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Searching Strategies in Practice: The Role of Stability in the 

Performer-Task Interaction 

Through the view of the search strategies approach to skill acquisition–and its 

dynamic systems theoretical background–non-local changes in behavior are 

expected to emerge through a process of decreased stability (increased 

variability) of the ongoing movement pattern as to allow exploration of new 

regions of the perceptual-motor workspace. However, previous studies have not 

found such relation; only in non-redundant tasks. We believe that such issue 

occurs because these previous studies have focused on the movement pattern 

variability while in redundant tasks the variability that matters is at the task space 

level. Therefore, we analyzed the data of 15 individuals that practiced a throwing 

task for five days in terms of their movement patterns and release parameters to 

test whether increased variability at the task level was predictive of non-local 

changes in practice. We found that, for non-local changes at both release 

parameters and movement pattern levels, performance and performance 

variability were significant predictors. We discuss these results highlighting that 

they support a strong assumption of the search strategies approach, corroborate to 

the dynamical systems view on motor learning, and pointing the lack of 

consideration of non-local changes in other theories of motor learning. 

Keywords: motor learning, variability, dynamical systems, exploration, skill 

acquisition 

Introduction 

For every attempt to perform a motor task successfully, the learner attends to perceptual 

variables of the environment and act attempting to achieve the best performance. This 

continuous process of performing the task provides information of how the employed 

perception-action cycle relates to task performance. Through this process, the learner 

finds other perceptual variables that relate to important aspects of the task and, as well, 

find new movement coordination patterns that can lead to better results. When the 

perception-action cycle is in harmony with the requirements of the task, good 

performance becomes repeatable and learning is said to have occurred (Shaw & Alley, 



1985). Given the perception-action cycle is in tune to important aspects of the task, 

variations of the task are easily followed by adaptations in behavior and adaptability is 

evident. 

In this continuous search for adaptable solutions, learners inevitably leave initial 

regions of the perceptual-motor workspace given its incapacity to achieve the goal of 

the task. The perceptual-motor workspace refers to the whole layout of stable and 

unstable perception-action cycles that individuals might attempt to engage on. The 

learner, then, in perceiving the incapacity of the current perception-action coupling to 

maintain or achieve high levels of performance, moves to other regions of the 

perceptual-motor workspace. The question is how this search process occurs. 

Following the dynamic systems (DS) perspective on motor behavior (Kugler et 

al., 1980; Kugler & Turvey, 1987), the learner can be viewed as a system interacting 

with patterned information coming from the environment and task (Newell, 1986). 

According to the search-strategies approach (SSA) (Newell et al., 1989; Pacheco et al., 

2019), the interaction with the task is of great importance in driving change in motor 

learning. It is the interaction between the learner and the task – specifically the task 

space layout – that guides the learner on how and where to change (see Pacheco, Lafe, 

and Newell 2019 for a review).  

Three main pathways of motor learning have been highlighted in DS literature: a 

parametrization, a shift, and a bifurcation (discussed, respectively, in Newell 1985 and 

Kostrubiec et al. 2012). The first two pathways can be combined into a single idea of 

specifically tuning “parameters” of the perception-action coupling to achieve the task 

goal. This “tuning” process is viewed in SSA as a gradient descent (or local search) 

process to a region where the individual reaches the best possible result that the 

interaction between perceptual-motor workspace and task space allow. Despite the fact 



that specificities of this process are still in dispute (see Jacobs et al. 2011; Pacheco and 

Newell 2018), tasks that require such small adjustments are the most studied in the 

literature. 

The learner, however, does not only search continuously through the perceptual-

motor workspace, non-local changes (or “jumps”) are observed through practice. These 

are usually observed when the movement variables change independent of the task 

gradient surrounding it and with larger magnitude. Non-local changes in the search 

process are far less studied despite the fact that earlier researchers called attention for its 

necessity (see Gelfand and Tsetlin 1962). The requirement for non-local changes comes 

from the fact that learners might not achieve good performance at first attempts in new 

tasks given the inadequacy of its initial perception-action couplings. Thus, small 

adjustments in either informational variables attended or movement aspects would not 

lead to good solutions.  

From DS, such non-local changes occur given learners would intentionally act 

against its intrinsic tendencies to maintain a perception-action coupling and would, 

following the dynamics of his/her perceptual-motor workspace, land on other regions 

(see Scholz and Kelso 1990), starting local search again. As the learner attempts to 

practice in unstable regions of the perceptual-motor workspace, a process of 

stabilization of this region occurs (see Pacheco and Newell 2015). When the perceptual-

motor workspace demonstrates a new stable region, a bifurcation process took place as 

there is a new attractor in the layout of perception-action couplings (Kostrubiec et al., 

2012; Zanone & Kelso, 1994). Bifurcation in learning has been demonstrated many 

times (e.g. Liu and Newell 2015; Brakke and Pacheco 2019; Zanone and Kelso 1992) 

and can be argued to be the learning pathway that bases all changes in movement 

pattern coordination. In accordance to the aforementioned rationale, the pattern of non-



local change would be of increased variability in the initial pattern – decreased stability 

– and then a change to new patterns of coordination.  

However, all the tasks that demonstrated such pattern were tasks on which the 

movement pattern coordination is tightly closed to the task performance: either the task 

is to perform a given movement pattern or the movement patterns allowed are overly 

similar (see Liu, Chuang, and Newell 2019). Although these tasks represent some share 

of what is performed by humans (e.g., choreography, gymnastics), most activities can 

be said to be redundant: tasks that the goal can be achieved through many movement 

patterns (for discussions on the topic see Latash 2012; Sternad 2018). Chow et al. 

(2008), to the best of our knowledge, is the only study that tried to study whether non-

local changes in movement patterns occurred through a process of increased instability 

in the previous movement pattern eliciting changes to new ones in a redundant task 

(kicking a ball to a target). They performed cluster analyses to classify different 

movement patterns presented during practice and, observing learners’ variability in 

performing these clusters, attempted to relate variability to change in movement 

patterns mode over time. However, they failed to corroborate enhanced variability 

leading to non-local changes. 

Are redundant tasks of a different nature in that decreased stability is not the 

mechanism underlying non-local changes in search? In a first look, it is true that 

redundant tasks have the important distinction from non-redundant tasks in that the 

perceptual-motor workspace differentiates from the task space – performance is not 

determined by movement pattern. However, decreased stability could still be the 

mechanism for change; the difference is at the level that researchers should pay 

attention to capture the process. As we described before, it is the interaction with the 

task space that offers information on how to change to achieve a goal; variability at the 



movement coordination level is “irrelevant” if it does not relate to task performance 

variability. In fact, this type of variability in movement pattern that does not disturb 

performance has been demonstrated to be exploited by learners (Bernstein, 1967; 

Latash, 2010) and is even said to stabilize performance (Golenia et al., 2018; Latash et 

al., 2007; Scholz & Schöner, 1999). Thus, we believe that increased variability 

(decrease in stability) before a transition would be observed not at the movement 

coordination pattern level, but in the interaction between learner (and the movement 

coordination pattern) with the task space level. 

