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ABSTRACT   32 

Background: In young women, a breast cancer diagnosis after childbirth increases the risk for 33 

metastasis and death. Studies in rodents suggest that post-weaning mammary gland involution 34 

contributes to the poor prognosis of postpartum breast cancers. However, this association has not been 35 

investigated in humans, mainly due to missing information on the patient’s lactation status at diagnosis. 36 

Patients and methods: Clinicopathological data of 1,180 young women with primary invasive breast 37 

cancer, diagnosed within two years postpartum (PP-BC), during pregnancy (Pr-BC) or nulliparous (NP-38 

BC), were collected. For PP-BC patients, breastfeeding history was retrieved to differentiate breast 39 

cancers identified during lactation (PP-BCDL) from those diagnosed post-weaning (PP-BCPW). 40 

Differences in prognostic parameters, first site of distant metastasis and risks for metastasis and death 41 

were determined between patient groups.  42 

Results: Cox proportional hazard models pointed to a 2-fold increased risk of metastasis and death in 43 

PP-BCPW patients compared to PP-BCDL (HR 2.1 [PDRS=0.021] and 2.9 [POS=0.004]), Pr-BC (HR 2.1 44 

[PDRS<0.001] and 2.3 [POS<0.001]) and NP-BC (HR 2.1 [PDRS<0.001] and 2.0 [POS<0.001]) patients. 45 

Prognosis was poorest for PP-BCPW patients who did not breastfeed or only for ≤3 months prior to 46 

diagnosis. This could not fully be attributed to differences in standard prognostic characteristics. In 47 

addition, PP-BCPW tumors showed a 3- to 8-fold increased risk to metastasize to the liver, yet this did 48 

not correlate with the poor outcome of this patient cohort. 49 

Conclusions: Breast cancer diagnosed shortly after weaning specifically adds to the poor prognosis in 50 

women diagnosed with PP-BC. Apart from the importance of an increased awareness, these data show 51 

that detailed lactation data need to be registered when breast cancer outcome in young women is 52 

investigated. 53 
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1. INTRODUCTION 55 

A postpartum breast cancer (PP-BC) diagnosis is associated with a significant increased risk for 56 

metastasis and death compared with breast cancers diagnosed in young premenopausal women 57 

beyond the postpartum window.1-5 Though this effect is most pronounced when the cancer diagnosis 58 

is made in the first two years postpartum,6-8 it may extend up to 10 years.2,3,9 Most studies show that 59 

the poor prognosis of PP-BC is independent of standard prognostic factors, like maternal age, molecular 60 

cancer subtype, tumour size, lymph node status or grade.2,3,6,10,11 The exact mechanisms underlying this 61 

high risk of recurrence remain however under investigation.  62 

It has been hypothesized that postpartum mammary gland involution, being a unique biological process 63 

in post-weaning breast tissue, may account for the increased metastatic risk and poor survival among 64 

PP-BC patients.12,13 During pregnancy, the mammary gland epithelium undergoes proliferation and 65 

differentiation in order to prepare for lactation. After parturition in the absence of lactation, or at 66 

weaning, the gland remodels to a state morphologically and functionally similar to pre-pregnancy, a 67 

process called postpartum involution.14 Animal studies revealed that the involution process resembled 68 

tissue-remodelling programs that are activate during wound healing, with a characteristic initial 69 

inflammatory response followed by an immunosuppressive phase12,15-17 and that this process could 70 

stimulate tumour growth, motility and invasion.18-21 Although it has been shown in humans that normal 71 

postpartum breast tissue is also characterized by an increased immune cell influx,22,23 a wound-healing-72 

like immune pattern19,24 and mammary and lymphatic remodelling as seen in rodents,21,25,26 it has never 73 

been explored whether the process of mammary gland involution is effectively associated with a poor 74 

prognosis in PP-BC patients. One major limiting factor is the lack of detailed data on lactation status at 75 

the time of cancer diagnosis, necessary to define the post-weaning period as a surrogate for mammary 76 

gland involution. To this end, we initiated this retrospective study in a large cohort of 1,180 young 77 

breast cancer patients with unique breastfeeding information. We compared the outcome of breast 78 

cancer patients specifically diagnosed during the post-weaning period with that of patients diagnosed 79 

outside this specific window.  80 
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2. METHODS 81 

2.1 Patient data collection 82 

Patient data were retrospectively collected from University Hospitals Leuven and 13 centres 83 

participating in the International Network on Cancer, Infertility and Pregnancy (INCIP) (eFig. 1 in the 84 

data article). Given the prognostic association between age and breast cancer outcome, which may 85 

vary for different breast cancer subtypes27, we only included premenopausal women diagnosed with 86 

primary invasive breast cancer, aged 25-40 years. All women were diagnosed between January 1995 87 

and December 2017 (Fig. 1A). Due to an equal distribution of patients across different time frames of 88 

diagnosis (1995-1999; 2000-2004; 2005-2009; 2010-2014; 2015-2017), we could eliminate major bias, 89 

such as treatment advances, related to period of enrollment (Table 1). The following data were 90 

retrieved: (a) therapy-related characteristics: surgery; radiotherapy (RT); chemotherapy (CT); hormonal 91 

therapy (HT) and/or anti-HER-2 treatment, (b) patient-related characteristics (if applicable): age at 92 

diagnosis; year of diagnosis; date of most recent delivery; gravidity; parity; number of miscarriages; 93 

lactation history; date of distant recurrence; site of distant recurrence and clinical outcome, and (c) 94 

tumour-related characteristics: clinical stage; tumour size; lymph node (LN) infiltration; pN subtype (N0, 95 

