
IFAC PapersOnLine 54-9 (2021) 159–165

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.06.071

10.1016/j.ifacol.2021.06.071 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Multiparameter Eigenvalue Problems and
Shift-invariance �

Katrien De Cock ∗ Bart De Moor, Fellow IEEE and SIAM ∗

∗ KU Leuven, Department of Electrical Engineering (ESAT), Leuven,
Belgium

STADIUS Center for Dynamical Systems, Signal Processing and Data
Analytics

e-mail: {katrien.decock;bart.demoor}@esat.kuleuven.be

Abstract: We discuss four eigenvalue problems of increasing generality and complexity: rooting
a univariate polynomial, solving the polynomial eigenvalue problem, rooting a set of multivariate
polynomials and solving multi-parameter eigenvalue problems. In doing so, we provide a unifying
framework for solving these eigenvalue problems, where we exploit properties of (block-) (multi-)
shift-invariant subspaces and use multi-dimensional realization algorithms.
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1. INTRODUCTION

The multiparameter eigenvalue problem (MEVP) is a gen-
eralization of the standard eigenvalue problem. It involves
more than one eigenvalue λ1, λ2, . . . , λn ∈ C and can have
many appearances, e.g.,

(A0 +A1λ1 + · · ·+Anλn)x = 0

(A0, . . . , An ∈ Rl×m, x ∈ Cm) . (1)

Other manifestations are MEVPs containing products of
eigenvalues like the following three-parameter quadratic
eigenvalue problem:

(A000 +A100λ1 +A010λ2 +A001λ3 +A200λ
2
1 +A110λ1λ2

+A101λ1λ3 +A020λ
2
2 +A011λ2λ3 +A002λ

2
3)x = 0 , (2)

and sets of MEVPs:{
A(λ1, λ2, λ3)x = 0
B(λ1, λ2, λ3)y = 0
C(λ1, λ2, λ3)z = 0

(3)

where we look for the common eigen-triplets of three
matrix pencils, for different eigenvectors x, y and z.
Despite early work by Carmichael (1921), Atkinson (1972)
and others (see, e.g. Volkmer (1988)) and a recent renewed
interest (Hochstenbach et al. (2019)), it is clear that the
MEVP has been less studied than the standard eigenvalue
problem.
� This work was supported by (1) KU Leuven: Research Fund
(projects C16/15/059, C3/19/053, C24/18/022, C3/20/117), In-
dustrial Research Fund (Fellowships 13-0260, IOF/16/004) and
several Leuven Research and Development bilateral industrial
projects; (2) Flemish Government Agencies: (a) FWO: EOS Project
G0F6718N (SeLMA), SBO project S005319N, Infrastructure project
I013218N, TBM Project T001919N, PhD Grants (SB/1SA1319N,
SB/1S93918, SB/1S1319N), (b) EWI: the Flanders AI Research Pro-
gram, (c) VLAIO: Baekeland PhD (HBC.20192204) and Innovation
mandate (HBC.2019.2209); (3) European Commission: European
Research Council under the European Union’s Horizon 2020 research
and innovation programme (ERC Adv. Grant grant agreement No
885682); (4) Other funding: Foundation ‘Kom op tegen Kanker’, CM
(Christelijke Mutualiteit).

We show how multiparameter eigenvalue problems can be
solved by exploiting a shift-invariance property of the null
space of a block-Macaulay matrix. In order to explain this,
we start with simpler problems that give rise to matrices
with a less intricate structure than the block-Macaulay
matrix and, step by step, increase the complexity to end
up with the multiparameter eigenvalue problem. Each new
case adds an additional layer of complexity and provides
us with new insights so that we end up with a unifying
framework to understand and solve multiparameter eigen-
value problems.
For each case, the same steps are taken to go from the seed
problem to its solution: first we generate additional equa-
tions by multiplying the given equation by monomials of
increasing degree. This process is called the Forward Shift
Recursion (FSR). It creates a structured matrix. Next, the
null space of the structured matrix is computed, which
for each case exhibits a specific type of shift-invariance
property. The shift-invariance leads to a system-theoretic
interpretation and via realization theory we obtain the
solutions of the seed problem.
It will be clear that better methods exist to solve uni-
variate polynomials and polynomial eigenvalue problems.
Our presentation of the problems and their solution high-
lights their role in our general framework. For rooting
multivariate polynomial systems, dedicated symbolic and
numerical algorithms have been developed. There is a huge
literature with several schools: multi-resultant-based ap-
proaches (Dickenstein and Emiris (2005)), methods using
Gröbner bases (Lazard (2009); Sturmfels (2002)), homo-
topy methods as in Morgan (2009); Sommese andWampler
(2006). Those algorithms can also be applied to solve the
MEVP, since the MEVP can be formulated as a set of
multivariate polynomial equations. Indeed, the MEVPs
shown in (1–3), express the fact that the matrix pencils
need to be rank deficient. Algebraically, this is equivalent
with the requirement that all minors of these matrix pen-
cils of certain dimensions be zero. Such a set of ‘secular
equations’ are multivariate polynomials in the eigen-tuples
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increasing degree. This process is called the Forward Shift
Recursion (FSR). It creates a structured matrix. Next, the
null space of the structured matrix is computed, which
for each case exhibits a specific type of shift-invariance
property. The shift-invariance leads to a system-theoretic
interpretation and via realization theory we obtain the
solutions of the seed problem.
It will be clear that better methods exist to solve uni-
variate polynomials and polynomial eigenvalue problems.
Our presentation of the problems and their solution high-
lights their role in our general framework. For rooting
multivariate polynomial systems, dedicated symbolic and
numerical algorithms have been developed. There is a huge
literature with several schools: multi-resultant-based ap-
proaches (Dickenstein and Emiris (2005)), methods using
Gröbner bases (Lazard (2009); Sturmfels (2002)), homo-
topy methods as in Morgan (2009); Sommese andWampler
(2006). Those algorithms can also be applied to solve the
MEVP, since the MEVP can be formulated as a set of
multivariate polynomial equations. Indeed, the MEVPs
shown in (1–3), express the fact that the matrix pencils
need to be rank deficient. Algebraically, this is equivalent
with the requirement that all minors of these matrix pen-
cils of certain dimensions be zero. Such a set of ‘secular
equations’ are multivariate polynomials in the eigen-tuples
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numerical algorithms have been developed. There is a huge
literature with several schools: multi-resultant-based ap-
proaches (Dickenstein and Emiris (2005)), methods using
Gröbner bases (Lazard (2009); Sturmfels (2002)), homo-
topy methods as in Morgan (2009); Sommese andWampler
(2006). Those algorithms can also be applied to solve the
MEVP, since the MEVP can be formulated as a set of
multivariate polynomial equations. Indeed, the MEVPs
shown in (1–3), express the fact that the matrix pencils
need to be rank deficient. Algebraically, this is equivalent
with the requirement that all minors of these matrix pen-
cils of certain dimensions be zero. Such a set of ‘secular
equations’ are multivariate polynomials in the eigen-tuples
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(in that sense comparable to the notion of a characteristic
equation of a matrix).
We approach the problem of rooting polynomial systems
and the MEVP from the linear algebra point of view. We
do not require Gröbner bases or symbolic computations,
allowing us to work in finite-precision arithmetic, deploy-
ing the full power of numerical linear algebra algorithms
for the singular value and eigenvalue decomposition.

