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Abstract

A finite element model is presented to describe the flow, resulting stresses and crystal-

lization in a filament stretching extensional rheometer (FiSER). This model incorporates

nonlinear viscoelasticity, nonisothermal processes due to heat release originating from

crystallization and viscous dissipation as well as the effect of crystallization on the rhe-

ological behavior. To apply a uniaxial extension with constant extension rate, the FiSER

plate speed is continuously adjusted via a radius-based controller. The onset of crystal-

lization during filament stretching is investigated in detail. Even before crystallization

starts, the rheology of the material can change due to the effects of flow-induced

nucleation on the relaxation times. Both nucleation and structure formation are found

to be strongly dependent on temperature, strain rate and sample aspect ratio. The lat-

ter dependence is caused by a clear distribution of crystallinity over the radius of the

filament, which is a result of the nonhomogeneous flow history in the FiSER. There-

fore, this numerical model opens the possibility to a priori determine sample geome-

tries resulting in a homogeneous crystallinity or to account for the nonhomogeneity.
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1 | INTRODUCTION

During processing, polymers experience complex flows, which in general

consist of both shear and extensional flow. Depending on the

processing conditions, one or the other may dominate. These types of

flows are known to facilitate crystallization of polymers through align-

ment and deformation of entangled tubes of constrained polymer

chains.1 Keller and Kolnaar2 demonstrated that shish-kebab structures

can be formed in elongational flows, while Eder and Janeschitz-Kriegl3

showed that their formation also occurs in shear flows with high enough

viscoelastic stresses. Compared with shear, extension is much stronger

to deform polymer chains and hence to facilitate crystallization.4

McHugh et al.5 were one of the first to find a qualitative relation

between pure extensional flow and crystallization, using a four-roll

mill. With birefringence and dichroism measurements on ultra-high-

molecular-weight polyethylene (UHMWPE) it was shown that orienta-

tion increases with distance from the stagnation point. They

suggested that flow orientation results in a viscoelastic molecular

strain, which might control the process for enhancing crystallization.

The last decades, multiple apparatus were developed to measure crys-

tallization in uniaxial extensional flows. Studies performed by Blundell

et al.6 showed that X-ray radiation enables in situ observation of ori-

ented crystallization during drawing at fast rates comparable to indus-

trial conditions. A PET sample was clamped between two jaws
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attached to stepper motors, which allowed fast uniaxial bi-directional

drawing up to rates of 10s−1. In situ wide-angle X-ray diffraction

(WAXD) experiments were performed close to Tg. At low tempera-

tures and high drawing rates, orientation is mainly in the drawing

direction and independent of draw rate. At high temperatures and low

drawing rates, no orientation was observed. The onset of crystalliza-

tion was observed before the end of drawing and the strain-induced

crystallization rate was found to be independent of temperature.6 In

the work of Swartjes and Peters7 a cross-slit flow device was used to

measure stress-induced crystallization in extensional flow using bire-

fringence and WAXD measurements. The formation of highly oriented

fiber-like crystal structures was demonstrated. Moreover, Janeschitz-

Kriegl8 demonstrated through creep experiments with a pneumatically

controlled filament stretching rheometer that extensional flow can

enhance the rate of nucleation.

Hadinata et al.4 and Sentmanat et al.9 investigated the effect of

flow-induced crystallization using a Sentmanat extensional rheometry

add-on (SER). By means of ex situ differential scanning calorimetry

(DSC) qualitative differences in the heat flow signatures were found

for various temperatures, extension rates and strains, indicating an

increase in crystallinity for stretched polybutene samples. Unfortu-

nately, the study does not include any additional microscopy or small-

angle X-ray scattering (SAXS) data. Hence, the evolution of crystal size

and morphology with extension rate is not available.

A major challenge in extensional flow-induced crystallization mea-

surements is applying a well-controlled extension rate, combined with

a well-defined temperature protocol. For this reason Chellamuth

et al.,10 used a filament stretching extensional rheometer (FiSER) with

a custom-built oven, which is capable of imposing uniaxial extensional

flow with a locally controlled constant rate while regulating tempera-

ture. In this FiSER flow is applied by placing a polymer sample between

two pistons and moving the upper piston upwards. The extensional

flow-induced crystallization is measured ex situ with DSC and SAXS

over a broad range of extension rates and Hencky strains. In this study

on polybutene it is suggested that the nucleation density may have

already increased drastically even under moderate strains. Bischoff

White et al.11 performed similar ex situ crystallization measurements

for isotactic polypropylene (iPP). The time required for the onset of

crystallization was found to be linearly proportional to the inverse of

extension rate, meaning that the onset of crystallization occurs at a

constant strain value. This was true even for low extension rates where

little polymer deformation is expected and where no increase in crys-

tallinity from the quiescent state was found. They suggest that this

might be the result of either polydispersity of the polymer or an

increased interaction between undeformed polymers as they are

advected by the imposed extensional flow. Also Wingstrand and van

Drongelen12 used a FiSER to characterize ex situ the crystallization

characteristics of low-density polyethylene (LDPE) in extensional flow.

An important finding in this work is that the structure orientation is

determined by the backbone stretch instead of the global stretch.

To investigate crystallization kinetics of extensional flows in more

detail in situ measurements are relevant.10,13 Therefore, Liu et al.14

developed a miniature SER to perform well-characterized uniaxial

extension with in-situ crystallization measurements using SAXS. With

this SER, Wang et al.15,16 showed the chain-to-crystal network transition

of iPP with a two-step experimental procedure and they captured the

nonequilibrium structural and morphological behavior of poly(1-butene)

in strain rate-temperature space (strain rates up to 33 s−1). However, in

a SER, only the global extension rate is controlled due to which the local

values may vary substantially.17 Therefore, recently, within our group, a

FiSER design was realized wherein both pistons move at equal speed in

opposite directions.18 As a result, a stagnation point is formed at the

center of the filament, while ensuring a constant uniaxial extension rate

with a radius-based controller. This makes it possible to measure the

extensional rheological properties while in situ structure characteriza-

tions can be performed by means of X-ray scattering.18 Thereby, shish-

kebab growth in LDPE was followed during extensional flow.

By combining experiments with numerical simulations, accurate

rheological and structural data can be extracted, even when nonideal

experimental parameters are present. The approach of coupling crys-

tallization to deformation calculated with a rheological model on a

continuum level was first presented by Zuidema et al..19 Their model

was slightly modified by Steenbakkers et al.,20 who replaced the

recoverable strain as driving force for flow-induced nucleation and

crystallization by backbone stretch, and predicted shish growth after a

critical backbone stretch of the high molecular weight tail. However,

van Erp et al.21 showed that a time integral over backbone stretch is a

more realistic criteria. This approach is also used by van Drongelen

et al.22 to model primary crystallization of linear low-density polyeth-

ylene (LLDPE). An in-depth evaluation of the flow-induced-

crystallization (FIC) model developed in our group and parameterized

for iPP, can be found in literature.19–21,23 A slightly different approach

was used by Roozemond et al.,24 since in their model, shish growth is

linked to deformation rate and not to a critical backbone stretch. This

numerical model captures both rheology and crystallization of iPP at

high shear rates occurring in a nonhomogeneous slit flow. It shows

good agreement with experimental data for crystallization over a very

wide range of shear rates, pressures and temperatures.24,25 Grosso

et al.26 extended this model by using molecular considerations for set-

ting the stretch relaxation times in the viscoelastic constitutive equa-

tion and the improved model can predict the formation of local

complex structures of iPP in slit flows.26 The continuum model of

Grosso et al.26 has been implemented in an in-house developed finite

element package (TFEM) and will be used in this study after generali-

zation of the flow type to include extension.

