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Abstract. The eigendecomposition of a matrix is the central procedure
in probabilistic models based on matrix factorization, for instance PCA
and topic models. Quantifying the uncertainty of such a decomposition
based on a finite sample estimate is essential to reasoning under uncer-
tainty when employing such models. This paper tackles the challenge of
computing confidence bounds on the individual entries of eigenvectors
of a covariance matrix of fixed dimension. The assumptions behind our
method are minimal and require that the covariance matrix exists, and
its empirical estimator converges to the true covariance. We make use of
the theory of U-statistics to probabilistically bound the L2 perturbation
of the empirical covariance matrix. Subsequently, we leverage Weyl’s the-
orem and the recently introduced eigenvalue-eigenvector identity [5] to
probabilistically bound the eigenvectors via the bounds on eigenvalues.
We demonstrate our theoretical results on real-world data from medical
and physics domains.

1 Introduction

Estimating confidence intervals on the eigendecomposition of an empirical co-
variance matrix Σ̂ is significant in various applications. Given a finite sample
{xi}ni=1 drawn i.i.d. from some unknown distribution with xi ∈ Rp, the task is
to find confidence intervals on the individual entries of the eigenvectors ui such
that Σui = λiui, Σ being the population covariance matrix to which the empir-
ical estimate Σ̂ converges as n goes to infinity. That such confidence intervals
are possible is due to the recently codified eigenvalue-eigenvector identity [5], a
fundamental relationship between eigenvalues and individual entries of eigenvec-
tors.

In this article, we propose a novel, computationally efficient framework for
estimating the bounds on the eigenvalues and eigenvectors. We focus on the case
when n � p, and in particular ensure that the procedure has computational
complexity linear in n, while making two minimal distributional assumptions:
1. The covariance matrix Σ exists.
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2. An unbiased estimator Σ̂ converges to Σ.
The proposed intervals are asymptotically consistent without the need to set a
computationally expensive bootstrap procedure or any hyperparameters.

Multiple studies focused on studying the limiting behavior of eigenvalues and
eigenvectors of covariance matrices. As such, [19] established a convergence rate
of the eigenvector empirical spectral distribution, which was recently improved
by [18], assuming a finite 8th moment condition of the underlying data distri-
bution. Prior to that line of work, [8] quantified the deviation of the sample
eigenvectors from their population values by generalizing the Marčenko-Pastur
equation [11] and assuming 12th finite moment and extra constraints. Additional
results with similar assumptions can be found in [2,14,16,15].

For obtaining error bounds on the entries of an eigendecomposition, the only
available distribution-independent method until now, to the best of our knowl-
edge, is a bootstrap technique [6], which becomes computationally expensive in
practice when n is large.

2 Bounding the Perturbation of the Covariance Matrix

2.1 A U-statistic Estimator of the Cross-Covariance

Most of the materials in this section can be found in [7], [13, Chap. 5], [10,
Chap. 6] and [9]. Suppose we have a sample Xq = {X1, ..., Xq} of size q drawn
i.i.d. from a distribution PX . A U -statistic concerns an unbiased estimator of a
parameter θ of PX using Xq. That is, θ may be represented as

θ = E[h(X1, ..., Xq)] (1)

for some function h, called a kernel of order q.

Definition 1 (U-statistic, [13, Chap. 5]) Given a kernel h of order q and a sam-
ple Xn = {X1, ..., Xn} of size n ≥ q, the corresponding U -statistic for estimation
of θ is obtained by averaging the kernel h symetrically over the observations:

Û :=
1

(n)q

∑
inq

h(Xi1 , ..., Xiq ) (2)

where the summation ranges over the set inq of all
n!

(n− q)!
permutations of size

q chosen from (1, ..., n) and (n)q is the Pochhammer symbol (n)q :=
n!

(n− q)!
.

Definition 2 (U -statistic estimator of the covariance) Let ur = (Xir , Xjr )T

be ordered pairs of samples, with 1 ≤ r ≤ n and 1 ≤ i, j ≤ p. Consider Σ =
Cov(Xi, Xj), the covariance functional between Xi and Xj and h, the kernel of
order 2 for the functional Σ such that

h(u1, u2) =
1

2
(Xi1 −Xi2)(Xj1 −Xj2). (3)
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The corresponding U -statistic estimator of the covariance Σ is

Σ̂ =
1

n− 1

n∑
r=1

(Xir − X̄i)(Xjr − X̄j), (4)

where X̄i = 1
n

∑n
s=1Xis. Σ̂ can be computed in linear time.

