
Production scheduling with stock- and
staff-related restrictions

Carlo S. Sartori �, Vinícius Gandra, Hatice Çalık, and Pieter Smet

KU Leuven, Department of Computer Science, CODeS; Leuven.AI, Belgium
{carlo.sartori,vinicius.gandramartinssantos,hatice.calik,pieter.smet}@kuleuven.be

Abstract. Effective production scheduling allows manufacturing com-
panies to be flexible and well-adjusted to varying customer demand. In
practice, production scheduling decisions are subject to several complex
constraints which emerge from staff working hours and skills, delivery
schedules, stock capacities, machine maintenance and machine setup.
This paper introduces a novel production scheduling problem based on
the real-world case of a manufacturing company in Belgium. Given a set
of customer requests which may only be delivered together on one of the
provided potential shipment days, the problem is to select a subset of
these requests and schedule the production of the required item quan-
tities subject to the aforementioned restrictions. All decisions must be
taken for a time horizon of several days, leading to a complex problem
where there may not be enough resources to serve all requests. We pro-
vide an integer programming formulation of this novel problem which is
capable of solving small-scale instances to proven optimality. In order to
efficiently solve large-scale instances, we develop a metaheuristic algo-
rithm. A computational study with instances generated from real-world
data indicates that the metaheuristic can quickly produce high-quality
solutions, even for cases comprising several days, requests and limited
stock capacities. We also conduct a sensitivity analysis concerning char-
acteristics of the schedules and instances, the results of which can be
exploited to increase production capacity and revenue.

Keywords: Production scheduling · Stock levels · Integer programming
· Metaheuristic.

1 Introduction

Due to increased global competitiveness and market uncertainty, manufacturing
companies have become increasingly flexible to meet varying demand for their
products. Typically, production lines have finite capacities and demand cannot
be met by simply increasing production rates. Instead, careful lot-sizing decisions
must be made to determine how much of each product is produced and how
much stock is maintained. In practice, these decisions are subject to a variety of
constraints, including staff-related restrictions and delivery schedules.

Our work is motivated by a problem faced by a manufacturing company
in Belgium. The production environment is equipped with two non-identical

2 C.S. Sartori et al.

machines capable of producing multiple item types under the supervision of
human operators. Each machine can only produce one item type at a time given
that the necessary configuration (setup) for an item type is conducted before
production begins. The item types and quantities demanded by a set of customers
are fixed, but the date to deliver the entire demand of each customer must
be selected from multiple options provided by the customer. If resources are
not sufficient to satisfy all customer demands, the lost sales are reflected as a
penalty cost. Machines require maintenance at regular intervals. Maintenance
and certain setups can only be performed by a skilled operator who is available
during a specific time slot each day. In order to increase production capacity,
the two machines can operate in parallel. They can also operate with overtime
or during night shifts, but each of these options incurs additional costs. Another
type of cost is incurred when the daily safety stocks are not maintained, meaning
that the stock level of an item type drops below a minimum desired threshold.
Moreover, a predetermined maximum stock level may not be exceeded under
any circumstances for any item type.

Given all these machine-, operator- and stock-related restrictions, a solution
for the problem involves generating a production schedule at minimum cost for a
finite period of time, which comprises a number of days subdivided into several
time blocks. We refer to this problem as the Production Scheduling Problem with
stock- and staff-related restrictions (PSP). Before providing a detailed descrip-
tion of the PSP in Section 2, we will briefly review some related problems to
position the PSP in the literature.

The literature most closely related to the PSP is that of Lot-sizing and
Scheduling Problems (LSPs): a class of problems with many variants for the
planning of production schedules. A review concerning standard models pro-
posed for several LSPs was provided by [3]. Additionally, due to its numerous
side constraints, the PSP can also be positioned within the literature of LSPs
with Secondary Resources (SRs) [12]. SRs are subcategorized as one of two types:
disjunctive or cumulative. A disjunctive SR can only be employed once at a time,
whereas a cumulative SR is one for which the total accumulated value restricts
the solution in some way. The PSP contains SRs of both types. Similar to the
study conducted by [11], certain operations can only be performed in the pres-
ence of a skilled operator. This operator is a disjunctive SR who cannot perform
multiple duties in parallel. Meanwhile, daily stock capacities and the stocks
themselves are cumulative SRs since although they constrain the solutions to
the problem, they can be used to satisfy multiple requests.

More specifically, the PSP can be considered a variant of the Discrete Lot-
sizing and Scheduling Problem (DLSP) [5]. This is one of the classic LSPs as per
the classification provided by [3]. There are two characteristics that distinguish
the DLSP from other LSPs [4]. First, it considers both macro and micro periods
where macro periods are formed by a sequence of micro periods. Other LSPs only
consider the macro scale. Second, the DLSP assumes all-or-nothing production:
only one item type may be produced by a machine during a micro period while
running at full capacity. In the PSP, we have both macro and micro periods:

Production scheduling with additional restrictions 3

days and blocks. Furthermore, in each block, a machine is either idle or entirely
dedicated to a single type of operation (maintenance, setup or production of
one item type). One key difference, however, is that while the DLSP considers
a holding cost per item in stock, the PSP assumes no holding costs but instead
enforces a maximum stock level for each item type.

Another key challenge in the PSP is the order selection and scheduling, for
which we refer interested readers to [10] for a thorough review of the topic. Note
that order selection and scheduling coupled with sequence-dependent setup times
becomes significantly more challenging to solve since the production order can
impact the amount of unproductive time introduced depending on the setups
required for each machine. A recent problem variant which combines both char-
acteristics was studied by [9].

The PSP differs from the aforementioned DLSP and other LSP variants in
three main ways which in combination with one another makes the problem very
challenging. First, demand and due dates are not entirely fixed and should be
decided. Second, daily production capacities can be increased via parallel pro-
duction on machines, overtime and night shift production, however all of these
options incur additional costs. Third, setup or maintenance operations can be
spread over multiple non-continuous blocks, between which the dedicated opera-
tor might be assigned other duties, such as the setup or maintenance of another
machine. The demand selection and multiple due date options associated with
the PSP resemble the order selection and scheduling with leadtime flexibility
considered by [2] for a single-machine system. However, the PSP remains dis-
tinct due to the second and third aforementioned characteristics.

The remainder of this paper is organized as follows. Section 2 formally in-
troduces the PSP. Section 3 details a Late Acceptance Hill-Climbing (LAHC)
heuristic [1] we designed for the PSP. A recent successful application of LAHC
in combination with exact methods to solve a variant of the LSP [6] encouraged
us to select this method. Section 4 goes on to provide a computational study
and introduce new instances, while Section 5 concludes the paper.

2 Notation and problem description

The PSP is modeled over an ordered set D = {1, . . . , |D|} of days, each of which
begins at 05:00 and has a duration of 24 hours. Each day is decomposed into a
set B = {1, . . . , bn} of time blocks of equal length as depicted in Fig. 1. Fig. 1 also
highlights specific blocks that define intervals during which certain operations
can take place. A task to be carried out on a machine takes an integer number
of blocks to be completed and cannot take less than one block. Throughout the
remainder of this paper, time is expressed in terms of number of blocks.