To study extensional flow-induced crystallization at very small to

intermediate spatiotemporal scales molecular dynamics (MD) and mul-

tiscale modeling techniques are used respectively. These methods are

complementary to the continuum approach discussed above because

they provide molecular level details of the crystallization process.

Nicholson and Ruthledge27 were the first to use nonequilibrium MD

simulations to study crystal nucleation and crystalline ordering under

uniaxial extension. More recently, Zhao et al.28 investigated the effect

of molecular weight distributions (MWDs) on the formation of shish-

kebabs in extensional flows by means of MD simulations. From this

followed that broader MWDs have a positive effect on shish nuclei
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formation, crystallization speed, and the generation of more regular,

compacter, and thicker lamella, while final crystallinity is not affected

by the MWD. Moreover, Sefiddashi et al.29 used MD simulations to

study flow-induced phenomena in entangled solutions of polyethyl-

ene dissolved in n-hexadecane and benzene solvents. The simulations

revealed that the phases chemically separate at extension rates larger

than the inverse of the Rouse time of the solution and that semi-

crystalline domains form at large extension rates regardless of the sol-

vent. Although MD simulations contribute to a mechanistic under-

standing of the structural changes during flow-induced crystallization,

they have limitations in terms of length scales, MWDs and

undercooling that can be reached. Hence, they cannot be used to

directly model (FiSER) experiments. A promising multiscale simulation

technique has been developed by Read et al..30 They proposed a rap-

idly solvable multiscale model for FIC using a combination of MD and

kinetic Monte Carlo simulations. However, this model is limited to sin-

gle phased crystallization, while most polymers show polymorphic

behavior. The finite element model developed within our group cap-

tures the interaction between rheology and crystallization and

describes multi-phase parent-daughter structures on a large spatio-

temporal scale, which are both needed to simulate FiSER experiments.

Simulations of the flow in the FiSER are performed to study the

extensional flow, structure formation, and resulting forces on the pis-

tons. The rheology in the melt state and effects thereon caused by

deviations from pure uniaxial extension in a FiSER will be the subject

of another work, currently under preparation. Here, the main goal is

to investigate the influence of experimental parameters on the flow-

induced structure formation in order to understand the complexity of

the FiSER experiment and to explore the best experimental conditions

to get useful interpretable experimental results.

2 | MODELING

The extensional flow is created in a FiSER, by simultaneously moving

the two pistons in opposite directions with equal velocities. To mini-

mize the computational costs and taking into account axial symmetry,

only a part of the FiSER is modeled, as shown in Figure 1. A cylindrical

coordinate system will be used throughout this paper, with compo-

nents (r,θ,z) and the origin is positioned at the middle of curve Γ3.

Note that the negative z-direction is directed in the gravitation direc-

tion. The total computational domain of the FiSER is denoted by Ω.

This computational domain is divided in two sub-domains Ω1 and Ω2,

where Ω = Ω1 [ Ω2, which are defined as the fluid sample and the pis-

tons respectively. The shape of the fluid domain is determined by the

radius of the piston Rp, the mid-radius R(t) and the length of the fila-

ment L(t). In FiSER experiments, the sample is slightly compressed

after loading to a length Lc to ensure good contact with the plates.

The aspect ratio of the compressed sample is then defined as Λc = Lc/

Rc, with Rc the radius of the sample after compression. Here, it is

assumed that the radius after compression Rc equals the piston radius

Rp (see Table 1). In addition, a slow prestretch is used in experiments

to increase the initial aspect ratio to Λ0 = L0/R0, where R0 is the mid-

radius of the sample after the prestretch. The simulations start after

the prestretch. Then, the initial geometry of the filament is built,

where the shape of the free surface Γ1 is a circular or an ellipsoidal

arc, whereby the latter is used when (Rp − R0) > L0/2. On Γ3 axisym-

metric boundary conditions are imposed. Subsequently, the pistons

are simultaneously moved apart to a length L(t) (with a velocity vp(t)),

in such a way that the middle of the sample is extended with a con-

stant strain rate. The balance between surface tension, internal

stresses, and gravity forces determines the shape of the free surface

Γ1 during extension. Because the crystallization, both in terms of crys-

tal growth rate and structure formation, is dependent on

temperature,24 it is chosen to model both the co-moving pistons. This

way, heat generated during crystallization in the polymer can be trans-

ferred to the pistons by means of conduction or can be convected to

the surroundings at the free surface. The flow and crystallization

equations are solved only on domain Ω1, while the energy equations

are solved on the total domain Ω (i.e., Ω1 and Ω2).

The geometries used in this article are given in Table 1. The

dimensions are chosen so that the effect of the compressed aspect

ratio can be studied. Therefore, the amount of prestretch is equivalent

for all geometries. The dimensions of the pistons used in the simula-

tions are Lp = 10 mm and Rp = Rc = 4 mm.

The material used in this study is an iPP homopolymer (Borealis

HD601CF, Mw = 365 kg/mol, and Mn = 68 kg/mol), which is charac-

terized and examined in other studies.21,24,26,31 The material rheology

is fitted with the XPP constitutive model. Note that two different sets

of XPP parameters are reported in literature. The first set is given by

Roozemond et al..32 Grosso et al.26 modified these XPP parameters

based on molecular considerations. In this paper the latter set is used.

An overview of the used material parameters can be found in

Appendix A.

F IGURE 1 Initial axisymmetric geometry of a polymer sample
(domain Ω1) connected to two steel pistons (domain Ω2). Boundaries
Γ3, Γ5 and Γ10 are positioned at r = 0 mm
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2.1 | Flow equations

To solve the flow in the filament stretching rheometer, the momen-

tum and mass balance have to be solved. The following equations are

used assuming an incompressible fluid:

ρ
Du
Dt

= −rp+r� τ +r� 2ηsDð Þ+ ρgeg inΩ1, ð1Þ

r �u=0 inΩ1, ð2Þ

where u is the fluid velocity, ρ the density of the material, p the pres-

sure, D the deformation rate tensor and the extra stress tensor is

defined by τ. A relatively small viscous component ηs is added for

numerical reasons and g and eg are the magnitude and direction of

gravity, respectively. The extra stress tensor is given by:

τ =
XNmodes

i

gi ci− Ið Þ: ð3Þ

Here, ci is the conformation tensor of mode i and gi is the modu-

lus of mode i, which equals ηi/λi. Here, ηi is the viscosity and λi the

relaxation time of mode i and Nmodes the amount of modes. The con-

stitutive model used for predicting the conformation tensor is the

multi-mode XPP model.33 Originally, the XPP model was proposed for

branched polymers, but it also captures the physics of linear polymers,

as shown by Verbeeten et al.34 for high-density polyethylene (HDPE).