2. CASE 1: UNIVARIATE POLYNOMIAL EQUATION

2.1 Seed problem

The first problem we analyze is the univariate polynomial
equation:

α0 + α1x+ α2x
2 + · · ·+ αnx

n = 0

(α0, . . . , αn ∈ R, αn �= 0, x ∈ C) , (4)

where we want to find the n roots xi ∈ C, i = 1, . . . , n.
To start the analysis, we use the following monic polyno-
mial of degree 5:

p(x) = 4− x− 3x2 + 2x3 − 3x4 + x5 . (5)

The univariate polynomial equation p(x) = 0 can be

written as (4 −1 −3 2 −3 1)
(
1 x x2 x3 x4 x5

)T
= 0.

2.2 Toeplitz matrix

Starting from the seed equation p(x) = 0, we can generate
new equations by multiplying p(x) by consecutive positive
integer powers of x: p(x)xk = 0. This process is called
the Forward Shift Recursion (FSR). We then solve the
system of equations, consisting of the seed equation and
the additional equations. The FSR creates a structured
matrix, in this case, a banded Toeplitz matrix.
When we apply the FSR for powers k = 1, 2, 3 to our
example, we obtain



4 −1 −3 2 −3 1 0 0 0
0 4 −1 −3 2 −3 1 0 0
0 0 4 −1 −3 2 −3 1 0
0 0 0 4 −1 −3 2 −3 1




︸ ︷︷ ︸
T∈R4×9




1
x
x2

...
x8




= 0 , (6)

where the matrix T in Eq. (6) is a banded Toeplitz matrix
(its elements are constant along the diagonals).
Let the five roots of the polynomial in (5) be denoted by
x1, . . . , x5, then we find in matrix notation

T




1 1 1 1 1
x1 x2 x3 x4 x5

x2
1 x2

2 x2
3 x2

4 x2
5

...
...

...
...

...
x8
1 x8

2 x8
3 x8

4 x8
5




︸ ︷︷ ︸
KT∈C9×5

= 0 (7)

and the matrix KT , whose columns span the null space
of T , is a Vandermonde matrix. The fact that there is a
choice of basis in the null space of an underdetermined
banded Toeplitz matrix that can be in a Vandermonde
structure, is a general statement, provided the roots of
the generating polynomial are distinct. If they are not,
a confluent Vandermonde matrix (Gautschi (1962)) is
required (some columns of which contain derivatives with
respect to the roots).

2.3 Backward-shift-invariance of the null space of the
Toeplitz matrix

Forward- and backward-shift-invariance of a subspace is
usually defined for infinite matrices (operators), see, e.g.,
Garcia et al. (2016). We will adapt the definition for shift-
invariance to finite dimensional vector spaces.
Let R(M) be the range of a matrix M ∈ Cm×n. The
backward-shift-invariance property of R(M) is defined as
follows:

R(M) is backward-shift-invariant iff R(M) ⊆ R(M) ,

where M is the matrix M without its first row and M is
the matrix M without its last row. The shift-invariance of
R(M) can also be expressed as

∃A ∈ Cn×n : MA = M ,

where R(M) = R(M) if A is nonsingular and R(M) �
R(M) otherwise.
We now return to the Toeplitz matrix T in Eq. (6). The
backward-shift-invariance of the null space of T is easily
verified because ker(T ) = R(KT ) and


1 1 · · · 1
x1 x2 · · · x5

...
...

...

x7
1 x7

2 · · · x7
5




︸ ︷︷ ︸
KT




x1 0 · · · 0
0 x2 0
...

. . .

0 0 x5




︸ ︷︷ ︸
Λ

=




x1 x2 · · · x5

x2
1 x2

2 · · · x2
5

...
...

...

x8
1 x8

2 · · · x8
5




︸ ︷︷ ︸
KT

, (8)

which shows that R(KT ) ⊆ R(KT ), with equality if there
is no zero root in the seed equation (4), so when α0 �= 0.
For roots with multiplicity larger than 1, the matrix KT

has a confluent Vandermonde structure and instead of the
diagonal matrix Λ, a Jordan form is needed.

2.4 Realization of single-output LTI system

Equation (8) also shows how the polynomial equation can
be solved. Let ZT ∈ R9×5 be a matrix whose columns span
the null space of T , obtained from, e.g., the SVD of T . This
implies that

rank(ZT ) = 5 . (9)
Since R(ZT ) = ker(T ) = R(KT ), we know that ZTV =
KT , where V is a nonsingular matrix. Furthermore,
ZTV = KT and ZTV = KT . Then, from Eq. (8), it follows
that

ZT V ΛV −1︸ ︷︷ ︸
A

= ZT , (10)

where A is a 5× 5 matrix whose eigenvalues are the roots
of the polynomial.
In order to find the matrix A, the matrix ZT has to satisfy
the following rank conditions. We already know that ZT

is of full column rank, see (9). The matrix ZT has to be
of full column rank too:

rank(ZT ) = rank(ZT ) , (11)

which ensures the unicity of the solution A. This rank
condition is in fact the partial realization criterion, which
will become clear in Section 2.4. In addition, R(ZT ) needs
to be shift-invariant:

rank
(
ZT ZT

)
= rank(ZT ) .