1 2 . . . be . . . bl . . . bs bs+1 . . . bo . . . bn
05:00 07:00 15:00 21:00 00:00 05:00

Night shiftDay shift

Overtime blocksMaintenance and long setups

Fig. 1: Representation of one day as a set of time blocks.

4 C.S. Sartori et al.

A day begins with block 1 and ends with block bn, after which the following
day begins. The factory is open every day between blocks 1 and bs. Blocks
1, . . . , bs constitute the day shift, whereas blocks bs+1, . . . , bn constitute the night
shift. The night shift may be used at an additional cost in one of two different
ways. First, blocks bs+1, . . . , bo may be individually scheduled as overtime and
incur a cost po per block. Overtime may be scheduled any day and as often as
necessary. Alternatively, a full night shift may be scheduled at a cost pn per
day, thereby enabling all night blocks bs+1, . . . , bn to be used. The organization
in question requires full night shifts to be scheduled for at least dn consecutive
days. We refer to this as the minimum consecutive night shifts constraint. It is
not possible to schedule overtime and a full night shift on the same day.

There are two machines available to produce a set I of different item types.
Let M = {m1,m2} denote the set of machines and emi ≥ 0 represent the total
number of type i ∈ I items that machine m ∈M produces per block. If machine
m cannot produce items of type i, then emi = 0.

Machines can operate simultaneously, which we will henceforth refer to as
parallel operation. Parallel operation occurs in a day d ∈ D and a block b ∈ B
when no machines are idle during this time slot. Parallel operation during the
day shift incurs an additional cost pp for that day because the company must
hire an additional outsourced external worker. During night shifts, however,
machines can operate in parallel without additional costs because night shifts
already include the outsourced external worker in their cost.

Machines operate to fulfill a set R of customer requests, where each r ∈ R
requires a quantity qir of item type i ∈ I to be produced. Let ci be the sales price
of each item type i ∈ I, then c(r) =

∑
i∈I q

i
rci denotes the revenue obtained from

request r ∈ R when it is fulfilled. Each request r has a set of allowed shipping
days Dr ⊆ D which are specified by the customer. A request r can only be
shipped on day d ∈ Dr if all the necessary quantities of items are available at
the end of day d (partial shipments are not permitted). Items do not necessarily
need to be produced during day d and may instead be taken from the available
stock. If a request cannot be shipped by its latest feasible day, it is considered
unserved.

The allowed shipping days are also crucial with respect to maintaining fea-
sible stock levels. Shipments are scheduled by the end of each day (after block
bn). After shipment, but before the start of the next day, stock levels must be
updated. The stock on day d ∈ D corresponds to the stock on day d−1 plus the
total production minus the shipped items on day d. For each item type i ∈ I,
its stock at the end of day d must never exceed the maximum stock level Smax

i

that can be stored in the warehouse. There is also a minimum level Smin
i that

should be kept in stock at the end of each day to ensure sufficient resources are
available in case of disruptions or unexpected orders. Having stocks below the
minimum stock level is allowed, but incurs a penalty ps at the end of the day per
unit below the minimum. Naturally, the stock of an item can never be negative.

For each (m, d, b) tuple such that m ∈ M , d ∈ D and b ∈ B, we assign one
of the following four tasks: (i) production of an item type, (ii) machine setup

Production scheduling with additional restrictions 5

from one item type to another, (iii) maintenance and (iv) idle. If a task requires
more than one block of time, then multiple blocks must be scheduled. Tasks
with multiple blocks are not necessarily continuous. Idle and maintenance/setup
blocks may be scheduled in between other setup/maintenance tasks. When night
shift blocks are not employed in the schedule, they are all set to idle.

The type of item produced on a machine can be changed with sequence-
dependent setup times that require smij blocks to change the configuration of
machine m from production of item type i ∈ I to type j ∈ I. These setups are
classified as either short (U) or long (L). A short setup (i, j) ∈ U, i, j ∈ I may
be carried out at any time. Meanwhile, a long setup (i, j) ∈ L, i, j ∈ I is only
allowed during the range of blocks [be, bl] due to staff-related constraints. Addi-
tionally, maintenance must be scheduled for each machine m ∈M at most gmmax
days apart and each maintenance takes fm blocks. No production is possible
while a machine is undergoing maintenance or setup. Long setups and mainte-
nance can only be scheduled during the range [be, bl] and are never allowed in
parallel with another maintenance or long setup.

Since production is supposed to be a continuous process, we need to take
into account certain information concerning schedules from the previous time
horizon. This historic information includes: the last item type for which each
machine was configured, the number of days since maintenance was performed for
each machine, the stocked quantity of each item, and the number of consecutive
night shifts scheduled at the end of the preceding scheduling period. The last of
these parameters provides us with the number of mandatory night shifts hn ≥ 0:
the number of night shifts that must be scheduled at the beginning of the time
horizon in order to comply with the minimum consecutive night shifts constraint.

The primary decision is to select when and which requests to produce and
ship. This not only involves deciding on which date/time, on which machine
and in which order to produce items, but also how many items of each type
to produce, and how many items to take from the stock. Additionally, we must
decide when to schedule overtime or night shifts to extend production capacity.
All decisions must also account for the constraints related to the limited shipping
days, stock levels, machine maintenance and limited setup times.

A solution is sought which minimizes the revenue loss from unserved requests,
additional personnel costs (overtime, night shift and parallel operations) and the
penalties incurred by stock deficits. Let X be the set of all feasible solutions to
the PSP and f(s) be the cost of solution s ∈ X. The aim is to find the minimum
cost solution s∗ = argmins∈X f(s). This cost is defined by five components.
First, the cost c(r) of all unserved requests r ∈ R (or the revenue loss). Second,
a cost pp for each day d ∈ D that contains at least one parallel operation. Third,
a cost pn for each day d ∈ D that a night shift has been scheduled. This cost
is incurred even if all night shift blocks are completely idle, as long as day d is
part of a minimum consecutive night shifts sequence. Fourth, a cost po for each
block b ∈ B of overtime scheduled for each day d ∈ D. Finally, a penalty ps is
incurred per unit of item i ∈ I below its minimum stock level Smin

i at the end
of every day d ∈ D.

6 C.S. Sartori et al.

In order to formally define the problem, an Integer Linear Programming
(ILP) formulation is provided in Appendix A. This ILP formulation is also used
to assess the performance of the heuristic approach proposed in Section 3.

3 A heuristic approach
Preliminary experiments revealed that the ILP formulation can only provide
high-quality solutions for very small instances within a time limit of one hour.
Thus, a tailored algorithm is required in order to produce high-quality solutions
for large-scale PSP instances within reasonable processing times. In this paper,
we employ a heuristic which improves an initial solution through insertion and
removal of requests in order to efficiently explore the PSP’s solution space.

The proposed heuristic to solve the PSP adapts LAHC [1], which is a simple
metaheuristic framework that requires only a single parameter: the length of
the list containing previous solution costs. LAHC has recently been employed to
solve a variant of the LSP and achieved high-quality results [6], demonstrating
that it is also a good choice for this class of problems. Algorithm 1 outlines the
LAHC algorithm employed to solve the PSP.