The differential equation of the XPP model is given by:

rci +2
exp νi

ffiffiffiffiffiffiffiffiffiffiffiffi
trci=3

p
−1

� �h i
λs,i

1−
3
trci

� �
ci +

1
λb,i

3ci
trci

− I
� �

=0, ð4Þ

where rci is the upper convected derivative of the conformation ten-

sor, λb,i the relaxation time for backbone tube orientation, λs,i the

backbone stretch relaxation time and the parameter νi depends on the

number of arms of the molecule qi following νi = 2/qi.
33 Note that for

nonbranched polymers qi is a fitting parameter. For the crystallization

model, the backbone molecular stretch, Λi, is a commonly used

measure for driving flow-induced nucleation. This backbone stretch is

defined as:

Λi =
ffiffiffiffiffiffiffiffiffiffiffiffi
trci=3

p
: ð5Þ

The relaxation spectra and nonlinear parameters of the XPP

model are given in Table A.1 in Appendix A.

2.2 | Energy balance

The crystallization process, both in terms of crystal growth rate and

structure formation, is strongly dependent on temperature.24 To find

the temperature in the filament, the following energy balance is

solved:

ρcp
DT
Dt

= kr2T + ρχ∞ΔH _ξ+ σ :D in Ω1, ð6Þ

where ρ is the density, T the temperature, cp the specific heat

capacity at constant pressure, k the thermal conductivity coeffi-

cient, ΔH the heat of fusion, χ∞ the total crystallinity of the equi-

librium state (t = ∞), ξ the space filling and σ = τ − pI the total

stress tensor. In this heat balance, heat conduction, latent heat

release due to crystallization and viscous dissipation are taken into

account in respectively the first, second and third therm on the

right-hand side. It is assumed that the ρ, cp and k do not change

with temperature or during phase transitions from the molten to

the crystalline state.

In the energy balance of the steel pistons, heat generation due to

crystallization and viscous dissipation is not present. Therefore, Equa-

tion (6) reduces to

ρscp,s
DT
Dt

= ksr2T in Ω2, ð7Þ

for the steel pistons. Here, the subscript s is used to indicate that the

parameters apply to the steel pistons. Values of the parameters in

both energy equations are presented in Table A.2 in Appendix A.

TABLE 1 Overview of the
geometries studied with the
crystallization model. The dimensions of
the compressed and prestretched state
are given

Ngeo Rc Lc Λc Compressed R0 L0 Λ0 Initial
(mm) (mm) shape (mm) (mm) shape

1 4.0 1.1 0.3 1.68 3.64 2.17

2 4.0 2.1 0.5 1.68 6.0 3.57

3 4.0 3.8 1.0 1.68 10.0 5.92

4 4.0 5.9 1.5 1.68 15.0 8.92

Note: Simulations start from the (prestretched) initial shape, at a prestrain of εpre = 1.74.
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2.3 | Quiescent crystallization

Roozemond et al.24 proposed a nonisothermal crystallization model

that is based on the Kolmogoroff-Avrami expression. Space filling by

crystallization is given by

ξ tð Þ= χ tð Þ
χ∞

=1−exp −Φ0 tð Þf g, ð8Þ

where χ is the crystallinity at time t. The crystal volume Φ0 represents

the sum of the undisturbed crystallized volumes of the different

phases, Φ0 =
P

Φ0,i(t). The subscript i indicates the phases of a multi-

phase system (α−, β−, γ−phases for iPP). For nonisothermal crystalli-

zation of spherulites, the crystal volumes (i.e., when crystal structures

can grow without taking into account impingement) Φ0,i can be

described by the Schneider rate equations,35 a set of differential

equations, which describe the structure development for quiescent

conditions. The local mean number of spherulites and their mean

radius, surface and volume are calculated as follows:

_Φ3,i =8π _Ni Φ3 = 8πNð Þ 0rate0: ð9Þ

_Φ2,i =GiΦ3,i Φ2 = 8πRtotð Þ 0radius0: ð10Þ

_Φ1,i =GiΦ2,i Φ1 = Stotð Þ 0surface0: ð11Þ

_Φ0,i =GiΦ1,i Φ0 =Vtotð Þ 0volume0: ð12Þ

with the nucleation density N, the nucleation rate _N and the growth

rate G. The growth rate is captured by the following quadratic expo-

nential function24:

Gi Tð Þ=Gmax,i,0exp −cG,i T tð Þ−TG,ref,i,0ð Þ2
n o

: ð13Þ

Here, Gmax,i is the growth rate at the reference temperature TG,ref,i

and cG,i a constant. The nucleation density, for heterogeneous nucle-

ation is given by the linear exponential function:

dNq

dT
= −cNNrefexp −cN T tð Þ−TN,refð Þf g: ð14Þ

Here, the subscript q is used to define quiescent parameters, Nref

is the number of nuclei evaluated at the reference temperature TN,ref

and cN is a constant. During solidification in a multi-phase system,

every crystal phase i generates a crystal volume fraction, Φ0,i, using a

share of the available number of nuclei and having its own growth

rate. The ratio by which the nuclei are divided between the crystal

phases is not accessible experimentally. Therefore, the assumption is

made that the allocation of nuclei to a given crystal form scales with

the ratio of the individual crystal phase growth rates at the current

temperature and pressure.22 For isobaric conditions, the nucleation

rate for a given crystal form is given by:

_Ni,q = fi,q
dNq

dT
_T, ð15Þ

with the quiescent growth rate weighted fraction, fi,q, defined as:

fi,q =
GiP
Gi
: ð16Þ

In the paper of Roozemond et al.,24 the α-, β- and γ-phases of iPP

are modeled. Since the β-phase only forms during flow, the quiescent

growth rate weighted fraction fi,q is restricted to i = α, γ and fβ,q = 0.

With the nucleation density and individual growth rates modified for

nonisothermal and isobaric conditions, the rate of space filling in a

multi-phase structure is calculated as a function of time using:

_ξi tð Þ= 1−ξ tð Þð Þ _Φ0,i: ð17Þ

Values of the parameters used in the quiescent crystallization

model can be found in Table A.4 in Appendix A.

2.4 | Flow-induced nucleation and crystallization

In the presence of flow, the total number of nuclei is the sum of the

quiescent nuclei, Nq and the nuclei originating from FIC, Nf:

_Ni,tot = _Ni,q + fi,f _Nf , ð18Þ

where _Ni,q follows from Equation (15). The total amount of nuclei is

used in the Schneider rate Equation (9). The flow enhanced nucleation

rate is assumed to depend via an exponential relation on the back-

bone stretch of the high-molecular weight mode. This leads to24:

_Nf = gn Tð Þexp μn Λ2
HMW−1

� �	 

: ð19Þ

Here, ΛHMW is the high molecular weight stretch calculated

according to (5), using the conformation tensor cHMW, which is the

conformation tensor with the longest relaxation time in the XPP

model, and μn and gn are scaling parameters. The scaling parameter gn

depends on temperature as follows:

gn Tð Þ= gn,ref10cn,T T−Trefð Þ: ð20Þ

Here, cn,T is a fitting parameter and gn,ref and Tref are the reference

scaling parameter and temperature, respectively. For iPP in flow, the

growth rate weighted functions (given in Equation (16)) are different,

because of the possibility to grow β-phase crystals. The growth rate

weighted functions in flow are defined as24:

fα,f = 1− fβ,f
� � Gα

Gα +Gγ
, ð21Þ

fγ,f = 1− fβ,f
� � Gγ

Gα +Gγ
, ð22Þ
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fβ,f = fβ: ð23Þ

Here, fβ is a relatively small number (see Table A.4 in Appendix A),

because only a small amount of β-phase is formed during flow com-

pared to α- and γ-phase.

