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1 Introduction

For almost 200 years the name of the philosopher Arthur Schopenhauer, who
was born in Gdansk in 1788 and died in Frankfurt in 1860, was not associ-
ated with logic. It was not until the middle of the 2010s that it became known
that for his Berlin lectures in the 1820s, Schopenhauer composed a treatise on
logic that covered the scope of an entire book. Since the discovery of this ‘log-
ica maior’, philosophers, linguists and logicians have made numerous discoveries
in Schopenhauer’s work, of which only a few are mentioned here as examples:
Schopenhauer’s logic anticipates several important linguistic principles that later
became prominent through the Vienna Circle [12], the Lvov-Warsaw School [11],
and generative grammar [14]. Long before John Venn, Schopenhauer drew com-
plex logic diagrams for n terms [23] and, at the same time as Joseph Gergonne,
he extended Euler diagrams to the so-called Gergonne relations [26]. Further-
more, Schopenhauer already used logical notations which could have paved the
way to mathematical logic towards the end of the 19th century, had they been
known at that time [18].

However, Schopenhauer’s logic is not only interesting from a historical point
of view, but also offers numerous systematic points of departure for taking ideas
further, rethinking old ones or developing new ones. In recent years, for exam-
ple, Schopenhauer’s approach has been modernized with the help of transition
rules of elementary cellular automata [24]. A formalism called ‘Schopenhauer
diagrams’ was developed to analyze processes of abstraction and reification in
ontology and conceptual engineering [13,22]. For the present paper it is partic-
ularly noteworthy that a number of these Schopenhauer diagrams can provide
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general insights and theorems about Aristotelian diagrams in the contemporary
framework of logical geometry [6].

In the present paper, we will further develop this latter approach, by un-
derpinning it with new material from Schopenhauer’s original manuscripts. We
will show how Schopenhauer came to the modern idea of investigating not only
Boolean algebras consisting of propositions, but also of sets. In particular, we
will present a series of logic diagrams for complex partitions that Schopenhauer
drew in his Berlin Lectures, and argue that these partition diagrams closely
correspond to what are nowadays sometimes called (strong) α-structures [6,27].
Typical partition diagrams can be found below in Figs. 3 and 5.

The paper is organized as follows. We start in Section 2 by briefly discussing
some key notions from logical geometry that are useful for studying Schopen-
hauer’s logic. In Section 3 we then introduce Schopenhauer’s logica maior, and
describe in particular the logical context of those passages that are important for
our argument. In Section 4 we show how Schopenhauer uses logic diagrams to
visualize set partitions. Finally, in Section 5 we focus on a particularly interest-
ing partition diagram from Schopenhauer’s manuscripts, and argue that it gives
rise to several (strong) α-structures, including a strong α7-structure. Roughly
speaking, Sections 3 and 4 are primarily historically oriented, whereas Sections 2
and 5 are of more systematic interest.

2 Aristotelian Relations and α-Structures

This section introduces some key notions from logical geometry that have turned
out to be very fruitful for studying Schopenhauer’s logic [6], and that will also
take center stage in Sections 4 and 5 of the present paper. We begin by discussing
the Aristotelian relations, which can be characterized with various degrees of
abstractness and generality [5,8]. For the purposes of this paper, it will be useful
to consider a very general definition, in the setting of Boolean algebra [17].

Definition 1. Let B = 〈B,∧,∨,¬,>,⊥〉 be an arbitrary Boolean algebra. Two
elements x, y ∈ B are said to be

B-contradictory iff x ∧ y = ⊥ and x ∨ y = >,
B-contrary iff x ∧ y = ⊥ and x ∨ y 6= >,
B-subcontrary iff x ∧ y 6= ⊥ and x ∨ y = >,
in B-subalternation iff ¬x ∨ y = > and x ∨ ¬y 6= >.