Indeed, previous papers on SSA showed that variability at the level of the task 

space was determinant for performers to find the best solution of the task. Pacheco and 

colleagues (Pacheco et al., 2017, 2020) showed that non-local changes in strategy 

occurred after increased variability in performance. However, these studies cannot be 

considered conclusive in this matter. Pacheco, Hsieh, and Newell (2017) elaborated task 

conditions on which variability was necessary for individuals to perceive the 

inefficiency of initial solutions and find the most appropriate solution. Both studies 

required individuals to perform tasks on which non-local changes were necessary for 

the task goal to be achieved. Thus, it could still be that results supporting the pathway of 

decreased stability to non-local change hold only for non-redundant tasks when 

individuals start far from the most appropriate solution. 

Therefore, it is the goal of the present paper to test whether non-local changes in 

practice would occur as a function of increased variability (decreased stability). In this 

paper, we reanalyzed data from Pacheco and Newell (2018a) on which individuals 

performed throwing for precision (threw plastic golf balls into a target) for five days. In 

that study, the authors analyzed whether individuals performing the same practice 

condition would demonstrate similar end-state performance and transfer. Here, we take 



advantage of the multi-level nature of the task and analyze the data from all five days in 

practice to test whether individuals non-locally changed through the perceptual-motor 

workspace considering the movement pattern employed, as well as non-local changes at 

the release parameters level. In this way, we can consider whether movement pattern 

variability, or the task-space variability (i.e., landing position, number of hits) relates to 

non-local changes in the two level of analysis of the task (i.e., release parameters and 

movement pattern). We also take the opportunity to describe the local search patterns 

demonstrated between non-local changes. 

Methods 

This study reanalyzes the data from Pacheco and Newell (2018a) paper. Thus, we 

briefly describe their methods here 

Participants 

From the 17 participants of the previous study, we only analyzed 15 participants as two 

participants require a thorough relabeling of the markers in the VICON software. The 

15 participants were college-level students (age: 24.7 ± 3.4, 8 females). 

Task, Apparatus and Procedures 

The task was to throw a plastic golf ball into a triangle-shaped target of 15 cm height 

and 22.8 cm for each side. The target was made of carboard and was placed on a table 

of 73 cm height with its center point at 2.05 m of distance from the participant. The 

target was placed in a way that one of the vertices was pointing at the participant’s 

direction. 

To record the participant’s movement patterns, all trials were recorded using the 

VICON system (sampling rate: 100 Hz). The participant wore a dark tight shirt and had 



markers placed on their right arm and trunk following the Plug-in Gait marker 

localization: spinous process of the seventh cervical vertebra, spinous process of the 

10th thoracic vertebra, jugular notch where the clavicula meet the sternum, xiphoid 

process of the sternum, right scapula, acromion-clavicular joint, lower lateral one-third 

surface of the right arm, lateral epicondyle, lower lateral one-third surface of the right 

forearm, thumb-side of the wrist, little-finger side of the wrist, and middle knuckle on 

the right hand. To measure the release parameters, the balls were also marked. The balls 

were first covered with black tape and four markers were glued to the ball. 

On the first day, the participant read and signed the informed consent form and 

had the markers placed on his/her body. The instructions emphasized that the 

participants were not restricted to throw using a specified movement pattern but could 

explore different movement patterns as long as this exploration had the goal to improve 

performance. 

The participants practiced for 210 trials on each day. The experiment took five 

days (a total of 1050 trials). One participant only performed four days of practice (first, 

second, fourth and fifth day of the regular schedule) because of technical issues. 

Provided the current analyses are not dependent on the day of practice, we maintained 

her for our analyses.  

During practice, the participant would receive a set of 6 balls at a time. After 

each set, the experimenter counted the number of hits and informed the participant. 

After 30 trials, the experimenter summed up the performance of the last 5 sets of 6 balls 

and provided the score to the participant. If any individual required rest, a break was 

provided. 

Data Analysis 

The data of the digitized positions of the markers was processed as follows. In the 



Nexus 2.11 software, the gaps were filled in through three rigid body filling gap 

procedure (for hip, trunk and ball markers), two pattern filling gap procedure (for wrist 

and elbow markers), and a Woltring filling gap procedure for all markers. Then, the 

skeleton joint and marker statistics were calculated in a built-in pipeline. In Matlab 

R2020b, a script was developed to fill the reminiscent gaps through a spline (function 

spline), and the data were low-pass filtered with a Butterworth filter (10 Hz cut-off, 2nd 

order). 

A few trials were discarded because of technical issues (i.e., markers not being 

recorded, markers falling, etc.). This represented 190 trials out of 15540 analyzed here 

(1.22%). 

Release Parameters 

To identify the release parameters of the throw (i.e., position and velocity of the ball at 

the moment of release), we determined the moment at which the distance between ball 

and hand crossed the threshold of 6 standard deviations. For each trial, we averaged the 

markers that relate to the hand (thumb-side of the wrist, little-finger side of the wrist, 

and middle knuckle on the right hand) and the markers that relate to the ball to have a 

single 3D location of the hand and the ball in space. Then, the Euclidean distance 

between hand and ball was calculated. To identify the ball-hand distance before the 

release, we calculated the average and standard deviation of the ball-hand distance 

considering 50% of the whole trajectory recorded. This average value was considered 

the “holding” ball-hand distance. To identify the release position and velocity, we 

identified the moment in which the ball-hand distance was above the “holding” value by 

6 standard deviations and was maintained that way up to the end of the trial. Such large 

threshold was to avoid selection of the wrong release parameter given manipulation of 

the ball in the participant’s hand. The release velocity was calculated using the 



procedure described in Winter (2009). 

Movement Pattern 

To facilitate the identification of different movement patterns by the cluster analysis, we 

used the hand trajectory during the trial as input. The hand trajectory was selected as the 

moment on which the hand as at the most posterior position in the antero-posterior 

before the release parameter – indicating the beginning of the motion forward of the 

arm to release the ball. The end of the trajectory was selected as 300 ms after the throw 

(30 frames after the release). The trajectory was time normalized using the spline 

function to have the time ranging from 1 to 100% of the trajectory. 

Movement Pattern Clusters 

To identify discontinuous changes at the movement pattern level, we employed a cluster 

analysis. The idea is that the cluster analysis is able to identify sets of movement 

patterns that are more similar within than in between. That is, the analysis would 

identify qualitatively different sets of movement patterns. In terms of our goal here, if 

individuals changed to a different region of the perceptual-motor workspace, the 

movement pattern at trial t would be qualitatively different than the movement pattern at 

trial t-1. This change would be characterized as movement pattern in trial t belonging to 

cluster c1 while the movement pattern in trial t-1 belonging to cluster c2. Given this 

change is not a mere adaptation of a given movement pattern, but a change to a new 

one, we considered such change as a discontinuous change at the movement pattern 

level. 

In order to identify movement pattern clusters (i.e., different regions of the 

perceptual-motor workspace in terms of the hand trajectories), we included, in a single 

matrix, the hand trajectories for each trial for all days and subjects. Then, we evaluated 



how many clusters (from 1 to 10) would be required using the evalclusters function in 

Matlab considering the linkage method and the silhouette criterion. The maximum of 10 

clusters was arbitrary. We expected a maximum of three clusters (overhand throw, 

underhand throw, and toss) but we did not want to influence the outcome by imposing 

this limit. Thus, we considered up to 10 clusters as to allow the algorithm to find more 

clusters than we initially considered. The Silhouette criterion consider the similarity of 

each datum to data in its own cluster, when compared to data in other clusters. The 

observed number of clusters was then used as input to the clusterdata function using the 

linkage method and ward algorithm. 

