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ABSTRACT

Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality
samples. However, under certain circumstances, the training of GANs can lead to mode collapse or
mode dropping. To address this problem, we use the last layer of the discriminator as a feature map
to study the distribution of the real and the fake data. During training, we propose to match the real
batch diversity to the fake batch diversity by using the Bures distance between covariance matrices in
this feature space. The computation of the Bures distance can be conveniently done in either feature
space or kernel space in terms of the covariance and kernel matrix respectively. We observe that
diversity matching reduces mode collapse substantially and has a positive effect on sample quality.
On the practical side, a very simple training procedure is proposed and assessed on several data sets.

1 Introduction

In several machine learning applications, data is assumed to be sampled from an implicit probability distribution. The
estimation of this empirical implicit distribution is often intractable, especially in high dimensions. To tackle this issue,
generative models are trained to provide an algorithmic procedure for sampling from this unknown distribution. Popular
approaches are Variational Auto-Encoders proposed by [1], Generating Flow models by [2] and Generative Adversarial
Networks (GANs) initially developed by [3]. The latter are particularly successful approaches to produce high quality
samples, especially in the case of natural images, though their training is notoriously difficult. The vanilla GAN consists
of two networks: a generator and a discriminator. The generator maps random noise, usually drawn from a multivariate
normal, to fake data in input space. The discriminator estimates the likelihood ratio of the generator network to the data

∗Most of this work was done when Michaël Fanuel was at KU Leuven.
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distribution. It often happens that a GAN generates samples only from a few of the many modes of the distribution.
This phenomenon is called ‘mode collapse’.

Contribution. We propose BuresGAN: a generative adversarial network which has the objective function of a vanilla
GAN complemented by an additional term, given by the squared Bures distance between the covariance matrix of real
and fake batches in a latent space. This loss function promotes a matching of fake and real data in a feature space Rf ,
so that mode collapse is reduced. Conveniently, the Bures distance also admits both a feature space and kernel based
expression. Contrary to other related approaches such as in [4] or [5], the architecture of the GAN is unchanged, only
the objective is modified. We empirically show that the proposed method is robust when it comes to the choice of
architecture and does not require an additional fine architecture search. Finally, an extra asset of BuresGAN is that it
yields competitive or improved IS and FID scores compared with the state of the art on CIFAR-10 and STL-10 using a
ResNet architecture.

Related works. The Bures distance is closely related to the Fréchet distance [6] which is a 2-Wasserstein distance
between multivariate normal distributions. Namely, the Fréchet distance between multivariate normals of equal means
is the Bures distance between their covariance matrices. The Bures distance is also equivalent to the exact expression
for the 2-Wasserstein distance between two elliptically contoured distributions with the same mean as shown in [7] and
[8]. Noticeably, it is also related to the Fréchet Inception Distance score (FID), which is a popular manner to assess the
quality of generative models. This score uses the Fréchet distance between real and generated samples in the feature
space of a pre-trained inception network as it is explained in [9] and [10].

There exist numerous works aiming to improve training efficiency of generative networks. For mode collapse evaluation,
we compare BuresGAN to the most closely related works. GDPP-GAN [11] and VEEGAN [5] also try to enforce
diversity in ‘latent’ space. GDPP-GAN matches the eigenvectors and eigenvalues of the real and fake diversity kernel.
In VEEGAN, an additional reconstructor network is introduced to map the true data distribution to Gaussian random
noise. In a similar way, architectures with two discriminators are analysed by [12], while MADGAN [13] uses multiple
discriminators and generators. A different approach is taken by Unrolled-GAN [14] which updates the generator with
respect to the unrolled optimization of the discriminator. This allows training to be adjusted between using the optimal
discriminator in the generator’s objective, which is ideal but infeasible in practice. Wasserstein GANs [15, 16] leverage
the 1-Wasserstein distance to match the real and generated data distributions. In MDGAN [4], a regularization is added
to the objective function, so that the generator can take advantage of another similarity metric with a more predictable
behavior. This idea is combined with a penalization of the missing modes. Some other recent approaches to reducing
mode collapse are variations of WGAN [17]. Entropic regularization has been also proposed in PresGAN [18], while
metric embeddings were used in the paper introducing BourGAN [19]. A simple packing procedure which significantly
reduces mode collapse was proposed in PacGAN [20] that we also consider hereafter in our comparisons.

2 Method

A GAN consists of a discriminator D : Rd → R and a generator G : R` → Rd which are typically defined by neural
networks and parametrized by real vectors. The value D(x) gives the probability that x comes from the empirical
distribution, while the generator G maps a point z in the latent space R` to a point in the input space Rd. The training
of a GAN consists in solving

min
G

max
D

Ex∼pd [logD(x)] + Ex∼pg [log(1−D(x))], (1)

by alternating two phases of training. In (1), the expectation in the first term is over the empirical data distribution pd,
while the expectation in the second term is over the generated data distribution pg , implicitly given by the mapping by
G of the latent prior distribution N (0, I`). It is common to define and minimize the discriminator loss by

VD = −Ex∼pd [logD(x)]− Ex∼pg [log(1−D(x))]. (2)

In practice, it is proposed in [3] to minimize generator loss

VG = −Ez∼N (0,I`)[logD(G(z))], (3)

rather than the second term of (1), for an improved training efficiency.

Matching real and fake data covariance. To prevent mode collapse, we encourage the generator to sample fake
data of similar diversity to real data. This is achieved by matching the sample covariance matrices of real and fake data
respectively. Covariance matching and similar ideas were explored for GANs in [21] and [11]. In order to compare
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covariance matrices, we propose to use the squared Bures distance between positive semi-definite `× ` matrices [22],
i.e.,

B (A,B)
2

= min
U∈O(`)

‖A1/2 −B1/2U‖2F

= Tr(A+B − 2(A
1
2BA

1
2 )

1
2 ).

Being a Riemannian metric on the manifold of positive semi-definite matrices [23], the Bures metric is adequate
to compare covariance matrices. The covariances are defined in a feature space associated to the discriminator.
Namely, let D(x) = σ(w>φ(x)), where w is the weight vector of the last dense layer and σ is the sigmoid func-
tion. The last layer of the discriminator, denoted by φ(x) ∈ Rdφ , naturally defines a feature map. We use the
normalization φ̄(x) = φ(x)/‖φ(x)‖2, after the centering of φ(x). Then, we define a covariance matrix as follows:
C(p) = Ex∼p[φ̄(x)φ̄(x)>]. For simplicity, we denote the real data and generated data covariance matrices by
Cd = C(pd) and Cg = C(pg), respectively. Our proposal is to replace the generator loss by VG + λB(Cd, Cg)

2.
The value λ = 1 was found to yield good results in the studied data sets. Two specific training algorithms are
proposed. Algorithm 1 deals with the squared Bures distance as an additive term to the generator loss, while
an alternating training is discussed in Supplementary Material (SM) and does not introduce an extra parameter.

