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A B S T R A C T   

Posture and the rate of postural changes of farrowing and lactating sows are considered reliable indicators of 
environmental comfort and health status and are risk factors for piglet crushing. The objective of this study was 
to develop a combined deep learning and principle component analysis (PCA) based approach to classify 
different postural behaviours of sows in videos. Compared to previous studies of sow’s postural behaviour 
classification based on deep learning, this study selects sequences of frames from the videos that distinguish 
different postural behaviours rather than using all frames for the classification. Videos were collected from 13 
sows, and the recording started from 5 days before the expected date of farrowing until weaning. From the 
videos, 3100 videos without piglets and 1680 including piglets were manually selected. Then, these videos were 
augmented by using vertical mirroring and adding Gaussian noise, which resulted in 7200 and 4600 videos 
without and including piglets, respectively. Each video lasted 5 sec and included 1 out of 5 behavioural postures 
(sternal lying, lateral lying, sitting, standing, walking) labelled by one trained expert with extensive experience in 
sow’s behaviour classification. Out of the total of 11,800 videos, 75% were randomly allocated as training set 
and the remaining 25% as validation set. To select motion-related frames, each video was first converted into a 
multidimensional matrix. Then, PCA was performed on the matrix and a number of component(s) were selected 
to represent the frame. After that, the frame Euclidean distances were computed based on the components and 
the frames over a certain distance threshold were selected to generate new videos. Since a different number of 
components and distance thresholds can affect the number of selected frames, a range of component numbers (1, 
2, 3, 5, 10, 20, 50) and distance thresholds were further tested to find the optimal parameters. The best balance 
between accuracy and performance of the classification was obtained when using 10 components (87.98% of 
total variation). The best results were obtained when the threshold was set as one fourth of the largest distance 
between two successive frames. To classify different behaviours, the videos composed of the selected frames were 
trained and validated with convolutional neural network (CNN) and a long short-term memory (LSTM) models. 
Using the proposed method, postural behaviours could be classified with accuracies of 95.33% and 92.67% on 
videos without piglets and all data (including and not including piglets). Furthermore, 500 new videos were 
selected from the experiment and were used as test set. The final model was further tested on the test set and 
returned an accuracy of 90.60%, which indicated that the proposed method can be generalized on new data.   

1. Introduction 

The postural behaviour of sows can be an indicator of their welfare 
and health. For instance, heat stress induced by ambient temperature 

changes cause different postural changes in sows. Sows lie down later-
ally with their limbs extended when the ambient temperature is high, 
whereas they lie down sternally, which minimizes their contact with the 
floor, in low environmental temperatures (Huynh et al., 2005; Spoolder 
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et al., 2012). Lameness, as a prevalent health and welfare concern 
leading to shorter longevity and economic loss, can also be assessed 
indirectly by quantifying postural behaviours. Lame sows spend less 
time standing and lay down earlier after feeding than non-lame sows 
(Grégoire et al., 2013). Lame sows are also more likely to show diffi-
culties in lying down than healthy individuals (Bonde et al., 2004). 
Shoulder sores can be caused by prolonged lying on inappropriate floor 
due to inadequate feeding and can also lead to behavioural changes. 
Larsen et al. (2015) showed that sows with shoulder sores spent less time 
lying, tended to perform more postural changes, spent more time 
standing still, and showed increased shoulder rubbing and reduced 
nursing frequency compared to healthy individuals (Larsen et al., 2015). 

Apart from the welfare and health of the sow itself, the postural 
behaviour of sows is also related to productivity in pig farming. For 
instance, the postural transition from “sitting to lying” and the move-
ment change from “standing to lying” as well as rolling behaviour 
(changing lateral lying position from one side to the other) are important 
causes of piglet crushing in the first 72 h after birth (Nicolaisen et al., 
2019; Damm et al., 2005), with piglet crushing as the main cause of 
piglet mortality in indoor housing systems (Marchant et al., 2001). Sows 
become more active before farrowing due to nest-building behaviour 
and the analysis of behaviour patterns may indicate the timing of 
parturition and the need for closer monitoring by the farmer (Oczak 
et al., 2020). Compared to traditional human observation of animals, 
computer vision methods are more time-efficient given that farmers can 
get the postural information directly and automatically from real-time 
video analysis. Computer vision methods are also non-intrusive and 
non-stressful for animals compared to accelerometers or other body- 
mounted/wearable sensors. Therefore, there has been great interest in 
using computer vision methods for classifying different animal 
behaviours. 

