
Globally Optimal H2-Norm Model
Reduction: A Numerical Linear Algebra

Approach ?

Oscar Mauricio Agudelo ∗ Christof Vermeersch ∗

Bart De Moor, Fellow, IEEE & SIAM ∗

∗ Center for Dynamical Systems, Signal Processing, and Data
Analytics (STADIUS), Dept. of Electrical Engineering (ESAT), KU

Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium (e-mail:
{mauricio.agudelo,christof.vermeersch,bart.demoor}@esat.kuleuven.be)

Abstract: We show that the H2-norm model reduction problem for single-input/single-output
(SISO) linear time-invariant (LTI) systems is essentially an eigenvalue problem (EP), from which
the globally optimal solution(s) can be retrieved. The first-order optimality conditions of this
model reduction problem constitute a system of multivariate polynomial equations that can be
converted to an affine (or inhomogeneous) multiparameter eigenvalue problem (AMEP). We
solve this AMEP by using the so-called augmented block Macaulay matrix, which is introduced
in this paper and has a special (block) multi-shift invariant null space. The set of all stationary
points of the optimization problem, i.e., the (2r)-tuples (r is the order of the reduced model)
of affine eigenvalues and eigenvectors of the AMEP, follows from a standard EP related to the
structure of that null space. At least one of these (2r)-tuples corresponds to the globally optimal
solution of the H2-norm model reduction problem. We present a simple numerical example to
illustrate our approach.
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1. INTRODUCTION

Model reduction aims to approximate a large high-order
model by a model of lower order (less states). Large models
may be too complicated for simulation or for control
system design; hence, model reduction in these scenarios
is of crucial importance (see Antoulas (2005) for some
motivating examples). In general, the model reduction
problem for single-input/single-output (SISO) linear time-
invariant (LTI) systems can be cast in the following way:

For a given nth-order LTI continuous-time stable system
with transfer function

G(s) = C (sIn −A)
−1
B,
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where A ∈ Rn×n, B ∈ Rn, and CT ∈ Rn are the system
matrices, we look for an rth-order stable reduced model

Gr(s) = Cr (sIr −Ar)
−1
Br,

with r < n, Ar ∈ Rr×r, Br ∈ Rr, and CT
r ∈ Rr, such that

Gr(s) is a “good approximation” of G(s). In the particular
setting of H2-norm model reduction, we seek to minimize
the squared H2-norm of Ge(s) = G(s)−Gr(s), i.e.,

Gr(s) = arg min
∥∥∥G(s)− Ĝr(s)

∥∥∥2
H2

, (1)

where the H2-norm of Ge(s) is defined as

‖Ge(s)‖H2
=

√
1

2π

∫ ∞
−∞
|Ge(jω)|2dω

=

√∫ ∞
0

ge(t)2dt.

(2)

Here, ge(t) is the impulse response of Ge(s). Note that the
H2-norm is only defined (bounded) for stable and strictly
proper transfer functions.

The optimization problem (1) is nonconvex and obtain-
ing the global minimizer is known to be a very chal-
lenging task. In general, the available methods that ad-
dress H2-norm model reduction can be divided into two
main groups: Lyapunov-based methods (e.g., Spanos et al.
(1992); Žigić et al. (1993); Yan and Lam (1999)) and
interpolation-based methods (e.g., Meier and Luenberger
(1967); Gugercin et al. (2006, 2008); Antoulas et al.



(2010); Anić et al. (2013)). Unlike Lyapunov-based meth-
ods, which rapidly become infeasible when the dimen-
sion increases, interpolation approaches (in which Gr(s)
interpolates G(s) at some points in the frequency do-
main) have proved to be numerically very effective (An-
toulas et al., 2010). Although the literature typically
makes a distinction between both approaches, the two
frameworks are actually equivalent, as shown in Gugercin
et al. (2008). Interpolation-based H2-norm optimality
conditions were originally derived in Meier and Lu-
enberger (1967) for SISO systems and extended later
to the multiple-input/multiple-output (MIMO) case by
both Gugercin et al. (2008) and Van Dooren et al. (2008).
Based on these conditions and results from rational in-
terpolation (Beattie and Gugercin, 2017), several iterative
numerical algorithms have been proposed (e.g., Gugercin
et al. (2006); Bunse-Gerstner et al. (2010); Anić et al.
(2013)). However, none of these algorithms are guaranteed
to converge to the globally optimal solution, despite the
use of several heuristic rules during their initialization. For
the particular cases of first-order and second-order SISO
approximants, the global optimum can be found by solving
a polynomial system in one and two variables, respectively
(see Ahmad et al. (2010, 2011)). However, to the best of
the authors’ knowledge, to this day, there is not a single
methodology that is guaranteed to provide the globally
optimal solution of the H2-norm model reduction problem
for an approximant of arbitrary order.

