
LSTM for Dialogue Breakdown Detection:

Exploration of Different Model Types and Word

Embeddings

Mariya Hendriksen, Artuur Leeuwenberg, and Marie-Francine Moens

Abstract One of the principal problems of human-computer interaction is miscom-
munication. Occurring mainly on behalf of the dialogue system, miscommunication
can lead to dialogue breakdown, i.e., a point when the dialogue cannot be contin-
ued. Detecting breakdown can facilitate its prevention or recovery after breakdown
occurred. In the paper, we propose a multinomial sequence classifier for dialogue
breakdown detection. We explore several LSTM models each different in terms of
model type and word embedding models they use. We select our best performing
model and compare it with the performance of the best model and with the majority
baseline from the previous challenge. We conclude that our detector outperforms
the baselines during the offline testing.

1 Introduction

The importance of spoken dialogue systems has been steadily increasing over the
years. Some of the reasons for such a popularity raise include their ability to provide
instant twenty-four-hour service. and applicability across different domains such as
website assistance, education, customer service, e-commerce, and entertainment.

Naturally, the usefulness of a dialogue system largely depends on its ability to
interact with users. One of the major obstacles on the way to the goal is miscommu-
nication. We define miscommunication as a situation when a dialogue system gives

Mariya Hendriksen
University of Amsterdam, Amsterdam, The Netherlands (work performed while at KU Leuven),
e-mail: m.hendriksen@uva.nl

Artuur Leeuwenberg
KU Leuven, Heverlee, Belgium, e-mail: tuur.leeuwenberg@kuleuven.be

Marie-Francine Moens
KU Leuven, Heverlee, Belgium, e-mail: sien.moens@kuleuven.be

1



2 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

a user an inappropriate reply. In other words, we assume that miscommunication
occurs on the behalf of a system.

Miscommunication can lead to dialogue breakdown, i.e., a point in dialogue
when the interaction is interrupted with or without completion of the performed
task [13]. In this perspective, a model capable of detecting dialogue breakdown
points can enhance the quality of human-computer interaction. For instance, such a
detector could help to avoid system responses which cause a breakdown or identify
breakdowns after they occur and launch the procedures necessary to get out of the
breakdown situation.

The rest of the paper is organized as follows: Section 2 describes the task of di-
alogue breakdown detection and the dataset which was used for model training. In
the Section 3, we discuss the related work on dialogue breakdown detection mod-
els, applications of dialogue breakdown detection detectors, the taxonomy of errors
causing dialogue breakdown and the alternative methods for system response as-
sessment. We describe the proposed model in the Section 4 and explain the experi-
ment setting in Section 5. The discussion of the results is presented in Section 6. In
Section 7, we draw conclusions and suggest directions for future work.

2 Task description

We address the task of dialogue breakdown detection. The task was introduced as
a challenge in [17]. Since the introductions, three challenges were held [5], [6]. We
submit the model for the fourth challenge [7].

In particular, we aim to develop a system to predict whether a given system utter-
ance causes a breakdown. The prediction is to be based both on the current utterance
and on the dialogue history. Each system response is to be marked with one of the
three labels:

• NB – not a breakdown: it is possible to continue the dialogue smoothly.
• PB – possible breakdown: it is difficult to continue the dialogue smoothly.
• B – breakdown: it is difficult to continue the dialogue.

For model development, we utilize the training dataset provided by the challenge
organizers. The set consists out of 211 dialogues. Each dialogue in the set has a
length of 20 or 21 utterances: 25 dialogues have length 20, whereas 186 dialogues
have length 21.

Every system response is labelled by fifteen annotators. Hence, for every system
utterance, the model predicts the probability distribution of labels and assign the
label with the highest probability to given system response.

There are two primary types of metrics for performance evaluation: distribution-
related and classification-related. Following the findings presented in [20], we focus
on mean squared error MSE(NB,PB,B) as the primary metric.



LSTM for Dialogue Breakdown Detection 3

3 Literature Review

In this paper, we describe the model for dialogue breakdown detection. Related
work falls in the following areas: (1) existing dialogue breakdown detection models,
(2) applications for dialogue breakdown detection systems, (3) analysis of errors
causing dialogue breakdown, and (4) the alternative techniques for dialogue system
response assessment.

