5.51 ×10−12 (10−12) 345 (101) 30 (4)
Cayley Adam −605.8464 (0.00006) 1.73 ×10−12 (10−12) 41 005 (7548) 399 (73)
Fig. 4. Boxplot of the IRS score of a three-layer Constr-DRKM architecture according to the number of selected principal components for each dataset. The tuples
in the labels are of the form (s1, s2, s3). Lower and upper box boundaries the first and third quartiles, respectively, line inside box median, lower and upper error
lines minimum and maximum values, respectively. The results are shown over five random seeds. A higher score indicates better disentangling performance.
Fig. 5. Mean disentanglement score of different Constr-DRKM architectures according to the number N of training data points and the number nlayers of layers for
the Cars3D dataset. For the one-layer architecture, s1 = 10, for the two-layer one, s1 = 10 and s2 = 5 and for the three-layer one, s1 = 2, s2 = 2 and s3 = 6. The
size of each error band is set to the value of the standard error, extending from the mean. The variance is due to five different random seeds. The higher the curve,
the better.
the higher frequency details around the center of the spiral but
loses part of the square. The third plot is the result of denoising
using only the first component of the second layer: it keeps the
higher frequency details and reconstructs the square completely.
Overall, the principal component of the first layer captures the
broad trend but has outliers, while the second component learns
the details of the shapes but loses the general trend in some
regions. The component of the second layer, on the other hand,
both picks up the general trend and reproduces the details of the
shapes.

A similar analysis for a more complicated data distribution,
consisting of two squares, a spiral and a ring, is shown in Fig. 3.
Using only the first component of the first layer results in some
artifacts: two distinct loops of the spiral intersect and two sides
of the two squares are joined. On the other hand, the second
component reconstructs those shapes correctly but does not well
reproduce the inner circle of the ring. This circle is better repro-
duced by the first component of the second layer. The findings
of the previous two experiments suggest that the lower layer
in the deep architecture of Constr-DRKM functions as a lower-
level feature detector focusing on the broad trends of the data
distribution, while the higher layer exploits the representation
learned by the lower layer and represents higher-level features
which lead to better denoising and more accurate reproduction
of the original data distribution. These results are consistent with
669
Table 2
Reconstruction error ratios between Constr-DRKM and kernel PCA in denoising
complex 2D synthetic data distributions for different noise levels. Ratios larger
than 1 mean that the deep architecture resulted in better denoising than the
shallow one and the larger than 1 the better. In the deep architecture, the
number of selected principal components is s1 = 2 for the first layer and s2 = 1
for the second layer, while the number of principal components used by kernel
PCA is 3.
σn Square Half circle Dataset of

Fig. 2
Dataset of
Fig. 3

0.05 1.22 1.36 3.18 2.51
0.1 1.09 1.17 1.70 1.62
0.2 1.06 1.08 1.24 1.21

previous findings in deep Boltzmann machines (Le Roux & Bengio,
2008) and in convolutional neural networks (Zeiler & Fergus,
2014) that lower layers focus on local features, such as edges and
corners, and higher layers capture progressively more global and
complex patterns with increasing invariance.

Finally, denoising performance was compared to kernel PCA
with the same number of overall components. Table 2 reports
the ratio of the reconstruction error, computed for all denoised
points, between Constr-DRKM and kernel PCA. In the consid-
ered set of experiments, Constr-DRKM outperforms the shallow

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

p
a
t

k
s
g
b
s
p
T
s
o
s
t
t
O
b
d
a

Fig. 6. Boxplots of the disentanglement score of a two-layer Constr-DRKM, with s1 = 10 and s2 = 5, and of a β-VAE model according to the number of training
oints on the Cars3D and SmallNORB datasets. Disentanglement scores are shown across all choices of the hyperparameter γ for Constr-DRKM and of β for β-VAE
nd across five random seeds. The boxes show the first and third quartiles in the lower and upper box boundaries, respectively, the circle inside is the median and
he lower and upper error lines are the minimum and maximum values, respectively. Higher is better on all metrics.
5

i
v
o
b
d
2
a
(
s
d
g
i
d
t

ernel PCA in denoising. More complicated data distributions,
uch as the ones in Figs. 2 and 3, show greater performance
ain compared to the shallow architecture. This was expected
ecause kernel PCA is known to be able to effectively denoise
imple data distributions (Mika et al., 1999), but its denoising
erformance degrades as the datasets become more complex.
he superiority of the deep architecture is strongly marked for
mall σn, which, together with the observations on the influence
f the second layer made in the previous sets of experiments,
eems to indicate that the additional layer has a crucial role in
he reconstruction of the finer details of the data distribution, as
his effect might become less noticeable with higher noise levels.
verall, our proposed architecture’s representational efficiency
enefited from depth, since it attained improved denoising of the
ata distributions in the same number of principal components
s the shallow architecture.
670
.3. Disentanglement