Algorithm 1: BuresGAN
Sample a real and fake batch ;
Update G by minimizing VG + λB(Ĉr, Ĉg)

2;
Update D by maximizing −VD;

The training described in Algorithm 1 is analogous to the training of GDPP GAN, although the additional generator
loss is rather different. The computational advantage of the Bures distance is that it admits two expressions which
can be evaluated numerically in a stable way. Namely, there is no need to calculate a gradient update through an
eigendecomposition.

Feature space expression. In the training procedure, real x(d)
i and fake data x(g)

i with 1 ≤ i ≤ b are sampled
respectively from the empirical distribution and the mapping of the normal distribution N (0, I`) by the generator.
Consider the case where the batch size b is larger than the feature space dimension. Let the embedding of the batches
in feature space be Φα = [φ(x

(α)
1 ), . . . ,φ(x

(α)
b )]> ∈ Rb×dφ with α = d, g. The covariance matrix of one batch in

feature space2 is Ĉ = Φ̄>Φ̄, where Φ̄ is the `2-normalized centered feature map of the batch. Numerical instabilities
can be avoided by adding a small number, e.g. 1e−14, to the diagonal elements of the covariance matrices, so that,
in practice, we only deal with strictly positive definite matrices. From the computational perspective, an interesting
alternative expression for the Bures distance is given by

B (Cd, Cg)
2

= Tr
(
Cd + Cg − 2(CgCd)

1
2

)
, (4)

whose computation requires only one matrix square root. This identity can be obtained from Lemma 1. Note that an
analogous result is proved in [24].
Lemma 1. Let A and B be symmetric positive semidefinite matrices of the same size and let B = Y >Y . Then, we
have: (i) AB is diagonalizable with nonnegative eigenvalues, and (ii) Tr((AB)

1
2 ) = Tr((Y AY >)

1
2 ).

Proof. (i) is a consequence of Corollary 2.3 in [25]. (ii) We now follow [24]. Thanks to (i), we have AB =
PDP−1 where D is a nonnegative diagonal and the columns of P contain the right eigenvectors of AB. Therefore,
Tr((AB)1/2) = Tr(D1/2). Then, Y AY > is clearly diagonalizable. Let us show that it shares its nonzero eigenvalues
with AB. a) We have ABP = PD, so that, by multiplying of the left by Y , it holds that (Y AY >)Y P = Y PD. b)
Similarly, suppose that we have the eigenvalue decomposition Y AY >Q = QΛ. Then, we have BAY >Q = Y >QΛ
with B = Y >Y . This means that the non-zero eigenvalues of Y AY > are also eigenvalues of BA. Since A and B are
symmetric, this completes the proof.

Kernel based expression. Alternatively, if the feature space dimension f is larger than the batch size b, it is more
efficient to compute B(Ĉd, Ĉg) thanks to b× b kernel matrices: Kd = Φ̄dΦ̄

>

d , Kg = Φ̄gΦ̄
>
g and Kdg = Φ̄dΦ̄

>
g . Then,

we have the kernel based expression

B(Ĉd, Ĉg)
2 = Tr

(
Kd +Kg − 2

(
KdgK

>
dg

) 1
2
)
, (5)

2For simplicity, we omit the normalization by 1
b−1

in front of the covariance matrix.
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which allows to calculate the Bures distance between covariance matrices by computing a matrix square root of a b× b
matrix. This is a consequence of Lemma 2.
Lemma 2. The matrices X>XY >Y and Y X>XY > are diagonalizable with nonnegative eigenvalues and share the
same non-zero eigenvalues.

Proof. The result follows from Lemma 1 and its proof, where A = X>X and B = Y >Y .

Connection with Wasserstein GAN and integral probability metrics. The Bures distance is proportional to the
2-Wasserstein distanceW2 between two ellipically contoured distributions with the same mean [7]. For instance, in the
case of multivariate normal distributions, we have

B (A,B)
2

= min
π

E(X,Y )∼π‖X − Y ‖22 s.t.
{
X ∼ N (0, A)

Y ∼ N (0, B),

where the minimization is over the joint distributions π. More precisely, in this paper, we make the approximation that
the implicit distribution of the real and generated data in the feature space Rdφ (associated to φ(x)) are elliptically
contoured with the same mean. Under different assumptions, the Generative Moment Matching Networks [26, 27]
work in the same spirit, but use a different approach to match covariance matrices. On the contrary, WGAN uses the
Kantorovich dual formula for the 1-Wasserstein distance: W1(α, β) = supf∈Lip

∫
f d(α− β), where α, β are signed

measures. Generalizations of such integral formulae are called integral probability metrics (see for instance [28]). Here,
f is the discriminator, so that the maximization over Lipschitz functions f plays the role of the maximization over
discriminator parameters in the min-max game of (1). Then, in the training procedure, this maximization alternates
with a minimization over the generator parameters.

We can now discuss the connection with Wasserstein GAN. Coming back to the definition of BuresGAN, we can now
explain that the 2-Wasserstein distance provides an upper bound on an integral probability metric. Then, if we assume
that the densities are elliptically contoured distributions in feature space, the use of the Bures distance to calculateW2

allows to spare the maximization over the discriminator parameters – and this motivates why the optimization of B only
influences updates of the generator in Algorithm 1. Going more into detail, the 2-Wasserstein distance between two
probability densities (w.r.t. the same measure) is equivalent to a Sobolev dual norm, which can be interpreted as an
integral probability metric. Indeed, let the Sobolev semi-norm ‖f‖H1 = (

∫
‖∇f(x)‖2 dx)1/2. Then, its dual norm

over signed measures is defined as ‖ν‖H−1 = sup‖f‖H1≤1
∫
f dν. It is then shown in [29] and [8] that there exist two

positive constants c1 and c2 such that

c1‖α− β‖H−1 ≤ W2(α, β) ≤ c2‖α− β‖H−1 .

Hence, the 2-Wasserstein distance gives an upper bound on an integral probability metric.

Algorithmic details. The matrix square root in (4) and (5) is obtained thanks to the Newton-Schultz algorithm which
is inversion free and can be efficiently calculated on GPUs since it involves only matrix products. In practice, we found
15 iterations of this algorithm to be sufficient for the small scale data sets, while 20 iterations were used for the ResNet
examples. A small regularization term 1e−14 is added to the matrix diagonal for stability. The latent prior distribution
is N (0, I`) with ` = 100 and the parameter in Algorithm 1 is always set to λ = 1. In the tables hereafter, we indicate
the largest scores in bold, although we invite the reader to also consider the standard deviation.

3 Empirical Evaluation of Mode Collapse

BuresGAN’s performances on synthetic data, artificial and real images are compared with the standard DCGAN [9],
WGAN-GP, MDGAN, Unrolled GAN, VEEGAN, GDPP and PacGAN. We want to emphasize that the purpose of this
experiment is not to challenge these baselines, but to report the improvement obtained by adding the Bures metric to
the objective function. It would be straightforward to add the Bures loss to other GAN variants, as well as most GAN
architectures, and we would expect an improvement in mode coverage and generation quality. In the experiments, we
notice that adding the Bures loss to the vanilla GAN already significantly improves the results.