Application of computer vision to automatically classify the behav-
iour of pigs was initiated by Kashihaand colleagues who used ellipse 
fitting to localize the pig and then computed the amount of moving 
pixels in each image to determine pigs as active or inactive (Kashiha 
et al., 2013). Nasirahmadi et al. scored the lateral and sternal lying 
postures by calculating the area and perimeter of the boundary and 
convex hull on single images, and classified them using a support vector 
machine (SVM) (Nasirahmadi et al., 2019). However, the classification 
accuracies found in the above studies can easily be affected by the image 
quality and the accuracy of pixels or points detected on the sow’s body. 
Deep learning techniques can help to deal with the problem of low image 
quality and pixel/point detection. For instance, a fully convolutional 
network (FCN) was developed for lactating sow image segmentation 
with different image qualities (Yang et al., 2018). Moreover, Zheng et al. 
developed a Faster region-based convolutional neural networks (Faster 
R-CNN) model to classify five postural behaviours (standing, sitting, 
sternal recumbency, ventral recumbency and lateral recumbency) in 
sows (Zheng et al., 2018). 

However, the above studies only extracted spatial features from still 
images to classify the sow’s behaviours, which cannot simultaneously 
obtain the coherent temporal information of the behaviours. The tem-
poral information between consecutive frames is important, especially 
when distinguishing between active and inactive behaviours, e.g. 
walking vs. standing. Furthermore, the rapid development of deep 
learning techniques brought new opportunities to behavioural classifi-
cation in videos. For instance, a two-stream convolutional network 
model was developed to extract the temporal and spatial features based 
on video analysis to classify five behaviours (feeding, lying, walking, 
scratching, mounting) in pigs (Zhang et al., 2020). Li et al. proposed a 
spatiotemporal convolutional network that can extract different features 
from low and high frame rate videos to classify different behaviours of 
pigs (Li et al., 2020). Most published methods analysed an entire video 
and used all frames to do the classification. However, human vision 
proves that simple actions can be recognized almost instantaneously 
(Schindler and Van Gool, 2008). The behaviour of sows could therefore 

potentially be correctly recognized from very short sequences, which 
indicates that extracting the features from all frames may be using more 
information than required. Additionally, processing the entire video is 
time-consuming compared to only processing motion-related frames, i.e. 
the frames that show the main movements of the animal and can most 
greatly distinguish different postural behaviours. Specifically, spatial 
and temporal features need to be extracted from all frames when using 
the entire video, whereas the processing of motion-related frames only 
needs to deal with a small part of the video while potentially being able 
to retain good performance. 

The current study attempted to select motion-related frames from the 
video and then classify them into different behaviours based on the 
selected frames. Principle component analysis (PCA) is a reliable tool for 
dimension reduction and has already been used in many cases of animal 
image analysis, e.g. pig detection (Sun et al., 2019) and fish detection 
and recognition (Matai et al., 2012). This study aimed to adopt PCA to 
reduce the dimensions of frame and to represent the frame by chooseing 
a number of component(s). Compared to other cluster-based frame se-
lection methods (Zhuang et al., 1998; Ferman and Tekalp, 1997) iden-
tifying cluster centers as key frames, PCA-based method don’t need to 
iteratively compute the cluster centroids and are more applicable to less 
complex scenarios. Additionally, CNN along with LSTM were shown to 
be reliable for extracting spatial–temporal information for pig aggres-
sive behaviour detection (Chen et al., 2020), tail-biting behaviour 
recognition (Liu et al., 2020), as well as drinking and drinker-playing 
behaviour classification (Chen et al., 2020). Therefore, the objective of 
this study was to develop a PCA based frame selection method for 
applying CNN and LSTM to classify sows’ postural behaviour. 

2. Materials and method 

2.1. Data acquisition 

The videos were collected on the Medau pig research and teaching 
farm (VetFarm, Pottenstein, Austria) of the University of Veterinary 
Medicine, Vienna, Austria. The experiment protocol was approved by 
the Ethical Committee of the Austrian Federal Ministry of Science, 
Research and Economy and by the Ethical Committee of Vetmeduni 
Vienna (GZ: BMWFV-68.205/0082-WF/II/3b/2014). Thirteen Austrian 
Large White sows and Landrace × Large White crossbred sows were 
included in the experiment. Six sows were kept in SWAP pens with an 
area of 6.0 m2 (Jyden Bur A/S, Vemb, Denmark), two sows in Trapezoid 
pens with an area of 5.5 m2 (Schauer Agrotronic GmbH, Prambach-
kirchen, Austria), and five sows in Wing pens with an area of 5.5 m2 