N1, N2, N3); grade; histological type and surrogate molecular subtype. ER, PR and HER-2 status were 96 

evaluated using immunohistochemistry according to ASCO/CAP guidelines.28,29 Additional in situ 97 

hybridization techniques were used to confirm HER-2 gene amplification according to each 98 

participating centre’s guidelines. Tumours were classified as Luminal A-like (ER positive, HER-2 negative, 99 

grade 1-2), Luminal B-like (ER positive, HER-2 negative, grade 3), Luminal HER-2 (ER positive, HER-2 100 

positive, any grade), HER-2-like (ER negative, HER-2 positive, any grade) or triple-negative breast cancer 101 

(TNBC: ER negative, PR negative, HER-2 negative, any grade). Follow-up data were obtained by medical 102 

record review. For PP-BC patients specifically, patient files were reviewed thoroughly to assess, for each 103 

parity, if and for how long breastfeeding was given. The study was approved by the Ethics Committee 104 

Research UZ/KU Leuven (study number: S25470). 105 

2.2 Patient classification according to timing of diagnosis 106 

Based on breastfeeding history prior to the breast cancer diagnosis, patients were classified as (i) PP-107 

BCPW, if diagnosed within two years Post-Weaning, (ii) PP-BCDL, if diagnosed During Lactation, (iii) Pr-108 

BC, if diagnosed during PRegnancy or (iv) NP-BC, if never been pregnant (NulliParous patients) (Fig. 1B). 109 

Delineating the post-weaning period at 2 years after cessation of lactation, enabled us to collect 110 

sufficient patient numbers whilst preserving homogeneity with regard to the postpartum time frame. 111 

PP-BCPW cases were further subdivided in (i) PPBCPW/NL, if patients Never Lactated, (ii) PP-BCPW/Lshort, 112 
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when lactating ≤3 months, and (iii) PP-BCPW/Llong, when lactating >3 months prior to the cancer 113 

diagnosis. No patient breastfed for >24 months.  114 

2.3 Statistical analyses  115 

A priori power calculations indicated that small clinicopathological (10%-15%) and prognostic 116 

differences (Hazard Ratio, HR 2.0) between PP-BCPW subgroups and Pr-BC and NP-BC groups, and larger 117 

differences (HR ³3.0) within the PP-BC subgroups could be identified with sufficient power (>70%). 118 

Frequencies of prognostic categorical variables were evaluated using Chi-Square testing. Continuous 119 

variables were compared via One-Way ANOVA or Kruskal-Wallis analyses. Odds Ratios (OR) with 95% 120 

Confidence Interval (CI) were determined using multinomial logistic regression. 121 

The risk of distant recurrence and death of any cause was determined using Kaplan-Meier analyses. 122 

Log-rank tests assessed differences between distant recurrence and survival probabilities across 123 

groups. Distant recurrence-free survival (DRS) was calculated from the date of diagnosis to first 124 

systemic metastasis; overall survival (OS) from the date of diagnosis to death from any cause. Since 125 

exclusion of cases with stage IV disease did not influence the outcome of regression modelling (eFig. 5-126 

6 in the data article), cases with stage IV cancer at diagnosis were included in OS analyses to reflect true 127 

population outcomes. To determine which prognostic parameters affected DRS and/or OS, univariate 128 

Cox regression analyses were performed. Variables that significantly differed between patient groups 129 

or that were associated with OS and/or DRS were used in multivariate Cox proportional hazards 130 

regression models to assess the association between patient group and prognosis. For each parameter 131 

proportional hazards assumptions were examined graphically using residual analyses. The influence of 132 

centre of diagnosis on prognostic differences was ruled out using Cox regression analyses (eFig. 4 in the 133 

data article). 134 

Binary logistic regression was used to assess the effect of patient group on the frequency of metastasis 135 

to different organs. To avoid potential confounding due to multi-site metastasis, we only took into 136 

account the primary site of metastatic disease. Patients with multi-site metastatic disease or unknown 137 

site of first metastatic recurrence were excluded. The association between site of metastasis and study 138 

group was assessed using two-sided Fisher’s Exact tests. The association between metastatic site and 139 

OS probability was determined using Cox regression analyses. Statistical analyses were performed using 140 

R v3.4.4. P<0.05 was considered statistically significant.  141 
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3. RESULTS 142 