The growth mechanism of oriented structures (shish) is based on

the “streamers” concept introduced by the Kornfield group.36 Shish

propagate in the lengthwise direction by addition of chain segments

with length ξseg. Furthermore, it is assumed that the material around a

shish tip deforms affinely. The expression for the lengthwise propaga-

tion of shish then becomes:

_L= _γξseg: ð24Þ

Here, L is the shish length, _γ the shear rate and ξseg is on the order

of the chain segment length. The lengthwise propagation of shish in

iPP is modeled as a dependency on the shear rate. To support exten-

sional flows, the shear rate in this equation is replaced with the magni-

tude of the rate of deformation tensor D:

_γ = _γeff =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D :D

p
: ð25Þ

In case of (pure) uniaxial extension with extension rate _ε , the

effective strain rate becomes _γeff =
ffiffiffi
3

p
_ε . Since it is assumed that the

nucleation sites grow in the lengthwise direction, the specific shish

length growth _Ltot is expressed as:

_Ltot = 2Nf
_L, ð26Þ

For the current model, no critical flow condition is used for the

formation of shish. However, appropriate shish formation is captured

with the model, because nucleation rate _Nf and propagation rate _L are

low for weak to mild flows.

The undisturbed volume can be calculated from the calculated

shish length and nucleation density. The crystalline volume fraction

from the kebabs growing on shish is determined with rate equations.

It is assumed that kebabs form on both the α- and γ-phase:

_Ψ1,α =4πGα,pLtot
Gα,p

Gα,p +Gγ
, ð27Þ

_Ψ1,γ = 4πGγ,pLtot
Gγ

Gα,p +Gγ
: ð28Þ

Here, Ψ1 is a measures for the surface area of kebabs. On

α-kebabs, three different crystal morphologies can nucleate: α-par-

ents, α-daughters and γ-daughters. It is assumed that on γ-kebabs,

only γ-phase can grow. These conditions are mathematically

expressed as follows:

_Ψ0,α,p =Gα,pΨ1,α
Gα,p

Gα,p +Gα,d +Gγ
, ð29Þ

_Ψ0,α,d =Gα,dΨ1,α
Gα,d

Gα,p +Gα,d +Gγ
, ð30Þ

_Ψ0,γ,p =GγΨ1,γ , ð31Þ

_Ψ0,γ,d =GγΨ1,α
Gγ

Gα,p +Gα,d +Gγ
: ð32Þ

Here, Ψ0 is a measures for the undisturbed volume of kebabs and

subscripts p and d denote the volumes in parent crystals or daughter

crystals, respectively. The total volume of kebabs is much larger than

the volume of shish and therefore the volume of shish is neglected.

Roozemond et al.32 suggest that flow and the following relaxa-

tion afterwards increase the growth of kebabs. This phenomenon is

accounted for by increasing the growth rates of the α-parents with a

factor Gflow. It is assumed that only for α-parents the growth rate

increases due to orientation. The growth rate of the other two mor-

phologies is always equal to the growth rate in quiescent condi-

tions.26 After flow, this effect relaxes due to relaxation of the chains

towards their equilibrium conformation. Grosso et al.26 introduce a

direct relation between the α-parent growth rate and the molecular

conformation. The expression for the growth rate of α-parents is

given by26:

Gα,p T,tð Þ=Gα Tð Þ 1+Gflowexp tr cHMWð Þf gð Þ: ð33Þ

This way, during flow the growth rate of α-parents is more pro-

nounced and this affect reduces afterwards because of the relaxation

of the conformation tensor. The formation of the daughter morphol-

ogy is less preferable because of the flow-induced conformation.

However, because the growth of daughter crystals only becomes

noticeable after relaxation of the conformation, the growth rate for

α-daughters equals the quiescent growth rate:

Gα,d T,tð Þ=Gα Tð Þ: ð34Þ

To take into account the impingement of the shish-kebab struc-

tures, the expressions for the space filling in Equation (8) and (17)

have to be adjusted. The total space filling and the space filling rate of

each individual phase are given by:

ξtot = 1−exp −
X
i, j

Φ0,i +Ψ0,i,j

� �" #
, ð35Þ

_ξi = 1−ξtotð Þ _Φ0,i +
X
j

_Ψ0,i,j

 !
, ð36Þ

with the phase i = α, γ and the morphology j = d, p (daughter or par-

ent). The total space filling, ξtot, reaches 1 when the crystallization

process is completed. Parameters for the flow-induced crystallization

are given in Table A.4 in Appendix A.
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2.5 | Effects on the rheology

Roozemond et al.24 have shown that shish strongly influence the rhe-

ology of the melt, even before the crystalline volume is considerably

large.24 It is hypothesized that chains protruding from shish into the

melt influence the rheology on a macroscopic scale. In the model of

Roozemond et al.24 this is implemented in an empirical way by defin-

ing the effect of crystallization on the modulus as:

gi = g0,iμ10
veff , ð37Þ

wherein g0,i is the modulus of mode i, μ is the ratio between the mod-

ulus of the crystal and the one of the melt and veff is the effective

space filling of shish-kebabs, given by;

veff = 1−exp −πLtotr
2
eff

	 

, ð38Þ

where reff is the effective radius of a shish. Because this approach contains

a number of uncertainties, the shish radius is an adjustable parameter on

the order of 35 nm for iPP.24 The effective shish radius and the modulus

ratio between crystal andmelt are set to reff = 30 nm and μ = 5.
26

Housmans et al.31 modeled the reputation time and the Rouse

time as linear functions of the amount of flow-induced nuclei

(i.e., number density of flow-induced nuclei). The flow-induced nuclei

are assumed to act as physical cross-links in the melt and these cross-

links increase the relaxation times of the high molecular weight chains.

Following their approach, a dependence of the Rouse time on the

amount of flow-induced nuclei is proposed:

λs,i = λs,i0aT 1+ αsNfð Þ, ð39Þ

where λs,i0 are the stretch relaxation times at a reference temperature

Tref. Here, a value of αs = 10−4mm3 is derived by Grosso et al. for the

used iPP.26 The temperature shift factor is defined as:

aT = exp
Ea

8:31
1
T
−

1
Tref

� �� �
, ð40Þ

with Ea the activation energy and Tref the reference temperature. All

parameters of previous equations are given in Table A.4 in

Appendix A.

2.6 | Boundary and initial conditions

The polymer is at rest at the start of the simulation. Since a time deriv-

ative appears in Equation (4) for the viscoelastic fluid, an initial condi-

tion is needed for the conformation tensor c:

c 0ð Þ= I, ð41Þ

which means that the viscoelastic extra stress is initially assumed to

be zero. Nonisothermal experiments are considered, wherein the

temperature is initially constant in the entire domain Ω, that is, T

(0) = T0 for all x. The temperature of the environment is assumed to

be constant T∞ = T0 during the simulation. The initial number of quies-

cent nuclei is calculated via Equation (15). Since the model is poly-

morph, the initial number of quiescent nuclei per phase is defined as:

Nq,i T0ð Þ= fi,qNq T0ð Þ, ð42Þ

where the growth rate weighted fraction, fi,q, follows from Equa-

tion (16). The required growth rates per phase are also calculated by

using the initial temperature, T0. Since initially no flow is applied, the

number of flow-induced nuclei, the space filling and shish growth

parameters are zero. However, these values cannot be set to zero,

because the Schneider rate equations are solved logarithmically for

stability purposes. Therefore, they are set to a small initial value

of 10−6.