Algorithm 1 begins by constructing an initial feasible solution using the pro-
cedure which will be detailed in Section 3.1, followed by initializing LAHC’s
fitness array F and counter variables iter and idle (lines 2–4). The main loop of
the algorithm (lines 5-18) is iterated over until either Miter iterations have been
reached or no improvement has been observed for bαMiterc iterations. BothMiter
and α ∈ [0, 1] are parameters of the LAHC.

Algorithm 1: Late Acceptance Hill-Climbing (LAHC).
1 Input: Instance of the PSP, parameters Miter, α, Ls, γ, βroll, βnight, η;
2 s← initialSolution();
3 F [k]← +∞, k = 1, . . . , Ls;
4 iter, idle← 0;
5 while iter < Miter and idle < bαMiterc do
6 s′ ← buildNewSolution(s, iter, Miter, γ, βnight, η);
7 if f(s′) ≥ f(s) then
8 idle← idle+ 1;
9 else

10 idle← 0;
11 k ← iter mod Ls;
12 if f(s′) < F [k] or f(s′) ≤ f(s) then s← s′;
13 if f(s) < F [k] then F [k]← f(s);
14 if idle = bαβrollMiterc then s← s∗;
15 iter← iter+ 1;
16 return s∗

In every iteration of the LAHC, a new solution s′ is generated using the
current solution s and the procedure which will be described in Section 3.2 (line
6). Then, lines 7–15 update the idle iteration counter, the current solution s and
the fitness array F according to the original strategy introduced by [1]. Note

Production scheduling with additional restrictions 7

that F allows a worsening solution s′ to be accepted whenever its total cost
is less than the cost of the solution Ls iterations earlier, where Ls is the size
of LAHC’s list of solution costs. To increase intensification of the search, we
included a rollback procedure so that when the number of idle iterations reaches
a specified percentage of its maximum value, the current solution s is replaced
with s∗ (lines 16-17). Here, βroll ∈ [0, 1] is also a parameter. The first rollback
is always allowed. Any additional rollbacks can only occur if s∗ is improved
after the preceding rollback. The best solution s∗ generated over all iterations is
returned (line 19).

3.1 Initial solution

Initial solution s is constructed by first initializing the blocks for every day and
every machine as idle. Next, the required maintenance is scheduled for each
machine with as many days in-between as possible while avoiding parallel main-
tenance blocks. These initial maintenance days are fixed throughout the entirety
of LAHC’s execution. After these steps, solution s should contain a feasible main-
tenance schedule for all machines, otherwise the instance is considered infeasible.
Algorithm 2 outlines the steps to build the initial solution.

Algorithm 2: initialSolution()
1 s← idleSolution();
2 s← scheduleMaintenance(s);
3 Or ← true, ∀r ∈ R ; // Initially all requests are available
4 while ∃ r ∈ R : Or = true do
5 cmax ← max c(r) : Or = true;
6 select request y : Oy = true with probability 0.8 · c(y)/cmax;
7 s← insertRequestBestPosition(s, y, true);
8 Oy ← false;
9 return s;

Once a feasible maintenance schedule is generated, requests are inserted into
s along with the necessary production and setup blocks. These insertions are
performed in a greedy-randomized manner (lines 4–8 of Algorithm 2). While
there remain available requests to be inserted, one request r ∈ R is selected at
random with probability 0.8c(r)/cmax, where c(r) denotes the profit for shipping
request r and cmax is the value of the most profitable request among all currently
available ones (lines 5–6). The selected request r is inserted into its best shipment
day d∗ ∈ Dr using the procedure described in Section 3.3 (line 7). Once r is
inserted into s or once no feasible day remains into which r can be inserted, the
request is marked as processed so that it is no longer considered for insertion in
the construction phase (line 8). Request insertion is repeated until all requests
have been marked processed.

8 C.S. Sartori et al.

3.2 New solution generation

A new solution s′ is constructed from the current solution s via a series of
modifications. Algorithm 3 outlines the steps to perform these changes. The
algorithm removes requests at random from s′, as well as unnecessary production
blocks arising from such removal, employing the procedure described in Section
3.4 (line 7 of Algorithm 3). Note that by removing requests and unecessary
production blocks, more space or slack is created to later reinsert requests and
therefore more effectively explore the solution space of the PSP. The algorithm
reinserts these requests in a random order on their best possible shipping dates
using the heuristic outlined in Section 3.3 (line 8). The number of removed
requests is selected uniformly from [1, max{20, bγ|R|c}], where γ ∈ [0, 1] is a
parameter of the LAHC. We limit the removal to a maximum of 20 requests to
account for very large instances. In the case that not all of the removed requests
are successfully reinserted, the remaining unserved requests incur a penalty.

Algorithm 3: buildNewSolution(s, iter, Miter, γ, βnight, η)
1 Input: Solution s, num. of iterations iter, parameters Miter, γ, βnight, η;
2 s′ ← s;
3 if iter > Miterβnight and iter mod η = 0 then
4 s′ ← removeUnusedOvertimeAndNightShift(s′);
5 s′ ← insertRandomOvertimeOrNightShift(s′);
6 y ← rand(1,min{20, γ|R|});
7 s′ ← randomRequestRemoval(s′, y);
8 s′ ← bestRequestInsertion(s′);
9 s′ ← fixStockBelowMinimum(s′);

10 return s′;

Once the number of iterations in Algorithm 1 reaches bβnightMiterc, new
solutions are permitted to employ overtime or additional night shifts. Here, value
βnight ∈ [0, 1] is another parameter of the LAHC. Overtime and night shifts are
modified as follows (lines 3–5). First, unused but active overtime and night shifts
are removed, followed by the activation of new overtime or night shift blocks.
The procedures for (de)activating overtime and night shift blocks are detailed
in Section 3.5. These (de)activations are only executed every η iterations of
the LAHC so that the algorithm has sufficient time to make best use of the
new overtime or night shift blocks. The value of η is parameterized as well. The
decision to postpone the activation of night shifts and overtime to later iterations
in the LAHC’s execution is not arbitrary. In practice, night shifts and overtime
are deemed undesired by both employers and employees. Therefore, avoiding
their use forces the LAHC to produce solutions without featuring them.

When all requests have been fulfilled in s′, a procedure to increase stock levels
by scheduling production blocks is employed (line 9). This procedure examines
each day d ∈ D for the items i ∈ I that have stocks below their minimum level.
It then attempts to schedule production blocks for these items on days d′ ≤ d to
reduce stock penalties. Production blocks on days d′ < d are only added if they
do not result in a solution exceeding maximum stock levels.

Production scheduling with additional restrictions 9

3.3 Request insertion heuristic

A shipping day must be determined for each request while respecting stock levels
and only considering the allowed shipping days for that requestDr. Our proposed
request insertion heuristic inserts requests into each allowed shipping day. The
shipping day which yields the best result is then selected. When attempting to
ship a request r on a given day d, production of all requested items qir (i ∈ I) is
scheduled in such a way that the maximum possible number of items is produced
from day 0 until day d. When the produced items are not enough to serve the
request, the shortfall of production is compensated by preexisting stock. By
producing as many items as possible for each inserted request, solutions have
less chance of violating minimum stock levels and stocks may be preserved to
help serve requests with greater demand.