3.1 PP-BCPW had different clinicopathological characteristics than PP-BCDL 143 

Based on the timing of their breast cancer diagnosis relative to their pregnancy history and lactation 144 

status at diagnosis, 189 women in our cohort were assigned to the PP-BCPW group, 53 to PP-BCDL, 492 145 

to Pr-BC and 446 to NP-BC (Fig. 1). We then assessed whether host- and tumour-related prognostic 146 

parameters differed among these groups (Table 1 and eFig. 2 in the data article). Compared to NP-BC 147 

patients, PP-BCPW cases were significantly more often diagnosed with (i) stage IIIC disease, (ii) more LN 148 

infiltration and (iii) higher graded disease. When comparing to PP-BCDL and Pr-BC patients, significantly 149 

more early stage and luminal-A-like tumours were found in PP-BCPW patients. Strikingly, tumour 150 

characteristics of PP-BCDL were resembling those of Pr-BC (eTable 1 in the data article).  151 

When assessing treatment modalities, PP-BCPW patients were found to be significantly more often 152 

treated with RT than other patient groups (Table 1). PP-BCPW patients were also more likely to receive 153 

adjuvant CT and less HT than NP-BC cases, concurring with observed differences in surrogate molecular 154 

subtype and grade between these groups. PP-BCPW cases received less often CT than Pr-BC patients. 155 

3.2 PP-BCPW patients showed a two-fold increased risk for metastasis and death 156 

To investigate whether a post-weaning diagnosis in PP-BC patients was associated with a poor 157 

prognosis, we assessed whether the risk of metastasis and death in PP-BCPW patients differed from that 158 

in PP-BCDL, Pr-BC and NP-BC patients. PP-BCPW cases demonstrated a higher five-year probability for 159 

death and metastases (25% and 34%, respectively) compared to PP-BCDL (16% and 30%), Pr-BC (13% 160 

and 18%) and NP-BC (11% and 15%) patients. Unadjusted Kaplan-Meier survival analyses confirmed 161 

that PP-BCPW patients had an approximate 2-fold increased risk of metastasis and death (P<0.001) (Fig. 162 

2A and B). Only for PP-BCDL cases the observed differences in OS (P=0.303) and DRS (P=0.381) did not 163 

reach statistical significance.  164 

After adjustment for prognostic host- and tumour-related variables that (i) significantly differed 165 

between patients groups (Table 1 and eTable 1 in the data article) and/or (ii) were significantly 166 

correlated to OS and/or DRS (eTable 2 in the data article), PP-BCPW cases still displayed significantly 167 

decreased survival rates compared to PP-BCDL, Pr-BC and NP-BC patients (P-values ranging from 0.021 168 

to <0.001) (Fig. 2C and D). Remarkably, outcome PP-BCDL patients was similar to that of Pr-BC and NP-169 

BC cases and seemed to be mainly driven by poor prognostic characteristics.  170 

3.3 No or short prior breastfeeding correlated with the poorest outcomes in PP-BCPW  171 
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Detailed breastfeeding data were originally obtained to differentiate PP-BCPW patients, diagnosed post-172 

weaning, from PP-BCDL patients, diagnosed during lactation. This information also allowed us to assess 173 

the influence of prior breastfeeding duration on breast cancer outcome. Among PP-BCPW cases, there 174 

were 69 PP-BCPW/NL patients who never lactated, 72 PP-BCPW/Lshort cases who lactated ≤3 months and 175 

48PP-BCPW/Llong case who lactated >3 months prior to their breast cancer diagnosis (Fig. 1). Due to small 176 

numbers, PP-BCDL patients, still lactating at diagnosis, were not further subdivided. 177 

Unadjusted regression analyses indicated that PP-BCPW/NL patients had the poorest prognosis, with an 178 

almost 2-fold increased risk for death and metastasis compared to PP-BCPW/Llong (POS=0.035, 179 

PDRS=0.030), Pr-BC (POS/DRS<0.001), NP-PB (POS/DRS<0.001) and PP-BCDL (POS=0.078, PDRS=0.082) patients, 180 

although for PP-BCDL the difference was borderline non-significant (Fig. 3A and B). Similarly, PP-181 

BCPW/Lshort patients also had a significantly poorer prognosis than Pr-BC (POS=0.022, PDRS=0.006) and NP-182 

BC (POS=0.001, PDRS<0.001) patients (eTable 3 in the data article). Prognosis did not significantly differ 183 

between PP-BCPW/NL and PP-BCPW/Lshort patients (POS=0.179, PDRS=0.164). Prognosis of PP-BCPW/Llong and 184 

PP-BCDL patients was found to be comparable. When adjusting for the same confounding parameters 185 

as before, the observed differences in risks for death and metastasis in PP-BCPW/NL compared to all 186 

other patient groups, including PP-BCPW/Lshort, increased to up to 5-fold (P-values ranging from 0.011 to 187 

<0.001) (Fig. 3C and D). Prognosis of PP-BCPW/Lshort patients also remained poorer than that of Pr-BC 188 