There are exist several models for dialogue breakdown detection. The list in-
cludes Conditional Random Fields model which is used as a baseline in the chal-
lenge [7], Extremely Randomized Trees [11], Maximum Entropy model [6], Sup-
port Vector Machines [12], Memory Networks [9] and Recurrent Neural Networks
(RNN) [14], in particular long short-term memory networks (LSTM)[12], [21]. Be-
sides, some systems feature attention modules as part of their architecture [14], [9].

Dialogue breakdown detection can be used to re-rank responses of a chat-
oriented dialogue system. In [10], the authors suggest three re-ranking approaches:
classification, regression, and probability-based approach. The classification tech-
nique was based on the classification of all the possible system responses. The re-
gression method implied the application of linear regression with the probability
distribution of breakdown labels and response scores as a feature set. In the case
of the probability-based approach, the non-breakdown probability was used for re-
ranking.

Other application examples include [18] where the author applies dialogue break-
down detection system for selecting tweets that can be used as responses of a chat-
oriented dialogue system.

Another direction of research in the field is to investigate the errors causing a
breakdown in chat-oriented dialogue systems. This is done in [4] where researchers
present a taxonomy of this type of errors. Inspired by the Gricean maxims1, the
authors define utterance-level, environmental-level, and cooperativeness error. The
breakdown detector based on the taxonomy of errors is presented in [8].

Breakdown detection is not the only way to evaluate chatbot responses. For in-
stance, [22] offer a similar technique for assessment of chatbot responses in non-
task-oriented dialogues. In particular, they suggest measuring the appropriateness
of utterances and customer satisfaction.

4 Proposed Model

In this section, we describe the proposed dialogue breakdown detector as well as the
motivation behind the selected architecture and components.

1 the principles of effective communication in standard social setting [3]



4 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

Fig. 1 Proposed model architecture: input layer, LSTM layer, two dense layers and a softmax
output layer. The model takes dialogue representation as an input and assigns a label for every
utterance.

4.1 Model Type

After considering the existing dialogue breakdown detectors and their performances,
we chose LSTM for their ability to process sequential data and handle long-term de-
pendencies. Several LSTM models are considered: vanilla LSTM, stacked LSTM,
and bidirectional LSTM.



LSTM for Dialogue Breakdown Detection 5

4.2 Word Embedding Model

Another important aspect to consider when working with textual data is text repre-
sentation. For this reason, we considered several word embedding types:

word2vec Google News

The first type of the word representations we use is the word2vec vectors pretrained
on Google News corpora2. We use those vectors because they were featured in the
LSTM model which demonstrated the best performance in terms of accuracy during
DBDC3 [12]. The vectors were produced by a bag-of-words model (BoW) trained
with negative sampling with window size 5. Each word is represented with an em-
bedding of size 300.

GloVe Twitter

The second type of word representation we use is GloVe trained on Twitter data3.
We use this embedding type because of the proximity of the Twitter domain to the
task domain[14]. The vectors were obtained by training on 2 billions of tweets with
representations for 27 billion tokens and a vocabulary of 1,2 million. The vectors are
presented in 25d, 50d, 100d and 200d, we decided to use 200d vectors. The words
are uncased.

GloVe Common Crawl

The third type of word embedding model is GloVe Common Crawl4. It contains
representations for 840 billion tokens with the vocabulary of 2.2 million. The words
are cased and the dimensionality of the vectors is 300d. We use this embedding type
because, unlike the GloVe Twitter, it is domain-independent.

4.3 Model Architecture

The proposed model takes dialogue representations as input. Dialogue representa-
tions are composed out of utterance representations which, in turn, are created out

2 Google News 100B 3M words, URL: https://github.com/3Top/ word2vec-api, last checked on
07-04-2019.
3 GloVe: Twitter, URL: https://nlp.stanford.edu/data/glove.twitter.27B.zip, last checked on 27-03-
2019.
4 GloVe: Common Crawl, URL: https://nlp.stanford.edu/data/glove.840B.300d.zip, last checked
on 27-03-2019.



