
A Column Space Based Approach to Solve
Systems of Multivariate Polynomial

Equations ?

Christof Vermeersch ∗ Bart De Moor, Fellow, IEEE & SIAM ∗

∗ Center for Dynamical Systems, Signal Processing, and Data
Analytics (STADIUS), Dept. of Electrical Engineering (ESAT), KU

Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium (e-mail:
{christof.vermeersch,bart.demoor}@esat.kuleuven.be)

Abstract: We propose a novel approach to solve systems of multivariate polynomial equations,
using the column space of the Macaulay matrix that is constructed from the coefficients of these
polynomials. A multidimensional realization problem in the null space of the Macaulay matrix
results in an eigenvalue problem, the eigenvalues and eigenvectors of which yield the common
roots of the system. Since this null space based algorithm uses well-established numerical linear
algebra tools, like the singular value and eigenvalue decomposition, it finds the solutions within
machine precision. In this paper, on the other hand, we determine a complementary approach
to solve systems of multivariate polynomial equations, which considers the column space of the
Macaulay matrix instead of its null space. This approach works directly on the data in the
Macaulay matrix, which is sparse and structured. We provide a numerical example to illustrate
our new approach and to compare it with the existing null space based root-finding algorithm.
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1. INTRODUCTION

Determining the roots of a multivariate polynomial, or the
common roots of a system of multivariate polynomials, is
one of the oldest problems in mathematics (Pan, 1997; Cox
et al., 2004). Multivariate polynomial system solving arises
in a myriad of applications in science and engineering,
e.g., computational biology, machine learning, systems
and control, and computer vision. It has a long and rich
history that can be traced back to the Ancient Near East.
For example, the Babylonians and Egyptians (about 2000
B.C.) already solved linear and quadratic equations by
methods similar to those we use today (Pan, 1997).

Within the area of mathematics, algebraic geometry stud-
ies multivariate polynomial equations and algebraic va-
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rieties, i.e., the geometrical objects defined by the zero
sets of these polynomials (Cox et al., 2004). The roots
of algebraic geometry go back to Descartes’ introduction
of coordinates to describe points in the Euclidean space
and his idea of describing curves and surfaces by alge-
braic equations. Except for the work done on resultants
(e.g., Sylvester (1853) and Macaulay (1902, 1916)), the
historical focus of algebraic geometry was initially more on
abstract algebra than on multivariate polynomial system
solving. However, in the 1960s, the computational aspects
of algebraic geometry re-entered the scene with the work
of Buchberger (1965). Buchberger’s algorithm computes a
so-called Gröbner basis, which has been one of the main
tools to solve systems of multivariate polynomial equations
ever since. The methods of Faugère (1999, 2002) and their
extensions are currently the most efficient methods to
compute a Gröbner basis. Gröbner bases have dominated
computer algebra, but remain computationally very ex-
pensive and are symbolic in nature, which means that their
extensions to floating-point arithmetic are known to be
rather cumbersome (Kondratyev, 2003; Stetter, 2004).

On the other hand, iterative nonlinear root-finding algo-
rithms, e.g., Newton and quasi-Newton methods, do not
suffer from these floating-point issues, but are heuristic:
they do not guarantee to find the exact solutions and
strongly depend on their initial guesses. Nocedal and
Wright (2006) give an extensive summary about these
nonlinear root-finding algorithms.

Homotopy continuation methods (see for example Li
(1997) and Verschelde (1996)) employ a mixture of tech-



niques from algebraic geometry and nonlinear root-finding,
and they can be seen as a hybrid technique to solve systems
of multivariate polynomial equations. Although issues with
ill-conditioning still exist, homotopy continuation methods
are inherently parallel, i.e., each isolated solution can be
computed independently, and are currently among the
most competitive algorithms to solve systems of multivari-
ate polynomial equations.

Despite their manifest common historical ground, the inti-
mate link between polynomial equations and linear algebra
has been neglected in most of the algebraic geometry
literature since the end of the 19th century until well into
the 20th century (Dreesen, 2013). During the 1980s, the
work of Lazard and Stetter (and coworkers) revived the
interest in matrix-based methods for solving systems of
multivariate polynomial equations. Auzinger and Stetter
(1988) rigorously established the link between polynomial
system solving and eigenvalue decompositions. This link
has been further explored by, among others, Corless et al.
(1995), Emiris and Mourrain (1999), Mourrain and Pan
(2000), Hanzon and Jibetean (2003), and Faugère (1999,
2002). Stetter (2004) observed that, at that time, the only
way to obtain a basis for the quotient space using com-
monly available software was via Gröbner basis methods.
Dreesen, Batselier, and De Moor (Dreesen, 2013; Dreesen
et al., 2012, 2018) have overcome this hurdle and developed
a pure linear algebra approach to solve systems of multi-
variate polynomial equations, using only the null space of
the Macaulay matrix and techniques from systems theory
and linear algebra. This numerical linear algebra approach
yields results that are exact within machine precision, as
it relies on well-established floating-point algorithms to
compute the singular value or eigenvalue decomposition.