(Stewa Steinhuber GmbH, Sattledt, Austria). The sows were moved into 
the pens approximately 5 days before the expected date of farrowing. 
The videos were collected from when the sows were moved into the 
farrowing pens until weaning of piglets at four weeks of age. Only the 
video when the sows were not confined in crates were selected in this 
study. An IP camera (GV-BX 1300-KV, Geovision, Taipei, China) was 
placed above each pen at the height of 3 m to the ground, giving an 
overhead view of the whole pen. Additionally, infrared spotlights (IR- 
LED294S-90, Microlight, Bad Nauheim, Germany) were installed in 
order to allow night recording. The resolution of the videos was 1280 ×
720 pixels and the frame rate was 30 fps. The videos collected after 
farrowing included piglets (average litter size: 11.64 ± 3.56), whereas 
the videos collected before farrowing without piglets. The piglets- 
included videos were used to test the robustness of the developed al-
gorithm. Fig. 1 shows an example of frames including and not including 
piglets. 

Recordings were stored on exchangeable, external 3 TB and 4 TB 
hard drives. The computer used in analysing the videos has a processor 
Intel(R) Core(TM) i7-8700 K CPU @ 3.70 GHz with 8 GB of RAM 
memory running a Microsoft Windows 10 Enterprise operating system. 
The graphic card was NVIDIA GeForce RTX 2080 with 8 GB of physical 
memory. 
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2.2. Data sets 

According to the definitions for sow’s postural behaviour and the 
frequency of postural changes in the literature (Johnson et al., 2007; 
Oczak et al., 2016), a duration of 5 s was chosen for each video in this 
study. Only one behaviour was included in each video. The videos 

(including the training and test set) of each behaviour (sternal lying, 
lateral lying, sitting, standing, and walking) were labelled by one trained 
expert with extensive experience in sow’s behaviour classification who 
was tested for inter-observer reliability. Different frames for each 
behaviour can be seen in Fig. 2, and the number of videos for each 
behaviour can be found in Table 1. For all the videos selected for this 

Fig. 1. Examples of (a) a frame not including piglets; and (b) a frame including piglets.  

Fig. 2. Examples of frame sequences for different behaviours and the augmentation of vertical mirroring and adding Gaussian noise: (a) sternal lying; (b) lateral 
lying; (c) sitting; (d) standing; (e) walking; (f) vertical mirroring; (g) adding Gaussian noise (the right one was added Gaussian noise, which is less clear than left one.) 

M. Wang et al.                                                                                                                                                                                                                                  



Computers and Electronics in Agriculture 189 (2021) 106351

4

study, 80% were collected during the day and the remaining 20% came 
from the night. In order to enhance the generalization ability and 
robustness of the model, an augmentation process was performed to the 
original data. The original video was augmented by adopting vertical 
mirror and adding random Gaussian noise. An illustration of the 
augmentation can be found in Fig. 2. The number of videos obtained 
after the augmentation process is shown in Table 1. Note that in the 
dataset without piglets, half of the videos of sternal lying, lateral lying 
and standing were augmented by applying adding Gaussian noise and 
half were added Gaussian noise respectively, and all the videos of sitting 
and walking were augmented by applying vertical mirror and adding 
Gaussian noise. In the dataset including piglets, half of the videos of 
standing were augmented by applying vertical mirror and half were 
added Gaussian noise, and all the videos of sternal lying, lateral lying, 
sitting and walking were augmented by applying vertical mirror and 
adding Gaussian noise. In order to test the robustness of the algorithm, 
there were two trainings: one (Training 1) on original and augmented 
videos without piglets (7200 videos in total), and the other one 
(Training 2) on all original and augmented data (11800 videos in total). 
Details for the number of videos used in Training 1 and 2 can be found in 
Fig. 3. In each training session, 75% of the data were randomly allocated 
as training set and the remaining 25% as validation set. Additionally, the 
trained models of Training 2 were tested on unseen videos that were 
collected on the same sows but were not used for training. Details for the 
number of videos for each behaviour in the test set are given in Table 1 
and the number of videos used in test can be found in Fig. 3. 

