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Summary paragraph 32 

Following the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the 33 

virus starting late summer that was deadlier and more difficult to contain 1. Relaxed intervention 34 

measures and summer travel have been implicated as drivers of the second wave 2. Here, we build a 35 

phylogeographic model to evaluate how newly introduced lineages, as opposed to the rekindling of 36 

persistent lineages, contributed to the COVID-19 resurgence in Europe. We inform this model using 37 

genomic, mobility and epidemiological data from 10 European countries and estimate that in many 38 

countries over half of the lineages circulating in late summer resulted from new introductions since June 39 

15th. The success in onward transmission of newly introduced lineages was negatively associated with 40 

local COVID-19 incidence during this period. The pervasive spread of variants in summer 2020 highlights 41 

the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered by 42 

strategies to control the current spread of variants that are more transmissible and/or evade immunity. 43 

Our findings indicate that more effective and coordinated measures are required to contain spread 44 

through cross-border travel even as vaccination is reducing disease burden. 45 

 46 
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Upon successfully curbing transmission in spring 2020, many European countries witnessed a resurgence 48 

in COVID-19 cases in late summer. The number of COVID-19 infections increased rapidly, and by the end 49 

of October, it was clear that the continent was deep into a second epidemic wave. This forced 50 

governments to reimpose lockdowns and social restrictions in an effort to contain the resurgence. While 51 

these measures reduced infection rates across Europe 3, several countries witnessed a stabilization at high 52 

levels or even a new surge in infections. The spread of more transmissible variants, in particular B.1.1.7 53 

(alpha variant or 20I/501Y.V1 4), which was first identified in the United Kingdom (UK), has considerably 54 

exacerbated the challenge to contain COVID-19. 55 

 56 

Already early on in the pandemic, modelling studies warned about new waves due to partial relaxation of 57 

restrictions 5 or seasonal variations 6. By mid-April, the European Commission constructed a roadmap to 58 

lifting coronavirus containment measures 7, recommending a cautious and coordinated manner to revive 59 

social and economic activities. However, the early start of the devastating second wave demonstrated 60 

that there was insufficient adherence to these measured recommendations. Cross-border travel, and 61 

mass tourism in particular, has been implicated as a major instigator of the second wave. Genomic 62 

surveillance demonstrated that a new variant (lineage B.1.177 8, 20E (EU1) [nextstrain.org]), which 63 

emerged in Spain in early summer, has spread to multiple locations in Europe 2. While this variant quickly 64 

grew into the dominant circulating SARS-CoV-2 strain in several countries, it did not appear to be 65 

associated with a higher intrinsic transmissibility 2. 66 

 67 

Although it appears clear that travel considerably contributed to the second wave in Europe, it remains 68 

challenging to assess how it may have restructured and reignited the epidemic in the different European 69 

countries. Even without resuming travel, relaxing containment measures when low-level transmission is 70 

ongoing risks the proliferation of locally circulating strains. Phylodynamic analyses may provide insights 71 

into the relative importance of persistence versus the introduction of new lineages, but such analyses are 72 

complicated for SARS-CoV-2 for different reasons. Phylogenetic reconstructions may be poorly resolved 73 

due to the relatively limited SARS-CoV-2 sequence diversity 9. This is further confounded by the degree of 74 

genetic mixing that can be expected from unrestricted travel prior to the lockdowns in spring 2020.  75 

 76 

Mobility data predicts SARS-CoV-2 spread 77 

We analysed SARS-CoV-2 B.1 (20A) genomes from 10 European countries for which a minimal number of 78 

genomes from the second wave were already available on 3 November, 2020. Using a two-step procedure 79 

that relied on subsampling relative to country-specific case counts (see Methods), we compiled a data set 80 

of close to 4,000 genomes sampled between 29 January and 31 October, 2020 (Extended Data Table 1). 81 

In order to achieve maximum resolution in our evolutionary reconstructions, we constructed a Bayesian 82 

time-measured phylogeographic model that integrates mobility and epidemiological data. Our approach 83 

simultaneously infers phylogenetic history and ancestral movement throughout this history while also 84 

identifying the drivers of spatial spread 10. We used the latter functionality to determine the most 85 

appropriate mobility or connectivity measure. Specifically, we considered international air transportation 86 

data, the Google COVID-19 Aggregated Mobility Research Dataset (also referred to here as ‘mobility data’ 87 

for short), as well as Facebook's Social Connectedness Index (SCI), as covariates of phylogeographic spread 88 