More informal and familiar characterizations of the Aristotelian relations can
be obtained from this definition by plugging in concrete Boolean algebras for B.
For example, we can take B to be a Boolean algebra of propositions. In this case,
two propositions P and Q being contrary means that P ∧ Q is contradictory
while P ∨ Q is not tautological, i.e. P and Q cannot be true together, but can
be false together. Similarly, there is a subalternation from P to Q iff P entails
Q but not vice versa. For a second example, we can take B to be a Boolean
algebra of sets, e.g. the powerset ℘(D) of some domain of discourse D. In this
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second case, two sets X and Y being contrary means that X ∩ Y = ∅ while
X ∪ Y 6= D, i.e. X and Y are disjoint but do not exhaust D. Similarly, there is
a subalternation from X to Y iff X ⊆ Y but not X ⊇ Y . The fact that Defini-
tion 1 allows us to deal not only with Aristotelian relations between propositions
(as is usually done), but also between sets, will be absolutely crucial when we
turn to Schopenhauer’s diagrams. After all, the latter also represent relations
between sets, viz. spheres/extensions of concepts (cf. Section 3). Concrete ex-
amples, which we will also discuss further, are e.g. the contrariety between fish
and bird, the subalternation from bird to vertrebrate, the contradiction between
fish and ¬fish, and the subcontrariety between ¬fish and ¬bird.

Now that the Aristotelian relations have been defined relative to arbitrary
Boolean algebras, we can likewise define the class of Aristotelian diagrams and
one of its important subclasses: the so-called α-structures or α-diagrams [27].3

Definition 2. Let B be as before, and consider a fragment F ⊆ B\{>,⊥}.
Suppose that F is closed under B-complementation, i.e. if x ∈ F then ¬x ∈ F .
An Aristotelian diagram for F in B is a diagram that visualizes an edge-labeled
graph G. The vertices of G are the elements of F , and the edges of G are labeled by
the Aristotelian relations between those elements, i.e. if x, y ∈ F stand in some
Aristotelian relation, then this is visualized according to the code in Fig. 1(a).

Definition 3. Let B be as before, and consider a natural number n ≥ 1. An
αn-structure in B is an edge-labeled graph G. The vertices of G form a fragment
{x1, . . . , xn,¬x1, . . . ,¬xn} ⊆ B\{>,⊥}, where all distinct xi, xj are pairwise B-
contrary, i.e. xi and xj are B-contrary for all 1 ≤ i 6= j ≤ n. The edges of G are
labeled by the Aristotelian relations between those elements. An αn-diagram in
B is an Aristotelian diagram that visualizes such an αn-structure in B.

Note that by Definition 2, Aristotelian diagrams are closed under complementa-
tion and only contain non-trivial elements (i.e. neither > nor ⊥). The historical
and systematic reasons for these restrictions are discussed in more detail in [33,
Subsection 2.1]. Furthermore, the condition in Definition 3 regarding pairwise B-
contrariety between all distinct xi, xj immediately implies that there are several
other Aristotelian relations in an αn-structure as well. In particular, it follows
that ¬xi and ¬xj are B-subcontrary and that there are B-subalternations from
xi to ¬xj , for all 1 ≤ i 6= j ≤ n. And of course, as in any Aristotelian diagram,
it holds that xi and ¬xi are B-contradictory, for all 1 ≤ i ≤ n. Several of the
most well-known Aristotelian diagrams are indeed α-structures:

– The α1-structure is simply a pair of contradictory elements (PCD); cf. Fig. 1(b).
PCDs do not frequently appear in the literature, but they have considerable
theoretical importance, since they can be thought of as the fundamental
‘building blocks’ for all other, larger Aristotelian diagrams [7,9].

3 Strictly speaking, the term ‘α-structure’ refers to the (abstract) underlying graph,
while the term ‘α-diagram’ refers to the (concrete) diagram. However, this distinction
will not matter much in this paper, so we will usually not distinguish between these
two terms, and follow Moretti [27] in simply talking about ‘α-structures’.
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Fig. 1. (a) code for visually representing the Aristotelian relations; examples of (b)
PCD, (c) classical square of opposition, (d) JSB hexagon, (e) Moretti octagon.

– The α2-structure is a classical square of opposition; cf. Fig. 1(c). Without a
doubt, this is the oldest and most well-known type of Aristotelian diagram.

– The α3-structure is a so-called Jacoby-Sesmat-Blanché (JSB) hexagon, which
is named after Jacoby [19], Sesmat [32] and Blanché [2]; cf. Fig. 1(d). After
the classical square, this is the most well-known type of Aristotelian diagram.

– The α4-structure is a so-called Moretti octagon, which is named after Moretti
[27] (who drew it as a cube, rather than an octagon); cf. Fig. 1(e).