To solve the governing equations, a set of boundary conditions

has to be applied. In sub-domain Ω1, the velocities are prescribed as:

• ur = 0 on Γ2, Γ3 and Γ4,

• uz = − vp on Γ2 and uz = vp on Γ4.

• u � n = 0 on Γ1,

where n is the outward pointing normal vector on the surface S.

On this boundary, the surface tension γ̂ is applied using a Neumann

boundary condition:

• −pI+2ηsD+ τð Þ�n=rs� γ̂ I−nnð Þð Þ on Γ1,

with rs the surface gradient operator. A constant surface tension

γ̂ is assumed.

The energy equations are solved on the total domain Ω. There-

fore, boundary conditions for the temperature are applied at both the

filament and the pistons. The filament and pistons are subjected to

heat losses at the free surface due to convection. Therefore, the fol-

lowing boundary condition is prescribed:

• −k r T � n = h(T − T∞), on Γ1, Γ7 and Γ8,

with, h the convective heat transfer coefficient and T∞(=T0) the

ambient temperature. The used convective heat transfer coefficient

for the polymer is assumed to be h = 79 W m−2 K−1. The temperature

at the end of the pistons is assumed to be constant. Therefore, the

following boundary condition is applied:

• T = T0, on Γ6 and Γ9.

All values of the parameters used in the boundary conditions can

be found in Table A.3 in Appendix A.

3 | NUMERICAL METHODS

A finite element method is used to solve the filament stretching flow

problem. The initial geometry is built with Gmsh.37 For the velocity

and pressure, isoparametric, triangular P2P1 (Taylor-Hood) elements

are used, whereas for the conformation, temperature and crystalliza-

tion evolution triangular P1 elements are used. So, to solve the weak

forms of the balance of mass, momentum and heat, second-order

elements for the velocity are used, while first-order elements are

used for the pressure, temperature and the conformation tensor.
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More information about the weak forms can be found in prior works

from our group.38,39 In order to solve these governing equations,

the log-conformation representation,40 streamline-upwind Petrov-

Galerkin (SUPG),41 and DEVSS-G42 are used for stability. A logarith-

mic version of the crystallization evolution is used for numerical

stability reasons.

3.1 | Mesh movement

The boundary which describes the free surface will move in time and

also the boundaries connected to the pistons move. Therefore, it is

necessary to track these boundaries and update the mesh on domain

Ω1. The elements of the piston in domain Ω2 do not change over time.

The position change of the free surface is determined from the veloc-

ity at this boundary (Lagrangian based). The movement of the mesh

has to be compensated. To do so, the Arbitrary Lagrangian Eulerian

(ALE) formulation is used.43 In this formulation the mesh velocity, um

is subtracted from the velocity u to correct for the movement of the

mesh. More details about the implementation of ALE in the numerical

model of the FiSER is given elsewhere.43,44

3.2 | Time integration

The system of equations is solved sequentially per time step. To inte-

grate in time, a (semi-implicit) backward Euler scheme is employed for

the first time step and a second-order backward differencing scheme

(semi-implicit Gear45) is employed for all subsequent time steps. The

system of equations on the moving domain Ω are solved using the fol-

lowing steps:

First, the velocity, conformation, temperature and crystallization

parameters are predicted from previous time steps using:

ûn+1 = un: ð43Þ

ĉn+1 = cn: ð44Þ

T̂
n+1

= Tn: ð45Þ

~Q
˜

n+1
= ~Q

˜

n
: ð46Þ

for the first time step, and:

ûn+1 = 2un−un−1: ð47Þ

ĉn+1 = 2cn−cn−1: ð48Þ

T̂
n+1

= 2Tn−Tn−1: ð49Þ

~Q
˜

n+1
= 2~Q

˜

n
− ~Q

˜

n−1
: ð50Þ

for all subsequent time steps. Here, the predictions of the velocity,

conformation tensor, temperature and crystallization parameters for

time tn + 1, tn and tn − 1 are given by ~un+1 , ~cn+1 , T̂
n+1

, Q̂
˜

n+1
, un, cn, Tn,

Q
˜

n, un−1 cn−1, Tn−1 and Q
˜

n−1, respectively.

Second, the predictions of the temperature T̂
n+1

and crystalliza-

tion parameters Q̂
˜

n+1
are used to determine the viscosities (moduli),

backbone relaxation times and stretch relaxation times of each mode.

These parameters are then used as input for the flow problem. The

predicted temperature and crystallization dependent on viscosity

(moduli) and relaxation times. These will be used for solving the veloc-

ity, pressure and the conformation tensor using the mass balance, the

momentum balance and the constitute equation. Details about the

solution for velocity, pressure and conformation procedure can be

found elsewhere.38

Using the current velocity field un + 1 and the conforma-

tion tensor cn + 1 the crystallization evolution is solved. To do

so, the entire crystallization variable array Q
˜

has to be solved,

which consist out of 30 components (i.e., fields). Examples of fields in

the crystallization array are the amount of nuclei, the growth rate, the

Schneider rate components for quiescent and flow-induced crystalli-

zation and the space filling. Subsequently, the current crystallization

variables Q
˜

n+1 , the velocity un+1 and the conformation tensor cn+1

are used as an input for the energy balance. So, the temperature field

Tn+ 1 is solved using the weak form of the energy balance.

Thereafter, Tn− 1 is filled with the previous solution Tn and

the new temperature field Tn + 1 is copied to Tn. Also the

velocity, conformation and crystallization parameters are cop-

ied in the same manner.

Finally, the boundary positions are updated, where the move-

ment of the boundary is Lagrangian based using a backward Euler

scheme:

xn+1Γ = xnΓ + u
n+1 Γð ÞΔt, ð51Þ

where xΓ is the position of the boundary and Δt the time step. The

coordinates of the mesh of the pistons are updated so that they fol-

low the movement of boundaries Γ2 and Γ4. The mesh velocities can

now be obtained by numerically differentiating the mesh coordinates

of domain Ω1. The mesh velocity is obtained in each node using a

first-order backward differencing scheme44:

un+1m =
xn+1m −xnm

Δt
, ð52Þ

where xm are the nodal positions of the mesh.

Due to the movement of the boundary, elements may

become too deformed. Then a new mesh is generated and the

current solution is projected on the new mesh. Besides the cur-

rent mesh, also the previous mesh is remeshed, so that not only

solutions n can be projected, but also solutions n − 1. This is nec-

essary because a second-order time stepping scheme is used. The

procedure of remeshing and the projection is explained in prior

work.44

8 of 16 van BERLO ET AL.



3.3 | Implementation of the rheological and
crystallization characterization

The implementation of the rheological characterization will be

reported in another work, currently under preparation. This

includes the calculation of the force and extensional viscosity, the

radius of the filament, the strain rate controller, and the determina-

tion of the shear correction factor with the numerical simulations.

During in situ X-ray measurements, an X-ray beam is sent through

the middle of the filament. The obtained crystallinity is then an

“average” over the mid-radius of the filament. To mimic this proce-

dure, a method has been developed to calculate the average crys-

tallinity over the radius of the sample. In the simulations, the total

percentage of crystallinity is integrated over the dimensionless

radius, r* = r/R0, according to:

χtoth i tð Þ=
ð1
0
χtot t, r

�ð Þdr�, ð53Þ

where hχtoti is the total average crystallinity over the mid-radius of

the filament.