In this paper, we follow the subsequent procedure to derive
the globally optimal solution of (1) for any n and r (with
r < n):

• Given that the H2-norm can be computed alge-
braically from the solution of a Lyapunov equation,
we exploit this fact to rewrite the objective function
of (1) in terms of the unknown parameters of Gr(s).
• By deriving the first-order optimality conditions of

this redefined objective function, we generate a sys-
tem of multivariate polynomial equations, whose com-
mon roots comprise all the stationary points of the
optimization problem.
• We convert these multivariate polynomial equations

to an affine (or inhomogeneous) multiparameter
eigenvalue problem (AMEP).
• By using a special matrix construction that we refer

to as the augmented block Macaulay matrix, we
transform the AMEP into a standard eigenvalue
problem (EP), from which we determine the (2r)-
tuples of affine eigenvalues and eigenvectors of the
AMEP.
• Finally, we pick the real-valued (2r)-tuple that leads

to the stable reduced model with the smallest H2-
error, which corresponds to the globally optimal so-
lution of the H2-norm model reduction problem.

The main claim of this paper is that the H2-norm model
reduction problem for SISO LTI systems is an AMEP. Fur-
thermore, in this work, we provide a new solution method
for this kind of problems based on the augmented block
Macaulay matrix, which can be seen as a generalization of
the block Macaulay matrix introduced in De Moor (2019)
and Vermeersch and De Moor (2019) to solve homogeneous
multiparameter eigenvalue problems.

The remainder of this paper is organized as follows: In
Section 2, we derive the first-order optimality conditions
of an appropriately redefined objective function in order
to generate a system of multivariate polynomial equations.
Section 3 explains how this system can be transformed into
an AMEP, and in Section 4, we show how to solve it using
the augmented block Macaulay matrix. Section 5 presents
a numerical example, and finally in Section 6, we provide
some concluding remarks and future research directions.

2. MULTIVARIATE POLYNOMIAL EQUATIONS

In this section, we show that finding the optimal and
suboptimal solutions of the H2-norm model reduction
problem (1) is equivalent to finding the common roots
of a system of multivariate polynomial equations. These
multivariate polynomial equations correspond to the first-
order optimality conditions of a conveniently rewritten
objective function.

2.1 Redefinition of the objective function

The H2-norm of the error transfer function Ge(s) can
be computed algebraically via its state space realization,
instead of evaluating the integral in (2). Hence, as shown
by Antoulas (2005) and Van Dooren et al. (2008), we
can conveniently express the objective function of the
optimization problem (1) as

J = ‖Ge(s)‖2H2
= CeWCT

e , (3)

where W = WT is the controllability Gramian of Ge(s)
satisfying the Lyapunov equation

AeW +WAT
e +BeB

T
e = 0, (4)

with

Ae =

[
A 0
0 Ar

]
, Be =

[
B
Br

]
, and Ce = [C −Cr]

the system matrices of Ge(s) = Ce(sIn+r − Ae)
−1Be. In

the remainder of this subsection, we rewrite the objective
function (3) only in terms of the unknown parameters
(ai and bi, ∀i = 1, . . . , r) of the transfer function of
the reduced-order model (keep in mind that W is also
unknown)

Gr(s) =
b1s

r−1 + b2s
r−2 + · · ·+ br−1s+ br

sr + a1sr−1 + · · ·+ ar−1s+ ar
.

As state space representation of Gr(s), we use the control
canonical form:

Ar =


−a1 −a2 · · · −ar−1 −ar

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , Br =


1
0
0
...
0

 ,
and Cr = [b1 b2 b3 · · · br] .

By partitioning W , we can rewrite the objective func-
tion (3) as

J = CeWCT
e

= [C −Cr ]

[
W11 W12

W21 W22

] [
CT

−CT
r

]
= CrW22C

T
r − 2CrW21C

T + CW11C
T (5)



and the Lyapunov equation (4) as[
A 0
0 Ar

][
W11 W12

W21 W22

]
+

[
W11 W12

W21 W22

][
AT 0
0 AT

r

]
+

[
B
Br

][
BT BT

r

]
=[

AW11 +W11A
T +BBT AW12 +W12A

T
r +BBT

r

ArW21 +W21A
T +BrB

T ArW22 +W22A
T
r +BrB

T
r

]
= 0. (6)

Here, W11 and W22 are the controllability Gramians of
G(s) and Gr(s), respectively, and W12 = WT

21, since
W = WT . Observe that the term CW11C

T in (5) can
be dropped because it does not depend on the parameters
of Gr(s). Thus, we can use

J̃ = CrW22C
T
r − 2CrW21C

T (7)

as a new objective function.