One of the key insights of logical geometry is that a given family of Aris-
totelian diagrams can have multiple Boolean subtypes, i.e. it is possible for two
Aristotelian diagrams to exhibit exactly the same configuration of Aristotelian
relations among their respective sets of elements, and yet have different Boolean
properties [10]. The first concrete example of this phenomenon was pointed
out by Pellissier [29], who showed that there are two Boolean subtypes of JSB
hexagons: in a strong JSB hexagon, the join of the three pairwise contrary el-
ements equals >, whereas in a weak JSB hexagon, this join is not equal to >.
Such Boolean differences are nowadays usually characterized in terms of bit-
strings, which are formally introduced below (for more details, see [10,34]).

Definition 4. Let the Boolean algebra B and the fragment F be as before. The
partition of B induced by F is defined as ΠB(F) := {±x1∧· · ·∧±xn | x1, . . . , xn ∈
F}\{⊥}, where +xi = xi and −xi = ¬xi. For every y ∈ F we have y =

∨
{ai ∈

ΠB(F) | ai ≤ y}. The bitstring representation of y ∈ F keeps track of which
ai ∈ ΠB(F) enter into this join; for example, if ΠB(F) = {a1, a2, a3, a4} and
y = a1 ∨ a3 ∨ a4, then y will be represented as the bitstring 1011.
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Using this technique, one can show, for example, that representing a strong
JSB hexagon requires bitstrings of length 3 (so the join of its three pairwise
contrary elements is 100 ∨ 010 ∨ 001 = 111), whereas a weak JSB hexagon
requires bitstrings of length 4 (so the join of its three pairwise contrary elements
is 1000 ∨ 0100 ∨ 0010 = 1110 6= 1111). (Again, see [10,34] for more details.)

In general, determining the Boolean subtypes of a given type of Aristotelian
diagrams is highly non-trivial [4]. However, for the specific subclass of α-structures,
the situation is relatively straightforward, as is summarized by Theorem 1.

Theorem 1. – All α1-structures (i.e., PCDs) require bitstrings of length 2,
– all α2-structures (i.e., classical squares) require bitstrings of length 3,
– for n ≥ 3, there are two Boolean subtypes of αn-structures: (i) a strong

subtype, which requires bitstrings of length n, and (ii) a weak subtype, which
requires bitstrings of length n+ 1.

Note that the important cutoff happens at n = 3. This is not a coincidence:
because of their binary nature, the Aristotelian relations cannot capture the full
Boolean complexity that may arise in larger sets [4]. Furthermore, note that
the case n = 3 says that the family of JSB hexagons has two Boolean subtypes,
viz. the strong JSB hexagons (requiring bitstrings of length 3) and the weak JSB
hexagons (requiring bitstrings of length 4). In other words, Pellissier’s original
result on JSB hexagons [29] is thus subsumed as a special case of Theorem 1.

In a Boolean algebra B = 〈B,∧,∨,¬,>,⊥〉, a finite set Π = {x1, . . . , xn} ⊆
B\{>,⊥} (with n ≥ 2) is said to be an n-partition of B iff (i) xi ∧ xj = ⊥
for all distinct xi, xj ∈ Π and (ii)

∨
Π = >. There is a clear correspondence

between partitions and (strong) α-structures.4 This is made fully precise in The-
orem 2 below. Note that there is again a cutoff at n = 3, and that α2-structures
(i.e. classical squares of opposition) do not correspond to any partitions.

Theorem 2.

1. Each 2-partition {x,¬x} gives rise to an α1-structure with elements {x,¬x}.
2. For n ≥ 3, each n-partition {x1, . . . , xn} gives rise to a strong αn-structure

with elements {x1, . . . , xn,¬x1, . . . ,¬xn}.

Concretely, each 2-partition corresponds to a PCD, each 3-partition to a strong
JSB hexagon, and each 4-partition to a strong Moretti octagon.