2.2 U-statistic based convergence of the empirical covariance
matrix

We focus here on U -statistic estimates of Σ̂ and its asymptotic normal distribu-
tion. We develop the full covariance between the elements of Σ̂, which we denote

Cov(Σ̂) ∈ R
p(p+1)

2 × p(p+1)
2 , where the size is due to the symmetry of Σ̂. We denote

U(A) the function returning the upper triangular part and diagonal of a matrix
A.

Theorem 1. (Joint asymptotic normality distribution of the covariance matrix,
[7]) For all (i, j, k, l) range over each of the p variates in a covariance matrix

Σ̂, if Var(Σ̂ij) > 0 and Var(Σ̂kl) > 0, then
[
Σ̂ij ; Σ̂kl

]T
converges in distribution

(as n→∞) to a Gaussian random variable

n
1
2

(
Σ̂ij −Σij

Σ̂kl −Σkl

)
d−→ N

((
0
0

)
,K,

)
, (5)

where

K =

(
Var(Σ̂ij) Cov(Σ̂ij , Σ̂kl)

Cov(Σ̂ij , Σ̂kl) Var(Σ̂kl)

)
(6)

We note respectively h and g the corresponding kernels of order 2 for the two

unbiased estimates Σ̂ij and Σ̂kl, where h(u1, u2) =
1

2
(Xi1 −Xi2) (Xj1 −Xj2)

with ur = (Xir , Xjr )T and g(v1, v2) =
1

2
(Xk1

−Xk2
) (Xl1 −Xl2) with vr =

(Xkr
, Xlr )T . Then, we state the following theorem.

Theorem 2. (Covariance of the U -statistic for the covariance matrix) The low
variance, unbiased estimates of the covariance between two U -statistics estimates
Σ̂ij and Σ̂kl, where (i, j, k, l) range over each of the p variates in a covariance

matrix of Σ̂ Cov(Σ̂) := Cov(Σ̂ij , Σ̂kl) is

Cov(Σ̂ij , Σ̂kl) =

(
n

2

)−1
(2(n− 2)ζ1) +O(n−2), (7)

where ζ1 = Cov (Eu2
[h(u1, u2)],Ev2 [g(v1, v2)]). There are seven exhaustive cases,

derived in Appendix A.3, which are used to estimate Eq. (7) for all 1 ≤ i, j, k, l ≤
p through simple variable substitution. Each of these cases has computation linear
in n.
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Lemma 1. With probability at least 1−δ, we have the two following inequalities

‖Σ − Σ̂‖2 ≤
√

2λmaxΦ
−1 (1− δ/2) (8)

≤
√

2 Tr[Cov(Σ̂)]Φ−1 (1− δ/2) (9)

where Φ(·) is the CDF of N (0, 1) and λmax is the largest eigenvalue of Cov(Σ̂).

Proof. As Σ̂ is a U -statistic, we have that U(Σ̂), a vector containing its up-
per diagonal component (including the diagonal), is Gaussian distributed with
covariance Cov(Σ̂) (cf. Thm 1, 2). Therefore, with probability at least 1− δ,

‖U(Σ)− U(Σ̂)‖2 ≤
√
λmaxΦ

−1 (1− δ/2) (10)

and furthermore

‖Σ − Σ̂‖F ≤
√

2‖U(Σ)− U(Σ̂)‖2 (11)

which combined with the fact that ‖ · ‖2 ≤ ‖ · ‖F yields the desired result.

3 Bounding the Eigenvectors of the Covariance Matrix

Theorem 3 (Eigenvalue-eigenvector identity [5]). Let Σ be a p× p Her-
mitian matrix. Denote by Vij the jth component of the ith eigenvector of Σ, and
λi(Σ) be the ith eigenvalue. The following identity holds:

|Vij |2
p∏

k=1;k 6=i

(λi(Σ)− λk(Σ)) =

p−1∏
k=1

(λi(Σ)− λk(Mj)) , (12)

where Mj is the p− 1× p− 1 minor formed from Σ by deleting its jth row and
column.

Assume that we have a perturbed observation Σ̂ satisfying ‖Σ̂ −Σ‖2 ≤ ε with
high probability for some known ε. We may construct such a ε, e.g. when esti-
mating a covariance matrix from a finite sample.