A low dimensional feature space (dφ = 128) is used for the synthetic data so that the feature space formula in (4)
is used, while the dual formula in (5) is used for the image data sets (Stacked MNIST, CIFAR-10, CIFAR-100 and
STL-10) for which the feature space is larger than the batch size. The architectures used for the image data sets are
based on DCGAN [30], while results using ResNets are given in Section 4. All images are scaled in between -1
and 1 before running the algorithms. Additional information on the architectures and data sets is given in SM. The
hyperparameters of other methods are typically chosen as suggested in the authors’ reference implementation. The
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number of unrolling steps in Unrolled GAN is chosen to be 5. For MDGAN, both versions are implemented but only
MDGAN-v2 gives interesting results. The first version, which corresponds to the mode regularizer, has hyperparameters
λ1 = 0.2 and λ2 = 0.4, for the second version, which corresponds to manifold diffusion training for regularized GANs,
has λ = 10−2. WGAN-GP uses λ = 10.0 and ncritic = 5. All models are trained using Adam [31] with β1 = 0.5,
β2 = 0.999 and learning rate 10−3 for both the generator and discriminator. Unless stated otherwise, the batch size is
256. Examples of random generations of all the GANs are given in SM. Notice that in this section we report the results
achieved only at the end of the training.

3.1 Artificial Data

Synthetic. RING is a mixture of eight two-dimensional isotropic Gaussians in the plane with means 2.5 ×
(cos((2π/8)i), sin((2π/8)i)) and std 0.01 for 1 ≤ i ≤ 8. GRID is a mixture of 25 two-dimensional isotropic
normals in the plane with means separated by 2 and with standard deviation 0.05. All models have the same architecture,
with ` = 256 following [11], and are trained for 25k iterations. The evaluation is done by sampling 3k points from the
generator network. A sample is counted as high quality if it is within 3 standard deviations of the nearest mode. The
experiments are repeated 10 times for all models and their performance is compared in Table 1.

BuresGAN consistently captures all the modes and produces the highest quality samples. The training progress of the
BuresGAN is shown on Figure 1, where we observe that all the modes early on in the training procedure, afterwards
improving the quality. The training progress of the other GAN models listed in Table 1 is given in SM. Although
BuresGAN training times are larger than most other methods for this low dimensional example, we show in SM that
BuresGAN scales better with the input data dimension and architecture complexity.

Step 0 Step 2k Step 4k Step 6k Step 8k Step 25k

Figure 1: Figure accompanying Table 1, the progress of BuresGAN on the synthetic examples. Each column shows 3k
samples from the training of the generator in blue and 3k samples from the true distribution in green.

Table 1: Experiments on the synthetic data sets. Average (std) over 10 runs. All the models are trained for 25k iterations.

Grid (25 modes) Ring (8 modes)

Nb modes % in 3σ Nb modes % in 3σ

GAN 22.9(4) 76(13) 7.4(2) 76(25)
WGAN-GP 24.9(0.3) 77(10) 7.1(1) 9(5)
MDGAN-v2 25(0) 68(11) 5(3) 20(15)
Unrolled 19.7(1) 78(19) 8(0) 77(18)
VEEGAN 25(0) 67(3) 8(0) 29(5)
GDPP 20.5(5) 79(23) 7.5(0.8) 73(25)
PacGAN2 23.6(4) 65(28) 8(0) 81(15)
BuresGAN (ours) 25(0) 82(1) 8(0) 82(4)

5
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Stacked MNIST. The Stacked MNIST data set is specifically constructed to contain 1000 known modes. This is
done by stacking three digits, sampled uniformly at random from the original MNIST data set, each in a different
channel. BuresGAN is compared to the other methods and are trained for 25k iterations. For the performance evaluation,
we follow [14] and use the following metrics: the number of captured modes measures mode collapse and the KL
divergence, which also measures sample quality. The mode of each generated image is identified by using a standard
MNIST classifier which is trained up to 98.43% accuracy on the validation set (see Supplementary Material), and
classifies each channel of the fake sample. The same classifier is used to count the number of captured modes. The
metrics are calculated based on 10k generated images for all the models. Generated samples from BuresGAN are given
in Figure 2. As it was observed by previous papers such as in [20] and [19], even the vanilla GAN can achieve an

Stacked MNIST CIFAR-10 CIFAR-100

Figure 2: Generated samples from a trained BuresGAN, with a DCGAN architecture.

excellent mode coverage for certain architectures.

To study mode collapse on this data set, we performed extensive experiments for multiple discriminator layers and
multiple batch sizes. In the main section, the results for a 3 layer discriminator are reported in Table 2. Additional
experiments can be found in SM. An analogous experiment as in VEEGAN [5] with a challenging architecture including
4 convolutional layers for both the generator and discriminator was also included for completeness; see Table 3. Since
different authors, such as in the PacGAN’s paper, use slightly different setups, we also report in SM the specifications of
the different settings. We want to emphasize the interests of this simulation is to compare GANs in the same consistent
setting, while the results may vary from those reported in e.g. in [5] since some details might differ.

Table 2: KL-divergence between the generated distribution and true distribution for an architecture with 3 conv. layers
for the Stacked MNIST dataset. The number of counted modes assesses mode collapse. The results are obtained after
25k iterations and we report the average(std) over 10 runs.

Nb modes(↑) KL div.(↓)
Batch size 64 128 256 64 128 256

3
co

nv
.l

ay
er

s

GAN 993.3(3.1) 995.4(1.7) 998.3(1.2) 0.28(0.02) 0.24(0.02) 0.21(0.02)
WGAN-GP 980.2(57) 838.3(219) 785.1(389) 0.26(0.34) 1.05(1) 1.6(2.4)
MDGAN-v1 233.8(250) 204.0(202) 215.5(213) 5.0(1.6) 4.9(1.3) 5.0(1.2)
MDGAN-v2 299.9(457) 300.4(457) 200.0(398) 4.8(3.0) 4.7(3.0) 5.5(2.6)
UnrolledGAN 934.7(107) 874.1(290) 884.9(290) 0.72(0.51) 0.98(1.46) 0.90(1.4)
VEEGAN 974.2(10.3) 687.9(447) 395.6(466) 0.33(0.05) 2.04(2.61) 3.52(2.64)
GDPP 894.2(298) 897.1(299) 997.5(1.4) 0.92(1.92) 0.88(1.93) 0.20(0.02)
PacGAN2 989.8(4.0) 993.3(4.8) 897.7(299) 0.33(0.02) 0.29(0.04) 0.87(1.94)
BuresGAN (ours) 993.5(2.7) 996.3(1.6) 997.1(2.4) 0.29(0.02) 0.25(0.02) 0.23(0.01)

Interestingly, for most models, an improvement is observed in the quality of the images – KL divergence – and in terms
of mode collapse – number of modes attained – as the size of the batch increases. For the same batch size, architecture
and iterations, the image quality is improved by BuresGAN, which consistently performs well over all settings. The
other methods show a higher variability over the different experiments. MDGANv2, VEEGAN, GDPP and WGAN-GP

6
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Table 3: Stacked MNIST experiment for an architecture with 4 conv. layers. All the models are trained for 25k iterations
with a batch size of 64, a learning rate of 2× 10−4 for Adam and a normal latent distribution. The evaluation is over
10k samples and we report the average(std) over 10 runs.