(POS=0.036, PDRS=0.038) and NP-BC (POS=0.044, PDRS=0.035) patients (eTable 3 in the data article). Since 189 

there was no significant difference in the length of the period between delivery or cessation of lactation 190 

and the time of the cancer diagnosis when comparing the different PP-BCPW subgroups (eFig. 3 in the 191 

data article), it could be excluded that PP-BCPW/NL and PP-BCPW/Lshort patients were not in the ability to 192 

lactate (extensively) because of their poor prognosis.  193 

3.4 The poor prognosis of PP-BCPW was not associated with a preferential site of first metastasis  194 

As the site of distant breast cancer metastasis is known to influence prognosis,30,31 we investigated 195 

whether PP-BCPW patients had any particular preferential metastatic site that could underlie their poor 196 

prognosis. Overall, 47% of PP-BCPW, 30% of PP-BCDL, 28% of Pr-BC and 26% of NP-BC cases presented 197 

with metastatic disease, either at diagnosis or during follow-up. Binary logistic regression models, 198 

adjusted for the same confounding variables as before, indicated a significant 3- to 8-fold increased 199 

frequency of liver metastases in PP-BCPW patients compared to all other patients (eTable 4 in the data 200 

article). To more accurately evaluate the influence of metastatic site on prognosis, analyses were 201 

restricted to the first site of metastasis. Fisher’s Exact testing showed that PP-BCPW/NL, PP-BCPW/Lshort 202 

and PP-BCPW/Llong patients had a significant increased risk for primary liver metastasis compared to the 203 

PP-BCDL, Pr-BC and NP-BC patients (Fig. 4). We then investigated the association between primary 204 
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metastatic site and prognosis. Patients with brain metastases were found to have the highest risk for 205 

death (P=0.0032) (eFig. 7-8 in the data article). Preferential metastasis to liver, as observed in PP-206 

BCPW/NL and PP-BCPW/Lshort, did not seem to correlate with the poorer outcomes of these patient 207 

subgroups. 208 
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4. DISCUSSION 209 

The exact window of risk and prognostic factors associated with the poor outcome typically observed 210 

in PP-BC patients are unidentified. We here show for the first time that women with PP-BC, specifically 211 

diagnosed during the first two years post-weaning (PP-BCPW), have a particular poor prognosis 212 

compared to lactating (PP-BCDL), pregnant (Pr-BC) and nulliparous (NP-BC) patients, irrespective of 213 

standard prognostic characteristics. This poor prognosis was not associated with the unique preference 214 

of PP-BCPW cancers to metastasize to the liver. When considering the post-weaning period as a 215 

surrogate for the postpartum mammary gland involution window, these data suggest that processes 216 

unique to the involuting microenvironment may underlie the poor prognosis of PP-BCPW. So far, this 217 

hypothesis has only been validated in preclinical models.18-21,32 In women, the wound-healing like tissue 218 

remodelling phase of involution has been found to occur within 18 months after delivery22 and distinct 219 

immune signatures have been found to persist up to 10 years after delivery.23 Recent examinations in 220 

healthy involuting breast tissue discovered mammary gland remodelling mechanisms with tumour 221 

promotional potential.26 In addition, molecular analyses of epithelial and stromal compartments from 222 

pregnancy-associated breast cancer patients indicated aberrant expression of several oncogenes, 223 

tumour suppressor genes, apoptosis regulators, transcription regulators and genes involved in DNA 224 

repair mechanisms, in cell proliferation and the immune response.33,34 Although evidence in human 225 

tissue is sparse, these alterations may be related to prognostic differences in pregnant, postpartum and 226 

nulliparous breast cancer patients. It is important to note that these gene expression studies lack 227 

detailed data on lactation - thus the key window of weaning-induced involuting has yet to be defined 228 

in healthy women.  229 

Next to identifying a post-weaning diagnosis as a negative prognostic factor, we found that no or short 230 

breastfeeding prior to diagnosis was associated with the poorest outcome in PP-BCPW patients. In pre-231 

menopausal women, childbearing is known to have a dual effect on breast cancer risk, being associated 232 

with long-term risk reductions, following a transiently increased risk in the early postpartum period that 233 

can last up to 10 years.35 In addition, it is well documented that prolonged breastfeeding decreases the 234 

relative risk of breast cancer, especially for TNBC.36-39. However, the link between breastfeeding and 235 

breast cancer prognosis has been scarcely explored, with conflicting results. A large-scale study in 236 

92,794 Mexican women investigating breast cancer mortality rates and duration of breastfeeding 237 

(never, <6 months, 6-11 months, 12-23 months or ³24 months) found that longer periods of 238 

breastfeeding were associated with lower mortality.40 Yet, the timing of breast cancer diagnosis in 239 

relation to the patients’ breastfeeding history was not considered. Stensheim et al. compared cause-240 

specific survival between 59 pregnant, 138 non-pregnant and 46 lactating breast cancer patients and 241 

found a significantly increased risk for death in patients diagnosed during the lactation period, being 242 
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defined as the first 6 months following delivery.10 Whether or not these patients were still breastfeeding 243 

or already weaned at time of diagnosis was not investigated. Elshmay postulated that duration of 244 

lactation is inversely correlated to the incidence of aggressive breast tumours in young women.41 245 