This section aims to quantitatively assess that Constr-DRKM
s able to learn a disentangled representation of the factors of
ariation of the data. In addition, the role of the hyperparameters,
f the number of selected principal components, and of the num-
er of layers is studied. We applied our method on the Cars3D
ataset (Reed et al., 2015), on the dSprites dataset (Higgins et al.,
017) and on the SmallNORB dataset (LeCun et al., 2004), as well
s on a noisy version of dSprites introduced in Locatello et al.
2019) obtained by replacing the background pixels with Gaus-
ian noise with zero mean and unit variance. In all datasets, each
ata point is generated according to a deterministic function of its
round-truth latent representation. All data points are 64 × 64
mages: Cars3D and noisy dSprites contain RGB images, while
Sprites and SmallNORB contain grayscale images. For details of
he datasets, see Appendix A.1.

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

C
h

r
e
m
n
o
p
w
s
a
a
r

q
p
2
t
r

Fig. 7. Boxplots of the disentanglement score of a two-layer Constr-DRKM, with s1 = 10 and s2 = 5, and of a β-VAE model according to the hyperparameter γ for
onstr-DRKM and of β for β-VAE on the cars3D and SmallNORB datasets. Disentanglement score are shown across all N and across five random seeds. The boxes
ave the same structure as in Fig. 6. Higher is better on all metrics.
a
t
r
m
t
m
f
c
o
d
c
s
p

s
t
f
t

In the experiments, the dimension of the learned latent rep-
esentation is fixed to 10: this choice was also made in the large
xperimental evaluation of Locatello et al. (2019) and, further-
ore, this number is greater than but close to the ground-truth
umber of factor of variations. Computing the hidden features
f some data point in Constr-DRKM translates to selecting 10
rincipal components. We chose to do so in the deep architecture
ith nlayers ≥ 1 of Constr-DRKM by either fixing si to 10 for
ome i such that 1 ≤ i ≤ nlayers or by having

∑nlayers
i=1 si = 10

nd concatenating all h(i). In all experiments, the learned models
re evaluated on a subset of Neval = 4000 data points chosen
andomly from the relevant dataset.

Given that there is no single widely accepted measure to
uantify disentanglement, we use three metrics that have been
roposed in the literature, namely the IRS score (Suter et al.,
019), the mutual information gap (MIG) (Chen et al., 2018) and
he SAP score (Kumar et al., 2018). The IRS metric measures
obust disentanglement, which means that, if a latent variable is
671
ssociated with some generative factor G, the inferred value of
hat latent variable shows little change when G remains the same,
egardless of changes in the other generative factors. The MIG
etric is computed as the average over all generative factors of

he difference between the two latent variables with the highest
utual information with each generative factor. The SAP score is

ormulated by first building a score matrix S such that Sij is the
lassification score of predicting the jth generative factor using
nly the ith latent variable; the final score is the mean of the
ifferences between the top two entries for each column, which
orresponds to averaging over the generative factors. For all con-
idered metrics, a higher score indicates better disentangling
erformance.
In the first set of experiments, the role of the number of

elected principal components is investigated. The studied archi-
ecture has nlayers = 3 and all η are set to 1. The chosen kernel
unction is the RBF kernel and its bandwidth is added as a variable
o the optimization problem; this is the case for all experiments

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

a
d

T
C
d
I
t
l
i

n
r
s

i
F
s
o
p
n
c
S
f
o
H
t
m

f
l
a
a

Fig. 8. Line chart of the mean IRS score of a two-layer Constr-DRKM architecture, with s1 = 10 and s2 = 5, according to the hyperparameter γ for each dataset
nd each number N of training points. The size of each error band is set to the value of the standard error, extending from the mean. The variance is due to five
ifferent random seeds. The higher the curve, the better.
w
b
r
d
o
C
p
w
M
i
t
t
d
m
m
f
c
c

i

h
o
γ

able 3
omparison of disentangling performance of two Constr-DRKM models with
ifferent initialization and β-VAE on the Cars3D dataset with N = 800. Mean
RS and MIG scores are reported with their standard deviation, which is due
o 5 different random seeds. The employed Constr-DRKM model has two RBF
ayers (σ 2

= 50) with s1 = 10 and s2 = 5. The β-VAE model has β = 4. Higher
s better on all metrics.
Type IRS MIG