In this paper, we consider the column space of the
Macaulay matrix instead. We avoid the singular value
decomposition to determine a numerical basis of the null
space and work on the data in the column space directly.
Many properties have a complementary interpretation in
both subspaces of the Macaulay matrix. Our main contri-
bution is a novel, complementary algorithm that finds the
common roots of the system of multivariate polynomials,
starting from the information in the column space of the
Macaulay matrix.

This paper proceeds as follows: Section 2 rigorously defines
the Macaulay matrix and its (right) null space. We show
how to solve systems of multivariate polynomial equations
using the null space of the Macaulay matrix in Section 3
and translate this approach to the column space in Sec-
tion 4. Section 5 contains a numerical example to illustrate
our new approach and to compare it with the existing
null space based root-finding algorithm. We conclude this
paper and point at ideas for future research in Section 6.

2. MACAULAY MATRIX AND ITS NULL SPACE

2.1 Systems of multivariate polynomial equations

A system of multivariate polynomial equations S defines
a set of solutions, which are the common roots of the
n different n-variate polynomials (with real coefficients)
pi(x1, . . . , xn). We denote this system S as

S =





p1(x1, . . . , xn) = 0
...

pn(x1, . . . , xn) = 0

and refer to its solution set as BS . The total degree di
of every polynomial pi corresponds to the highest degree
among all monomials of that polynomial. We can rewrite
a polynomial pi(x1, . . . , xn) as its coefficient vector p mul-
tiplied by a vector v that contains all the monomials. For
example, the univariate polynomial p(x) = x2 + 2x − 3

can be represented by the vector p = [−3 2 1]
T

. The
polynomial p(x) then corresponds to p(x) = pTv, with

the vector of monomials v =
[
1 x x2

]T
. In order to have

an unambiguous notation, this representation requires a
consensus about the ordering of the multivariate mono-
mials. Although we use the degree negative lexicographic
ordering in this paper (Dreesen et al., 2018), the remainder
of this paper remains valid for any (graded) multivariate
monomial ordering.

In the one-dimensional case, the fundamental theorem
of algebra states that a univariate polynomial p(x) with
complex coefficients of degree d has exactly d roots in
the closed field of the complex numbers. The theorem of
Bézout extends this primordial theorem in the multidi-
mensional situation, where, due to algebraic interactions
among the coefficients of the polynomials, also solutions at
infinity can emerge (Cox et al., 2004). We assume in this
paper that the system S has an isolated zero-dimensional
solution set BS . Then, the total number of solutions in
the projective space #BS , counted with multiplicities, is
given by the Bézout number mb, which includes both the
ma affine solutions and the m∞ solutions at infinity, or

mb = ma +m∞ =

n∏

i=1

di,

with di the total degree of every polynomial pi.

Example 1. As an example, we consider the following
bivariate system:

S1 =

{
x1 − 3x22 = 0
2x1 − 6x2 = 0

. (1)

It consists of two bivariate polynomials of total degree
d1 = 2 and d2 = 1. Hence, the Bézout number equals
mb = 2 · 1 = 2, which agrees with the fact that the system
has two common roots (0, 0) and (3, 1).

Example 2. A slightly different bivariate system,

S2 =

{
x1 − 3x22 = 0
2x1x2 − 6x2 = 0

,

with polynomials of total degree d1 = 2 and d2 = 2,
has four solutions, in accordance with the Bézout number
mb = 2 · 2 = 4. Three solutions, namely (0, 0), (3, 1) and
(3,−1), are affine, while one solution lives at infinity.

2.2 Macaulay matrix and its null space

In order to solve a system of multivariate polynomial
equations, we incorporate its polynomials in the Macaulay
matrix (Macaulay, 1902, 1916).