In what follows, we eliminate W22 and W21 from J̃ by
using (6). It is not difficult to see that CrW22C

T
r and

CrW21C
T can be written as vec(CT

r Cr)T vec(W22) and
vec(CT

r C)T vec(W21), respectively 1 . If we introduce the

vectors gr = vec(CT
r Cr)T ∈ Rr2 and gm = vec(CT

r C)T ∈
Rnr, then we can compactly write J̃ as

J̃ = gr vec(W22)− 2gm vec(W21). (8)

Notice that the Lyapunov equation ArW22 + W22A
T +

BrB
T
r = 0 from (6) can be expressed as (Horn and

Johnson, 1994)

(Ar ⊗ Ir + Ir ⊗Ar) vec(W22) = − vec(BrB
T
r )

(Ar ⊕Ar)︸ ︷︷ ︸
Tr

vec(W22) = − vec(BrB
T
r )︸ ︷︷ ︸

fr

, (9)

and the equation ArW21 +W21A
T +BrB

T = 0 as

(A⊗ Ir + In ⊗Ar) vec(W21) = − vec(BrB
T )

(A⊕Ar)︸ ︷︷ ︸
Tm

vec(W21) = − vec(BrB
T )︸ ︷︷ ︸

fm

, (10)

with Tr ∈ Rr2×r2 , fr ∈ Rr2 , Tm ∈ Rnr×nr, and
fm ∈ Rnr. The operators ⊗ and ⊕ denote the Kronecker
product and the Kronecker sum, respectively. Finally,
from (9) and (10), we have that vec(W22) = −T−1r fr and
vec(W21) = −T−1m fm, and, by substituting them into (8),

we get J̃ only in terms of the parameters ai and bi of Gr(s):

J̃ = −grT−1r fr + 2gmT
−1
m fm. (11)

This objective function has to be minimized over the
unknown parameters ai and bi,∀i = 1, . . . , r.

From Theorem 4.4.5 in Horn and Johnson (1994), we
know that the eigenvalues of the Kronecker sum of two
matrices X ∈ Rnx×nx and Y ∈ Rny×ny correspond to all
possible pairwise sums of the eigenvalues of X and Y , that
is, if σ (X) = {λ1, . . . , λnx} and σ (Y ) =

{
µ1, . . . , µny

}
,

then σ (X ⊕ Y ) = {λi + µj : i = 1, . . . , nx, j = 1, . . . , ny}.
A sufficient condition for Tr and Tm to be invertible can be
drawn from this result: If all the eigenvalues of A and Ar

have a negative real part (which is the case for the optimal
and suboptimal solutions of (1)), then all the eigenvalues
of Tr = Ar ⊕ Ar and Tm = A ⊕ Ar also have a negative
real part, implying in this way the non-singularity of the
matrices Tr and Tm.
1 The vec-operation vec(·) stacks the columns of a matrix M =[
m1 m2

]
into a vector m = vec(M) =

[
m1

m2

]
.

2.2 First-order optimality conditions

Keeping in mind that gr, fr, gm, and fm are only a function
of bi, and Tr and Tm are only a function of ai, the first-
order optimality conditions of J̃ , ∀i = 1, . . . , r are given
by

∂J̃

∂ai
= −gr

∂T−1r

∂ai
fr + 2gm

∂T−1m

∂ai
fm = 0

∂J̃

∂bi
= −∂gr

∂bi
T−1r fr + 2

∂gm
∂bi

T−1m fm = 0.

Since
∂T−1

r

∂ai
= −T−1r

∂Tr

∂ai
T−1r and

∂T−1
m

∂ai
= −T−1m

∂Tm

∂ai
T−1m ,

the previous equations become

∂J̃

∂ai
= grT

−1
r T ai

r T−1r fr − 2gmT
−1
m T ai

m T−1m fm = 0

∂J̃

∂bi
= −gbir T−1r fr + 2gbimT

−1
m fm = 0,

(12)

with T ai
r = ∂Tr

∂ai
, T ai

m = ∂Tm

∂ai
, gbir = ∂gr

∂bi
, and gbim = ∂gm

∂bi
.