Applying this hypothesis, it could be speculated that, in our PP-BCPW/Llong patients who breastfed for 246 

longer periods, terminal differentiation of mammary epithelial cells was facilitated. After weaning, 247 

these fully differentiated mammary epithelial cells would be removed by programmed cell death 248 

occurring during normal postpartum involution.16,42,43 In contrast, in PP-BCPW patients with no (PP-249 

BCPW/NL) or short prior breastfeeding (PP-BCPW/Lshort) before weaning, less differentiated cells with 250 

concomitant immunosuppressive features would remain present and could escape cell-clearing 251 

programs.26 This in turn could lead to the formation of aggressive tumours with increased invasiveness. 252 

Further research into molecular and cellular changes in the involution mammary gland in healthy 253 

women and cancer patients is needed to validate this hypothesis. 254 

A major strength of our study is the delineation of the post-weaning window based on unique data on 255 

the patients’ lactation status at diagnosis. Large patient numbers allowed us to define with high power 256 

significant small outcome differences between post-weaning (sub)group(s) and control cohorts. In the 257 

smaller patient subgroups, we still had significant power (>70%) to detect larger differences (HR³3.0). 258 

Also, internationally collected data enabled accounting for variations associated with ethnic 259 

background. At the same time, local differences in staging and treatment methods might have 260 

introduced some heterogeneity among patients diagnosed at different centres. Also due to the 261 

retrospective nature of the present study, there might be some bias in the recollection of lactation 262 

history. Finally, we lacked complete family history data. For a subset of patients (n=528), BRCA-status 263 

was known. Primary cox regression analyses did not indicate significant outcome differences between 264 

BRCA-positive and BRCA-negative patients in each patient group.  265 

5. CONCLUSION 266 

We identified the post-weaning period as an independent negative prognostic marker in PP-BC 267 

patients. Therefore, the importance of a patient’s breastfeeding history with regard to the prognosis of 268 

a breast cancer diagnosis during the post-weaning window should not be ignored. Our results may pave 269 

the way for future prospective validation studies in larger patients cohorts with known parity and 270 

lactation information. Finally, these data call for increased awareness and close surveillance of potential 271 

breast cancer symptoms shortly after weaning. 272 
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TABLES   398 

Table 1. Comparison of the frequencies of host- and tumour-related prognostic parameters in PP-BCPW versus the other 
patient groups  

Study group PP-BCPW 
(n = 189) 

PP-BCDL 
(n = 53) 

Pr-BC 
(n = 492) 

NP-BC 
(n = 446) 

PP-BCPW 
VS 

n % n % n % n % PP-BCDL 
OR [95% CI]¨ 

Pr-BC 
OR [95% CI]¨ 

NP-BC 
OR [95% CI]¨ 

Mean age diagnosis 
(SD) 

33.3 
 

SD 
3.6 

33.2 SD 
3.6 

33.7 SD 
3.9 

34.8 SD 
4.3 1.0 [0.9 – 1.1] 1.0 [0.9 – 1.0] 0.9 [0.9 – 1.0] 

Mean year diagnosis 
(SD) 

2007 SD 
6.0 

2009 SD 
4.6 

2009 SD 
5.1 

2008 SD 
5.7 0.9 [0.9 – 1.0] 0.9 [0.9 – 1.0] 1.0 [0.9 – 1.0] 

Year diagnosis 
        1995-1999 
        2000-2004 
        2005-2009 
        2010-2014 
        2015-2017 
        Missing 

 
21 
42 
49 
52 
25 
 

 
11.1% 
22.2% 
25.9% 
27.5% 
13.2% 
 

 
1 
6 
19 
20 
7 

 
1.9% 
11.3% 
35.8% 
37.8% 
13.2% 
 

 
20 
77 
139 
158 
98 

 
4.1% 
15.7% 
28.3% 
32.1% 
19.9% 
 

 
36 
78 
115 
152 
65 

 
8.1% 
17.5% 
25.8% 
34.1% 
14.6% 
 

 
-- 

2.2 [0.9 – 6.8] 
0.6 [0.3 – 1.3] 
0.6 [0.3 – 1.3] 
1.0 [0.4 – 2.9] 

 

 
-- 

1.5 [0.9 – 2.4] 
0.8 [0.6 – 1.2] 
0.8 [0.5 – 1.1] 
0.7 [0.4 – 1.2] 

 

 
-- 

1.3 [0.9 – 2.1] 
1.0 [0.7 – 1.5] 
0.7 [0.5 – 1.1] 
0.9 [0.5 – 1.5] 

 

Stage 
        Stage IA 
        Stage IB 
        Stage IIA 
        Stage IIB 
        Stage IIIA 
        Stage IIIB 
        Stage IIIC 
        Stage IV 
        Missing 