So, once we have the matrix ZT that satisfies the rank
conditions rank

(
ZT ZT

)
= rank(ZT ) = rank(ZT ) = 5,

we calculate the matrix A as

A = Z†
TZT ,
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implies that

rank(ZT ) = 5 . (9)
Since R(ZT ) = ker(T ) = R(KT ), we know that ZTV =
KT , where V is a nonsingular matrix. Furthermore,
ZTV = KT and ZTV = KT . Then, from Eq. (8), it follows
that

ZT V ΛV −1︸ ︷︷ ︸
A

= ZT , (10)

where A is a 5× 5 matrix whose eigenvalues are the roots
of the polynomial.
In order to find the matrix A, the matrix ZT has to satisfy
the following rank conditions. We already know that ZT

is of full column rank, see (9). The matrix ZT has to be
of full column rank too:
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which ensures the unicity of the solution A. This rank
condition is in fact the partial realization criterion, which
will become clear in Section 2.4. In addition, R(ZT ) needs
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rank
(
ZT ZT

)
= rank(ZT ) .

So, once we have the matrix ZT that satisfies the rank
conditions rank

(
ZT ZT

)
= rank(ZT ) = rank(ZT ) = 5,

we calculate the matrix A as

A = Z†
TZT ,

and the eigenvalues of A are the solutions of the polyno-
mial equation. For the polynomial in (5) this results in

x1=1, x2=2.6450, x3=−0.8184, x4,5=0.0867±1.3566i . (12)

Note that for the seed problem of this section, the rank
conditions are automatically met if the leading coefficient
of the polynomial, αn, is not equal to zero. This is true
for polynomials with distinct roots as well as polynomials
with roots of multiplicity greater than one.

Relation to realization theory The null space of T can be
interpreted as the range of the observability matrix of an
nth order single-output LTI system. Indeed, from Eq. (10)
we see that the second row of ZT is equal to the first row
of ZT multiplied by A, the third row of ZT is equal to
the second row multiplied by A, etc. Consequently, we can
write ZT as

ZT =
(
CT (CA)T · · · (CA8)T

)T
,

where C ∈ R1×5, A ∈ R5×5. This is the observability
matrix of a single-output autonomous linear time-invariant
system of order 5, the poles of which are the roots of the
polynomial.
Note that the fact that ZT is of full column rank, as
seen in (9), is equivalent to the model being observable.
The second rank condition (11) is the partial realization
condition, required for a unique solution for A.

Roots at infinity In order to discuss the implications of
roots at infinity, which will become more important for
the subsequent cases in Sections 3–5, we now interpret the
polynomial of Eq. (5) as a polynomial of degree 7 with
the two leading coefficients α6 = α7 = 0 and the first
nonzero coefficient α5 = 1. This means that the condition
αn �= 0 in (4) is no longer met. The resulting polynomial
of degree 7 has five affine roots (as in (12)) and a root at
infinity of multiplicity 2. The columns ofKT corresponding

to the roots at infinity can be chosen as (0 · · · 0 1 0)
T
and

(0 · · · 0 0 1)
T
.

It can be shown that shift-invariance gets a new meaning,
as the model of the null space is now an observability
matrix of a descriptor system, see Moonen et al. (1992);
Dreesen et al. (2018). This implies that the null space
is generated by the union of two subspaces, one that is
backward-shift-invariant (and represents the causal part of
the underlying state space model with dynamics modeled
by the affine zeros) and another one that is forward-
shift-invariant (and represents the anti-causal part of the
underlying state space model dynamics which are modeled
by the zeros at infinity).
Since ZT = KTV , we see that only the last two rows of
ZT are affected by the roots at infinity. Extracting the
backward-shift-invariant part of R(ZT ) is done using the
following column compression procedure (Dreesen et al.

(2018)). Let ZT =

(
Z1

Z2

)
, where Z2 ∈ R2×7 and Z1 =

(U1 U2)

(
Σ 0
0 0

)(
QT

1

QT
2

)
is the SVD of Z1, Σ ∈ R5×5.

Then, ZTQ is equal to

(
U1Σ 0
Z2Q1 Z2Q2

)
and R(U1Σ) is a

backward-shift-invariant subspace from which the affine
roots can be determined.

3. CASE 2: POLYNOMIAL EIGENVALUE PROBLEM

3.1 Seed problem

The second seed problem is the regular 1 polynomial
eigenvalue problem (PEVP):

(A0 +A1λ+A2λ
2 + · · ·+Anλ

n)︸ ︷︷ ︸
M(λ)

x = 0

(A0, . . . , An ∈ Rl×l, An �= 0, λ ∈ C, x ∈ Cl) , (13)

where we want to find scalars λ and nonzero vectors x
satisfying M(λ)x = 0.
Let r be the degree of the polynomial q(λ) = detM(λ).
The r roots of q(λ) are called the affine eigenvalues. Note
that

q(λ) = det(An)λ
ln + lower order terms .

If An is nonsingular, then r = nl, but if det(An) = 0, then
deg(q(λ)) = r < ln and besides r affine eigenvalues, there
are ln− r eigenvalues at infinity.
The standard way to solve the PEVP in Eq. (13) is to
linearize it to a pencil of nl × nl matrices and solve the
generalized eigenvalue problem (Higham et al. (2009)).
The example of this section has n = 3, l = 2 and the
following matrices

A0 =

(
4 1
1 5

)
, A1 =

(
−2 3
3 −1

)
, A2 =

(
1 −5

−5 0

)
, A3 =

(
3 −4
5 1

)
.

The matrix A3 is of full rank and consequently, we will
find six affine eigenvalues and corresponding eigenvectors.

3.2 Block-Toeplitz matrix

The FSR consists in multiplying the seed equation
M(λ)x = 0 by consecutive positive integer powers of λ.
This generates new equations M(λ)λkx = 0 (k = 1, 2, . . .)
and a banded block-Toeplitz matrix arises.
For two recursions k = 1, 2 this gives

(
A0 A1 A2 A3 0 0
0 A0 A1 A2 A3 0
0 0 A0 A1 A2 A3

)

︸ ︷︷ ︸
T ∈R6×12




x
λx
λ2x
...

