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Abstract 

The emergence of prosumers calls for a revision of distribution network tariff design to ensure efficient 

network utilization and optimal customer response. This article aims to investigate the influence of different 

distribution tariff structures and peer effects on both residential consumers’ distributed energy resources 

adoption and the allocation of electricity distribution costs. We developed an agent-based model to analyze 

the interaction between distribution tariffs and the adoption of distributed energy resources. The model 

takes into account the influence of both economic (e.g., payback period and income level) and non-

economic (e.g., peer effects) factors on technology adoption. The model endogenously considers the 

interplay between the technology adoption and the evolution of distribution tariffs and takes into account 

the interaction among consumers by incorporating peer effects. We found that under our test case 

assumptions, the presence of non-economic factors in the decision making, such as peer effects, is the rate-

limiting step of the adoption process in the short-term. Hence, creating mechanisms that encourage 

interpersonal communication among residential consumers may help more risk-averse consumers redefine 

their attitudes about the benefits and costs of adopting distributed energy resources. We also found that a 

utility death spiral is more likely to occur with an annual net-volumetric distribution tariff. The increase in 

distribution cost was ten percentage points higher than that obtained with an annual maximum offtake 

capacity tariff. Given the complexities of an electricity system where the consumer is at the center, we 

recommend that regulators and distribution system operators adopt a whole system approach to managing 

the electricity system. 

 

Keywords: distribution tariffs, distributed energy resources adoption, theory of planned behavior, agent-

based modeling.  
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List of abbreviations and symbols 

Abbreviations 

BI: hourly bidirectional volumetric distribution tariff 

CAP: annual maximum offtake capacity tariff  

CAPBI: annual maximum bidirectional capacity tariff 

DERs: Distributed Energy Resources 

DSO: Distribution System Operator 

ICT: Information and Communication Technology 

NET: annual net-volumetric distribution tariff  

NPV: Net Present Value 

ODD: Overview, Design concepts, and Details 

PBC: Perceived Behavioral Control 

POS: hourly offtake volumetric distribution tariff 

 

Symbols 

Variables 

𝑐ℎ𝑡: Power drawn from the grid to charge battery in hour t, [kW] 

𝑑: Total annual electricity demand, [kWh] 

𝑑𝑡: Residential consumer demand in hour t, [kW] 

𝑑𝑐𝑡: Power provided to the grid from battery in hour t, [kW] 

𝑑𝑚𝑎𝑥: Annual peak demand, [kW] 

Dcons,t: total consumers demand at the time step t, [kWh, kW] 

Dpros,t: Total prosumers demand at the time step t, [kWh, kW] 

Dres: Total residual demand, [kWh, kW] 

𝑑𝑖𝑠𝑡𝑏𝑖,𝑡: Distribution tariff on net hourly bidirectional energy flow, [€/kWh] 

𝑑𝑖𝑠𝑡𝑐𝑎𝑝: Offtake capacity distribution tariff, [€/kW] 

𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖: Bidirectional capacity distribution tariff, [€/kW] 

𝑑𝑖𝑠𝑡𝑛𝑒𝑡: Net volumetric distribution tariff, [€/kWh] 

𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡: Distribution tariff on hourly offtake energy, [€/kWh] 
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distcost: Total distribution cost, [€] 

distj,t+1: distribution tariff j at every time step t+1, [€/kWh, €/kW] 

𝑒𝐵𝐴𝑇𝑡: Battery energy content in hour t, [kWh] 

𝑛𝑝𝑟𝑜,𝑖: Number of prosumers that a residential consumer i observe in his social network, [-] 

𝑝𝑝: Payback period, [yr] 

𝑝𝑣𝑡: Power production by PV panels in hour t, [kW] 

𝑞𝑏𝑖,𝑡: Absolute value of the hourly net demand, [kWh] 

𝑞𝑐𝑎𝑝: Annual maximum offtake capacity, [kW] 

𝑞𝑐𝑎𝑏𝑖: Annual maximum injection/offtake capacity, [kW] 

𝑞𝑛𝑒𝑡: Annual net-volumetric consumption, [kWh] 

𝑞𝑝𝑜𝑠,𝑡: Hourly net-volumetric consumption in hour t, [kWh] 

𝑞𝑡: Resulting net demand in hour t, [kW] 

R: Cash flow, [€] 

Re: Revenues of the DSO at the first time step, [€] 

𝑆: Savings, [€] 

𝑆𝑑: Savings generated by reducing the distribution cost, [€] 

𝑆𝑒: Savings generated by reducing the energy cost, [€] 

ui: Total utility of the residential consumer i, [-] 

upp,i: Payback period utility of the residential consumer i, [-] 

upe,i: Peer effect utility of the residential consumer i, [-] 

w𝑝𝑒,𝑖: Weight allocated to the payback period utility of the residential consumer i, [-] 

w𝑝𝑝,𝑖: Weight allocated to the peer effect utility of the residential consumer i, [-] 

 

Parameters 

CR: C-rate of the battery, [-] 

dhi: Annual electricity consumption of a high-income residential consumer, [kWh] 

dmi: Annual electricity consumption of a middle-income residential consumer, [kWh] 

dli: Annual electricity consumption of a low-income residential consumer, [kWh] 

𝐸𝐵𝐴𝑇
𝑚𝑎𝑥: Maximum energy content of the battery, [kWh] 
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𝐸𝐵𝐴𝑇
𝑚𝑖𝑛: Minimum energy content of the battery, [kWh] 

i: Interest rate, [%] 

I0: Initial investment costs, [€/kW, €/kWh] 

𝐿𝐹𝑝𝑣𝑡: Load factor of PV as a function of time of the day and year, [-] 

N: Number or households 

Nn: Number of neighbors, [-] 

pe: Initial electricity price (wholesale price), [€/kWh] 

pt: wholesale price in hour t, [€/kWh] 

Po: Proportion of owner-occupied houses, [%] 

Pohi: Probability that the owner of a property is a high-income residential consumer, [%] 

Pomi: Probability that the owner of a property is a middle-income residential consumer, [%] 

Prhi: Probability that the renter of a property is a high-income residential consumer, [%] 

Prmi: Probability that the renter of a property is a middle-income residential consumer, [%] 

P𝐵𝐴𝑇
ch : Maximum battery charging power, [kW] 

P𝐵𝐴𝑇
dc : Maximum battery discharging power, [kW] 

ty: Number of time periods used in the calculation of the NPV, [yr] 

ΔP: Annual linear increase of the electricity price, [%] 

ηch: Battery charging efficiency, [-] 

ηdc: Battery discharging efficiency, [-] 
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1. Introduction 

Advances in electricity generation and storage technology, as well as in Information and Communication 

Technology (ICT), have led to a rapid increase of Distributed Energy Resources (DERs) owners connected 

to low- and medium voltage networks also known as prosumers. In 2019, rooftop solar photovoltaic (PV) 

installations represented somewhat more than one third of all PV installations worldwide [1]. This increase 

of prosumers is redefining market relationships between traditional sellers and buyers as well as the market 

structure. Prosumers have become key players in the way electricity is generated, distributed, and consumed 

[2]. 

Nevertheless, the emergence of prosumers also raises a series of challenges that cut across technical [3], 

social [4], and institutional dimensions [5], [6]. In the institutional realm, for instance, the use of  

distribution tariff structures such as net-metering can cause unintended effects such as cross-subsidization 

amongst electricity consumers [7]–[9]. Several authors have argued that net-metering over-incentivizes PV 

adoption and forces passive consumers (without PV panels) to pay the distribution costs that prosumers 

manage to offset. In turn, the increase of the distribution costs may incentivize passive consumers to adopt 

PV, creating a positive feedback loop known as the utility death spiral [5], [7]. In the social realm, the 

emergence of prosumers is placing the consumer at the center of the energy system. To manage this 

consumer-centric energy system, it is necessary to better understand how behavioral factors, such as peer 

effects1, the desire for independence from the electricity grid, and environmental concerns, shape residential 

consumers’ energy consumption and decision-making. Therefore, the emergence of prosumers calls for an 

assessment of distribution tariffs that takes into account consumers’ behavioral factors to address network 

utilization and anticipate customer response. 

This article aims to investigate the influence of different distribution tariff structures and peer effects on 

both residential consumers’ DERs adoption and the utility death spiral. Reimbursement schemes such as 

feed-in tariffs and feed-in premium are out of the scope of this study. There are several factors that influence 

the design of distribution grid tariffs (e.g., cost-reflectivity and fairness). Nevertheless, this paper focuses 

on assessing the impact of possible tariff structures on DERs adoption and the utility death spiral, rather 

than analyzing how an optimal tariff should look like. Understanding the co-evolution of households’ DERs 

                                                           
1 Peer effect “refers to when the attitudes, values or behaviors of an individual are influenced by the behaviors of 

members within a peer group” [28]. Peer effects can occur through active or passive processes. An active peer effect 

occurs when a person adopts a technology after actively talking to existing adopters. A passive peer effect occurs 

when a person passively observes existing adopters using the technology. In this study, we focus on passive peer 

effects. 
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adoption and network charges may provide key insights into the implications of distribution tariffs on the 

evolution and operation of an energy system wherein the consumer is at the center.  

 

1.1. Literature review 

Different modeling approaches have been used to study the diffusion of DERs, in particular to study the 

diffusion of solar PV panels. Equation-based models have been used to study the interaction between PV 

adoption, electricity rates, and public opinion. Cai et al. studied the impact of the feedback between PV 

adoption and electricity rates on future PV penetration and net-metering costs. The authors found that under 

a net-metering scheme, PV adoption leads to a rapid increase in both distribution costs and the fraction of 

these costs borne by lower-tier customers [10]. Patra and Carvalho developed a mathematical model to 

analyze the interaction between PV market evolution and rate structures under regulated tariffs. The authors 

found that gradual transitions to higher fixed Network Access charges do not discourage PV deployment 

[11]. 

Candas et al. investigated the dynamics of PV adoption and the evolution of public opinion in Germany 

and Italy. By using an equation-based approach underpinned by the sociodynamics framework [12], the 

authors found that the elimination of the feed-in tariff regulation in the near future is possible without 

crippling PV expansion, but only if higher levels of self-consumption are promoted and the public is aware 

of its economic potential [13].  