The filament is extended with a constant strain rate during the

simulations. As a result, the mid-radius of the filament decreases

exponentially. For flow-induced crystallization to take place a large

extension is needed and therefore the radius becomes very small. In

order to make this computationally feasible, at large strains only five

elements can be used in the radial direction at the middle of the fila-

ment. So at large strains, the amount of crystallization data acquired

from the middle of the filament is limited. Therefore, it is chosen not

to use the mid-line, but a mid-region to process the data from the

simulations (see Figure 2). This way, more elements are included,

resulting in more radial data points. A width of 100 μm of this mid-

region is assumed to be comparable to the width of an actual X-

ray beam.

4 | RESULTS AND DISCUSSION

In the first part of this section, the first geometry in Table 1 is studied

to show the effect of nucleation on the rheological properties. Subse-

quently, the crystal growth is investigated for this sample at multiple

temperatures and strain rates. This gives a clear overview of the effect

F IGURE 2 (a) Geometry of a filament with a marked mid-region. The mid-region of 0.1 mm is used to increase the amount of elements to
obtain crystallization data and mimics the width of an X-ray beam. (b) and (c) examples of an initial and elongated mesh

A NUMERICAL STUDY OF EXTENSIONAL FLOW-INDUCED CRYSTALLIZATION IN FILAMENT STRETCHING RHEOMETRY 9 of 16



of experimental conditions on the crystallization in the FiSER. At last,

the effect of the compressed aspect ratio on the crystallization is

studied.

4.1 | Effect of crystallization on the extensional
viscosity

To investigate crystallization of iPP in the FiSER, geometry one in

Table 1 is chosen. In the simulations, a strain rate of 10 s−1 and a tem-

perature of 140 �C are applied. At this temperature, the quiescent

crystallization is negligibly small. The result of the extensional viscos-

ity is shown in Figure 3. The pure uniaxial extensional solution, �η+
XPP, is

found by solving the XPP equations using a pure uniaxial extensional

flow. In Figure 3 it can be seen that the simulated extensional viscos-

ity matches this solution up to large strains. However, including the

crystallization model results in a deviation at large strains. This is a

result of flow-induced nucleation and enhanced growth. It is interest-

ing to see that the deviation starts at a strain of approximately 3.8,

while no crystallization is observed up until a strain of 4.5. When crys-

tallization starts, the extensional viscosity rapidly increases. The pri-

mary increase in extensional viscosity (before crystallization) can be

explained by the occurrence of flow-induced nuclei due to the stretch

of the high molecular weight tail. The flow-induced nuclei are

assumed to act as physical cross-links in the melt and these cross-links

increase the Rouse relaxation time of the high molecular weight

chains according to Equation (39).31 Therefore, the extensional viscos-

ity increases. It should be noted that the relaxation times are only

slightly affected by temperature changes, because the temperature

only increases with 0.2�C during stretching and crystallization

(εH<4.5). The secondary, steep increase in the extensional viscosity is

observed because flow-induced crystals grow, which significantly

increases the moduli of the polymer, as given by Equation (37).

Surprisingly, the crystallinity is not constant over the mid-radius

of the sample. Hence 1D modeling like often done for drops and films

is not an option. At the center, the crystallinity is much lower than

close to the free surface. The crystallization distribution for the geom-

etry with a compressed aspect ratio of 0.29 is shown in Figure 4.

Crystallinity is mainly located in a narrow region along the free

surface.

To explain the crystallization distribution over the radius, the

period before crystallization is studied. The important parameters for

the onset of flow-induced crystallization are visualized at the center

of the sample (r = 0 mm) and at the free surface (r = R0) in Figure 5.

Starting with the magnitude of the rate of deformation tensor, _γeff , it

can be seen that at the start the flow field is nonuniform. This results

in a distribution of the trace of the conformation tensor and thus the

high molecular weight stretch, ΛHMW. This because the sample is

extended with a higher strain rate at the free surface than at the cen-

ter of the sample ( _εeff = _γeff=
ffiffiffi
3

p
). As a result, the number of flow-

induced nuclei as found from Equation (19) increases faster at the free

surface. Therefore, the lengthwise propagation of shish is higher at

the free surface, resulting in a distribution of the total crystalline

(A)

(B)

(C)

F IGURE 3 (a) Simulated extensional viscosity. The dashed line is
the pure uniaxial solution calculated with the XPP model.
(b) Corresponding crystal fraction integrated over the radius and
(c) flow-induced nuclei at the free surface (z = 0 mm). The compressed
aspect ratio, strain rate and initial temperature are Λc = 0.29,
_ε=10s

−1
and T0 = 140∘C

F IGURE 4 Space filling and nucleation distribution over the
middle of the sample at a Hencky strain of εH = 5. The compressed
aspect ratio, strain rate and temperature are Λc = 0.29, _ε= 10s

−1
and

T0 = 140∘C. The observed part of the sample has a length of 0.75mm
and mid-radius of R = 0.15mm. The free surface is positioned at the
top of each figure and the center of the filament (r = 0mm) is
positioned at the bottom
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volume fraction and space filling over the radius of the sample

(at z = 0mm). In Figure 5, also the magnitude of orientation, tr(cavg) is

visualized. This orientation parameter is used in the growth rate of

alpha parents (see Equation (33)) which is affected by the distribution

of strain rates. Eventually, this also affects the distribution of crystalli-

zation fraction.

Before crystallization, the temperature at the center of the sam-

ple and at the free surface are almost the same (see Figure 5). But

after crystallization, due to the rapid increase in crystallization at the

free surface, the temperature of the sample is increased according to

Equation (6) and therefore the temperature also shows a distribution

over the mid-radius of the filament. Since before crystallization the

temperature gradients are small, it can be concluded the effect of

temperature gradients throughout the sample on the onset of crystal-

lization is negligible. Hence, the crystallization kinetics are not

affected by the temperature gradients before the onset of

crystallization.

4.2 | Effect of experimental parameters

One of the goals of this study is to analyze the effect of relevant

experimental parameters on crystallization in a FiSER. The effects of

the applied strain rate and temperature on the crystallization of iPP

are investigated for the following range of strain rates and tempera-

tures: _ε= 0:71,1:71,4:14,10½ �s−1
and T = [110,120,130,140]∘C. The

resulting extensional viscosities are shown in Figure 6.

The extensional viscosity decreases with increasing temperature

and strain rate, as expected for nonlinear rheology of a polymer

melt.46 When looking at the onset of crystallization, indicated by the

markers in Figure 6, it can be seen that the strain at which crystalliza-

tion starts becomes higher if the temperature increases. On the other

hand, an increase in strain rate, decreases the strain at which crystalli-

zation starts. In Figure 7, the average crystallization is plotted versus

the Hencky strain for the different experimental conditions. The criti-

cal crystallization strain is indicated by a circular marker. It can be seen

that the critical crystallization strains are not the same for a strain rate

range of 0:71< _ε <10s
−1

but they depend on both the strain rate and

temperature. By comparing Figure 6 with Figure 7 it is concluded that

the strain at which the second steep upswing in extensional viscosity

starts, matches the critical crystallization strain. This applies for all the

simulations done here.