λ5x




= 0 .

3.3 Block backward-shift-invariance of the null space of the
block-Toeplitz matrix

While the null space of the Toeplitz matrix T in Sec-
tion 2.3 is scalar backward-shift-invariant, the null space
of T is block backward-shift-invariant. This means that
R(ZT ) ⊆ R(ZT ), where ZT and ZT are now equal to the
matrix ZT without its first/last block row, respectively.
For our example, it is easy to see that the null space
of T is block backward-shift-invariant when using the
Vandermonde-like basis for the null space. For the distinct
affine eigenvalues λ1, . . . , λ6, the null space of T is spanned
by the columns of

KT =




x1 x2 · · · x6

λ1x1 λ2x2 · · · λ6x6

...
...

...
λ5
1x1 λ5

2x2 · · · λ5
6x6


 ∈ C12×6 .

1 M(λ)x = 0 is a regular PEVP if detM(λ) �≡ 0
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The block backward-shift-invariance, shown here for all λ
simple, is obvious:

KT




λ1 0 · · · 0
0 λ2 0
...

. . .
0 0 λ6




︸ ︷︷ ︸
Λ

= KT . (14)

3.4 Realization of multi-output LTI system

Obtaining the eigenvalues and eigenvectors of the PEVP
goes in a completely similar way as finding the roots of a
univariate polynomial, as explained in Section 2.4:

(1) Calculate a matrix ZT ∈ R12×6, the columns of
which span the null space of T . The number of rows
should be large enough so that the partial realization
condition is met: rank(ZT ) = rank(ZT ) = nl = 6.

(2) Determine the matrix A ∈ Rnl×nl that solves the set
of linear equations ZT A = ZT .

(3) The matrix A is related to the diagonal matrix Λ
in Eq. (14) by a similarity transformation. Conse-
quently, the eigenvalues of A are the affine eigenvalues
of the PEVP, λ1, . . . , λ6.

The eigenvector xi corresponding to the calculated eigen-
value λi can be determined by solving the homogeneous
system of linear equations (A0+A1λi+A2λ

2
i+A3λ

3
i )xi = 0

for each i = 1, . . . , 6. Alternatively, one can construct
the matrix KT as KT = ZT V , where V contains the
eigenvectors of A. The first block row of KT contains the
eigenvectors xi of the PEVP. The solutions for the given
problem are

λi xi

−1.6327 (−0.0584 −0.9983)
T

−0.8661 (0.5187 0.8550)
T

0.7105±0.7009i (−0.7842±0.5811i −0.1963±0.0942i)
T

0.4085±0.6478i (−0.9513±0.0538i 0.2940±0.0752i)
T

Relation to realization theory The null space R(ZT ) =
R(KT ) can be modeled as the range of the observability
matrix of an LTI system of order 6 with two outputs:

ZT =




C
CA
...

CA5


 ,

where C ∈ R2×6, A ∈ R6×6. In general, when we solve
a PEVP of degree n with l × l matrices A0, . . . , An (An

nonsingular), then we obtain the observability matrix of
an autonomous linear time-invariant system of order nl
with l outputs, the poles of which are the eigenvalues of
the PEVP.

Eigenvalues at infinity Where we needed αn �= 0 in the
Toeplitz case for backward-shift-invariance (see Section 2),
in the block-Toeplitz case, we need An to be nonsingular
for the null space to be block backward-shift-invariant.
When An is singular, the model of the null space is an ob-
servability matrix of a descriptor system as in Section 2.4,
see Moonen et al. (1992); Dreesen et al. (2018), but now

with l > 1 outputs. The null space is a union of two sub-
spaces, one that is backward-shift-invariant and another
one that is forward-shift-invariant. We can again apply the
column compression procedure explained in Section 2.4
to extract a block backward-shift-invariant subspace, on
which the procedure for affine eigenvalues can be applied
(see Section 4 for a worked-out example with solutions at
infinity).

4. CASE 3: SET OF MULTIVARIATE POLYNOMIAL
EQUATIONS

4.1 Seed problem

The third problem is solving a set of multivariate polyno-
mial equations (here shown for three variables x1, x2, x3):{
α000 + α100x1 + α010x2 + α001x3 + α200x

2
1 + α110x1x2 + · · · = 0

β000 + β100x1 + β010x2 + β001x3 + β200x
2
1 + β110x1x2 + · · · = 0

γ000 + γ100x1 + γ010x2 + γ001x3 + γ200x
2
1 + γ110x1x2 + · · · = 0

Instead of discussing the general case, we work again
with a simple example to explain our method. The set
of equations we want to solve is

p(x, y) = y2 − x3 + xy2 = 0 (15a)

q(x, y) = 6.25 + x2 − y2 = 0 . (15b)

This set of equations has four real solutions (xi, yi) i =
1, . . . , 4 and two solutions at infinity.
The method used in this section and its relation to
realization theory have been described in more detail
in Dreesen et al. (2018).

4.2 Macaulay matrix

Because we now have more than one variable, it is neces-
sary to fix an order for the different monomials. We use
the degree negative lexicographic ordering (see (Batselier
et al., 2013, Definition 2.1)): 1 < x < y < x2 < xy < y2 <
x3 < x2y < xy2 < y3 < · · · . The two equations in (15)
can be put in matrix-vector form:(

0 0 0 0 0 1 −1 0 1 0
6.25 0 0 1 0 −1 0 0 0 0

)
·

(
1 x y x2 xy y2 x3 x2y xy2 y3

)T
︸ ︷︷ ︸

vT

= 0 . (16)

The vector v is a multidimensional (mD) generalization of
the Vandermonde columns in (7).
We generate new equations by applying the FSR. Whereas
in the problems of Section 2 and Section 3, we multi-
plied the equations with increasing powers of a single
variable, namely x and λ, respectively, we now multiply
the equations by all monomials in the two variables x
and y up to a certain degree. Besides the seed problem
p(x, y) = q(x, y) = 0 we then obtain the extra equations
p(x, y)xkyl = 0 and q(x, y)xmyn = 0 (k, l,m, n are non-
negative integers).
It turns out that for the set of equations (15), we need to
‘fill up’ degrees 3 and 4 in order to be able to construct
a multi-shift-invariant subspace for the shifts in x and y
(fulfilling the rank conditions for the null space matrix, see
below). This means that we have to multiply Eq. (15a),
which is of degree 3, by the monomials of degree 1 (x, y)
and Eq. (15b), of degree 2, with the monomials of degree 1
and 2 (x, y, x2, xy, y2). This creates seven new equations
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The block backward-shift-invariance, shown here for all λ
simple, is obvious:

KT




λ1 0 · · · 0
0 λ2 0
...