Random initialization 0.843 ± 0.044 0.012 ± 0.010
Layer-wise kernel PCA initialization 0.785 ± 0.000 0.040 ± 0.000
β-VAE 0.752 ± 0.145 0.010 ± 0.011

in this section. For each dataset, the training set is a random
sample of N = 100 data points. Eight different choices for the
umber of selected components s1, s2 and s3 are considered. Some
epresentative results are presented in Fig. 4; for additional plots,
ee Appendix B.
Fig. 4 shows that the number of selected components has an

mportant role in the disentangling performance of Constr-DRKM.
or instance, in the SmallNORB dataset a bad choice of s1, s2 and
3 led to considerably worse scores than the other choices. None
f the evaluated choices of s1, s2 and s3 consistently resulted in
oor performance on all datasets: for instance, (20, 20, 10) was
ot the best performer on the SmallNORB dataset, but it was the
hoice with the second best median score on the dSprites dataset.
imilarly, no choice of the number of selected components was
ound to always give a higher disentanglement score than any
ther choice for the datasets considered in the experiments.
owever, some choices led to better scores more consistently
han others, while also showing smaller variance. For instance,
odels with s1 = 2, s2 = 2 and s3 = 6 never resulted

in significantly poorer performance than the other models and
always had modest variance with respect to random seeds in the
experiments. Interestingly, in general, randomness affected cer-
tain combinations of dataset and disentanglement metric more
than others. For instance, in Fig. 4 most models on SmallNORB
have small variance, whereas most models have higher variance
on the other datasets.

Next, the role of the number nlayers of layers on Constr-DRKM’s
disentangling performance is studied as the number N of training
points grows from 50 to 800. In the experiments, nlayers is taken
rom {1, 2, 3}. The studied architectures are as follows: the one-
ayer architecture has s1 = 10, the two-layer one has s1 = 10
nd s2 = 5 and for the three-layer architecture, s1 = 2, s2 = 2

nd s3 = 6. For the two-layer and three-layer architectures,

672
e chose those configurations because they were among the
est ones that were empirically evaluated. All experiments are
epeated over five random seeds. The results for the Cars3D
ataset are shown in Fig. 5. The results indicate that the extent
f the influence of nlayers on the disentangling performance of
onstr-DRKM greatly depends on the disentanglement metric. In
articular, on Cars3D all considered nlayers had similar SAP score,
hile varying the number of layers generally greatly affected the
IG and IRS scores. For example, models with 3 layers resulted

n approximately double the MIG score on Cars3D compared to
he two-layer and one-layer models when N = 400. Overall, for
he datasets considered in these experiments, adding a third layer
id not consistently increase the disentanglement scores, but this
ay not be the case on more difficult datasets with, for instance,
ultiple more realistic objects and a complex background. In the

ollowing experiments, we fix nlayers = 2, as it was in most
ases the best or close to the best choice for any considered
ombination of metric, dataset, and N .
The performance of a two-layer Constr-DRKM is now studied

as the number N of training points grows from 50 to 800 and
s compared against β-VAE (Higgins et al., 2017). The studied
architecture has s1 = 10 and s2 = 5. Regarding the model
yperparameters η1 and η2, they have the role of weights in the
bjective function, so we can consider a single hyperparameter
=

η1
η2
. In the experiments, γ is taken from {0.01, 0.1, 1, 5, 25}.

We repeat the same experiments using a β-VAE model in place of
Constr-DRKM where we vary β in {2, 3, 4, 5, 6}. Some key results
are presented in Fig. 6; experiments are repeated five times.

Overall, Constr-DRKM showed good disentangling performance
compared to β-VAE across datasets and metrics. On Cars3D,
Constr-DRKM outperformed β-VAE in the IRS score; on Small-
NORB, Constr-DRKM and β-VAE produced similar MIG scores,
but the latter method resulted in better median IRS scores. If we
now turn to the analysis of variance, in accordance with Locatello
et al. (2019), β-VAE’s performance varied greatly with random
seed and hyperparameter. For example, on SmallNORB in Fig.
6b the attained score varies from about 0.5 up to almost 0.9
with considerable interquartile range for all N but the smallest.
Comparing β-VAE’s variance to Constr-DRKM’s, it can be seen
that our method shows a significantly more limited variance for
all N . Even on other datasets, Constr-DRKM shows overall smaller
variance on the IRS score than the one shown by β-VAE. This is
not always the case for other metrics, as exemplified in Fig. 6c. In
general, the observations made in this set of experiments suggest
that Constr-DRKM is able to consistently learn a disentangled