Agent-based models are increasingly being used to model and analyze the complex phenomenon of 

diffusion of technologies in different domains [14]. In the energy domain, agent-based modeling has been 

extensively used to analyze the effectiveness of investment tax credits, rebate levels, and feed-in tariffs on 

the PV adoption [15]–[19].  

Agent-based modeling has been also used to analyze the importance of economic, social and attitudinal 

components in PV adoption. Murakami developed an agent-based model coupled to a power flow model to 

study the influence of social policy and communication among residential consumers on the adoption of 

photovoltaic systems. The author found that strong government intervention in the areas near the main high-

voltage power distribution transformer drove the increased adoption of PV [20].  

Robinson & Rai found that models that only account for economic factors in the agents’ PV adoption 

decision-making satisfactorily replicate the rate of adoption and the cumulative adoption curve, but perform 

badly in replicating spatial and demographic patterns of adoption. Models taking into account attitudinal 

aspects and social interactions satisfactorily replicate the spatial pattern of PV deployment [21].  
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Ramshani et al. investigated the diffusion rate of PV panels and green roofs under uncertainties caused by 

climate change, adopters characteristics and their interactions. The authors developed an integrated 

framework combining an optimization model with an agent-based model to conduct the analysis. The 

authors found that an increase in the level of agent interaction leads to a higher adoption rate [22]. 

Other studies have focused on the analysis of the influence of tariff structures on the adoption of DERs and 

on the study of the utility death spiral. Stavrakas et al. developed an agent-based model to study the 

influence of both a net-metering scheme and a proposed self-consumption scheme subsidizing residential 

storage by 25% on small-scale PV investments in Greece over the period 2018-2025. The authors found 

that a net-metering scheme is more effective than a self-consumption scheme. The authors also found that 

storage investment costs need to follow a steep learning curve of a least a 10% annual reduction until 2025 

to make self-consumption attractive to consumers in Greece [23]. 

Darghouth et al. investigated the impacts of two feedback loops: fixed cost recovery feedback and time-

varying rate feedback on PV deployment. The former feedback loop describes an increase in the network 

charge to ensure fixed-cost recovery driven by PV adoption. The latter feedback loop describes a shift in 

the temporal profile of wholesale electricity prices driven by high PV penetration. The authors found that 

the effect of PV deployment on the utility death spiral is modest because the feedback loops operate in 

opposing directions [24].  

Muaafa et al. developed an agent-based model to study to what extent the PV adoption will trigger an utility 

death spiral. The authors found that PV adoption is unlikely to disrupt the Distribution System Operator’s 

(DSO) business model [25]. de Villena et al. developed an agent-based model to assess the interplay 

between DERs deployment and the evolution of the distribution tariff under different regulatory 

frameworks. The authors found that using net-metering leads to a spiral of the distribution tariff and 

observed a tradeoff between the spiral of electricity prices and the desired PV and battery deployment [26].  

Previous studies either focus on the analysis of the upward spiral of the distribution tariff  or on residential 

consumers’ DERs adoption, but neglect the interplay between these two processes. To the best of our 

knowledge, only Darghouth et al. [24] and de Villena et al. [26] take into account this interplay, but they 

make normative assumptions about residential consumers’ investment decisions in DERs and neglect the 

influence of behavioral and social components on those decisions. Nevertheless, it has been shown that 

consumers’ investment decisions are also driven by non-economic concepts such as independence and 

autonomy [27] as well as peer effects [28].  
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1.2. Contribution 

In this study, we extend the work of Darghouth et al. [24] and de Villena et al. [26] by incorporating the 

effect of social and attitudinal components into the DERs adoption decision-making and by providing a 

path dependency analysis. In particular, we aim to answer the following research questions:  

 What is the influence of both peer effects and distribution tariff structures on the adoption of 

integrated photovoltaic and battery energy storage systems as well as on the utility death spiral? 

 

 What is the effect of a change in the distribution tariff structure, at specific periods of time, on the 

adoption of integrated photovoltaic and battery energy storage systems? 

To answer these research questions, we developed an agent-based model to analyze the interaction between 

distribution tariffs and DERs adoption. The model takes into account the influence of both economic (e.g., 

payback period and income level) and non-economic (e.g., peer pressure) factors on the DERs adoption. 

The model also takes into account the interaction among consumers by incorporating peer effects and for 

the diversity among actors. This diversity is modeled by specifying the social class and their willingness to 

adopt new technologies. Finally, the model endogenously considers the interplay between the DERs 

adoption and the network tariff evolution.  

In summary, the main contributions of this article include: 

 

 Novel agent-based modeling framework that incorporates the effect of social and attitudinal 

components into residential consumers’ decision-making on DERs adoption. Furthermore, this 

modeling framework endogenously considers the interplay between the DERs adoption and the 

distribution tariff evolution, as well as the interplay between residential consumers and prosumers. 

Thus, key concepts such as grid defection, residential consumer/prosumer behavior, and the 

transition from consumers to prosumers are included in the modeling framework. 

 Detailed insights into how different distribution tariff structures influence DER’s adoption and the 

utility death spiral. 

 Path dependency analysis providing insights into how the timing of a change in the distribution 

tariff structure affects DERs adoption. 

 

The article is organized as follows: section 2 describes both the concepts underpinning the model structure 

and the agent-based model developed in this study. The results are presented in section 3 and discussed in 

section 4. Finally, conclusions are drawn in section 5.  



9 
 

2. Theory and methods 

This section describes the concepts and modeling considerations required to describe both the DERs 

adoption and the evolution of network charges. In the first subsection, we describe how the system is 

conceptualized and what theories underpin this conceptualization. In the second subsection, we describe 

how the conceptual model is formalized into an agent-based model.  

 

2.1. Model conceptualization 

The conceptualization of the energy system at the neighborhood level as a socio-technical system is 

presented in Figure 1. It was assumed that this system comprises social network(s), physical network(s), 

and the Distributor System Operator (DSO). The social network consists of residential end-users. These 

actors were classified based on Rogers’ typology of adopters (i.e., innovators, early adopters, early majority, 

late majority, and laggards) [29], income class (high, middle, and low), and tenure status (owner and renter). 

We focused on the strategic behavior of end-users concerning investment decisions and their interaction 

with the DSO. The physical network consists of technical elements such as the distribution grid, electric 

loads, solar panels, and batteries. Actors interact through the social and physical networks, which are 

governed by intentional relationships (e.g., legislation, property rights, codes of conduct) and by causal 

relationships (e.g., Kirchhoff’s law), respectively. The physical networks mediate the interaction between 

residential consumers and the DSO. The latter will respond to the net consumption pattern of residential 

consumers by adjusting the distribution tariff to recover the operational costs and maintenance of the grid2. 

Each household operates as a relatively autonomous unit connected to the distribution grid. Nevertheless, 

social interaction occurs through peer effects among neighborhood residents. It was also assumed that the 

behavior of the system is driven by external factors, including battery and solar panel costs, wholesale 

electricity prices, electric loads, and residual demand3. Finally, it was assumed that a household’s electricity 

cost amounts to the sum of both energy cost and distribution cost. The former links to the wholesale 

electricity price, whereas the latter is impacted by the distribution tariff structure.  

                                                           
2 In this paper, we assume no grid reinforcement is needed. 
3 Residual demand refers to those residential consumers of the distribution network who cannot adopt DERs because 

of technical or economic constraints.  
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Figure 1. Conceptual model 

The system was analyzed from the perspective of a regulator/policy maker. It is assumed that these actors 

aim to assess the influence of different distribution tariff structures on both the adoption of renewable 

energy technologies and the spiral of end-use electricity prices. In this study, we analyze the following 

distribution tariffs structures: an annual net-volumetric distribution tariff (NET), an hourly offtake 

volumetric distribution tariff (POS), an hourly bidirectional volumetric distribution tariff (BI), an annual 

maximum offtake capacity tariff (CAP), and an annual maximum bidirectional capacity tariff (CABI). 

An annual net-volumetric distribution tariff charges a tariff per kWh of annual net consumption. An hourly 

offtake volumetric distribution tariff charges an hourly tariff per kWh of net consumption for each hour of 

the year. An hourly bidirectional volumetric distribution tariff charges an hourly tariff per kWh of either 

net offtake or net injection. An annual maximum offtake capacity tariff charges a tariff per kW of maximum 

net consumption capacity throughout the year. Finally, an annual maximum bidirectional capacity tariff 

charges a tariff per kW of either maximum net offtake or net injection capacity throughout the year.  

 

2.2. Model formalization 

The conceptual model was formalized into an agent-based model to analyze the influence of different 

distribution tariff structures and peer effects on both the utility death spiral and households’ DERs adoption. 
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We used agent-based modeling because of its ability to represent individual’s actions, decisions and 

bounded rationality, as well as peer effects. Agent-based models are uniquely positioned to describe the 

evolving nature of residential consumer behavior and its impact on energy systems. The following 

description of the agent-based model is based on the ODD (Overview, Design concepts, and Details) 

protocol4 [30]. The model was implemented in Julia 1.3.1 and Gurobi 8.1.0 was used as optimization solver. 

The simulations were run 10 times for each distribution tariff structure to capture different representations 

of consumers. Properties such as adopter type, tenure status, and income level assigned to consumers differ 

in each run. These simulations were completed in a period of approximately 20 min. The simulations were 

performed on a personal computer with an Intel Core i7-8650U processor and 16 GB of RAM. 

 

2.2.1. Purpose 

The purpose of this model is to study the interaction between households’ DERs adoption and the utility 

death spiral under different distribution tariff structures.  

 

2.2.2. Entities, state variables, and scales 

This agent-based model consists of 50 residential consumers agents and one DSO agent. These agents are 

assumed to be myopic. That is, they are unable to predict potential developments for both solar PV panels 

and batteries cost. Residential consumers can perform either the role of electricity consumers or electricity 

prosumers. Each residential consumer/prosumer was characterized by the adopter type, income class, 

electricity demand, number of neighbors, and PV/battery size installed. Each residential 

consumer/prosumer was also categorized as being either a house-owner or a renter. The DSO is responsible 

for operating and maintaining the electricity grid. The main DSO’s state variables are the revenues and the 

network charges.  

