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ABSTRACT: We described in 2017 how weathering plastic litter in the
marine environment fulfils two of three criteria to impose a planetary
boundary threat related to “chemical pollution and the release of novel
entities”: (1) planetary-scale exposure, which (2) is not readily reversible.
Whether marine plastics meet the third criterion, (3) eliciting a disruptive
impact on vital earth system processes, was uncertain. Since then, several
important discoveries have been made to motivate a re-evaluation. A key issue
is if weathering macroplastics, microplastics, nanoplastics, and their leachates
have an inherently higher potential to elicit adverse effects than natural
particles of the same size. We summarize novel findings related to weathering
plastic in the context of the planetary boundary threat criteria that
demonstrate (1) increasing exposure, (2) fate processes leading to poorly reversible pollution, and (3) (eco)toxicological hazards
and their thresholds. We provide evidence that the third criterion could be fulfilled for weathering plastics in sensitive environments
and therefore conclude that weathering plastics pose a planetary boundary threat. We suggest future research priorities to better
understand (eco)toxicological hazards modulated by increasing exposure and continuous weathering processes, to better parametrize
the planetary boundary threshold for plastic pollution.
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■ INTRODUCTION

The planetary boundary concept defines a safe operating space
for humanity within the context of global environmental
change.1 Planetary boundaries include, e.g., climate change,
biosphere integrity, and the introduction of chemicals or other
novel entities.2 In 2017, we described how plastic pollution
fulfills two of three criteria that define the planetary boundary
threat for novel entities,3 specifically (1) planetary-scale
exposure, which is (2) not readily reversible.2,4,5 Plastics in
the environment will pose a planetary boundary threat if they
also meet the third criterion, (3) eliciting a disruptive impact
on a vital earth system process.
The possibility of currently unknown disruptive impacts due

to globally accumulating plastics and associated breakdown
products6 is a strong motivation for applying the precautionary
principle to reduce plastic emissions worldwide.3 Such
unknown impacts could arise from the influence that
environmental weathering has on the exposure, fate, and
potential (eco)toxicological hazards of plastics in the environ-
ment. The properties of plastics begin to change immediately
by weathering processes once they enter the environment.3 If
there is a planetary boundary threat associated with plastics in
the environment, it is inseparable from their weathering. For
instance, one hypothesis referred to as “global plastic toxicity

debt” considers that the plastics currently present in the oceans
will become more toxic with time due to future, accumulating
releases of small particles, including nanoplastics, and chemical
leachates, all with unknown impacts, as a result of weathering.7

Here, we use the term “weathering” to refer to abiotic
(physicochemical) and biotic weathering, as well as to
mechanical degradation and fragmentation. We follow this
approach for efficiency, due to the interdependency of these
processes.
Recent years have brought major discoveries related to

plastic weathering and its diverse impacts. We discuss these
advances with reference to the three criteria that define a
planetary boundary threat: (1) exposure and weathering, (2)
fate and weathering, and (3) hazard and weathering. We
conclude this manuscript by revisiting (4) the planetary
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boundary concept in the context of weathering and reassess if
weathering plastics pose a planetary boundary threat.

■ EXPOSURE AND WEATHERING
Plastic emissions instigate ecosystem exposure. It was
estimated that as of 2010 there had been 275 million tons of
plastics emitted into the world’s oceans and that emissions
reached approximately 8 million tons of macroplastics and 1.5
million tons of microplastics entering annually.8 Increasing
ocean macroplastics loads over the past 60 years have been
confirmed empirically.9 A recent projection concluded there
would be 710 million tons in the ocean by 2040, even in the
scenario of immediate and concerted actions to drastically
reduce plastic emissions.10 This huge inventory of plastics in
the oceans will continuously be subject to diverse weathering
processes, such that the macroplastics emitted today will
contribute to increased exposure to micro- and nanoplastics,
and their leachates, in the next decades.7

Abiotic Weathering. Once in the aquatic environment,
abiotic factors change the morphology and mechanical
properties of both the surface and bulk phase of plastics.
Photooxidation leads to the formation of polar functional
groups such as carbonyl groups in most polymers,11−13 hence
decreasing their surface hydrophobicity.14 Chain scission,
cross-linking reactions, and leaching of additives also occurs,
which has a direct effect on molar mass and mechanical
properties.14−17 An increase in crystallinity (and brittleness18)
occurs for semicrystalline polymers such as polyethylene as a
result of chain scissions in amorphous regions.15,19 Even
without mechanical stress, cracks occur due to photooxidation,
which increases fragmentation.12,20,21 X-ray tomography
imaging of marine plastics has shown they contain surface
cracks that run toward their center.22

