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Abstract. In this paper we investigate the cognitive potential of Deriva-
tive Meaning — defined in terms of Abstraction Tracking (Shimojima
2015) — in order to characterise various families of Aristotelian dia-
grams. In a first part we consider the notion of subdiagrams — i.e. uni-
form triangles of contrariety relations and implication relations — inside
Aristotelian hexagons and octagons. In a second part we look at different
strategies for embedding complete Aristotelian diagrams — i.e. classical
and degenerate squares — into Aristotelian hexagons and octagons.
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1 Introduction

The overall aim of this paper is to apply the general semantic and cognitive
framework for the analysis of diagrams proposed by Shimojima [13] to the analy-
sis of Aristotelian diagrams developed by Demey and Smessaert in the framework
of Logical Geometry. In our joint Diagrams 2020 paper [16] we demonstrated the
relevance of Shimojima’s first cognitive potential — namely that for Free Ride in
Inference — in drawing the distinction between consequential constraint track-
ing by consequence with Logical Space Diagrams and consequential constraint
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tracking by correlation with Aristotelian diagrams. In the present paper we focus
on Shimojima’s fourth cognitive potential — namely that for Derivative Mean-
ing — in order to characterise various families of Aristotelian diagrams. In this
introductory section we lay out the basic ingredients of the two frameworks. On
the one hand, we present the phenomenon of Derivative Meaning and its techni-
cal analysis in terms of Abstraction Tracking. On the other hand, we introduce
the Aristotelian relations, diagrams and subdiagrams.

Derivative meaning. In the realm of visualising quantitative information, ta-
bles with numerical data are standardly ‘translated’ into statistical graphs such
as scatter plots, line graphs or bar charts. The fundamental constraints in these
graphical representation systems concern ‘point-wise’ facts: if a dot appears at
X-coordinate m and Y-coordinate n in a scatter plot or line graph, then there is
an instance in the data with the X-value m and the Y-value n. These semantic
constraints are not ‘natural’ but conventional or arbitrary: they hold because
a group of people started to conform to them at some time in history and kept
respecting them for the common interest of effective communication [13, p. 103].
We call these historically prior conventions basic semantic conventions, to
distinguish them from additional conventions that are logically derivable in the
way described later in this paper. In this limited point-wise sense, the statistical
graphs have the same informational content as their corresponding tables.

Nevertheless, there is a clear sense in which each of these graphs expresses
more information than its corresponding table. With scatter plots, the particular
shapes of dot configurations indicate different types of correlations — e.g. lin-
ear versus quadratic — between the variables X and Y. With line diagrams,
differences in degree or direction of the inclines made by the various lines indi-
cate differences in speed, trend or intensity of the changes in the data. In both
cases, the observation of general trends or overall shapes yields additional infor-
mational relations which are not part of the basic semantic conventions of the
representation system. Instead, these patterns indicate more abstract or general
facts about the represented data. It is important to stress that these ‘new’ facts
have a different logical and historical status. In particular, it is not necessary
for the establishment of these more abstract relations that the relevant group of
people be conforming to a new basic semantic convention. These constraints, by
contrast, seem to be holding naturally — or logically — once the basic conven-
tions are established, and in this sense can be considered derived constraints.
We will therefore refer to these additional informational relations as instances of
derivative meaning [13, p. 103]. It is precisely these derivative informational
relations which significantly contribute to the informational utility of statistical
graphs: their existence is often the very reason why a given type of graphs is more
effective than others as a method of displaying certain information. Furthermore,
the distinction between basic semantic conventions and derivative meaning has
led researchers to distinguish ‘levels of meaning’, and to consider derivative or
higher-level meanings as the ‘main messages’ of statistical graphs.

The phenomenon of derivative meaning is by no means restricted to the rep-
resentation of numerical data in statistical charts. First of all, it is also relevant
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when displaying spatial information in the form of topographic contour maps
or meteorological maps. With such maps, the basic semantic conventions are
concerned with individual points on individual contour lines or isobars, whereas
overall patterns formed by several proximate contour lines or isobars also carry
important information about the mapped topographic or meteorological real-
ity. Such more abstract constraints also illustrate another crucial property of
this type of derivative meaning relations, namely the importance of expertise,
reading skills and recognition memory in appreciating perceptual patterns [13,
p. 108]. Secondly, derivative meaning also plays a crucial role in graphical rep-
resentation systems for more abstract, symbolic — i.e. non-numerical — data.
With node-edge graphs, for instance — such as route maps for underground
or subway systems in large cities — the basic semantic convention is that if a
(single) edge connects two (adjacent) nodes, it means that the objects denoted
by the two nodes stand in the particular relationship represented by the edge.
Derivative meaning in these graphs, by contrast, gives rise to ‘overview effects’
when we observe the presence of a path consisting of multiple, consecutive edges
connecting two (non-adjacent) nodes, or when we derive the hub-like nature of
a particular node from the number of nodes directly connected to it. To sum
up: graphical systems can support derivative meaning relations that go beyond
their basic semantic conventions. This enables us to read off a richer set of in-
formational relations directly from graphics, expanding the expressive coverage
of a system with a relatively simple set of basic semantic conventions.