It was assumed that residential consumers interact through a social network. This network was created 

based on the income level. That is, it was assumed that residential consumers with similar income level live 

close to each other. The temporal extent of the model is twenty years and the time step is one year with 

hourly resolution. The global environment consists of the independent variables (i.e., distribution tariff 

structures) and the exogenous factors such as: solar panels costs, electricity prices, electric loads, and 

residual demand.  

                                                           
4 The Overview, Design concepts, and Details (ODD) protocol is a method used to describe agent-based models. 

This protocol was developed by Grimm et al. [30]. 
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2.2.3. Process overview and scheduling 

The scheduling is formed by a sequence of events that take place in discrete periods over the course of a 

year (see Figure 2). In each time-step, each residential consumer agent decides between either buying 

electricity from the utility or adopt DERs. This decision is driven by the information received from the 

utility company (wholesale electricity prices) and DERs installers (PV and battery costs); residential 

consumer’s attitude to DERs adoption (i.e., adopter type) and socio-economic attributes such as income 

level and tenure status (owning or renting a property), as well as the influence of other agents in the 

residential consumer’s social network (peer effects). Furthermore, in each time step, the residential 

prosumer agent operates his DERs to minimize cost, whereas the DSO calculates either the total electricity 

flows or the peak demand capacity in the grid and updates the distribution tariff to ensure that his revenues 

remain constant.  

 

Figure 2. Model narrative. The horizontal arrows indicate the agents to which each process is attributed. 

 

2.2.4. Design concepts 

 

a. Basic principles: The basic principles that underpin the model structure are: the theory of planned 

behavior and the diffusion of innovations theory [29], [31]. The diffusion of innovation theory was 

used to classify the residential consumers/prosumers in five groups: innovators, early adopters, 

early majority, late majority, and laggards. The theory of planned behavior was used to model the 

investment decision-making in DERs. This theory suggests that human behavior is driven by 
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attitudes, peer pressure, and beliefs about facilitating or impeding factors (see Figure 3). In this 

study, we assumed that payback period, the numbers of neighbors adopting DERs, and the tenure 

status can be used as a proxy for the attitude towards the behavior, peer pressure or subjective norm, 

and the perceived behavioral control, respectively. 

 

 

Figure 3. Theory of planned behavior [31]. 

b. Emergence: Emergent system dynamics includes the diffusion of DERs adoption and the evolution 

of network charges. 

 

c. Adaptation: residential consumers/prosumers and the DSO are the entities that exhibit adaptive 

behavior in the model. Residential consumers adapt their position on adopting a DERs as electricity 

prices, PV installation cost, network charges, and number of neighbors adopting DERs change over 

time. Residential prosumers optimize the operation of their DERs as a function of electricity prices 

and network charges. DSO adapts his distribution tariff as a response to residential consumers 

DERs adoption. 

 

d. Objectives: each residential consumer/prosumer aims to minimize his energy bills by adopting 

DERs. The DSO aims to keep his revenues constant over time. 

 

e. Learning/prediction: agents lack any learning mechanisms and they are unable to predict future 

solar PV panel costs. Residential consumers, however, are allowed to know the value of the battery 

cost in 10 years. By doing so, we can take into account a replacement of the battery system for a 

new one in a NPV calculation.  

 

f. Sensing: residential consumers/prosumers are assumed to know, without uncertainty, the present 

electricity wholesale market prices, the load factors, and the DERs capital investment cost.  
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g. Interaction: Residential consumers indirectly interact with each other within their social network 

through observation. That is, residential consumers are observing whether their neighbors are 

adopting DERs or not. The number of neighbors adopting DERs influences the investment 

decisions of a residential consumer. The greater the number of neighbors who are prosumers, the 

greater the probability that a residential consumer in the social network will adopt DERs. The DSO 

and the residential consumers/prosumers directly interact through the electricity consumption and 

the update of the distribution tariff.  

 

h. Stochasticity: the model was stochastically initialized. Residential consumers were assigned an 

adopter type by using the distribution of adopter categories proposed by Rogers [29]. Properties 

such as tenure status and income level were randomly assigned to residential consumers to capture 

a more diversified and plausible representation of consumers. These properties remain unchanged 

during the course of the simulation.  

 

i. Collectives: the model neglects the formation of aggregation among individuals. 

 

j. Observation: the deployments of solar PV and batteries as well as the evolution of the network 

charges are the main key performance indicators.  

 

 

2.2.5. Initialization and input data 

A test case has been set-up, consisting of fifty residential consumers and one DSO, initialized for the year 

2017. At the beginning of the simulation, the income class and adopter type were allocated to the residential 

consumers. The income class was assigned to households by using tenure status data (see Table 1). The 

adopter type was assigned to households by using the distribution provided by the diffusion of innovation 

theory [29]. The income class was used to create the social networks. It was assumed that each residential 

consumer is part of a social network wherein he can have up to seven neighbors. The initial electricity cost 

was set to 0.05 €/kWh. This cost was assumed to increase linearly by 2% annually. Moreover, it was 

assumed that the electricity demand of the households that are unable to adopt DERs is five times the initial 

demand of the households that are able to adopt DERs. This assumption was made to account for the limited 

number of rooftops for PV and for the lower electricity yield for less suitable sites [32]. For the group of 

households that are able to adopt DERs, it was assumed that the proportion of owner-occupied houses was 

80%. Finally, the annual electricity consumption was set to 1200, 3500, and 3900 kWh for low income, 

middle income, and high-income residential consumers, respectively (see Table 1). The values used for the 
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cost of solar photovoltaic panels and energy storage systems, as well as for load profiles, are presented in 

Appendix A.  

2.2.6. Submodels 

In this subsection, we described two of the most important submodels incorporated into the agent-based 

model. These submodels are the decision-making model for the adoption of distributed energy resources 

and the distribution cost update.  

Table 1. Parameters used in the model initialization 

Parameter Value Units Description 

N 50 [-] Number of households 

Nn
a 7 [-] Number of neighbors 

pe
b 0.05 [€/kWh] Initial electricity price (wholesale price).  

RD 5 [-] 

Residual demand factor, used to calculate the 

residual demand. This demand is calculated as the 

product of the total initial demand of households that 

can adopt DERs and the residual demand factor 

Po
c 80 [%] Proportion of owner-occupied houses 

Pohi
d 30 [%] 

Probability that the owner of a property is a high-

income residential consumer 

Pomi
d 60 [%] 

Probability that the owner of a property is a middle-

income residential consumer 

Prhi
d 10 [%] 

Probability that the renter of a property is a high-

income residential consumer 

Prmi
d 20 [%] 

Probability that the renter of a property is a middle-

income residential consumer 

ΔPa 2 [%] Annual linear increase of the electricity price 

ie U(5,10) [%] Interest rate 

dhi
f 3900 kWh 

Annual electricity consumption of a high-income 

residential consumer 

dmi
f 3500 kWh 

Annual electricity consumption of a middle-income 

residential consumer 

dli
f 1200 kWh 

Annual electricity consumption of a low-income 

residential consumer 

ηch 0.95 [-] Battery charging efficiency 

ηdc 0.95 [-] Battery discharging efficiency 

CRg 0.33 [-] C-rate of the battery 
                a This value was estimated based on that reported by [16] 
                        b Value estimated based on the 2018 Belpex prices [33] 
                        c This value was retrieved from [34] 
                d Values were estimated based on those reported by [35] 
                        e This value was based on that reported by [36] 

                f Values were estimated based on those reported in [37] 
                g Value retrieved from [38] 
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Decision-making model for the adoption of distributed energy resources 

At the core of this agent-based model is the evaluation of the different investment options. This investment 

decision-making process was modeled by formalizing the theory of planned behavior (see Figure 4). Only 

residential consumers who own the house will engage in the investment decision-making process5. A 

property-owner will decide whether to invest in DER(s) or not based on the value of the total utility. If this 

value is greater than the property-owner’s adoption threshold, the property owner will adopt DER(s). The 

total utility ui takes into account both economic and non-economic effects (the latter driven by peer-effects), 

which are represented by a payback period utility upp,i and a peer effect utility upe,i, respectively (see 

Equation 1). 

                                                      ui = w𝑝𝑒,𝑖 ∙ upe,i + w𝑝𝑝,𝑖 ∙ upp,i                                                            (1) 

 

                                                                 w𝑝𝑒,𝑖 + w𝑝𝑝,𝑖 = 1            (2) 

                                                                    

Where w𝑝𝑒,𝑖 and w𝑝𝑝,𝑖 refer to weight allocated to peer-effects and payback period on the investment 

decision-making, respectively. As mentioned above, the adopter type will determine the values given to 

adoption threshold and to the weight given to economic performance in the utility function (see Table 2).  

 

Figure 4. Formalization of the theory of planned behavior 

                                                           
5 Although income level is a relevant additional factor for the Perceived Behavioral Control (PBC) as it could take 

into account the “Mathew effect” [55], we neglected its influence on the PBC because a high income residential 

consumer is unlikely to invest in DERs if he is not a homeowner. 
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Table 2. Residential consumers’ attitude towards DERs adoption and value given to economic performance 

according to the adopter type 

Adopter 
Adoption threshold weight payback utilitya 

[-] [-] 

Innovator 0.4 U(0.9, 1) 

Early adopters 0.5 U(0.8, 0.9) 

Early majority 0.6 U(0.6, 0.7) 

Late majority 0.7 U(0.6, 0.7) 

Laggards 0.8 U(0.6, 0.7) 
                                     a Uniform distribution(X, Y).  
 

The values in Table 2 were estimated based on [29]. That is, it was assumed that adoption occurs through 

several stages. As in the initial stage innovators are the only ones willing to adopt the new technology, they 

were assigned the lowest value for the adoption threshold and the highest value for the weight assigned to 

payback period. Innovators are followed by early adopters. These adopters are characterized as being more 

likely to see the benefits of new technology and less reliant on the opinion of others. Thus, they were 

assigned the second lowest value for the adoption threshold and the value of the weight assigned to payback 

period was set at a slightly lower value than that of innovators. By contrast, consumers that adopt later in 

the diffusion process such as: early majority, late majority, and laggards are more risk-averse and more 

likely to seek the opinions of others when considering the adoption of a new technology. As early majority 

are followed by late majority, and these in turn, are followed by laggards we used different values for the 

adoption threshold. We assumed that these adopters have a similar value for the weight allocated to the 

payback period in the utility function. In reality, however, the values for these weights may differ for 

different types of adopters. The weight allocated to peer effects in the utility function is calculated by using 

Equation 2. To add heterogeneity to the residential consumers belonging to the same adopter type, we used 

an uniform distribution to give a value to the weight assigned to the payback period utility.  