Nb modes(↑) KL div.(↓)

4
co

nv
.l

ay
er

s

GAN 21.6(25.8) 5.10(0.83)
WGAN-GP 999.7(0.6) 0.11(0.006)
MDGAN-v2 729.5(297.9) 1.76(1.65)

UnrolledGAN 24.3(23.61) 4.96(0.68)
VEEGAN 816.1(269.6) 1.33(1.46)

GDPP 33.3(39.4) 4.92(0.80)
PacGAN2 972.4(12.0) 0.45(0.06)

BuresGAN (ours) 989.9(4.7) 0.38(0.06)

often have an excellent single run performance. However, when increasing the number of discriminator layers, the
training of these models has a tendency to collapse more often as indicated by the large standard deviation. Vanilla
GAN is one of the best performing models in the variant with 3 layers.

We observe in Table 3 for the additional experiment that vanilla GAN and GDPP collapse for this architecture. WGAN-
GP yields the best result and is followed by BuresGAN. However, as indicated in Table 2, WGAN-GP is sensitive to the
choice of architecture and hyperparameters and its training time is also longer as it can be seen from the corresponding
timings table in SM. More generally, these results depend heavily on the precise architecture choice and to a lesser
extent on the batch size. These experiments further confirm the finding that most GAN models, including the standard
version, can learn all modes with careful and sufficient architecture tuning [20, 32]. Finally, it can be concluded that
BuresGAN performs well for all settings, showing that it is robust when it comes to batch size and architecture.

3.2 Real Images

Metrics. Image quality is assessed thanks to the Inception Score (IS), Fréchet Inception Distance (FID) and Sliced
Wasserstein Distance (SWD). The latter was also used in [11] and [33] to evaluate image quality as well as mode-
collapse. In a word, SWD evaluates the multiscale statistical similarity between distributions of local image patches
drawn from Laplacian pyramids. A small Wasserstein distance indicates that the distribution of the patches is similar,
thus real and fake images appear similar in both appearance and variation at this spatial resolution. The metrics are
calculated based on 10k generated images for all the models.

CIFAR data sets. We evaluate the GANs on the 32 × 32 × 3 CIFAR data sets, for which all models are trained
for 100k iterations with a convolutional architecture. In Table 4, the best performance is observed for BuresGAN in
terms of image quality, measured by FID and Inception Score, and in terms of mode collapse, measured by SWD. We
also notice that UnrolledGAN, VEEGAN and WGAN-GP have difficulty converging to a satisfactory result for this
architecture. This is contrast to the ‘simpler’ synthetic data and the Stacked MNIST data set, where the models attain
a performance comparable to BuresGAN. Also, for this architecture and number of training iterations, MDGAN did
not converge to a meaningful result in our simulations. In [15], WGAN-GP achieves a very good performance on
CIFAR-10 with a ResNet architecture which is considerably more complicated than the DCGAN used here. Therefore,
results with a Resnet architecture are reported in Section 4.

CIFAR-100 data set consists of 100 different classes and is therefore more diverse. Compared to the original CIFAR-10
data set, the performance of the studied GANs remains almost the same. An exception is vanilla GAN, which shows a
higher presence of mode collapse as measured by SWD.

STL-10. The STL-10 data set includes higher resolution images of size 96× 96× 3. The best performing models
from previous experiments are trained for 150k iterations. Samples of generated images from BuresGAN are given on
Figure 3. The metrics are calculated based on 5k generated images for all the models. Compared to the previous data
sets, GDPP and vanilla GAN are rarely able to generate high quality images on the higher resolution STL-10 data set.
Only BuresGANs are capable of consistently generating high quality images as well as preventing mode collapse, for
the same architecture.

7
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Table 4: Generation quality on CIFAR-10, CIFAR-100 and STL-10 with DCGAN architecture. For the CIFAR images,
Average(std) over 10 runs and 100k iterations for each. For the STL-10 images, Average(std) over 5 runs and 150k
iterations for each. For improving readability, SWD score was multiplied by 100. The symbol ‘∼’ indicates that no
meaningful result could be obtained for these parameters.

CIFAR-10 CIFAR-100 STL-10

IS(↑) FID(↓) SWD(↓) IS(↑) FID(↓) SWD(↓) IS(↑) FID(↓) SWD(↓)
GAN 5.67(0.22) 59(8.5) 3.7(0.9) 5.2(1.1) 91.7(66) 7.8(4.9) 2.9(1.8) 237(54) 12.3(4.1)
WGAN-GP 2.01(0.47) 291(87) 8.3(1.9) 1.2(0.5) 283(113) 9.7(2.5) ∼ ∼ ∼
UnrolledGAN 3.1(0.6) 148(42) 9.0(5) 3.2(0.7) 172.9(40) 13.1(9.2) ∼ ∼ ∼
VEEGAN 2.5(0.6) 198(33.5) 12.0(3) 2.8(0.7) 177.2(27) 12.8(3.9) ∼ ∼ ∼
GDPP 5.76(0.27) 62.1(5.5) 4.1(1.1) 5.9(0.2) 65.0(8) 4.4(1.9) 3.3(2.2) 232(84) 8.2(4.0)
PacGAN2 5.51(0.18) 60.61(5.9) 2.95(1) 5.6(0.1) 59.9(5.2) 4.0(1.8) 4.7(1.5) 161(36) 8.1(4.3)
BuresGAN (ours) 6.34(0.17) 43.7(0.9) 2.1(0.6) 6.5(0.1) 47.2(1.2) 2.1(1.0) 7.6(0.3) 109(7) 2.3(0.3)

Figure 3: Images generated by BuresGAN with a ResNet architecture for CIFAR-10 (left) and STL-10 (right) data sets.
The STL-10 samples are full-sized 96× 96 images.

Timings. The computing times for these data sets are in SM. For the same number of iterations, BuresGAN training
time is comparable to WGAN-GP training for the simple data in Table 1. For more complicated architectures, BuresGAN
scales better and the training time was observed to be significantly shorter with respect to WGAN-GP and several other
methods.

4 High Quality Generation using a ResNet Architecture

As noted by [39], a fair comparison should involve GANs with the same architecture, and this is why we restricted in
our paper to a classical DCGAN architecture. It is natural to question the performance of BuresGAN with a ResNet
architecture. Hence, we trained BuresGAN on the CIFAR-10 and STL-10 data sets by using the ResNet architecture
taken from [16]. In this section, the STL-10 images are rescaled to a resolution of 48× 48× 3 according the procedure
described in [35, 34, 38], so that the comparison of IS and FID scores with other works is meaningful. Note that
BuresGAN has no parameters to tune, except for the hyperparameters of the optimizers.