Biotic Weathering. In addition to abiotic processes, plastic
pollution undergoes diverse, co-occurring, and in many cases
synergistic biotic weathering (i.e., abiotic weathering that
facilitates biological attack). This weathering involves the
formation of a biofilm on the surface, mineralization by
bacteria, and digestion by marine organisms. Upon the first
exposure of plastics to natural waters, an initial surface layer of
inorganic and organic substances is formed, the so-called “eco-
corona.”23,24 Adsorption of the eco-corona to plastic particles
is followed by the formation of a biofilm25 composed of
communities that are phylogenetically distinct from surround-
ing planktonic communities26,27 and subject to spatiotemporal
differences.28 The development of biofilms varies as a function
of polymer type, changing surface properties and external
factors (e.g., light, temperature and oxygen conditions) , which
collectively influences the plastic’s physicochemical proper-
ties.29 Certain microbes have evolved metabolic capacities to
mineralize synthetic polymers to carbon dioxide (CO2) or
methane.30 Sticky extracellular polymeric substances are
excreted from such microbes to connect assemblages and
provide stability, and this in turn increases the structural
complexity of the biofilm.31 Thus, the formation of plastic-
associated biofilms contributes greatly to the alteration of size,
shape, and density of entrained plastics and also plays a major
role in the formation of heteroaggregates,32 which further
affects their fate (discussed below).33

In addition to these microbiological processes, both
entanglement and ingestion of macro- and microplastics by
marine organisms can occur.34 Weathering modulates particle
uptake by aquatic organisms, likely because the particles

gradually resemble natural prey by size or by biofilm coating.35

For instance, weathered plastic fragments were shown to be
more readily taken up than virgin polystyrene by different
organisms,35 but this is not always the case. For infantile
zebrafish, bioaccumulation of weathered polyamide particles
(treated with hydrogen peroxide alone or with light
irradiation) was less explicit than for the pristine material.36

Furthermore, the digestive action of marine invertebrates has
been demonstrated to facilitate fragmentation of plastic
particles to smaller size ranges37,38 and to provide a pathway
for sinking by the excretion of faecal matter aggregates.39

Time Scales of Plastic Weathering. Both plastic
properties (polymer types and additives) and environmental
conditions (e.g., sunlight exposure and temperature) influence
the rates of plastic weathering; hence, time scales of weathering
are polymer-, site-, and season-specific. Abiotic and biotic
factors impacting weathering are also interwoven: Biofilms on
plastic surfaces can absorb up to 99% of UV radiation,
depending on thickness and composition,40,41 reducing the
rate of photolysis of polymers.42 Fragmentation rates are
influenced by the properties of weathered and biofilm-covered
plastic particles. In the case of brittle or highly crystalline
(>90%) plastics, fragmentation begins immediately upon
exposure to environmental conditions.43−45 If the polymer is
amorphous at low crystallinity (<20%), mechanical fragmenta-
tion only starts after chemical degradation, facilitating
embrittlement.16,43 Knowledge from standardized testing of
plastic durability under accelerated weathering has the
potential to provide helpful insights on abiotic processes, but
it is not clear how to extrapolate findings from artificial to
natural weathering conditions. To overcome these challenges,
researchers have developed their own weathering cham-
bers19,46 as described in the Supporting Information.
Recent attempts have been made to determine fragmenta-

tion and mineralization rates of plastics in the environment.
Several quantitative studies have focused on direct exposure to
sunlight. Ward et al.47 showed that complete UV-driven
oxidation of polystyrene <200-μm-thick can occur within
decades to centuries, producing CO2 and dissolved organic
carbon as the main products. Song et al.48 found that 4-mm-
thick expanded polystyrene foam (PS bubble foam consisting
of ca. 98% air) lost 5% of its weight during outdoor weathering
within one month, generating millions of micro- and
nanoparticles. Zhu et al.49 assessed UV-facilitated weathering
of polyethylene, polypropylene, expanded polystyrene, and
field-weathered microplastics and derived time scales of <1 to
33 years for 100% weight loss. Direct exposure to sunlight does
appear able to degrade plastics given enough time; however,
this situation does not apply to the large amount of plastics
below the surface, in sediment beds or otherwise shielded from
sunlight (e.g., by biofilms).50 The time scales for plastic
mineralization are ultimately driven by many factors including
exposure media, thickness of the plastic, type of plastic, and
additives in the plastic to prevent degradation (e.g.,
antioxidants and UV-filters). Chamas et al.50 derived specific
surface degradation rates in various environments to
harmonize diverse degradation rate measurements and
extrapolated marine half-lives for polyethylene of 58 years
(bottles) to 1200 years (pipes). Recent studies have ranked the
degradation rates of different polymer types relative to each
other, indicating that polymers such as branched polyester,
nylon, polystyrene, and polycarbonate displayed high resist-
ance to weathering.50,51 The dissolved organic carbon fraction