Definition 1. (Macaulay matrix). The Macaulay matrix
M(d) ∈ Rp×q of degree d contains as its rows the coefficient
vectors of the polynomials pi and their shifts {xαi} pi:



M(d) =



{xα1} p1

...
{xαn} pn


 , (2)

where every polynomial pi (x1, . . . , xn), for i = 1, . . . , n,
is multiplied (or shifted) by all monomials {xαi} of total
degree αi ≤ d− di.
Example 3. We resume Example 1 and build the Macaulay
matrix M(2) for the system S1 in Equation (1). The first
polynomial has total degree d1 = 2. Therefore, we do not
need to multiply it. The second polynomial, on the other
hand, has total degree d2 = 1, which means that we have
to multiply it by all monomials of total degree α2 ≤ 1,
which are x1 and x2. Hence, the Macaulay matrix M(2)
equals

M(2) =




0 1 0 0 0 −3
0 2 −6 0 0 0
0 0 0 2 −6 0
0 0 0 0 2 −6


 . (3)

Using the Macaulay matrix in Equation (2), we can now
rewrite the system of multivariate polynomial equations
as



{xα1} p1

...
{xαn} pn




︸ ︷︷ ︸
M(d)




1
x1
...
xn
x21
...




︸ ︷︷ ︸
v(d)

= 0.

The vector v(d) is a vector in the (right) null space of M(d)
and has a special multivariate Vandermonde structure.
If we consider, for didactic purposes, only systems with
simple, affine solutions (see Subsection 3.2 for systems with
multiple solutions and solutions at infinity), then there
exists such a vector for every solution of the system. To-
gether, they span the entire null space. This leads naturally
to the definition of the multivariate Vandermonde basis
V (d) ∈ Cq×ma of degree d,

V (d) =




1 · · · 1
x1|(1) · · · x1|(ma)

...
...

xn|(1) · · · xn|(ma)

x21
∣∣
(1)
· · · x21

∣∣
(ma)

...
...




,

which has one column v(d)|(j) for every solution of the
system.

Example 4. Since we know the common roots of the sys-
tem S1 in Example 1, we can build the multivariate Van-
dermonde basis V (2) of the null space directly, i.e.,

V (2) =




1 1
0 3
0 1
0 9
0 3
0 1



.

One can easily check that the columns of this basis
annihilate the Macaulay matrix in Equation (3).

3. NULL SPACE BASED ROOT-FINDING

We now exploit the special structure of the null space of
the Macaulay matrix in order to find the solutions of the
system of multivariate polynomial equations. For didactic
purposes, we first assume that all solutions are simple and
affine, which allows us to show that a multidimensional
realization problem in the null space yields the exact
solutions. Next, we show how to deal with multiplicities
and how the solutions at infinity can be deflated. Finally,
we summarize the null space based root-finding algorithm.

3.1 Multidimensional realization theory

We consider a system of multivariate polynomial equations
that only has ma simple, affine solutions (hence, we have
an affine isolated zero-dimensional solution set BS), e.g.,
the system S1 in Equation (1). As we iteratively increase
the degree d of the Macaulay matrix M(d), we notice that
the nullity (the dimension of the null space) grows, until it
stabilizes at the Bézout number mb (= ma, in this case).
As mentioned in the previous section, the null space of
the Macaulay matrix has a special multi-shift-invariant
structure, which means that if we select a row from a basis
of the null space and multiply (or shift) it by one of the
variables, we find again a row from that basis. Note that
this structure is a property of the null space as a vector
space and not of the specific basis (Dreesen, 2013).

Example 5. To clarify, one could consider for example a
vector of the multivariate Vandermonde basis V (2) of
degree d = 2, i.e.,

v(2) =




1
x1
x2
x21
x1x2
x22



,

and multiply the first three elements by x1. The elements
obtained after the multiplication are again three elements
of that vector v(2):

[
1
x1

x2

] 


x1

x2
1

x1x2


.x1

We can also write this multiplication, by means of two
row selection matrices S1 and Sx1

, as S1v(2)x1 = Sx1
v(2),

with

S1 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
and Sx1

=

[
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

]
.