Algorithm 4 outlines the overall framework of the request insertion heuristic
for a single request r. The insertion of parallel production is optional and given
as a parameter. Production of items is inserted backwards, beginning from the
shipping day d back until the first day of the time horizon (lines 8-11). This
mechanism aims to maintain production as close to the shipment date as possible,
which decreases the chance of violating maximum stock levels. If a solution
producing all qr items is not found, the remaining items to complete request r
are removed from stocks (lines 12-15). In this case, minimum stock levels can be
violated. After all permitted shipping days have been checked, the best solution
is returned (line 19).

The insertProduction method receives a set of item types and their respective
quantities RP to be produced on a given day d′. For every i ∈ I where RPi ≥ 1,
the method attempts to insert a total of b = dRPi/emi e production blocks on any
machinem ∈M where emi > 0. The method ends as soon as either all production
has been scheduled or once it is not possible to insert any more production on
that day. The items and machines are iterated over sequentially. The production
of b blocks of item type i is then scheduled on machinem on day d′ in accordance
with one of two possible methods.

The first method is used when machine m on day d′ has no production of
item i. In this scenario, production of item i is inserted along with the necessary
setups into the first sequence of idle blocks on day d′ where it can be fit. If the
production of b blocks is not possible, the same method is called to insert b− 1
blocks on the same day and on the same machine. The second method handles the
insertion of production of item i on a day and machine that is already producing
at least one block of i. This method increments the sequence of production blocks
of i by b blocks. Tasks already scheduled on day d′ are pulled back or pushed
forward, replacing idle blocks. The resulting day is feasible if every non-idle task
remains scheduled and no conflict is found.

3.4 Request removal heuristic

Given a current solution and a set of requests R to be removed from the schedule,
the request removal heuristic starts by removing the scheduled shipping days of
all requests in R. Stock levels for every item and day are then recalculated. In

10 C.S. Sartori et al.

Algorithm 4: insertRequestBestPosition(s, r, bp)
1 Input: Solution s, Request r, boolean bp to enable parallel production;
2 s∗ ← s;
3 foreach d ∈ Dr do
4 s′ ← s;
5 RP ← qir ∀i ∈ I ; // Remaining production of each item
6 IP ← ∅ ∀i ∈ I ; // Inserted production of each item
7 d′ ← d;
8 while d′ 6= 0 or RP 6= ∅ do
9 insertProduction(s′, d′, RP , IP , bp);

10 RP ← RP \ IP ;
11 d′ ← d′ − 1;
12 if RP 6= ∅ then
13 possible ← RemoveFromStock(s′, RP , d);
14 if possible = False then go to next d;
15 s′ ← Schedule shipping of request r on day d;
16 if f(s′) < f(s∗) then
17 s∗ ← s′;
18 return s∗;

this step, solutions often have a large number of items being produced which are
not shipped, possibly violating maximum stock levels.

In order to remove unnecessary production and correct stock level violations,
a removal slack SLK is calculated for each day and item type. SLK expresses
how many production tasks of item type i can be removed from day d without
violating Smini and is calculated as SLK[d][i] = min(stock[d]−Smini , SLK[d+1][i]).
SLK is used as an upper bound and the request removal heuristic continues by
removing as many production tasks as possible for each day and item type.
Removing a large number of production tasks results in a partial solution with
more idle blocks, providing additional flexibility for request insertion. When
removing production tasks, setups for certain item types become obsolete as
those items are no longer being produced, hence these setups are also removed.

3.5 Overtime and night shift heuristics
Once the number of iterations performed by Algorithm 1 exceeds the thresh-
old defined in Section 3.2, non-mandatory night shifts and overtime blocks are
(de)activated in the schedule. For a particular day d ∈ D, (de)activation of night
shifts and overtime is performed by the use of Boolean flags indicating whether
a night shift (alternatively overtime) is active for a day d. Overtime and night
shift flags cannot be simultaneously active during the same day d.

Overtime and night shift removal: Before the insertion of overtime or night
shifts, the algorithm first removes all unused blocks. For every day d with active
overtime but for which all blocks in [bs+1, bo] contain idle tasks, the overtime flag
is deactivated. For night shifts, a sequence of at least dn consecutive days with
night shifts is extracted from the solution (if such a sequence exists). All empty

Production scheduling with additional restrictions 11

night shifts – those with only idle blocks in both machines – in this sequence are
deactivated from either the beginning, the end, or the middle of the sequence so
long as the minimum consecutive night shift constraint is respected. Note that
mandatory night shifts are never removed and are always available for use.

Overtime and night shift insertion: After the removal of unused overtime and
night shifts, new insertions are performed. The algorithm chooses with uniform
probability one of the three following insertion methods:
(I1) Overtime insertion: a number δ ∈ [1, |D|] is selected with uniform probability.

Then, the procedure iterates over all days D in a random order, activating
overtime flags for days without any active flags. This continues until either
δ overtime blocks have been activated or all days have been checked.

(I2) Earliest night shift insertion: this can only be executed if the instance con-
tains mandatory night shifts. The algorithm selects with uniform probability
a number δ ∈ [1, dn−1]. Then, starting from the first day without a manda-
tory night shift, the algorithm activates night shifts for the next δ days in the
time horizon. Any of the δ days which already contains an activated night
shift is counted as an activation. In the case that a day contains overtime, it
is deactivated and a night shift is activated in its place.

(I3) Random night shift insertion: a day d1 ∈ [hn, |D|] is selected at random.
Then, for all days d1, . . . , d1 + dn, night shifts are activated. Any active
overtime is replaced with a night shift.

For both (I2) and (I3), feasibility with respect to the minimum consecutive night
shift constraint is maintained at all times.

4 Computational study
In order to provide some managerial insights on certain PSP characteristics and
analyze the performance of the ILP model as well as the LAHC heuristic, this
section presents the results obtained from a computational study on the PSP.

All experiments were conducted on a computer with Intel Xeon E5-2660
at 2.6 GHz and 160 GB of RAM running Ubuntu 20.04 LTS. The LAHC was
implemented in C++, compiled using g++ 9.3 and executed in single-thread mode.
The ILP was implemented using the C++ API of Gurobi 9 and it was run for up
to one hour per instance, using maximum eight threads. Based on the company’s
requests, we set the maximum execution time of the LAHC to ten minutes.

4.1 New instance sets
In order to run experiments using the proposed algorithm and stimulate fur-
ther research regarding the PSP, instances were generated based on real-world
data. The instances, solutions and a validator are publicly available at an on-
line repository [8]. The company that inspired this work provided us with a
set of items (I) and machines (M), minimum and maximum stock levels per
item (Smin

i and Smax
i), a set of short/long setups and their duration (U , L and

smij), maintenance durations and frequencies per machine (fm and gmmax) and
time restrictions for long setup and maintenance (bounded by the block indexes
be,l,s,o,n). The efficiency of machines per item (emi) is identical for both machines

12 C.S. Sartori et al.

with the exception of certain items which cannot be produced by machine m2,
in which case em1

i > 0 and em2
i = 0. This data was considered standard and left

unaltered for every instance. The company also provided the cost of items (ci),
overtime (po), night shift (pn) and parallel production (pp). For privacy reasons,
these values were converted into proportional values. Finally, a month’s worth
of customer requests were provided and used as the basis for generating multiple
instances.