. . .
0 0 λ6




︸ ︷︷ ︸
Λ

= KT . (14)

3.4 Realization of multi-output LTI system

Obtaining the eigenvalues and eigenvectors of the PEVP
goes in a completely similar way as finding the roots of a
univariate polynomial, as explained in Section 2.4:

(1) Calculate a matrix ZT ∈ R12×6, the columns of
which span the null space of T . The number of rows
should be large enough so that the partial realization
condition is met: rank(ZT ) = rank(ZT ) = nl = 6.

(2) Determine the matrix A ∈ Rnl×nl that solves the set
of linear equations ZT A = ZT .

(3) The matrix A is related to the diagonal matrix Λ
in Eq. (14) by a similarity transformation. Conse-
quently, the eigenvalues of A are the affine eigenvalues
of the PEVP, λ1, . . . , λ6.

The eigenvector xi corresponding to the calculated eigen-
value λi can be determined by solving the homogeneous
system of linear equations (A0+A1λi+A2λ

2
i+A3λ

3
i )xi = 0

for each i = 1, . . . , 6. Alternatively, one can construct
the matrix KT as KT = ZT V , where V contains the
eigenvectors of A. The first block row of KT contains the
eigenvectors xi of the PEVP. The solutions for the given
problem are

λi xi

−1.6327 (−0.0584 −0.9983)
T

−0.8661 (0.5187 0.8550)
T

0.7105±0.7009i (−0.7842±0.5811i −0.1963±0.0942i)
T

0.4085±0.6478i (−0.9513±0.0538i 0.2940±0.0752i)
T

Relation to realization theory The null space R(ZT ) =
R(KT ) can be modeled as the range of the observability
matrix of an LTI system of order 6 with two outputs:

ZT =




C
CA
...

CA5


 ,

where C ∈ R2×6, A ∈ R6×6. In general, when we solve
a PEVP of degree n with l × l matrices A0, . . . , An (An

nonsingular), then we obtain the observability matrix of
an autonomous linear time-invariant system of order nl
with l outputs, the poles of which are the eigenvalues of
the PEVP.

Eigenvalues at infinity Where we needed αn �= 0 in the
Toeplitz case for backward-shift-invariance (see Section 2),
in the block-Toeplitz case, we need An to be nonsingular
for the null space to be block backward-shift-invariant.
When An is singular, the model of the null space is an ob-
servability matrix of a descriptor system as in Section 2.4,
see Moonen et al. (1992); Dreesen et al. (2018), but now

with l > 1 outputs. The null space is a union of two sub-
spaces, one that is backward-shift-invariant and another
one that is forward-shift-invariant. We can again apply the
column compression procedure explained in Section 2.4
to extract a block backward-shift-invariant subspace, on
which the procedure for affine eigenvalues can be applied
(see Section 4 for a worked-out example with solutions at
infinity).

4. CASE 3: SET OF MULTIVARIATE POLYNOMIAL
EQUATIONS

4.1 Seed problem

The third problem is solving a set of multivariate polyno-
mial equations (here shown for three variables x1, x2, x3):{
α000 + α100x1 + α010x2 + α001x3 + α200x

2
1 + α110x1x2 + · · · = 0

β000 + β100x1 + β010x2 + β001x3 + β200x
2
1 + β110x1x2 + · · · = 0

γ000 + γ100x1 + γ010x2 + γ001x3 + γ200x
2
1 + γ110x1x2 + · · · = 0

Instead of discussing the general case, we work again
with a simple example to explain our method. The set
of equations we want to solve is

p(x, y) = y2 − x3 + xy2 = 0 (15a)

q(x, y) = 6.25 + x2 − y2 = 0 . (15b)

This set of equations has four real solutions (xi, yi) i =
1, . . . , 4 and two solutions at infinity.
The method used in this section and its relation to
realization theory have been described in more detail
in Dreesen et al. (2018).

4.2 Macaulay matrix

Because we now have more than one variable, it is neces-
sary to fix an order for the different monomials. We use
the degree negative lexicographic ordering (see (Batselier
et al., 2013, Definition 2.1)): 1 < x < y < x2 < xy < y2 <
x3 < x2y < xy2 < y3 < · · · . The two equations in (15)
can be put in matrix-vector form:(

0 0 0 0 0 1 −1 0 1 0
6.25 0 0 1 0 −1 0 0 0 0

)
·

(
1 x y x2 xy y2 x3 x2y xy2 y3

)T
︸ ︷︷ ︸

vT

= 0 . (16)

The vector v is a multidimensional (mD) generalization of
the Vandermonde columns in (7).
We generate new equations by applying the FSR. Whereas
in the problems of Section 2 and Section 3, we multi-
plied the equations with increasing powers of a single
variable, namely x and λ, respectively, we now multiply
the equations by all monomials in the two variables x
and y up to a certain degree. Besides the seed problem
p(x, y) = q(x, y) = 0 we then obtain the extra equations
p(x, y)xkyl = 0 and q(x, y)xmyn = 0 (k, l,m, n are non-
negative integers).
It turns out that for the set of equations (15), we need to
‘fill up’ degrees 3 and 4 in order to be able to construct
a multi-shift-invariant subspace for the shifts in x and y
(fulfilling the rank conditions for the null space matrix, see
below). This means that we have to multiply Eq. (15a),
which is of degree 3, by the monomials of degree 1 (x, y)
and Eq. (15b), of degree 2, with the monomials of degree 1
and 2 (x, y, x2, xy, y2). This creates seven new equations

and the resulting degree 4 Macaulay matrix is then a 9×15
matrix of rank 9, denoted by M :

M =




0 0 0 0 0 1 −1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 −1 0 1 0

6.25 0 0 1 0 −1 0 0 0 0 0 0 0 0 0

0 6.25 0 0 0 0 1 0 −1 0 0 0 0 0 0

0 0 6.25 0 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 6.25 0 0 0 0 0 0 1 0 −1 0 0

0 0 0 0 6.25 0 0 0 0 0 0 1 0 −1 0

0 0 0 0 0 6.25 0 0 0 0 0 0 1 0 −1




For more involved problems, one usually needs more FSRs
to construct a Macaulay matrix whose null space satisfies
the rank conditions.