This property does not restrict itself to one variable. Any
shift polynomial g (x1, . . . , xn) in the given variables re-
sults in a valid multiplication. If we consider this multi-
shift-invariance for every column of the multivariate Van-
dermonde basis V (we no longer specify the degree d
explicitly, but we assume it to be large enough), we obtain
a generalized eigenvalue problem

S1V Dg = SgV, (4)

where the diagonal matrix Dg contains the evaluations
of the shift polynomial g (x1, . . . , xn) in the different so-
lutions. In order for this eigenvalue problem to not be



degenerate, the matrix S1V has to be square non-singular.
This means that the row selection matrix S1 must select at
least ma linearly independent rows from the multivariate
Vandermonde basis V . Actually, from algebraic geometry,
it follows that these linearly independent correspond to
the standard monomials, and hence, to the solutions of
the system (Cox et al., 2004; Dreesen, 2013). The matrix
Sg, on the other hand, selects the rows obtained after
the multiplication with the shift polynomial g (x1, . . . , xn),
e.g., if we multiply in the previous example the first three
monomials by the shift polynomial g(x1, x2) = 2x1 + 3x2,
then the selection matrix Sg equals

Sg =

[
0 2 3 0 0 0
0 0 0 2 3 0
0 0 0 0 2 3

]
.

In practice, we do not know the multivariate Vandermonde
basis V of the null space in advance, since it is constructed
from the unknown solutions. Therefore, as the multi-shift-
invariance is a property of the null space, we work with
a numerical basis Z, obtained for example via the singu-
lar value decomposition. There exists a relation between
these two bases, namely V = ZT , with T ∈ Cma×ma a
non-singular transformation matrix, which reduces Equa-
tion (4) to a solvable generalized eigenvalue problem

(S1Z)TDg = (SgZ)T, (5)

where T contains the eigenvectors and Dg the eigenvalues
of the matrix pencil (S1Z, SgZ), and yields alternatively
the standard eigenvalue problem

TDgT
−1 = (S1Z)

†
(SgZ) . (6)

We can then use the matrix of eigenvectors T to retrieve
the multivariate Vandermonde matrix V , via V = ZT , and
to find the solutions of the system.

3.2 Multiple solutions and solutions at infinity

Multiple solutions When all solutions are simple, we find
one column in the multivariate Vandermonde basis V of
the null space for every solution of the system and every
column contributes to the nullity of the Macaulay matrix.
However, if multiple solutions prevail, the null space of the
Macaulay matrix no longer contains only the multivari-
ate Vandermonde solution vectors v|(j), but also linear

combinations of the partial derivatives of these solution
vectors, i.e., a confluent Vandermonde matrix (Dreesen,
2013). Möller and Stetter (1995) and Dayton et al. (2011)
elaborate in more detail on the consequences of multi-
ple solutions. Except for the well-known loss of accuracy
in computing multiple eigenvalues, multiplicity poses no
problem for the above-described null space based root-
finding approach (Dreesen et al., 2012).

Solutions at infinity Systems of multivariate polynomial
equations can have solutions at infinity. As in the affine
case and for systems with an isolated zero-dimensional
solution set BS , when the degree of the Macaulay matrix
increases, the nullity grows with it, until it stabilizes at
the Bézout number mb (d = d∗). The Bézout number
now includes both the affine solutions and the solutions
at infinity. In that null space, we find not only linearly
independent rows that correspond to affine solutions, but
also linearly independent rows that correspond to solutions

d = 3 d∗ = 4 d = 5

gap

d = 6

gap

compressed null space

Fig. 1. The null space of the Macaulay matrix M(d) grows
as its degree d increases. At a certain degree d∗, the
nullity stabilizes at the Bézout number mb. From
that degree on, some linearly independent rows (that
correspond to the affine solutions) stabilize, while the
other linearly independent rows (that correspond to
the solutions at infinity) move to higher degree blocks.
A gap separates these linearly independent rows. The
influence of the solutions at infinity can be removed
via a column compression. The affine root-finding
procedure can then be applied straightforwardly on
the compressed null space.

at infinity. When the degree d of the Macaulay matrix
M(d) further increases (d > d∗), some of the linearly
independent rows stabilize at their position (they corre-
spond to the affine solutions), while other linearly indepen-
dent rows keep on moving to higher degree blocks (they
correspond to the solutions at infinity) 1 . A gap without
any solutions eventually emerges and helps to separate
the affine solutions from the solutions at infinity. Fig. 1
visualizes this behavior. We actually know that, when the
nullity of the Macaulay matrix stabilizes, its null space
can be modeled as the column space of an observability
matrix of a multidimensional descriptor system, where
the dimension corresponds the number of variables n of
the system (Dreesen, 2013). The column space of such an
observability matrix is the union of two subspaces: one that
is forward multi-shift-invariant and corresponds to the
affine solutions (with the causal part of the observability
matrix), and one that is backward multi-shift-invariant
and corresponds to the solutions at infinity (with the
acausal part of the observability matrix).