Consider AvgI =
∑

r∈R
∑

i∈I q
i
r

|D| , which is the average number of items re-
quested per day in a given time horizon of |D| days. The company generates
their production schedule for a time horizon of 10 days considering blocks of 60
minutes and an AvgI up to one million in high-demand weeks. Based on the
provided data, we generated two instance sets corresponding to periods of low
and high production demands. For every instance in the low-demand and high-
demand sets, AvgI = 500, 000 and 1, 000, 000, respectively. The high-demand
set corresponds to a busy scenario for the company and can therefore be consid-
ered realistic in terms of size. Each benchmark set contains 18 instances. Each
instance is named in accordance with its three primary attributes: |D|, |R| and
bdur (the length of each block in minutes). For example, the high-demand in-
stance H_10_15_30 has a time horizon of 10 days, 15 requests (with an average
of 1, 000, 000 items per day) and blocks of 30 minutes.

Given AvgI and these three primary attributes, the remaining attributes
of each instance were generated as follows. The minimum number of consec-
utive days with night shifts dn was selected with uniform probability from
[2,min(10, |D| ∗ 0.5)]. For each request, the permitted shipping days Dr ⊆ D
are either every day, every two days or every five days with selection proba-
bilities 0.4, 0.4 and 0.2, respectively. Each request r ∈ R comprises of at most
three different items selected with uniform probability from I. The demand for
each request r is selected from [0.8, 1.1] of the average item demand per request
(AvgI∗|D||R|) and divided randomly among the items comprising request r. Note
that two instances with the same |D| and |R| are identical in every aspect, except
for bdur. Moreover, instances from the same instance set have the same AvgI
despite the varying number of requests |R|.

4.2 LAHC parameters

Parameters for LAHC were obtained by tuning the algorithm with the irace
package [7]. Tuning was performed for the two instance types, resulting in a low-
demand and a high-demand parameter set. This is not arbitrary as schedules for
low- and high-demand instances differ considerably. In each tunning, irace was
given a budget of 5,000 runs and six randomly selected instances as the training
set. We fixed LAHC’s maximum number of iterations to Miter = 20, 000 and
the idle rate α = 0.2. The best parameter sets reported by irace are provided
in the format {Ls, γ, βroll, βnight, η}. For the low-demand instances parameter
values were {2000, 0.60, 0.56, 0.62, 20}, whereas for the high-demand instances
they were {2000, 0.64, 0.84, 0.01, 60}.

Production scheduling with additional restrictions 13

4.3 Results

Table 1 provides the results of the ILP and those obtained by the LAHC. The
results concerning instances in the same set with the same |D| and |R| but
different block sizes are aggregated into a single row. For example, row L_10_15
provides the aggregated results for instances L_10_15_15, L_10_15_30 and
L_10_15_60. Moreover, since the LAHC is an inherently stochastic algorithm,
we ran it ten times per instance with different seeds for the random number
generator. Therefore, the cells associated with LAHC correspond to the averages
or minimums of 30 runs: 10 runs per instance for 3 different block sizes. Similarly,
for the ILP, each cell corresponds to the average or minimum of 3 runs: 1 run per
instance for 3 different block sizes. The online repository [8] provides a complete
table with detailed results to each individual instance.

In these experiments, the ILP reached the one-hour time limit for all instances
except L_10_15_30 and L_10_15_60 (solved in 1800 and 800 seconds, respec-
tively). Therefore, the ILP columns in Table 1 report only the upper bounds
(the values of the best solutions found) and lower bounds provided by the solver,
but not the computation times. More specifically, columns UBmin, UBavg and
LBavg report the minimum upper bound, average upper bound and average lower
bound, respectively. For the LAHC, column BKS reports the best-known solu-
tion value (cost). The next columns report the average values for the solution
cost (Savg), execution time in seconds (Timeavg), standard deviation of the so-
lution costs (SDavg), number of blocks used for overtime (OTavg), number of
days with night shifts (NSavg), number of days with parallel tasks (PDavg) and
number of unserved requests (URavg).

Table 1: ILP and LAHC results.
Instance ILP LAHC

UBmin UBavg LBavg BKS Savg Timeavg SDavg OTavg NSavg PDavg URavg

L_10_15 900.00 143,438.03 900.00 985.00 1,074.50 341.93 34.17 4.63 0.00 0.53 0.00
L_10_25 120.00 212,243.26 0.00 258.75 348.06 259.74 42.20 7.82 0.00 1.43 0.00
L_20_15 331,921.48 522,131.40 0.00 307.50 431.10 522.36 48.38 16.89 0.00 0.37 0.00
L_20_25 683,697.80 703,534.73 0.00 595.00 801.96 525.58 76.02 8.17 0.00 4.30 0.00
L_40_50 1,538,832.12 1,539,432.12 0.00 1,780.00 2,044.94 601.65 97.98 6.04 0.00 14.87 0.00
L_40_100 1,578,473.24 1,579,463.24 0.00 1,920.00 2,282.71 602.96 76.14 2.72 0.00 18.33 0.00
H_10_15 70,580.86 394,387.34 1,594.74 3,782.50 3,963.75 228.38 49.52 0.40 6.83 8.13 0.00
H_10_25 64,098.45 317,605.53 15,649.56 62,604.85 84,184.75 185.93 10,383.02 2.75 8.80 6.00 2.53
H_20_15 1,497,758.35 1,621,849.64 76,390.43 233,532.05 269,658.30 547.06 37,532.99 4.93 15.23 12.50 2.37
H_20_25 1,281,182.11 1,533,486.47 2,855.43 7,637.50 20,550.81 577.50 8,581.04 0.19 11.83 15.17 0.23
H_40_50 3,481,699.59 3,481,999.59 0.00 282,959.48 493,129.05 601.41 66,928.92 64.87 10.30 35.70 6.47
H_40_100 3,324,599.38 3,331,056.53 1,800.00 13,128.75 59,202.84 603.47 67,203.97 8.81 27.17 34.37 1.33

The first thing to note from Table 1 is that the ILP was able to find the
best solution for instances L_10_15 and L_10_25 when comparing the mini-
mum values UBmin (ILP) and BKS (LAHC) for these instances. However, when
considering the average across all three block sizes, LAHC obtains far lower
solution costs in under five minutes. For both low- and high-demand instance
types, LAHC finds solutions with costs far lower than the ILP’s as the instances
become larger. Such differences in solution quality are due to the size of the ILP
model, which becomes significantly large and experiences significant difficulty

14 C.S. Sartori et al.

to solve even for a time horizon of just 20 days. Indeed, the ILP was unable to
produce any feasible solution for instances of 40 days and blocks of 15 minutes.

