
Citation/Reference Authors: Mariya Ishteva, Philippe Dreesen

Title: Solving Systems of Polynomial Equations - a Tensor Approach

Conference: Proc. of the 13th International Conference on Large-Scale
Scientific Computations (LSSC 2021)

Dates Conference paper

• Date of conference: June 7–11, 2021

• Date of presentation: June 8, 2021

Archived version � Submitted version

� Accepted (Author manuscript: the content is identical to the con-
tent of the published paper, but without the final typesetting by the
publisher)

� Published

� Published (Open Access)

Acknowledgements In this manuscript, the following funding is acknowledged:

� EU H22020 � EU Horizon Europe � FWO � KULeuven
Internal Funds � VLAIO � AI � Other

Published version NA

Author contact philippe.dreesen@gmail.com

NA


Solving Systems of Polynomial Equations -

a Tensor Approach ⋆

Mariya Ishteva1[0000−0002−7951−536X] and
Philippe Dreesen2[0000−0002−6272−2004]

1 KU Leuven, Dept. Computer Science, ADVISE-NUMA, Belgium
2 KU Leuven, Dept. Electrical Engineering, ESAT-STADIUS, Belgium

{mariya.ishteva,philippe.dreesen}@kuleuven.be

Abstract. Polynomial relations are at the heart of mathematics. The
fundamental problem of solving polynomial equations shows up in a wide
variety of (applied) mathematics, science and engineering problems. Al-
though different approaches have been considered in the literature, the
problem remains difficult and requires further study.

We propose a solution based on tensor techniques. In particular, we
build a partially symmetric tensor from the coefficients of the polynomi-
als and compute its canonical polyadic decomposition. Due to the partial
symmetry, a structured canonical polyadic decomposition is needed. The
factors of the decomposition can then be used for building systems of lin-
ear equations, from which we find the solutions of the original system.

This paper introduces our approach and illustrates it with a de-
tailed example. Although it cannot solve any system of polynomial equa-
tions, it is applicable to a large class of sub-problems. Future work in-
cludes comparisons with existing methods and extending the class of
problems, for which the method can be applied.

Keywords: systems of polynomial equations · tensors · canonical polyadic
decomposition · partial symmetry.

1 Introduction

Solving systems of multivariate polynomial equations is a fundamental problem
in mathematics, having a multitude of scientific and engineering applications.
This task typically involves square systems (as many equations as unknowns),
which generically have a solution set consisting of isolated points. Computational
methods for solving polynomial systems are largely dominated by the symbolic
Groebner basis approach [6], although other approaches exist, such as homotopy
continuation methods.
⋆ This research was supported by KU Leuven Research Fund; KU Leuven start-up-
grant STG/19/036 ZKD7924; FWO (EOS Project 30468160, SBO project S005319N,
Infrastructure project I013218N, TBM Project T001919N, Research projects
G028015N, G090117N, PhD grants SB/1SA1319N, SB/1S93918, SB/151622); ERC
AdG “Back to the Roots” (885682); Flemish Government (AI Research Program);
PD is affiliated to Leuven.AI - KU Leuven institute for AI. Part of this work was
done while the authors were with Vrije Universiteit Brussel (VUB-ELEC).



2 M. Ishteva and P. Dreesen

From the (numerical) linear algebra viewpoint, there is a less known con-
nection between polynomial systems and eigenvalue problems. In the 1980s, the
work of Stetter [16], among others, demonstrated that eigenvalue problems are
at the core of polynomial systems. The eigenvalue problem formulation, return-
ing all solutions of the system, can be obtained from a Groebner basis, or from
resultant-based approaches [6]. Although the number of solutions grows quickly
with system size and degree (it is equal to the product of the equations degrees),
the computational bottleneck in these approaches is at the steps preceding the
eigenvalue problem formulation, such as computing a Groebner basis, or manip-
ulating large resultant-based matrices.