4.3 Backward-multi-shift-invariance of the null space of
the Macaulay matrix

Let ZM be a matrix whose columns span the null space
of the Macaulay matrix M , obtained, e.g., by computing
the right singular vectors of M that correspond to its zero
singular values. When we inspect the linearly independent
rows of ZM from the top of the matrix to the bottom, we
notice that the rows 1, 2, 3 are linearly independent. Row 4
is linearly dependent on the previous three rows, row 5
is again linearly independent of all previous rows. Then,
it takes until rows 11 and 12 before there are again two
linearly independent rows. In total there are six linearly
independent rows, which is the rank of ZM and the number
of solutions of the equations in (15), in accordance with
Bézout’s theorem, see (Cox et al., 2015, p. 459), provided
the variety is zero-dimensional.
The distribution of the linearly independent rows in ZM

is illustrated in Figure 1. The degree 3 block only contains
rows that are dependent on the previous ones. This is
called the ‘mind-the-gap zone’. We need this gap in order
to be able to find a shift-invariant subspace and it is this
gap together with the rank conditions on ZM that made
us apply the FSR until we had all degree 4 equations. If we
applied more FSRs and increased the number of equations
even further, we would see the gap become wider.
The two linearly independent rows at the bottom of the
matrix are caused by the solutions at infinity. This is
similar to what happens when a univariate polynomial has
solutions at infinity, as explained in Section 2.4. The null
space is a union of a causal and anti-causal shift-invariant
space and an appropriate basis to separate them needs to
be found. This is done by using the column compression
procedure that was described in Section 2.4. The trans-
formed 10×4 submatrix is indicated by the shaded segment
in Figure 1 and denoted by ZMc

. The range of ZMc
is

backward-multi-shift-invariant because there is now more
than one backward shift possible, the most straightforward
shifts being the backward shift in x and the backward shift
in y.
We can now continue with ZMc and concentrate on the
affine roots (x1, y1), . . . , (x4, y4) only. The 10 × 4 matrix
containing the Vandermonde-like basis vectors for R(ZMc)
is denoted by KM = (v1 v2 v3 v4), where the vi vectors
are defined in Eq. (16), provided the roots are distinct
(a confluent Vandermonde matrix would supply a basis
otherwise). The first six rows of KM constitute a matrix
of full column rank (rank = 4). This submatrix will play
the role of top matrix in the realization problem; in the
previous two cases (Sections 2 and 3) the top matrix
was denoted by K. Because it is of full column rank, it
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Fig. 1. Left: representation of the matrix ZM with its
linearly independent rows in green. All rows in the
degree-3 block are linearly dependent on the previous
rows. This is the mind-the-gap zone. The shaded
columns symbolize the column compressed subspace
that is multi-shift-invariant. Right: the rows in the
degree 0, 1, 2 blocks (yellow) are shifted by a y-shift
to the corresponding rows.

satisfies the partial realization condition. It can be selected
from KM by multiplying by St, the top selection matrix
St = (I6 0).

The shifted matrix (previously denoted by K), on the
other hand, depends on the variable in which we want
to do the shift. We choose to shift in the variable y,
which is equivalent to multiplying the matrix KM by

Λy =



y1 0 0 0
0 y2 0 0
0 0 y3 0
0 0 0 y4


. In Figure 1 we see how the rows

of the degree 0, 1, 2 blocks are shifted by y. The six rows
that are the result of shifting the first six rows of KM with
y are shown on the right in yellow. They can be selected
from KM by applying the bottom selection matrix Sby to

KM , where Sby =

(
0 0 1 0 0 0 0
0 0 0 0 I2 0 0
0 0 0 0 0 0 I3

)
. Consequently, we

obtain this equation: StKMΛy = SbyKM . The role of the
mind-the-gap zone, indicated by the red arrow in Figure 1,
is apparent: it provides space to shift the rows without
getting in the zone of the roots at infinity.
We can select the same rows from ZMc . Indeed, KM

and ZMc are related as ZMcV = KM , where V is
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a nonsingular matrix. Since StKMΛy = SbyKM , we

have StZMc
V ΛyV

−1

︸ ︷︷ ︸
Ay

= SbyZMc
and we clearly see the

backward-y-shift-invariance of the selected subspace. Be-
cause we can also find a backward-shift-invariance with
other shifts, we call the null space backward-multi-shift-
invariant.

4.4 Realization of single-output mD system

The matrix Ay, which realizes the shift in y, can be
obtained as

Ay = (StZMc
)†SbyZMc

and the eigenvalues of Ay give us the y-values of the affine
solutions. Moreover, the eigenvalue decomposition of Ay

gives us the x-solutions too. Let Ay = V ΛyV
−1 be the

eigenvalue decomposition of Ay, then ZMcV = K ′
M . By

normalizing the columns of K ′
M so that their first element

is equal to 1, we obtain the complete Vandermonde-
like matrix KM and can read the affine roots (xi, yi) of
Eq. (15) at the second and third row ofKM : (−5,−5.5902),
(−5, 5.5902), (−1.25,−2.7951), (−1.25, 2.7951).

Relation to realization theory The compressed null space
R(ZMc

) = R(KM ) can be interpreted as the range of the
observability matrix of a single-output two-dimensional
LTI system:

(CT (CAx)
T (CAy)

T (CA2
x)

T · · · (CAxA
2
y)

T (CA3
y)

T )
T

,

where Ax, Ay ∈ R4×4 are commuting matrices and C ∈
R1×4.
In general, when the variety is zero-dimensional (isolated
roots) and there are zeros at infinity, then the complete
null space of the Macaulay matrix is the column space of an
observability matrix of a multi-dimensional descriptor sys-
tem, which exhibits both causal and anti-causal behavior.
Therefore, the null space is the union of a backward-shift-
invariant null space with causal behavior and a forward-
shift-invariant subspace with anti-causal behavior.