The peer effect utility 𝑢𝑝𝑒,𝑖 of a residential consumer i was calculated based on both the number of 

prosumers that a residential consumer i observe in his social network npro,i and the total number of 

neighbors Nn,i in that network (see Equation 3). For the sake of simplicity, we assumed that the peer effect 

utility is nonnegative. In reality, however, a negative value for the peer effect utility is possible, which 

would reflect negative experiences from early adopters. 

                                                                      𝑢𝑝𝑒,𝑖 =
𝑛𝑝𝑟𝑜,𝑖

𝑁𝑛,𝑖
                                                                        (3) 
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The payback period utility 𝑢𝑝𝑝,𝑖 of the residential consumer i was calculated based on the payback period 

𝑝𝑝 and by assuming that the expected useful life of the DERs system is 20 years (see Equation 4): 

 

                                                                   𝑢𝑝𝑝,𝑖 =
20−𝑝𝑝

20
                                                                     (4) 

 

The payback period was calculated based on the net present value calculation (NPV). That is, the payback 

period is the year in which the NPV of the DER(s) system turns from negative to positive. The NPV is 

defined as the sum of the discounted cash flows of the DER(s) system 𝑅, given the initial investment costs 

𝐼0, and the interest rate 𝑖 (see Equation 5). 

 

                                                     𝑁𝑃𝑉 = −𝐼0 + ∑
𝑅

(1+𝑖)𝑡𝑦
20
𝑡=1                                                                        (5)  

                                                                     

The initial investment costs were calculated based on the data reported in Appendix A (Table A4). The 

cash flow was calculated based on the savings that are generated by using the produced electricity instead 

of buying it from or selling it to the grid. That is, 𝑅 = 𝑆. Savings 𝑆 were calculated by taking into account 

both the savings generated by reducing the energy cost and the savings generated by reducing the 

distribution cost (see Equation 6). We assumed that the energy price is constant to ensure that changes in 

the model outcomes are only due to changes in either independent variables (i.e., distribution tariff 

structures) or exogenous factors of the model (e.g., solar panel costs). 

                                                                        𝑆 = 𝑆𝑒 + 𝑆𝑑                                                                         (6)                                                                      

The savings generated by reducing the energy cost were calculated with the following equation: 

 

 

                                                              𝑆𝑒 = ∑ (𝑑𝑡 − 𝑞𝑡) ∙ pt
8760
𝑡=1                                                                (7) 

                                                               

 

Where 𝑑𝑡 is the residential consumer demand in hour t, 𝑞𝑡 is the resulting net demand in hour t, which can 

have a negative value if the household is exporting electricity to the grid, and pt is the wholesale price in 

hour t6. The savings generated by the reduction in the use of the grid were calculated based on the 

distribution tariff structure: 

                                                           
6 Note that in this study it was assumed that the wholesale price is fixed. Thus, pt = 𝑝 in equation 7 
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 For an annual net-volumetric distribution tariff the savings in distribution cost were calculated as a 

function of the total annual electricity demand 𝑑, the annual net-volumetric consumption 𝑞𝑛𝑒𝑡, and 

the net volumetric distribution tariff 𝑑𝑖𝑠𝑡𝑛𝑒𝑡 (see Equation 8). 

                                                            𝑆𝑑 = (𝑑 − 𝑞𝑛𝑒𝑡) ∙ 𝑑𝑖𝑠𝑡𝑛𝑒𝑡                                                               (8) 

                                                        

                                                                               𝑑 = ∑ 𝑑𝑡
8760
𝑡=1                                                                         (9)                                                                        

 For the hourly offtake volumetric distribution tariff the savings in distribution cost were calculated 

as a function of the hourly electricity demand 𝑑𝑡, the hourly net-volumetric consumption 𝑞𝑝𝑜𝑠,𝑡, 

and the distribution tariff on hourly offtake energy 𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡 (see Equation 10). 

                                                    𝑆𝑑 = ∑ (𝑑𝑡 − 𝑞𝑝𝑜𝑠,𝑡) ∙ 𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡
8760
𝑡=1                                                       (10) 

                                    

 For the hourly bidirectional volumetric distribution tariff the savings in distribution cost were 

calculated as a function of the hourly electricity demand 𝑑𝑡, the absolute value of the hourly net 

demand 𝑞𝑏𝑖,𝑡, and the distribution tariff on net hourly bidirectional energy flow 𝑑𝑖𝑠𝑡𝑏𝑖,𝑡 (see 

Equation 11). 

                                                      𝑆𝑑 = ∑ (𝑑𝑡 − 𝑞𝑏𝑖,𝑡) ∙ 𝑑𝑖𝑠𝑡𝑏𝑖,𝑡
8760
𝑡=1                                                         (11) 

                                                   

 For the annual maximum offtake capacity tariff the savings in distribution cost were calculated as 

a function of the annual peak demand 𝑑𝑚𝑎𝑥, the annual maximum offtake capacity 𝑞𝑐𝑎𝑝, and the 

offtake capacity distribution tariff 𝑑𝑖𝑠𝑡𝑐𝑎𝑝 (see Equation 12): 

                                                        𝑆𝑑 = (𝑑𝑚𝑎𝑥 − 𝑞𝑐𝑎𝑝) ∙ 𝑑𝑖𝑠𝑡𝑐𝑎𝑝                                                          (12) 

                                                       

 For the annual maximum bidirectional capacity tariff the savings in distribution cost were 

calculated as a function of the annual peak demand 𝑑𝑚𝑎𝑥, the annual maximum injection/offtake 

capacity 𝑞𝑐𝑎𝑏𝑖, and the bidirectional capacity distribution tariff 𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖 (see Equation 13): 

 

                                                     𝑆𝑑 = (𝑑𝑚𝑎𝑥 − 𝑞𝑐𝑎𝑏𝑖) ∙ 𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖                                                     (13) 
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The parameters 𝑞𝑡, 𝑞𝑛𝑒𝑡, 𝑞𝑝𝑜𝑠,𝑡, 𝑞𝑏𝑖,𝑡, 𝑞𝑐𝑎𝑝, and 𝑞𝑐𝑎𝑏𝑖 were calculated in an optimization problem aiming 

to minimize the operation cost of the DERs system configurations. This optimization problem is described 

in detail in Appendix B. Below, we focus on the description of the distribution costs component of the 

objective function (see Equation 14), which varies according to the distribution tariff structure. 

 

                                                       𝑚𝑖𝑛𝛯 (∑ (𝑝𝑡 ∙ 𝑞𝑡) + 𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡
8760
𝑡=1 )                                                      (14) 

 

The decision variables Ξ are: the resulting net demand 𝑞𝑡 in hour t, the power production by PV panels 𝑝𝑣𝑡 

in hour t, the power drawn from the grid to charge battery 𝑐ℎ𝑡 in hour t, the power provided to the grid from 

battery 𝑑𝑐𝑡  in hour t, the battery energy content 𝑒𝐵𝐴𝑇𝑡 in hour t and the distribution tariff structure 

parameters 𝑞𝑛𝑒𝑡 , 𝑞𝑝𝑜𝑠,𝑡, 𝑞𝑏𝑖,𝑡, 𝑞𝑐𝑎𝑝, and 𝑞𝑐𝑎𝑏𝑖. These parameters are used to calculate distcost in Equation 

14 according to the distribution tariff as shown below: 

 For an annual net-volumetric distribution tariff the distribution cost was calculated as: 

                                                             𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑛𝑒𝑡 ∙ 𝑞𝑛𝑒𝑡                                                                            (15) 

                                                                     

Subject to: 

                                                                     𝑞𝑛𝑒𝑡 ≥  ∑ qt𝑡                                                                                   (16) 

                                                                        𝑞𝑛𝑒𝑡 ≥ 0                                                                                       (17) 

 

 For the hourly offtake volumetric distribution tariff the distribution cost was calculated as: 

                                                       𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡 ∙ 𝑞𝑝𝑜𝑠,𝑡𝑡                                                                         (18) 

Subject to: 

                                                                    ∀𝑡: 𝑞𝑝𝑜𝑠,𝑡 ≥ 𝑞𝑡                                                                                       (19) 

                                                                     ∀𝑡: 𝑞𝑝𝑜𝑠,𝑡 ≥ 0                                                                                       (20) 

                                                                              

 For the hourly bidirectional volumetric distribution tariff the distribution cost was calculated as: 

                                                          𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑏𝑖,𝑡 ∙ 𝑞𝑏𝑖,𝑡𝑡                                                             (21)                                                                  

Subject to: 

                                                                     ∀𝑡: 𝑞𝑏𝑖,𝑡 ≥ 𝑞𝑡                                                                                       (22) 
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                                                                             ∀𝑡: 𝑞𝑏𝑖,𝑡 ≥ −𝑞𝑡                                                                    (23) 

                                                                       

 For the annual maximum offtake capacity tariff the distribution cost was calculated as:  

                                                         𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑐𝑎𝑝 ∙ 𝑞𝑐𝑎𝑝𝑡                                                                           (24) 

                                                                             ∀𝑡: 𝑞𝑐𝑎𝑝 ≥ 𝑞𝑡                                                                       (25) 

                                                                                𝑞𝑐𝑎𝑝 ≥ 0                                                                                                      (26)                                                                                  

 

 For the annual maximum bidirectional capacity tariff the distribution cost was calculated as:  

                                                         𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖 ∙ 𝑞𝑐𝑎𝑏𝑖𝑡                                                                         (27)                                                                

Subject to: 

                                                                    ∀𝑡: 𝑞𝑐𝑎𝑏𝑖 ≥ 𝑞𝑡                                                                                         (28) 

                                                                            ∀𝑡: 𝑞𝑐𝑎𝑏𝑖 ≥ −𝑞𝑡                                                                    (29) 

 

distribution tariff update 

The DSO will update the distribution tariff at every time-step according to the following equation:  

 

                                                        𝑑𝑖𝑠𝑡𝑗,𝑡+1 =
𝑅𝑒

𝐷𝑟𝑒𝑠+𝐷𝑝𝑟𝑜𝑠,𝑡+𝐷𝑐𝑜𝑛𝑠,𝑡
                                                                        (30) 

                                                                

Where 𝑑𝑖𝑠𝑡𝑗,𝑡+1 is the value of the distribution tariff j at the time step t+1, 𝑅𝑒 are the revenues of the DSO 

at the first time step. This value is held constant through the temporal scope of the simulation. 𝐷𝑟𝑒𝑠, 𝐷𝑝𝑟𝑜𝑠,𝑡, 

and 𝐷𝑐𝑜𝑛𝑠,𝑡 are the total residual demand, the total prosumers’ demand, and the total consumers’ demand 

at the time step t.  