Theorem 4 (Weyl’s Theorem [17]). For two positive definite matrices Σ̂
and Σ, if

|λk(Σ̂)− λk(Σ)| ≤ ‖Σ̂ −Σ‖2 ≤ ε (13)

where 0 < ε < λk(Σ) ∀k, then

λk(Σ̂)− ε ≤ λk(Σ) ≤ λk(Σ̂) + ε ∀k. (14)
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Proposition 1. Assuming that ‖Σ̂−Σ‖2 ≤ ε and the fact that the eigenvectors
are orthonormal, it follows that

|Vij |2 ≤

{
1 if ∃k 6= i : |λi(Σ̂)− λk(Σ̂)| ≤ 2ε

min(αij , 1) otherwise,
(15)

and

|Vij |2 ≥

{
0 if ∃k : |λi(Σ̂)− λk(M̂j)| ≤ 2ε

βij otherwise,
(16)

where

αij =

∏p−1
k=1

(
|λi(Σ̂)− λk(M̂j)|+ 2ε

)
∏p

k=1;k 6=i

(
|λi(Σ̂)− λk(Σ̂)| − 2ε

) (17)

βij =

∏p−1
k=1

(
|λi(Σ̂)− λk(M̂j)| − 2ε

)
∏p

k=1;k 6=i (|λi(Σ)− λk(Σ)|+ 2ε)
(18)

Proof. We first note that ‖M̂j−Mj‖2 ≤ ‖Σ̂−Σ‖2, where M̂j denotes the corre-

sponding minor of Σ̂, which follows directly from the subadditivity of the norm.
This indicates we can also use ε to bound the perturbation on the eigenvalues
of M̂j , though it would be possible to compute a slightly tighter bound on |Vij |2
at the expense of extra computation for a tighter bound on ‖M̂j −Mj‖2.

We subsequently note that the quantity to be bounded is non-negative, which
allows us to replace all eigenvalue differences with the absolute value. The rest
of the inequality follows by a simple application of interval arithmetic [12] based
on eigenvalue bounds from Weyl’s theorem.

Corollary 1. If the lower bound on |Vij |2 is greater than zero, we have that the

sign of Vij is equal to the sign of V̂ij and we can recover an upper and lower
bound on Vij directly. Otherwise, we conclude that the signed lower bound is the
negative of the unsigned upper bound.

4 Experiments

We show empirical results for producing confidence intervals of the eigendecom-
position on real-world data from the medical and physics domain, described
below.

4.1 Datasets

Knee osteoarthritis We used the data from baselines of two publicly available
follow-up patient cohorts – Osteoarthritis Initiative (OAI, nsubjects = 4796),
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and Multicenter Osteoarthritis Study (MOST, nsubjects = 3026). We applied
our method for conducting an analysis for assessing the dependence between the
symptoms and radiographic progression of knee osteoarthritis in the medial side
of the joint.

We leveraged the gradings done according to the Osteoarthritis Research
Society International (OARSI) grading atlas [1]. The following variables from
the radiographic part of the OAI and MOST datasets were used:

1. Osteophytes (bone spures) severity in the tibia bone (OSTM).
2. Ostophytes severity in the femur (OSFM).

We also included the symptomatic assessments done according to the West-
ern Ontario and McMaster Universities Osteoarthritis Index (WOMAC) [4].
WOMAC allows for quantification of the patient’s pain, and we included the
total WOMAC score, calculated as a sum of all the scores of its subsections.

Higgs boson We consider the Higgs boson classification dataset from [3], con-
taining 11 million observations. For this experiment we used the seven high-level
features derived from the kinematic properties measured for the decay products
after a particle collision occurs. Four of them, i.e., mjj , mjjj , mlv and mjlv, in-
volve the observable decay products leptons l and jets, and the remaining three
(mbb, mwbb and mwwbb) are related to the generation of the Higgs bosons.

4.2 Results

We utilize the theoretical results presented above to bound the eigendecompo-
sition of the covariance matrix for the two described experiments. The data is
whitened as a pre-processing step. Figures 1 and 2 show that the obtained upper
and lower bound on the empirical eigendecomposition are valid.

Application: Interpretation of the medical data In the case of the knee OA data
(Figure 1), we observe the following relationships known in the medical literature
using the eigenvectors and the bounds:

1. Osteoarthritis develops in both tibia and femur for most of the cases. This
can be seen from the first eigenvector. Our method yields non-trivial bounds
for the imaging features, and returns high uncertainty for the symptoms.

2. Symptoms (WOMAC) have very limited association with structural features
of the disease (osteophytes denoted by OSTM and OSFM features). Here,
we consider the second eigenvector: a non-trivial bound is obtained for the
symptoms, and high uncertainty is seen for the imaging features.