5. CASE 4: MULTIPARAMETER EIGENVALUE
PROBLEM

5.1 Seed problem

The multiparameter eigenvalue problem is the last prob-
lem that we tackle and it is the most general one. Examples
of different types of MEVPs were given in Eqs. (1)–(3).
The method that we use, was introduced by De Moor
(2019) and Vermeersch and De Moor (2019), where the
authors showed that the global optimum for two identifi-
cation problems can be obtained by solving an MEVP.
We explain the solution method by looking at the following
two-parameter eigenvalue problem

(A0 +A1λ+A2µ)x = 0 , (17)

where A0 =

(
2 −5

−2 −1
5 −1

)
, A1 =

(
3 0
3 −1

−3 2

)
, A2 =

(
2 2
3 2

−2 −4

)
.

We want to find all eigenvectors xi ∈ C2 and the corre-
sponding 2-tuples of eigenvalues (λi, µi), i = 1, . . . , 3.
The MEVP of Eq. (17) will be denoted by M(λ, µ)x = 0,
where the polynomial matrix M(λ, µ) = A0 +A1λ+A2µ.

5.2 Block-Macaulay matrix

The FSR consists in multiplying the seed equation
M(λ, µ)x = 0 by all monomials in the variables λ and
µ of increasing degree. We again use the degree negative
lexicographic ordering. The FSR generates new equations
M(λ, µ)λkµlx = 0 (k, l are nonnegative integers).
The matrix-vector version of the MEVP (17) is

(A0 A1 A2)

(
x
λx
µx

)
= 0

and consequently, the FSR creates a block-Macaulay ma-
trix. This is a generalization of the Macaulay matrix of
Section 4 and was first mentioned in De Moor (2019).
For the example in (17), the block-Macaulay matrix of
degree 2 is equal to

M =

(
A0 A1 A2 0 0 0
0 A0 0 A1 A2 0
0 0 A0 0 A1 A2

)
.

The columns of the following block version of the
Vandermonde-like matrix provide a basis for the null space
of M, assuming only distinct and affine solutions:

KM =




x1 x2 x3

λ1x1 λ2x2 λ3x3

µ1x1 µ2x2 µ3x3

λ2
1x1 λ2

2x2 λ2
3x3

λ1µ1x1 λ2µ2x2 λ3µ3x3

µ2
1x1 µ2

2x2 µ2
3x3




. (18)

5.3 Block backward multi-shift-invariance of the null space
of the block-Macaulay matrix

The null space of the block-Macaulay matrix is very similar
to the null space of the Macaulay matrix (Section 4),
but the first ‘row’ in (18) is not a vector but a matrix.
Again, we have more than one possible shift, so the null
space is multi-shift-invariant. In our example, we can shift
with λ, µ, λµ, . . . However, while in the Macaulay case,
we selected rows in ZMc that were ‘hit’ by the shift, in
the block-Macaulay case, when we make a shift with a
certain monomial, we need to select block rows instead.
Therefore, the null space of the block-Macaulay matrix is
block backward-multi-shift-invariant.

5.4 Realization of multi-output mD system

The following steps are taken:

(1) We calculate a matrix ZM, whose columns span the
null space of M. The null space dimension is the
number of roots (affine and at infinity), provided
the roots are isolated. Because (17) only has affine
solutions, we do not need a mind-the-gap, nor a
column compression.

(2) Using the selection matrix St = (I4 0) we select
the top part of ZM as StZM, making sure it is of
full column rank to satisfy the partial realization
condition, and we use the selection matrix Sbλ =(
0 I2 0 0 0 0
0 0 0 I2 0 0

)
to select the λ-shifted part (the

block rows affected by a λ-shift) as SbλZM.
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a nonsingular matrix. Since StKMΛy = SbyKM , we

have StZMc
V ΛyV

−1

︸ ︷︷ ︸
Ay

= SbyZMc
and we clearly see the

backward-y-shift-invariance of the selected subspace. Be-
cause we can also find a backward-shift-invariance with
other shifts, we call the null space backward-multi-shift-
invariant.

4.4 Realization of single-output mD system

The matrix Ay, which realizes the shift in y, can be
obtained as

Ay = (StZMc
)†SbyZMc

and the eigenvalues of Ay give us the y-values of the affine
solutions. Moreover, the eigenvalue decomposition of Ay

gives us the x-solutions too. Let Ay = V ΛyV
−1 be the

eigenvalue decomposition of Ay, then ZMcV = K ′
M . By

normalizing the columns of K ′
M so that their first element

is equal to 1, we obtain the complete Vandermonde-
like matrix KM and can read the affine roots (xi, yi) of
Eq. (15) at the second and third row ofKM : (−5,−5.5902),
(−5, 5.5902), (−1.25,−2.7951), (−1.25, 2.7951).

Relation to realization theory The compressed null space
R(ZMc

) = R(KM ) can be interpreted as the range of the
observability matrix of a single-output two-dimensional
LTI system:

(CT (CAx)
T (CAy)

T (CA2
x)

T · · · (CAxA
2
y)

T (CA3
y)

T )
T

,

where Ax, Ay ∈ R4×4 are commuting matrices and C ∈
R1×4.
In general, when the variety is zero-dimensional (isolated
roots) and there are zeros at infinity, then the complete
null space of the Macaulay matrix is the column space of an
observability matrix of a multi-dimensional descriptor sys-
tem, which exhibits both causal and anti-causal behavior.
Therefore, the null space is the union of a backward-shift-
invariant null space with causal behavior and a forward-
shift-invariant subspace with anti-causal behavior.