(Extended Data Fig. 1). The Google mobility data contains anonymized mobility flows aggregated over 89 

users who have turned on the Location History setting, which is off by default (cfr. Methods). The Social 90 

Connectedness Index reflects the structure of social networks and has been suggested to correlate with 91 



the geographic spread of COVID-19 11. To help inform the phylogenetic coalescent time distribution, we 92 

parameterized the viral population size trajectories through time as a function of epidemiological case 93 

count data for the countries under investigation. 94 

 95 

Analyses using both time-homogeneous and time-inhomogeneous models offered strong support for 96 

mobility data as a predictor of spatial diffusion whereas air transportation data and SCI offered no 97 

predictive value (Extended Data Table 2). The fact that mobility data encompassing both air and land-98 

based transport are required to explain COVID-19 spread highlights the need to consider both types of 99 

transport in containment strategies. To ensure that containment strategies were accommodated by our 100 

reconstructions, we further extended our time-inhomogeneous approach to model bi-weekly variation in 101 

the overall rate of spread between countries as a function of mobility (see Methods, Extended Data Table 102 

2). 103 

 104 

Dynamic viral transmission through time 105 

We use our probabilistic model of spatial spread informed by genomic data, mobility and epidemiological 106 

data to characterize the dynamics of spread throughout the epidemic in Europe. We first focus on the 107 

ratio of introductions over the total viral flow in and out of each country over time and the genetic 108 

structure of country-specific transmission chains (Fig. 1). For the latter, we use a normalized entropy 109 

measure that quantifies the degree of phylogenetic interspersion of country-specific transmission chains 110 

in the SARS-CoV-2 phylogeny (see Methods). Although estimates for individual dispersal between pairs of 111 

countries can also be obtained (Extended Data Fig. 2), we remain cautious in interpreting these as direct 112 

pathways of spread because the genome sampling only covers a restricted set of European countries. The 113 

mobility to and from each country within our 10-country sample covers between 64% and 96% of the 114 

mobility of these countries to/from all countries within Europe (Extended Data Table 3, Extended Data 115 

Figure 3), except for Norway (27%), for which other Scandinavian countries account for considerable 116 

mobility connections (61%), and the UK (49%), for which Ireland accounts for a large fraction of mobility 117 

connections (38%). 118 

 119 

According to the proportion of introductions, we estimate more viral import than export events for 120 

Switzerland, Norway, the Netherlands and Belgium throughout most of the time period under 121 

investigation. According to the estimated phylogenetic entropy, these countries also experienced many 122 

independent transmission chains since the epidemic started to unfold. This is consistent with country-123 

specific studies; for the first wave in Belgium for example, about 331 individual introductions were 124 

estimated in the ancestry of a limited sample of 740 genomes 12. For Portugal, we also estimate higher 125 

proportions of introductions early in the first wave but with a subsequent decline to predominantly export 126 

events. France, Italy and Spain on the other hand are characterized by a relatively high viral export during 127 

the first wave. The proportion of introductions remained relatively low for Italy and Spain following the 128 

first wave, while in France these proportions were high from mid-June until the end of July. The absolute 129 

number of transitions in our sample are however low during this time period. These countries also had 130 

comparatively lower entropy values early in the epidemic, with an increase for France by the start of 131 

summer and a more gradual increase over time for Italy. In Spain however, the genetic complexity of 132 

SARS-CoV-2 transmission chains remained limited. In the UK and Germany, the viral flow in and out of the 133 

country was initially relatively balanced. A recent large-scale genomic analysis in the UK indicates that this 134 

can imply very high absolute numbers of cross-country transmissions, as more than 2,800 independent 135 



introduction events were identified from the analysis of 26,181 genomes 13. Although our sample is limited 136 

compared to this UK-focused analysis, our reconstructions also recover major influx from Spain, France 137 

and Italy during the first wave in the UK (Extended Data Fig. 2). We estimate an increase in the proportion 138 

of introductions for the UK from mid-June, indicating an important viral import relative to export around 139 

this time. The phylogenetic entropy also peaked around this time. In Germany, the proportions increased 140 

slightly later in summer with a concomitant rise in phylogenetic entropy. 141 

 142 

Introductions thrive in low incidence 143 

To assess the impact of summer travel on the second wave in the different countries, we use our genomic-144 

mobility reconstruction to estimate both the number of lineages persisting in each country and the 145 

number of newly introduced lineages, and how these proliferated early in the second wave. We focus on 146 

a two-month time period between 15 June 2020 – when many EU and Schengen-area countries opened 147 

their borders to other countries – and 15 August, before which the majority of holiday return travel is 148 

expected for many countries. We identify the number of lineages circulating in each country on 15 August, 149 

and determine whether they result from a lineage that persisted since 15 June or from a unique 150 

introduction after this date (independent of the number of descendants for this lineage on 15 August, 151 