3. There exist some small number of cases in the data, for which tibial and
femoral medial OA do not develop simultaneously. We can see that the em-
pirical value for the symptoms in the case of the third eigenvector is nearly
zero, and it has high uncertainty. The imaging features, in contrast, have
rather tight bounds of the same size.
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Fig. 1: Bounds on the eigenvalues (first row) and eigenvectors (second row) for
the Osteoarthritis data [WOMAC, OSTM, OSFM]

Scalability test The experiment with the Higgs boson dataset (Figure 2) shows
that we can get non-trivial bounds on data with several million examples and
multiple features. Furthermore, our unoptimized implementation of the method
runs several orders of magnitude faster than a bootstrap procedure. We run all
experiments on a CPU of a regular laptop.

5 Discussion and Conclusions

In this paper, we have presented a novel methodology for obtaining confidence
intervals on the eigendecomposition of covariance matrices. This is done by first
utilizing the theory of U-statistics to bound the perturbation of the empirical
covariance matrix. We then use Weyl’s theorem to obtain bounds on the eigen-
values and finally, we leverage the recently formalized eigenvalue-eigenvector
identity to bound the eigenvectors.

The main strength of the proposed methodology is that it does not impose
any restrictions on the data distribution and on the existence of finite higher-
order moments. In fact, the only assumptions are that i) the covariance matrix
exists and ii) an unbiased estimator converges to it. The conducted experiments
verify the validity of the confidence intervals on the eigendecomposition.

Despite the benefits of the method, this paper has still some limitations. As
such, the main downside of our approach is that, in practice, the number of sam-
ples has to be exponentially larger than the dimensionality of the data in order to
obtain non-trivial bounds. Secondly, we did not fully explore the possibilities for
tightening the bounds on the eigenvectors, however, we propose orthonormality
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Fig. 2: Bounds on the eigenvalues (first row) and eigenvectors (second row) for
the Higgs dataset [mjj , mjjj , mlv, mjlv, mbb, mwbb and mwwbb].

constraints-based approach in Appendix B. We note that the method is consis-
tent for all covariances with non-repeated eigenvalues, though possibly with poor
convergence in the event that eigenvalues are closely spaced. This requirement
is a direct consequence of the use of the eigenvalue-eigenvector identity, which
is trivial in the case of repeated eigenvalues: Equation (12) degenerates to 0 = 0
for the corresponding eigenvectors.

To conclude, we have proposed, to the best of our knowledge, the first ap-
plication of the recently introduced eigenvalue-eigenvector identity to the es-
timation of confidence intervals over eigenvectors, resulting in a consistent es-
timator with computation linear in the number of samples. Furthermore, we
have demonstrated its practical application in real applications, including par-
ticle physics and medicine. Source code of the method is available at https:

//github.com/tpopordanoska/confidence-intervals.
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covariance matrix Σ̂. We note h and g the corresponding kernel of order 2 for
Σ̂ij and Σ̂kl, where

h(u1, u2) =
1

2
(Xi1 −Xi2) (Xj1 −Xj2) ,with ur = (Xir , Xjr )T (19)

g(v1, v2) =
1

2
(Xk1

−Xk2
) (Xl1 −Xl2) ,with vr = (Xkr

, Xlr )T . (20)

Then, the covariance Cov(Σ̂ij , Σ̂kl) for the two U -statistics Σ̂ij and Σ̂kl is

Cov(Σ̂ij , Σ̂kl) =

(
n

2

)−1
(2(n− 2)ζ1 + ζ2) (21)

=

(
n

2

)−1
(2(n− 2)ζ1) +O(n−2)

where ζ1 = Cov (Eu2
[h(u1, u2)],Ev2 [g(v1, v2)]).

Depending on the equality and inequality of these four index variables, the
empirical covariance estimate takes a different kernel form. We have employed
a computer assisted proof to determine that there are seven different forms and

that each of the unique
(p2−(p

2)
2

)
entries in Cov(Σ̂) (cf. Eq. (7) from the main

text) can be mapped to one of these seven cases by a simple variable substitution.
In the sequel, we first describe the algorithm that determines the seven cases

(Sec. A.2), we derive empirical estimators for each of these seven cases (Sec. A.3)
and show that in all cases we have linear computation time in the number of
samples (Sec. A.4).

A.2 Description of the algorithm providing the seven cases

We formally describe the algorithm that provided us 7 cases for the derivation
of Cov(Σ̂ij , Σ̂kl) of Theorem 2, where (i, j, k, l) vary over the set of d variables.

Enumeration First, we enumerate all configurations of Cov(Σ̂ij , Σ̂kl), which
can be encoded as a non-unique assignment matrix of variables i, j, k, l to
instantiated variables (a, b, c, d). For a fixed assignment of i to variable a,
we can list all possible assignments of the 3 remaining variables (j, k, l) to
any (a, b, c, d). Näıvely, we have 43 possible assignments, but many of them
will be equivalent by variable substitution. To test whether two forms are
equivalent, it is sufficient to test a reduced form for equality.