2.3. Algorithm 

The workflow of the algorithm can be found in Fig. 4. The proposed 
algorithm is composed of two parts: (1) processing each video and (2) 
using a CNN + LSTM model to classify the behaviours. In the first part, a 
PCA was performed to reduce the dimension of the frames and then the 
frame distances were computed and compared with the threshold. 
Finally, the frames that satisfy the threshold requirement were selected 
to generate a new video for classification. Note that the threshold was 
different from videos as it was determined by the largest distance of two 
successive frames in each video. After the first part, only the motion- 
related frames were selected to generate the new videos. In the second 
part, the newly generated videos were classified by a CNN + LSTM 
model. First, a pre-trained CNN model was used to transform the frames 
into a feature vector. Then, the feature vectors were input to a LSTM 
module including the fully connected layer and softmax to extract the 
temporal features and to classify the different postural behaviours. 

2.3.1. Video processing 
The cameras switched to IR mode when there was not enough light in 

the room, and in this mode videos were only recorded in grayscale. Due 
to the day-night difference in light intensity, the videos collected were 
almost half grayscale and half RGB format. Note that the raw videos in 
grayscale still have three channels but the intensity of the three channels 
are same. In order to speed up frame selection process, the algorithm 
converted the three channels into one channel at the beginning of video 
processing. Specifically, the means of the red, green and blue channels 
were computed. Then, each frame was represented by a 255 × 255- 
dimensional matrix, which is the dimension for training input of the 
CNN based on VGG16. Note that the one-channel data were only used 
with the aim to get motion-related frame indexes. After getting the in-
dexes, the selection of the frames was still based on the raw video. 

In this study, PCA was adopted to reduce the dimension of the frame 
matrix so that each frame could be represented in a lower dimension. 
Before doing PCA, the matrix (255 × 255 dimensions) that contains the 
frame data was flattened into a 65,025 (=255 × 255)-dimensional 
vector. By flattening each frame in the video, the video was finally 
represented by a 150 × 65025-dimensional matrix (5 sec video and 30 
fps = 150 frames per video). Then, PCA was performed in this video 
matrix. The first k components were selected, and the video matrix was 
reduced to 150 × k dimensions. After the dimension reduction, each 
frame was represented by k components. The frame distances were 
computed based on these components. At first, the Euclidean distance of 
every pair of successive frames was calculated. Then, part of the 
maximum of these distances (e.g. one half) was set as the threshold. After 
that, the sum of the distances was computed from the first distance 
(between the first and second frames). If the sum of the preceding 

Table 1 
Number of 5 s videos for each behaviour.   

Sternal 
lying 

Lateral 
lying 

Sitting Standing Walking Total 

Original 
videos 
without 
piglets 

700 800 400 800 400 3100 

Augmented 
videos 
without 
piglets 

700 800 900 800 900 4100 

Original 
videos with 
piglets 

330 330 300 500 220 1680 

Augmented 
videos with 
piglets 

660 660 600 500 500 2920 

Test set 100 100 100 100 100 500  

Fig. 3. Number of videos used for Training 1, 2 and Test.  
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distances exceeded the threshold, then that frame would be selected to 
generate the new video. This process was repeated until the last dis-
tance. The details of the whole computation of video processing is given 
below. The illustration of the frame selection can be found in Fig. 5. 

Algorithms 1. (Computation details of frame selection)  

Assume: Dataset V contains n videos v1, v2,⋯vn  

Each video contains r frames, for example, the frames in video vi are vi= {fi1, fi2,⋯ 
fir}

(continued on next page) 

Fig. 4. Flow chart representation of the different processing steps for classifying different postural behaviours in sows.  

Fig. 5. The schematic diagram of processing a single video (5 s, 150 frames).  
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(continued ) 

The pixels in fij are fij = {p1,1
ij , p1,2

ij ,⋯, pl,w
ij } , here l and w are the height and width of 

fij  
The R, G, B values of each pixel are pa,b

ij = {ra,b
ij ,ga,b

ij ,ba,b
ij }, here a ∈ {1, 2,⋯, l},b ∈ {1,

2,⋯,w}

Threshold T 
Output dataset V’ = {v’

1,v’
2,⋯v’

n}

Input: Video sequences V = {v1,v2,⋯vn}

1: For vi ∈ V(i = 1,2,⋯n)
2: For fij ∈ vi  

3: For pa,b
ij ∈ fij  

4: mpa,b
ij = (ra,b

ij + ga,b
ij + ba,b

ij )/3  
5: End for 
6: Flatten all pixels: mfij = {mp1

ij ,mp2
ij ,⋯,mpl×w

ij }

7: End for 

8: let mvi =
{

mfij

}
, i ∈ {1, 2,⋯, n}, j ∈ {1, 2,⋯, r} , the row and column numbers 

of mvi are r and l × w respectively  
9: Do PCA in mvi and select the first k components, Pmvi = PCA(mvi)={Pmfij}, 