 

We conclude this section by enumerating the main critical assumptions underpinning the model structure.  

 Besides the energy and distribution component, no other parts of the electricity cost (e.g., taxes and 

levies) are considered. 

 Note that when distribution tariffs like the annual net-volumetric tariff are in place, no excess 

electricity (on annual basis) can be sold to the grid, as qnet cannot be negative. In other tariffs, like 

the annual maximum offtake capacity tariff, excess electricity (on annual basis) can be sold.  
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 All households have the same number of members. It follows from this assumption that the 

electricity consumption of high-income households is higher than that of middle-income 

households, and that the consumption of middle-income households is higher than of low-income 

households as high-income households tend to have more appliances.  

 We used a set of 12 representative days to represent both the annual load factors and the annual 

load profiles [39]. Each representative day has a one-hour resolution (see Appendix A). 

 The load factor, electricity demand, weights of representative days, house-ownership status remains 

constant throughout the simulation. 

 Peer effects are only exerted through observational learning.  

 Residential consumers are myopic to cost developments for solar PV panels and battery energy 

storage systems.  

 The interaction between the households and the DSO is direct. That is, there is no intermediary, 

such as an aggregator or flexibility provider. 

 No upgrades or extensions of the solar PV panels adopted are possible as the temporal scope is 20 

years. For adopted battery storage systems, it was assumed that these storage systems will be 

replaced by another one of the same size when they reach the end of life. This assumption is made 

to be able to carry out the calculation of the net present value over a period of 20 years with the 

same integrated PV-battery system. Note that the decision making process of the residential 

consumers is not affected by the temporal scope of the simulation (which is 20 years). Thus, they 

will assess the investment in a time frame of 20 years even if they are reaching the end of the 

simulation.  

 The lifetime of a solar PV panel is 20 years. The lifetime of a battery is 10 years. 

 The residual demand is inelastic. That is, the electricity demand in these households is unresponsive 

to increasing in network charges and electricity cost.  

 Grid capacity is assumed sufficient to accommodate PV and battery uptake. No grid reinforcement 

is needed.  

 Transactive energy systems7 are neglected. 

 Finally, we limited the set of integrated photovoltaic and battery energy storage systems options 

for residential consumers to those reported in Table 3. 

 

 

                                                           
7 Transactive energy systems is an approach to designing and operating an electrification system. For a comprehensive 

overview of transactive energy systems, the reader is referred to [56] 
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Table 3. Overview of PV-battery configurations 

Option 

PV 

capacity 

Battery 

capacity 

[kWp] [kWh] 

1 2 0 

2 2 2 

3 4 0 

4 4 2 

5 4 3 

6 4 4 

7 6 0 

8 6 2 

9 6 3 

10 6 4 

 

 

3. Results 

This section is divided in two subsections. The first subsection discusses the influence of both distribution 

tariff structures and peer effects on the adoption of DERs and the utility death spiral, whereas the second 

subsection discusses how the timing of a change in the distribution tariff structure affects DERs adoption. 

That is, this subsection presents a path dependency analysis. In the analysis of the influence of peer effects 

on DERs adoption, we focus on three relevant aspects: the evolution of installed PV and battery capacity, 

the percentage of residential consumers adopting a specific PV-battery configuration, and the distribution 

tariffs evolution. In the path dependency analysis, we focus on the evolution of installed PV and battery 

capacity.  

 

3.1. Effect of peer effects on the DERs adoption and utility death spiral under different distribution 

tariff structures 

To analyze the influence of peer-effects on both DERs adoption and utility death spiral, we compare the 

DERs adoption patterns obtained with an investment decision-making model that takes into account both 

economic factors and peer effects (i.e., w𝑝𝑒,𝑖 > 0 and w𝑝𝑝,𝑖 > 0 in Equation 1) with the adoption patterns 

obtained with a decision-making model that only takes into account economic factors (w𝑝𝑒,𝑖 = 0 , w𝑝𝑝,𝑖 = 

1 in Equation 1). The former illustrates a decision making model departing from an economic rational 

behavior, whereas the latter illustrates a decision-making model adopting an economic rational behavior. 
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Henceforth, we use case 1 and case 2 to refer to the decision-making model departing from rational 

economic behavior and the one adopting an economic rational behavior, respectively. 

 

3.1.1. Evolution of installed PV and battery capacity under different distribution tariffs structure. 

Figure 5 shows that, for all different distribution tariff structures, the use of a rational decision-making 

model led to a rapid solar PV adoption, under all cost and model assumptions taken. The adoption process 

in case 2 was saturated 2.8, 2.6, 2, 2, and 2 times faster than that in case 1 for a NET, POS, BI, CAP, and, 

CAPBI, respectively. This is because the adopter’s total utility hinges only on the payback period of the 

investment. In contrast, when a decision-making model taking into account the influence of peer effects on 

the adoption process is used, risk-averse adopters are more likely to observe whether their neighbors are 

adopting DERs, and only if positive engage. If the number of neighbors adopting DERs is small, as is the 

case early in the adoption process, the contribution of the peer effect to the adopter’s total utility is 

insufficient to incentivize DERs adoption.  

Furthermore, as can be seen in the case of volumetric-based tariff structures, the use of a rational decision-

making model neglecting the influence of peer effects on the adoption process led to lower solar PV 

adoption in the long-term. In case 2, the median of the final cumulative installed solar PV panels was 25%, 

35%, and 6% lower than that obtained in case 1 for a NET, POS, and BI, respectively. This lower PV 

adoption is due to the relatively high PV costs at the early stages of the adoption process and the assumption 

that residential consumers are myopic about future costs for solar PV panels and increasing electricity 

prices. The combination of these two factors lead to the installation of small PV systems. In the case of 

capacity-based tariff structures, however, the use of a pure rational decision-making model led to higher 

PV adoption at the end of the considered horizon, as case 1 has not converged yet over the considered 

period.  
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Figure 5. Evolution of the PV installed capacity under different distribution tariff structures. NET: annual net-

volumetric distribution tariff; POS: hourly offtake volumetric distribution tariff; BI: hourly bidirectional volumetric 

distribution tariff; CAP: annual maximum offtake capacity tariff; CABI: annual maximum bidirectional capacity 

tariff. Solid lines represent median values, the shaded areas represent the 90 confidence interval by colors. 

 

It is also observed that PV adoption patterns vary depending on the distribution tariff structure. In case 1, 

the median of the final cumulative installed solar PV panels under a CAP was 61%, 69%, 161%, and 200% 

higher than that under a NET, POS, BI, and CAPBI, respectively. This is because under a CAP, the 

conflation of a further assumed drop in the solar panel cost and increase in electricity price, as well as the 

absence of either injection charges or injection constraints lead residential consumers to adopt larger solar 

PV systems (see also Figure 7), which is not the case under a BI and a CAPBI, where there is a charge for 

injecting electricity into the grid, nor under NET, where excess electricity cannot be sold.  
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Figure 6. Evolution of the battery installed capacity under different distribution tariff structures. NET: annual net-

volumetric distribution tariff; POS: hourly offtake volumetric distribution tariff; BI: hourly bidirectional volumetric 

distribution tariff; CAP: annual maximum offtake capacity tariff; CABI: annual maximum bidirectional capacity 

tariff. Solid lines represent median values, the shaded areas represent the 90 confidence interval by colors. 

 

Battery adoption only takes place under the capacity-based tariff structures (see Figure 6). Even though 

volumetric tariffs such as POS and BI can potentially incentivize the adoption of energy storage systems, 

the cost of these systems do not offset the savings generated by their use. Similarly to solar PV adoption, 

the use of a rational decision-making model neglecting the influence of peer effects on the adoption process 

led to both a rapid and higher battery adoption. If it is assumed that only economic factors dominate the 

adoption of battery storage systems, the median of the final cumulative installed battery capacity was 73% 

and 133% higher than that adopted if peer effects are taken into account in the investment decision-making 

for a CAP and a CAPBI, respectively. This adoption pattern is due to that, in the short term, peer effects 

are not strong enough to encourage the most risk-averse residential consumers to adopt DERs and to the 

assumption that batteries will be replaced with similar ones at the end of their lifetime (i.e., 10 years). 

Battery adoption was higher under CAP because the potential revenues generated by grid injection (i.e., 

export) improves the economic outlook of adopting an integrated photovoltaic and battery energy storage 

system, which is not the case of BICAP where grid injection entails a distribution cost or the size of the 

installed PV is small, or both. In case 1, the final cumulative installed battery capacity under a cap was 7 

times higher than that installed under a BICAP.  
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3.1.2. Installed PV and battery size distribution under different distribution tariff structures 

Figure 7 shows that tariff structures and peer effects led to different patterns in solar PV panels and battery 

adoption. Except for a CAP, the use of a rational decision-making model led to the adoption of small PV 

sizes (2 kW) because of both rapid solar PV adoption and solar PV costs at early stages of the adoption 

process, whereas the use of a decision-making model taking into account the influence of peer effects on 

the adoption process led to a more diverse DERs adoption. For instance, under a NET and a POS, residential 

consumers adopted solar PV systems of 2, 4, and 6 kW. Under a NET, 35% and 17% of the residential 

consumers, who belong to the middle class, installed solar PV panels of 2 kW and 4 kW, respectively. 