Reduced Form We map a variable assignment to a reduced form by re-labeling
variables sorted by the number of occurrences, which reduces the number of
possible matches up-to non-uniqueness of the mapping due to equal num-
bers of variable occurrences. This ambiguity is then resolved by testing for
symmetries.

Symmetry Symmetry of the covariance operator brings the following equally
that we take into consideration in testing for equivalence:

Cov(Σ̂ij , Σ̂kl) = Cov(Σ̂kl, Σ̂ij) = Cov(Σ̂ij , Σ̂lk) = Cov(Σ̂lk, Σ̂ij) (22)

= Cov(Σ̂lk, Σ̂ji) = Cov(Σ̂ji, Σ̂kl) = Cov(Σ̂ji, Σ̂lk)
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The algorithm outputs each variable assignment that is not equivalent by vari-
able substitution to any previously enumerated assignment. The seven different
cases are enumerated in Table 1.

Cases Indices Correspondence

1 i 6= j, k, l; j 6= k, l; k 6= l Cov(Σ̂ij , Σ̂kl)

2 i = j; j 6= k, l; k = l Cov(Σ̂ii, Σ̂kk)

3 i = j; j 6= k, l; k 6= l Cov(Σ̂ii, Σ̂kl)

4 i = k; j 6= i, k, l; k 6= l Cov(Σ̂ij , Σ̂il)

5 i = k; i 6= j; j = l; Var(Σ̂ij)

6 i = j = k; i 6= l Cov(Σ̂ii, Σ̂il)

7 i = j, k, l Var(Σ̂ii)

Table 1: Enumeration and correspondence of the seven cases.

A.3 The seven exhaustive cases

We now derive linear-time finite-sample estimates of the covariance for each of
the seven cases.

Notation We denote the p-dimensional data matrix with n i.i.d samples as
X ∈ Rp×n, data distribution as PX , Xi – ith row of the data matrix, XiXj =
EX [XiXj ], Xi Xj = EX [Xi]EX [Xj ].

Case 1: i 6= j, k, l; j 6= k, l; k 6= l The kernels are

h(u1, u2) =
1

2
(Xi1 −Xi2) (Xj1 −Xj2) ;

Eu2 [h(u1, u2)] =
1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)
;

g(v1, v2) =
1

2
(Xk1 −Xk2) (Xl1 −Xl2)

Eu2 [g(v1, v2)] =
1

2

(
Xk1 −Xk

) (
Xl1 −Xl

)
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ζ1 = Cov

[
1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)
,

1

2

(
Xk1
−Xk

) (
Xl1 −Xl

)]
(23)

=
1

4

{
Cov

[
Xi1Xj1 −XiXj1 −Xi1Xj ;Xk1Xl1 −XkXl1 −Xk1Xl

]}
=

1

4

{
Eu1

[
Xi1Xj1Xk1

Xl1 −XiXj1Xk1
Xl1 −Xi1XjXk1

Xl1

−Xi1Xj1XkXl1 +XiXj1XkXl1 +Xi1Xj XkXl1

−Xi1Xj1Xk1
Xl +XiXj1Xk1

Xl +Xi1XjXk1
Xl

]
− Eu1

[
Xi1Xj1 −XiXj1 −Xi1Xj

]
Eu1

[
Xk1Xl1 −XkXl1 −Xk1Xl

]}
=

1

4

{
XiXjXkXl −Xi XjXkXl −Xj XiXkXl

−Xk XiXjXl +Xi Xk XjXl +Xj Xk XiXl

−XiXjXk Xl +Xi Xl XjXk +Xj Xl XiXk

−
(
XiXj − 2 Xi Xj

) (
XkXl − 2 Xk Xl

)}

Case 2: i = j; j 6= k, l; k = l The kernels are

h(u1, u2) =
1

2
(Xi1 −Xi2)

2
;

Eu2
[h(u1, u2)] =

1

2

(
Xi1 −Xi

)2
;

g(v1, v2) =
1

2
(Xk1 −Xk2)

2

Eu2
[g(v1, v2)] =

1

2

(
Xk1
−Xk

)2
Then, we have

ζ1 = Cov

[
1

2

(
Xi1 −Xi

)2
;

1

2

(
Xk1
−Xk

)2]
(24)