 
39 
6 
56 
28 
26 
11 
13 
7 
3 

 
21.0% 
3.2% 
30.1% 
15.1% 
14.0% 
5.9% 
7.0% 
3.8% 

 
4 
1 
18 
12 
4 
6 
4 
4 
0 

 
7.5% 
1.9% 
34.0% 
22.6% 
7.5% 
11.3% 
7.5% 
7.5% 

 
70 
6 
169 
111 
70 
17 
28 
18 
3 

 
14.3% 
1.2% 
34.6% 
22.7% 
14.3% 
3.5% 
5.7% 
3.7% 

 
103 
28 
143 
75 
48 
18 
14 
14 
3 

 
23.3% 
6.3% 
32.3% 
16.9% 
10.8% 
4.1% 
3.2% 
3.2% 

 
-- 

0.6 [0.1 – 6.5] 
0.3 [0.1 – 1.0] 
0.2 [0.1 – 0.8] 
0.7 [0.2 – 2.9] 
0.2 [0.1 – 0.8] 
0.3 [0.1 – 1.5] 
0.2 [0.1 – 0.9] 

 
-- 

1.8 [0.5 – 6.0] 
0.6 [0.4 – 1.0] 
0.5 [0.3 – 0.8] 
0.7 [0.4 – 1.2] 
1.2 [0.5 – 2.7] 
0.8 [0.4 – 1.8] 
0.7 [0.3 – 1.8] 

 
-- 

0.6 [0.2 – 1.5] 
1.0 [0.6 – 1.7] 
1.0 [0.6 – 1.7] 
1.4 [0.8 – 2.6] 
1.6 [0.7 – 3.7] 
2.5 [1.1 – 5.7] 
1.3 [0.5 – 3.5] 

LN involvement 
        Negative 
        Positive 
        Missing 

 
80 
104 
5 

 
43.5% 
56.5% 

 
21 
32 
0 

 
39.6% 
60.4% 

 
217 
273 
3 

 
44.4% 
55.6% 

 
226 
215 
4 

 
51.1% 
48.9% 

 
-- 

0.9 [0.5 – 1.7] 

 
-- 

1.1 [0.8 – 1.6] 

 
-- 

1.5 [1.1 – 2.1] 

pN status  
        N0 
        N1 
        N2 
        N3 
        Missing 

 
80 
79 
15 
10 
5 

 
43.5% 
42.9% 
8.2% 
5.4% 
 

 
21 
25 
2 
5 
0 

 
39.6% 
47.2% 
3.8% 
9.4% 
 

 
217 
192 
46 
34 
3 

 
44.4% 
39.3% 
9.4% 
7.0% 

 
226 
154 
35 
27 
4 

 
51.1% 
34.8% 
7.9% 
6.1% 

 
-- 

0.8 [0.4 – 1.6] 
2.0 [0.4 – 9.3] 
0.5 [0.2 – 1.7] 

 
-- 

1.1 [0.8 – 1.6] 
0.9 [0.5 – 1.7] 
0.8 [0.4 – 1.7] 

 
-- 

1.5 [0.9 – 2.1] 
1.2 [0.6 – 2.3] 
1.1 [0.5 – 2.3] 

Mean tumour size 
(mm) (SD) 

33.9 SD 
26.6 

32.8 SD 
21.4 

32.6 SD 
24.0 

30.1 SD 
23.4 1.0 [0.9 – 1.0] 1.0 [0.9 – 1.0] 1.0 [0.9 – 1.0] 

Grade 
        Grade I 
        Grade II 
        Grade III 
        Missing 

 
7 
49 
129 
4 

 
3.8% 
26.5% 
69.7% 
 

 
5 
9 
39 
0 

 
9.4% 
17.0% 
73.6% 
 

 
15 
111 
354 
12 

 
3.1% 
23.1% 
73.8% 
 

 
60 
161 
211 
14 

 
13.9% 
37.3% 
48.8% 
 

 
-- 

3.9 [0.9 – 15.0] 
2.4 [0.7 – 7.9] 

 

 
-- 

0.9 [0.4 – 2.5] 
0.8 [0.3 – 2.0] 

 

 
-- 

2.6 [1.1 – 6.1] 
5.2 [2.3 – 11.8] 

 

Surrogate 
Molecular Subtype 
        Luminal A-like 
        Luminal B-like 
        Luminal HER-2 
        HER-2-like 
        Triple Negative 
        Missing 

 
 
36 
47 
30 
19 
52 
5 

 
 
19.6% 
25.5% 
16.3% 
10.3% 
28.3% 
 

 
 
3 
15 
10 
10 
15 
0 

 
 
5.7% 
28.3% 
18.9% 
18.9% 
28.3% 
 

 
 
35 
115 
77 
52 
154 
59 

 
 
8.1% 
26.6% 
17.8% 
12.0% 
35.6% 
 

 
 
127 
106 
70 
25 
88 
30 

 
 
30.5% 
25.5% 
16.8% 
6.0% 
21.2% 
 

 
 

-- 
0.3 [0.1 – 0.9] 
0.3 [0.1 – 0.9] 
0.2 [0.1 – 0.7] 
0.3 [0.1 – 1.1] 

 
 