Under a POS, however, 29% and 27% of the residential consumers, who belong to the middle class, 

installed solar panels of 2kW and 6 kW, respectively. As expected, residential consumers adopted small 

PV systems (2 kW) under a BI and adopted small integrated photovoltaic (2 kW) and battery energy storage 

systems (2 kWh) under a CAPBI. 80% of the residential consumers adopted 2 kW solar PV systems under 

a BI.  

Larger solar PV systems (6 kW) and small battery energy storage systems (2 kWh) were adopted under a 

CAP. 75% of the residential consumers adopted an integrated PV-storage system of 6 kW and 2kWh. The 

adoption of large PV solar systems was caused by the substantial economic benefits that grid injection can 

bring to the residential consumer. Small battery energy storage systems were adopted because this battery 

size is enough to reduce the peak demand.  
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Figure 7. Percentage of residential consumers adopting a specific PV-battery configuration at the end of the 

simulation as a function of different distribution tariff structures. NET: annual net-volumetric distribution tariff; 

POS: hourly offtake volumetric distribution tariff; BI: hourly bidirectional volumetric distribution tariff; CAP: 

annual maximum offtake capacity tariff; CABI: annual maximum bidirectional capacity tariff. The bars represent 

median values, the error bars represent the 90 confidence interval. 

 

3.1.3. Evolution of distribution tariffs. 

The distribution tariff ratio is defined as the distribution tariff at the time t divided by the initial distribution 

tariff. This ratio increases quickly when a rational decision-making model was used, given the faster uptake 

of PV (see Figure 8). Interestingly, under a POS, the final value of the distribution ratio obtained in case 2 

is similar to that obtained in case 1, even though, for the latter, the cumulative PV adoption is higher (see 

Figure 5). Under a POS, residential consumers are encouraged to self-consume and to inject the surplus of 

the electricity to the grid. Nevertheless, only households’ self-consumption patterns influence the 

distribution cost. Thus, installing larger PV systems does not affect distribution costs more than smaller PV 

systems do, provided that a household with one of these PV systems engages in the same self-consumption 

behavior. Similarly, the final value of distribution ratio in case 1 converges to a value similar to that in case 

2 under a BI and CAPBI. This is because under these distribution tariff structures, residential consumers 

are incentivized to inject electricity into the grid when the wholesale price offset the distribution cost. The 

interplay between self-consumption and retrieving or injecting electricity renders a low distribution ratio. 

Network charges considerably increased under NET regardless the influence of peer effects on the adoption 

process. In case 1, the median of the distribution tariff increased by 14% in the case of NET, 6% in the case 



29 
 

of POS, and 5% in the case of CAP. The distribution tariff remains approximately constant under the BI 

and CAPBI. 

 

 

Figure 8. Evolution of the distribution tariff ratio. NET: annual net-volumetric distribution tariff; POS: hourly 

offtake volumetric distribution tariff; BI: hourly bidirectional volumetric distribution tariff; CAP: annual maximum 

offtake capacity tariff; CABI: annual maximum bidirectional capacity tariff. Solid lines represent median values, the 

shaded areas represent the 90 confidence interval by colors. 

 

3.2. Path dependency analysis 

We designed an experiment to study the influence of the timing of introducing an annual maximum offtake 

capacity tariff (CAP) in the system on the adoption of DERs. The experiment used as a baseline the results 

obtained from simulations run under an annual net-volumetric tariff (NET). The independent variables used 

are the years wherein a CAP is introduced. We assumed that a CAP can be introduced 5, 10, 15 years after 

a NET was enacted in 2017. That is, the independent variables are the introduction of a CAP in 2022, 2027, 

and 2032. The variables to be measured are the deployment of solar PV panels and batteries.  

 

Figure 9 and Figure 10 show the evolution of solar PV panels and battery adoption, respectively, as a 

function of different years of introducing a CAP when the initial tariff structure was a NET. As can be seen, 

the timing of introduction of a CAP into the system produces different adoption patterns for both solar PV 
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panels and energy storage systems. Higher adoption of integrated solar PV panels and energy storage 

systems was observed when the capacity tariff was introduced early on. If a CAP was introduced in 2022, 

the solar PV adoption increased by 35%, 29%, and 35% compared to cases when no CAP was introduced, 

a CAP was introduced in 2027, and a CAP was introduced in 2032, respectively. Furthermore, battery 

adoption was 13 times higher than that adopted when a CAP was introduced in 2027. If a CAP is introduced 

in 2032, it was observed little adoption of energy storage systems. These adoption patterns are due to two 

factors: first, an early introduction of a CAP discourages the adoption of solar panels and battery energy 

storage systems in the short-term because both PV and battery costs are still high; Second, if a CAP is 

introduced late, it is very likely that most residential consumers have already adopted solar PV panels 

without an energy storage system under a NET, leaving little room for further adoption of DERs under a 

CAP8.  

  

 

Figure 9. Evolution of the PV installed capacity as a function of the year of introduction of a CAP. The initial tariff 

structure is a NET. Solid lines represent median values, the shaded areas represent the 90 confidence interval. 

                                                           
8 An important assumption is that all investment needs to take place at once, so prosumers with PV cannot at a later 

stage invest in batteries.  
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Figure 10. Evolution of the battery installed capacity as a function of the year of introduction of a CAP. The initial 

tariff structure is a NET. Solid lines represent median values, the shaded areas represent the 90 confidence interval 

by colors. 

 

4. Discussion 

The first question in this study sought to provide insights into the influence of both peer effects and 

distribution tariff structures on the adoption of integrated photovoltaic and battery energy storage systems, 

as well as on the utility death spiral. Our results show that, under the assumptions of our test case, moving 

away from a decision making based solely on economic factors, has a significant influence on DERs 

adoption patterns. When residential consumers’ decision-making regarding DERs adoption was modeled 

taking into account economic factors and the influence of peer effects, the rate of adoption was slower than 

that obtained when only economic factors are taking into account in the adoption decision-making model. 

These results suggest that the presence of non-economic factors in the decision making process, such as 

peer effects, is the rate-limiting step in the early stages of the adoption process. Thus, the creation of 

mechanisms enhancing the influence of peer effects on the adoption process may accelerate this process, 

especially in the short-term. One potential mechanism is word-of-mouth communication, which can occur 

through different communication channels such as face-to-face conversations, organization of group 

meetings, and online discussion platforms. Although this finding follows directly from how adoption 

decisions were modeled for residential consumers (see Equation 1), this finding is in line with empirical 

evidence that suggests that peer to peer communications reduce barriers to PV adoption [40]. Another 
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important finding was that tariff structures and peer effects lead to different patterns in the adoption of 

integrated photovoltaic and battery energy storage systems. This finding is in line with that of Borenstein 

who found that the residential tariff design can influence households’ solar PV adoption [41]. This finding 

is also consistent with Gautier and Jacqmin who found that higher tariffs under NET do not lead to 

investments in larger solar PV panels [42].  

Regardless of the influence of peer effects on the investment decision-making, we found that under a CAP, 

the adoption of DERs is higher in the long-term than that obtained under the other distribution tariffs, 

despite weakening residential consumers’ incentive to adopt DERs in the short-term. Nevertheless, it is 

worth noting that this insight is contingent on the cost structure used in the distribution tariff structures, for 

instance, allowing residential consumers to sell excess electricity under a NET may increase the adoption 

of PV under this distribution tariff structure. Also important here is the assumed evolution of PV cost and 

the single electricity prices (that applies both for buying from and selling to the grid). 

We also found that, under the assumptions of our test case, a NET may lead to a spiral of the distribution 

tariff because of the increase of the distribution tariff over time. If the increase in the distribution tariff is 

borne by the households that do not install solar panels, then a NET may also lead to substantial 

distributional concerns. This finding is consistent with that of de Villena et al. and Lu and Waddams who 

observed a tradeoff between the distribution price spiral and the desired PV and battery adoption for a 

volumetric-based tariff [26], [43]. By contrast, a tradeoff between the distribution price spiral and the 

deployment of solar PV panels and battery in the long-term was not found for a CAP. Finally, we found 

that peer effects have no significant effect on the utility death spiral.  

The second question in this study sought to provide insights into the influence of the change in distribution 

tariff structure, from volumetric-based to capacity-based, over specific time periods on the adoption of 

integrated photovoltaic and battery energy storage systems. With respect to this research question, we found 

the formation of a lock-in effect. That is, a late introduction of a CAP has no significant effect on the 

adoption patterns of DERs as most residential consumers have already adopted solar PV panels without an 

energy storage system under a NET.  

Admittedly, this study has several limitations. First, residential customers were assumed to be myopic. That 

is, these actors were unaware of potential developments of electricity prices when assessing the economic 

viability of adopting DERs. Taking into account these developments and their inherent uncertainty is an 

important issue that will be addressed in future research by using prospect theory [44], [45]. Second, since 

the aim of this study is to investigate the influence of peer effects on the adoption of DERs, the analysis of 

the impact of interest rate on DERs adoption was left aside. Nevertheless, several techno-economic studies 
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stress the importance of interest rates on the long-term capital cost of energy systems [46]. Therefore, it is 

of interest to study the impact of intertemporal choice on DERs adoption under different distribution tariff 

structures. Third, this study neglects the feedback loop describing a shift in wholesale electricity prices 

driven by high PV penetration, and assumes buying from and selling electricity to the grid can happen at a 

same single price, which increases over time. To develop a full picture of the distribution tariff spiral, 

additional studies are needed that take into account this feedback loop and provide a more realistic 

description of households’ investment decision making. Fourth, this study also neglects transactive energy 

systems enabling both network operators to control and manage the rate of consumption/generation of 

residential consumers, and consumers to bid and offer for transacting energy in a P2P market [47], [48]. 

These systems might influence adoption patterns to some extent. Thus, future work should study the effect 

of transactive energy systems on the adoption of distributed energy resources. Fifth, the formation of social 

networks is based on the income level and not on spatial proximity. Nevertheless, solid empirical evidence 

demonstrate that peer effects are stronger the closer solar PV panels are to each other in space [49], [50]. 

Sixth, some model parameters, such as electricity demand and PV load factors, are context-specific9. Thus, 

future work should examine and apply this model to other contexts to see if patterns found in this study, 

both for DERs adoption and for the upward spiral of distribution prices, are still observable. Finally, the 

results obtained in this study suggest that much of the uncertainty stems from the incorporation of peer 

effects into the decision-making model. Therefore, a further study with more focus on the understanding of 

the formation of social networks at the neighborhood level is suggested.  