Pmfij = {c1
ij ,c2

ij ,⋯,ck
ij}

10: For j ∈ {1, 2,⋯, r − 1}

11: dij =

⃒
⃒
⃒Pmfij − Pmfij+1

⃒
⃒
⃒ =

∑k
s=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cs
ij − cs

ij+1)
22

√

12: End for 
13: Let d = 0  
14: For j ∈ {1, 2,⋯, k − 1}
15: if d ≥ T  
16: Append j + 1to index, let d = 0  
17: else 
18: d = d + dij  

19: ifd ≥ T  
20: Append j + 1to index, let d = 0  
21: End for 
22: v’

i = vi[index]
Output: Frame selected video sequence V’    

2.3.2. Classification 
In this study, a pre-trained CNN model VGG-16 (Simonyan and Zis-

serman, 2014.) was used to extract the spatial features. VGG-16 was 
trained on ImageNet (Deng et al., 2009), which has more than 14 million 
images and covers over 20,000 categories for object detection and 
classification. To fine-tune the model, the weights from the first to the 
penultimate layer were kept and the last layer’s weights were trained on 
the frame-selected videos. Note that after selecting motion-related 
frames, the length of the videos were different (1.15 ± 0.24 s for 

videos not including piglets and 2.03 ± 0.25 s for videos including 
piglets). The input of the VGG-16 model were the frame-selected videos 
and the frame resolution was 224 × 224 × 3 pixels. VGG-16 extracted 
the spatial features frame by frame; the output of each frame was a 
25088-dimensional vector. Then this vector was input to the LSTM 
module. LSTM can convey the features from the previous to the 
following frames. This makes LSTM have the function of memory, and 
thus able to extract temporal features. Fig. 6 shows the feature extrac-
tion process where first the VGG-16 CNN model was fine-tuned and then 
LSTM was applied to extract the temporal features. The output of the 
LSTM module was a 5-dimensional vector, i.e. one-hot encoding of the 
five different behaviours. Besides, categorical cross-entropy was used as 
the loss function when training the model. 

Moreover, the accuracy defined in Eq.(1) was used to evaluate the 
proposed model. Here the number of accurately classified videos 
included all five behaviours that were classified correctly. 

Acc =
Number of accurately classified videos

Total number of videos
× 100% (1)  

3. Results and discussion 

3.1. Results of training 1 and training 2 

Fig. 7(a) illustrates the first 30 frames in a video and Fig. 7(b) shows 
that 6 frames were selected out of the 30 frames. In the part of video 
processing, different numbers of components were used to represent the 
frame when performing PCA to reduce the dimensions. The number of 
components can affect the number of selected frames and thus change 
the accuracy and duration of the training. Table 2 illustrates the training 
time and accuracy under different number of components in Training 1. 
The PCA time and Training time in Table 2 indicate the time used for 
doing PCA and training respectively. The average frame number of each 
video and the percentage of variance kept in Training 1 are reported in 
Table 2. The similar parameters of Training 2 are reported in Table 3. 
Note that in Table 3 ‘All training time’ was the time used including doing 
PCA and training. Additionally, Table 3 gives the processing time for 
using the trained model on all data (including and not including piglets, 
11,800 videos in total). By computing the processing time we want to 
show the model efficiency when we use the pre-trained model to do 
classification. Note that the distance thresholds here were all set to M/2, 
where M indicates the maximum distance between two successive 
frames. M was different for each video. 

Fig. 6. Illustration of spatial and temporal features extraction.  
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From Table 2 we can see that the more components were used, the 
more frames were selected, and larger variance were kept compared to 
the raw videos. Both the accuracy and training time increased with 
increasing numbers of components. Compared to using raw videos, only 
using motion-related frames saved about one third of training time while 
the performance were almost retained. Similar conclusions can also be 
drawn from Table 3. From Table 2 to Table 3, it can be seen that the 
algorithm was also able to analyze data including piglets. It should be 
noticed that in Training 1 the validation accuracy increased by 0.78% 
when the number of components increased from 10 to 50, but the 
training time also increased by 2m35s. More importantly, the validation 
accuracy of data including piglets in Training 2 only improved by 0.20% 
with more than 10 components while the training time increased 2m07s. 
Considering the trade-off between training time and validation accu-
racy, we chose 10 components as an optimal representation of the frame 
for classifying different behaviours, and thus this number was used in 
the following tests. Fig. 8 (a) and (c) illustrate the training curve when 
using 10 components in Training 1 and 2. Additionally, in order to verify 
the model efficiency, the trained models were all validated on the whole 
dataset (including and not including piglets) and the processing time 
were recorded in Table 3. We can see that using motion-based frames 
can save over half of the time compared to using all frames in the video. 