As T−1r = adj(Tr)/ det(Tr) and T−1m = adj(Tm)/ det(Tm),
where adj(Tr) and adj(Tm) are the adjugate matrices of
Tr and Tm, respectively, and given that det(Tr) 6= 0 and
det(Tm) 6= 0, the partial derivatives in (12) define a system
of 2r multivariate polynomial equations in 2r unknowns
(ai, bi,∀i = 1, . . . , r), after “multiplying out” det(Tr) and
det(Tm). Their common roots comprise all the global and
local minima as well as all the maxima and saddle points
of J̃ and J . In the next section, we reformulate (12) to
obtain a new set of multivariate polynomial equations
from which we can formulate an affine multiparameter
eigenvalue problem in a straightforward way.

3. AFFINE MULTIPARAMETER EIGENVALUE
PROBLEM

Now, we introduce two auxiliary vectors, h = T−1r fr ∈ Rr2

and p = T−1m fm ∈ Rnr, to partially linearize (12). The

vectors hai = −T−1r T ai
r h ∈ Rr2 and pai = −T−1m T ai

m p ∈
Rnr are the partial derivatives of h and p with respect to
the unknown parameters ai (∀i = 1, . . . , r). With these
definitions, we can rewrite (12) as

∂J̃

∂ai
= −grhai + 2gmp

ai = 0

∂J̃

∂bi
= −gbir h+ 2gbimp = 0.

(13)

The first-order optimality conditions given in (13), to-
gether with the definitions of the vectors h, p, hai , and pai ,
conform a new system of multivariate polynomial equa-
tions from which the optimal solution(s) can be retrieved:

−grhai + 2gmp
ai = 0, ∀i = 1, . . . , r,

−gbir h+ 2gbimp = 0, ∀i = 1, . . . , r,

Trh
ai + T ai

r h = 0, ∀i = 1, . . . , r,

Tmp
ai + T ai

m p = 0, ∀i = 1, . . . , r,

Trh− fr = 0,

Tmp− fm = 0.

(14)

This system consists of r3 + r2(n + 1) + r(n + 2) cubic
polynomial equations in the same number of unknowns,
which are h, p, hai , pai , ai, and bi (∀i = 1, . . . , r).



Given that h, p, hai , and pai only appear linearly, we can
compactly rewrite (14) as follows 2 :
−(Ir ⊗ gr) 2 (Ir ⊗ gm) 0 0

0 0 {−gbir }i {2gbim}i
Ir ⊗ Tr 0 {T ai

r }i 0
0 Ir ⊗ Tm 0 {T ai

m }i
0 0 Tr 0
0 0 0 Tm


︸ ︷︷ ︸

A(ai,bi)

{h
ai}i

{pai}i
h
p


︸ ︷︷ ︸

z

+

+


0
0
0
0
−fr
−fm


︸ ︷︷ ︸

q

= 0. (15)

The rectangular matrix A has r3 + r2(n + 1) + r(n + 2)
rows and r3 + r2(n+ 1) + rn columns (2r more rows than
columns) and it is a function of the unknown parameters ai
and bi, which appear quadratically in gr and linearly in gbir ,
gm, Tr, and Tm. The vector q is a constant column vector of
appropriate length. The equation A(ai, bi)z+q = 0 is basi-
cally an affine (or inhomogeneous) quadratic multiparam-
eter eigenvalue problem (AMEP), where the parameters
ai and bi constitute the (2r)-tuples (a1, . . . , ar, b1, . . . , br)
of affine eigenvalues and the vectors h, hai , p, and pai

generate the affine eigenvectors z. This statement becomes
more clear when we rewrite A(ai, bi)z + q = 0 asA1 +

∑
ω 6=1

Aωω

 z + q = 0,

or as

−A1z =
∑
ω 6=1

Aωωz + q, (16)

where the matrix Aω (e.g., Aa1 or Ab21
) contains the coef-

ficients of the monomial ω = ak1
1 · · · akr

r b
l1
1 · · · blrr with non-

negative integer exponents ki and li in the matrix A. The
structure of (16) is that of a homogeneous multiparameter
eigenvalue problem (MEP) (e.g., Volkmer (1988); De Moor
(2019); Vermeersch and De Moor (2019)) except for the
constant vector q. This modified structure is comparable
to the one of an affine (or inhomogeneous) 1-parameter
eigenvalue problem Ax = µx + b, ‖x‖2 = 1, as defined
in Mattheij and Söderlind (1987), where A is a square
matrix, b is a constant vector of appropriated length, and
µ and x are the affine (or inhomogeneous) eigenvalues and
eigenvectors of A with respect to b, respectively.

In order to solve (16), we introduce in the next section
the so-called augmented block Macaulay matrix, which
iteratively linearizes the AMEP. This matrix can be seen
as a generalization of the block Macaulay matrix presented
in De Moor (2019) and Vermeersch and De Moor (2019).

2 The curly brackets {Mi}i indicate a vertical stack of matrices Mi

over the index i, e.g., for i = 1, 2, {Mi}i =
[
MT

1 MT
2

]T
.