Environmental Science & Technology pubs.acs.org/est Perspective

https://doi.org/10.1021/acs.est.1c01512
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01512/suppl_file/es1c01512_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01512?rel=cite-as&ref=PDF&jav=VoR


from plastic oxidation may not be benign, as it contains
unknown, complex mixtures of nanoplastics and chemical
leachates, including intentionally added additives and chain-
scission degradation products like low-molecular weight
fragments with oxidized end groups, in addition to the release
of greenhouse gases.13,46,52

Role of Weathering for (De)Sorption of Chemicals.
Environmental chemicals may be adsorbed on the surface of
plastic, absorbed into the bulk polymer, or both53−55

depending on the polymer type, its weathering state, and the
chemical. Weathering-induced changes of the plastics’
characteristics29,56 and their related impact on the (de)-
sorption of chemicals57−59 strongly depend on the specific
physicochemical and biological conditions, hence factors
determining (de)sorption vary spatiotemporally. The longer
a plastic item remains in the marine environment, the more
likely sorbed chemicals will reach equilibrium partitioning with
their surroundings, implying depletion of additive chemicals in
exchange for an enrichment of ambient chemicals. Physical
changes of plastics from weathering combined with environ-
mental conditions (e.g., salinity) could modify the sorption
capacity of plastics and (de)sorption kinetics, e.g., by (i)
increasing the specific surface area for adsorption due to
enhanced crack formation and pore size/structure, (ii)
decreasing the fraction of amorphous regions for absorption,
or (iii) changing the polarity and hydrophilicity of the surface
due to oxidation.60,61 Biotic weathering (e.g., biofilm
formation62) is also important for both sorption capacities
and (de)sorption kinetics, with one study showing it to be the
predominant factor controlling the sorption capacity of plastics
in a 28-day in situ experiment.63

■ FATE AND WEATHERING
Weathering processes influence the fate and transport of
plastics toward accumulation in gyres, remote shorelines, the
water column, and sediments, as well as mass loss by
mineralization or by permanent (geological) burial below the
benthic ecosystem. Accumulation rates are determined by the
difference between emission rates and ultimate mass loss rates.
There is an increasing focus on the fate of (micro)plastics in
marine sediments,64−66 but little information is available
regarding ultimate burial rates. A recent study found that
deep sea hotspots of microplastics tend to be at biodiversity
hotspots, due to nutrients, organic matter, and microplastics
being deposited in such areas by thermohaline-driven
currents.67 To better infer the locations and rates whereby
plastics can accumulate, there are several abiotic and biotic
influenced transport processes that need to be understood.
Abiotic Transport Processes. The most common fate of

marine microplastics is often claimed to be settling on the sea
bed, or suspension in deep water columns.68−70 Several studies
investigated the settling behavior of individual particles of
various polymers in different sizes and shapes,71,72 subject to
(controlled) weathering conditions73 and biofouling.74 These
studies have confirmed that their settling behavior follows
semiempirical fluid mechanic laws for fluid drag resistance of
objects in relative motion to their ambient fluid (i.e., Newton’s
second law, leading to Stokes’ law, though empirically
corrected for turbulence generation in the particle’s
wake).73,75 However, what complicates the prediction of
transport and sedimentation of plastics is their wide variety
in sizes and shapes, which is made even more complex due to
biofilm formation, fragmentation processes, and heteroaggre-

gate formation, diversifying over time and space. Considering
these changing properties (e.g., using statistical parameters76)
in particle transport models is complex and has not yet been
achieved for plastics.77 In addition, the low relative density of
plastics makes them very sensitive to drag by currents, and drift
by waves78 and turbulence.79 Turbulent drift can be more
important than buoyancy.79 Turbulence remains the most
difficult phenomenon to predict in computational fluid
dynamics. With decreasing particle size, microplastics become
more colloidal (even before they become nanoplastics) and
hence prone to remaining suspended until being mineralized
or incorporated into larger aggregates with other small particles
or water-soluble polymers80,81 to settle as noncolloidal particles
or redisperse.
Fragmentation of embrittled particles18 can occur when