3 The Context of Schopenhauer’s Partition Diagrams

Schopenhauer’s partition diagrams can be found in his logica maior, that is, in
the Berlin Lectures that he held in the course of the 1820s. The logic in the
Berlin Lectures [31, 234–368] can roughly be divided into four parts. The first
part contains a doctrine of concepts [31, 242–260] and enriches classical positions

4 For another perspective on the correspondence between partitions and Aristotelian
diagrams, cf. [35].
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of Aristotelian logic especially with diagrams and discussions on philosophy of
language. The second part concerns the doctrine of judgement [31, 260–293].
It contains, among other things, treatises on the laws of thought, on truth,
conceptual relations and contraposition. The third part concerns the theory of
inferences [31, 293–356], in which Schopenhauer uses Euler diagrams to argue for
the validity and naturalness of the original Aristotelian syllogistics. Furthermore,
Stoic (propositional) logic and Aristotelian modal logic can also be found in this
section. The short last part [31, 356–368] contains some additions and remarks
about history and philosophy of logic, and about eristic dialectics.5

Schopenhauer’s partition diagrams are given in the second part, more pre-
cisely in the treatise on relations between concepts. This treatise deals with
many themes that had become popular through Kantian philosophy, and en-
riches them with logic diagrams. First, he explains the distinction between an-
alytic and synthetic judgements by means of diagrams [31, 269–272]. The main
part of this treatise, however, goes on to deal with Kant’s theory of the four
properties of judgements: quantity, quality, relation and modality. In contrast to
Kant [20, III: 86ff.], Schopenhauer argues that this division should not simply
be taken from textbooks of logic, since this leads to numerous problems [25],
but that the properties of judgements only become apparent by analyzing the
various ways in which two concepts can relate to one another. In order to find
these relations, Schopenhauer makes use of geometric figures based on concep-
tual spheres. He therefore speaks of a ‘clue of diagrams’ ([31, 272], “Leitfaden
sind die Schemata”). As a result, Schopenhauer uses six basic types of relational
diagrams (RD) which can be described as follows.

Definition 5. Let a circle or part of a circle in a given diagram represent a
conceptual sphere. The diagrams RD1–6 in Figure 2 depict the possible spatial
positions of at least two conceptual spheres:

RD1 Two conceptual spheres exactly overlap, so that only one sphere can be seen.
RD2 One conceptual sphere completely contains another conceptual sphere.
RD3 Two conceptual spheres are completely disjoint.
RD4 A conceptual sphere includes two or more further spheres, such that the

included spheres are mutually disjoint but do not exhaust the first sphere.
RD5 Two conceptual spheres partly intersect each other.
RD6 A conceptual sphere includes two or more further spheres, such that the

included spheres do not intersect each other but do exhaust the first sphere.

From a contemporary perspective, Schopenhauer’s relational diagrams RD1–
6 are clearly related to other diagrammatic systems.6 In particular, RD2, RD3

5 Schopenhauer’s logica maior is thus structured in a way that had become standard in
the history of logic (compare, for example, with the structure of William Ockham’s
Summa Logicae [28] or that of the Port-Royal Logic [1]), and that ultimately finds its
roots in the division of Aristotle’s logical works: (i) Categories on concepts/terms,
(ii) On interpretation on judgements/propositions, and (iii) the remaining four works
of the Organon on inferences/syllogisms.

6 A terminological remark: we name a diagrammatic system after an author A to
indicate that A drew or described at least some diagrams belonging to this system.
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Fig. 2. Schopenhauer’s six basic types of relational diagrams.

(a) RD1 (b) RD2 (c) RD3 (d) RD4 (e) RD5 (f) RD6

and RD5 are Euler diagrams [15], RD1, RD2, RD3 and RD5 are Gergonne dia-
grams [16]. Note that RD4 and RD6, which are more or less proper to Schopen-
hauer, depict strictly more than two conceptual spheres [31, 281].

In the Berlin Lectures, RD1–6 are used to determine what the basic proper-
ties of judgements (PJ) are. For Schopenhauer, a proposition is called a ‘judge-
ment’ when it expresses the relationship between at least two concepts. The
first concept in the judgement is called the ‘subject’ (S), the second is called
the ‘predicate’ (P ). Using his six relational diagrams, Schopenhauer argues that
there are six possible relations between two concepts S and P , which are listed
below as PJS (the S-subscript stands for ‘Schopenhauer’):