Non-Local Changes 

At the movement pattern level, any trial that belonged to a different cluster 

classification than the previous one indicated a non-local change. 

At the release parameter level, we performed the same routine described in 

Pacheco, Lafe, and Newell (2020). First, we identified abrupt changes in the linear trend 

of the release parameters (considering all six dimensions) over time using the 

findchangepts function in Matlab. Figure 1 shows a schematic of the analysis. This 

function searches for sections in the data to minimize the deviations of the data to a 

chosen statistic. We chose the linear trend of all six dimensions. We tested whether the 

data was better explained considering from 1 to 21 sections in the data (with a minimum 

of 10 trials per section). The maximum number of sections was defined in terms of the 

minimum number of trials. The minimum of trials, however, is somewhat arbitrary. 

This was what we considered to be enough to identify any type of trend in search (less 

trials could lead to spurious trends) without imposing too long sections in the search. 

For the analyses, the selected number of sections was based on the criterion that adding 

one more did not decrease the residual (the deviations of the data from the linear trend).  



(Figure 1 around here) 

Then, these moments of abrupt changes in the linear trend were evaluated to see 

whether they referred to changes only in the linear trend or were also related to changes 

in the perceptual-motor workspace region (see Pacheco, Lafe, and Newell 2020 for a 

thorough explanation of the method). For this, we calculated the Euclidean distance 

between each data pair in time considering the ten trials before and the ten trials after 

the abrupt change to have an estimate of within-section change and compared it with the 

Euclidean distance of the trials at the abrupt change (between-section change). This was 

done by comparing the mean of the within-section change data against the between-

section change through a bootstrap procedure (1000 iterations) using the bootstrp 

function of Matlab. If 95% of the mean distribution of the within-section change was 

above the between-section change, the given abrupt change was considered as a non-

local change at the release parameter level. 

As expected, any non-local change at the movement pattern level was associated 

with a non-local change at the release parameter level. The opposite was not true. 

Local Changes 

Considering the sections in between abrupt changes, we followed Pacheco, Lafe, and 

Newell (2020) and tried to qualify the linear trends in terms of “change” (linear trends 

in the release parameters leading to changes in the throw distance), “covariation” (linear 

trends in the release parameters that compensate not leading to changes in the throw 

distance), or “maintenance” (no linear trends in the release parameters) (see Figure 1). 

For this, first, we calculated the landing position (two dimensions) of the ball based on 

the release parameters and the height of the target. Then, we performed, for each section 

within abrupt changes, a bootstrap (1000 iterations) estimating the linear trend on the 

two dimensions of landing of the ball, and on the six dimensions of the release 



parameters. If the linear trend on any of the two dimensions of landing was shown to be 

significant, we classified the section with a pattern of “change”. If a linear trend on any 

of the six dimensions was shown to be significant (with no linear trend on landing), we 

classified the section with a pattern of “covariation”. Else, we classified the section with 

a pattern of “maintenance”. Interestingly, and contrary to Pacheco, Lafe, and Newell 

(2020), we found only patterns of “maintenance”. This could be expected as their study 

employed a search task – something that might have induced such types of search. 

We decided to consider the approach used in Pacheco and Newell (2015). In 

their study, they evaluated whether individuals were employing (in average) a more 

exploratory or corrective (positive or negative feedback) strategy in their trial-to-trial 

change. They employed the autocorrelation (lag 1) to evaluate such possibility. The idea 

that a positive autocorrelation relates to exploration comes from the fact that individuals 

drifting away from the current position (continuously) show a positive autocorrelation. 

However, if the individual is oscillating around a point (decreasing the deviations over 

time), then the autocorrelation is negative. To calculate this, we performed a principal 

component analysis on the three-dimensional release velocity time series of each section 

and performed an autocorrelation on the eigenvalue of the first two principal 

components. The choices for the release velocity and the first two principal components 

follow Pacheco and Newell (2018a) that showed that the release velocity was the main 

predictor of changes in the landing position. 

Variability 

To test whether the variability in the interaction between the individual and the task 

space would predict non-local changes in the search process in practice, we calculated 

three measures of variability. The first two measures are the moving standard deviation 

(window of ten trials) of the longitudinal and transversal directions of the landing 



positions calculated through a function designed for this purpose. The third measure of 

variability was a moving variation range (window of ten trials) of the movement 

pattern. For the latter measure, we considered a 10-trial window. We calculated the 9-

dimensional (joints) sphere of the 10 trials around its centroid. Figure 2 shows a 

schematic of the analysis (see also Allen et al., 2019). This was performed for each 

time-window of 5% (from 1 to 100% normalized time). Then, we averaged the 

variability for all time-windows to represent the variability of this 10-trials-window. To 

calculate the summed distances to the centroid, we used the kmeans function in Matlab. 

Additionally, we also got the moving average performance of a window of 10 trials that 

could range from 0 (no hits) to 1 (hits in all trials) – this measure provides a proportion 

of hits at that window. 

(Figure 2 around here) 

In order to relate variability to non-local changes, we performed the moving 

windows described above in terms of the non-local changes observed. That is, we 

always related the non-local changes (either in release parameters or joint changes) to 

the 10-trials window that preceded them. To do this, we first identified all moments of 

non-local changes and, for each one, sequentially, we calculated the variability 

measures of the preceding window up to the beginning of the day section or (if we are 

referring to the second or later non-local change) to the previous non-local change. 

Statistical Analysis 

First, we described the change dynamics of all individuals in terms of performance per 

block (30 trials) and per day. We summed up the hits for each 30 trials and performed a 

linear mixed-effect analysis with blocks and days as independent variables (in both 

fixed and random parameters). 



Second, we show descriptively the frequency of non-local changes, the cluster 

analysis results and the characteristics of the local search of each individual throughout 

practice. We also performed linear mixed-effect analyses with blocks and days as 

independent variables (in both fixed and random parameters) for the autocorrelation (lag 

1) values of the first and second principal component eigenvalues to explore whether 

there were any changes through days.  

Finally, to test the relation between variability and non-local changes in the 

release parameters, we tested whether non-local changes in the release parameters 

would be predicted by variability at the landing positions and performance (hit 

proportion) (Figure 3 shows a schematic of the analysis). For this, we used non-local 

changes as dependent variable and days, variability in longitudinal and transversal 

directions, and hit proportion as independent variables in a general linear mixed-effect 

analysis with binomial distribution. For non-local changes in the movement pattern, we 

performed the same analysis with the same independent variables. Additionally, we also 

performed another analysis including the variability in the movement pattern as a 

predictor. In this way, we did not only test our hypothesis, but also consider whether 

variability at the movement pattern could also contribute to non-local changes in 

movement patterns.  

(Figure 3 around here) 

For all linear mixed-effect analyses, we used the fitlme or fitglme functions in 

Matlab for linear and general linear mixed effects, respectively. Also, we maintained all 

fixed effects to show which were or not significant but, for the random effects, we 

performed a backward procedure to eliminate random effects not necessary to the 

model. All analyses considered significance at p < .050 and we used the R2 as our 



measure of effect size – considering values above 0.25 as large, 0.09 as medium, and 

0.01 as small (Field, 2009). 

Results 

Performance 

Figure 4 shows the change in performance as a function of practice (block and days) for 

each individual. As can be observed, there is high variability between individuals; this 

supports the use of linear mixed-effect analysis in the present case. 