3.2. Testing different thresholds 

In the previous steps, the threshold was set as M/2. However, the 
threshold can also affect the number of selected frames. To verify how 
this parameter affects the results, different thresholds were tested on 
dataset of Training 1 and the results are illustrated in Table 4, with the 
number of components set to 10 as mentioned above. Table 4 reveals 
that by setting a larger threshold, a smaller number of frames will be 
selected. Therefore, it costs less time to train the model. From the 
training and validation accuracy, we can see that selecting more frames 
did not necessarily result in higher accuracy. The accuracies obtained by 
setting the threshold to M/4 were better than those of M/6 and M/8. 
This may result from the selection of irrelevant frames and these frames 
may cause the misclassification of the behaviours. Overall, the results 
obtained from threshold M/4 were optimal considering both the training 
time and accuracy, and therefore it was used for further tests. Fig. 8 (b) 
illustrates the training curve of setting the threshold to M/4 and using 10 
components. By comparing Fig. 8 (a) and (b), it can be seen that by 
setting a suitable threshold, the validation accuracy increased from 
93.58% to 95.33% and training time only increased by 20 s. 

3.3. Comparison with cluster-based method 

In order to validate the effectiveness, we made the comparison with 
cluster-based method. The details of the algorithm can be found in 

Fig. 7. Illustration of before and after PCA-based frame selection: (a) before frame selection; (b) after frame selection.  

Table 2 
Results of Training 1.  

Number of components 1 2 3 5 10 20 50 Raw video 

Training Accuracy 94.09% 94.36% 94.79% 94.90% 94.93% 95.04% 95.69% 97.33% 
Validation Accuracy 93.11% 93.19% 93.39% 93.51% 93.58% 93.58% 94.34% 95.97% 
Percent of variance kept 38.51% 57.72% 67.50% 77.91% 87.98% 94.40% 98.39% 100% 
PCA time 13.48 s 13.35 s 14.53 s 14.47 s 15.37 s 15.48 s 16.22 s / 
Training time 10m43s 12m05s 12m44s 12m28s 12m51s 13m26s 13m47s 18m55s 
Average frame number per video 27.01 29.87 30.42 31.86 32.95 38.33 50.48 150  

Table 3 
Results of Training 2.  

Number of components 1 2 3 5 10 20 50 Raw video 

Training Accuracy 91.35% 91.50% 93.35% 93.87% 93.75% 93.77% 93.81% 95.81% 
Validation Accuracy 88.01% 88.50% 88.55% 91.48% 92.67% 92.74% 92.85% 95.68% 
Percent of variance kept 38.51% 57.72% 67.50% 77.91% 87.98% 94.40% 98.39% 100% 
All training time 18m25s 18m17s 18m34s 18m31s 19m02s 20m12s 21m09s 28m44s 
Processing time 8m19s 8m22s 9m47s 8m38s 9m03s 9m32s 10m40s 26m21s 
Average frame number per video 50.17 54.34 57.69 60.83 61.68 65.75 74.81 150  
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(Zhuang et al., 1998). We tested different threshold parameter δ (same 
as the reference, δ = 0.8, 0.85 and 0.9), which controls the number of 
selected frames. The clustering time, training time, average frame per 
video as well as validation accuracy are showed in Table 5. Note that the 
validation was performed on the dataset of training 1. From Table 5 we 
can see that cluster-based method can exclude a large number of frames 
so the training time decreased a lot. As cluster-based method computer 
the cluster centroids iteratively, the clustering time was longer than the 
time of performing PCA. The greatest difference of these two methods 
was the validation accuracy, we can see that the validation accuracy of 
cluster-based method was around 80%, which was low for classification. 
The cluster-based method was a good tool for video summarization since 
only a few frames were kept. But only a few frames seems not enough for 
postural behaviour classification. We believe there is a trade-off between 
the frame number and classification accuracy, PCA-based method might 
be more applicable to less complex scenario, e.g. postural behaviour 
classification in sows. 