In terms of the lower bounds produced by the ILP, the LBavg for low-demand
instances is always the trivial bound considering only mandatory night shifts and
maintenance without any production. Meanwhile, for high-demand instances the
ILP improved the lower bound for those with time horizons of less than 40 days,
sometimes even by a large margin (for example instance H_20_15 for which the
trivial LB is 0). This may occur due to the fact that in high-demand instances,
machine occupancy rates are high enough for the ILP to prove that lower solution
values are impossible, whereas with low occupancy rates this is harder to prove
since more blocks are likely idle and could be used to avoid parallel tasks or
stock penalties. Because block usage depends on several other factors, the model
requires longer execution times to improve lower bounds.

LAHC’s standard deviation is low for low-demand instances, whereas for
high-demand instances the observed variation increases significantly. This high
standard deviation is possible given the different number of unserved requests
which incur large penalties. Column URavg shows that while all requests were
served for the low-demand instances, in the high-demand instances a number
of requests remained unserved, increasing the solution cost. For example, on
average 97% of the total cost of solutions for H_40_50 instances is due to
unserved requests. Meanwhile, solutions for H_40_100 are only penalized in
the 15-minute block set where unserved requests account for 50% of the total
cost on average, but for blocks of 30 and 60 minutes all requests are served and
so no penalty is incurred. These results indicate how the difficulty of solving the
problem increases as the search space expands.

Out of the total hours available for overtime and total number of days, the
low-demand instance set employs on average 15% of overtime hours and 21% of
days with parallel tasks. These are the two main components that incur costs
in the low-demand instances as no night shifts are employed and the penalty
per item under minimum stock levels is on average responsible for only 4% of
the total solution cost. Meanwhile, high-demand instances employs on average
64% of the available night shifts, 13% of overtime hours and 76% of days with
parallel tasks. For high-demand instances with 40 days the usage of night shifts,
overtime and parallel tasks may reach as high as 79%, 65% and 90%, respectively.
Items bellow the minimum stock levels were also successfully avoided in the high-
demand instances, representing 0.5% of the total solution cost.

Further analyses are performed concerning the impact of block lengths and
the relaxation of different constraints. Table 2(a) provides the solution gaps for
each block size and instance set. For a block size bdur ∈ {15, 30, 60}, gapBKS of
bdur is calculated by BKS(bdur)−minBKS

minBKS
, where BKS(bdur) is the best solution

found for bdur and minBKS = mint∈{15,30,60}BKS(t). Similarly, gapavg is calcu-
lated between the average solution of bdur and the minimum average solution
of all block sizes. The average processing time is reported by timeavg. Solutions
with blocks of 30 minutes often perform better than the other two block lengths
for both instance sets. Instances with blocks of 60 minutes have the quickest

Production scheduling with additional restrictions 15

processing times and obtain the second best gap. In contrast, when scheduling
blocks of 15 minutes, the search space is much larger and this results in longer
processing times, fewer iterations and worse solution values. To evaluate statisti-
cally significant differences, the pairwise T-test was performed with a confidence
level of 95%. Although using blocks of 30 minutes resulted in the best solutions,
no statistically significant difference was found when comparing the results of
the three block sizes.

Table 2(b) provides the gap between the average solutions produced by the
LAHC for the original instance sets and those obtained when relaxing one of the
following PSP constraints: (i) shipment day, meaning requests may be shipped
on any day; (ii) time windows for long setup and maintenance, meaning these
two tasks may be performed during any block and; (iii) maximum stock levels,
where Smaxi is doubled for every item. These constraints were selected because
we consider them to be the most constraining. For the low-demand instance set,
statistical tests were performed using the Wilcoxon signed-rank test and demon-
strated significant differences between LAHC’s results and those obtained by
the shipment day and time window relaxations. While relaxing shipment days
improves the solutions, relaxed time windows counter-intuitively resulted in a
worsening of solution quality. The reasons behind these results are twofold. First,
time window relaxation increases the number of blocks to be considered for main-
tenance and long setups and increases the size of the search space significantly.
Second, results show an increase of days with parallel tasks and total number
of used overtime blocks, while a decrease on items under the minimum stock is
observed. Therefore, the flexibility given by the relaxed time windows enables
more production of items to be scheduled, which is considered a priority of the
request insertion heuristic (to insert as many production tasks as possible and
take as few items as possible from stock). To remedy this behavior one option
would be to calibrate the algorithm and give it more time to insert production
while prohibiting parallel tasks and overtime blocks.

Table 2: Sensitivity analysis.
Low High

bdur 15 30 60 15 30 60

gapBKS 13.39 0.00 13.77 19.51 4.32 7.58
gapavg 11.29 0.06 13.57 254.71 5.26 6.46
timeavg 572.78 483.93 370.40 521.14 458.01 392.73

Inst. Ship Maintenance Double
set any day any time Max stock

Low -5.00 13.13 -3.11
High -3.48 -16.68 -33.91

(a) Impact of block size (b) Gapavg with relaxations

When considering high-demand instances, the Wilcoxon signed-rank test sug-
gests statistically significant differences for all relaxations. The results indicate
that improvements may be obtained by increasing the shipping frequency, dou-
bling the stock capacity or hiring more skilled workers for maintenance and long
setups. Indeed, the results demonstrate that doubling stock capacity would bring
the largest profits, although one should also consider the construction or rental
costs incurred by doing so. Interestingly, increasing the stock capacity by more
than 100% did not present significant gains for the considered instances.

16 C.S. Sartori et al.

5 Conclusion

This paper introduced a real-world production scheduling problem with stock-
and staff-related restrictions. To serve a profitable selection of available customer
requests within a given time horizon, production, setup and maintenance tasks
must be scheduled in blocks of time of predetermined lengths. In addition to
an integer programming formulation of the problem, this paper also designed a
heuristic algorithm with local search moves based on the insertion and removal
of requests. Given the originality of the problem, and thus the lack of benchmark
instances in the literature, and with an aim to stimulate future research on the
subject, a set of instances was derived from real-world data provided by the
company which inspired this research.

A computational study demonstrated the efficacy of the proposed meta-
heuristic in producing high-quality schedules in quick processing times, even
for the more challenging scenarios. Moreover, experiments were carried out to
understand the impact of varying demand and block size, along with a sensitivity
analysis concerning constraints regarding stock capacities, request shipment days
and task time windows. This analysis suggested that companies confronted with
similar situations ought to consider operational changes regarding limited ship-
ping days, maintenance windows and stock limits. All of these changes should
be exploited to increase revenue. However, we foresee that a broader analysis
concerning the trade-off between the gain from such changes and the costs as-
sociated with making them represents a crucial consideration which ought to be
explored by future research. Furthermore, additional studies could be conducted
considering the following extensions: technician scheduling, which would result
in flexible times for long setups maintenance; more than two machines, which
should be considered along with the scheduling of multiple operators so as to
allow parallel operations; and a dynamic version of the problem where requests
are not known a priori.
Acknowledgments: Research supported by KU Leuven (C2 C24/17/012) and
‘Data-driven logistics’ (FWO-S007318N). Editorial consultation provided by Luke
Connolly (KU Leuven).