(Figure 4 around here) 

The analysis showed an average value of 9.73 hits for the first day and block 

(standard error ± 0.91; t [515] = 10.76; p < .001), significant improvement in 

performance in terms of blocks (0.34 ± 0.06 per block; t [515] = 5.42; p < .001), and 

days (0.34 ± 0.17 per day; t [515] = 1.99; p = .047). The random effects demonstrated 

significant variation for the starting performance (3.32 ± 1.04) and improvement per 

day (0.56 ± 0.22). The R2 was of 0.65 (large effect). 

Identifying Non-Local Changes 

The cluster analyses resulted in only two clusters of movement patterns representing, 

mainly, overhand and underhand throw. Figure 5 shows exemplary shoulder and elbow 

flexion angles for cluster 1 (underhand pattern; Figures 5.a and b) and 2 (overhand 

pattern; Figures 5.c and d) far from (a and c) and close to (b and d) a non-local change 

between clusters (i.e., change from one movement pattern to another). Such non-local 

changes occurred occasionally (maximum of 5 times per participant) and for 9 

participants only. 



Non-local changes at the release parameters level, however, occurred much 

more often. Figure 6 shows an example of non-local change at the release parameter 

level observed by an abrupt change in velocity (in the y and z axes). Such non-local 

changes occurred for all participants, with an average of 34.4 ± 17.33 times per 

individual. Additionally, as stated in the Methods section, all non-local changes at the 

movement pattern level were accompanied by non-local changes at the release 

parameter level. 

(Figures 5 and 6 around here) 

Characterizing Local Change 

After identifying the non-local changes at the release parameter level, we observed, as 

stated in the methods, that no individual demonstrated linear trends in terms of the 

landing position (neither on the antero-posterior nor medio-lateral directions) or the 

release parameters. Therefore, we went to characterize the trial-to-trial relations in terms 

of the autocorrelation (lag 1) within sections between abrupt changes. 

Figure 7 shows the average autocorrelation (lag 1) for each individual per day. 

Interestingly, there is also not a clear pattern for the autocorrelations for both first and 

second components (i.e., all autocorrelations were around 0). Given these results, we 

refrained from performing the linear mixed-effect analyses for the local change patterns. 

(Figure 7 around here) 

Increased Variability (Decreased Stability) and Non-Local Changes 

Non-Local Changes at the Release Parameter Level 

In order to test whether the increased variability (decreased stability) predicted non-

local changes, we first tested whether variability at the landing positions or hit 



proportion would predict non-local changes at the release parameter level. The general 

linear mixed-effect analysis showed that, first, there was a higher change for non-local 

changes to occur at the first day of practice (estimate1: 1.96 ± 0.93; chance of 0.87; t 

[1515] = 2.10; p = .035) with such chance decreasing per day (estimate: -0.28 ± 0.05; 

chance of 0.7 in the fifth day; t [1515] = 5.53; p < .001). For the variability measures, 

no landing position variability showed any significant effect on the chance of non-local 

changes (p’s > .849). However, non-local changes were significantly modulated by the 

hit proportion with high performances decreasing the chance of non-local changes 

(estimate: -5.78 ± 1.90; decrease chance to 0.02; t [1515] = 3.04; p = .002). The R2 was 

of 0.56 (large effect). 

Non-Local Changes at the Movement Pattern Level 

Finally, in order to test whether non-local changes at the movement pattern level are 

predicted by increased variability (decreased stability) in terms of the interaction 

between the learner and the task space or also by the movement pattern variability, we 

performed two linear mixed-effect analyses considering only task related variability 

(and days) and adding the movement pattern variability. The model with only task 

related variability showed individuals started practice with a lower than chance 

occurrence of non-local changes (estimate: -2.29 ± 0.96; chance of 0.09; t [1540] = 

2.39; p = .016) and decreased more such change over days (estimate: -0.66 ± 0.20; 

chance of 0.01 in the fifth day; t [1540] = 3.29; p = .001). The landing variability 

 

1 The estimate is the value that comes out from the equation. We also added the “chance” given 

the estimate comes from the linear part of the logit equation. Thus, we can calculate how each 

estimate relates to the chance of non-local changes occurrence. 



measure in the antero-posterior direction showed no significant influence (p = .742). 

However, the landing variability measure in the medio-lateral direction showed 

significance with a positive relation: more variability increased the chance on non-local 

changes in movement pattern (estimate: 18.58 ± 9.40; considering the mean plus one 

standard deviation of this measure distribution, increase of the chance to 0.39; t [1540] 

= 1.97; p = .048). Additionally, the hit proportion also related to non-local changes in 

similar way as in the release parameter level (estimate: -6.09 ± 1.32; decrease in chance 

to less than 0.01; t [1540] = 4.62; p < .001). Adding the movement variability to the 

equation did not modify the significance of any other parameter while the movement 

variability, itself, did not show significant effect (p = .487). The R2 of the former model 

(without movement pattern variability) was of 0.023 (a small effect). 

However, there was a decrease in the BIC value (from 11923 to 11850) when 

adding the new variable. We decided, for the sake of exploration, to find the variables 

that would decrease the BIC value to the maximum in the current sample performing a 

backward method on the full model (including all variables). This was made iteratively 

to see which variables carried out higher weight on the BIC. We found that the 

minimum BIC was around 11607. Figure 8 shows the fitted model for two participants. 

(Figure 8 around here) 

In this model, the starting chance of non-local changes in movement pattern was 

below chance (estimate: -5.02 ± 0.77; chance of less than 0.01; t [1541] = 6.48, p < 

.001) with a further decreasing chance per day (estimate: -0.67 ± 0.20; t [1541] = 3.33; 

p < .001). The measures that stayed in the model were the variability in the landing 

position in the medio-lateral direction (estimate: 20.56 ± 8.56; chance increases up to 

0.05; t [1541] = 2.40; p = .016) and movement variability, even not significant 



(estimate2: 0.16 ± 0.13; t [1541] = 1.18; p = .238). The random effects demonstrated 

significant variation in the starting chance of non-local changes (estimate: 0.66). The R2 

of this last model was 0.02 (a small effect). 

Discussion 

The present study tested whether non-local changes in practice would occur through a 

process of decreasing stability in the learner and task interaction. This decreased 

stability would be observed through an increase in variability in task outcome rather 

than the movement pattern variability. For this, we identified non-local changes in terms 

of movement patterns and release parameters in a throwing study and related them to 

variability at the landing positions, average performance (i.e., hit proportion) and 

movement pattern variability. We found support for our expectation in terms of both 

levels of analysis. In the discussion section, we discuss how these levels differed, the 

implications of such result for considerations on non-local changes in practice, what 

variability might be referring to, and discuss how our results fit in the extant literature 

on change in motor learning. 

Non-Local Changes at the Release Parameter Level 

Our results show that all participants performed a non-local change at the release 

parameters level at some point during practice. The chance of occurrence decreased 

through days but as shown in our results, it was considerably high up to the last day of 

practice. These non-local changes were related, according to our results, to decreased hit 

proportion. 

 

2 The z-score of this measure was used. 



This evidence for these changes during practice is important: few theories in 

motor learning consider such changes. If considered, these theories refer to these non-

local changes as “changes in strategy” or “explicit” changes in motor learning (see, for 

instance, Taylor and Ivry 2012). These are generally pondered when experimental 

manipulations drastically modify the task (e.g., target position). In the present study, we 

saw non-local changes occurring in a constant target condition and, therefore, 

consideration on these so-called changes in strategy should be expanded for all types of 

tasks. 