-- 
0.4 [0.2 – 0.7] 
0.4 [0.2 – 0.7] 
0.4 [0.2 – 0.7] 
0.3 [0.2 – 0.6] 

 
 

-- 
1.6 [0.9 – 2.6] 
1.5 [0.9 – 2.7] 
1.8 [0.9 – 3.5] 
2.1 [0.9 – 3.2] 

Histological Subtype 
        IDC 
        ILC 
        Other (Special) 
        Missing 

 
153 
23 
11 
2 

 
81.8% 
12.3% 
5.9% 

 
41 
5 
7 
0 

 
77.4% 
9.4% 
13.2% 
 

 
404 
50 
32 
6 

 
83.1% 
10.3% 
6.6% 

 
351 
67 
26 
2 

 
79.1% 
15.1% 
5.9% 

 
-- 

1.2 [0.4 – 3.4] 
0.4 [0.2 – 1.2] 

 

 
-- 

1.2 [0.7 – 2.1] 
0.9 [0.5 – 1.9] 

 

 
-- 

0.8 [0.5 – 1.3] 
0.9 [0.5 – 2.0] 

 
Chemotherapy 
        No 
        Yes 
              Adjuvant 
              Neoadjuvant 
              Adj. + Neoadj. 
        Missing   

 
29 
159 
103 
39 
17 
1 

 
15.4% 
84.6% 
64.8% 
24.5% 
10.7% 
 

 
5 
48 
25 
19 
4 
0 

 
9.4% 
90.6% 
52.1% 
39.6% 
8.3% 
 

 
27 
463 
311 
115 
37 
2 

 
5.5% 
94.4% 
67.2% 
24.8% 
8.0% 
 

 
92 
350 
252 
87 
11 
4 

 
20.8% 
79.2% 
72.0% 
24.9% 
3.1% 
 

 
-- 

0.6 [0.2 – 1.6] 
1.0 [0.3 – 3.3] 
0.5 [0.3 – 1.0] 
1.4 [0.5 – 4.0] 

 

 
-- 

0.3 [0.2 – 0.6] 
1.4 [0.8 – 2.6] 
1.0 [0.7 – 1.6] 
3.2 [1.8 – 5.7] 

 

 
-- 

1.4 [0.9 – 2.3] 
3.8 [1.7 – 8.4] 
1.1 [0.7 – 1.7] 
0.8 [0.5 – 1.2] 

 

Surgery 
        No 
        Yes 
        Missing 

 
10 
178 
1 

 
5.3% 
94.7% 

 
4 
49 
0 

 
7.5% 
92.5% 

 
19 
470 
3 

 
3.9% 
96.1% 

 
12 
430 
4 

 
2.7% 
97.3% 

 
-- 

1.5 [0.4 – 4.8] 
 

 
-- 

0.7 [0.3 – 1.6] 
 

 
-- 

0.5 [0.2 – 1.2] 
 

Radiotherapy 
        No 
        Yes 
        Missing   

 
34 
153 
2 

 
18.2% 
81.8% 

 
17 
36 
0 

 
32.1% 
67.9% 

 
170 
302 
20 

 
36.0% 
64.0% 

 
119 
323 
4 

 
26.9% 
73.1% 

 
-- 

2.1 [1.1 – 4.2] 
 

 
-- 

2.5 [1.7 – 3.8] 
 

 
-- 

1.7 [1.1 – 2.5] 
 

Hormone therapy 
        No 
        Yes 
        Missing   

 
97 
91 
1 

 
51.6% 
48.4% 

 
35 
18 
0 

 
66.0% 
34.0% 

 
275 
208 
9 

 
56.9% 
43.1% 

 
172 
269 
5 

 
39.0% 
61.0% 

 
-- 

1.8 [0.9 – 3.5] 

 
-- 

1.2 [0.9 – 1.7] 

 
-- 

0.6 [0.4 – 0.9] 

Anti HER-2 therapy            
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        No 
        Yes 
        Missing   

158 
31 
0 

83.6% 
16.4% 

38 
15 
0 

71.7% 
28.3% 

379 
104 
9 

78.5% 
21.5% 

369 
72 
5 

83.7% 
16.3% 

-- 
0.5 [0.2 – 1.0] 

 

-- 
0.7 [0.5 – 1.1] 

 

-- 
1.0 [0.6 – 1.6] 

 

¨ Multinomial logistic regression model – 2-tailed Wald tests are used to determine Odds Ratio (OR) and 95% Confidence Intervals (95% CI). 
OR larger (lower) than 1 indicates increased (decreased) occurrence of that parameter in PP-BCPW compared to the reference type (either 
PP-BCDL, Pr-BC or NP-BC). IDC, invasive ductal adenocarcinoma; ILC, invasive lobular adenocarcinoma. Significant values are indicated in bold. 