General framework for the analysis of diagrams. In order to characterise
the semantic content of a diagrammatic representation, the framework adopted
in this paper [13, p. 23ff.] has a two-tier semantics. It draws a distinction between
a token level at the bottom of Fig. 1(a) — with a representation relation
 from a representation s to represented object t — and a type level at the
top of Fig. 1(a) — with an indication relation ⇒ from a source type σ to a
target type θ. In the case of a street map, for instance, the representation s is a
particular sheet of paper (token) and the arrangement of lines and symbols is the
source type σ or property holding of (or ‘being supported’ by) that s. The actual
streets and buildings constitute the represented object t (token) and their overall
arrangement is the target type θ or property holding of that t. A representation s
represents an object or situation t as being of target type θ if s represents t and s
supports a source type σ that indicates θ. Since the notions of Derivative Meaning
and Abstraction Tracking will be defined in terms of source and target types,
this paper will focus on the type level and the indication relation established
by the semantic conventions for the representational practice. A set Γ of source
types collectively indicates a set ∆ of target types (Γ ⇒ ∆) if Γ and ∆
stand in a one-to-one correspondence under the indication relation ⇒.

Abstraction Tracking. In order to characterise the notion of Derivative Mean-
ing in a more technical manner in terms of relations between source types and
target types, we take the simple example of a so-called Round-Robin table in
Fig. 1(b) as our starting point.4 Such a table is used to represent the results

4 The figure is a considerably simplified/modified version of [13, p. 112, Figure 84(a)].
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Fig. 1. (a) General framework [13, Figure 21] (b) Round-Robin Table

Table 1. Sets of source types Γn and target types ∆n.

Γ1 = {◦(JP,CH), ◦(JP,KO), •(JP,US)} ∆1 = {W(JP,CH), W(JP,KO), L(JP,US)}
Γ2 = {◦(JP,CH), ◦(JP,US), •(JP,KO)} ∆2 = {W(JP,CH), W(JP,US), L(JP,KO)}
Γ3 = {◦(JP,KO), ◦(JP,US), •(JP,CH)} ∆3 = {W(JP,KO), W(JP,US), L(JP,CH)}

of a (sports) competition in which each contestant or team — in this case the
US, China, Korea and Japan — meets all other contestants or teams in turn.
The basic semantic conventions of a Round-Robin table are as follows: if a white
(resp. black) circle appears at the intersection of a row headed by name X and
a column headed by name Y, then this means that the team with name X has
won against (resp. lost to) the team with name Y. The two source types (charac-
terising the graphical representation) will be abbreviated as ◦(X,Y) and •(X,Y)
respectively, whereas the two target types (characterising the represented situ-
ation) will be abbreviated as W(X,Y) and L(X,Y), assuming that the italicised
X and Y are the teams denoted by the names X and Y. This allows us to re-
formulate the basic semantic conventions as two general constraints between
source and target types, namely (i) if ◦(X,Y) holds, then W(X,Y) holds, and (ii)
if •(X,Y) holds, then L(X,Y) holds [13, p. 115]. These constraints are concerned
with individual symbols in individual cells, i.e. with the results of individual
games. Derivative meaning relations, by contrast, are concerned with an entire
row or column, or multiple rows or columns, specifying the information carried
by the particular distributions or patterns of white and black circles on them.
From the two white circles on the final row in Fig. 1(b), for instance, we can read
off that the Japanese team won two of its three games (namely against China
and Korea). This kind of derivative meaning relation can also be characterised
in terms of a relation between a source type — n white circles appear in a row
with name X, abbreviated as ◦n(X-row) — and a target type — team X has
won against n teams, abbreviated as Wn(X). The crucial question now will be
how we can account for the valid informational relation in Fig. 1(b) going from
the source type ◦2(JP-row) to the target type W2(JP), since this is not directly
specified by the system’s basic semantic conventions [13, p. 115].

First of all, it is important to note that both the source type ◦2(JP-row)
and the target type W2(JP) are abstract conditions in the sense that there are
several alternative ways in which they are true. Table 1 lists some sets Γn of
source types, and ∆n of target types (for 1 ≤ n ≤ 3). When we say that Γn is
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Fig. 2. (a) Abstraction Tracking(b) Aristotelian diagram; (c) coding conventions.

a way in which ◦2(JP-row) holds, we mean that there is a constraint holding
on possible properties of Round-Robin tables stating that ‘if all members of Γn

hold, then ◦2(JP-row) holds’. Notice that Γ1 is satisfied by the particular table in
Fig. 1(b), whereas Γ2 and Γ3 are two alternative ways in which ◦2(JP-row) holds.
We now obtain the collection G of sets of source types — i.e. G = {Γ1, Γ2, Γ3}—
which exhausts all alternative ways in which ◦2(JP-row) holds (since 3C2 = 3).
Intuitively, ◦2(JP-row) captures a piece of information commonly implied by the
members of G, abstracting away the specific information particular to individual
members. We therefore say that ◦2(JP-row) is an abstraction over G —
written as ◦2(JP-row) ./ G — iff (i) for every set Γn in G, if all members of
Γn hold, then ◦2(JP-row) holds, and (ii) if ◦2(JP-row) holds, then there is some
set Γn in G whose members all hold. Completely analogously we can obtain the
collection D of sets of target types — i.e. D = {∆1, ∆2, ∆3} — which exhausts
all alternative ways in which target type W2(JP) holds (since 3C2 = 3), with
∆1 being indicated by the table in Fig. 1(b). As a consequence, we can say that
W2(JP) is an abstraction over D — written as W2(JP) ./ D — since (i)
for every set ∆n in D, if all members of ∆n hold, then W2(JP) holds, and (ii)
if W2(JP) holds, then there is some set ∆n in D whose members all hold [13,
pp. 116–8]. Given (i) the two general constraints capturing the basic semantic
conventions for individual cells of the Round-Robin table and (ii) the relation of
collective indication between sets of source and target types, Table 1 shows that
each Γn collectively indicates its ∆n counterpart. This relation straightforwardly
carries over to the entire collections G and D. In other words, G and D are
in a one-to-one correspondence under the collective indication relation by the
system’s basic semantic conventions.