PJS1 universal
PJS2 particular
PJS3 affirmative

PJS4 negative
PJS5 disjunctive
PJS6 hypothetical

This treatise (and also further ones) shows that Schopenhauer on the one hand
clearly orients his doctrine of judgements to Kant, but on the other hand also
acts as a strong critic of him. After all, in his Critique of Pure Reason, Kant
had also dealt with the PJs, which were to structure his entire system in many
ways. Kant’s so-called ‘table of judgements’ contains a total number of 12 PJs,
grouped into 4 ‘titles’ consisting of 3 PJs each. The titles are (T1) Quantity, (T2)
Quality, (T3) Relation and (T4) Modality. Kant’s 12 properties of judgements
are listed below as PJK (the K-subscript stands for ‘Kant’):

T1: Quantity
PJK1 universal
PJK2 particular
PJK3 singular

T2: Quality
PJK4 affirmative
PJK5 negative
PJK6 infinite

T3: Relation
PJK7 categorical
PJK8 hypothetical
PJK9 disjunctive

T4: Modality
PJK10 problematic
PJK11 assertoric
PJK12 apodictic
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Every PJS corresponds to some PJK , and just like Kant, Schopenhauer
also classifies PJS1 and PJS2 under the title Quantity, PJS3 and PJS4 under
Quality, and PJS5 and PJS6 under Relation. But unlike Kant, Schopenhauer
rejects PJK10, PJK11, PJK12 from the title of Modality, PJK7 from Relation,
PJK6 from Quality and PJK3 from Quantity, for various reasons. For example,
Schopenhauer does not believe that modality is a property of the judgement,
but rather of the one who judges, since modality only indicates the degree of
certainty of the judge.

Schopenhauer argues with Aristotle that categoricity, i.e. PJK7, is not an in-
dependent property of judgements, but rather results from the cross-combination
of PJK/S1 and PJK/S2 with PJK4/PJS3 and PJK5/PJS4. He thus holds that
all judgements which represent a relationship between S and P are categorical.
Drawing an analogy to Wittgenstein (TLP, 4.442), Schopenhauer’s argument can
be reformulated as follows: Kant’s notion of ‘categorical judgement’ is logically
quite meaningless; it simply indicates that the uttered proposition concerns a
relationship between S and P . Schopenhauer reads from the set of Gergonne
diagrams {RD1, RD2, RD3, RD5} various instantiations of PJS1–4. These four
properties of judgements traditionally originate from Aristotelian assertoric syl-
logistics; cross-combining them yields the following four categorical judgements:

PJS3: affirmative PJS4: negative
PJS1: universal All S is P . No S is P .
PJS2: particular Some S is P . Some S is not P .

Schopenhauer excludes the categorical judgements (PJK7) from Kant’s title
of relation (T3), but retains the disjunctive (PJK8) and hypothetical (PJK9)
judgements, i.e. those judgements which traditionally do not originate from Aris-
totelian syllogistics but rather from Stoic logic, and thus correspond in certain
aspects to contemporary propositional logic [3]. Schopenhauer thus argues that
PJK8 and PJK9 are not properties of judgements in the sense described above;
after all, these properties do not concern any relationship between concepts S
and P , but rather a relationship between two or more propositions (expressed
by means of connectives such as “or” or “if . . . then . . . ”).

Nevertheless, Schopenhauer does integrate PJK8 and PJK9 into his own list
(as PJS6 and PJS5, respectively), because the spatial combinations in the dia-
grams RD2, RD4 and RD6 provide him with an astonishing insight: connectives
can not only be applied to combine propositions in order to obtain new, more
complex propositions, but also to concepts in order to obtain new, more complex
concepts. By applying logical connectives to concepts, Schopenhauer is thus able
in his Berlin Lectures to develop complex partition diagrams.

4 Schopenhauer’s Partition Diagrams

As we have just seen, Schopenhauer set up different properties of judgements
(PJs) through a guideline of schemes, called RD1 − 6. At first he noticed that
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many PJKs do not have a diagrammatic equivalent, but rather seem to be ar-
ranged arbitrarily. Moreover, Schopenhauer realized that Kant’s title of relation
(T3) was problematic in several respects: categorical judgements (PJK7) do not
have a unique function, but result from the cross-combination of the meaningful
PJ under the title of quality (T1) and quantity (T2), i.e. PJK1, PJK2, PJK4,
PJK5. Schopenhauer also noticed that hypothetical and disjunctive judgements,
i.e. PJK8 and PJK9, are actually not regarded by Kant as relations between
concepts. In the Kantian sense they are relations between judgements, which
means that Kant inserts different criteria in his table of judgements.