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

T
K

C
s
r
i
f
l
w
a
g
F
t
γ

able A.1
ey properties of the datasets used in the experimental evaluation.
Dataset Input dimensions # factors of variation Meaning of the factors of variation and # possible values Total # data points

Cars3D 3 × 64 × 64 3
– elevation (4 possible values)

17568– azimuth (24 possible values)
– object type (183 possible values)

dSprites 1 × 64 × 64 5

– shape (3 possible values)

737280
– scale (6 possible values)
– orientation (40 possible values)
– position x (32 possible values)
– position y (32 possible values)

Noisy dSprites 3 × 64 × 64 3

– shape (3 possible values)

737280
– scale (6 possible values)
– orientation (40 possible values)
– position x (32 possible values)
– position y (32 possible values)

SmallNORB 1 × 64 × 64 4

– category (5 possible values)

4860– elevation (9 possible values)
– azimuth (18 possible values)
– lighting condition (6 possible values)
Fig. B.1. Disentanglement score of a three-layer Constr-DRKM architecture according to the number of selected principal components for each dataset for the MIG
and SAP metrics. Same structure as Fig. 4.
representation of the input data, while being less affected by
randomness and hyperparameter selection than β-VAE.

We now focus on the influence of the hyperparameter γ for
onstr-DRKM and β for β-VAE. Fig. 7 plots the disentanglement
core attained by both Constr-DRKM and β-VAE as the hyperpa-
ameter γ for Constr-DRKM and β for β-VAE varies. The variance
s due to different N , which is in the same range as in Fig. 6, and
ive random seeds. From Fig. 7c it can be observed that γ has
ittle influence on the IRS score on SmallNORB compared to β ,
hich plays an important role in β-VAE’s median performance,
s setting β to 5 and 6 resulted in reduced performance and
reater variance. A similar but less sudden trend can be noted in
ig. 7a on Cars3D: increasing β leads to an increased score, but
he median score remains approximately steady when increasing
. Overall, these results suggest that Constr-DRKM is robust to
673
different weightings of the layers, as γ weights the relative im-
portance of the two layers. In general, therefore, Constr-DRKM is
less sensitive to γ than β-VAE is to β in the considered datasets
and disentanglement metrics.

The influence of γ is also studied separately for each N ∈
{50, 100, 200, 400, 800} in Fig. 8. It can be noted that most lines
are roughly horizontal, meaning that varying γ does not signif-
icantly affect the IRS score and that this behavior is shared by
all considered number of training points, except for the lowest
two N on dSprites, where a higher weight on the first layer led
to better performance. These results corroborate the findings of
the previous set of experiments: Constr-DRKM’s disentangling
performance tends to remain steady as its γ hyperparameter
varies, contrary to the behavior of β-VAE with respect to its
hyperparameter β , which greatly influences its performance.

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

Fig. B.2. IRS score of a two-layer Constr-DRKM, with s1 = 10 and s2 = 5, and of a β-VAE model according to the number of training points. The plot has the same
structure as Fig. 6.

Fig. B.3. Mean disentanglement score of Constr-DRKM architectures for different nlayers . Same structure as Fig. 5.

Fig. B.4. MIG score of a two-layer Constr-DRKM and of β-VAE according to N . Same structure as Fig. 6.

674

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

a

n
s
h
o

Fig. B.5. SAP score of a two-layer Constr-DRKM and of β-VAE. Same structure as Fig. 6.
Fig. B.6. IRS score of a two-layer Constr-DRKM and of a β-VAE model according to the hyperparameters on the dSprites dataset. The plot has the same structure
s Fig. 7.
Finally, we compare random initialization to layer-wise ker-
el PCA initialization. Table 3 shows the mean disentanglement
cores attained on Cars3D. In this experiment, initializing the
idden units locally using kernel PCA in a layer-wise manner
utperforms β-VAE and it provides the additional benefit of in-

creased reliability as the standard deviation is zero because no
random seed is employed. In particular, layer-wise kernel PCA
675
initialization on average achieves a slightly lower IRS score com-
pared to random initialization and it significantly outperforms
both random initialization and β-VAE on the MIG metric. Overall,
when it comes to the variance of the results, Constr-DRKM with
layer-wise kernel PCA initialization compares favorably to β-VAE,
successfully addressing the core issue of reliability of VAE-based
methods brought up by Locatello et al. (2019).