Now we can finally characterise the derivative meaning relation between
source type ◦2(JP-row) and target type W2(JP) in terms of the notion of ab-
straction tracking. A source type σ is said to track a target type θ in
abstraction if there are a collection G of sets of source types and a collection D
of sets of target types such that (i) σ ./ G, (ii) θ ./ D and (iii) G and D are
in a one-to-one correspondence. As is shown in Fig. 2(a), ◦2(JP-row) abstracts
over collection G (bottom ./) and this abstraction ‘tracks’ the abstraction rela-
tion between W2(JP) and D (top ./). This tracking of abstraction is mediated
by the one-to-one correspondence between G and D by the collective indica-
tion relation ⇒1−1. The source type σ and the target type θ are thus taken
to stand in a derivative indication relation ⇒D whenever σ and θ stand in an
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Table 2. Aristotelian relations between two propositions α and β.

a. contradictory CD(α,β) iff α and β cannot be true together and
α and β cannot be false together

b. contrary CR(α,β) iff α and β cannot be true together but
α and β can be false together

c. subcontrary SCR(α,β) iff α and β can be true together but
α and β cannot be false together

d. in subalternation SA(α,β) iff α entails β but β doesn’t entail α

abstraction tracking relation. Figuratively speaking, the information relation in
Fig. 2(a) goes (1) from ◦2(JP-row) to G, then (2) from G to D and then (3)
from D to W2(JP). Therefore, it goes (4) directly from ◦2(JP-row) to W2(JP).
This is precisely the sense in which the latter is a derivative relation, based on
the system’s basic semantic conventions, plus the two instances of abstraction
relations holding within the source and the target domains.

Aristotelian relations and diagrams. In the research programme of Logical
Geometry [6, 15] a central object of investigation is the so-called ‘Aristotelian
square’ or ‘square of opposition’, which visualises logical relations of opposi-
tion and implication. Table 2 gives an informal definition and abbreviations for
the different Aristotelian relations in which two propositions α and β can
stand. In order to draw an Aristotelian diagram (AD for short), we first
of all need a (non-empty) fragment F of a language L, i.e. a subset of formulas
of that language. The formulas in the fragment F are typically assumed to be
contingent and pairwise non-equivalent, and the fragment is standardly closed
under negation: if formula ϕ belongs to F, then its negation ¬ϕ also belongs to
F. For the language of the modal logic S5 (with operators � for necessity and ♦
for possibility), for instance, such a fragment F could be {�p, ¬�p, ♦p, ¬♦p}.
An Aristotelian diagram AD for F is then defined as a diagram that visualises
an edge-labeled graph G. Fig. 2(b) presents the AD for the modal fragment {�p,
¬�p, ♦p, ¬♦p}. The vertices of G are the elements of F, whereas the edges of
G are labeled by all the Aristotelian relations holding between those elements,
using the coding conventions in Fig. 2(c) and abbreviations in Table 2: full line
for CD, dashed line for CR, dotted line for SCR, and arrow for SA. In this re-
spect, it is worth observing that the systematic study of Aristotelian diagrams is
a very recent and emerging field of research, and that an international research
community is very much in the process of being established.5 Hence, it should
come as no surprise that the actual basic semantic conventions — in the sense of
a community’s graphical ‘practice’ — are themselves also still being established.6

5 See the World Congress on the Square of Opposition (Montreux 2007, Corsica 2010,
Beirut 2012, Vatican 2014, Easter Island 2016, Crete 2018, Leuven 2022).

6 The basic colour code (red ≈ CD, blue ≈ CR, green ≈ SCR and black ≈ SA) has
become the de facto standard in the Square community. As for black and white line
style counterparts, full line ≈ CD and full line arrow ≈ SA are default, but some
variation remains as to dotted/dashed/... lines for CR and SCR.



Derivative Meaning in Aristotelian diagrams 7

Fig. 3. (a) Jacoby-Sesmat-Blanché hexagon (b) Sherwood-Czeżowski hexagon.