4. SOLUTION OF THE AFFINE MULTIPARAMETER
EIGENVALUE PROBLEM

4.1 Augmented block Macaulay matrix

For the sake of simplicity, and without loss of generality,
let us consider the case when r = 1, that is, when we
look for an H2-norm optimal first-order approximant of
G(s). In this case, Gr(s) only has two parameters (a1 and
b1) and the system in (14) consists of 2n+ 4 multivariate
polynomial equations in 2n + 4 unknowns, namely, h, p,
ha1 , pa1 , a1, and b1. We can rewrite (15) for r = 1 as

−gr 2gm 0 0
0 0 −gb1r 2gb1m
Tr 0 T a1

r 0
0 Tm 0 T a1

m
0 0 Tr 0
0 0 0 Tm


h

a1

pa1

h
p

+


0
0
0
0
−fr
−fm

 = 0, (17)

or, in terms of the model parameters, as
−b21 2b1C 0 0

0 0 −2b1 2C
−2a1 0 −2 0

0 −a1In +A 0 −In
0 0 −2a1 0
0 0 0 −a1In +A


h

a1

pa1

h
p

+


0
0
0
0
−1
−B

 = 0,

where a1 and b1 constitute the 2-tuples of affine eigenval-
ues, while h, p, ha1 , and pa1 generate the affine eigenvectors
z. We can now recast (17) as an AMEP:(
A1+a1Aa1 +b1Ab1 +a21Aa2

1
+a1b1Aa1b1 +b21Ab21

)
z+q = 0,

or written as a matrix-vector product:

[
q A1 Aa1

Ab1 Aa2
1
Aa1b1 Ab21

]


1
z
a1z
b1z

a21z
a1b1z
b21z


= 0, (18)

where the coefficient matrices Aω ∈ R(2n+4)×(2n+2) and
the vector q can be obtained from (17) in a straightforward
fashion. We can “enlarge” this AMEP by multiplying it
with monomials in a1 and b1 of increasing degree, a process
that we call forward shift recursions (FSRs). Hence, in a
first iteration we multiply (18) with shifts of first degree
(i.e., a1 and b1), in a second iteration with shifts of second
degree (i.e., a21, a1b1, and b21), etc., so that we get

[MA MB ]︸ ︷︷ ︸
M

[
kA
kB

]
︸ ︷︷ ︸

k

= 0, (19)

with matrices

MA =


q 0 0 0 · · ·
0 q 0 0 · · ·
0 0 q 0 · · ·
0 0 0 q · · ·
...

...
...

...
. . .

 and



MB =


A1 Aa1 Ab1 Aa2

1
Aa1b1 Ab21

0 · · ·
0 A1 0 Aa1 Ab1 0 Aa2

1
· · ·

0 0 A1 0 Aa1 Ab1 0 · · ·
0 0 0 A1 0 0 Aa1 · · ·
...

...
...

...
...

...
...

. . .


and vectors

kA =



1
a1
b1
a21
a1b1
b21
...


and kB =



z
a1z
b1z

a21z
a1b1z
b21z
...


. (20)

The matrix MA is clearly a block diagonal matrix, which
accounts for the shifts of the affine part of the original
AMEP, while the matrix MB is the quasi-Toeplitz block
Macaulay matrix introduced in De Moor (2019) and Ver-
meersch and De Moor (2019) to solve homogeneous multi-
parameter eigenvalue problems. This block Macaulay ma-
trix is an extension of the classical Macaulay matrix used
to determine the common roots of a system of multivari-
ate polynomial equations (e.g., Dreesen (2013); Dreesen
et al. (2018)). The matrix M , which is basically a block
Macaulay matrix to which we have appended to its left a
block diagonal matrix, will be referred to as the augmented
block Macaulay matrix.

The initial augmented block Macaulay matrix in (18)
has degree d = 3, because of the cubic polynomials,
and after each iteration its degree increases by one. We
keep iterating (adding equations) until the nullity, which
is the dimension of the null space of M , stabilizes (this
happens when both the finite solutions and the solutions
at infinity form a zero-dimensional solution set). In the
next two subsections, we show how to compute the finite
solutions of the AMEP by exploiting the (block) multi-
shift invariance property of the null space of M . Initially,
in Subsections 4.2, we consider an AMEP with only finite
solutions, and afterwards, in Subsection 4.3, we deal with
the general case, in which the AMEP has both finite
solutions and solutions at infinity.

Note that the above-mentioned rationale can be straight-
forwardly generalized to higher-order approximants of
G(s), i.e., to r > 1.