6 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

of word representations. During the training phase, the training loss is computed
and models parameters are optimized.

4.3.1 Input Representation

Word representations are acquired with pretrained word embedding vectors. We rep-
resent all the out of vocabulary (OOV) tokens with the token unk. Each sentence
embedding is represented as the average of the token embeddings that comprise the
sentence. Consequently, each utterance embedding has the same dimensionality as
the word embedding. Dialogue is represented as a sequence of user and system utter-
ances. We pad dialogues to ensure that each dialogue has a length of 21 utterances.

4.3.2 Target Representation

Each system response in a dialogue is labelled with B (breakdown), PB (possible
breakdown) or NB (not a breakdown) label. Besides, we introduce label U to mark
user utterance. The labels are represented with one-hot encoding. Therefore, each
sequence of dialogue labels is represented as 21⇥4 matrix.

4.3.3 Loss

In the given task, for each utterance in the dialogue, the network predicts a proba-
bility for each of the labels and compares it with the ground truth. Hence, the model
should use a loss function that would compare the labels probability distribution
with the ground truth and penalize incorrect label prediction. One of the suitable
objective function for this task is cross-entropy function[1]. The function measures
the difference between two probability distributions. The function is computed as
follows:

H(y, ŷ) =�Â
i=1

yilog(ŷi) (1)

where y is the ground truth label and ŷ is the predicted label.

4.3.4 Optimization

We optimize model with mini-batch gradient descent of a batch size of 4. We
use Root Mean Square Propagation (RMSProp)[19] which is the extension of Re-
silient Backpropagation (Rprop) learning[16]. RMSProp combines the robustness
of Rprop, the efficiency of mini-batches and the effective averaging of gradients
over mini-batches.



LSTM for Dialogue Breakdown Detection 7

5 Experiment

In this section, we discuss dataset preprocessing, define the baselines, explain the
training pipeline and present the results.

5.1 Data preprocessing

Before starting preprocessing, we have to make several decisions:

• Do we keep user turns? Following the findings described in [12], we decided to
keep the user turns as they enhance detector performance.

• How do we feed user turns to the model? Initially, we considered concatenating
user turns with the corresponding system response into exchange pairs. Such an
approach would allow avoiding the introduction of an extra label. However, re-
sults shown in [21] testify that such concatenation decreases model performance.
Hence, we resolve to mark each user utterance with an extra label U and feed
them to the models as a separate utterance.

After making the decisions, we can start dataset preprocessing. Since we use
three different types of embedding models, we prepare one dataset for each of the
types. We do it in order to take all the particularities of the embedding models into
account. Two major preprocessing steps were applied to all three datasets: tokeniza-
tion and replacement of apostrophe contractions.

In general, all the datasets are tokenized with TweetTokenizer5. This tok-
enizer is a part of casual submodule of nltk.tokenize package, it was se-
lected because the domain of its primary use is closely related to the domain of
the task. In particular, TweetTokenize is able to handle emoticons the dataset
contain.

In addition to tokenization, extra rules are applied to common apostrophes con-
tractions. For example, the contraction that

0
s is transformed to that is.

Besides the mentioned preprocessing steps, we remove punctuation signs from
the dataset for word2vec Google News vectors because the model did not know any
punctuation signs. Additionally, we lowercase all the words in the dataset for GloVe
Twitter because the pretrained word vectors are uncased.

As mentioned in the section 2, dialogue length varies from 20 to 21 utterances
per dialogue. In such a case, we can either truncate or pad the dialogues. Since the
first approach implies a loss of certain parts of data, we implement padding as a
more suitable option.

5 NLTK 3.4 documentation, URL: http://www.nltk.org/api/nltk.tokenize.html, last checked on 27-
03-2019.



8 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

5.2 Model Training

The model hyperparameters were determined by a grid search. The model was
trained for a maximum of 100 epochs. To prevent overfitting, we employ two regu-
larization techniques: early stopping and dropout (both standard dropout and recur-
rent dropout).