Derivative Meaning and Abstraction Tracking in ADs. In the next two
parts of this paper we will explore the phenomenon of Derivative Meaning and its
technical analysis in terms of Abstraction Tracking in the realm of Aristotelian
diagrams. Whereas the basic semantic conventions in ADs are concerned with
individual Aristotelian relations between two formulas (i.e. individual edges be-
tween two vertices), Derivative Meaning mainly arises when we consider larger
patterns or constellations of such relations in order to identify or distinguish
different families of ADs beyond the basic square. Such Derivative Meaning pat-
terns — the recognition of which clearly involves expert knowledge and training
— hence play an important heuristic and methodological role in establishing a
systematic and exhaustive typology of Aristotelian families. In section 2 we con-
sider ‘uniform’ triangular shapes consisting of three contrariety relations or three
subalternation relations. These two patterns first of all allow us to distinguish
between the so-called Aristotelian family of Jacoby-Sesmat-Blanché hexagons
(JSB for short) and that of the Sherwood-Czeżowski (SC for short) hexagons
(§ 2.1). Secondly, they allow us to connect the ‘arbitrariness’ of graphical con-
ventions to the distinction between informational and computational equivalence
of diagrams (§ 2.2). In section 3 we go into a second mechanism which plays a
central role in drawing up a typology of Aristotelian families, namely the way
in which smaller ADs are systematically embedded into larger ADs. On the one
hand we look at the embedding of the so-called classical Aristotelian squares in
JSB hexagons and SC hexagons (§ 3.1). On the other hand, the embedding of the
so-called degenerate square inside two types of Aristotelian octagons — namely
the Buridan and the Béziau octagon — nicely illustrates the idea that the ob-
servation of a pattern can also be based on the absence of certain (individual)
relations (§ 3.2).

2 Abstraction Tracking with triangular subdiagrams

2.1 JSB triangles versus SC triangles

The hexagonal diagram in Fig. 3(a) was discovered and described roughly si-
multaneously in the middle of the twentieth century by the logicians Jacoby [7],
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Sesmat [12] and Blanché [2], whence its name JSB hexagon. If we compare it
to the original Aristotelian square for the modal fragment {�p, ¬�p, ♦p, ¬♦p}
in Fig. 2(b), we observe the addition of an extra pair of contradictory for-
mulas (or PCD) — namely {�p∨¬♦p, ♦p∧¬�p} — which constitutes a third
diagonal, crossing the original square vertically. Furthermore, we have added the
bitstring encoding of the six formulas involved since that will greatly facilitate
the systematic description and comparison with diagrams further on. For this
particular fragment, these bitstrings consist of four bitpositions βn, which have
the value 1 or 0, and which correspond to four anchor formulas αn — together
constituting a partition Π of logical space.7 Formulas can now be classified as
level one (L1), level two (L2) or level three (L3) according to the number of
values 1 in their bitstring. Thus the two PCDs constituting the diagonals of the
original square in Fig. 2(b) connect a L1 and a L3 formula, whereas the extra
vertical diagonal in the JSB hexagon of Fig. 3(a) connects two L2 formulas. The
addition of this third PCD gives rise to the typical downward pointing equilat-
eral triangular shape (marked in grey) which is defined by three interconnected
contrariety relations (marked by the dashed lines). Such a triangle thus serves as
a diagnostic for identifying the hexagon as a member of the Aristotelian family
of JSB hexagons. It is important to stress that this shape — which we refer
to as a triangular Aristotelian subdiagram (or AsD) — is not itself an Aris-
totelian diagram: since ADs are standardly closed under negation, they consist
of an even number of vertices/formulas (i.e. they are built out of PCDs), and
therefore triangles are excluded in principle.8

The observation of such an overall shape — over and beyond that of the
individual Aristotelian relations that it consists of — can now straightforwardly
be captured in terms of Derivative Meaning and Abstraction Tracking. On the
level of source types we first of all need the set of individual graphical com-
ponents — i.e. the dashed lines between the pairs of vertices. If we repre-
sent the presence of a dashed line between vertex β and β′ as ‖ (β, β′), then
the grey triangle in Fig. 3(a) corresponds to the set of source types Γ1 = {
‖(1000, 0001), ‖(0001, 0110), ‖(0110, 1000) }. An alternative JSB hexagon could
be characterised as Γ2 = { ‖(1000, 0001), ‖(0001, 0100), ‖(0100, 1000) }. It can
easily be shown that, with bitstrings of length 4, exactly ten of these sets of
source types Γn can be built.9 Taking these ten Γn sets together, we get the
source type collection G. Their common property — namely that they constitute

7 For the technical details see [6]. In this particular case Π = {α1, α2, α3, α4} = {�p,
¬�p ∧ p, ♦p ∧ ¬p, ¬♦p} and for every formula ϕ, its bitstring representation β(ϕ)
= β1β2β3β4 is such that βn = 1 iff |= αn → ϕ. Thus, β(�p) = 1000, since only
|= α1 → �p and β(♦p) = 1110, since |= α1 → ♦p, |= α2 → ♦p and |= α3 → ♦p but
6|= α4 → ♦p. Strictly speaking, bitstrings of length 3 suffice for the JSB hexagon in
Fig. 3(a). However, for the sake of uniformity with the SC hexagon in Fig. 3(b) —
which does require length 4 — and the octagons later on, we stick to length 4.

8 The contrariety triangle in the JSB hexagon thus closely resembles the four Aris-
totelian subdiagrams — left/right triangle, hour glass and bow tie — in [16].