In this article, we look for the hidden eigenvalue problem in another way, by
exploring the connection between polynomials and tensors (multiway arrays).
In particular, we build a partially symmetric tensor from the coefficients of the
polynomials and decompose this tensor with a canonical polyadic decomposition,
which can often be reformulated as an eigenvalue problem [7]. Due to partial sym-
metry, a structured version of the canonical polyadic decomposition is needed.
The factors of the decomposition can then be used for building systems of linear
equations, from which we find the solutions of the polynomial system.

The remainder of this paper is organized as follows. Section 2 introduces the
basic background material. Section 3 first presents the main idea in the case of
bivariate polynomial equations of degree two and then discusses generalizations
to more equations (more variables) and higher degree polynomials. Section 4
summarizes the main conclusions and discusses future work.

2 Background material

This section introduces our notation, the canonical polyadic decompositions of
tensors, and the link between (symmetric) tensors and polynomials.

2.1 Notation

We use lowercase (a), boldface lowercase (a), uppercase boldface (A), and cal-
ligraphic font (A) for scalars, vectors, matrices, and tensors (a dth-order tensor
is a multiway array with d indices), respectively. The elements of the vectors,
matrices, and tensors are accessed as ai, Aij and Ai1...id , respectively.

A⊤ denotes the transpose of the matrix A and the symbols ◦, ⊗ and ⊙ stand
for the outer, the Kronecker, and the Khatri-Rao product, respectively.

The elements of the n-mode product A•nx ∈R
I1×···×In−1×In+1×···×Id , where

1 ≤ n ≤ d, of a tensor A ∈ R
I1×···×Id and a vector x ∈ R

In are defined as

(A •n x)i1...in−1in+1...id =

In
∑

in=1

Ai1...idxin .

Thus, if A is a third-order tensor, the products A •n x are matrices whose
elements are the scalar products of the vector x and the mode-n vectors of A.
The product A •1 x •2 x is a vector and the product A •1 x •2 x •3 x is a scalar.



Solving Systems of Polynomial Equations - a Tensor Approach 3

2.2 The canonical polyadic decomposition of tensors

A tensor A has rank equal to one, if it can be written as an outer product
of vectors. For example, for a third-order tensor A of rank one, we have A =
a ◦ b ◦ c, that is, Aijk = aibjck. Every tensor can be expressed as a sum of
rank-one tensors, i.e., for a third-order tensor A we have A =

∑r

i=1 ai ◦ bi ◦ ci.
We denote this by A = JA,B,CK, where ai, bi, and ci are the r columns of
A, B, and C, respectively. If r is minimal, we call this the canonical polyadic
decomposition (CPD) of A. [10, 2] (Figure 1) and r is called the rank of tensor A.

= + ·· · +

Fig. 1. The canonical polyadic decomposition decomposes a third-order tensor into a
minimal sum of rank-one terms (outer products of vectors). The number of terms is
called the rank of the tensor.

For symmetric tensors (tensors invariant under permutations of the indices),
symmetric decompositions are considered, i.e., decompositions with identical fac-
tors (A = JA,A,AK). We deal with partially symmetric tensors (symmetric with
respect to some of the modes), so we seek a partially symmetric decomposition
(where some of the factors are identical), for example A = JA,A,CK.

Computing the CPD of a tensor is a difficult problem in general but has been
studied extensively in the literature. This problem can often be reduced to an
eigenvalue problem and our preference goes for this option [7]. In some cases,
iterative algorithms are required, for which a number of implementations are
available, for example Tensorlab [17]. For further details on tensor decomposi-
tions and their applications, we refer to the overview papers [3, 5, 12, 8, 11, 14],
books [4, 9, 13, 15], and references therein.

2.3 A link between polynomials and symmetric tensors

We next discuss the link between polynomials and symmetric tensors, first in
the case of polynomials of degree two and then for higher-degree polynomials.