FIGURES 399 

 400 
Figure 1. A. Flow chart depicting the number of breast cancer patients included in this study. Exclusion 401 

criteria were a diagnosis >2 years post-weaning, postmenopausal status, invasive cancer history, 402 

pregnancy lasting <24 weeks and insufficient data on 2 or more parameters or a lack of follow-up (<2 403 

years). Women who became pregnant again within 2 years after delivery were also excluded from these 404 

analyses. B. Included breast cancer patients were grouped based on pregnancy and lactation status. 405 
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NP-BC are NulliParous patients with no history of pregnancy; Pr-BC are women diagnosed during 406 

Pregnancy; PP-BCDL are patients diagnosed During-Lactation; PP-BCPW are women diagnosed Post-407 

Weaning. PP-BCPW/NL are women diagnosed Post-Weaning who Never-Lactated; PP-BCPW/Lshort are 408 

women diagnosed Post-Weaning who breastfed for ≤3 months; PP-BCPW/Llong are women diagnosed 409 

Post-Weaning who breastfed for >3 months prior to diagnosis. 410 

 411 

 412 
Figure 2. Unadjusted probability of OS and DRS in PP-BCPW (n=189), PP-BCDL (n=53), Pr-BC (n=492) and 413 

NP-BC (n=446) patients demonstrated an increased risk of death (A) and metastasis (B) in PP-BCPW. 414 

Univariate analyses in all patients (n=1,180) and patients with complete data only (n=1,045) showed 415 

similar results, indicating no bias of removal of patients with missing data in the multivariate model. 416 

Adjusted probability in PP-BCPW (n=179), PP-BCDL (n=53), Pr-BC (n=409) and NP-BC (n=404) patients 417 

also indicates an increased risk of death (C) and metastasis (D) in PP-BCPW. Multivariate Proportional 418 

Hazards models were adjusted for age at diagnosis, year of diagnosis, stage (accounting for tumour size 419 

and LN infiltration), grade, surrogate molecular subtype, surgery, and (neo-)adjuvant CT, RT, HT and 420 

anti-HER-2 therapy. Grade, HT and surgery were stratified to comply with the proportional hazard’s 421 

assumption. Hazard Ratio (HR) and 95% Confidence Interval (CI) for the OS and DRS proportional 422 

hazards models were determined using Cox regression analyses and Kaplan-Meier curves. HR of more 423 

(less) than 1 indicates higher (lower) risk of death or metastasis. Significant values are indicated with 424 

an asterisk (*). 425 
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 426 

 427 

Figure 3. Unadjusted probability of OS and DRS in PP-BCPW/NL (n=72), PP-BCPW/Lshort (n=69), PP-428 

BCPW/Llong (n=48), PP-BCDL (n=53), Pr-BC (n=492) and NP-BC patients (n=446) demonstrated an 429 

increased risk of death (A) and metastasis (B) in PP-BCPW/NL and PP-BCPW/Lshort patients. Adjusted OS 430 

and DRS probability in PP-BCPW/NL (n=67), PP-BCPW/Lshort (n=64), PP-BCPW/Llong (n=48), PP-BCDL (n=53), 431 

Pr-BC (n=409) and NP-BC (n=404) patients indicated an increased risk of death (C) and metastasis (D) 432 

in both PP-BCPW/NL and PP-BCPW/Lshort patients. Multivariate Proportional Hazards models were adjusted 433 

for age at diagnosis, year of diagnosis, stage (accounting for tumour size and LN infiltration), grade, 434 

surrogate molecular subtype, surgery, and (neo-)adjuvant CT, RT, HT and anti-HER-2 therapy. Grade, 435 

HT and surgery were stratified to comply with the proportional hazard’s assumption. Hazard Ratio (HR) 436 

and 95% Confidence Interval (CI) for the OS and DRS proportional hazards models were determined 437 

using Cox regression analyses and Kaplan-Meier curves. HR of more (less) than 1 indicates higher 438 

(lower) risk of death or metastasis. Significant values are indicated with an asterisk (*). 439 
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 440 

Figure 4. Subset analysis of site-specific metastasis (liver, bone, brain, lung and other sites) in women 441 

with metastatic disease (at diagnosis or during follow-up) that presented with only one site of primary 442 

distant metastasis (n=211: PP-BCPW/NL (n=26), PP-BCPW/Lshort (n=25), PP-BCPW/Llong (n=10), PP-443 

BCDL (n=13), Pr-BC (n=75) and NP-BC (n=62)). Other sites of metastasis mainly include skin and ovaries. 444 

PP-BCPW/NL patients had a significant increased risk in liver metastatic disease compared to PP-BCDL 445 

(P=0.013), Pr-BC (P=0.049) and NP-BC (P=0.008). PP-BCPW/Lshort patients also had a significant 446 

increased risk in liver metastatic disease compared to PP-BCDL (P=0.012), Pr-BC (P=0.048) and NP-BC 447 

(P=0.004). Finally, also PP-BCPW/Llong patients presented with significant increased liver metastases 448 

compared to PP-BCDL (P=0.019), Pr-BC (P=0.049) and NP-BC (P=0.013). No significant differences in 449 

frequencies of bone, brain, lung or other metastases were observed between our different study 450 

groups. All p-values were determined by means of two-sided Fisher’s Exact testing. Significant values 451 

are indicated with an asterisk (*). 452 