The occurrence of such type of non-local changes are in accordance to what was 

observed in previous studies from Pacheco and colleagues (Pacheco et al., 2017, 2020). 

Despite the different nature of these tasks, it is important to highlight the consistency of 

findings in observing non-local changes. It is important to note, however, that, in these 

other studies, the non-local changes were predicted by increase in variability in 

performance – not the average performance per se. It is possible that given the nature of 

the present task (on which the performance variable was dichotomous), average 

performance and variability in performance would be quite similar and, thus, we cannot 

differentiate both. In fact, the correlation between the two measures is around 0.5 

(Pearson correlation) in the present study, which agrees, partially, to this argument. 

Another issue is that the non-local changes in release parameters could occur 

within a given movement pattern. It means that participants would explore the different 

areas of the task space through non-local changes even when a single movement pattern 

is being performed. This reinforces the need for theories that consider only local 

changes to encompass such phenomenon. For instance, current ideas on motor learning 

– such as the Direct Learning (Jacobs et al., 2011; Jacobs & Michaels, 2007; Michaels 

et al., 2017) – assume continuous motion through the task space. In fact, we are 



tempted, given the results on the local-changes (discussed below) to question many 

interpretations from distributions in data believed to result from continuous motion 

through the task space. Is, for instance, the exploited redundancy in data something that 

arises from continuous drift (e.g., Cusumano, Mahoney, and Dingwell 2014) or non-

local jumps along the goal-space? 

Non-Local Changes at the Movement Pattern Level 

Our results call for a role of learner-task space interaction in predicting non-local 

changes in movement pattern. Note that this holds independent of the two fitted models 

that we detailed in the results section – in that landing position and hit proportion were 

significant or when hit proportion is dropped from the model (see Figure 8). Given the 

latest model showed the lowest BIC, we consider it here for discussion. 

As hinted in the Introduction section, non-local changes are an important part for 

solutions to be found in meaningful time during practice. Gelfand and Tsetlin (1962) 

provided arguments on time and computation power for how impracticable is to have an 

algorithm to find the best solution with so many degrees of freedom at play. These 

authors argue that individuals search for some satisfactory level of performance with a 

combination of local and non-local search. This combination is necessary considering 

the many local minima that arise from the perceptual-motor workspace and task space 

interaction (see also Schöllhorn et al. 2009 on the need of strategies to avoid local 

minima). Such process of non-local changes allow for individuals to visit a range of 

regions of the perceptual-motor workspace and task space supporting what was has 

been referred as the exploration and selection process in skill acquisition (Hadders-

Algra, 2000; Thelen & Corbetta, 1994). The question was how such non-local changes 

are to occur. 



Since the earlier studies from Kelso and colleagues (e.g., Schöner, Zanone, and 

Kelso 1992; Zanone and Kelso 1992, 1997) showing bifurcations in motor learning, 

there was the issue of finding other task paradigms that could illustrate all the “steps” 

that their approach required (e.g.,, finding order parameters) (see Newell and Liu in 

press). That is, how to show increased variation, abrupt changes and also new attractors 

in the perceptual-motor workspace in a new task? It might well be that the different 

routes through which researchers under the DS approach would study learning (see 

Beek and van Santvoord 1992) was an effect of the lack of task paradigms that could 

generalize these early findings. 

One of the routes that appeared at the time was the SSA (Newell et al., 1989, 

1991; Newell & McDonald, 1992). This approach was, at first, quite different from the 

“synergetic” approach from Kelso and colleagues in that it was not looking for order 

parameters, transitions and the like. As still under the DS approach, the SSA considered 

how perception-action coupling would maintain or decrease stability while viewing the 

whole process of skill acquisition as a process of search. Nevertheless, it was only 

recently that SSA went to explore how non-local changes could occur and explicitly 

related this type of motion in the perceptual-motor workspace to stability/variability 

(e.g., Pacheco, Lafe, and Newell 2019, 2020; Pacheco, Hsieh, and Newell 2017).  

It is through an early consideration in SSA that such link can be made: “It is 

hypothesized that the information organisms use to search a perceptual-motor work 

space is a macroscopic property defining the ‘form’ of the layout of gradient and 

singular regions.” (Newell et al. 1989, p. 102) That is, learners would perceive the 

layout gradient of the perceptual-motor workspace and act accordingly. In 

understanding that these early ideas encompassed, not explicitly, how the individual 



interacted with the task space also (see Pacheco, Lafe, and Newell 2019), that a 

connection between loss of stability and non-local changes in search was considered. 

Thus, it was expected that Chow et al. (2008) would not find relations between 

movement variability and non-local changes when a redundant task was analyzed. It 

was at the task level (performance) that instabilities would arise as that is at that level 

that stability is attempted to be maintained. Variability in movement patterns that are 

“irrelevant” (redundant) to performance are not acted upon – specifically, if it does not 

relate to variability in performance, then it does not guide changes for the individual; a 

simpler explanation of why individuals, mostly, end up showing high variability in 

redundant spaces of the task space (see Martin, Reimann, and Schöner 2019; Latash 

2010 for other views). 

Indeed, variability in performance has been a strong point in the literature of 

motor learning. For instance, the Tolerance, Noise, and Covariation (TNC) approach 

(see Müller and Sternad 2004; Cohen and Sternad 2009) has been categorical in stating 

that learning is about change to regions of the perceptual-motor workspace where 

“variability matter less” (Sternad et al., 2014; Sternad, 2018). This has led to a number 

of experiments on which imposing variability to individuals’ performance led 

individuals to better results in practice (Chu et al., 2013; Zhang et al., 2018). However, 

this does not imply that adding variability in practice is sufficient. Studies have 

demonstrated that, in some cases, variability does not directly relate to flexibility in 

action (Ranganathan & Newell, 2010), and adding variability might be problematic 

(Cardis et al., 2018). In theory, variability levels might need to be tuned for specific 

individuals (Harrison & Stergiou, 2015; Schöllhorn et al., 2009; Stergiou et al., 2006). 

Our results, then, corroborate the view that individuals interact with the task 

space and that instability (increased variability) drives non-local changes. Also, the 



results show that such processes would occur also in different types of tasks. As 

discussed, this task is redundant and, thus, required consideration of the task space 

(beyond movement patterns). Further, and important, this task is discrete; our results, 

then, generalize processes well established in continuous/cyclical tasks (i.e., Kostrubiec 

et al., 2012; Schöner et al., 1992; Zanone & Kelso, 1992). 

Given the results of the latest model, nevertheless, we cannot disregard a 

possible effect of movement pattern variability in predicting non-local changes. Despite 

the fact that the variable was not significant, the lowest BIC model required the 

inclusion of the variable. This can occur if the movement variability varied its effects 

per individual (it would appear as a random effect as well) – which did not occur – or its 

inclusion “controls” some of the variance allowing for other variables to be significant – 

which seems to be the case. Thus, it seems to be the interaction of the perceptual motor 

workspace with the task space that matters – not only the resultant performance – that 

lead to non-local changes in practice. It means that some variability in movement 

pattern might be also favoring non-local changes. 