Yet, this study provides new insights into role of both peer effects and distribution tariff structures on the 

residential consumers’ DERs adoption. These insights can assist policymakers in designing distribution 

tariff structures by shedding light on the trade-off between DERs adoption and utility death spiral, as well 

as how this trade-off is shaped by residential consumers’ behavioral factors.  

 

5. Conclusions 

An agent-based model has been developed to analyze the influence of peer effects and distribution tariff 

structures on both the adoption of Distributed Energy Resources (DERs) at the household level and the 

utility death spiral. The results highlight the importance of considering the interaction of institutional, 

economic, and social factors in the analysis of the technological adoption phenomenon. The main insights 

are summarized as follows:  

                                                           
9 Context specific refers to the immediate physical and social environment wherein people live and the technologies 

are designed, adopted, and operated 
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The creation of channels of communication enhancing the influence of peer effects on the adoption 

process may significantly accelerate DERs adoption in the short-term. Our results show that the 

presence of non-economic factors in decision making, such as peer effects, is the rate-limiting step in the 

adoption process in the short-term. This can be explained as follows: if there a few adopters in the system, 

as is the case in the early stages of the adoption process, risk-averse adopters are unlikely to adopt DERs, 

as they base their adoption decision not only on economic parameters, but also largely on observations on 

the adoption behavior of their neighbors. Hence, creating mechanisms that encourage interpersonal 

communication among residential consumers may help more risk-averse consumers redefine their attitudes 

about the benefits and costs of adopting DERs. Such interpersonal communication may be particularly 

important in accelerating the adoption of DERs in the short-term. 

Distribution tariff structures and their timing of introduction into the system can influence DERs 

adoption patterns and the utility death spiral. Our results show that different patterns of DERs adoption 

are obtained under different distribution tariffs and under a different timing of their introduction into the 

system. Differences in adoption patterns are due to the underlying cost structures of distribution tariffs. For 

instance, distribution tariff structures allowing net excess electricity to be sold, such as the annual maximum 

offtake capacity tariff (CAP), encourage the adoption of large PV sizes used in this study, given the assumed 

PV cost and electricity price. Our results also show that a utility death spiral is more likely to occur with an 

annual net-volumetric distribution tariff (NET). For instance, the increase in distribution cost with a NET 

was ten percentage points higher than that obtained with a CAP. 

From a methodological viewpoint, our study applies a number of key enhancements to prior studies. First, 

it endogenously considers the interplay between the DERs adoption and distribution tariff evolution, as 

well as the interplay between residential consumers and prosumers. Second, it incorporates the effect of 

social and attitudinal components into residential consumers’ decision-making on DERs adoption. Previous 

studies only focus on one of these elements. Furthermore, this study provides evidence of how a system 

thinking approach in combination with agent-based modeling provide further insights into the households 

DERs adoption, which are inaccessible by using other modeling techniques such as optimization and 

equilibrium modeling  (e.g., path dependency analysis). Given the complexities of an electricity system 

where the consumer is at the center, we recommend that regulators and distribution system operators adopt 

a whole system approach to managing the electricity system. 

Finally, a further step in this research would be the incorporation of elements of risk and loss aversion in 

investment decision making, as well as the analysis of intertemporal choice. Particularly, it is of interest to 

extend the model developed in this study by including elements of prospect theory.  
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Appendix A: Techno-economic data  

 

This appendix describes the techno-economic data used in the simulations. Table A.1 presents the 

representative days and their weights used in this study. These representative days were calculated by using 

the method developed by Poncelet et al. [39]. Table A2. presents the load factor10 for each representative 

day. Table A3. presents the synthetic load profile used in this study. Consumers’ hourly demand was 

calculated by multiplying the synthetic load profile with the annual electricity consumption. Finally, Table 

A.4. presents the cost projections for solar PV panels and battery storage systems used in this study. 

 

Table A1. Representative days weights 

Periods Weights 

p033 44.96 

p065 45.04 

p094 33.31 

p121 27.30 

p179 32.71 

p236 39.17 

p245 34.28 

p263 38.68 

p294 12.68 

p303 23.44 

p358 12.27 

p365 21.18 

 

                                                           
10 The load factor represents the percentage of the installed solar PV system capacity that is available for production 

at hour t 
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Table A2. Load factor 

Hour 
Load factora 

p033 p065 p094 p121 p179 p236 p245 p263 p294 p303 p358 p365 

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7 0.00 0.00 0.00 0.07 0.12 0.01 0.03 0.01 0.00 0.00 0.00 0.00 

8 0.00 0.01 0.03 0.17 0.27 0.10 0.14 0.08 0.01 0.00 0.00 0.00 

9 0.00 0.05 0.13 0.31 0.43 0.26 0.31 0.22 0.10 0.02 0.00 0.00 

10 0.03 0.12 0.23 0.41 0.57 0.40 0.47 0.33 0.24 0.04 0.01 0.01 

11 0.04 0.24 0.21 0.50 0.67 0.50 0.59 0.39 0.34 0.06 0.04 0.04 

12 0.05 0.34 0.23 0.58 0.72 0.54 0.65 0.46 0.37 0.06 0.08 0.05 

13 0.12 0.37 0.28 0.60 0.71 0.51 0.64 0.55 0.41 0.06 0.12 0.09 

14 0.16 0.32 0.28 0.61 0.67 0.44 0.63 0.57 0.41 0.05 0.12 0.09 

15 0.14 0.25 0.24 0.56 0.62 0.39 0.57 0.48 0.33 0.04 0.09 0.06 

16 0.12 0.17 0.28 0.42 0.53 0.32 0.45 0.35 0.22 0.02 0.04 0.03 

17 0.05 0.11 0.06 0.32 0.42 0.24 0.32 0.19 0.08 0.00 0.00 0.00 

18 0.00 0.04 0.13 0.19 0.30 0.15 0.17 0.07 0.01 0.00 0.00 0.00 

19 0.00 0.00 0.04 0.08 0.16 0.07 0.05 0.01 0.00 0.00 0.00 0.00 

20 0.00 0.00 0.00 0.02 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

21 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
a Values were obtained from Elia [51] 
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Table A3. Synthetic load profile 

Hour 
Synthetic load profile * 1e5a 

p033 p065 p094 p121 p179 p236 p245 p263 p294 p303 p358 p365 

1 9.22 8.90 7.39 7.65 7.31 7.51 7.75 7.25 7.87 8.40 9.64 9.62 

2 7.88 7.61 6.78 6.94 6.80 7.06 7.14 6.74 7.15 7.23 8.11 8.18 

3 7.26 7.01 6.35 6.39 6.45 6.68 6.62 6.34 6.53 6.71 7.39 7.31 

4 6.73 6.54 6.31 6.12 6.20 6.37 6.20 6.16 6.22 6.27 6.77 6.74 

5 6.81 6.57 6.82 6.27 6.63 6.62 6.22 6.60 6.21 6.22 6.77 6.64 

6 7.35 7.11 8.80 6.89 7.87 7.38 6.57 8.14 6.72 6.72 6.82 6.67 

7 9.87 9.45 11.21 8.03 9.56 8.61 7.86 10.30 8.40 8.76 7.80 7.38 

8 13.26 12.23 12.06 10.12 10.07 9.80 10.21 10.86 11.38 11.33 10.12 9.31 

9 14.18 13.07 11.92 11.80 9.98 10.13 11.82 10.68 13.49 12.07 14.20 13.53 

10 13.94 12.91 11.84 12.71 10.10 10.31 13.01 10.64 14.72 11.97 16.31 15.86 

11 13.65 12.76 12.83 14.01 11.00 11.16 14.41 11.44 16.28 11.86 16.74 16.43 

12 14.41 13.65 12.56 13.87 10.72 11.00 14.43 11.03 16.28 12.67 17.62 17.54 

13 13.99 13.06 11.58 12.64 10.08 10.50 13.20 10.28 14.82 12.09 17.76 17.42 

14 12.95 12.00 11.00 11.60 9.47 9.99 12.14 9.70 13.65 11.12 17.22 16.69 

15 12.53 11.55 11.08 11.23 9.30 9.96 11.42 9.66 13.01 10.67 17.27 17.00 

16 12.84 11.79 11.91 11.41 10.02 10.43 11.22 10.54 12.86 10.84 18.47 17.66 

17 14.09 13.08 13.76 12.60 11.81 11.53 12.22 12.34 13.82 12.01 20.50 19.12 

18 17.08 15.32 15.12 13.70 13.02 12.30 13.35 13.63 15.95 16.09 23.24 22.31 

19 19.88 18.03 14.92 13.73 13.20 12.20 13.73 14.19 17.69 18.34 22.45 22.59 

20 19.06 19.06 15.70 13.31 12.81 12.18 14.50 15.02 16.71 17.99 20.27 19.63 

21 17.62 17.59 15.20 13.98 12.54 12.65 14.21 14.01 15.22 16.54 19.10 18.21 

22 16.17 16.06 13.64 12.70 12.28 11.87 12.20 12.65 13.05 15.13 17.83 16.93 

23 14.78 14.42 10.94 10.29 10.24 10.43 9.86 10.37 10.25 13.51 16.49 15.57 

24 12.12 11.42 8.72 8.46 8.45 8.99 8.11 8.43 8.18 10.69 14.46 13.91 
a Values were obtained from [52] 
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Table A4. Solar PV panels and battery costs 

Year 
Solar panel investment costa Battery Investment costb 

[€/kW] [€/kWh] 

2018 1 033 322.03 

2019 1 016 300.85 

2020 1 000 279.66 

2021 980 265.25 

2022 960 251.69 

2023 940 237.29 

2024 920 223.73 

2025 900 210.17 

2026 880 203.39 

2027 860 196.61 

2028 840 189.83 

2029 820 182.20 

2030 800 175.42 

2031 800 173.73 

2032 800 171.19 

2033 800 169.49 

2034 800 166.95 

2035 800 164.41 

2036 800 162.71 

2037 800 160.17 

2038 800 158.47 

2039 800 155.93 

2040 800 154.24 

2041 800 151.69 

2042 800 149.15 

2043 800 147.46 

2044 800 144.92 

2045 800 143.22 

2046 800 140.68 

2047 800 138.14 

2048 800 136.44 

2049 800 133.90 

2050 800 133.90 
a These values were estimated based on that reported by [53] by using linear interpolation. 
b These values were retrieved from [54]. An exchange rate of 1.18 was used to convert from euro to dollars. 
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Appendix B. Operational optimization of an integrated photovoltaic and battery energy storage 

system 

 