9 First of all, there are six so-called strong JSBs that form their contrariety triangle
like Γ1, i.e. by first choosing two L1 formulas (4C2 = 6) and then adding the one
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(upside down) dashed line triangles — can be captured by means of the source
type σ = ‖5. This σ counts as an abstraction over G — i.e. ‖5 ./ G — as defined
in section 1. On the level of target types, the individual contrariety relations be-
tween two formulas ϕ and ϕ′ can be represented as CR(ϕ,ϕ′). The grey triangle
in Fig. 3(a) then corresponds to the set of target types ∆1 = { CR(1000,0001),
CR(0001,0110), CR(0110,1000) }. The target level counterpart of the alterna-
tive JSB hexagon with the Γ2 source type set could be characterised as ∆2 = {
CR(1000,0001), CR(0001,0100), CR(0100,1000) }. Obviously, all ten Γn source
type sets defined above have ∆n counterparts, which, taken together, yield the
target type collection D. Its defining property — namely that all its members
yield a JSB contrariety constellation — can be captured by means of the target
type θ = CR(JSB) which counts as an abstraction over D — i.e. CR(JSB) ./
D. The overall result is a constellation of abstraction tracking similar to the one
depicted in Fig. 2(a): by virtue of the one-to-one correspondence between G and
D under the basic semantic conventions in Fig. 2(c) and Table 2, the source level
abstraction ‖5 ./ G ‘tracks’ the target level abstraction CR(JSB) ./ D. As a
consequence, the source type ‖5 is said to stand in a derivative meaning relation
with the target type CR(JSB).

As illustrated in the top hexagon of Fig. 4(a), whenever we observe an upside
down (dark grey) CR triangle (‖5), the logic of the basic semantic conventions
— and in particular the central symmetry of the contradiction diagonals —
predicts the existence of additional meaningful objects, i.e. an overlapping or
intertwined (light grey) SCR triangle (†4), and alternating SA arrows consti-
tuting the outer edges of the hexagon (↓©). We can think of these three basic
shapes as ‘first-order’ source type abstractions which can be combined into the
more complex shape Γn = {‖5, †4, ↓©}. The resulting source type collection G
is characterised by the ‘higher-order’ source type abstraction σ = 54© ./ G,
‘fusing’ the two triangles and the arrow edges. Analogously, we combine the three
first-order target type abstractions into ∆n = {CR(JSB), SCR(JSB), SA(JSB)}.
The resulting target type collection D is then characterised by the higher-order
target type abstraction denoting the complete JSB hexagon, i.e. θ = HEX(JSB)
./ D. Fig. 4(a) thus illustrates the mechanism of higher-order abstrac-
tion tracking: the source type 54© stands in a higher-order derivative
meaning relation with the target type HEX(JSB).10

We can now turn to the second family of Aristotelian hexagons, namely
the so-called Sherwood-Czeżowski (SC) hexagon illustrated in Fig. 3(b). It was
described in the mid twentieth century by Czeżowski [3], but Khomskii [8] con-
vincingly demonstrated that the figure already occurs in the work of the medi-
aeval logician William of Sherwood [10]. If we again compare this hexagon to

‘complementary’ L2 formula. In addition, there are four so-called weak JSBs that
form their contrariety triangle like Γ2, i.e. by means of 3 L1 formulas (4C3 = 4).

10 A very similar process occurs with spatial information in topographic contour maps,
where the basic, first-order abstraction shape of concentric contour lines indicates a
single mountain top, whereas a series of adjacent basic shapes indicates the higher-
order abstraction shape of a mountain range.
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Fig. 4. (a) Double JSB/SC triangles (b) alternative JSB (c) alternative SC.

the original Aristotelian square for the modal fragment {�p, ¬�p, ♦p, ¬♦p} in
Fig. 2(b), we observe that the extra PCD — namely the third diagonal {p,¬p}
— now crosses the original square horizontally, as opposed to vertically in the
JSB of Fig. 3(a). The addition of this third PCD yields an obtuse triangular
shape (marked in grey) which is defined by three interconnected subalternation
relations (marked by the arrows). Such a triangle thus serves as a diagnostic for
identifying the hexagon as a member of the Aristotelian family of SC hexagons.11

Within the framework of Logical Geometry, identifying which of the five logically
possible Aristotelian families a particular hexagon belongs to, provides crucial
(typo)logical information, in particular concerning the bitstring length required
to encode the fragment involved.12 The crucial difference between the symmetric
relation of contrariety — CR(α, β)⇔ CR(β, α) — and the asymmetric relation
of subalternation — SA(α, β) ⇔ ¬SA(β, α) — is graphically reflected in the
‘undirectedness’ of the JSB triangle in Fig. 3(a) as opposed to the top down
‘directedness’ of the subalternation triangle in Fig. 3(b). With all its arrows
pointing downwards, the latter represents the ‘transitive closure’ of the subal-
ternation relation: if a first SA arrow gets you from α to β and a second SA
arrow gets you from β to γ, then a third one gets you directly from α to γ.

The observation of such an overall triangular shape — in addition to that
of the individual arrows that it consists of — can again straightforwardly be
captured in terms of Derivative Meaning and Abstraction Tracking. On the level
of source types, we first of all represent the presence of an arrow from vertex β to
β′ as ↓(β, β′). The grey triangle in Fig. 3(b) thus corresponds to the set of source
types Γ1 = { ↓(1000, 1100), ↓(1100, 1110), ↓(1000, 1110) }. It can easily be shown
that, with bitstrings of length 4, exactly 24 of these sets of source types Γn can

11 As with the contrariety triangle in Fig. 3(a), the subalternation triangle in Fig. 3(b)
is not itself an AD, but an AsD, since it is not closed under negation.