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679
Fig. B.7. MIG score of a two-layer Constr-DRKM and of a β-VAE model according to the hyperparameters. The plot has the same structure as Fig. 7.
6. Conclusion

In this work, we have proposed to reformulate the deep
restricted kernel machine framework for kernel PCA (Suykens,
2017) into a constrained optimization problem with orthogo-
nality constraints on the latent variables. We have discussed
and empirically evaluated a variety of optimization algorithms
to learn the hidden features in an end-to-end manner instead
of layer-wise. We have then shown how the proposed method
can be applied to denoising and unsupervised disentangled fea-
ture learning without any prior knowledge on the generative
factors. In the former task, we studied the role of each principal
component in every layer showing that components in the first
layer perform lower-level feature detection, while components
in the second layer employ the representation learned by lower
layers and extract more global features, more accurately repro-
ducing the original data distribution. In our experiments in the
task of disentangled feature learning, the proposed Constr-DRKM
method quantitatively performed similarly overall compared to
β-VAE (Higgins et al., 2017) on four benchmark datasets in
several disentanglement metrics when few training points are
available. In addition, regarding the issue raised in Locatello
et al. (2019) that performance of state-of-the-art approaches
to disentangled feature learning based on VAEs greatly varies
when changing random seed or hyperparameter, Constr-DRKM
was less sensitive to randomness and hyperparameter choice
compared to β-VAE. In particular, the variance due to Constr-
DRKM’s hyperparameter γ was smaller than the variance due to
the hyperparameter β in β-VAE and it was shown that Constr-
DRKM with deterministic layer-wise kernel PCA initialization
attained favorable scores without the need of a random seed,
considerably improving the reproducibility of the results. Finally,
the experimental analysis of the number of layers of Constr-
DRKM indicates that adding a layer can increase the disentangling
performance, as it was observed that a two-layer architecture
is a better choice than a single layer one. Nevertheless, three-
layer models did not consistently perform better than two-layer
676
models. This result does not rule out the influence of other fac-
tors, as, for example, more challenging datasets may benefit from
additional layers. In future work, applying Constr-DRKM to more
complicated datasets may be useful to better understand the role
of the number of layers. Furthermore, it would be interesting to
investigate more advanced constrained optimization algorithms
that could boost training efficiency.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

EU: The research leading to these results has received funding
from the European Research Council under the European Union’s
Horizon 2020 research and innovation program/ERC Advanced
Grant E-DUALITY (787960). This paper reflects only the authors’
views and the Union is not liable for any use that may be made
of the contained information. Research Council KUL: Optimiza-
tion frameworks for deep kernel machines C14/18/068. Flemish
Government: FWO: projects: GOA4917N (Deep Restricted Kernel
Machines: Methods and Foundations), PhD/Postdoc grant Impuls-
fonds AI: VR 2019 2203 DOC.0318/1QUATER Kenniscentrum Data
en Maatschappij. This research received funding from the Flemish
Government (AI Research Program), Belgium. Johan Suykens and
Panagiotis Patrinos are affiliated to Leuven.AI — KU Leuven insti-
tute for AI, B-3000, Leuven, Belgium. Ford KU Leuven Research
Alliance Project KUL0076 (Stability analysis and performance im-
provement of deep reinforcement learning algorithms). EU H2020
ICT-48 Network TAILOR (Foundations of Trustworthy AI — Inte-
grating Reasoning, Learning and Optimization). This work was
supported by the Research Foundation Flanders (FWO) research,
Belgium projects G086518N, G086318N, and G0A0920N; Fonds
de la Recherche Scientifique — FNRS, Belgium and the Fonds

Wetenschappelijk Onderzoek — Vlaanderen, Belgium under EOS

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

P
a
S
F

A

A

C
e
n
E
f
a
o
n

s

Fig. B.8. SAP score of a two-layer Constr-DRKM and of a β-VAE model according to the hyperparameters. The plot has the same structure as Fig. 7.
W
i
o
t
t
o
s

a
f
→

c
c

roject No. 30468160 (SeLMA). The computational infrastructure
nd services used in this work were provided by the VSC (Flemish
upercomputer Center), funded by the Research Foundation —
landers (FWO), Belgium and the Flemish Government, Belgium.

ppendix A. Further details on the experimental evaluation

This section details the setup of the experiments of Section 5.3.