4.2 Finite solutions in multi-shift invariant subspaces

From didactical point of view, we assume first that all
solutions are finite and simple (i.e., they have algebraic
multiplicity equal to one). Then, the multivariate Van-
dermonde vectors k evaluated at each finite solution (i.e.,
k(i),∀i = 1, . . . ,ma, with ma the number of finite solu-
tions) form a basis K that spans the right null space of
M :

K =

[
KA

KB

]
=

[
k
(1)
A k

(2)
A · · · k(ma)

A

k
(1)
B k

(2)
B · · · k(ma)

B

]
.

The structure of the matrix KA and KB are identical
to the (block) Vandermonde basis for the null space of
the classical Macaulay matrix (Dreesen et al., 2018) and
the block Macaulay matrix (De Moor, 2019), respectively.

Hence, KA and KB span vector spaces that are multi-
shift invariant and block multi-shift invariant, respectively.
In the remainder of this subsection, we exploit the multi-
shift invariant structure of the space spanned by KA, to
recover the finite (2r)-tuples of affine (or inhomogeneous)
eigenvalues. Notice that is also possible to work with the
space spanned by KB , as shown by De Moor (2019).

The multi-shift invariant structure of the space spanned
by KA can be understood in the following way: If we
select one row of a multivariate Vandermonde basis KA

and multiply (or shift) it by one of the affine eigenvalues,
i.e., the unknown parameters ai and bi, we find another
row of that basis KA. Notice that multi-shift invariance
is a property of the space spanned by KA and not of the
specific basis (Dreesen et al., 2018).

Let us apply this rationale to the case where we look
for an H2-norm optimal first-order approximant. Take for
instance a multivariate Vandermonde vector kA of degree
d = 2, i.e.,

kA(2) =


1
a1
b1
a21
a1b1
b21

 ,
and multiply the first three elements by a1. The multi-
plied elements correspond to the second, fourth, and fifth
element of the same vector:[

1
a1
b1

]
a1−−−→

 a1
a21
a1b1

 .
Alternatively, we can write this multiplication using row
selection matrices S1 and S2, as S1kAa1 = S2kA, with

S1 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
and

S2 =

[
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

]
.

By multiplying each column of the basis KA with a1, we
get

(S1KA)Da1 = (S2KA) , (21)

where Da1 is a diagonal matrix containing the evaluations
of the shift function, i.e., a1, at the different solutions.
Note that in general, we can also use ai or bi, ∀i =
1, . . . , r as alternative shift functions. We recognize in (21)
a generalized eigenvalue problem, with as its matrix of
eigenvectors the identity matrix. In order to ensure that
this eigenvalue problem is not degenerate (i.e., it does not
have infinite eigenvalues), the matrix S1KA needs to be of
full column rank, which requires the selection matrix S1

to include ma linearly independent rows. Consequently,
we have to increase the degree of the augmented block
Macaulay matrix at least until its nullity equals the
number of finite roots ma.

In practice, we do not know the Vandermonde basis K
in advance, since it is constructed from the unknown
solutions. Given that the choice of the basis of the null
space of M is not unique, a numerical basis Z obtained
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Fig. 1. The upper part of the numerical basis of the null
space ZA of the augmented block Macaulay matrix
M grows as its degree d increases. At a certain
degree d∗, the nullity stabilizes at total number of
solutions mb, if the solution set is zero-dimensional.
From that degree on, some linearly independent rows
(corresponding to the finite solutions) stabilize, while
the other linearly independent rows (corresponding to
the solutions at infinity) move to higher degree blocks.
Eventually, a gap (of at least one degree block) of only
linearly dependent rows emerges, which separates
these linearly independent rows. The influence of the
solutions at infinity can be removed via a column
compression. The finite solution approach can then
be applied straightforwardly on this compressed null
space. (We adapted this figure from Vermeersch and
De Moor (2019).)

for example via the singular value decomposition, will
not have the Vandermonde structure as in (20). However,
this numerical basis Z is related to the multivariate
Vandermonde basis K via K = ZT , with T ∈ Rma×ma a
non-singular matrix. This relation also holds for the upper
part of K and Z, i.e., KA = ZAT , which reduces (21) to

(S1ZA)TDg = (S2ZA)T, (22)

and transforms the AMEP into a standard eigenvalue
problem,

TDgT
−1 = (S1ZA)

†
(S2ZA) . (23)

Once we have solved (23) and obtained the matrix of
eigenvectors T , we can use KA = ZAT to determine KA.
From this matrix KA, we can obtain the different (2r)-
tuples of finite affine (or inhomogeneous) eigenvalues of
the AMEP, which correspond to the set of all stationary
points of the optimization problem (1).