Extended Data Fig. 4). In Fig. 2, we plot (1) the ratio of these unique introductions over the total unique 152 

lineages (unique introductions and persisting lineages1), (2) the proportion of descendant lineages on 153 

August 15th that resulted from the unique introductions over the total descendants circulating on this 154 

date, and (3) the proportion of descendant tips (sampled genomes) after 15 August that resulted from the 155 

unique introductions over the total number of descendant tips (see Methods and Extended Data Fig. 4). 156 

We estimate a posterior mean proportion of unique introductions that is close to or higher than 0.5 except 157 

for Spain and Portugal. This indicates that by 15 August a relatively large fraction of circulating lineages in 158 

each country was spawned by new introductions over summer. Because the B.1.177/20E (EU1) variant 159 

that was predominantly disseminated through summer travel does not appear to be particularly more 160 

transmissible 2, this was unlikely due to strong intrinsic advantages of the newly introduced viruses. 161 

 162 

The two proportions of descendants from these introductions on 15 August and after this date measure 163 

the relative success of newly introduced lineages compared to persisting lineages, indicating considerable 164 

variation in onward transmission. In Fig. 2, the country estimates are ordered according to decreasing 165 

average incidence during the 15 June – 15 August time period, suggesting that incidence may shape the 166 

outcome of the introductions. In countries that experienced relatively high summer incidence (e.g. Spain, 167 

Portugal, Belgium and France), the introductions lead to comparatively fewer descendants on August 15th 168 

or after. We find a significant overall association between incidence and the difference in the logit-scaled 169 

proportion of unique introductions and the logit-scaled proportion of their descendants on August 15th (P 170 

= 0.007) as well as between incidence and the difference in the logit-scaled proportion of unique 171 

introductions and the logit-scaled proportion of descendant tips after August 15th (P = 0.019, Extended 172 

Data Figure 5). With comparatively few descendants from introductions (Fig. 2), Norway may to some 173 

extent be an outlier because lineages estimated as persisting in this country could in fact be introductions 174 

from other Scandinavian countries that are not represented in our genome sample. We recover 175 

qualitatively similar, but more variable and statistically unsupported associations between the success of 176 

introductions and incidence for the two-month time periods before and after the 15 June – 15 August 177 

time period (Extended Data Fig. 5). This indicates that the comparatively higher proportion of 178 



introductions as well as the more stable and lower incidence between 15 June and 15 August provided 179 

the ideal conditions for a process of genetic drift by which introductions were able to fuel transmission. 180 

 181 

Our estimates show that introductions in the UK particularly benefited from the conditions for successful 182 

onward transmission (Fig. 2), with a considerable fraction of introductions originating from Spain 183 

(Extended Data Fig. 6) reflecting the spread of B.1.177/20E (EU1) that rapidly became the most dominant 184 

strain in the UK 2. Our analysis captures the expansion of this variant as well as that of B.1.160/20A.EU2, 185 

which together account for more than 25% of the genomes in our data set. While Spain was indeed 186 

inferred to be the origin of B.1.177/20E (EU1), the UK also considerably contributed to its spread (Fig. 3). 187 

The earliest introduction from Spain to the UK was estimated around the time Spain opened most EU 188 

borders (21 June, Fig. 3). While introductions from Spain to other countries soon followed, we estimate a 189 

similar rate and amount of spread from the UK to other countries before these other countries also further 190 

disseminated the virus. Although inferred from a limited sample, this illustrates a dynamic pattern of 191 

spread and the importance of the early establishment of B.1.177/20E (EU1) in the UK that likely served as 192 

an important secondary center of dissemination. We note however that this pattern may be impacted by 193 

the intensive and continuous genomic surveillance in the UK, which may also be reflected in our 194 

subsample of the available data. While the UK is also involved in the spread of B1.160/20A.EU2, this 195 

variant has been largely disseminated from France. The simple fact that this variant expanded later in 196 