12 For an analysis of the Boolean differences between JSB and SC hexagons — the two
most common and well-studied Aristotelian families of hexagons — see [14].
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be built.13 Taking these 24 Γn sets together, we get the source type collection G.
Their common property — namely that they constitute obtuse arrow triangles
— can be captured by means of the source type σ = ↓

5

. This σ counts as an
abstraction over G — i.e. ↓

5

./ G. On the level of target types, the individual
subalternation relations from formulas ϕ to ϕ′, can be represented as SA(ϕ,ϕ′).
The grey triangle in Fig. 3(b) then corresponds to the set of target types ∆1 =
{ SA(1000,1100), SA(1100,1110), SA(1000,1110) }. Obviously, all 24 Γn source
type sets defined above have ∆n counterparts, which, taken together, yield the
target type collection D. Its defining property — namely that all its members
yield a SC subalternation constellation — can be captured by means of the target
type θ = SA(SC) which counts as an abstraction over D — i.e. SA(SC) ./ D.
The overall result is again a constellation of abstraction tracking (see Fig. 2(a)):
by virtue of the one-to-one correspondence between G and D under the basic
semantic conventions in Fig. 2(c) and Table 2, the source level abstraction ↓

5

./ G ‘tracks’ the target level abstraction SA(SC) ./ D. Hence, source type ↓

5

is
said to stand in a derivative meaning relation with target type SA(SC).

As illustrated in the bottom hexagon of Fig. 4(a), whenever we observe an
obtuse (dark grey) SA triangle on the left side of a SC hexagon (↓

5

), the basic
semantic conventions and the centrally symmetric CD diagonals predict the ex-
istence of additional meaningful objects, in particular a non-overlapping (light
grey) SA triangle on the right side of the hexagon (↓ 5 ). Furthermore, the re-
lations of (sub)contrariety also yield easily recognizable ‘hour glass’ patterns,
where the o shaped constellation for CR at the top is the mirror image of the

o

shape for SCR at the bottom. As argued above for the JSB hexagon, this idea
of combining basic shapes into more complex shapes can be analysed in terms
of higher-order abstraction tracking and derivative meaning.14

2.2 Alternative JSB versus SC triangles

In this subsection, we briefly go into the aspect of ‘arbitrariness’ in the way
in which basic semantic conventions — and graphical practice in general —
come about within a given community and at a given point in history. As we
argued above, both the JSB hexagon and the SC hexagon start out from the
same original Aristotelian square and then add a third PCD diagonal: with
the JSB hexagon the latter is inserted vertically, with the SC hexagon it is
inserted horizontally. Notice that — exceptionally — an alternative visualisation
shows up in which a minimal change takes place at the moment of inserting the
respective third PCD, i.e. not so much by changing its fundamental orientation
(vertical vs horizontal) but simply by switching around its two formulas [5].

13 For each of the four L1 starting points α, three L3 end points γ can be chosen (the
contradictory L3 being excluded), and for each of these twelve L1-L3 pairs two L2
intermediate steps β can be chosen: 4C1 × 3C1 × 2C1 = 4× 3× 2 = 24.

14 In particular, the higher-order source type set Γn = {↓

5

, ↓ 5 , ‖ o, †

o } corresponds
to the higher-order target type set ∆n = {SA1(SC), SA2(SC), CR(SC), SCR(SC)}
and the higher-order source type abstraction σ =

5

5 o

o

./ G tracks the higher-order
target type abstraction of the complete SC hexagon θ = HEX(SC) ./ D.
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In the case of the alternative JSB in Fig. 4(b), this means that the 1001-0110
vertices for {�p∨¬♦p, ♦p∧¬�p} are switched from top to bottom, as compared
to the original JSB hexagon in Fig. 3(a). In the case of the alternative SC in
Fig. 4(c) this means that the 1100-0011 vertices for {p,¬p} are switched from
left to right, as compared to the original SC hexagon in Fig. 3(b).

The two JSB hexagons in Fig. 3(a) and Fig. 4(b) represent exactly the same
Aristotelian relations between exactly the same formulas, and the same holds
for the two SC hexagons in Fig. 3(b) and Fig. 4(c). In the terminology of Larkin
& Simon [11], the two variants for both types of hexagons stand in a relation
of informational equivalence, which need not coincide with that of com-
putational equivalence. In other words, two variants representing exactly
the same information may still differ in terms of cognitive processing require-
ments. From the point of view of Derivative Meaning in the previous subsection,
the alternative JSB hexagon in Fig. 4(b) resembles the original SC hexagon in
Fig. 3(b) in that the CR and SCR triangles have become obtuse (instead of
equilateral) and are no longer intertwined. At the same time, all subalternation
arrows between the top CR triangle and the bottom SCR triangle are now point-
ing downwards, thus resembling to some extent an upside down Hasse diagram.
One could argue that this property is more in line with the Congruence Principle
[17] — the structure of the visualisation should match the represented logical
structure as closely as possible — at least if one prefers to focus on implica-
tion relations instead of opposition relations [15]. Conversely, the alternative SC
hexagon in Fig. 4(c) resembles the original JSB hexagon in Fig. 3(a) in that
the two SA triangles — the one in grey pointing to the right, the other one
pointing to the left — have now become equilateral (instead of obtuse) as well
as intertwined. At the same time the CR and SCR relations have now become
two ‘semicircles’ — the top and the bottom half respectively — along the outer
edges of the hexagon. From the perspective of the Congruence Principle, one dis-
advantage of this alternative SC hexagon in Fig. 4(c) could be that the iconicity
for the transitivity closure of the SA arrows is lost. The L1-L3 arrow from 1000
to 1110 has the same length as the two ‘intermediate’ arrows from 1000 to 1100
(L1-L2) and from 1100 to 1110 (L2-L3), whereas from a logical point of view it
has the combined effect of the two intermediate SA relations. Obviously, much
more research is needed in order to determine how a representational variant of
a given Aristotelian family has obtained ‘canonical’ status at a given point in
history and to what extent cognitive principles played a role in that process (see
[5] for some initial observations). But apart from that, the analysis of Derivative
Meaning in terms of Abstraction Tracking — which was spelt out in full detail
in § 2.1 — straightforwardly carries over to the alternative representations of
the JSB and SC hexagons in Fig. 4(b-c).