.1. Datasets

Four datasets are used in the experimental evaluation: the
ars3D dataset (Reed et al., 2015), the dSprites dataset (Higgins
t al., 2017), the SmallNORB dataset (LeCun et al., 2004) and a
oisy version of dSprites introduced in Locatello et al. (2019).
ach data point is generated deterministically from a tuple of
actors of variations. The number of the factors of variations varies
cross datasets. Each factor of variation can take a finite number
f values, so the number of training points is fixed and is the
umber of all possible combinations of the factors of variations.
Table A.1 summarizes the key properties of the datasets con-

idered in the experimental evaluation.
677
A.2. Hyperparameter selection

The chosen algorithm for the unconstrained optimization
problems is Adam (Kingma & Ba, 2015) with learning rate fixed
to 10−3 and in Algorithm 1 we set µ0 = 1, τ0 = 0.1 and p = 8.

e halt the outer loop of Algorithm 1 after a fixed number of
terations that we choose so that it is larger when the number
f variables of the optimization problem is higher. This choice
ranslates to running more outer iterations when the number of
raining point N is higher, as the number of variables depends
n N . In particular, the maximum number of outer iterations was
et to 2 for N = 50 and N = 100, to 4 for N = 200 and to 7 for
N = 400 and N = 800. The maximum number of inner iterations
was set to 500.

The β-VAE encoder is constructed following the architecture
proposed in Higgins et al. (2017). The inputs are images x of
dimension c × 64× 64, where c is 1 for dSprites and SmallNORB
nd is 3 for Cars3D and noisy dSprites. We encode x using the
ollowing network: conv 32→ conv 32→ conv 64→ conv 64

conv 256→ FC 256 × 20, where each conv block is a 4 × 4
onvolution with stride 2 except the last block with stride 4. Each
onv block is followed by ReLU.

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679
Fig. B.9. Line chart of the mean disentanglement score of a two-layer Constr-DRKM architecture, with s1 = 10 and s2 = 5, according to the hyperparameter γ for
each number N of training points. The structure of the plot is the same as Fig. 8.
E

F

G

G

G

G

H

H

H

H

Appendix B. Additional plots of the experimental results

This section presents additional plots from our experiments
discussed in Section 5.3. First, we show plots investigating the
influence of the number of selected principal components in a
three-layer architecture (Fig. B.1) and the role of the number of
layers (Fig. B.3). Then, we compare Constr-DRKM’s performance
to β-VAE’s on multiple datasets and disentanglement metrics in
Figs. B.2, B.4 and B.5, focusing on the role of the hyperparameters
γ and β in Figs. B.6, B.7, B.8, and B.9.

References

Achille, A., & Soatto, S. (2018). Emergence of invariance and disentanglement in
deep representations. Journal of Machine Learning Research, 19(1), 1947–1980.

Allen-Zhu, Z., & Li, Y. (2020). Backward feature correction: how deep learning
performs deep learning. ArXiv Preprint.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1), 1–127.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 1798–1828.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016).
Infogan: interpretable representation learning by information maximizing
generative adversarial nets. In Proceedings of the 30th international conference
on neural information processing systems, Vol. 29 (pp. 2172–2180). Curran
Associates Inc..

Chen, T. Q., Li, X., Grosse, R. B., & Duvenaud, D. K. (2018). Isolating sources of
disentanglement in variational autoencoders. In Proceedings of the 32nd inter-
national conference on neural information processing, Vol. 31 (pp. 2615–2625).
Curran Associates Inc..
678
Comon, P. (1994). Independent component analysis, A new concept? Signal
Processing, 36(3), 287–314.

Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with
orthogonality constraints. SIAM Journal on Matrix Analysis and Applications,
20(2), 303–353.

smaeili, B., Wu, H., Jain, S., Bozkurt, A., Siddharth, N., Paige, B., Brooks, D. H.,
Dy, J., & Meent, J.-W. (2019). Structured disentangled representations. In
Proceedings of the 22nd international conference on artificial intelligence and
statistics, Vol. 89 (pp. 2525–2534). PMLR.

ischer, A., & Igel, C. (2014). Training restricted Boltzmann machines: an
introduction. Pattern Recognition, 47(1), 25–39.

eorgiev, P., Theis, F., Cichocki, A., & Bakardjian, H. (2007). Sparse compo-
nent analysis: A new tool for data mining. In Data mining in biomedicine
(pp. 91–116). Springer.

necco, G., & Sanguineti, M. (2009). Accuracy of suboptimal solutions to Kernel
principal component analysis. Computational Optimization and Applications,
42(2), 265–287.

necco, G., & Sanguineti, M. (2010). Error bounds for suboptimal solutions to
kernel principal component analysis. Optimization Letters, 4(2), 197–210.

oodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Proceedings
of the 28th international conference on neural information processing systems,
Vol. 27 (pp. 2672–2680). Curran Associates, Inc..

iggins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
& Lerchner, A. (2017). Beta-VAE: learning basic visual concepts with a
constrained variational framework. In The 5th international conference on
learning representations.