Schopenhauer, however, argues that this problem can be solved with the help
of the ‘schematism of spheres’. Assuming that each concept in a judgement is
represented by a circle in Euclidean space, in the case of two concepts there are
several possible combinations of the two circles, which correspond by Definition 5
to the Gergonne relations. In contrast to RD1, in RD2 one circle contains a
second one, in such a way that a third circle (disjoint from the second one) can be
inserted, thus resulting in either RD4 or RD6, depending on whether the second
and third circle jointly exhaust the first one (as in RD6) or not (as in RD4).
As the insertion of further circles in a diagram such as RD1 can be repeated
indefinitely, it is possible to create increasingly complex shapes in which a circle
contains n other, mutually disjoint circles which are either jointly exhaustive of
the first one (thus generalizing RD6) or they are not (thus generalizing RD4).

Schopenhauer is aware that diagrams such as RD4 open up many possibilities
of interpretation, but he uses such diagrams mainly to prove the PJs under the
titles of Quality and Quantity. For example, if the small contained circles in a
diagram such as RD4 are designated with Si (e.g. in the case of two small circles:
S1 and S2) and the large containing circle with P , the following judgements can
be read from RD4-type diagrams: (J1) All Si is P ; (J2) All that is not P is not
Si; (J3) Some P is Si; (J4) Some P is not Si. Next (and continuing the case of
two small circles), he realizes that Si in (J1–4) can actually be interpreted as
S1 or S2. But to express the complex concept S1 or S2, the diagram must be
drawn in such a way that the two small contained circles together completely
exhaust the large containing circle (i.e. the complex concept S1 or S2 coincides
exactly with the concept P , so that J4 no longer holds). Schopenhauer visualizes
this by means of a large circle that is bisected by a line; cf. RD6. The large
containing circle represents the concept P , while the two semicircles represent
the disjoint and exhaustive subconcepts S1 and S2. In general, if a concept has
n mutually disjoint and jointly exhaustive subconcepts, the large circle must be
divided by n − 1 (non-intersecting) lines. We will call such diagrams partition
diagrams, because the subconcepts are mutually disjoint and jointly exhaustive,
and thus constitute a partition of the large concept.

Schopenhauer gives several examples, of which we briefly discuss two. First of
all, consider the concept ‘body’, which can be divided into two disjoint and ex-
haustive subconcepts, viz. ‘organic’ and ‘inorganic’. Schopenhauer thus divides
the circle that represents the concept ‘body’ with a line into two halves that
represent the subconcepts ‘organic’ and ‘inorganic’; cf. the partition diagram in
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(a) Körper = body, organischer = organic,
unorganischer = inorganic.

(b) Aggregatzustand = state of matter,
fester = solid, flüßiger = liquid, elastischer
= elastic.

Fig. 3. Schopenhauer’s partition diagrams for (a) body and (b) state of matter.

Fig. 3a. Secondly, consider the concept ‘state of matter’, which can be divided
into three mutually disjoint and jointly exhaustive subconcepts, viz. ‘solid’, ‘liq-
uid’ and ‘elastic’.7 Schopenhauer thus divides the circle that represents the con-
cept ‘state of matter’ with two lines into three equal parts that represent these
three subconcepts; cf. the partition diagram in Fig. 3b.

Schopenhauer equates exclusive disjunction with contradiction, as is often
done in contemporary logic as well [3,30,33]. This is based on the law of excluded
middle. Using Fig. 3a as an example, Schopenhauer explains this as follows:

“Here two judgements are connected in such a way that the affirmation
of the one is the negation of the other; both can neither be negated
nor affirmed at the same time: according to the law of thought of the
excluded third.” [31, 280]

For Schopenhauer, the partition diagram in Fig. 3a illustrates the contra-
diction of the two sub-concepts of ‘body’, whereas the following proposition
describes this diagram by means of an exclusive disjunction:

All bodies are either organic or inorganic. (1)

But Schopenhauer goes further and shows that the partition diagram not only
facilitates knowledge representation, but also visual reasoning. If one adopts (1)
as a premise, and adds an instance such as ‘sea sponge’ that belongs to the
generic concept ‘body’, one can draw a conclusion including the subordinate
concepts ‘organic’ and ‘inorganic’. Schopenhauer takes the following example:

7 Nowadays we would probably make a different classification, for example we would
certainly add ‘plasma’ to the states of matter. Schopenhauer represents these classi-
fications according to the state of knowledge of the early 19th century. However, since
he knows from the history of science that (structures of) concepts can change, he
advocates an ontological relativism even for analytic judgements [21, Chap. 2.2.5f.].
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Fig. 4. (a) PCD and (b) strong JSB hexagon corresponding to Schopenhauer’s 2- and
3-partitions for body and state of matter, respectively.