4.3 Solutions at infinity in multi-shift invariant subspaces

In the previous subsection, it was assumed that the AMEP
only has finite affine (or inhomogeneous) eigenvalues. How-
ever, due to algebraic relationships among the coefficients
of the matrices, solutions at infinity often emerge (Dreesen
et al., 2018). In that situation, the total number of so-
lutions mb = ma + m∞ corresponds to both the finite
solutions and solutions at infinity. The solutions at infinity
also generate vectors in the basis K of the null space
of the augmented block Macaulay matrix M . Therefore,
when the augmented block Macaulay matrix M reaches
a sufficient degree d∗, the nullity of M stabilizes at mb

(instead of ma). Let us define a degree block as the col-
lection of all the rows that correspond to monomials of
the same total degree. When the degree of the augmented

block Macaulay matrix increases beyond d∗, some linearly
independent rows (corresponding to the finite solutions)
stabilize at a certain position in the null space, while the
others (corresponding to solutions at infinity) move to
higher positions, i.e., to monomials of higher total degree.
Consequently, a gap (of at least one degree block) without
any linearly independent rows, i.e., solutions, emerges be-
tween the finite solutions and the solutions at infinity, as
visualized in Fig. 1.

The upper part of the null space actually consists of
three zones after stabilization (d > d∗). These zones are
determined by checking the rank of the basis ZA row-wise
from the top to the bottom:

(1) Finite zone: The first zone of the null space contains
at least one linearly independent row per degree
block, up to the number of finite roots ma. This zone
accommodates all the finite solutions.

(2) Gap zone: At a certain point, the rank does not
increase anymore and all the rows are linearly de-
pendent on some rows of the first zone. There is a
so-called gap (of at least one degree block) of linearly
dependent rows. Hence, no solutions live in this zone.

(3) Infinite zone: Eventually, in the third zone, the rank
increases again, by at least one per degree block,
until it reaches the total number of solutions mb. The
linearly independent rows in this zone correspond to
the solutions at infinity.

Because of this behavior, we can remove the influence of
the solutions at infinity via a column compression:

Theorem 1. (Column compression (Dreesen et al., 2018)).
The upper part of the numerical basis of the null space

ZA =
[
ZT
1 ZT

2

]T
is a l ×mb matrix, which can be parti-

tioned into an s×mb matrix Z1 (which contains the finite
and gap zones) and an (l − s) × mb matrix Z2 (which
contains the infinite zone), with rank (Z1) = ma < mb.
Furthermore, let the singular value decomposition of Z1 =
UΣQT. Then, V = ZAQ is called the column compression
of ZA and can be partioned as

V =

[
V11 0
V21 V22

]
, (24)

where V11 is the s × ma matrix that corresponds to the
compressed null space.

This compressed null space allows us to straightforwardly
use the above-described finite solution approach and to
find only the finite (2r)-tuples of affine eigenvalues of the
AMEP.

A positive-dimensional solution set at infinity Some-
times it may happen that, although the finite solution
set is zero-dimensional, the solution set at infinity is
positive-dimensional. In contrary to problems with a zero-
dimensional solution set, where the nullity stabilizes at
total number of solutions mb, the nullity of a positive-
dimensional solution set does not stabilize. For example,
if the set of infinite solutions is one-dimensional, then the
nullity increases, but the nullity change stabilizes. Even
in this case, we can still use the algorithm described in
this section to correctly retrieve the finite solutions of
the AMEP (see Dreesen (2013) for an example of this



Table 1. The stabilization diagram for the
numerical example, showing the properties of
the augmented block Macaulay matrix M as a

function of its degree d.

degree size rank nullity nullity change

3 10× 49 10 39 -
4 30× 83 30 53 14
5 60× 126 60 66 13
6 100× 178 100 78 12
7 150× 239 150 89 11
8 210× 309 210 99 10
9 280× 388 280 108 9
10 360× 476 360 116 8
11 450× 573 450 123 7
12 550× 679 549 130 7
13 660× 794 657 137 7
14 780× 918 774 144 7

Table 2. The two stable reduced-order mod-
els Gr(s) with real coefficients and nonzero
numerators found via the augmented block
Macaulay matrix approach and their associ-

ated H2-error.

Gr(s) ‖G(s)−Gr(s)‖H2

G1(s) = 1.2799
s+9.6796

0.2784

G2(s) = −0.0437
s+0.2671

0.3982

positive-dimensional situation when rooting systems of
multivariate polynomial equations).