inton, G. E. (2012). A practical guide to training restricted Boltzmann machines.
In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Lecture notes in computer
science, Neural networks: tricks of the trade (2nd ed.). (pp. 599–619). Berlin,
Heidelberg: Springer.

inton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7), 1527–1554.

olzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability
and explainability of artificial intelligence in medicine. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 9(4), Article e1312.

http://refhub.elsevier.com/S0893-6080(21)00286-0/sb1
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb1
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb1
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb2
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb2
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb2
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb3
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb3
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb3
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb4
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb4
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb4
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb4
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb4
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb5
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb6
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb7
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb7
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb7
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb8
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb8
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb8
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb8
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb8
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb9
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb10
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb10
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb10
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb11
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb11
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb11
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb11
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb11
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb12
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb12
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb12
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb12
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb12
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb13
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb13
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb13
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb14
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb15
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb16
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb17
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb17
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb17
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb18
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb18
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb18
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb18
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb18

F. Tonin, P. Patrinos and J.A.K. Suykens Neural Networks 142 (2021) 661–679

J

K

olliffe, I. T. (1986). Principal components analysis. Springer.
Kim, H., & Mnih, A. (2018). Disentangling by factorising. In Proceedings of the

35th international conference on machine learning, Vol. 80 (pp. 2649–2658).
PMLR.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization.
In The 3rd international conference on learning representations.

ingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In The 2nd
international conference on learning representations.

Kumar, A., Sattigeri, P., & Balakrishnan, A. (2018). Variational inference of disen-
tangled latent concepts from unlabeled observations. In The 4th International
conference on learning representations.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building
machines that learn and think like people. Behavioral and Brain Sciences, 40,
Article e253.

Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann
machines and deep belief networks. Neural Computation, 20(6), 1631–1649.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436–444.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tuto-
rial on energy-based learning. In G. BakIr, T. Hofmann, B. Schölkopf, A.
J. Smola, B. Taskar, & S. N. Vishwanathan (Eds.), Predicting structured data
(pp. 191–246). MIT Press.

LeCun, Y., Cortes, C., & Burges, C. (2010). MNIST Handwritten digit database.
http://yann.lecun.com/exdb/mnist.

LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object
recognition with invariance to pose and lighting. In Proceedings of the 2004
IEEE computer society conference on computer vision and pattern recognition,
Vol. 2 (pp. II–97–104).

Li, J., Li, F., & Todorovic, S. (2019). Efficient Riemannian optimization on the
Stiefel manifold via the Cayley transform. In The 8th international conference
on learning representations.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., & Bachem, O.
(2019). Challenging common assumptions in the unsupervised learning
of disentangled representations. In Proceedings of the 36th international
conference on machine learning, Vol. 97 (pp. 4114–4124). PMLR.

Mercer, J. (1909). Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical Transactions of the Royal
Society, Series A, 209(441–458), 415–446.

Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M., & Rätsch, G. (1999).
Kernel PCA and de-noising in feature spaces. In Proceedings of the 1998
conference on advances in neural information processing systems, Vol. 11 (pp.
536–542). MIT Press.

Nocedal, J., & Wright, S. (2006). Numerical Optimization (2nd ed.). Springer-
Verlag.

Pandey, A., Schreurs, J., & Suykens, J. A. K. (2020). Robust generative restricted
kernel machines using weighted conjugate feature duality. In International
conference on machine learning, optimization, and data science.

Pandey, A., Schreurs, J., & Suykens, J. A. K. (2021). Generative restricted kernel
machines: A framework for multi-view generation and disentangled feature
learning. Neural Networks, 135, 177–191.

Ranzato, M., Huang, F. J., Boureau, Y.-L., & LeCun, Y. (2007). Unsupervised learn-
ing of invariant feature hierarchies with applications to object recognition.
In Proceedings of the 2007 IEEE computer society conference on computer vision
and pattern recognition (pp. 1–8).

Reed, S. E., Zhang, Y., Zhang, Y., & Lee, H. (2015). Deep visual analogy-making.
In Proceedings of the 28th international conference on neural information
processing systems, Vol. 28 (pp. 1252–1260). Curran Associates, Inc..
679
Ridgeway, K., & Mozer, M. C. (2018). Learning deep disentangled embeddings
with the f-statistic loss. In Proceedings of the 32nd international conference
on neural information processing systems, Vol. 31 (pp. 185–194). Curran
Associates, Inc..

Salakhutdinov, R. (2015). Learning deep generative models. Annual Review of
Statistics and its Application, 2, 361–385.

Sarhan, M. H., Eslami, A., Navab, N., & Albarqouni, S. (2019). Learning inter-
pretable disentangled representations using adversarial VAEs. In Domain
adaptation and representation transfer and medical image learning with less
labels and imperfect data (pp. 37–44). Springer.