A sea sponge is a body.

Thus, a sea sponge is either a organic or an inorganic body.

(2)

(3)

If we now have further information about the instance of the generic concept,
e.g. to which subconcept the sea sponge must be assigned, we can infer (in the
sense of Stoic logic) by means of proposition (3) and modus tollendo ponens to
which subconcept it is not assigned, i.e. we can reason from (4) to (5). Vice
versa, we can also use (3) and modus ponendo tollens to reason from (5) to (4).

A sea sponge is a organic body.

A sea sponge is not an inorganic body.

(4)

(5)

These ways of reasoning do not seem particularly spectacular, although it can
be assumed that the partition diagram provides observational advantages, as it
is easier and quicker to read than propositions (1–5). This becomes particularly
evident when more complex diagrams are used. Schopenhauer initially drew the
diagrams only to represent knowledge. Nevertheless, in several places in the text
the added note “Illustrate!” can be found. We can assume that Schopenhauer
used the frequently mentioned gesture of indication (‘hindeuten’) in his lectures
to refer to specific regions of a given diagram.8

5 From Partition Diagrams to α-Structures

In this section we bring everything together, and show how to apply the in-
sights from logical geometry (cf. Section 2) to Schopenhauer’s partition diagrams

8 Here Schopenhauer still folllows Kant very closely, who uses a similar square diagram
in § 29 of the Jäsche logic [20, IX: 108] in order to depict disjunctive judgements.
In contrast to Schopenhauer, Kant describes in the text that one should use an x to
mark the corresponding region of a disjunctive judgement. Unlike Kant, Schopen-
hauer’s diagrams not only illustrate judgments, but also classes.
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(a) Original Diagram (b) Modern Translation

Fig. 5. Schopenhauer’s most complex partition diagram

(cf. Sections 3–4). In particular, Theorem 2 tells us that these partition diagrams
correspond directly to certain Aristotelian diagrams, viz. α-structures. For ex-
ample, the 2-partition in Fig. 3a gives rise to an α1-structure, viz. the PCD
in Fig. 4a, while the 3-partition in Fig. 3b gives rise to a strong α3-structure,
viz. the strong JSB hexagon in Fig. 4b.

The most complex partition diagram in Schopenhauer’s logica maior is found
in [31, 280], and is shown here as Fig. 5a from the original manuscripts. As can
also be seen in the translation in Fig. 5b, it shows a large circle for the concept
‘animals’, which is then subdivided into seven subconcepts (C):

C Original Translation C Original Translation

C1 Säugethier mammals C5 mollusca mollusca
C2 Vögel birds C6 articulata articulata
C3 Reptilien reptiles C7 radiata radiata
C4 Fische fish

These subconcepts are mutually exclusive and jointly exhaustive, and thus
constitute a 7-partition of the concept ‘animals’. Appealing once again to Theo-
rem 2, we find that this 7-partition gives rise to a strong α7-structure, as shown
in Fig. 6. This structure consists of the subconcepts C1–C7, which are pairwise
contrary to each other, together with their complements (relative to ‘animals’),
which are pairwise subcontrary to each other. In order to make this more precise,
note that C1–C7 can be viewed as the atoms of a Boolean algebra B7, which can
be represented with bitstrings of length 7 [10], i.e. B7 is isomorphic to {0, 1}7:

Subconcept Bitstring Complementary subconcept Bitstring

C1: mammals 1000000 ¬mammals = animals \ mammals 0111111
C2: birds 0100000 ¬birds = animals \ birds 1011111
C3: reptiles 0010000 ¬reptiles = animals \ reptiles 1101111
C4: fish 0001000 ¬fish = animals \ fish 1110111
C5: mollusca 0000100 ¬mollusca = animals \ mollusca 1111011
C6: articulata 0000010 ¬articulata = animals \ articulata 1111101
C7: radiata 0000001 ¬radiata = animals \ radiata 1111110
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Fig. 6. Strong α7-structure corresponding to Schopenhauer’s 7-partition of ‘animals’.
For reasons of visual simplicity, the subalternation arrows are not drawn; they go from
each ‘positive’ concept in the upper part of the diagram to each ‘negative’ concept in
the lower part of the diagram (except for its contradictory, of course).