3.4. Testing on unseen data 

After confirming the best component number and threshold, the final 
model was trained on the dataset of Training 2 with 10 components and 
M/4 threshold. In order to see the generalization ability of the model, 
unseen new data were used to test the performance of the model. The 
number of videos for each behaviour in the new test dataset was 100 
with 500 videos in total. The new test dataset included both videos with 
and without piglets, from which 40% were data including piglets. The 
average accuracy obtained was 90.60%. It can be seen that the proposed 
method is able to be generalized on new datasets. The confusion matrix 
of the test is shown in Table 6. Analysing the confusion matrix and the 
videos, we found that the misclassification mainly resulted from the 
overlaps between the sow and piglets. and also the movements of piglets 
affecting the sow’s behaviour especially in corners of the image. Fig. 9 
illustrates the possible reasons for the misclassification between 

standing and walking.  

(1) In Fig. 9(a), the piglet moved around the rear of the sow and 
finally vanished and overlapped with the sow, which may have 
been considered as the sow’s body lifting in the air. Therefore, 
this behaviour was falsely classified as standing.  

(2) In Fig. 9(b), the piglets moved around the sow’s hind and the sow 
was in the corner, so that the sow’s hinds tucked in the corner 
looked like the hinds touching the floor. Thus, this behaviour was 
falsely classified as sitting. 

3.5. Discussion and future work 

In previous research on behaviour classification based on video 
analysis, the main objective was to classify different behaviours as 
accurately as possible (Zhang et al., 2020; Li et al., 2020). The basis for 
classification of postural behaviours was the extraction of temporal and 
spatial features from videos. However, previous studies all extracted 
these features from the whole video. In research by Zhang et al. (Zhang 
et al., 2020), who used a Two-Stream Convolutional Networks for 
behaviour classification, the average processing time of each video was 
0.3163 s. It was potential to improve this result by 85% by selecting 
motion-related frames given that the processing time per video in our 
study was 0.0462 s (543/11,800 = 0.0462 s). Furthermore, the number 
of selected frames were different for different behaviours. Table 7 shows 
the average frame numbers per video for different behaviours in 
Training 2. It is obvious that the frame numbers of lying behaviours are 
less than walking and standing, which indicates that the processing time 
for lying behaviours would save more time than for other behaviours. 
On the other hand, sows spent about 60–70% of their time lying during 
the night (Teng and Yu, 2017). Thus, in this case, the proposed frame 
selection method can help save more time at night. 

In this study, the data without piglets included the period covering 
approximately 5 days before the sow’s expected date of farrowing. 
Around the time of farrowing, sows are still commonly confined in a 
farrowing crate in order to protect the piglets from being crushed by the 
sow after the start of farrowing, but this is a compromise that impairs the 
sow’s welfare to the benefit of her piglets and the farmer (King et al., 
2019). This impairment currently affects all sows, regardless of whether 
they actually crush piglets or not. Recently, temporary crating has been 
introduced to loose housing of farrowing and lactating sows. According 
to the concept of temporary crating, sows could be kept out of the crate 

Table 4 
Results of testing different thresholds on the dataset of Training 1.  

Threshold M/2 M/3 M/4 M/5 M/6 M/8 M/10 Raw video 

Training Accuracy 94.91% 95.83% 96.23% 95.69% 95.70% 96.57% 96.33% 97.35% 
Validation Accuracy 93.58% 95.19% 95.33% 94.83% 94.95% 95.91% 95.91% 95.99% 
All Training time 13m06s 13m24s 13m26s 13m45s 14m56s 15m01s 15m05s 19m16s 
Average frame number per video 38.33 51.86 61.78 68.47 73.91 82.41 88.93 150  

Fig. 8. Training curves: (a) Training 1, number of components = 10, threshold = M/2; (b) Training 1, number of components = 10, threshold = M/4; (c) Training 2, 
number of components = 10, threshold = M/2; 

Table 5 
Comparison with cluster-based methods.   