The results are displayed in Table 5, where the scores of state-of-the-art unconditional GAN models with a ResNet
architecture are also reported. In contrast with Section 3, we report here the best performance achieved at any time
during the training, averaged over several runs. To the best of our knowledge, our method achieves a new state of
the art inception score on STL-10 and is within a standard deviation of state of the art on CIFAR-10 using a ResNet
architecture. The FID score achieved by BuresGAN is nonetheless smaller than the reported FID scores for GANs
using a ResNet architecture. A visual inspection of the generated images in Figure 3 shows that the high inception score
is warranted, the samples are clear, diverse and often recognizable. BuresGAN also performs well on the full-sized
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Table 5: Best achieved IS and FID, using a ResNet architecture. Results with an asterisk are quoted from their respective
papers (std in parenthesis). BuresGAN results were obtained after 300k iterations and averaged over 3 runs. The result
indicated with † are taken from [17]. For all the methods, the STL-10 images are rescaled to 48× 48× 3 in contrast
with Table 4.

CIFAR-10 STL-10

IS (↑) FID (↓) IS (↑) FID (↓)
WGAN-GP ResNet [16]∗ 7.86(0.07) 18.8† / /
InfoMax-GAN [34]∗ 8.08(0.08) 17.14(0.20) 8.54(0.12) 37.49(0.05)
SN-GAN ResNet [35]∗ 8.22(0.05) 21.7(0.21) 9.10(0.04) 40.1(0.50)
ProgressiveGAN [33]∗ 8.80(0.05) / / /
CR-GAN [36]∗ 8.4 14.56 / /
NCSN [37]∗ 8.87(0.12) 25.32 / /
Improving MMD GAN [38]∗ 8.29 16.21 9.34 37.63
WGAN-div [17]∗ / 18.1† / /
BuresGAN ResNet (Ours) 8.81(0.08) 12.91(0.40) 9.67(0.19) 31.42(1.01)

STL-10 data set where an inception score of 11.11± 0.19 and an FID of 50.9± 0.13 is achieved (average and std over
3 runs).

5 Conclusion

In this work, we discussed an additional term based on the Bures distance which promotes a matching of the distribution
of the generated and real data in a feature space Rdφ . The Bures distance admits both a feature space and kernel based
expression, which makes the proposed model time and data efficient when compared to state of the art models. Our
experiments show that the proposed methods are capable of reducing mode collapse and, on the real data sets, achieve
a clear improvement of sample quality without parameter tuning and without the need for regularization such as a
gradient penalty. Moreover, the proposed GAN shows a stable performance over different architectures, data sets and
hyperparameters.
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A Organization

In Section B, some details about our theoretical results are given. Next, additional experiments are described in
Section C. Importantly, the latter section includes

• another training algorithm (Alt-BuresGAN), which is parameter-free and achieves comptetitive results with
BuresGAN,

• an ablation study comparing the effect of the Bures metric with the Frobenius norm,

• timings per iteration for all the generatives methods listed in this paper,

• supplementary tables for the experiments described in the paper,

• a more extensive study on Stacked MNIST of the influence of the batch size for a simpler DCGAN architecture
with 2 convolutional layers in the discriminator.

Next, illustrative figures including generated images are listed in Section D. Finally, Section E gives details about the
architectures used in this paper.

B Details of the theoretical results

Let A and B be symmetric and positive semi-definite matrices. Let A1/2 = U diag(
√
λ)U> where U and λ are

obtained thanks to the eigenvalue decomposition A = U diag(λ)U>. We show here that the Bures distance between A
and B is

B (A,B)
2

= min
U∈O(`)

‖A1/2 −B1/2U‖2F = Tr(A+B − 2(A
1
2BA

1
2 )

1
2 ), (6)

where O(`) is the set of `× ` orthonormal matrices. We can simplify the above expression as follows

min
U∈O(`)

‖A1/2 −B1/2U‖2F = Tr(A) + Tr(B)− 2 max
U∈O(`)

Tr(A1/2B1/2U) (7)

since Tr(U>B1/2A1/2) = Tr(A1/2B1/2U). Let the characteristic function of the set of orthonormal matrices be
f(U) = χO(`)(U) that is, f(U) = 0 if U ∈ O(`) and +∞ otherwise.

Lemma 2. The Fenchel conjugate of f(U) = χO(`)(U) is f?(M) = ‖M‖?, where the nuclear norm is ‖M‖? =

Tr(
√
M>M) and U,M ∈ R`×`.

Proof. The definition of the Fenchel conjugate with respect to the Frobenius inner product gives

f?(M) = sup
U∈R`×`

Tr(U>M)− f(U) = max
U∈O(`)

Tr(U>M).
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Next we decompose M as follows: M = WΣV >, where W,V ∈ O(`) are orthogonal matrices and Σ is a ` × `
diagonal matrix with non negative diagonal entries, such that MM> = WΣ2W> and M>M = V Σ2V >. Notice that
the non zero diagonal entries of Σ are the singular values of M . Then,

max
U∈O(`)

Tr(U>M) = max
U∈O(`)

Tr(WΣV >U) = max
U ′∈O(`)

Tr(ΣU ′),

where we renamed U ′ = V >UW . Next, we remark that Tr(ΣU ′) = Tr(Σ diag(U ′)). Since by construction, Σ
is diagonal with non negative entries the maximum is attained at U ′ = I. Then, the optimal objective is Tr(Σ) =

Tr(
√
M>M).

By taking M = A1/2B1/2 we obtain (6). Notice that the role of A and B can be exchanged in (6) since U is orthogonal.

C Additional Experiments

C.1 Alternating training

In the sequel, we also provide the results obtained thanks to Alt-BuresGAN, de-
scribed in Algorithm 2, which is parameter-free and yield competitive results with Bures-
GAN. Nevertheless, the training time of Alt-BuresGAN is larger compared to BuresGAN.

Algorithm 2: Alt-BuresGAN
Sample a real and fake batch ;
Update G by minimizing B(Ĉr, Ĉg)

2;
Update G by minimizing VG;
Update D by maximizing −VD;

C.2 Another matrix norm

In this section, we also compare BuresGAN with a similar construction using another matrix norm. Precisely, we also
use the squared Frobenius norm (Frobenius2GAN), i.e., with the following generator loss VG + λ‖Cd − Cg‖2F , with
λ = 1. We observe that

• Frobenius2GAN also performs well on simple image data sets such as Stacked MNIST,

• Frobenius2GAN has a worse performance with respect to BuresGAN on CIFAR and STL-10 data sets (see
Table 10).

This observation emphasizes that the use of the Bures metric is requisite in order to obtain high quality samples for
higher dimensional image data sets such as CIFAR and STL-10 and that the simpler variant based on the Frobenius
norm cannot achieve similar result.