=
1

4

{
Cov

[
X2

i1 − 2Xi1Xi;X
2
k1
− 2Xk1

Xk

]}
=

1

4

{
Eu1

[
X2

i1X
2
k1
− 2Xi1XiX

2
k1
− 2X2

i1Xk1
Xk + 4Xi1XiXk1

Xk

]
− Eu1

[
X2

i1 − 2Xi1Xi

]
Eu1

[
X2

k1
− 2Xk1

Xk

]}
=

1

4

{
X2

iX
2
k − 2 Xi XiX2

k − 2 X2
iXk1 Xk + 4XiXk Xi Xk

−
(
X2

i − 2 Xi
2
)(

X2
k − 2 Xk

2
)}

Case 3: i = j; j 6= k, l; k 6= l The kernels are
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h(u1, u2) =
1

2
(Xi1 −Xi2)

2
;

Eu2 [h(u1, u2)] =
1

2
(Xi1 − c)

2
;

g(v1, v2) =
1

2
(Xk1 −Xk2) (Xl1 −Xl2)

Eu2 [g(v1, v2)] =
1

2

(
Xk1 −Xk

) (
Xl1 −Xl

)
Then, we have

ζ1 = Cov

[
1

2

(
Xi1 −Xi

)2
;

1

2

(
Xk1
−Xk

) (
Xl1 −Xl

)]
(25)

=
1

4

{
Cov

[
X2

i1 − 2Xi1Xi;Xk1Xl1 −XkXl1 −Xk1Xl

]}
=

1

4

{
Eu1

[
X2

i1Xk1
Xl1 − 2Xi1XiXk1

Xl1 −X2
i1XkXl1

+ 2Xi1Xi XkXl1 −X2
i1Xk1

Xl + 2Xi1XiXk1
Xl

]
− Eu1

[
X2

i1 − 2Xi1Xi

]
Eu1

[
Xk1Xl1 −XkXl1 −Xk1Xl

]}
=

1

4

{
X2

iXkXl − 2 XiXkXl Xi −X2
iXl Xk

+ 2 XiXl Xi Xk −X2
iXk1

Xl + 2 XiXk Xi Xl

−
(
X2

i − 2 Xi
2
) (
XkXl − 2 Xk Xl

)}

Case 4: i = k; j 6= i, k, l; k 6= l The kernels are

h(u1, u2) =
1

2
(Xi1 −Xi2) (Xj1 −Xj2) ;

Eu2 [h(u1, u2)] =
1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)
;

g(v1, v2) =
1

2
(Xi1 −Xi2) (Xl1 −Xl2)

Eu2 [g(v1, v2)] =
1

2

(
Xi1 −Xi

) (
Xl1 −Xl

)
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Then, we have

ζ1 = Cov

[
1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)
;

1

2

(
Xi1 −Xi

) (
Xl1 −Xl

)]
(26)

=
1

4

{
Cov

[
Xi1Xj1 −XiXj1 −Xi1Xj ;Xi1Xl1 −XiXl1 −Xi1Xl

]}
=

1

4

{
Eu1

[
X2

i1Xj1Xl1 −XiXj1Xi1Xl1 −X2
i1XjXl1

−Xi1Xj1XiXl1 +Xi
2
Xj1Xl1 +Xi1Xj XiXl1

−X2
i1Xj1Xl +XiXj1Xi1Xl +X2

i1XjXl

]
− Eu1

[
Xi1Xj1 −XiXj1 −Xi1Xj

]
Eu1

[
Xi1Xl1 −XiXl1 −Xi1Xl

]}
=

1

4

{
X2

i1
Xj1Xl1 −Xi Xj1Xi1Xl1 −X2

i1
Xl1 Xj

−Xi1Xj1Xl1 Xi +Xi
2
Xj1Xl1 +Xi1Xl1 Xj Xi

−X2
i1
Xj1 Xl +Xi Xj1Xi1 Xl +X2

i1
Xj Xl

]
−
(
XiXj − 2 Xi Xj

) (
XiXl − 2 Xi Xl

)}

Case 5: i = k; i 6= j; j = l;
h(u1, u2) =

1

2
(Xi1 −Xi2) (Xj1 −Xj2) ;

Eu2
[h(u1, u2)] =

1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)
;

g(v1, v2) = h(u1, u2)

Eu2
[g(v1, v2)] = Eu2

[h(u1, u2)]
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Then, we have

ζ1 = Var

[
1

2

(
Xi1 −Xi

) (
Xj1 −Xj

)]
(27)

=
1

4

{
Var

[
Xi1Xj1 −XiXj1 −Xi1Xj

]}
=

1

4

{
Eu1

[
(Xi1Xj1 −XiXj1 −Xi1Xj)