References

1. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. European Jour-
nal of Operational Research 258(1), 70 – 78 (2017)

2. Charnsirisakskul, K., Griffin, P.M., Keskinocak, P.: Order selection and scheduling
with leadtime flexibility. IIE transactions 36(7), 697–707 (2004)

3. Copil, K., Wörbelauer, M., Meyr, H., Tempelmeier, H.: Simultaneous lotsizing and
scheduling problems: a classification and review of models. OR spectrum 39(1),
1–64 (2017)

4. Drexl, A., Kimms, A.: Lot sizing and scheduling — survey and extensions. Euro-
pean Journal of Operational Research 99(2), 221–235 (1997)

5. Fleischmann, B.: The discrete lot-sizing and scheduling problem. European Journal
of Operational Research 44(3), 337–348 (1990)

Production scheduling with additional restrictions 17

6. Goerler, A., Lalla-Ruiz, E., Voß, S.: Late acceptance hill-climbing matheuristic for
the general lot sizing and scheduling problem with rich constraints. Algorithms
13(6), 138 (2020)

7. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43 – 58 (2016)

8. Sartori, C.S., Gandra, V., Çalik, H., Smet, P.: Instances for production scheduling
with stock- and staff-related restrictions. Mendeley Data, V2 at http://dx.doi.
org/10.17632/rpbv622wyd.2 (2021), last access: 26 July 2021.

9. Silva, Y.L.T., Subramanian, A., Pessoa, A.A.: Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Computers
& Operations Research 90, 142–160 (2018)

10. Slotnick, S.A.: Order acceptance and scheduling: A taxonomy and review. Euro-
pean Journal of Operational Research 212(1), 1–11 (2011)

11. Tempelmeier, H., Copil, K.: Capacitated lot sizing with parallel machines,
sequence-dependent setups, and a common setup operator. OR spectrum 38(4),
819–847 (2016)

12. Wörbelauer, M., Meyr, H., Almada-Lobo, B.: Simultaneous lotsizing and schedul-
ing considering secondary resources: a general model, literature review and classi-
fication. Or Spectrum 41(1), 1–43 (2019)

Appendix A Integer Linear Programming formulation

To model the PSP as an ILP we introduce some additional notation.

– T : set of all blocks in the scheduling horizon: T = {1, . . . , |B|, |B|+1, . . . , 2|B|, 2|B|+
1, . . . , |D||B|}

– TM ⊂ T : set of all maintenance blocks.
– TN ⊂ T : set of all night-shift blocks.
– TO ⊂ TN : set of all overtime blocks.
– Tr ⊂ T : set of all shipping blocks for request r ∈ R.
– d(t) ∈ D: the day index of block t ∈ T : d(t) = 1 for t = 1, . . . , |B|; d(t) = 2

for t = |B|+ 1, . . . , 2|B| ...
– hn: the index of the last day with a night shift pushed from the previous

scheduling horizon.
– gm0 : at the beginning of current scheduling horizon, the number of days

passed without a maintenance for machinem ∈M since the last maintenance
in the previous scheduling horizon.

– bdn: the last block of day d ∈ D.

Additionally, a set of decision variables is used.

– ηd = 1 if there is a night shift on day d ∈ D, 0 otherwise.
– πd = 1 if there is parallel processing of machines on day d ∈ D, 0 otherwise.
– θt = 1 if block t ∈ TO is used as overtime, 0 otherwise.
– ymt = 1 if machine m ∈M is idle during block t ∈ T , 0 otherwise.
– µmt = 1 if m ∈M is under maintenance during block t ∈ T , 0 otherwise.

http://dx.doi.org/10.17632/rpbv622wyd.2
http://dx.doi.org/10.17632/rpbv622wyd.2

18 C.S. Sartori et al.

– γtr = 1 if request r ∈ R is fulfilled by shipping at t ∈ Tr, 0 otherwise.
– zmti = 1 if m ∈M is producing item i ∈ I during block t ∈ T , 0 otherwise.
– ∆id is the stock level of item i ∈ I at the end of day d ∈ D. ∆i0 is the initial

stock of i.
– φid is the stock deficit of i ∈ I at the end of day d ∈ D.
– τmd = 1 if m ∈M undergoes a maintenance on day d ∈ D, 0 otherwise.
– vmtt′ = 1 if during block t ∈ TM , machine m ∈M is occupied by a long setup

to be finished during block t′ ∈ TM , 0 otherwise.
– wmt

′

ij = 1 if during block t′ ∈ TM , machine m ∈M is occupied and finished
a long setup from item i ∈ I to item j ∈ I, 0 otherwise.

– ψmtt′ = 1 if during block t ∈ T , machine m ∈M is occupied by a short setup
to be finished during block t′ ∈ T , 0 otherwise.

– umtij = 1 if during block t ∈ T , machine m ∈ M is occupied and finished a
short setup from item i ∈ I to item j ∈ I, 0 otherwise.

– ρmti = 1 if machine m ∈ M is set-up to produce item i ∈ I during block
t ∈ T , 0 otherwise (ρm0i = 1 if the initial configuration of machine m is for
item i).

The following is an integer programming formulation for the PSP.

min
∑
r∈R

∑
t∈Tr

c(r)(1− γt
r) +

∑
t∈TO

poθt +
∑
d∈D

(ppπd + pnηd +
∑
i∈I

psφid) (1)

s.t. θt + ηd(t) ≤ 1, ∀t ∈ TO
, (2)

θt+1 ≤ θt, ∀t ∈ TO
, (3)

θt + ηd(t) + y
m
t ≥ 1, ∀t ∈ TO

,m ∈M (4)

ηd(t) + y
m
t ≥ 1, ∀t ∈ TN \ TO

,m ∈M (5)

(dn − 1)ηd ≤
d+dn−1∑
d′=d+1

ηd′ + (dn − 1)ηd−1, ∀d : |D| − dn ≥ d > hn (6)

(dn − 1)ηd ≤
d−1∑

d′=d−dn+1

ηd′ + (dn − 1)ηd+1, ∀d ≥ max{hn + 1, dn} (7)

y
m
t +

∑
i∈I

z
m
ti +

∑
t′∈T :t′≥t

ψ
m
tt′ +

∑
t′∈TM :t′≥t

v
m
tt′ + µ

m
t = 1, ∀t ∈ TM

,m ∈M (8)

y
m
t +

∑
i∈I

z
m
ti +

∑
t′∈T :t′≥t

ψ
m
tt′ = 1, ∀t ∈ T \ TM

,m ∈M (9)

∑
m∈M

(1− ymt) ≤ (|M | − 1)πd + 1, ∀d ∈ D, t ∈ T \ TN
: d(t) = d

(10)

∆id = ∆id−1 +
∑

t∈T :d(t)=d

∑
m∈M

e
m
i z

m
ti −

∑
r∈R

q
i
rγ

t′
r , ∀d ∈ D, i ∈ I, t′ = b

d
n (11)