Theorem 6. (Column compression). The numerical basis

Z =
[
ZT
1 ZT

2

]T
of the null space is a q × mb matrix,

which can be partitioned into a k × mb matrix Z1 (that
contains the part with the affine solutions and the gap)
and a (q − k) × mb matrix Z2 (that contains the part
with the solutions at infinity), with rank (Z1) = ma < mb.
Furthermore, let the singular value decomposition of Z1 =
UΣQT. Then, W = ZQ is called the column compression
of Z and can be partitioned as

W =

[
W11 0
W21 W22

]
,

where W11 is the k ×ma matrix that corresponds to the
compressed numerical basis of the null space.

This column compression deflates the solutions at infinity
and allows us to straightforwardly use the above-described
affine null space based root-finding approach as if no
1 A degree block contains all rows (or columns) that correspond to
monomials with the same degree (e.g., x2

1, x1x2, and x2
2).



solutions at infinity were present (we simply replace Z
in Equation (5) by W11), provided that the gap can
accommodate for the shift polynomial g (x1, . . . , xn) (a
shift polynomial of total degree dg requires a gap of at
least dg degree blocks).

3.3 Null space based root-finding algorithm

Algorithm 1. (Null space based root-finding).

(1) Construct the Macaulay matrix M(d) ∈ Rp×q of
large-enough degree d > d∗.

(2) Compute a numerical basis Z of the null space of
M(d).

(3) Determine the gap and the number of affine solutions
ma via rank tests.

(4) Use Theorem 6 to obtain the compressed numerical
basis W11 of the null space (note that if mb = ma,
then W11 = Z).

(5) For a user-defined shift polynomial g (x1, . . . , xn),
solve the eigenvalue problem

S1W11TDg = SgW11T,

where the matrices S1, Sg, T , and Dg are defined as
in Equation (5).

(6) Retrieve the different components of the solutions
from the multivariate Vandermonde basis V = W11T .

4. COLUMN SPACE BASED ROOT-FINDING

In this section, we consider the column space of the
Macaulay matrix instead of its null space. The comple-
mentarity between both subspaces enables a novel, com-
plementary root-finding algorithm that works on the data
in the column space of the Macaulay matrix directly.

4.1 Complementarity between both subspaces

The null space and column space of a matrix share an
intrinsic complementarity (Dreesen, 2013):

Lemma 7. (Complementary subspaces). Let us consider
an arbitrary matrix M ∈ Rp×q, with rank (M) = r, and a
basis of its null space Z ∈ Rq×mb , with rank (Z) = q −
r, because of the rank-nullity theorem. We reorder the
columns of the matrix as [MA MB ], where the p × r
matrix MB contains r linearly independent columns, and

we partition the rows of Z =
[
ZT
A ZT

B

]T
accordingly. This

reordering and partitioning are generally not unique, but
always exist. One can easily prove that

rank (MB) = r ⇔ rank (ZA) = q − r.

We can now apply Lemma 7 to the Macaulay matrix and
its null space. The solutions of a system of multivariate
polynomial equations give rise to the linearly independent
rows of the basis of the null space. When we check the rank
of this basis row-wise from top to bottom, every linearly
independent row corresponds to one solution. If we gather
these linearly independent rows in a matrix ZA, which
has full rank q − r, then we know, because of Lemma 7,
that there exists a partitioning MB of the columns of the
Macaulay matrix, which has full rank r. Consequently, the
remaining columns MA of the Macaulay matrix linearly
depend on the columns of MB . They correspond to the
linearly independent rows of the basis of the null space,
and hence to the solutions of the system.

gap

gap

= 0

M
Z

Fig. 2. The solutions of a system of multivariate poly-
nomial equations give rise to linearly independent
rows of the basis of the null space of the Macaulay
matrix. If we check the rank of this basis row-wise
from top to bottom, every linearly independent row
corresponds to one solution. Because of the comple-
mentarity between the null space and column space of
the Macaulay matrix, the linearly dependent columns
of the Macaulay matrix, checked column-wise from
right to left, correspond to the same solutions.

Corollary 8. The solutions of a system of multivariate
polynomial equations give rise to both the linearly depen-
dent columns of the Macaulay matrix (checked column-
wise from right to left) and to linearly independent rows
of the basis of its null space (checked row-wise from top to
bottom). Fig. 2 visualizes this complementarity.

4.2 Column space based root-finding

If we consider a Macaulay matrix M(d) ∈ Rp×q, with
large-enough degree d > d∗, such that the nullity has
stabilized at the Bézout number mb and a large-enough
gap has emerged, then we know that

MW = M

[
W11 0
W21 W22

]
= 0,

where W ∈ Cq×mb is a special compressed multivariate
Vandermonde basis of the null space, in which the matrix
W11 contains the part with the affine solutions and the
gap, while the matrices W21 and W22 correspond to the
part with the solutions at infinity.