C.3 Timings

The timings per iteration for the experiments presented in the paper are listed in Table 6. Times are given for all
the methods considered, although some methods do not always generate meaningful images for all datasets. The
methods are timed for 50 iterations after the first 5 iterations, which is used as a warmup period, following which the
average number of iterations per second is computed. The fastest method is the vanilla GAN. BuresGAN has a similar
computation cost as GDPP. We observe that (alt-)BuresGAN is significantly faster compared to WGAN-GP. In order to
obtain reliable timings, these results were obtained on the same GPU Nvidia Quadro P4000, although, for convenience,
the experiments on these image datasets were executed on a machines equipped with different GPUs.

C.4 Best inception scores achieved with DCGAN architecture

The inception scores for the best trained models are listed in Table 7. For the CIFAR datasets, the largest inception
score is significantly better than the mean for UnrolledGAN and VEEGAN. This is the same for GAN and GDPP
on the STL-10 dataset, where the methods often converge to bad results. Only the proposed methods are capable of
consistently generating high quality images over all datasets.
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Table 6: Average time per iteration in seconds for the convolutional architecture. Average over 5 runs, with std in
parenthesis. The batch size is 256. For Stacked MNIST, we use a discriminator architecture with 3 convolutional layers
(see Table 16). For readability, the computation times for the Grid and Ring dataset are multiplied by 10−3.

Grid Ring stacked MNIST CIFAR-10 CIFAR-100 STL-10

GAN 1.28(0.008) 1.28(0.016) 0.54(0.0005) 0.65(0.02) 0.64(0.0008) 6.00(0.01)
WGAN-GP 9.0(0.04) 8.96(0.04) 2.99(0.004) 3.41(0.009) 3.41(0.006) 36.5(0.03)
UnrolledGAN 3.92(0.008) 3.92(0.028) 1.90(0.002) 2.17(0.003) 2.18(0.004) 21.99(0.06)
MDGAN-v2 3.24(0.008) 3.24(0.032) 1.66(0.002) 1.98(0.002) 1.98(0.002) 18(0.03)
VEEGAN 1.96(0.012) 1.96(0.02) 0.56(0.006) 0.66 (0.006) 0.65(0.004) 6.10(0.03)
GDPP 15.68(1.0) 16.16(0.2) 0.69(0.02) 0.80(0.02) 0.80(0.02) 7.46(0.03)
PacGAN2 1.72(0.016) 1.72(0.024) 0.77(0.006) 0.91(0.007) 0.91(0.007) 8.02(0.008)

Frobenius2GAN 2.32(0.024) 2.28(0.028) 0.98(0.004) 1.09(0.004) 1.09(0.003) 13.6(0.01)
BuresGAN 11.16(0.016) 11.92(0.04) 0.72(0.02) 0.82(0.001) 0.82(0.0008) 7.6(0.03)
Alt-BuresGAN 11.92(0.024) 11.12(0.04) 0.98(0.008) 1.15(0.007) 1.15(0.007) 10.10(0.03)

Table 7: Inception Score for the best trained models on CIFAR-10, CIFAR-100 and STL-10, with a DCGAN architecture
(higher is better).

CIFAR-10 CIFAR-100 STL-10

GAN 5.92 6.33 6.13
WGAN-GP 2.54 2.56 /
UnrolledGAN 4.06 4.14 /
VEEGAN 3.51 3.85 /
GDPP 6.21 6.32 6.05

BuresGAN 6.69 6.67 7.94
Alt-BuresGAN 6.40 6.48 7.88

C.5 Influence of the number of convolutional layers for DCGAN architecture

Results for an architecture with 3 and 4 convolutional layers described in Table 16 and Table 3 are listed in the paper.
An overview of similar experiments in other papers is given in Table 14 hereafter. A more complete study is performed
in this section. We provide here results with a DCGAN architecture for a simpler architecture with 2 convolutional
layers for the discriminator (see, Table 9 for the results and Table 16 for the architecture).

Discussion. Interestingly, for most models, an improvement is observed in the quality of the images – KL divergence
– and in terms of mode collapse – number of modes attained – as the size of the batch increases. For the same batch
size, architecture and iterations, the image quality is improved by BuresGAN, which is robust with respect to batch
size and architecture choice. The other methods show a higher variability over the different experiments. WGAN-GP
has the best single run performance with a discriminator with 3 convolutional layers and has on average a superior
performance when using a discriminator with 2 convolutional layers (see Table 9) but sometimes fails to converge when
increasing the number of discriminator layers by 1 along with increasing the batch size. MDGANv2, VEEGAN, GDPP
and WGAN-GP often have an excellent single run performance. However, when increasing the number of discriminator
layers, the training of these models has a tendency to collapse more often as indicated by the large standard deviation.
Vanilla GAN is one of the best performing models in the variant with 3 layers. This indicates that, for certain datasets,
careful architecture tuning can be more important than complicated training schemes. A lesson from Table 9 is that
BuresGAN’s mode coverage does not vary much if the batch size increases, although the KL divergence seems to be
slightly improved.

Ablation study. Results obtained with the Frobenius norm rather than the Bures metric are also included in the tables
of this section.
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Table 8: Comparison for Frobenius norm. Experiments on the synthetic data sets. Average (std) over 10 runs. All the
models are trained for 25k iterations.

Grid (25 modes) Ring (8 modes)

Nb modes % in 3σ Nb modes % in 3σ

Frobenius2GAN 25(0) 73(1) 8(0) 59(16)
BuresGAN 25(0) 82(1) 8(0) 82(4)
Alt-BuresGAN 25(0) 84(1) 8(0) 84(6)

Table 9: KL-divergence between the generated distribution and true distribution (Quality, lower is better). The number
of counted modes indicates the amount of mode collapse (higher is better). 25k iterations and average and std over 10
runs. Same architecture as in Table 2 in the paper with a discriminator with 2 convolutional layers. The architecture
details are in Table 16.

Nb modes(↑) KL div.(↓)
Batch size 64 128 256 64 128 256

2
co

nv
.l

ay
er

s

GAN 970.5(5.8) 972.7(6.4) 979(3.5) 0.47(0.04) 0.44(0.02) 0.41(0.03)
WGAN-GP 996.7(1.6) 997.5(0.9) 998.1(1.5) 0.25(0.01) 0.22(0.01) 0.21(0.05)
MDGAN-v1 115.9(197) 260.9(267) 134.3(157) 5.5(1.4) 4.9(1.7) 5.8(0.9)
MDGAN-v2 698.1(456) 898.4(299) 599.2(488) 2.2(3.0) 0.86(1.9) 2.8(3.2)
UnrolledGAN 953.5(11) 971.4(4.8) 966.2(17.3) 0.71(0.06) 0.60(0.04) 0.58(0.10)
VEEGAN 876.7(290) 688.5(443) 775.9(386) 0.92(1.6) 1.9(2.4) 1.54(2.2)
GDPP 974.4(3.3) 978.2(7.6) 980.5(6.0) 0.45(0.02) 0.43(0.03) 0.41(0.03)
PacGAN2 969.8(6.9) 971.1(3.6) 977.9(4.3) 0.54(0.04) 0.51(0.01) 0.48(0.02)

Frobenius2GAN 975.8(8.0) 981.0(4.1) 981.8(3.2) 0.34(0.03) 0.28(0.02) 0.25(0.01)
BuresGAN 973.2(1.3) 979.9(4.0) 981.1(4.9) 0.36(0.02) 0.30(0.02) 0.25(0.01)
Alt-BuresGAN 975.4(6.8) 978.2(5.4) 980.2(3.0) 0.37(0.02) 0.30(0.01) 0.28(0.01)

Table 10: Ablation study on real image data sets for a convolutional architecture. Frobenius norm is also considered in
the place of the Bures metric. Generation quality on CIFAR-10, CIFAR-100 and STL-10 with a DCGAN architecture.
Average(std) over 10 runs. 100k iterations for each. For improving readability, SWD score was multiplied by 100.