5.3 Baselines

We compare the performance of our model with the two baselines defined during
DBDC3. First is the majority baseline, the second model is the best performing
model of DBDC3 which was an attention-based detector [14].

5.4 Model Selection

The next step is to select the best performing model out of the nine models we
experiment with.

In order to investigate which type of LSTM produces the best performance, we
compare the metrics results. We do this by calculating the average metric score for
each Model ⇥Metric pair across three embedding types. The results are presented
in the Table 1. Overall, it can be concluded that, given that all the metrics have equal
importance, the best performance is obtained by vanilla LSTM, stacked LSTM is the
second best, and Bi-LSTM is the worst.

Table 1 Average metric scores for every LSTM type

LSTM type MSE(NB,PB,B)

Vanilla LSTM 0.0213
Stacked LSTM 0.0224
Bi-LSTM 0.0222

Next, we turn to the investigation of the relationship between model performance
and its embedding type. In analogy with the above-mentioned idea, we calculate an
average performance score for each metric. The results presented in the Table 2,
allow to conclude that GloVe Common Crawl demonstrate the best performance,
the GloVe Twitter being the second best, the word2vec Google News is the worst.



LSTM for Dialogue Breakdown Detection 9

Table 2 Average metric scores for every word embedding type

Embedding type MSE(NB,PB,B)

word2vec Google News 0.0351
GloVe Twitter 0.0301
GloVe Common Crawl 0.0213

6 Discussion & Implications

After running experiments with the created models, we concluded that the vanilla
LSTM with GloVe Common Crawl embedding demonstrates the best performance.
For this reason, we compare it with the selected baselines. The comparison is given
in the Table 3. As can be seen, our model outperforms the baselines.

Table 3 Comparison of the created model with the baseline models.

Model MSE(NB,PB,B)

Majority baseline 0.0224
NCDS 0.0237
Proposed model 0.0213

6.1 Analysis of Error Patterns

Comprehension of patterns in the type of errors that the best models make could
provide additional insight into their improvement.

During the experiments, we found out that embedding type impacts model per-
formance. In particular, we discovered that there is a negative correlation between
the proportion of OOV and model performance. Hence, we investigate the type of
OOV tokens. In general, GloVe pretrained on Common Crawl does not know 245
tokens in the dataset (or 115 unique tokens).

Emoticons

One of the significant parts of OOV tokens were emoticons. The emoticons are
the strong cues of how the user feels and hence can help to understand when the
conversation goes in the wrong direction. Therefore, they should be taken into ac-
count. The model’s vocabulary includes basic emoticons such as or but not
more complex ones such as or . Besides, some dialogues featured emoticons



10 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

represented as capitalized descriptions in square brackets (e.g., [SMILING FACE
WITH SUNGLASSES], [SPEAK-NO-EVIL MONKEY]). As a possible solution
to the problem, it might be helpful to replace the complex emoticons with their
basic counterparts to facilitate the model’s understanding by reducing variance.

Apostrophe Contractions

Many of the tokens were not recognized because they represented apostrophe con-
tractions. The examples included both straightforward cases like isn’t (is not) and
ambiguous situations such as he’s which depending on context can be interpreted
either like he has or he is. In general, the problem can be resolved by the introduc-
tion of extra contraction replacement rules. In the case of ambiguous situations, it
might be better to apply a disambiguation procedure first.

Abbreviations

Another significant group of unknown tokens includes abbreviations, e.g., ConvAI

(conversational Artificial Intelligence). The issue can be addressed by abbreviation
expansion. For instance, we could create a dictionary containing the most common
abbreviations.

Misspellings

Some other words are not recognized because of misspelling. The most common
type of mistakes is skipping white-space and thereby merging words. E.g., ’ques-
tionWho’ and ’wait.Where’. Splitting these words while preprocessing the datasets
can help to address the issue. Moreover, there were standard spelling mistakes
such as ’seee’ or ’tommorow’. Such standard mistakes can be resolved by adding a
spellchecker.