Next, we define two new matrices A and B. The matrix
A ∈ Cma×ma contains all the rows of the basis W that
correspond to the affine standard monomials, i.e., the
monomials that lead to the affine solutions. If we multiply
(or shift) these rows by the user-defined shift polynomial
g (x1, . . . , xn), we obtain (ma −mh) rows that are again
present in the matrix A and mh rows that are not. We
gather these mh non-present rows in the matrix B ∈
Cmh×ma and rewrite this shift property as

ADg = Sg

[
A
B

]
, (7)

with Sg an ma × (ma +mh) matrix that selects the ma

combinations of rows obtained after the multiplication.
The matrix Dg is a diagonal matrix that contains again
the evaluations of the shift polynomial g (x1, . . . , xn). If
we extract the matrix A from the right-hand side of
Equation (7), an eigenvalue problem appears

ADg = Sg

[
I

BA−1

]
A,



or

ADgA
−1 = Sg

[
I

BA−1

]
. (8)

The matrix A is invertible because it contains exactly
ma linearly independent rows. Of course, since we do
not know the matrices A and B in advance, we can not
solve this eigenvalue problem right away. In the remainder
of this subsection, we circumvent this problem via the
complementarity between the null space and column space.

The matrices A and B contain rows of the basis W of the
null space, in particular of the matrix W11. If we define the
matrix C ∈ C(k−ma−mh)×ma as the matrix that contains
the remaining rows of W11, then we can reorder the basis
W as

PW =



A 0
B 0
C 0
W21 W22


 .

The matrix P is a q × q row-permutation matrix. We
can rearrange the columns of the Macaulay matrix in
accordance to the reordered basis of the null space and
obtain

[M1 M2 M3 M4]︸ ︷︷ ︸
N



A 0
B 0
C 0
W21 W22


 = 0, (9)

where every matrix Mi corresponds to a subset of the
columns of the Macaulay matrix. We could even replace
the Macaulay matrix M by the upper triangular matrix R
of its QR-decomposition and reorder this upper triangular
matrix R instead as

[R1 R2 R3 R4]︸ ︷︷ ︸
N



A 0
B 0
C 0
W21 W22


 = 0. (10)

This initial QR-decomposition serves as a pre-processing
step and reduces the number of rows of the resulting
matrix N . We call the matrix N = MPT or N = RPT in
both situations the reordered matrix.

We now apply the so-called backward QR-decomposition 2

on this reordered matrix N , which yields

R14 R13 R12 R11

R24 R23 R22 0
R34 R33 0 0
R44 0 0 0






A 0
B 0
C 0
W21 W22


 = 0.

We notice that R33B = −R34A, which means that

BA−1 = −R−133 R34,

because R33 is always of full rank (since B is not of full
rank and Lemma 7). This relation helps to remove the
dependency on the null space in Equation (8) and yields
a solvable standard eigenvalue problem

ADgA
−1 = Sg

[
I

−R−133 R34

]
. (11)

This eigenvalue problem yields the solutions of the system
of multivariate polynomial equations via the eigenvalues

2 The backward QR-decomposition corresponds to the ordinary,
forward QR-decomposition of a matrix, but starts with the last
column and ends with the first column. It yields a backward upper
triangular matrix R, analogue to the forward QR-decomposition, but
with all the columns mirrored.

in Dg and the eigenvectors in A. Notice that this comple-
mentary column space approach does not require a column
compression to remove the influence of the solutions at
infinity, because the backward QR-decomposition already
separates them implicitly.

Remark 9. Contrary to the null space based root-finding
approach, the user-defined shift polynomial g (x1, . . . , xn)
has an influence on the reconstruction of the solutions. If
not all components of the solution vector are present in
the matrix A, we must select the shift polynomial such
that we can reconstruct the entire solution vector from
the eigenvalues and eigenvectors (and sometimes even use
multiple shift polynomials).

4.3 Complementary column compression

In the null space based root-finding algorithm, we use a
column compression of the numerical basis of the null
space to deflate the solutions at infinity. Because of the
structure of the reversed QR-decomposition, the influence
of the solutions at infinity disappear implicitly when work-
ing in the column space. However, there exists a comple-
mentary column compression in the column space that
compresses the Macaulay matrix and reduces the compu-
tational complexity of the column space based approach.