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J. (2012).
On causal and anticausal learning. In Proceedings of the 29th interna-
tional conference on machine learning (pp. 1255–1262). Madison, WI, USA:
Omnipress.

Schölkopf, B., Mika, S., Burges, C. J., Knirsch, P., Muller, K.-R., Ratsch, G.,
& Smola, A. J. (1999). Input space versus feature space in kernel-based
methods. IEEE Transactions on Neural Networks, 10(5), 1000–1017.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis
as a Kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

Smith, S. T. (1993). Geometric optimization methods for adaptive filtering (Ph.D.
dissertation), USA: Harvard University.

Smith, S. T. (1994). Optimization techniques on Riemannian manifolds. Fields
Institute Communications, 3(3), 113–135.

Suter, R., Miladinovic, D., Schölkopf, B., & Bauer, S. (2019). Robustly disentan-
gled causal mechanisms: validating deep representations for interventional
robustness. In Proceedings of the 36th international conference on machine
learning, Vol. 97 (pp. 6056–6065). PMLR.

Suykens, J. A. K. (2017). Deep restricted kernel machines using conjugate feature
duality. Neural Computation, 29(8), 2123–2163.

Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., & Vandewalle, J.
(2002). Least squares support vector machines. World Scientific.

Suykens, J. A. K., Van Gestel, T., Vandewalle, J., & De Moor, B. (2003). A support
vector machine formulation to PCA analysis and its Kernel version. IEEE
Transactions on Neural Networks, 14(2), 447–450.

Ver Steeg, G., & Galstyan, A. (2015). Maximally informative hierarchical repre-
sentations of high-dimensional data. In Proceedings of the 18th international
conference on artificial intelligence and statistics, Vol. 38 (pp. 1004–1012).
PMLR.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the
25th international conference on machine learning (pp. 1096–1103). Madison,
WI, USA: Omnipress.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked
denoising autoencoders: learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research, 11(110),
3371–3408.

Wen, Z., & Yin, W. (2013). A feasible method for optimization with orthogonality
constraints. Mathematical Programming, 142(1), 397–434.

Williams, C., & Seeger, M. (2001). Using the Nyström Method to speed up
Kernel machines. In Proceedings of the 2000 conference on advances in neural
information processing systems, Vol. 13 (pp. 682–688). MIT Press.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In Proceedings of the 13th european conference on computer vision
(pp. 818–833). Springer.

Zhu, X. (2017). A Riemannian conjugate gradient method for optimization
on the Stiefel manifold. Computational Optimization and Applications, 67(1)
73–110.

http://refhub.elsevier.com/S0893-6080(21)00286-0/sb19
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb20
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb20
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb20
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb20
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb20
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb21
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb21
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb21
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb22
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb22
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb22
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb23
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb23
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb23
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb23
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb23
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb24
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb24
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb24
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb24
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb24
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb25
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb25
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb25
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb26
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb26
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb26
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb27
http://yann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb30
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb30
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb30
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb30
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb30
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb31
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb32
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb32
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb32
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb32
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb32
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb33
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb34
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb34
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb34
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb35
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb35
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb35
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb35
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb35
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb36
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb36
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb36
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb36
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb36
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb37
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb38
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb38
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb38
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb38
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb38
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb39
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb40
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb40
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb40
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb41
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb42
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb43
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb43
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb43
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb43
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb43
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb44
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb44
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb44
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb45
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb45
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb45
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb46
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb46
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb46
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb47
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb48
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb48
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb48
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb49
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb49
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb49
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb50
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb50
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb50
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb50
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb50
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb51
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb52
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb53
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb54
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb54
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb54
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb55
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb55
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb55
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb55
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb55
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb56
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb56
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb56
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb56
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb56
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb57
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb57
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb57
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb57
http://refhub.elsevier.com/S0893-6080(21)00286-0/sb57

	Unsupervised learning of disentangled representations in deep restricted kernel machines with orthogonality constraints
	Introduction
	Related work
	Background: deep restricted kernel machines
	Restricted kernel machine formulation of kernel PCA
	Deep restricted kernel machines
	Effective algorithms for deep RKMs: an open problem

	The Constr-DRKM method
	A training algorithm for Constr-DRKM
	Denoising and Constr-DRKM

	Experimental evaluation
	Comparison of optimization algorithms
	Denoising
	Disentanglement

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Further details on the experimental evaluation
	Datasets
	Hyperparameter selection

	Appendix B. Additional plots of the experimental results
	References