CIFAR-10 CIFAR-100 STL-10

IS(↑) FID(↓) SWD(↓) IS(↑) FID(↓) SWD(↓) IS(↑) FID(↓) SWD(↓)
Frobenius2GAN 5.40(0.16) 57.7(4.8) 1.3(0.3) 5.52(0.16) 60.1(4.4) 1.6(0.5) 6.26(0.15) 132.18(3.6) 1.8(0.4)
BuresGAN 6.34(0.17) 43.7(0.9) 2.1(0.6) 6.5(0.1) 47.2(1.2) 2.1(1.0) 7.6(0.3) 109(7) 2.3(0.3)
Alt-BuresGAN 6.23(0.07) 45.4(2.8) 1.7(0.9) 6.4(0.1) 49.4(3.4) 1.8(0.6) 7.5(0.3) 110(4) 2.8(0.4)

Table 11: Ablation study for Stacked MNIST experiment for an architecture with 4 convolutional layers (see Tbale 15).
All the models are trained for 25k iterations with a batch size of 64, a learning rate of 2e−4 for Adam and a normal
latent distribution. The evaluation is over 10k samples and we report an average (std) over 10 runs.

Nb modes(↑) KL div.(↓)
Frobenius2GAN 984.7(6.4) 0.38(0.04)

BuresGAN 989.9(4.7) 0.38(0.06)
Alt-BuresGAN 990.0(4.9) 0.33(0.04)
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D Additional Figures

D.1 Training visualization at different steps for the artificial data sets

In Figure 4 and Figure 5, we provide snapshots of generated samples for the methods studied in the case of RING and
GRID. In both cases, BuresGAN seems to generate samples in such a way that the symmetry of the training data is
preserved during training. This is also true for WGAN and MDGAN, while some other GANs seem to recover the
symmetry of the problem at the end of the training phase.

D.2 Generated images of the trained GANs

Next, in Figure 6, Figure 7, Figure 8 and Figure 9, we list samples of generated images for the models trained with a
DCGAN architecture for Stacked MNIST, CIFAR-10, CIFAR-100 and STL-10 respectively.
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Figure 4: The progress of different GANs on the synthetic ring example. Each column show 3000 samples from the
training generator in blue with 3000 samples from the true distribution in green.
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Figure 5: The progress of different GANs on the synthetic grid example. Each column show 3000 samples from the
training generator in blue with 3000 samples from the true distribution in green.
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GAN WGAN-GP MDGAN-v1

MDGAN-v2 UnrolledGAN VEEGAN

GDPP BuresGAN Alt-BuresGAN

Figure 6: Generated images for the Stacked MNIST dataset. Each model is trained with 3 layers and mini-batch size
256. Each square shows 64 samples from the trained generator.
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Figure 7: Generated images for CIFAR-10 using a DCGAN architecture. Each square shows 64 samples from the
trained generator.
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Figure 8: Generated images for CIFAR-100 using a DCGAN architecture. Each square shows 64 samples from the
trained generator.
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Figure 9: Generated images for STL-10 using a DCGAN architecture. Each square shows 64 samples from the trained
generator.
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E Architectures

E.1 Synthetic Architectures

Following the recommendation in the original work of [5], the same fully-connected architecture is used for the
VEEGAN reconstructor in all experiments.

Table 12: The generator and discriminator architectures for the synthetic examples.

Layer Output Activation

Input 256 -
Dense 128 tanh
Dense 128 tanh
Dense 2 -

Layer Output Activation

Input 2 -
Dense 128 tanh
Dense 128 tanh
Dense 1 -

Table 13: Respectively the MDGAN encoder model and VEEGAN stochastic inverse generator architectures for the
synthetic examples. The output of the VEEGAN models are samples drawn from a normal distribution with scale 1 and
where the location is learned.

Layer Output Activation

Input 2 -
Dense 128 tanh
Dense 256 -

Layer Output Activation

Input 2 -
Dense 128 tanh
Dense 128 tanh
Dense 256 tanh
Normal 256 -

E.2 Stacked MNIST Architectures

For clarity, we report in Table 14 the settings of different papers for the Stacked MNIST experiment. This helps to clarify
the difference between our simulations and other papers’ simulations. On the one hand, in Table 15, the architecture of
the experiment reported in the paper is described. On the other hand, the architecture of the supplementary experiments
on Stacked MNIST is given in Table 16. Details of the architecture of MDGAN are also reported in Table 18.

Table 14: The hyperparameters and architectures of the stacked MNIST experiment performed by the different methods
are given here. This represents our best efforts at providing a comparison between the different parameters used. The
asterisks ∗∗ indicate that the parameters where obtained by the Github repository. Notice that GDPP paper also used
30000 iterations for training DCGAN and unrolled GAN (indicated by ∗). BuresGAN’s column refers to the settings of
experiment of Table 2 in the paper and Table 3 in SM respectively, for which the different values are separated by the
symbol &.

Parameters BuresGAN PacGAN VEEGAN GDPP

learning rates 1× 10−3 & 2× 10−4 2× 10−4 2× 10−4 1× 10−4 ∗∗

learning rate decay no no no no∗∗
Adam β1 0.5 0.5 0.5 0.5
Adam β2 0.999 0.999 0.999 0.9
iterations 25000 20000 ? 15000∗
disc. conv. layers 3 & 4 4 4 3
gen. conv. layers 3 & 4 4 4 3
batch size 64, 128, 256 & 64 64 64 64
evaluation samples 10000 26000 26000 26000
` (i.e., z dimension) 100 100 100 128
z distribution N (0, I`) unif[−1, 1]` unif[−1, 1]` ∗∗ unif[−1, 1]`
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Table 15: The generator and discriminator architectures for the Stacked MNIST experiments with 4 layers for both
generator and discrimintor. The BN column indicates whether batch normalization is used after the layer or not.