2
]
− Eu1

[
Xi1Xj1 −XiXj1 −Xi1Xj

]2}
=

1

4

{
Eu1

[
X2

i1X
2
j1 − 2Xi1X

2
j1Xi +Xi

2
X2

j1 − 2X2
i1Xj1Xj + 2XiXj1Xi1Xj +X2

i1Xj
2]

−
(
XiXj − 2(Xi Xj)

)2}
=

1

4

{
X2

iX
2
j − 2XiX2

j Xi +Xi
2
X2

j − 2X2
iXj Xj + 2Xi Xj XjXi +X2

i Xj
2

−
(
XiXj − 2(Xi Xj)

)2}

Case 6: i = j = k; i 6= l The kernels are

h(u1, u2) =
1

2
(Xi1 −Xi2)

2
;

Eu2 [h(u1, u2)] =
1

2

(
Xi1 −Xi

)2
;

g(v1, v2) =
1

2
(Xi1 −Xi2) (Xl1 −Xl2)

Eu2 [g(v1, v2)] =
1

2

(
Xi1 −Xi

) (
Xl1 −Xl

)
Then, we have

ζ1 = Cov

[
1

2

(
Xi1 −Xi

)2
;

1

2

(
Xi1 −Xi

) (
Xl1 −Xl

)]
(28)

=
1

4

{
Cov

[
X2

i1 − 2Xi1Xi;Xi1Xl1 −XiXl1 −Xi1Xl

]}
=

1

4

{
Eu1

[
X2

i1Xi1Xl1 − 2Xi1XiXi1Xl1 −X2
i1XiXl1

+ 2Xi1Xi XiXl1 −X2
i1Xi1Xl + 2Xi1XiXi1Xl

]
− Eu1

[
X2

i1 − 2Xi1Xi

]
Eu1

[
Xi1Xl1 −XiXl1 −Xi1Xl

]}
=

1

4

{
X3

iXl − 3 X2
iXl Xi + 2 XiXl Xi

2 −X3
i Xl + 2 X2

i Xi Xl

−
(
X2

i − 2 Xi
2
) (
XiXl − 2 Xi Xl

)}

Case 7: i = j, k, l The kernels are
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h(u1, u2) =
1

2
(Xi1 −Xi2)

2
;

Eu2 [h(u1, u2)] =
1

2

(
Xi1 −Xi

)2
;

g(v1, v2) = h(u1, u2)

Eu2
[g(v1, v2)] = Eu2

[h(u1, u2)]

Then, we have

ζ1 = Var

[
1

2

(
Xi1 −Xi

)2]
(29)

=
1

4
Var

[
X2

i1 − 2Xi1Xi

]
=

1

4

{
Eu1

[(
X2

i1 − 2Xi1Xi

)2]− Eu1

[
X2

i1 − 2Xi1Xi

]2}
=

1

4

{
X4

i − 4X3
i Xi + 4X2

i Xi
2 −

(
X2

i − 2Xi
2
)2}

A.4 Derivation in O(n) time for all terms

In section A.3, all terms are in the form of E[X],E[XY ],E[XY Z] and E[XY UV ]
and can be computed in O(n) as follows

E[X] ≈ 1

m

n∑
q=1

Xq (30)

E[XY ] ≈ 1

m

n∑
q=1

Xq � Yq (31)

E[XY Z] ≈ 1

m

n∑
q=1

Xq � Yq � Zq (32)

E[XY UV ] ≈ 1

m

n∑
q=1

Xq � Yq � Uq � Vq (33)

B Orthonormality constraints

The bounds on the eigenvectors described in the main text are valid, but do not
exploit the orthonormality property of the eigenvectors. Here we show how one
can make use of it, and tighten the bounds.

Let β̂ (respectively α̂) denote a previously obtained lower bound (respectively
upper bound) on V � V , where � denotes the Hadamard product. From the
fact that the norm of each eigenvector is equal to one, we additionally obtain
0 ≤ |Vij | ≤ 1, and

1−
∑
k 6=i

α̂kj ≤ |Vij |2 ≤ 1−
∑
k 6=i

β̂kj . (34)
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Orthogonality of the eigenvectors,∑
k

VkiVkj = 0, (35)

implies additional constraints on Vij . Let α ≥ V ≥ β be previously obtained
(probabilistic) signed bounds on V (here the inequalities are taken to be element
wise). Using interval arithmetic [12] we can compute bounds

µijl ≤
∑
k 6=l

VkiVkj ≤ νijl, (36)

and subsequently infer

min(Vliαlj , Vliβlj) + µijl ≤ 0 ≤ max(Vliαlj , Vliβlj) + νijl, (37)

which in turn leads to additional upper and lower bounds on Vli, the forms of
which depend on the signs of the coefficients. We enumerate the cases here:

1. αlj < 0: We start with the constraint

min(Vliαlj , Vliβlj) ≤ −µijl. (38)

Assuming Vli ≥ 0 yields

Vli ≥ −
µijl

βlj
(39)

Assuming Vli < 0 yields

Vli ≥ −
µijl

αlj
(40)

If we have already constrained the sign of Vli we can now directly use one of
these two inequalities, but we know in any case that

Vli ≥ min

(
−µijl

αlj
,−µijl

βlj

)
. (41)

A similar line of reasoning yields

Vli ≤ max

(
−νijl
αlj

,−νijl
βlj

)
, (42)

which can be similarly sharpened if the sign of Vli is known.
2. βlj > 0: Analogous to the previous case, we obtain

min

(
−νijl
αlj

,−νijl
βlj

)
≤ Vli ≤ max

(
−µijl

αlj
,−µijl

βlj

)
. (43)
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3. αlj > 0 ∧ βlj < 0: Considering the first inequality

min(Vliαlj , Vliβlj) ≤ −µijl. (44)

Assume Vli ≥ 0:

Vli ≥ −
µijl

βlj
(45)

Assume Vli < 0:

Vli ≤ −
µijl

αlj
(46)

Considering the second inequality

max(Vliαlj , Vliβlj) ≥ −νijl. (47)

Assuming Vli ≥ 0 yields

Vli ≥ −
νijl
αlj

. (48)

Assuming Vli < 0 yields

Vli ≤ −
νijl
βlj

, (49)

and we can only add an additional constraint if the sign of Vli is known.
4. βlj = 0 (the case of αlj = 0 is symmetric): The first constraint simplifies to

min(Vliαlj , 0) ≤ −µijl. (50)

If µijl is negative, this is satisfied trivially, so under the assumption that
µijl > 0, this reduces to

Vli ≤ −
µijl

αlj
. (51)

The second constraint simplifies to

max(Vliαlj , 0) ≥ −νijl, (52)

and implies (under the assumption that νijl < 0)

Vli ≥ −
νijl
αlj

. (53)

We note that Equations (34) and (37) may compliment each other, so we may
iterate their application until there is no more improvement in the confidence
intervals, or until improvement falls below a given tolerance.

The steps for implementing the orthonormality constraints are summarized
in Algorithm 1.
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Algorithm 1 Orthonormality constraints.

Require: Previously obtained lower and upper bound on V �V , β̂ and α̂ respectively;
N - number of eigenvectors

1: Update β̂ and α̂ using Equation (34)
2: Obtain β and α, the signed lower and upper bound respectively, using Corollary 1
3: µ, ν ← GetBoundsOnSum(α, β)
4: for l = 1, 2, . . . , N do
5: for i = 1, 2, . . . , N do
6: for j = 1, 2, . . . , N, j 6= i do
7: if αlj < 0 then

8: βli = max
(
βli,min(−µijl

αlj
,−µijl

βlj
)
)

9: αli = min
(
αli,min(− νijl

αlj
,− νijl

βlj
)
)

10: if βlj > 0 then

11: βli = max
(
βli,min(− νijl

αlj
,− νijl

βlj
)
)

12: αli = min
(
αli,min(−µijl

αlj
,−µijl

βlj
)
)

13: if αlj > 0 ∧ βlj < 0 then

14: if βli ≥ 0 then βli = max
(
βli,−

µijl

βlj
,− νijl

αlj

)
15: if αli < 0 then αli = min

(
αli,−

µijl

αlj
,− νijl

βlj

)
16: if βlj = 0 then

17: if νijl < 0 then βli = max
(
βli,−

νijl
αlj

)
18: if µijl > 0 then αli = min

(
αli,−

µijl

αlj

)
19: if αlj = 0 then

20: if µijl > 0 then βli = max
(
βli,−

µijl

βlj

)
21: if νijl < 0 then αli = min

(
αli,−

νijl
βlj

)
22:
23: function GetBoundsOnSum(α, β)
24: for l = 1, 2, . . . , N do
25: for i = 1, 2, . . . , N − 1 do
26: for j = i+ 1 . . . , N do
27: µijl =

∑
k 6=l min(βkiβkj , βkiαkj , αkiβkj , αkiαkj)

28: νijl =
∑
k 6=l max(βkiβkj , βkiαkj , αkiβkj , αkiαkj)

29: return µ, ν


	Distribution-Independent Confidence Intervals for the Eigendecomposition of Covariance Matrices via the Eigenvalue-Eigenvector Identity