exposed to mechanical stress, such as shear stress on
shorelines, sediments, and the sea surface microlayer. Depend-
ing on various conditions such as tide, waves, and storm surges,
plastics on the coastlines can repeatedly move over the
sediment substrate. This shearing motion over hard, angular
sand and rocks facilitates the particles’ fragmentation,
particularly if embrittled by weathering.43−45 Fragmentation
and sediment resuspension by ship propellers and bioturbation
are other important aspects to consider. Finally, floating
microplastics on the surface microlayer can be propelled by
wave action and bubble bursting to become a subfraction of
marine aerosols,82 increasing photooxidation and transport
distances.

Biotic Influenced Transport Processes. Early microbial
colonization and extracellular polymeric substances on plastics
decrease their hydrophobicity and buoyancy83 and enhance
downward movement as single particles or in heteroaggre-
gates.31 Their sinking rates depend on the bulk density of the
aggregates, which is a function of the densities and relative
proportions of the plastics and biogenic particles.84,85 Similarly,
embedding of microplastics in faecal pellets can result in
enhanced sinking rates.39 However, sinking may not result in
ultimate removal from the water column since biofilms could
decay (e.g., due to lack of sunlight). Kooi et al.86 used
modeling to demonstrate that plastics might oscillate within
the upper 100 m of the water column due to (de)fouling and
presented a theoretical model for size-selective removal of
small particles from the ocean surface. Gorokhova87 reported
seasonal fluxes of vertical gradients of microplastics in the
water column due to the biological activity of zooplankton
incorporating plastics. Another study88 detected the highest
concentrations of microplastics in offshore marine waters
between 200 and 600 m depth.

■ HAZARD AND WEATHERING
In addition to plastic-associated chemical leachates, the hazard
of plastics and related aggregates is dictated by their inherent
toxicity to marine life at the specific size, shape, and biofilm
colonization status, all heavily impacted by weathering. Key to
characterizing this hazard is benchmarking the uptake and
effects against nonweathered plastics and natural particles like
detritus and marine clays, as well as their aggregates.

Hazards of Plastic Leachates. Chemicals leaching from
plastics can elicit effects in bioassays.89−91 Coffin et al.91

assessed estrogenicity and aryl hydrocarbon receptor activation
from leachates from UV light-weathered plastics from the
North Pacific Gyre. Rummel et al.92 investigated the activation
of cell-based reporter gene bioassays by leachates from mainly
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additive-free preproduction polymers generated by accelerated
UV light weathering in artificial seawater. Zimmermann et al.93

tested exhaustive solvent extracts as a worst-case scenario of
cumulative leaching from additive-containing consumer
products using in vitro bioassays. All three studies linked the
observed effects to specific chemicals identified in the
leachates. Their common approach was the identification of
selected chemicals capable of inducing effects in reporter gene
assays,89−91 but the complexity of the mixtures has so far
hampered the identification of the main effect drivers.93

Leachates of oxo-degradable polymers were also found to elicit
negative effects on model organisms, which could mainly be
ascribed to metal release.94

Impacts of Weathered Plastic Particles toward
Organisms. Weathered plastic particles of all sizes have
been shown to impact marine organisms. A survey from 2015
reported that at least 690 different species had been
documented to encounter macro- and microplastic, including
17% that were near threatened or worse according to the
International Union for Conservation of Nature red list.34

These encounters with marine life are expected to increase.7

From the current literature, it appears that for particles of a
given size, weathering will either decrease or have a negligible
influence on toxicity, in cases where the particle size
distribution is not altered. For instance, one study on plastic
aging in wastewaters found no weathering-related effects of
polyethylene microplastics to three aquatic test species
(Daphnia magna, Danio rerio, and Lemna minor),95 whereas
another study reported decreased effects from irregularly
shaped polystyrene particles to D. magna, hypothesizing that
the biofilm may mitigate toxicity.96 Potthoff et al.97 combined
an aging/sieving approach to fractionate different size classes
of UV-aged particles of various polymer types low in additives
down to the nanorange for ecotoxicity testing. Overall, there
were limited effects of the unaged vs aged particle fractions on
D. magna and green algae.97 One of the rare plant-related

studies98 observed a mitigating effect of thermal aging on
germination of Lepidium sativum seeds. The aging process
reduced adverse effects for polycarbonate particles, probably
due to leaching of bisphenol A, making the weathered particles
less hazardous over time.98 Although these preliminary findings
suggest that individual plastic particles of a given size become
less toxic with weathering, this insight must be kept in context
of substantially increasing global exposure of a diverse size
range and population of plastic particles, both freshly emitted
and long-weathered, for the foreseeable future.10