Theorem 10. (Complementary column compression). The
Macaulay matrix M = [M1 M2] of appropriate degree d is
a p×q matrix, which can be partitioned into a p×(q−l) ma-
trix M1 (that contains the columns that correspond to the
affine solutions and the gap) and a p× l matrix M2 (that
contains the columns that corresponds to the solutions at
infinity), with rank (M2) = l −m∞. Furthermore, let the
QR-decomposition of M2 = QR = [Q1 Q2]R. The matrix

Q2 ∈ Cp×(p−l+m∞) is an orthogonal basis of the left null
space ofM2. Then,N = QT

2M is called the complementary
column compression of M and can be partitioned as

N = [N1 0] ,

where N1 is the (p − l + m∞) × (q − l) matrix that
corresponds to the compressed Macaulay matrix.

Proof. If we partition the Macaulay matrix M =
[M1 M2] and premultiply by the matrix QT

2 , we obtain

N = QT
2M =

[
QT

2M1 Q
T
2M2

]
. Since the matrix Q2 is an

orthogonal basis of the left null space of M2, the matrix
QT

2M2 = 0 and the theorem is proven. 2

Note that this matrix Q2 does not have to be calculated
explicitly. When we look for the gap, we determine, via
the singular value decomposition or QR-decomposition, at
a certain point this orthonormal basis.

4.4 Column space based root-finding algorithm

Algorithm 2. (Column space based root-finding).

(1) Construct the Macaulay matrix M(d) ∈ Rp×q of
large-enough degree d > d∗.

(2) Replace the Macaulay matrix M by the upper trian-
gular matrix R of its QR-decomposition (optional).

(3) Determine the linear dependent columns from right to
left and reorder the Macaulay matrix M or its upper
triangular matrix R as in Equations (9)-(10).

(4) Use Theorem 10 to obtain the compressed reordered
matrix N1 (optional).



Table 1. An overview of the size, rank, and
nullity of the Macaulay matrix M(d), for in-
creasing degree d, that comprises system S3.

degree size rank nullity

3 5 × 56 5 51
4 30 × 126 30 96
5 105 × 252 105 147
6 280 × 462 270 192
7 630 × 792 570 222
8 1260 × 1287 1050 237
9 2310 × 2002 1760 242
10 3960 × 3003 2760 243
11 6435 × 4368 4125 243

(5) Compute the (Q-less) backward QR-decomposition of
the reordered matrix N (or the compressed N1).

(6) For a user-defined shift polynomial g (x1, . . . , xn),
solve the eigenvalue problem

ADgA
−1 = Sg

[
I

−R−133 R34

]
,

where the matrices Sg, R33, R34, and Dg are defined
as in Equation (11).

(7) Retrieve the different components of the solutions
from the eigenvalues in the matrix Dg and the eigen-
vectors in the matrix A.

5. NUMERICAL EXAMPLE

In this section, we consider a realistic system of multi-
variate polynomial equations to illustrate our new column
space based approach and to compare it with the existing
null space based root-finding algorithm.

Example 11. (Verschelde, 1999) The following system of 5-
variate polynomial equations (with maximum total degree
dmax = 3) models a neural network by an adaptive Lotka–
Volterra system:

S3 =





x1x
2
2 + x1x

2
3 + x1x

2
4 + x1x

2
5 − 1.1x1 + 1 = 0

x2x
2
1 + x2x

2
3 + x2x

2
4 + x2x

2
5 − 1.1x2 + 1 = 0

x3x
2
1 + x3x

2
2 + x3x

2
4 + x3x

2
5 − 1.1x3 + 1 = 0

x4x
2
1 + x4x

2
2 + x4x

2
3 + x4x

2
5 − 1.1x4 + 1 = 0

x5x
2
1 + x5x

2
2 + x5x

2
3 + x5x

2
4 − 1.1x5 + 1 = 0

.

This system has an isolated zero-dimensional solution set
with 233 affine solutions and 10 solutions at infinity.

First, we iteratively build Macaulay matrices M(d) of
increasing degree d that comprise the system S3. Table 1
contains the size, rank, and nullity of these Macaulay
matrices. When the Macaulay matrix has degree d∗ = 10,
the nullity is equal to the Bézout number mb = 35 = 243,
which corresponds to the totale number of solutions. This
nullity remains the same if the degree further increases.