φid ≥ Smin
i −∆id, ∀d ∈ D, i ∈ I (12)∑

t∈Tr

γ
t′
r ≤ 1, ∀r ∈ R, i ∈ I (13)

u
mt
ij ≤ ψ

m
tt , ∀t ∈ T,m ∈M, (i, j) ∈ U

(14)

(s
m
ij − 1)u

mt′
ij ≤

∑
t∈T :d(t)=d(t′),t<t′

ψ
m
tt′ , ∀t′ ∈ T,m ∈M, (i, j) ∈ U

(15)

Production scheduling with additional restrictions 19

∑
t3∈T :t3≥t,t3 6=t2

ψ
m
tt3

+
∑

t3∈TM :t3≥t

v
m
tt3

+
∑
i∈I

z
m
ti + ψ

m
t1t2

≤ 1, ∀t, t1, t2 ∈ T : t
1 ≤ t ≤ t2,m ∈M

(16)∑
t∈T :d(t)=d

u
mt
ij ≤ 1, ∀d ∈ D,m ∈M, (i, j) ∈ U

(17)

w
mt
ij ≤ v

m
tt , ∀t ∈ TM

,m ∈M, (i, j) ∈ L
(18)

(s
m
ij − 1)w

mt′
ij ≤

t′−1∑
t∈TM :d(t)=d(t′)

v
m
tt′ , ∀t′ ∈ TM

,m ∈M, (i, j) ∈ L

(19)∑
t3∈TM :t3≥t,t3 6=t2

v
m
tt3

+
∑

t3∈T :t3≥t

ψ
m
tt3

+
∑
i∈I

z
m
ti + v

m
t1t2

≤ 1, ∀t, t1, t2 ∈ TM
: t

1 ≤ t ≤ t2,m ∈M

(20)∑
t∈T :d(t)=d

w
mt
ij ≤ 1, ∀d ∈ D,m ∈M, (i, j) ∈ L

(21)∑
m∈M

∑
t′∈TM :t′≥t

v
m
tt′ +

∑
m∈M

µ
m
t ≤ 1, ∀t ∈ TM (22)

∑
t:d(t)=d

µ
m
t = f

m
τ
m
d , ∀d ∈ D,m ∈M (23)

gmmax−dm0∑
d=0

τ
m
d ≥ 1, ∀m ∈M (24)

d∑
d′=d−gmmax

τ
m
d ≥ 1, ∀d ∈ D : d ≥ gmmax,m ∈M

(25)

µ
m
t1

+ µ
m
t2

+
∑
i∈I

z
m
ti ≤ 2, ∀t, t1, t2 ∈ TM

,m ∈M

t
1 ≤ t ≤ t2, d(t1) = d(t

2
)
(26)

z
m
ti ≤ ρ

m
ti , ∀t ∈ T,m ∈M, i ∈ I (27)∑

i∈I
ρ
m
ti ≤ 1, ∀t ∈ T,m ∈M (28)

ρ
m
ti ≤ ρ

m
(t−1)i +

∑
j:(j,i)∈U

u
mt−1
ji +

∑
j:(j,i)∈L

w
mt−1
ji , ∀t ∈ TM

,m ∈M, i ∈ I (29)

ρ
m
ti ≤ ρ

m
(t−1)i +

∑
j:(j,i)∈U

u
mt−1
ji , ∀t ∈ T \ TM

,m ∈M, i ∈ I

(30)∑
j:(i,j)∈U

u
mt
ij +

∑
j:(i,j)∈L

w
mt
ij ≤ ρ

m
(t−1)i, ∀t ∈ TM

,m ∈M, i ∈ I (31)

∑
j:(i,j)∈U

u
mt
ij ≤ ρ

m
(t−1)i, ∀t ∈ T \ TM

,m ∈M, i ∈ I

(32)

∆id ≤ Smax
i , ∀d ∈ D, i ∈ I (33)

φid, ∆id ≥ 0, ∀d ∈ D, i ∈ I (34)
ηd, πd ∈ {0, 1}, ∀d ∈ D (35)

τ
m
d ∈ {0, 1}, ∀d ∈ D,m ∈M (36)

θt ∈ {0, 1}, ∀t ∈ TO (37)

20 C.S. Sartori et al.

y
m
t ∈ {0, 1}, ∀t ∈ T (38)

µ
m
t ∈ {0, 1}, ∀t ∈ TM (39)

z
m
ti , ρ

m
ti ∈ {0, 1}, ∀t ∈ T, i ∈ I,m ∈M (40)

u
mt
ij ∈ {0, 1}, ∀t ∈ T, (i, j) ∈ U,m ∈M

(41)

w
mt
ij ∈ {0, 1}, ∀t ∈ TM

, (i, j) ∈ L,m ∈M
(42)

v
m
tt′ ∈ {0, 1}, ∀t, t′ ∈ TM

: t
′ ≥ t,m ∈M

(43)

γ
t
r ∈ {0, 1}, ∀r ∈ R, t ∈ Tr (44)

Objective function (1) minimizes the sum of revenue loss from unserved re-
quests, additional personnel costs (overtime, night shift and parallel operations)
and penalties incurred by stock deficits. Constraints (2) ensure that if a block is
used for overtime then there is no night shift that day and vice versa (meaning
no overtime is possible if there is a night shift on a certain day). Constraints
(3) forbid using isolated overtime blocks, in other words: overtime in a block is
possible only if the previous overtime block is also used, except for the first over-
time block, which can be used without preceding overtime blocks. Constraints
(4) and (5) enforce the machines to be idle during night-shift blocks if there is no
overtime or night shift used that day. Constraints (6) ensure that for a certain
day with no night shift on the preceding day, night shifts are only allowed if
there is a night shift on every single one of the following dn−1 consecutive days.
Similarly, Constraints (7) ensure that for a certain day with no night shift on
the following day that night shifts are only allowed if there is a night shift on
every single one of the preceding dn−1 consecutive days. Constraints (8) and (9)
ensure that during any block, a machine is either idle or occupied by a single op-
eration, namely: setup (short or long), maintenance or production. Constraints
(10) enforce a parallel processing penalty if more than one machine is not idle.
Constraints (11) are the inventory (stock) balance constraints. Constraints (12)
retrieve the daily stock deficit per item, if there is any. If the inventory level
is greater than the minimum stock requirement, the deficit variable assumes a
value of zero thanks to the objective function (1) and binary restrictions (34).
By Constraints (13), at most one shipping is conducted per request. Constraints
(14)-(16) ensure that no production is performed in between the blocks of the
same short setup. Constraints (18)-(20) ensure that no production is performed
in between the blocks of the same long setup. Constraints (17) and (21) ensure
that only one type of setup is scheduled per day. Constraints (22) ensure that at
most one long setup or maintenance takes place during any single block. Con-
straints (23)-(26) ensure that maintenance blocks are assigned with the required
frequency while ensuring that no production is conducted in between the blocks
of a maintenance. Constraints (27)-(30) guarantee that production of an item is
only possible if the machine has the right configuration, which is validated by a
previous block either with the identical configuration or via a completed setup
to that item. Maximum stock levels are respected thanks to Constraints (33).
Finally, (34)-(44) are nonnegativiy and binary restrictions.

	Production scheduling with stock- and staff-related restrictions