Benchmarking Effects of Microplastics to Natural
Particles. Benchmarking the effects of plastics to natural
particles99,100 is essential, and a lack of benchmarking severely
limits the informative value of effect studies. Ideally, all effect
studies should be based on real-world, weathered microplastics
benchmarked to local natural particles. The two pathways that
could cause distinct effects between plastics and natural
particles are (i) differences in the particle size and shape
distributions (PSSD) or (ii) polymer- and leachate-related
effects with weathering. As for i, the described weathering and
fate processes ultimately affect the PSSD of plastics and natural
particles (e.g., organic detritus, minerals) differently, due to
their wide difference in material properties. Hypothetically, this
could lead to unique PSSD patterns of plastic particles that
ultimately cause distinct effects.101 Regarding ii, it currently
appears that certain plastic types are inherently more toxic than
natural particles. For example, polyvinyl chloride particles
appeared to be more toxic than kaolinite and diatomite
particles of similar sizes,102 potentially related to differences in
surface chemistry and release of, e.g., additives.
Predicted no-effect concentrations (PNEC) are central for

setting observed effects into the context of environmental
concentrations. The lowest published PNEC value for micro-
and nanoplastics that we identified is 0.14 μg/L.103 This value
is lower than more recently reported values, including a PNEC
of 72 μg/L,104 hazardous concentration for 5% of the species

Figure 1. Three criteria that define a planetary boundary threat from a novel entity and corresponding research needs for weathering plastics in the
environment.

Environmental Science & Technology pubs.acs.org/est Perspective

https://doi.org/10.1021/acs.est.1c01512
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/10.1021/acs.est.1c01512?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01512?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01512?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01512?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01512?rel=cite-as&ref=PDF&jav=VoR


(HC5) values of 1.67 μg/L for microplastics and 5.4 μg/L for
nanoplastics,113 as well as another HC5 value of 940 μg/L for
microplastics.105 However, no benchmarking to natural
suspended solids was done to derive these values, therefore
it is not straightforward to apply them to real-world contexts.
For sediments, an experimental mesocosm study determined a
long-term effect value of 0.05% plastic fraction per sediment
weight,106 regarding the abundance of macroinvertebrates.
This value is much higher than typical concentrations for
oceanic sediments,66 but may potentially be encountered at
current or future hotspots. Therefore, further research is
needed to derive PNEC or HC5 values benchmarked to natural
particles and to evaluate how these compare to projected
environmental concentrations at hotspots. The benchmarking
is expected to be challenging due to the PSSD shifting toward
smaller particles and more diverse shapes and aggregates over
time with prolonged weathering.7 How to ideally benchmark
effects of microplastics to natural particles in a quantitative way
and the choice of representative natural particles hence remain
topics of discussion.

■ PLANETARY BOUNDARY CONCEPT IN THE
CONTEXT OF WEATHERING

There is accumulating, planetary-scale, nonreadily reversible
exposure of aquatic systems to weathered macro-, micro-, and
nanoplastics and their leachates that will persist for long time
scales, even if substantial efforts are made to reduce
emissions.10 We discussed above new research related to the
three criteria of a planetary boundary threat for novel entities
(Figure 1). The composition and distribution of plastics in the
environment evolves through dynamic weathering and fate
processes. Therefore, a full understanding of exposure
(criterion 1) and fate (criterion 2) of marine plastic pollution
requires emission estimates that specify total loads and types of
plastics and additionally address parameters related to PSSD,
material properties, degradation rates, permanent sediment
burial rates, and chemical additive/leachate exposure. As a
point of departure, research should target identified hotspots,
such as ecologically important estuaries impacted by
substantial plastic loads from rivers,107 coastlines, or biodiverse
areas on the seafloor.108