France and subsequently also started to spread later compared to B.1.177/20E (EU1) (Extended Data Fig. 197 

7) may explain why the latter spread more successfully.   198 



Discussion 199 

Our Bayesian phylogeographic approach builds on a rich history of identifying drivers of spatial spread, 200 

with applications to various pathogens at different spatial scales, ranging from air transportation for 201 

influenza at a global scale 10 to gravity model transmission for Ebola in West Africa 14. Such studies use a 202 

relatively limited genomic sample to gain insights into viral transmission dynamics. This is also the case in 203 

our application to SARS-CoV-2 in Europe for which we further extend the phylodynamic data integration 204 

approach to confront the lack of resolution offered by SARS-CoV-2 genomic data. A concerted effort in 205 

containing international spread further sets apart the COVID-19 pandemic from these earlier events. For 206 

this reason, we have now incorporated variation in mobility over time to account for the impact of these 207 

measures. Our reconstructions show that the composition of lineages circulating towards the end of the 208 

summer was to an important extent shaped by introductions in most of the European countries. The 209 

relative success of onward transmission of the introduced lineages appears to be shaped by local COVID-210 

19 incidence during summer. 211 

 212 

Our results should be interpreted in light of several important limitations. In addition to a limited overall 213 

size, the genome data only cover a selection of European countries, implying that we are missing 214 

transmission events that involve unsampled countries. This may be important for Norway for example, 215 

which according to our mobility data, is largely connected to other Scandinavian countries. We also lack 216 

sampling from eastern Europe, which was to a large extent spared by border controls and lockdowns 217 

during the first wave, but witnessed high excess mortality rates during the second wave. The emergence 218 

of more transmissible variants has led to more intensified genomic surveillance, so similar phylodynamic 219 

reconstructions may now be performed on a wider scale. 220 

 221 

The pandemic exit strategy offered by vaccination programs is a source of optimism that also sparked 222 

proposals by EU member states to issue vaccine passports in a bid to revive travel and rekindle the 223 

economy. In addition to implementation challenges and issues of fairness, there are risks associated with 224 

such strategies when immunization is incomplete, as likely will be the case for the European population 225 

this summer. A recent modelling study for the United Kingdom suggests that vaccination in adults alone 226 

is unlikely to completely halt the spread of COVID-19 cases and that lifting containment measures early 227 

and suddenly can lead to a large wave of infections 15. A gradual release of restrictions was shown to be 228 

critical for minimizing the infection burden 15. We believe that travel policies may be a key consideration 229 

in this respect because similar conditions may arise as the ones we demonstrated to provide fertile ground 230 

for viral dissemination and resurgence in 2020. This may now also involve the spread of variants that are 231 

more transmissible and/or evade immune responses triggered by vaccines and previous infections. Well-232 

coordinated European strategies will therefore be required to manage the spread of SARS-CoV-2 and 233 

reduce future waves of infection, with hopefully a more unified implementation than hitherto observed.   234 
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Figures 271 
 272 