Polynomials of degree two. Every polynomial of degree two can be associated
with a symmetric coefficient matrix C. A bivariate polynomial in x and y can

be written as
[

x y 1
]

C





x

y

1



. For example, consider the polynomials p and q,

p(x, y) = −x2 + 2xy + 8y2 − 12x =
[

x y 1
]





−1 1 −6
1 8 0

−6 0 0









x

y

1



 ,

q(x, y) = 2x2 + 8xy + 7
2y

2 + 8x− 2y − 2 =
[

x y 1
]





2 4 4
4 7

2 −1
4 −1 −2









x

y

1



 .

(1)



4 M. Ishteva and P. Dreesen

We denote

[

x
y
1

]

by u. In case of more variables, the length of u increases, but

any polynomial can still be written as u⊤Cu, with some symmetric matrix C.

Polynomials of higher degree. Every polynomial of higher degree can be
associated with a higher-order tensor (instead of with a matrix). For example, a
polynomial of degree three can be described by a third-order tensor C:

a111x
3 + 3a112x

2y + 3a122xy
2 + a222y

3

+3a110x
2 + 6a120xy + 3a220y

2 + 3a100x+ 3a200y + a000

= C •1 u •2 u •3 u,

where C ∈ R
3×3×3 has the following frontal slices





a111 a112 a110
a112 a122 a120
a110 a120 a100



 ,





a112 a122 a120
a122 a222 a220
a120 a220 a200



 ,





a110 a120 a100
a120 a220 a200
a100 a200 a000



 .

In case of more variables, the length of u increases, but the polynomial can still
be written as C •1 u •2 u •3 u, with some symmetric tensor C.

3 Solving polynomial systems by tensor decompositions

This section first presents the main idea in the case of two polynomials (in two
variables) of degree two and then discusses possible extensions to the cases of
more equations (and variables) and higher degree polynomials.

3.1 Solving systems of two polynomial equations of degree two

For systems of two bivariate polynomial equations of degree two, our approach
consist of four steps: building a partially symmetric tensor from the coefficients
of the polynomials (Step 1), computing its partially symmetric CPD (Step 2)
and using the factors of the decomposition to build systems of linear equations,
from which we find the solutions (x, y) (Steps 3–4). We use the polynomials
from (1) to illustrate the approach, see also Figure 2.

Step 1. We associate one matrix with each equation (as in (1)) and stack
them behind each other in a partially symmetric third-order tensor T ∈ R

3×3×2.
The system then becomes

T •1 u •2 u =

[

0
0

]

, with u =





x

y

1



 . (2)

Step 2. We next decompose T in (partially symmetric) rank-one terms,

T = JV,V,WK,



Solving Systems of Polynomial Equations - a Tensor Approach 5

-15 -10 -5 0 5 10

x

-8

-6

-4

-2

0

2

4

y

Fig. 2. The equations from the running example are visualized as the blue and red
lines. The solutions of the system are the four points of intersection, circled in black.

with V ∈ R
3×r and W ∈ R

2×r, where r is the rank of T . The typical ranks of a
3× 3× 2 tensor are three and four over R. However, if we allow decompositions
with complex numbers, the typical rank is only three. In the following, we thus
consider the rank to be three and will work with complex numbers, if necessary.

For our example the rank over R is three. We obtain1

V =





2 1 1
1 −1 2
2 −2 0



 , W =

[

−1 1 2
1
2 −1 1

]

.

The system of polynomial equations (2) can now be re-written as

T •1 u •2 u = JV,V,WK •1 u •2 u = Ju⊤V,u⊤V,WK =

[

0
0

]

. (3)

In the following, we will first ignore the fact that the last element of u equals
one. The system (3) then has an intrinsic scaling indeterminacy. We will resolve
this issue by re-scaling u in the last step of the algorithm.

Step 3. Let z = V⊤u. We re-write equation (3) and solve it for z:

Ju⊤V,u⊤V,WK = Jz⊤, z⊤,WK = W(z⊤ ⊙ z⊤)⊤ = Wz.2 =

[

0
0

]

, (4)

where the elements of z.2 are the squared elements of z. This is a linear system
of equations for z.2 (we disregard the scaling indeterminacy for now and will
resolve it in Step 4.). z.2 leads to eight possible z but only four of them are
essentially different because z and −z eventually produce the same (x, y), due
to the scaling indeterminacy of u.