More research on disruptive impacts of real-world weathered
plastics, benchmarked to natural particles, is central to
understanding their overall impact on vital earth system
processes (criterion 3). To address the concern of disruptive
toxic hazards, we suggest to increase the complexity in effect
studies in a stepwise manner: (i) lab-scale assessment of
plastics of varying size and shape, benchmarked to natural
particles;102,109 (ii) mixtures of weathered plastics and
heteroaggregates from the environment or artificial weathering,
benchmarked to natural particles; (iii) mesocosm studies with
representative concentrations of naturally weathered particles
in diverse local environments reflecting hotspots (e.g., brine
ponds mimicking the seabed) including representative key
communities and their functions.106 Future research should
also consider (iv) the toxicity of complex chemical mixtures
released during weathering and identify components that drive
toxicity via, e.g., effect modeling or effect-directed analysis. In
these studies, partitioning of the chemicals between plastics,
the surrounding medium, and the organisms needs to be
considered.62 Some research has addressed nontoxicological
impacts of plastics, such as the specific vulnerability of
ecosystems toward eutrophication.110 While plastics may not

add a substantial resource or constraint in eutrophic areas or
systems rich in suspended solids, they may contribute
substantially as nutrient sources and new habitats for
colonizing communities with potential implications for geo-
chemical cycles in ultraoligotrophic systems.62

Does Marine Plastic Litter Pose a Planetary Boundary
Threat? Revisiting our central question: Do plastics in the
environment impose a planetary boundary threat, based on the
three criteria of (1) planetary-scale exposure, (2) exposure not
being readily reversible, and (3) unknown disruptive effects on
a vital earth system process? There is now further consensus
that 1 and 2 are met,3,111 although there are still open
questions about the processes driving ubiquitous exposure and
poor reversibility (Figure 1). Evidence is accumulating that
criterion 3 is also met by at least two potential, yet difficult to
quantify, toxicological mechanisms that could act simulta-
neously and lead to disruptive effects at hotspots: (i)
accumulation of plastics within a certain harmful PSSD range
for specific key species or (ii) accumulation of toxic plastic
leachates until they reach effect thresholds.
Regarding i, all sizes, i.e., macro-, micro-, and nanoplastics,

can cause disruptive impacts. The increase in observed ocean
plastic debris compared to natural debris (see TOC figure)7

alongside widespread observations of entanglement and
ingestion32 have formed the basis for this concern. Natural
suspended particle concentrations themselves can be dis-
ruptive, with effects observed at levels as low as 10 mg/L.112

Recent mesocosm studies have demonstrated effects from
micro- and nanoplastics at fractions between 0.05 and 0.5% of
the sediment weight.106 The nonbenchmarked PNEC103 and
HC5

113 are in most cases higher than current concentrations at
hotspots, but it is likely that these hotspot concentrations are
underestimated due to the lack of measurements and
continuous weathering-related fragmentation of macroplastics
to micro- and nanoplastics over time.7,113

As for ii accumulation of toxic leachates, this aspect is a part
of the planetary boundary for chemical pollution.115 The
planetary boundary for chemical pollution and novel entities
has been established, as there is evidence of global
accumulation, with many chemicals exhibiting persistence
and potential to elicit (eco)toxicological effects (e.g., pesticides
or pharmaceuticals, designed to elicit certain effects).2,105

However, this planetary boundary is difficult to constrain since
each single chemical could represent a planetary boundary
threat, but they usually co-occur with other chemicals, with
poorly characterized mixture effects.114,115 The chemicals
released from plastics add to these mixtures and hence the
complexity of this planetary boundary. Furthermore, particles
and chemicals influence each other in multiple ways regarding
their toxicity, e.g., due to (de)sorption.
We therefore conclude that weathering plastics meet all

three criteria of a planetary boundary threat for novel entities.
Due to the complexity of the impacts discussed above, the
challenge lies in assessing quantitatively where the threshold is.
The difficulties include (i) the scarcity of effect studies of
weathered plastic particles benchmarked to natural particles;
(ii) difficulties in accounting for complex and changing mixture
effects of weathering plastics, their leachates, and degradation
products; (iii) the combined impact of weathering plastics and
multiple stressors in vulnerable ecosystems; and (iv) a lack of
consensus on how to best standardize monitoring and effect
testing.116−118 However, considering that concentrations at
hotspots have exceeded or could exceed nonbenchmarked
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threshold values, and that exposure will increase for the
foreseeable future due to continuously increasing emissions
and weathering-induced degradation of plastic litter, we
strongly recommend the utilization of diverse efforts to reduce
plastic emissions. Plastics have many uses to mitigate other
planetary boundary threats if managed properly, particularly if
reused/recycled in a circular economy. Accumulating weath-
ering plastic debris poses a planetary boundary threat, although
it cannot be reduced to a straightforward parameter due to its
multiple, co-occurring disruptive impacts. There is a risk that a
planetary boundary threshold for environmental plastics could
be crossed before it is known, or that through weathering it will
, inevitably, be crossed in the future.
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