An important aspect to be discussed, however, is the fact that the model for non-

local changes at the movement pattern level showed only a small effect size. This is not 

a concern, nevertheless. First, we need to consider that not all individuals demonstrated 

the non-local change. Thus, some individuals do not perform other movement patterns 

despite how variable they are. This can result from individuals that do not present other 

stable movement patterns in their repertoire and, because of this, refrain to change their 

movement patterns. Second, performance and movement variability, different from 

common studies on transitions (e.g., Kelso 1984; Scholz and Kelso 1990), will not 

automatically decrease after the transition. Additionally, given the large drop of non-

local changes that individuals showed over days (50% of the non-local changes 



occurred on the first day), large variability would not mean non-local changes on later 

days – which blurs even more the relation.  

However, a major reason for this blurred relation between movement pattern 

changes and variability in the task space is that, in redundant tasks, non-local changes in 

movement patterns might not be at all necessary. That is, in the same way that 

variability in the movement pattern does not necessarily reflect changes in performance 

and, thus, do not need to be acted upon, decreased or variable performance might not 

lead to decreased stability in movement patterns. When such non-local changes at the 

movement pattern level occur, other factors might also be at play; for instance, local 

search achieves values near critical points that decrease stability in movement patterns. 

Thus, the fact that variability on landing was maintained in all models despite these 

factors is highly relevant. 

Local Changes in Search and Its Relation to Non-Local Changes 

Our results on the local changes revealed no structure over time – considering linear 

trends or autocorrelation. This is quite different from other studies that easily find trends 

over trials in a given dimension of the task (e.g., Wu et al. 2014; Braun, Mehring, and 

Wolpert 2010; Pacheco and Newell 2018b). Many of these studies employ either 

simplified task paradigms with reaching/ aiming or are based on modifications of stable 

perception-action couplings on which effects vanish after few practices. We believe that 

differences in task constraints are the main source of such differences (Wulf & Shea, 

2002). That is, it is possible that the trial-to-trial inherent variability in the present study 

is way larger than in reaching/ aiming studies. This factor seems to be sufficient to 

modify trial-to-trial trends as demonstrated in an aiming study that manipulated 

conditions that induced inherent variability (Pacheco & Newell, 2018a). 



Furthermore, these results on the autocorrelation were expected. When 

performing the autocorrelation analyses, we considered sections of trials with at least 10 

trials but were much larger than that (the average number of trials were of 27 trials with 

some sections lasting all 210 trials of the day). It means that we were considering a 

single autocorrelation value for long periods of practice. This is somewhat contradictory 

as we expected changes within sections to occur to predict non-local changes. That is, 

we used a single autocorrelation value to describe the whole section while expecting for 

different dynamics within sections. New tools are required to explore local search as, 

currently, most of them assume stationarity (e.g., Cusumano, Mahoney, and Dingwell 

2014; Cusumano and Cesari 2006) and this is clearly not what would be happening in a 

learning study. 

Considering that changes within a section – increased variability during local 

search – are to predict non-local change, we must deal with an important question: what 

are the changes that occur within a section that leads to decreased performance, 

decreased stability or any other changes in practice? We believe that the search for more 

appropriate informational variables and small modifications in movement aspects might 

affect stability of the movement patterns but also might change the capability of the 

individual to maintain stability in his performance. This increases the “range of contact” 

with the region on which the learner is in the task space (his variability increases) and 

this might be sufficient to further decrease the stability of the given region of the 

perceptual-motor workspace. In fact, the small motion through informational 

variables/movement aspects with the guiding information from the task space might be 

enough for the system to not settle into any single solution and when such search is 

enhanced the system inevitably moves to other regions of the perceptual-motor 

workspace. 



Final Comments 

This paper demonstrated how non-local changes during practice are frequent and obey 

established principles in motor control (see Kelso 1995, 2009) and development (see 

Thelen et al. 1993; Thelen and Smith 1994) of the dynamical systems perspective to 

motor behavior. We believe that the current effort shows the potential of SSA to 

understand skill acquisition. The approach follows nicely the process of repetition 

without repetition proposed by Bernstein (1967) by looking for overall principles of 

change without dismissing individual characteristics and specific environmental and 

tasks constraints. The current results showed that such process of search for movement 

solutions seem to be an intertwined process of local and non-local (global) changes – in 

the same vein as Gelfand and Tsetlin (1962) proposed. 

References 

Allen, J. L., Kesar, T. M., & Ting, L. H. (2019). Motor module generalization across 

balance and walking is impaired after stroke. Journal of Neurophysiology, 122(1), 

277–289. https://doi.org/10.1152/jn.00561.2018 

Beek, P. J., & van Santvoord, A. A. M. (1992). Learning the cascade juggle: A 

dynamical systems analysis. Journal of Motor Behavior, 24(1), 85–94. 

https://doi.org/10.1080/00222895.1992.9941604 

Bernstein, N. A. (1967). The co-ordination and regulation of movements. Pergamon. 

Brakke, K., & Pacheco, M. M. (2019). The Development of Bimanual Coordination 

Across Toddlerhood. Monographs of the Society for Research in Child 

Development, 84(2), 7–147. https://doi.org/10.1111/mono.12405 

Braun, D. A., Mehring, C., & Wolpert, D. M. (2010). Structure learning in action. 



Behavioural Brain Research, 206, 157–165. 

https://doi.org/10.1016/j.bbr.2009.08.031 

Cardis, M., Casadio, M., & Ranganathan, R. (2018). High variability impairs motor 

learning regardless of whether it affects task performance. Journal of 

Neurophysiology, 119(1), 39–48. https://doi.org/10.1152/jn.00158.2017 

Chow, J. Y., Davids, K., Button, C., & Rein, R. (2008). Dynamics of movement 

patterning in learning a discrete multiarticular action. Motor Control, 12(3), 219–

240. https://doi.org/10.1123/mcj.12.3.219 

Chu, V. W. T., Sternad, D., & Sanger, T. D. (2013). Healthy and dystonic children 

compensate for changes in motor variability. Journal of Neurophysiology, 109(8), 

2169–2178. https://doi.org/10.1152/jn.00908.2012 

Cohen, R. G., & Sternad, D. (2009). Variability in motor learning: Relocating, 

channeling and reducing noise. Experimental Brain Research, 193, 69–83. 

https://doi.org/10.1007/s00221-008-1596-1 

Cusumano, J. P., & Cesari, P. (2006). Body-goal variability mapping in an aiming task. 

Biological Cybernetics, 94(5), 367–379. https://doi.org/10.1007/s00422-006-0052-

1 

Cusumano, J. P., Mahoney, J. M., & Dingwell, J. B. (2014). The dynamical analysis of 

inter-trial fluctuations near goal equivalent manifolds. In M. F. Levin (Ed.), 

Progress in motor control (pp. 125–145). Springer. 

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). SAGE. 

Gelfand, I. M., & Tsetlin, M. L. (1962). Some methods of control for complex systems. 



Russian Mathematic Surveys, 17, 95–117. 

Golenia, L., Bongers, R. M., van Hoorn, J. F., Otten, E., Mouton, L. J., & Schoemaker, 

M. M. (2018). Variability in coordination patterns in children with developmental 

coordination disorder (DCD). Human Movement Science, 60, 202–213. 

https://doi.org/10.1016/j.humov.2018.06.009 

Hadders-Algra, M. (2000). The Neuronal Group Selection Theory: A framework to 

explain variation in normal motor development. Developmental Medicine and 

Child Neurology, 42(8), 566–572. https://doi.org/10.1017/S0012162200001067 

Harrison, S. J., & Stergiou, N. (2015). Complex adaptive behavior and dexterous action. 