1 The CPD is invariant under some scaling and permutation of the columns of the
factors. Here we have chosen to re-scale the solution obtained from the eigenvalue
algorithm, in order to simplify the numbers in the example.



6 M. Ishteva and P. Dreesen

For our example,

z.2 =





0.8242
0.5494
0.1374



 ,

so the four (essentially different) solutions are

z(1) =





0.9078
0.7412
0.3706



, z(2) =





−0.9078
0.7412
0.3706



, z(3) =





0.9078
−0.7412
0.3706



, z(4) =





0.9078
0.7412

−0.3706



. (5)

Step 4. We find four solutions for u from z⊤ = u⊤V by solving the four
systems of linear equations (one for each z(i) from (5))

V⊤u = z.

Finally, we rescale each of the four solutions for u, so that the last element
becomes one. The first two elements are then x and y.

For our example we obtain

u(1) =





0.5497
−0.0895
−0.0510



 = −0.0510





−10.7766
1.7553

1



 ,u(2) =





−0.0555
0.2131

−0.5049



 = −0.5049





0.1100
−0.4220

1



 ,

u(3) =





0.0555
0.1575
0.3196



 = 0.3196





0.1737
0.4929

1



 ,u(4) =





0.5497
−0.4602
0.1343



 = 0.1343





4.0929
−3.4263

1





The solutions are

(x(1), y(1)) = (−10.7766, 1.7553), (x(2), y(2)) = (0.1100,−0.4220),
(x(3), y(3)) = (0.1737, 0.4929), (x(4), y(4)) = (4.0929,−3.4263).

The procedure is summarized as Algorithm 1.

Algorithm 1 Solving a polynomial system of equations via tensor decomposition

Input: A system of 2 polynomial equations of degree 2 (and 2 variables)
Output: The solutions (x(i), y(i)), i = 1, ..., 4 of the system

1: Reformulate the problem as T •1 u •2 u =

[

0
0

]

.

2: Decompose the tensor T in (partially symmetric) rank-one terms, T = JV,V,WK.

3: Solve the linear system W(z.2) =

[

0
0

]

for z.2.

Find the 4 (essentially different) solutions z
(i), i = 1, . . . , 4.

4: Solve the linear systems V
⊤
u

(i) = z
(i) for u

(i), i = 1, . . . , 4.

Normalize u
(i), i = 1, . . . , 4 so that the last elements become 1.

Extract the solutions (x(i), y(i)), i = 1, ..., 4 by removing the last element of each u
(i).

Remark. In our example we have four real roots. It is also possible for two
bivariate equations of degree two to have four complex roots or two real and two
complex roots. The proposed algorithm can deal with these cases as well.



Solving Systems of Polynomial Equations - a Tensor Approach 7

A polynomial system of equations can also have roots at infinity. These roots
correspond to solutions of the homogenized version of the system, where a third
variable is introduced that multiplies each monomial (zero, one or two times)
to complete it to degree two. Solutions at infinity are the solutions, for which
the additional variable is zero. Our algorithm can find such roots as well. In this
case, the last entry of u becomes zero.

3.2 Systems with more variables or higher degree polynomials

We now briefly discuss two generalizations of the main problem (2): the cases of
larger number of variables or higher degree polynomials.

More variables. In case of more variables, the length of u and the number of
slices of the system’s tensor will increase, but we could proceed in a similar way
if the rank of the tensor is small enough. If the rank is very large (even if we
allow complex factors), a modification of the main algorithm will be necessary.
A possible direction to consider here would be to reformulate the problem as

W(V ⊙V)⊤(u⊗ u) = 0

and solve for u⊗ u as in [1]. This line of research is left for future work.