Layer Output Activation BN

Input 100 - -
Dense 2048 ReLU Yes
Reshape 2, 2, 512 - -
Conv’ 4, 4, 256 ReLU Yes
Conv’ 7, 7, 128 ReLU Yes
Conv’ 14, 14, 64 ReLU Yes
Conv’ 28, 28, 3 ReLU Yes

Layer Output Activation BN

Input 28, 28, 3 - -
Conv 14, 14, 64 Leaky ReLU No
Conv 7, 7, 128 Leaky ReLU Yes
Conv 4, 4, 256 Leaky ReLU Yes
Conv 2, 2, 512 Leaky ReLU Yes
Flatten - - -
Dense 1 - -

Table 16: The generator and discriminator architectures for the Stacked MNIST experiments. The BN column indicates
whether batch normalization is used after the layer or not. For the experiments with 2 convolution layers in Table 9, the
final convolution layer is removed in the discriminator.

Layer Output Activation BN

Input 100 - -
Dense 12544 ReLU Yes
Reshape 7, 7, 256 - -
Conv’ 7, 7, 128 ReLU Yes
Conv’ 14, 14, 64 ReLU Yes
Conv’ 28, 28, 3 ReLU Yes

Layer Output Activation BN

Input 28, 28, 3 - -
Conv 14, 14, 64 Leaky ReLU No
Conv 7, 7, 128 Leaky ReLU Yes
Conv 4, 4, 256 Leaky ReLU Yes
Flatten - - -
Dense 1 - -

Table 17: The CNN architecture of the classifier used during the evaluation of the stackedMNIST experiments. Dropout
with a rate of 0.5 is used before the final dense layer.

Layer Output Activation

Input 28, 28,1 -
Conv 24, 24, 32 ReLU
MaxPool 12, 12, 32 -
Conv 8, 8, 64 ReLU
MaxPool 4, 4, 64 -
Flatten - -
Dense 1024 ReLU
Dense 10 -

Table 18: The MDGAN encoder model architecture for the Stacked MNIST experiments. The BN column indicates
whether batch normalization is used after the layer or not.

Layer Output Activation BN

Input 28, 28, 3 - -
Conv 14, 14, 3 ReLU Yes
Conv 7, 7, 64 ReLU Yes
Conv 7, 7, 128 ReLU Yes
Flatten - - -
Dense 100 - -
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E.3 CIFAR-10 and 100 DCGAN Architectures

Convolutional architectures for CIFAR data set are reported in Table 19 and Table 20 below.

Table 19: The generator and discriminator architectures for the CIFAR-10 and CIFAR-100 experiments. The BN
column indicates whether batch normalization is used after the layer or not.

Layer Output Activation BN

Input 100 - -
Dense 16384 ReLU Yes
Reshape 8, 8, 256 - -
Conv’ 8, 8, 128 ReLU Yes
Conv’ 16, 16, 64 ReLU Yes
Conv’ 32, 32, 3 ReLU Yes

Layer Output Activation BN

Input 32, 32, 3 - -
Conv 16, 16, 64 Leaky ReLU No
Conv 8, 8, 128 Leaky ReLU Yes
Conv 4, 4, 256 Leaky ReLU Yes
Flatten - - -
Dense 1 - -

Table 20: The MDGAN encoder model architecture for the CIFAR-10 and CIFAR-100 experiments. The BN column
indicates whether batch normalization is used after the layer or not.

Layer Output Activation BN

Input 32, 32, 3 - -
Conv 16, 16, 3 ReLU Yes
Conv 8, 8, 64 ReLU Yes
Conv 8, 8, 128 ReLU Yes
Flatten - - -
Dense 100 - -

E.4 STL-10 DCGAN Architectures

In Table 21, the convolutional architecture is described for the 96× 96× 3 STL-10 data set, while MDGAN details are
reported in Table 22.

Table 21: The generator and discriminator architectures for the STL-10 experiments. The BN column indicates whether
batch normalization is used after the layer or not.

Layer Output Activation BN

Input 100 - -
Dense 36864 ReLU Yes
Reshape 12, 12, 256 - -
Conv’ 12, 12, 256 ReLU Yes
Conv’ 24, 24, 128 ReLU Yes
Conv’ 48, 48, 64 ReLU Yes
Conv’ 96, 96, 3 ReLU Yes

Layer Output Activation BN

Input 96, 96, 3 - -
Conv 48, 48, 64 Leaky ReLU No
Conv 24, 24, 128 Leaky ReLU Yes
Conv 12, 12, 256 Leaky ReLU Yes
Conv 6, 6, 512 Leaky ReLU Yes
Flatten - - -
Dense 1 - -
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Table 22: The MDGAN encoder model architecture for the STL-10 experiments. The BN column indicates whether
batch normalization is used after the layer or not.

Layer Output Activation BN

Input 96, 96, 3 - -
Conv 48, 48, 3 ReLU Yes
Conv 24, 24, 64 ReLU Yes
Conv 12, 12, 128 ReLU Yes
Conv 12, 12, 256 ReLU Yes
Flatten - - -
Dense 100 - -

E.5 ResNet Architectures

For CIFAR-10, we used the ResNet architecture from the appendix of [16] with minor changes as given in Table 23.
We used an initial learning rate of 5e−4 for CIFAR-10 and STL-10. For both datasets, the models are run for 200k
iterations. For STL-10, we used a similar architecture that is given in Table 24.

Table 23: The generator (top) and discriminator (bottom) ResNet architectures for the CIFAR-10 experiments.

Layer Kernel Size Resample Output Shape

Input - - 128
Dense - - 200 · 4 · 4
Reshape - - 200× 4× 4
ResBlock [3× 3]× 2 up 200× 8× 8
ResBlock [3× 3]× 2 up 200× 16× 16
ResBlock [3× 3]× 2 up 200× 32× 32
Conv, tanh 3× 3 - 3× 32× 32

Layer Kernel Size Resample Output Shape

ResBlock [3× 3]× 2 Down 200× 16× 16
ResBlock [3× 3]× 2 Down 200× 8× 8
ResBlock [3× 3]× 2 Down 200× 4× 4
ResBlock [3× 3]× 2 - 200× 4× 4
ResBlock [3× 3]× 2 - 200× 4× 4
ReLu, meanpool - - 200
Dense - - 1
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Table 24: The generator (top) and discriminator (bottom) ResNet architectures for the STL-10 experiments. For the
experiment with full-sized 96x96 images, an extra upsampling block was added to the generator.

Layer Kernel Size Resample Output Shape

Input - - 128
Dense - - 200 · 6 · 6
Reshape - - 200× 6× 6
ResBlock [3× 3]× 2 up 200× 12× 12
ResBlock [3× 3]× 2 up 200× 24× 24
ResBlock [3× 3]× 2 up 200× 48× 48
Conv, tanh 3× 3 - 3× 48× 48

Layer Kernel Size Resample Output Shape

ResBlock [3× 3]× 2 Down 200× 24× 24
ResBlock [3× 3]× 2 Down 200× 12× 12
ResBlock [3× 3]× 2 Down 200× 6× 6
ResBlock [3× 3]× 2 - 200× 6× 6
ResBlock [3× 3]× 2 - 200× 6× 6
ReLu, meanpool - - 200
Dense - - 1
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