Nonlinear Dynamics, Psychology, and Life Sciences. 

Jacobs, D. M., Ibáñez-Gijón, J., Díaz, A., & Travieso, D. (2011). On potential-based 

and direct movements in information spaces. Ecological Psychology, 23(2), 123–

145. https://doi.org/10.1080/10407413.2011.566046 

Jacobs, D. M., & Michaels, C. F. (2007). Direct Learning. Ecological Psychology, 

19(4), 321–349. https://doi.org/10.1080/10407410701432337 

Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual 

coordination. American Journal of Physiology - Regulatory Integrative and 

Comparative Physiology, 246(6), R1000–R1004. 

https://doi.org/10.1152/ajpregu.1984.246.6.R1000 

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. 

MIT Press. 

Kelso, J. A. S. (2009). Synergies: Atoms of brain and behavior. In D. Sternad (Ed.), 



Progress in motor control: A multidisciplinary perspective. Springer. 

Kostrubiec, V., Zanone, P.-G., Fuchs, A., & Kelso, J. A. S. (2012). Beyond the blank 

slate: Routes to learning new coordination patterns depend on the intrinsic 

dynamics of the learner—experimental evidence and theoretical model. Frontiers 

in Human Neuroscience, 6(August), 1–14. 

https://doi.org/10.3389/fnhum.2012.00222 

Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinate 

structures as dissipative structures: I. Theoretical lines of convergence. In G. E. 

Stelmach & J. Requin (Eds.), Tutorials in Motor Behavior (pp. 3–47). North-

Holland. 

Kugler, P. N., & Turvey, M. T. (1987). Information, natural laws, and self-assembly of 

rhythmic movement. Lawrence Erlbaum. 

Latash, M. L. (2010). Stages in learning motor synergies: A view based on the 

equilibrium-point hypothesis. Human Movement Science, 29, 642–654. 

https://doi.org/10.1016/j.humov.2009.11.002 

Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). 

Experimental Brain Research, 217, 1–5. https://doi.org/10.1007/s00221-012-3000-

4 

Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a new theory of motor 

synergies. Motor Control, 11, 276–308. https://doi.org/10.1123/mcj.11.3.276 

Liu, Y.-T., Chuang, K. L., & Newell, K. M. (2019). Mapping collective variable and 

synergy dynamics to task outcome in a perceptual-motor skill. PLoS ONE, 14(4), 



1–21. https://doi.org/10.1371/journal.pone.0215460 

Liu, Y.-T., & Newell, K. M. (2015). S-shaped motor learning and nonequilibrium phase 

transitions. Journal of Experimental Psychology: Human Perception and 

Performance, 41(2), 403–414. https://doi.org/10.1037/a0038812 

Martin, V., Reimann, H., & Schöner, G. (2019). A process account of the uncontrolled 

manifold structure of joint space variance in pointing movements. Biological 

Cybernetics. https://doi.org/10.1007/s00422-019-00794-w 

Michaels, C. F., Gomes, T. V. B., & Benda, R. N. (2017). A direct-learning approach to 

acquiring a bimanual tapping skill. Journal of Motor Behavior, 49(5), 550–567. 

https://doi.org/10.1201/9781315152110 

Müller, H., & Sternad, D. (2004). Decomposition of variability in the execution of goal-

oriented tasks: Three components of skill improvement. Journal of Experimental 

Psychology: Human Perception and Performance, 30(1), 212–233. 

https://doi.org/10.1037/0096-1523.30.1.212 

Newell, K. M. (1985). Coordination, control and skill. In D. Goodman, R. B. Wilberg, 

& I. M. Franks (Eds.), Differing perspectives in motor learning, memory, and 

control (pp. 295–317). Elsevier. 

Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade 

& H. T. A. Whiting (Eds.), Motor development in children: Aspects of 

coordination and control (pp. 341–360). Nato Sciences Series D. 

Newell, K. M., Kugler, P. N., van Emmerik, R. E. A., & McDonald, P. V. (1989). 

Search strategies and the acquisition of coordination. In S. A. Wallace (Ed.), 



Perspectives on the coordination of movement (pp. 85–122). Elsevier. 

Newell, K. M., & Liu, Y. T. (2020). Collective Variables and Task Constraints in 

Movement Coordination, Control and Skill. Journal of Motor Behavior, 0(0), 1–

27. https://doi.org/10.1080/00222895.2020.1835799 

Newell, K. M., & McDonald, P. V. (1992). Searching for solutions to the coordination 

function: Learning as exploratory behavior. In G. E. Stelmach & J. Requin (Eds.), 

Tutorials in Motor Behavior II (pp. 517–532). Elsevier. 

Newell, K. M., McDonald, P. V., & Kugler, P. N. (1991). The perceptual-motor 

workspace and the acquisition of skill. In J. Requin & G. E. Stelmach (Eds.), 

Tutorials in Motor Neuroscience (pp. 95–108). Springer. 

Pacheco, M. M., Hsieh, T.-Y., & Newell, K. M. (2017). Search strategies in practice : 

Movement variability affords perception of task dynamics. Ecological Psychology, 

29(4). https://doi.org/10.1080/10407413.2017.1368354 

Pacheco, M. M., Lafe, C. W., & Newell, K. M. (2019). Search strategies in the 

perceptual-motor workspace and the acquisition of coordination, control, and skill. 

Frontiers in Psychology, 10(AUG), 1–24. 

https://doi.org/10.3389/fpsyg.2019.01874 

Pacheco, M. M., Lafe, C. W., & Newell, K. M. (2020). Search Strategies in Practice : 

Testing the Effect of Inherent Variability on Search Patterns. Ecological 

Psychology, 0(0), 1–24. https://doi.org/10.1080/10407413.2020.1781536 

Pacheco, M. M., & Newell, K. M. (2015). Transfer as a function of exploration and 

stabilization in original practice. Human Movement Science, 44, 258–269. 



https://doi.org/10.1016/j.humov.2015.09.009 

Pacheco, M. M., & Newell, K. M. (2018a). Search strategies in practice: Influence of 

information and task constraints. Acta Psychologica, 182, 9–20. 

https://doi.org/10.1016/j.actpsy.2017.11.004 

Pacheco, M. M., & Newell, K. M. (2018b). Transfer of a learned coordination function: 

Specific, individual and generalizable. Human Movement Science, 59, 66–80. 

https://doi.org/10.1016/j.humov.2018.03.019 

Ranganathan, R., & Newell, K. M. (2010). Emergent flexibility in motor learning. 