7 Conclusion & Future Work

In this paper, we present a model for dialogue breakdown detector. Offline testing
demonstrates that our model outperforms the best-performing model from DBDC3.
Additionally, we investigate how model architecture and word embedding model
influence detector performance.

Future work will focus on further exploration of model architectures and word
embeddings. In particular, it would be interesting to explore different types of at-
tention mechanisms and investigate such embedding models such as BERT [2] and



LSTM for Dialogue Breakdown Detection 11

EMLo [15]. Another direction of future work includes dataset expansion, specifi-
cally in terms of different languages and modalities.

References

[1] De Boer PT, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the
cross-entropy method. Annals of operations research 134(1):19–67

[2] Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:181004805

[3] Grice HP (1975) Logic and conversation. 1975 pp 41–58
[4] Higashinaka R, Funakoshi K, Araki M, Tsukahara H, Kobayashi Y, Mizukami

M (2015) Towards taxonomy of errors in chat-oriented dialogue systems. In:
Proceedings of the 16th Annual Meeting of the Special Interest Group on Dis-
course and Dialogue, pp 87–95

[5] Higashinaka R, Funakoshi K, Inaba M, Arase Y, Tsunomori Y (2016) The
dialogue breakdown detection challenge 2. Proceedings of SIG-SLUD

[6] Higashinaka R, Funakoshi K, Inaba M, Tsunomori Y, Takahashi T, Kaji N
(2017) Overview of dialogue breakdown detection challenge 3. Proceedings
of Dialog System Technology Challenge 6

[7] Higashinaka R, D’Haro LF, Shawar BA, Banchs R, Funakoshi K, Inaba M,
Tsunomori Y, Takahashi T, ao Sedoc J (2019) Overview of the dialogue break-
down detection challenge 4. In: Proc. WOCHAT

[8] Horii T, Araki M (2015) A breakdown detection method based on taxonomy
of errors in chat-oriented dialogue (in Japanese)

[9] Iki T, Saito A (2017) End-to-end character-level dialogue breakdown detection
with external memory models

[10] Inaba M, Takahashi K (2018) Improving the performance of chat-oriented di-
alogue systems via dialogue breakdown detection

[11] Kato S, Sakai T (????) RSL17BD at DBDC3: Computing similarities based on
term frequency and word embedding vectors. In: Proc. of DSTC6, year=2017

[12] Lopes J (2017) How generic can dialogue breakdown detection be? the KTH
entry to DBDC3

[13] Martinovsky B, Traum D (2006) The error is the clue: Breakdown in human-
machine interaction. Tech. rep., Institute for Creative Technologies, University
of Southern California

[14] Park C, Kim K, Kim S (2017) Attention-based dialog embedding for dialog
breakdown detection. In: Dialog System Technology Challenges Workshop
(DSTC6)

[15] Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L
(2018) Deep contextualized word representations. In: Proc. of NAACL



12 Mariya Hendriksen, Artuur Leeuwenberg and Marie-Francine Moens

[16] Riedmiller M, Braun H (1993) A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. In: Neural Networks, 1993., IEEE
International Conference on, IEEE, pp 586–591

[17] Ryuichiro H, Funakoshi K, Kobayashi Y, Michimasa I (2016) The dialogue
breakdown detection challenge: Task description, datasets, and evaluation met-
rics.

[18] Sugiyama H (2016) Utterance selection based on sentence similarities and di-
alogue breakdown detection on NTCIR-12 STC task. In: Proc. of NTCIR

[19] Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, URL https://www.youtube.com/watch?v=ZgLyc7CYlWw

[20] Tsunomori Y, Higashinaka R, Takahashi T, Inaba M (2018) Evaluating dia-
logue breakdown detection in chat-oriented dialogue systems. In SEMDIAL

[21] Xie Z, Ling G (2017) Dialogue breakdown detection using hierarchical bi-
directional lstms. In: Proceedings of the Dialog System Technology Chal-
lenges Workshop (DSTC6)

[22] Zeng Z, Luo C, Shang L, Li H, Sakai T (2017) Test collections and measures
for evaluating customer-helpdesk dialogues. Proceedings of EVIA