3 Abstraction Tracking with embedded squares

In addition to the identification of triangular AsD shapes illustrated in § 2, a
second important heuristic and diagnostic technique for distinguishing families
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Fig. 5. (a-b-c) classical squares in JSB hexagon (d-e-f) classical squares in SC hexagon.

of ADs concerns the identification of the number and position of smaller ADs
embedded in larger ADs. Aristotelian squares — the smallest non-trivial ADs
to be embedded — come in two families, namely the classical square and the
degenerate square. The classical square — represented in Fig. 2(b) — has
six Aristotelian relations between four vertices, whereas the degenerate square
only has two Aristotelian relations left, namely the two diagonals for contradic-
tion. We consider the embedding of classical squares in two families of hexagons
(§ 3.1), and that of degenerate squares in two families of octagons (§ 3.2).

3.1 Classical squares inside JSB versus SC hexagons

In addition to the ‘basic’ embedding of the classical square in Fig. 5(a), two more
classical squares are embedded in a JSB hexagon, with 120◦ (counter)clockwise
rotations in Fig. 5(b-c). Completely analogously, Fig. 5(d) represents the ‘ba-
sic’ embedding of a classical square in a SC hexagon, whereas Fig. 5(e-f) have
embedded squares with 30◦ (counter)clockwise rotations.15

The technical analysis in terms of abstraction tracking illustrated in § 2 for
the triangular AsD shapes straightforwardly generalises to embedded squares.
The grey square in Fig. 5(a) yields the source type set Γ1 = { ‖((1000, 0001),
†(1110, 0111), ↓ (1000, 1110), ↓ (0001, 0111) }. With bitstrings of length 4, the
source type collection G contains 18 of these Γn sets.16 The source type σ =
↓ � ↓ counts as an abstraction over G — i.e. ↓ � ↓ ./ G. Γ1 collectively indi-
cates target type set ∆1 = { CR(1000,0001), SCR(1110,0111), SA(1000,1110),
15 As to the Apprehension Principle [17] — the structure/content of the visualisation

should be readily/accurately perceived/comprehended — the three SC squares in
Fig. 5(d-f) are basically ‘upright’, whereas with the 120◦ rotations in Fig. 5(b-c) the
two JSB squares are almost upside down, and thus less easily perceivable.

16 Six of them have a L1-L1 CR relation (4C2 = 6) and twelve of them a L1-L2 CR
relation (4C1 × 3C2 = 4× 3 = 12).
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Fig. 6. Degenerate square inside (a) Buridan octagon (b) Béziau octagon.

SA(0001,0111) }, resulting in a one-to-one correspondence between source and
target type collections G and D. The target type θ = CL(JSB) refers to the
embedding of a classical square in a JSB hexagon, and abstracts over D —
i.e. CL(JSB) ./ D. The derivative meaning relation between σ and θ holds, since
the source level abstraction ‘tracks’ the target level abstraction. The embedding
of a classical square in the SC hexagon in Fig. 5(d) receives a perfectly analogous
treatment. The generalisation — visualised in Fig. 5 — that every JSB and SC
hexagon contains exactly three classical squares, could then be analysed in terms
of the so-called ‘higher-order’ abstraction tracking and derivative meaning intro-
duced in § 2. The details of such an analysis would take us too far here, mainly
because it involves the simultaneous consideration of three different diagrams,
or at least of three different perspectives on the same diagram.17

3.2 Degenerate squares in Buridan and Béziau octagons

In the last step in this paper we will consider a very special type of Derivative
Meaning. In the examples studied so far — the contrariety and subalternation
triangles and the embedded classical squares — Derivative Meaning arose when
we shifted the focus from individual Aristotelian relations between pairs of for-
mulas to the observation of shapes or constellations of interconnected relations
between three or four formulas inside an Aristotelian diagram. We have char-
acterised the degenerate Aristotelian square above as a constellation of
four formulas which only consists of the two diagonal relations of contradiction.
In other words, both the two horizontal relations of CR and SCR and the two
vertical arrows of SA are missing. So when we look for degenerate squares em-
bedded in bigger ADs, we are actually identifying a pattern, not by the presence
of a number of relations, but by their absence. Observing such embedded degen-
erate squares as constellations of ‘missing links’ thus — in a figurative sense —
boils down to ‘seeing invisible squares’.