5. NUMERICAL EXAMPLE

In this section, we present a small numerical proof-of-
concept to illustrate the novel model reduction approach
from this paper. We consider the transfer function

G(s) =
s2 + 9s− 10

s3 + 12s2 + 49s+ 78
,

for which we want to compute the H2-norm globally
optimal first-order approximant Gr(s) = b1

s+a1
.

For this example, the system in (14) consists of 10 multi-
variate polynomial equations in 10 unknowns, of which
8 appear only linearly. This translates into an affine
quadratic 2-parameter eigenvalue problem with coefficient
matrices Aω ∈ R10×8 and a constant vector q ∈ R10, where
the unknown parameters a1 and b1 constitute the 2-tuples
of affine eigenvalues.

We observe that an augmented block Macaulay matrix
M ∈ R660×794 of degree d = 13 suffices to find the
gap in its null space. In this particular example, the
nullity does not stabilize, but the nullity change does,
which indicates that the solutions at infinity form a
one-dimensional variety (see Table 1). Since in the first
(finite) zone of ZA we detect 8 linearly independent rows,
the system of multivariate polynomial equations, and
therefore the AMEP, has ma = 8 finite solutions. Starting
from these linearly independent rows, we construct the
standard EP in (23), from which we retrieve the 8 finite
solutions, i.e., the different 2-tuples (a1, b1), of the AMEP:
(9.6796, 1.2799), (−16.6189, 1.9263), (0.26711,−0.043711),

0 3 6 9 12 15
−0.5

0

0.5

1

1.5

2

a1

b 1

G1(s)

G2(s)

Fig. 2. The contour plot of the H2-error ‖G(s)−Gr(s)‖H2

for the numerical example. Here, G2(s) is a local
minimizer ( ) and G1(s) corresponds to the globally
optimal solution ( ).

(−4.1639−0.90269i, 24.93+6.5394i), (−4.1639+0.90269i,
24.93−6.5394i), (1,−6.4513×10−15), (−9.9999, −2.4217×
10−4), and (−6.2697 × 10−12, 1.5735 × 10−12). Only 2
of these solutions lead to stable transfer functions with
real coefficients and nonzero numerators, and they are
shown in Table 2 together with their associated H2-error.
Fig. 2 visualizes the contour plot of the H2-error for this
numerical example. Clearly, the globally optimal first-
order approximant of G(s) is 3

G1(s) =
1.2799

s+ 9.6796
.

In order to corroborate the previous results, we used the it-
erative rational Krylov algorithm (IRKA) (Gugercin et al.,
2008), available in the sssMOR (Sparse State-Space and
Model Order Reduction) MATLAB toolbox (Castagnotto
et al., 2017). We observe that, depending on the initializa-
tion, the algorithm can converge to one of the two solutions
in Table 2 or to a solution that does not lead to a stable
reduced model (e.g., a1 = −16.6189, b1 = 1.9265).

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we showed that the globally optimal H2-
norm model reduction problem for SISO LTI systems is
essentially an eigenvalue problem. We proposed a novel
numerical linear algebra algorithm to retrieve the globally
optimal solution(s). This algorithm can be briefly summa-
rized as follows: First, we translate the H2-norm model
reduction problem into a system of multivariate polyno-
mial equations via the first-order optimality conditions of a
conveniently redefined objective function. Then, we exploit
the fact that in these equations several variables appear
only linearly to formulate an affine (or inhomogeneous)
quadratic multiparameter eigenvalue problem (AMEP).
By using the augmented block Macaulay matrix intro-
duced in this work, we take advantage of the (block) multi-
shift invariance property of its null space to transform the
3 In Table 2, we only show the first four decimals of the H2-error.



AMEP into a standard eigenvalue problem (EP), of which
the solutions correspond to the set of all stationary points
of the optimization problem. Finally, from the (2r)-tuples
of affine eigenvalues, we select the real-valued tuple that
leads to the stable transfer function with the smallest H2-
error. We provided a proof-of-concept with a numerical
example, in which we computed the globally optimal first-
order approximant of a 3rd-order transfer function.

Notice that, as the order of the model G(s) and its ap-
proximant Gr(s) increase, the number of stationary points
grows rapidly. Hence, solving the AMEP and evaluating
all the solutions become very quickly impractical. Conse-
quently, one of our current research efforts is to modify the
algorithm in such a way that it only computes the optimal
(2r)-tuple of affine eigenvalues. Exploiting the structure
and sparsity of the augmented block Macaulay matrix to
tackle large model reduction problems is also part of our
future work, as well as a rigorous study of the properties
of AMEPs.

Although we did not address large practical problems in
this paper, the mathematical claim that the H2-norm
model reduction problem for SISO LTI systems is an
AMEP and the proposed solution approach for this type
of problems are both important contributions to the field
of systems and control.
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