Experimental Brain Research, 202(4), 755–764. https://doi.org/10.1007/s00221-

010-2177-7 

Schöllhorn, W. I., Mayer-Kress, G., Newell, K. M., & Michelbrink, M. (2009). Time 

scales of adaptive behavior and motor learning in the presence of stochastic 

perturbations. Human Movement Science, 28(3), 319–333. 

https://doi.org/10.1016/j.humov.2008.10.005 

Scholz, J. P., & Kelso, J. A. S. (1990). Intentional switching between patterns of 

bimanual coordination depends on the intrinsic dynamics of the patterns. Journal 

of Motor Behavior, 22(1), 98–124. 

https://doi.org/10.1080/00222895.1990.10735504 

Scholz, J. P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying 

control variables for a functional task. Experimental Brain Research, 126(3), 289–

306. https://doi.org/10.1007/s002210050738 

Schöner, G., Zanone, P.-G., & Kelso, J. A. S. (1992). Learning as change of 



coordination dynamics: Theory and experiment. Journal of Motor Behavior, 24(1), 

29–48. https://doi.org/10.1080/00222895.1992.9941599 

Shaw, R. E., & Alley, T. R. (1985). How to draw learning curves: Their use and 

justification. In T. Johnston & A. Pietrewicz (Eds.), Issues in the ecological study 

of learning (pp. 275–304). Erlbaum. 

Stergiou, N., Harbourne, R. T., & Cavanaugh, J. T. (2006). Optimal movement 

variability: A new theoretical perspective for neurologic physical therapy. Journal 

of Neurologic Physical Therapy, 30(3), 120–129. 

https://doi.org/10.1097/01.NPT.0000281949.48193.d9 

Sternad, D. (2018). It’s not (only) the mean that matters: Variability, noise and 

exploration in skill learning. Current Opinion in Behavioral Sciences, 20, 1983–

195. https://doi.org/10.1016/j.cobeha.2018.01.004 

Sternad, D., Huber, M. E., & Kuznetsov, N. (2014). Acquisition of novel and complex 

motor skills: Stable solutions where intrinsic noise matters less. In M. Levin (Ed.), 

Progress in motor control (pp. 101–124). Springer. 

Taylor, J. A., & Ivry, R. B. (2012). The role of strategies in motor learning. Annals of 

the New York Academy of Sciences, 1251, 1–12. https://doi.org/10.1111/j.1749-

6632.2011.06430.x 

Thelen, E., & Corbetta, D. (1994). Exploration and selection in the early acquisition of 

skill. In International Review of Neurobiology (Vol. 37, Issue C). ACADEMIC 

PRESS, INC. https://doi.org/10.1016/S0074-7742(08)60240-8 

Thelen, E., Corbetta, D., Kamm, K., Spencer, J. P., Schneider, K., & Zernicke, R. F. 



(1993). The transition to reaching: Mapping intention and intrinsic dynamics. 

Child Development, 64(4), 1058–1098. https://doi.org/10.2307/1131327 

Thelen, E., & Smith, L. B. (1994). A Dynamics systems Approach to the Development of 

Cognition and Action. MIT Press. 

Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley 

& Sons. 

Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). 

Temporal structure of motor variability is dynamically regulated and predicts 

motor learning ability. Nature Neuroscience, 17(2), 312–321. 

https://doi.org/10.1038/nn.3616 

Wulf, G., & Shea, C. (2002). Principles derived form the studies of simple motor skills 

do not generalize to complex skill learning. Psychonom Bull Rev, 9(2), 185–211. 

Zanone, P.-G., & Kelso, J. A. S. (1992). Evolution of behavioral attractors with 

learning: Nonequilibrium phase-transitions. Journal of Experimental Psychology: 

Human Perception and Performance, 18(2), 403–421. 

https://doi.org/10.1037/0096-1523.18.2.403 

Zanone, P.-G., & Kelso, J. A. S. (1994). The coordination dynamics of learning: 

Theoretical structure and experimental agenda. In S. P. Swinnen, J. Massion, H. 

Heuer, & P. Casaer (Eds.), Interlimb coordination: Neural, dynamic and cognitive 

constraints (pp. 461–490). Academic Press. 

Zanone, P.-G., & Kelso, J. A. S. (1997). Coordination Dynamics of Learning and 

Transfer: Collective and Component Levels. Journal of Experimental Psychology: 



Human Perception and Performance, 23(5), 1454–1480. 

https://doi.org/10.1037/0096-1523.23.5.1454 

Zhang, Z., Guo, D., Huber, M. E., Park, S. W., & Sternad, D. (2018). Exploiting the 

geometry of the solution space to reduce sensitivity to neuromotor noise. PLoS 

Computational Biology, 14(2), e1006013. 

https://doi.org/10.1371/journal.pcbi.1006013 

  



Figure Captions 

Figure 1. Schematic of the non-local and local analyses for the release parameters 

considering two dimensions (vx and vy) of the release parameters (left) and landing 

dimensions (right). Each circle represents a hypothetical trial with the darker circles 

referring to earlier trials. The dashed black line (left) represents the solution of the task 

(goal space) while the blue triangle (right) represents the target. (a) To characterize a 

non-local change in the release parameters, the Euclidean distance between a given trial 

t to t + 1 (double headed arrow) would need to be significantly larger than the distance 

between the previous trials. (b) The local search “change” was defined as a set of trials 

in a section (see the Methods) which also demonstrate a linear change in either landing 

dimensions (exemplified by the black arrow on the right). (c) The local search 

“maintenance” was defined as a set of trials in a section which does not demonstrate any 

linear change in either release parameters or landing dimensions. (d) The local search 

“covariation” was defined as a set of trials in a section which shows no linear change in 

either landing dimensions but show in the release parameters (exemplified by the black 

arrow on the left). 

Figure 2. Schematic of the variability analysis for the movement pattern. α and θ 

represent any two joint angles. The analysis was performed on 9 dimensions but we 

show only two as to facilitate comprehension. (a) Hypothetical trajectories (red) of a 

given set of trials. The blue square represents a time window of 5% of time. (b) and (c) 

For each time window, a centroid was defined (blue circle) and the distance of each trial 

to this dot (exemplified by the double headed arrow) was summed to capture the 

variability at this time point. (b) and (c) show two hypothetical situations with more or 

less variability. 

Figure 3. Schematic of the analyses relating variability over time and non-local changes 

at (a) the release parameters level or (b) movement patterns. (a) Considering that a 

hypothetical individual who performed within a given region of the release parameters 

space (exemplified in terms of vx and vy) for the first 17 trials and then showed a non-

local change to another region, we observed the variability in both landing dimensions 

(lx and ly) and the number of hits (hits – green circles, misses – red circles) in blocks of 

ten trials considering the moment of such non-local change. (b) The same was 

performed for non-local changes at the movement pattern level (characterized by 



changes from one cluster to another – see Methods). Here, we also considered the 

variability in the movement pattern (exemplified by the pointed red lines around the θº 

blue line). 

Figure 4. Performance change over blocks and days for each individual (gray lines) and 

for the group (average). The error bars represent the standard deviation. 

Figure 5. Shoulder (blue) and elbow (red) average angle trajectory (flexion/extension) 

over a normalized trial time for an exemplary participant. The average was calculated 

over a window of 10 trials. The shaded area represents the standard deviation. 

Figure 6. Trial-to-trial values of the six release parameters for an exemplary participant. 

“p’s” represent release positions in the x (dark blue), y (red), and z (yellow) axes and 

“v’s” represent release velocities in the x (purple), y (green), and z (light blue) axes. The 

black dotted line represents the moment of non-local change given large changes in the 

vy and vz release parameters. 

Figure 7. Average autocorrelation (lag 1) values for each participant and day of 

practice. The left panel shows the autocorrelation values considering the first 

component derived from the principal component analyses and the right panel shows 

the values for the second component. 

Figure 8. Modelled chance of non-local chance occurrence (z axis) as a function of 

landing position variability (in the medio-lateral direction) (x axis) and days (y axis). 