5. CASE 4: MULTIPARAMETER EIGENVALUE
PROBLEM

5.1 Seed problem

The multiparameter eigenvalue problem is the last prob-
lem that we tackle and it is the most general one. Examples
of different types of MEVPs were given in Eqs. (1)–(3).
The method that we use, was introduced by De Moor
(2019) and Vermeersch and De Moor (2019), where the
authors showed that the global optimum for two identifi-
cation problems can be obtained by solving an MEVP.
We explain the solution method by looking at the following
two-parameter eigenvalue problem

(A0 +A1λ+A2µ)x = 0 , (17)

where A0 =

(
2 −5

−2 −1
5 −1

)
, A1 =

(
3 0
3 −1

−3 2

)
, A2 =

(
2 2
3 2

−2 −4

)
.

We want to find all eigenvectors xi ∈ C2 and the corre-
sponding 2-tuples of eigenvalues (λi, µi), i = 1, . . . , 3.
The MEVP of Eq. (17) will be denoted by M(λ, µ)x = 0,
where the polynomial matrix M(λ, µ) = A0 +A1λ+A2µ.

5.2 Block-Macaulay matrix

The FSR consists in multiplying the seed equation
M(λ, µ)x = 0 by all monomials in the variables λ and
µ of increasing degree. We again use the degree negative
lexicographic ordering. The FSR generates new equations
M(λ, µ)λkµlx = 0 (k, l are nonnegative integers).
The matrix-vector version of the MEVP (17) is

(A0 A1 A2)

(
x
λx
µx

)
= 0

and consequently, the FSR creates a block-Macaulay ma-
trix. This is a generalization of the Macaulay matrix of
Section 4 and was first mentioned in De Moor (2019).
For the example in (17), the block-Macaulay matrix of
degree 2 is equal to

M =

(
A0 A1 A2 0 0 0
0 A0 0 A1 A2 0
0 0 A0 0 A1 A2

)
.

The columns of the following block version of the
Vandermonde-like matrix provide a basis for the null space
of M, assuming only distinct and affine solutions:

KM =




x1 x2 x3

λ1x1 λ2x2 λ3x3

µ1x1 µ2x2 µ3x3

λ2
1x1 λ2

2x2 λ2
3x3

λ1µ1x1 λ2µ2x2 λ3µ3x3

µ2
1x1 µ2

2x2 µ2
3x3




. (18)

5.3 Block backward multi-shift-invariance of the null space
of the block-Macaulay matrix

The null space of the block-Macaulay matrix is very similar
to the null space of the Macaulay matrix (Section 4),
but the first ‘row’ in (18) is not a vector but a matrix.
Again, we have more than one possible shift, so the null
space is multi-shift-invariant. In our example, we can shift
with λ, µ, λµ, . . . However, while in the Macaulay case,
we selected rows in ZMc that were ‘hit’ by the shift, in
the block-Macaulay case, when we make a shift with a
certain monomial, we need to select block rows instead.
Therefore, the null space of the block-Macaulay matrix is
block backward-multi-shift-invariant.

5.4 Realization of multi-output mD system

The following steps are taken:

(1) We calculate a matrix ZM, whose columns span the
null space of M. The null space dimension is the
number of roots (affine and at infinity), provided
the roots are isolated. Because (17) only has affine
solutions, we do not need a mind-the-gap, nor a
column compression.

(2) Using the selection matrix St = (I4 0) we select
the top part of ZM as StZM, making sure it is of
full column rank to satisfy the partial realization
condition, and we use the selection matrix Sbλ =(
0 I2 0 0 0 0
0 0 0 I2 0 0

)
to select the λ-shifted part (the

block rows affected by a λ-shift) as SbλZM.

(3) The block backward-λ-shift-invariance property of
the null space ensures that there is a matrix Aλ ∈
R3×3 so that StZMAλ = SbλZM, which is obtained
as Aλ = (StZM)†SbλZM.

(4) Let the eigenvalue decomposition of Aλ be Aλ =
V ΛV −1. The eigenvectors of Aλ can be used to
transform the matrix ZM into the matrix KM =
ZMV , which then delivers the eigenvectors (first
block row of KM) and the corresponding eigenvalue
2-tuples (λi, µi) for i = 1, 2, 3:

λi µi xi

3.4536 1.1169

(
0.1862
0.9825

)

−0.2268 + 1.4608i 0.4415− 0.7775i

(
−0.4946 + 0.5971i
−0.5972 + 0.2053i

)

−0.2268− 1.4608i 0.4415 + 0.7775i

(
−0.4946− 0.5971i
−0.5972− 0.2053i

)

Solutions at infinity For the MEVP case too, solutions
at infinity are possible. We then have to do enough FSRs
to ensure the mind-the-gap zone exists in the null space
matrix and apply column compression as explained in
Section 2.4 and applied in Section 4.3. This allows us
to separate the affine eigenvalues from those at infinity.
A block backward-multi-shift-invariant subspace can be
extracted from which the affine solutions follow.

Relation to realization theory The column space of KM
or ZM in our example, can be seen as the range of
an observability matrix of a 2D commutative system of
order 3 with two outputs:(
CT (CAλ)

T (CAµ)
T (CA2

λ)
T (CAλAµ)

T (CA2
µ)

T
)T

,

where C ∈ R2×3, Aλ, Aµ ∈ R3×3 and AλAµ = AµAλ.
If there were solutions at infinity, then the whole column
space could be modeled as the range of the observability
matrix of an mD commutative descriptor system.

6. CONCLUSIONS

In this paper we presented four problems of increasing
complexity (rooting a univariate polynomial, solving a
polynomial eigenvalue problem, rooting a set of multi-
variate polynomials, solving a multiparameter eigenvalue
problem) that can be solved using the same steps:

(1) create a structured matrix by generating new equa-
tions using the Forward Shift Recursion,

(2) calculate the null space of the matrix and check its
shift-invariance property,

(3) apply realization theory to find the solutions by
solving an eigenvalue problem.

We have shown that solving a multiparameter eigenvalue
problem (MEVP) boils down to solving a standard eigen-
value problem. This has already led to new theoretical
insights about globally optimal solutions to system identi-
fication problems in De Moor (2019, 2020) and Vermeersch
and De Moor (2019). Many more optimization problems
can be formulated as an MEVP. For all these problems,
the global optimum can be obtained by solving a standard
eigenvalue problem. Future work will also be concerned
with making our algorithms faster and more feasible by
exploiting the structure and sparsity of the matrices in-
volved.
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