Next, we determine the gap in the null space or in the
column space. At degree d∗ = 10, the Macaulay matrix
does not contain a gap yet, but a gap emerges for degrees
d ≥ 11. Table 2 summarizes, when we check the rows of the
numerical basis Z of the null space degree block-wise from
top to bottom, the number of linearly independent rows
and shows that the basis of the null space contains a gap at
the ninth degree block. Thema = 233 linearly independent
rows before the gap correspond to the affine solutions,
while the m∞ = 10 linearly independent rows after the

Table 2. A summary of the linearly indepen-
dent rows of the basis of the null space of the
Macaulay matrixM(11) that comprises system

S3.

degree block(s) rows lin. indep. rows increase

0 1 1 1
0 − 1 1 − 6 6 5
0 − 2 1 − 21 21 15
0 − 3 1 − 56 51 30
0 − 4 1 − 126 96 45
0 − 5 1 − 252 147 51
0 − 6 1 − 462 192 45
0 − 7 1 − 792 222 30
0 − 8 1 − 1287 233 11
0 − 9 1 − 2002 233 0
0 − 10 1 − 3003 238 5
0 − 11 1 − 4368 243 5

Table 3. A summary of the linearly dependent
columns of the Macaulay matrix M(11) that

comprises system S3.

degree block(s) columns lin. dep. cols. increase

11 3004 − 4368 5 5
10 − 11 2003 − 4368 10 5
9 − 11 1288 − 4368 10 0
8 − 11 793 − 4368 21 11
7 − 11 463 − 4368 51 30
6 − 11 253 − 4368 96 45
5 − 11 127 − 4368 147 51
4 − 11 57 − 4368 192 45
3 − 11 22 − 4368 222 30
2 − 11 7 − 4368 237 15
1 − 11 2 − 4368 242 5
0 − 11 1 − 4368 243 1

gap correspond to the solutions at infinity. Analogously,
because of the complementarity between both subspaces,
we can also identify the gap while checking the columns of
the Macaulay matrix directly. Table 3 summarizes, when
we check the columns of the Macaulay matrix degree block-
wise from right to left, the number of linearly dependent
columns. We observe again that the ninth degree block
corresponds to the gap. Notice that, when we consider the
column space of the Macaulay matrix, we can use the QR-
decomposition as a straightforward preprocessing step, as
was mentioned in Section 4. If we replace in this example
the 6435 × 4368 Macaulay matrix M(11) by the 4368 ×
4368 upper triangular matrix R of its QR-decomposition,
we already reduce the number of rows with almost 33%.
This reduction immediately proves to be useful, both in
computational complexity and memory usage, e.g., when
we want to determine the gap.

Finally, after determining the gap, we remove the influence
of the solutions at infinity and solve the eigenvalue prob-
lems that yield the solutions of the system of multivariate
polynomial equations. In the null space, we perform a
column compression on the top part of the numerical basis
Z of the null space, which contains all degree blocks up
to the ninth degree block (i.e., the gap), and obtain the
compressed numerical basis W11. In the column space, on
the other hand, we reorder the columns of the upper tri-
angular matrix R as shown in Equation (10). A backward
QR-decomposition yields the matrices R33 and R34 and



removes the influence of the solutions at infinity implicitly.
The eigenvalues and eigenvectors of the eigenvalue prob-
lems in Equation (6) and Equation (11) yield the 233 affine
solutions of the system, for the null space based approach
and the column space based approach, respectively.

6. CONCLUSION AND FUTURE WORK

In this paper, we revised the Macaulay matrix approach
that uses its null space to solve systems of multivariate
polynomial equations. We pointed at the complementarity
of the null space and column space of this Macaulay
matrix and proposed a novel, complementary algorithm
that considers the columns space of the Macaulay matrix
instead. Contrary to null space based root-finding, this
column space based approach does not require an explicit
calculation of a numerical basis of the null space, i.e., an
expensive singular value decomposition, but directly works
on the data in the Macaulay matrix. In that context, we
also proposed the complementary column space compres-
sion, which compresses the Macaulay matrix and removes
the influence of the solutions at infinity. We provided a
realistic numerical example to illustrate our new approach
and compared it with the existing null space based root-
finding algorithm.

This complementary column space based root-finding al-
gorithm has created several research opportunities. First
of all, a fast and sparse implementation of the (Q-less)
QR-decomposition is much faster than the traditional sin-
gular value decomposition. Therefore, one of our current
research efforts is to improve current implementations and
to exploit both the structure and the sparsity of the
Macaulay matrix. Furthermore, the complementarity of
both subspaces may yield even more interesting properties
in the column space. Together with more efficient imple-
mentations, this will give us the machinery to tackle much
larger problems in the future.
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