17 See [13, Ch. 6] for the closely related notion of aspect shifting, an important
method of mathematical discovery: diagrammatic proofs of mathematical theorems
often involve (constraints between) two decomposition types of the same figure.
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One very well studied family of ADs which contain an embedded degenerate
square is that of the so-called Buridan octagon [4, 9], named after the medi-
aeval logician John Buridan and illustrated in Fig. 6(a). The latter can be seen
as the ‘superimposition’ of two SC hexagons, in the sense that — in between the
0100 L1 vertex at the top left and the 1110 L3 vertex at the bottom left — not
just one L2 vertex is inserted, but two, namely 0110 and 1100, thus interlocking
two of the triangular SA arrow shapes that were discussed in full detail in § 2.1.18

The crucial thing to observe now is that these two L2 formulas themselves do not
stand in any Aristotelian relation whatsoever. In [15] these formulas are said to
be unconnected (Buridan himself calls them ‘disparatae’). In Fig. 6(a) all four
pairs of L2 formulas turn out to be unconnected, as indicated by the grey shaded
area identifying the degenerate square embedded in the Buridan octagon.

Transferring the abstraction tracking analysis of the embedded squares in
§ 3.1, we represent the absence of any line or arrow between vertex β and β′ as
∅(β, β′). The grey square in Fig. 6(a) corresponds to the source type set Γ1 =
{ ∅(0110, 0011),∅(0011, 1001),∅(1001, 1100),∅(1100, 0110) }. With bitstrings
of length 4, the source type collection G contains 3 of these sets Γn.19 The
source type σ = ∅� captures the idea that the latter constitute an ‘invisible
square’ and counts as an abstraction over G — i.e. ∅� ./ G. On the target level,
the absence of any Aristotelian relation between ‘unconnected’ formulas ϕ and
ϕ′ is represented as UN(ϕ,ϕ′). Γ1 collectively indicates target type set ∆1 = {
UN(0110,0011), UN(0011,1001), UN(1001,1100), UN(1100,0110) }, resulting in
a one-to-one correspondence between source and target type collections G and D.
The target type θ = UN(BUR) refers to the embedding of a degenerate square in
a Buridan octagon, and abstracts over D — i.e. UN(BUR) ./ D. The derivative
meaning relation between σ and θ holds, since the source level abstraction ∅�
./ G ‘tracks’ the target level abstraction UN(BUR) ./ D.

A second Aristotelian family of octagons in which a degenerate square is
embedded is the so-called Béziau octagon [1], illustrated in Fig. 6(b). This
octagon can be characterised as the ‘superimposition’ of the JSB hexagon in
Fig. 3(a) and the SC hexagon in Fig. 3(b), in the sense that both the hori-
zontal L2-L2 diagonal 1100-0011 and the vertical L2-L2 diagonal 1001-0110 are
inserted into the basic square simultaneously. As a consequence, the Béziau oc-
tagon contains both the two interlocking equilateral triangles for the CR and
SCR relations and the two non-interlocking obtuse triangles for the SA rela-
tions. The co-occurrence of two L2-L2 diagonals by definition results in the
embedding of a degenerate square in a Béziau octagon, as indicated by the grey
shaded area in Fig. 6(b). Notice that — in contrast to the Buridan octagon in
Fig. 6(a) — the Béziau octagon does not have any adjacent L2 vertices. In other
words, the four L2 vertices are laid out alternatingly around the outer edges of
the octagon, resulting in the ‘tilted’ degenerate square standing on one of its
corners. Obviously, the technical analysis in terms of Abstraction Tracking pro-

18 The analysis of some Buridan octagons requires bitstrings of length 5 and 6 [4].
19 Each degenerate square consists of two out of the three L2-L2 PCDs (3C2 = 3).
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vided above for the degenerate square embedded in the Buridan octagon carries
over straightforwardly to the analogous constellation in the Béziau octagon.

4 Conclusion

In this paper we have used the mechanism of Abstraction Tracking [13] in order
to describe Derivative Meaning arising in various Aristotelian diagrams (ADs).
This collaborative enterprise has not only turned out to be fruitful and relevant
for a deeper understanding of ADs in the framework of Logical Geometry but
has also yielded a deeper understanding of the Cognitive Potential of Deriva-
tive Meaning itself, in particular w.r.t. the patterns of so-called higher-order
Abstraction Tracking and Derivative Meaning.
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position. In: Béziau, J.Y., Payette, G. (eds.) New Perspectives on the Square of
Opposition. Peter Lang, Bern (2011)

9. Klima, G. (ed.): John Buridan, Summulae de Dialectica. Yale UP (2001)
10. Kretzmann, N.: William of Sherwood’s Introduction to Logic. Minnesota Archive

Editions, Minneapolis (1966)
11. Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words.

Cognitive Science 11, 65–99 (1987)
12. Sesmat, A.: Logique II. Hermann, Paris (1951)
13. Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials.

CSLI Publications (2015)
14. Smessaert, H.: Boolean differences between two hexagonal extensions of the logical

square of oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrammatic
Representation and Inference. pp. 193–199. Springer, Berlin/Heidelberg (2012)

15. Smessaert, H., Demey, L.: Logical geometries and information in the square of
opposition. Journal of Logic, Language and Information 23, 527–565 (2014)

16. Smessaert, H., Shimojima, A., Demey, L.: Free rides in Logical Space diagrams
versus Aristotelian diagrams. In: Pietarinen, A.V., et al. (eds.) Diagrammatic Rep-
resentation and Inference. pp. 419–435. Springer, Cham (2020)

17. Tversky, B.: Visualizing thought. Topics in Cognitive Science 3, 499–535 (2011)