PCA δ = 0.8 δ = 0.85 δ = 0.9 

Average frame number per video 61.78 3.00 5.86 9.47 
PCA/clustering time 15.46 s 25.28 s 24.31 s 25.66 s 
Training time 12m38s 4m19s 5m07s 5m48s 
Validation accuracy 94.83% 72.18% 80.40% 77.35%  
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at the time of prenatal nest-building behaviour and after the critical 
period of piglets’ life (Oczak et al., 2020). It is therefore important for 
the farmer to find the right time for confining the sow in the crate after 
the end of nest-building and before the beginning of farrowing to safe-
guard both sow and piglet welfare. Previous studies indicated that the 
basis for estimation of onset time of farrowing was the increase of ac-
tivity related to nest-building behaviour (Castrén et al., 1993; Erez and 
Hartsock, 1990). Recent studies mainly used accelerometers to estimate 
the onset time of farrowing (Oczak et al., 2020; Pastell et al., 2016; 
Traulsen et al., 2018). Although effective, contactless techniques based 
on video analysis will likely be favoured in pig farming due to their non- 
invasive and practical characteristics. To monitor the increased activity 
by using video analysis, the frequency of each postural behaviour could 
be accurately and efficiently calculated. The proposed model could first 
be applied to videos of the sow before farrowing to classify different 
behaviours and then the frequency of each behaviour can be computed 
based on the output of classification. Finally, a threshold related to ac-
tivity frequency should be set to confirm the onset of farrowing. 

In addition to the videos captured before farrowing, this study also 
included videos after the piglets were born, which on one hand helped 
test the robustness of the algorithm, and on the other hand might be 
useful in assessing the risk of piglet crushing, based on postural changes 
(Nicolaisen et al., 2019; Damm et al., 2005) as well as potentially 

detecting piglet crushing events. The most common mean to prevent 
piglet crushing in indoor farming systems remains the use of farrowing 
crate (Weber et al., 2007). However, this restriction of movement has 
negative effect on sow welfare (King et al., 2019). Actively prevent 
piglet crushing, in contrast to the passive principle of the farrowing 
crate, is less common in practice. Experienced personnel are often able 
to recognize a trapped piglet acoustically. In such a case, a behavioural 
change of the mother sow would be stimulated by manually forcing her 
up. A survival rate of about 95% was found for piglets trapped less than 
1 m (Weary et al., 1996). After being trapped for up to 4 m, still about 
33% of the piglets would survive (Weary et al., 1996). Therefore, the 
survival of the crushed piglets depends on the quick behaviour changes 
of the sow, and if the behaviour changes of the sow can be monitored 
after the crushing it is able to know if the piglet is set free or not. 
Regarding the detection of piglet crushing, presently it was mainly 
realized by vocalization analysis (Manteuffel et al., 2017; Chen et al., 
2019). Although the detection was reliable, the follow-up behaviours of 
the sow were lost. Replay studies found 60% (Hutson et al., 1991) to 
100% (Cronin and Cropley, 1991) of sows reacting when a piglet dummy 
was placed underneath their body and piglet squeals were played, which 
indicates that almost all the crushing can be avoided by the sow so that 
the human handling is only needed in limited cases. Therefore, there has 
been great interest in monitoring the follow-up behaviour of the sow 

Table 6 
The confusion matrix of testing on unseen dataset.  

Fig. 9. Examples for misclassification: (a) sitting falsely classifies as standing; (b) standing falsely classified as sitting.  

Table 7 
The average frame numbers per video of different behaviours in Training 2.  

Number of components 1 2 3 5 10 20 50 Raw video 

Lateral lying  33.10  35.00  35.84  36.23  36.90  45.25  62.96 150 
Sternal lying  49.11  56.22  58.38  59.45  56.10  59.75  71.42 150 
Sitting  51.44  56.18  60.78  63.92  63.95  65.77  74.51 150 
Standing  61.00  62.37  66.96  70.93  71.79  74.46  78.80 150 
Walking  57.45  63.99  69.26  77.91  85.94  89.46  90.96 150  
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after crushing event by using video analysis. Considering the proposed 
method already realized the behaviour classification of the sow while 
the piglets were present, the next step for this task is to detect the 
crushing event, which should also include the position detection and 
tracking of the piglet. 

4. Conclusion 

A PCA-based frame selection method was developed to classify sow’s 
postural behaviours using deep learning. The videos including piglets 
were used to test the robustness of the method. The accuracies reached 
95.33% and 92.67% on videos without piglets and all video data 
(including and not including piglets), respectively. Additionally, the 
computation time was reduced by about one third by scarifying only 
0.7% of accuracy compared to using raw videos. By testing different 
component numbers and thresholds, the best results were achieved with 
using 10 components and setting the threshold to one fourth of the 
largest distance between two successive frames. Using these optimised 
parameters, the accuracy of the test on unseen data reached 90.60%, 
indicating that the algorithm can be generalized to new data. Future 
work can be focused on applying this method to improve animal welfare, 
e.g. monitoring sow’s follow-up behaviours after piglet crushing. 
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