 273 
 274 
Figure 1. Mobility, genome sampling, case counts and phylogeographic summaries through time for 10 European 275 
countries.  The first panel summarizes the country-specific Google mobility influx in the 10 countries during two-276 
week intervals, while the second panel depicts the weekly genome sampling by country used in the phylogeographic 277 
analysis. In the remaining panels, we plot for each country the ratio of introductions over the total viral flow from 278 
and to that country (for two-week intervals) and a monthly normalized entropy measure summarizing the 279 
phylogenetic structure of country-specific transmission chains. The posterior mean ratios of introductions are 280 
depicted with circles that have a size proportional to the total number of transitions from and to that country and 281 
the grey surface represents the 95% highest posterior density (HPD) intervals. The posterior mean normalized 282 
entropies and 95% HPD intervals are depicted by dotted lines. These normalized entropy measures indicate how 283 
phylogenetically structured the epidemic is in each country, and ranges from 0 (perfectly structured, e.g., a single 284 
country-specific cluster) to 1 (unstructured interspersion of country-specific sequences across the entire SARS-CoV-285 
2 phylogeny). The introduction ratios and normalized entropy measures are superimposed over COVID-19 incidence 286 
(daily cases/106 people) reported for each country through time (coloured density plot). The two vertical dashed 287 
lines represent the summer time interval (15 June and 15 August, 2020) for which we subsequently evaluate 288 
introductions versus persistence (see Fig. 2). 289 
 290 
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 292 
 293 
Figure 2. Posterior estimates for the relative importance of lineage introduction events in 10 European countries 294 
and their association with incidence. We report three summaries (posterior mean and 95% HPD intervals) for each 295 
country: the ratio of unique introductions over the total number of unique persisting lineages and unique 296 
introductions between 15 June and 15 August, 2020 (p1), the ratio of descendant lineages from these unique 297 
introduction events over the total number of descendants circulating on August 15th, 2020 (p2), and the ratio of 298 
descendant taxa from these unique introductions over the total number of descendant taxa sampled after 15 August, 299 
2020 (p3) (see Extended Data Fig. 4). The dots are numbered and the sizes are proportional to: (1) the total number 300 
of unique lineage introductions identified between 15 June and 15 August, 2020, (2) the total number of lineages 301 
inferred on 15 August, 2020, and (3) the total number of descendant tips after 15 August, 2020. 302 
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 305 
Figure 3. Phylogeographic estimates of SARS-CoV-2 spread in 10 European countries. a, The maximum clade 306 
credibility tree summary of the Bayesian inference. Colours correspond to the countries in the legend. The two clades 307 
corresponding to B1.160/20A.EU2 and B1.177/20E (EU1) are highlighted in grey. b,c, Circular migration flow plots 308 
for for B1.160/20A.EU2 (b) and B1.177/20E (EU1) (c) based on the posterior expectations of the Markov jumps. In 309 
these plots, migration flow out of a particular location starts close to the outer ring and ends with an arrowhead 310 
more distant from the destination location. For B1.177/20E (EU1), we also summarize phylogeographic transitions 311 
as posterior mean estimates with 95% HPD intervals over time for four types of Markov jumps: i) from Spain to the 312 
UK, ii) from Spain to other countries, iii) from the UK, and iv) from other countries. 313 
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Methods 315 

Sequence data and subsampling  316 

We used a two-step genome data collection procedure. We first evaluated the available genomes from 317 

European countries in GISAID 16 on 3 November, 2020. We selected genomes from Belgium, France, 318 

Germany, Italy, Netherlands, Norway, Portugal, Spain, Switzerland and the UK primarily based on the 319 

availability of genome data from both the first and second wave at that time but also because of their 320 

high ratio of genomes to positive cases. A total of 39,812 genomes were available for these countries on 321 

3 November, 2020; the available number of genomes by country are listed in Extended Data Table 1. 322 

Portugal represented an exception because data for this country were limited to the first wave at that 323 

time, but we included genomes from Portugal because of its potential importance as a summer travel 324 

location. 325 

 326 

We aligned the genomes from each country using MAFFT v7.453 17 and trimmed the 5ʹ and 3ʹ ends and 327 

only retained unique sequences from each location. To further mitigate the disparities in sampling, we 328 

subsampled each country proportionally to the cumulative number of cases on October 21st (the most 329 

recently sampled sequence at the time) by setting an arbitrary threshold of 6.5 sequences per 10,000 330 

cases, with a minimum number of 100 sequences per country. To maximize the temporal and spatial 331 

coverage in each country, we binned genomes by epi-week and sampled as evenly as possible, sampling 332 

from a different region within the country when available. Only sequences from the B.1 lineage with the 333 

D614G mutation and exact sampling dates were selected for the analyses. From the final aligned sequence 334 

set, we removed 12 potential outliers, based on a root-to-tip regression applying TempEst v1.5.3 18 to a 335 

maximum-likelihood tree inferred with IQTREE v2.0.3 19, yielding a data set of 2,909 genomes (Extended 336 

Data Table 1). 337 

 338 

Because of the nature of genome sequence accumulation, fewer recently sampled genomes were 339 

available for most countries on 3 November (relative to the case counts at this time). Because our primary 340 

goal was to assess the persistence and introduction of lineages leading up to the second wave, we sought 341 

to augment our data set with more recent genomes, having already performed analyses on the initial data 342 

set. In the section on Bayesian evolutionary reconstructions, we outline how we update these analyses 343 

accordingly. On 5 January, 2021, we updated our dataset by adding over 1,000 non-identical sequences 344 

collected between 1 August and 31 October (out of a total of 56,395 available genomes; the available and 345 

selected number of genomes by country are listed in Extended Data Table 1). For Portugal, we extended 346 

this period back to 22 June (the most recent sampling date for the previous Portuguese selection). We 347 

downloaded all new B.1 sequences with the D614G mutation collected during the selected time period 348 

from GISAID and performed the following subsampling. The number of genomes to add by country was 349 

obtained by raising the threshold ratio of sequences/cases to 8.5 and increasing the minimum number of 350 

sequences to 200. To bias the temporal coverage towards more recent samples, the genomes from each 351 

country were binned by week and sampled such that the number of sequences added by week was 352 

proportional to an exponential function of the form !!/#, where t=0 represents August 1st and t=13 is 353 