In an attempt to quantify this onset of crystallization, the critical

crystallization strain εc T, _εð Þ was introduced by Bischoff White et al..11

This strain is defined as the strain at which a sudden increase of flow-

induced crystallization fraction is observed (i.e., a steep increase in

extensional viscosity). They found that for small strain rates a constant

critical crystallization strain exists for iPP at T = 146∘C. In their

F IGURE 5 Important parameters for crystal growth at strains
before crystallization (for hχtoti < 10−5) at a strain rate and
temperature of _ε= 10s

−1
and T0 = 140∘C. The used compressed

aspect ratio is Λc = 0.29

(A) (B)

F IGURE 6 (a) Simulated extensional viscosity for the different values of the initial temperature. A strain rate of 10 s−1 is applied.
(b) Simulated extensional viscosity for the different values of the strain rate. The initial temperature was set to 140�C. The markers indicate the
onset of crystallization at each experimental condition. The used compressed aspect ratio is Λc = 0.29
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measurements, no radius-based controller was used, but an exponen-

tial velocity profile was imposed on the pistons instead, that is, the

length of the fluid filament is changed according to a constant expo-

nential profile L tð Þ= L0exp _εtð Þ . The resulting extension rate can then

be calculated from the radius decay and shows to be higher than the

applied strain rate and not constant. For an applied strain rate range

of 0:01< _ε<0:15s
−1

they found that the critical crystallization strain

for iPP is εc = 5.8.
11 This value matches the values found here at

T = 140∘C for the lowest strain rate of 0.71 s−1. However, it can be

concluded from our simulations that no constant crystallization strain

can be defined for iPP extended in the strain rate range of

0:71< _ε<10s
−1
.

For an initial temperature of 110�C a significant increase of the

average crystallinity is observed from the start (see Figure 7). This is a

result of quiescent crystallization. At larger strains, the molecules are

stretched to an extent that flow-induced crystallization also starts,

resulting in a steep increase of the average crystallinity and exten-

sional viscosity. For an initial temperature of 130 and 140�C no quies-

cent crystallization is observed, while for an initial temperature of

120�C, this depends on the applied strain rate (see Figure 7). For high

strain rates, there is no time for the sample to show a quiescent crys-

talline contribution (at 120�C). Though the goal is to study flow-

induced crystallization only, it is chosen to use all the data, because a

clear distinction between quiescent and flow-induced crystallization

can be seen. The fast increase in crystallinity in combination with the

radius-based controller gives rise to numerical instabilities at the free

surface. As a result of these instabilities, the velocity of the pistons is

controlled in such a way that nonphysical jumps arise in the exten-

sional viscosity and average crystallinity as shown in Figures 6 and 7.

However, the simulation is stable for Hencky strains of 0.15–0.25

after the onset of crystallization, which allows studying crystallization

in this strain range. The simulations with the experimental conditions

of 110�C and 0.71 s−1 shows a rapid increase in crystallinity due to

quiescent crystallization. This also gives rise to numerical instabilities

and hence it was not possible to reach the onset of flow-induced crys-

tallization for this experimental condition.

An overview of the dependency of the critical crystallization

strain on the different experimental conditions is given in Figure 8.

From this figure, two general trends follow. First, the critical crystalli-

zation strain is increasing with increasing temperature. Second, the

critical crystallization strain is decreasing with increasing strain rate.

Both trends cannot be explained by a simple shift function, because

of the complex interplay between rheology and flow-induced

F IGURE 7 Average crystallinity for the different experimental
conditions, with a compressed aspect ratio of Λc = 0.29. The markers
indicate the critical crystallization strain εc at each experimental
condition

F IGURE 8 Dependency of
critical crystallization strain on the
strain rate and temperature for a
sample with a compressed aspect
ratio of Λc = 0.29. The natural
logarithm of the strain rates are
used, which correspond to strain
rates of _ε=0:71, 1.71, 4.14 and
10 s−1, respectively
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crystallization. However, qualitatively a decrease of the critical crystal-

lization strain when lowering the temperature is indeed expected

since both nucleation density and growth rate increase at lower tem-

peratures (Equations (13) and (14)). Moreover, at the same strain rate,

a lower temperature will result in a larger molecular stretch. When

considering the strain rate, the increased molecular stretch has

enhancing effects on the flow-induced nucleation (Equation (19)),

shish (Equation (24)) and kebab (Equation (33)) growth thereby

resulting in a more than proportional reduction of the critical time for

crystallization. It should be noted that the critical crystallization strains

at T = 110∘C are affected by quiescent crystallization. This can be seen

by the fact that the crystallization starts at small strains, that is, at a

weak flow (see Figure 7). This is also true for the strain rate of

0.71 s−1 and 1.71 s−1 at T = 120∘C. In Figure 8, it can be seen that the

critical crystallization strain at T = 110∘C and _ε= 1:71s
−1

(or

log _εð Þ=0:54s−1
) is inconsistent with the general trend. The other sim-

ulations, which are less affected by quiescent crystallization, are con-

sistent with the pure flow-induced crystallization simulations.

4.3 | Dependency of crystallization on the aspect
ratio

Since the nonhomogeneous flow at the start of filament stretching

seems to affect the flow-induced crystallization, the dependency of

crystallization on the aspect ratio is studied. Spiegelberg et al.17

showed that for increasing initial aspect ratio the flow near the middle

of the filament converges to the desired pure uniaxial flow profile,

that is, the effect of the end-plates reduces. To investigate whether

this reduces the crystallization distribution over the mid-radius of the

sample, the geometries in Table 1 are simulated at a strain rate of

10 s−1 at 130 and 140∘C. A strain rate of 10 s−1 is chosen because it

has the shortest simulation time of the strain rates used in this study.

At the chosen temperatures, quiescent crystallization is negligible and

therefore only flow-induced-crystallization occurs.

In Figure 9, the distribution of the crystallinity over the radius for

geometry 2 (upper) and 4 (bottom) is given. These geometries have a

compressed aspect ratio of Λc = 0.5 and Λc = 1.5, respectively. It can

be seen that the distribution of crystallinity is indeed affected by the

initial dimensions of the sample. For a higher aspect ratio, using the

same prestretch, the difference in crystallinity over the radius of

the sample is reduced. In other words, the amount of crystallinity at

the free surface is close to that at the center of the sample. For the

geometry used in Figure 9B (Λc = 1.5), although an initial aspect ratio

of Λ0 = 8.9 is used, there still is a clear distribution of crystallinity over

the mid-radius of the sample.

For the geometries in Table 1, the corresponding critical crystalli-

zation strains are given in Figure 10 for a strain rate of _ε=10s
−1

and

temperature of 130 and 140�C. The critical crystallization strain

seems to converge when increasing the aspect ratio at both tempera-

tures. This is as expected, because the flow converges to a pure uniax-

ial flow field at the middle of the sample when increasing the aspect

ratio. However, because of the pistons there will always be a distribu-

tion of strain rates over the mid-filament and thereby a distribution of

the onset of crystallization. Nevertheless, from upon a compressed

aspect ratio of Λc = 1.5 (εpre = 1.74, so Λ0 = 8.9), the onset strain for

crystallization will only slightly increase with Λc. For pure rheological

measurements a much lower prestretch is required to measure the

(pure uniaxial) extensional viscosity. From another work, currently

under preparation, it follows that for a sample with εpre = 0.8 and

Λ0 = 2.5, the error due to nonhomogeneous flow on the extensional

viscosity is less than 5%. Therefore, the sample dimensions are even

(A) (B)

F IGURE 9 Crystallinity distributions for geometries 2 and 4 simulated at a strain rate of 10 s−1 and a temperature of 130 �C. A) Compressed
aspect ratio of Λc = 0.5. B) Compressed aspect ratio of Λc = 1.5. The lines are a guide for the eye

F IGURE 10 Critical crystallization strain versus the compressed
aspect ratio (_ε =10s

−1
)
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more important for in situ crystallization measurements in a FiSER.