Polynomials of higher degree. In case of polynomials of higher degree, the
associated tensors are of higher order. For example, if we have bivariate polyno-
mials of degree three, we associate a third-order tensor (instead of a matrix) with
each equation and stack these tensors in a fourth-order tensor T ∈ R

3×3×3×2.
The decomposition of T in rank-one terms contains then one additional factorV,

T = JV,V,V,WK.

We can proceed in a similar way as in Section 3.1, except that now in the first
system we solve for z.3. Unfortunately, the the rank of T could increase as well.

4 Conclusions and Perspectives

We proposed a new procedure for solving bivariate polynomial equations, exclu-
sively using tools from numerical (multi-)linear algebra, such as the eigenvalue
decomposition and solving linear systems. Although our approach is currently
not general enough for solving an arbitrary system of polynomials, it is ap-
plicable to a large class of sub-problems. The core computational steps of the
procedure are i) a CPD of the coefficient tensor, and ii) solving linear systems
involving the CPD factors. In many cases the CPD is known to be an eigenvalue
problem in disguise. For this reason, our new approach is particularly interesting
as said eigenvalue problem is phrased ‘directly’ in the equations’ coefficients, as
opposed to existing methods in which the eigenvalue formulation follows after
several computationally intensive steps.



8 M. Ishteva and P. Dreesen

Future work will focus on comparing and establishing connections to existing
eigenvalue-based approaches for polynomial system solving. We aim to generalize
the method to deal with systems in more variables and of larger degrees, which
involves higher-order coefficient tensors, instead of matrices. In this context it
remains to be seen what is the (complex) rank of the resulting coefficient tensor,
and how to generalize all the steps of the proposed algorithm.

References

1. Boussé, M., Vervliet, N., Domanov, I., Debals, O., De Lathauwer, L.: Linear sys-
tems with a canonical polyadic decomposition constrained solution: Algorithms
and applications. Numerical Linear Algebra with Applications 25(6), e2190 (2018)

2. Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scal-
ing via an N-way generalization of “Eckart-Young” decomposition. Psychometrika
35(3), 283–319 (1970)

3. Cichocki, A., Mandic, D.P., Phan, A.H., Caiafa, C.F., Zhou, G., Zhao, Q., De
Lathauwer, L.: Tensor decompositions for signal processing applications. From
two-way to multiway component analysis. IEEE Signal Processing Magazine 32(2),
145–163 (2015)

4. Cichocki, A., Zdunek, R., Phan, A., Amari, S.: Nonnegative Matrix and Tensor
Factorizations. Wiley (2009)

5. Comon, P.: Tensors: a brief introduction. IEEE Signal Processing Magazine 31(3),
44–53 (2014)

6. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties and Algorithms. Springer-
Verlag, 3rd ed. (2007)

7. Domanov, I., De Lathauwer, L.: Canonical polyadic decomposition of third-order
tensors: Relaxed uniqueness conditions and algebraic algorithm. Linear Algebra
Appl. 513, 342–375 (2017)

8. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)

9. Hackbusch, W.: Tensor spaces and numerical tensor calculus, Springer series in
computational mathematics, vol. 42. Springer, Heidelberg (2012)

10. Harshman, R.A.: Foundations of the PARAFAC procedure: Model and conditions
for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Pho-
netics 16(1), 1–84 (1970)

11. Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing:
Survey on recent advances. Chemometrics and Intelligent Laboratory Systems
110(1), 1–19 (2012)

12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

13. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley (2008)
14. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Falout-

sos, C.: Tensor decomposition for signal processing and machine learning. IEEE
Transactions on Signal Processing 65(13), 3551–3582 (2017)

15. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis. Applications in the Chemical
Sciences. John Wiley and Sons, Chichester, U.K. (2004)

16. Stetter, H.J.: Numerical Polynomial Algebra. SIAM (2004)
17. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab

3.0, available online, Mar. 2016. URL: https://www.tensorlab.net/.