Interestingly, this 7-partition is itself hierarchically organized. Schopenhauer
indicates that the subconcepts of ‘mammals’ (C1), ‘birds’ (C2), ‘reptiles’ (C3)
and ‘fish’ (C4) together constitute the intermediate concept ‘vertebrates’, which
is itself a subconcept of ‘animals’. The bitstring representation of ‘vertebrates’
can easily be calculated in terms of the bitstrings of its four subconcepts:

vertebrates = mammals or birds or reptiles or fish
1111000 = 1000000 ∨ 0100000 ∨ 0010000 ∨ 0001000

For certain reasoning purposes it might not be required to subdivide the
vertebrates into mammals, birds, reptiles and fish. In those circumstances, such
a further subdivision would only yield unnecessary complexity, and should thus
be dispensed with. Formally, this means that the original 7-partition of ‘animals’
reduces to a 4-partition, consisting of the concepts of ‘vertebrates’, ‘mollusca’,
‘articulata’ and ‘radiata’. In terms of bitstring representations, this amounts to
focusing exclusively on those bitstrings that have identical values in their first
four positions, such as 1111000 and 0000100. Equivalently, one could say that
we have moved from bitstrings of length 7 (corresponding to the original, fine-
grained 7-partition) to bitstrings of length 4 (corresponding to the new, coarser
4-partition), by systematically collapsing the first four bits into a single bit,
e.g. 1111000 and 0000100 reduce to 1000 and 0100, respectively. Appealing one
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Fig. 7. Strong Moretti octagon corresponding to Schopenhauer’s coarsened 4-partition
of ‘animals’, incl. bitstring representations (with respect to the original 7-partition).

final time to Theorem 2, we find that the coarsened 4-partition gives rise to a
strong α4-structure, i.e. a strong Moretti octagon, as shown in Fig. 7.

It bears emphasizing that ‘vertebrates’ is a primitive/atomic concept with
respect to the coarsened 4-partition (where its bitstring representation 1000 con-
tains just a single 1-bit), but it is a complex concept with respect to the original,
more fine-grained 7-partition (where its bitstring representation 1111000 is itself
the join of four other bitstrings). By contrast, ‘mollusca’ is an atomic concept
with respect to the coarse 4-partition (where its bitstring representation 0100
contains just a single 1-bit) as well as with respect to the original, more fine-
grained 7-partition (where its bitstring representation 0000100 again contains
just a single 1-bit). This asymmetry between ‘vertebrates’ on the one hand and
‘mollusca’ (and ‘articulata’ and ‘radiata’) on the other hand captures the hier-
archical nature of Schopenhauer’s 7-partition of ‘animals’.

6 Conclusion

In this paper we have shown how Schopenhauer’s criticism of Kantian philosophy
led him to the idea of representing Aristotelian relations between sets/concepts.
To this end, he developed partition diagrams that went far beyond the dia-
grammatic techniques known at the time. Drawing upon ideas and techniques
from logical geometry, we have shown that Schopenhauer’s partition diagrams
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systematically give rise to a special type of Aristotelian diagrams, viz. (strong)
α-structures. These incude a PCD (α2), a strong JSB hexagon (α3), a strong
Moretti octagon (α4) and a strong α7-structure.

As systematic research on Schopenhauer’s logic has only just begun, there are
still many questions that require further investigation. For example, can one find
similar ideas in published logic textbooks from the 19th century? Do partition
diagrams play an important role in the interpretation of Schopenhauer’s system,
which has a structure based on the method of partition or divisio in Bacon’s De
dignitate et augmentis scientiarum? To what extent did Schopenhauer use these
diagrams to make new discoveries for what was then called Stoic logic, which is
considered the precursor of modern propositional logic?
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