Since increasing the compressed aspect ratio from 0.29 to 1.5 only

increases the onset of crystallization with about 2%, it can be con-

cluded that the critical strain increase due to experimental parameters

is only slightly affected by the initial geometry. Hence, the results in

Figures 6-8, can be assigned to the complex interplay between flow,

rheology and flow-induced crystallization.

To quantify the effect of the aspect ratio on crystallization, the

simulated average crystallinity is plotted for different aspect ratios in

Figure 11. As mentioned earlier, the critical crystallization strain

depends on the aspect ratio. Therefore, the critical strain is subtracted

from the Hencky strain, resulting in a strain definition that is only rele-

vant in the flow-induced crystallization regime. For small aspect ratios,

the crystallinity only grows near the free surface, and hence the inte-

grated average crystallinity is small compared to large initial aspect

ratios (see Figure 11). As strain increases, the center of the sample

does not crystallize immediately for small aspect ratios, while for

larger aspect ratios the crystallization rapidly increases over the total

radius of the sample. Therefore, the rate of crystallization is lower for

small sample aspect ratios, as can be seen in Figure 11. Unfortunately,

the simulations become unstable at some Hencky strain after the

onset of crystallization and therefore complete crystallization can not

be reached numerically. Nevertheless, a clear relation between the

aspect ratio and the onset of crystallization is shown. Besides, an

increase in aspect ratio results in less distribution of crystallinity over

the middle of the sample. From these findings, it can be concluded

that an initial aspect ratio determines the distribution in crystallinity at

large strains, due to the nonhomogeneous flow history. So to limit the

crystallization distributions over the radius of the sample, the non-

homogeneous flow at the start should become more homogeneous.

Here, the approach of increasing the initial aspect ratio is followed,

while it is also possible to decrease the piston diameter with strain47

or to reshape the initial sample in a dog-bone geometry (like in tensile

tests). This latter solution results in a more cylindrical profile and

hence reduces the distribution of strain rates over the radius of the

sample. Our numerical model can be used to study the flow and struc-

ture formation in such a dog-bone sample and to determine the opti-

mal initial dog-bone geometry for uniaxial extensional flows and

resulting crystallinity in a FiSER.

5 | CONCLUSIONS

A numerical model, describing the flow and resulting rheology and

crystal structure development of iPP in a FiSER, is presented. In par-

ticular, finite element simulations are used that simultaneously solve

the balance of mass, momentum and energy, a nonlinear viscoelastic

constitutive (XPP) model and the equations for quiescent and flow-

induced crystallization. A broad range of experimental parameters

have been investigated by varying the initial temperature, the applied

strain rate and the sample aspect ratio. From the simulations it follows

that the extensional viscosity increases in steps. The first increase is

due to the increase of the Rouse relaxation times during flow as a

result of the increase of the amount of nuclei during flow, which are

assumed to act as physical cross-links. The second steep increase is a

result of crystal growth, which causes a sharp increase in the moduli.

Subsequently, the onset of crystallization in the FiSER has been inves-

tigated. While Bischoff White et al.11 found a constant critical crystal-

lization strain at low strain rates, this is not the case for the cases we

studied for a strain rate range of 0:71≤ _ε≤10s
−1

. Namely, the critical

crystallization strain decreases with increasing strain rate. Besides, an

increase in temperature increases the critical crystallization strain.

These dependencies can be rationalized based on the effects of flow

rate and temperature on rheology as well as nucleation and crystal

growth. In addition, due to the nonhomogeneous flow, the molecular

stretch is nonhomogeneously distributed over the radius of the fila-

ment. Before crystallization, the shear contributions at the pistons

affect the flow in such a way that no pure uniaxial extensional flow is

present in the FiSER. The molecular stretch determines the amount of

flow-induced nuclei, which affects the onset of crystallization. As a

result of the molecular stretch distribution, the crystallinity near the

free surface is much higher than the crystallinity at the center of the

sample, resulting in a distribution of crystallinity over the radius of

the sample. Because the shear contributions at the pistons depend on

the initial aspect ratio, the distribution of crystallinity can be reduced

by increasing the initial aspect ratio. Other suggestions for reducing

the molecular stretch distribution are decreasing the diameter of the

pistons during flow47 and reshaping the initial geometry to a dog-

bone shape (as in tensile tests). In the future, this numerical model can

be readily applied to optimize this initial dog-bone geometry and to

investigate its effect on the flow and crystal structure formation in a

FiSER. Thereby, the access to the local flow history allows us to

account for nonidealities when analyzing results.
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APPENDIX: MATERIAL CHARACTERIZATION A.

Here, the material parameters of the iPP homopolymer (Borealis

HD601CF) are given. The relaxation spectra and nonlinear parameters

used in the XPP constitutive relation are given in Table A.1.

Material parameters used in the heat balance are given in

Table A.2.

TABLE A1 Viscoelastic model parameters of the XPP model for
iPP at a reference temperature of 220�C as derived by Grosso et al.26

Nmodes ηi (Pa s) λb,i (s) λs,i (s) νi (−)

1 30.00 5 � 10−5 6.00 � 10−6 0.05

2 130.76 0.0014 6.67 � 10−6 0.05

3 303.60 0.011 5.24 � 10−5 0.05

4 480.00 0.060 2.86 � 10−4 0.05

5 377.00 0.29 0.0014 0.05

6 183.70 1.67 0.0080 0.05

7 46.00 11.5 0.055 0.017

TABLE A2 Material parameters used for the heat balance24

ρ cp k χ∞ ΔH
kg/m3 J/(kg K) W/(m K) – J/g

iPP 800 3157 0.11 0.650 207

steel 8000 670 80 x x

The parameters used for the boundary conditions are specified in

Table A.3.

TABLE A4 Crystallization
parameters for iPP as derived by Grosso

et al.26 using molecular considerations

Nucleation density

Nref 2.2 � 1015 1/m3

TN,ref 383 K

cN 0.211 1/K

Crystal growth α -phase β -phase γ -phase

Gmax,0 19.2 � 10−6 7.1 � 10−6 4.4 � 10−6 m/s

TG,ref,0 363 380 377 K

cG 2.3 � 10−3 6.6 � 10−3 3.5 � 10−3 1/K

FIC

fβ 0.002 -

gn,ref 1013 1/(m3s)

cn,T −0.016 1/K

μn 0.015 -

ξseg 5 � 10−9 m

Gflow 0.009 -

Effect on rheology

reff 30 � 10−6 m

μ 5 -

Tref 493 K

Ea 40 � 103 J/mol

αs 10−13 m3

TABLE A3 Material parameters used for the boundary
conditions

γ̂24 h
mN/m W /(m2K)

iPP 30.2 79

In Table A.4, the crystallization parameters are given which are

used in the numerical simulations.
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