This optimization problem is described in detail below: 

                                                     𝑚𝑖𝑛𝛯 (∑ (𝑝𝑡 ∙ 𝑞𝑡) + 𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡
8760
𝑡=1 )                                                      (B.1) 

 

Subject to: 

                                                       ∀𝑡: 𝑞𝑡 = 𝑐ℎ𝑡 − 𝑑𝑐𝑡 − 𝑝𝑣𝑡 + 𝑑𝑡                                                                   (B.1a) 

                                                      

                                                                          ∀𝑡: 𝑝𝑣𝑡 ≤ 𝑃𝑉𝑡                                                                                              (B.1b) 

 

                                                                                        ∀𝑡: 𝑒𝐵𝐴𝑇𝑡  ≥ 𝐸𝐵𝐴𝑇
𝑚𝑖𝑛

                                                                               (B.1c) 

                                                                         

                                                                       ∀𝑡: 𝑒𝐵𝐴𝑇𝑡  ≤ 𝐸𝐵𝐴𝑇
𝑚𝑎𝑥

                                                                               (B.1d)                                                                        

 

                                          𝑡 = 1: 23: 𝑒𝐵𝐴𝑇𝑡+1 = 𝑒𝐵𝐴𝑇𝑡 + 𝑐ℎ𝑡 ∙ 𝜂𝑐ℎ − 𝑑𝑐𝑡 ∙
1

𝜂𝑑𝑐
                                                 (B.1e) 

                                           

                                               𝑡 = 24: 𝑒𝐵𝐴𝑇1 = 𝑒𝐵𝐴𝑇𝑡 + 𝑐ℎ𝑡 ∙ 𝜂𝑐ℎ − 𝑑𝑐𝑡 ∙
1

𝜂𝑑𝑐
                                                           (B.1f) 

                                                

                                                                     ∀𝑡: 𝑐ℎ𝑡 ∙ 𝜂𝑐ℎ ≤ 𝑃𝐵𝐴𝑇
𝑐ℎ                                                                                       (B.1g) 

                                                                       

                                                                     ∀𝑡: 𝑑𝑐𝑡 ∙
1

𝜂𝑑𝑐
  ≤ 𝑃𝐵𝐴𝑇

𝑑𝑐                                                                                      (B.1h)                                                                       

 

                                                                             ∀𝑡: 𝑐ℎ𝑡 ≥ 0                                                                                      (B.1i) 

                                                                              

                                                                            ∀𝑡: 𝑑𝑐𝑡 ≥ 0                                                                                       (B.1j) 

                                                                              

                                                                            ∀𝑡: 𝑝𝑣𝑡 ≥ 0                                                                                       (B.1k) 

                                                                              

The decision variables Ξ are: the resulting net demand 𝑞𝑡, the power production by PV panels 𝑝𝑣𝑡, the 

power drawn from grid to charge battery 𝑐ℎ𝑡, the power provided to the grid from battery 𝑑𝑐𝑡, the battery 

energy content 𝑒𝐵𝐴𝑇𝑡 and the distribution tariff structure parameters 𝑞𝑛𝑒𝑡 , 𝑞𝑝𝑜𝑠,𝑡, 𝑞𝑏𝑖,𝑡, 𝑞𝑐𝑎𝑝, and 𝑞𝑐𝑎𝑏𝑖. 

The other parameters are defined as follows: 𝑑𝑡 is the residential consumer demand, pt is the wholesale 
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price, 𝑃𝑉𝑡 is the maximum power production of PV panels; 𝐸𝐵𝐴𝑇
𝑚𝑖𝑛 and 𝐸𝐵𝐴𝑇

𝑚𝑎𝑥are the minimum and maximum 

energy content of the battery, respectively; 𝜂𝑐ℎ and ηdc are the battery charging and discharging efficiency, 

respectively; P𝐵𝐴𝑇
ch  and P𝐵𝐴𝑇

dc  are the maximum battery charging and discharging power, respectively. The 

subscript t represents the hour t.  

 

The optimization problem is subject to constraints describing the operating limits of the DERs. Equation 

B.1a guarantees an energy balance. Constraint B.1b limits the PV production to the time-dependent 

maximum available PV power. Constraint B.1c and Constraint B.1d limit the energy content of the battery 

to a min and a max value, respectively. Constraint B.1e describes the evolution of the battery energy content 

during the day. Constraint B.1f imposes cyclical boundary conditions for the battery. That is, the battery 

energy content at the start of the day must be equal to the one at the end of the same day. These boundary 

conditions facilitates the use of representative days. Constraint B.1g and Constraint B1.h limit the battery 

charging and discharging power, respectively. Finally, Constraints B1.i-B1.k enforce the nonnegativity of 

𝑐ℎ𝑡, 𝑑𝑐𝑡, and 𝑝𝑣𝑡. Note that in this linear optimization problem, we use battery charge and discharge 

efficiency values of less than one to ensure that battery charge and discharge do not occur at the same time. 

Under these conditions, charging and discharging the battery at the same time is not cost-effective as it 

produces more losses (see constraint B.1e and B.1f). Thus, the cost-minimization problem either charges 

or discharges the battery at a given time. Nevertheless, if curtailment of PV generation comes at a cost, 

which is not the case in this study, the charging and discharging of the battery can occur at the same time. 

In this case, the linear optimization problem must be formulated as a MILP to ensure that battery charging 

and discharging do not occur simultaneously11.  

 

The available PV power is calculated as the product of the installed capacity 𝑃𝑉 and the load factor 𝐿𝐹𝑝𝑣𝑡 

 

                                                                𝑃𝑉𝑡 = 𝑃𝑉 ∙ 𝐿𝐹𝑝𝑣𝑡                                                                          (B.2) 

                                                                  

The charging and discharging limits of the battery as calculated as follows: 

 

                                                P𝐵𝐴𝑇
ch = P𝐵𝐴𝑇

dc = 𝐶𝑅 ∙ (𝐸𝐵𝐴𝑇
𝑚𝑎𝑥 − 𝐸𝐵𝐴𝑇

𝑚𝑖𝑛)                                                    (B.3) 

                                                 

                                                           
11 A future version of the model will use a Mixed Integer Linear Programming problem formulation to ensure that 

battery charging and discharging do not occur at the same time under any circumstance. 
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The distribution tariff structure parameters are used to calculate distcost in Equation B.1 according to the 

distribution tariff as shown below: 

 For an annual net-volumetric distribution tariff the distribution cost is calculated as: 

 

                                                           𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑛𝑒𝑡 ∙ 𝑞𝑛𝑒𝑡                                                                           (B.4) 

                                                                  

Subject to: 

                                                                    𝑞𝑛𝑒𝑡 ≥  ∑ qt𝑡                                                                                (B.4a)                                                                     

                                                                                 𝑞𝑛𝑒𝑡 ≥ 0                                                                                    (B.4b) 

 

 For the hourly offtake volumetric distribution tariff the distribution cost is calculated as: 

 

                                                      𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡 ∙ 𝑞𝑝𝑜𝑠,𝑡𝑡                                                                       (B.5)                                                            

Subject to: 

                                                                  ∀𝑡: 𝑞𝑝𝑜𝑠,𝑡 ≥ 𝑞𝑡                                                                                     (B.5a)                                                                           

                                                                          ∀𝑡: 𝑞𝑝𝑜𝑠,𝑡 ≥ 0                                                                                     (B.5b) 

                                                                            

 For the hourly bidirectional volumetric distribution tariff the distribution cost is calculated as: 

 

                                                        𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑏𝑖,𝑡 ∙ 𝑞𝑏𝑖,𝑡𝑡                                                                         (B.6) 
                                                                

Subject to: 

                                                                   ∀𝑡: 𝑞𝑏𝑖,𝑡 ≥ 𝑞𝑡                                                                                      (B.6a) 

                                                                            

                                                                          ∀𝑡: 𝑞𝑏𝑖,𝑡 ≥ −𝑞𝑡                                                                                   (B.6b)                                                                           

 

 For the annual maximum offtake capacity tariff the distribution cost is calculated as:       

 

                                                        𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑐𝑎𝑝 ∙ 𝑞𝑐𝑎𝑝𝑡                                                                          (B.7) 
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                                                                          ∀𝑡: 𝑞𝑐𝑎𝑝 ≥ 𝑞𝑡                                                                      (B.7a) 

                                                                            

                                                                              𝑞𝑐𝑎𝑝 ≥ 0                                                                                                    (B.7b) 

                                                                                

 For the annual maximum bidirectional capacity tariff the distribution cost is calculated as:  

 

                                                       𝑑𝑖𝑠𝑡𝑐𝑜𝑠𝑡 = ∑ 𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖 ∙ 𝑞𝑐𝑎𝑏𝑖𝑡                                                                         (B.8)                                                              

Subject to: 

                                                                   ∀𝑡: 𝑞𝑐𝑎𝑏𝑖 ≥ 𝑞𝑡                                                                                      (B.8a) 

                                                                           

                                                                        ∀𝑡: 𝑞𝑐𝑎𝑏𝑖 ≥ −𝑞𝑡                                                                                   (B.8b) 

                                                                         

Where 𝑑𝑖𝑠𝑡𝑛𝑒𝑡, 𝑑𝑖𝑠𝑡𝑝𝑜𝑠,𝑡, 𝑑𝑖𝑠𝑡𝑏𝑖,𝑡, 𝑑𝑖𝑠𝑡𝑐𝑎𝑝, and 𝑑𝑖𝑠𝑡𝑐𝑎𝑏𝑖 are the net volumetric distribution tariff, the 

distribution tariff on hourly offtake energy, the distribution tariff on net hourly bidirectional energy flow, 

the offtake capacity distribution tariff, and the bidirectional capacity distribution tariff, respectively. 
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