October 31st. For Portugal, we did not use this preferential sampling as we needed to include close to all 354 

available genomes to raise the number of genomes to 200. The selected sequences were deduplicated 355 

and outliers were removed as described in the previous paragraph. With the additional selection of 1,050 356 

genomes, we arrived at a data set of 3,959 genomes (Extended Data Table 1). 357 



 358 

Mobility data 359 

We analysed four different mobility and connectivity measures: air traffic flows, a social connectedness 360 

index provided by Facebook, as well as aggregate Facebook 20 and Google international mobility data. Air 361 

traffic flow data were obtained from the International Air Transport Association (http://www.iata.org) 362 

and based on the number of origin-destination tickets while also taking into account connections at 363 

intermediate airports 21. We used monthly air traffic data between the 10 European countries under 364 

investigation for the time period between January 2020 and October 2020. The social connectedness 365 

index (SCI) is an anonymized snapshot of active Facebook users and their friendship networks to measure 366 

the intensity of social connectedness between countries (https://data.humdata.org/) 22. In practice, the 367 

SCI measures the relative probability of a Facebook friendship link between two users of the application 368 

in different countries.  We used the SCI calculated for the 10 European countries represented in our 369 

genomic sample as of August 2020. 370 

 371 

The Google COVID-19 Aggregated Mobility Research Dataset contains anonymized mobility flows 372 

aggregated over users who have turned on the Location History setting (on a range of platforms 23), which 373 

is off by default. To produce this dataset, machine learning is applied to logs data to automatically segment 374 

it into semantic trips 24. To provide strong privacy guarantees, all trips were anonymized and aggregated 375 

using a differentially private mechanism 25 to aggregate flows over time (see 376 

https://policies.google.com/technologies/anonymization). This research was done on the resulting 377 

heavily aggregated and differentially private data. No individual user data was ever manually inspected, 378 

only heavily aggregated flows of large populations were handled. All anonymized trips were processed in 379 

aggregate to extract their origin and destination location and time. For example, if users traveled from 380 

location a to location b within time interval t, the corresponding cell (a, b, t) in the tensor would be n ± η, 381 

where η is Laplacian noise. The automated Laplace mechanism adds random noise drawn from a zero-382 

mean Laplace distribution and yields (", δ)-differential privacy guarantee of " = 0.66 and δ = 2.1 × 10−29 383 

per metric. Specifically, for each week W and each location pair (A,B), we compute the number of unique 384 

users who took a trip from location A to location B during week W. To each of these metrics, we add 385 

Laplace noise from a zero-mean distribution of scale 1/0.66. The parameter " controls the noise intensity 386 

in terms of its variance, while δ represents the deviation from pure "-privacy. The closer they are to zero, 387 

the stronger the privacy guarantees. We used aggregated mobility flows between the 10 European 388 

countries and summarized them by two-week or monthly time periods between January 2020 and 389 

October 2020.  390 

 391 

Finally, we also considered international mobility data from Facebook mobility data as an alternative to 392 

Google mobility data. These data are based on numbers of Facebook users moving over large distances, 393 

like air or train travel. Counts of international travel patterns are updated daily based only on users who 394 

have opted to share precise location data from their device with the Facebook mobile app through 395 

location services. Also in this case, we used aggregated mobility flows between the 10 European countries 396 

and summarized them by month between January 2020 and October 2020. Because international 397 

aggregate mobility data obtained from Google and Facebook are highly correlated (monthly Spearman 398 

correlation ranging from 0.84 to 0.92; Supplementary Figure 1), we only included the Google aggregate 399 

mobility data as a covariate in the phylogeographic analyses. We note that the mobility data are subject 400 



to limitations as these may not be representative for the population as whole and their representativeness 401 

may vary by location. 402 

 403 

Bayesian evolutionary reconstructions 404 

- Joint sequence-trait inference with a time-homogeneous generalized linear model of discrete 405 

trait diffusion 406 

We performed Bayesian evolutionary reconstruction of timed phylogeographic history using BEAST 1.10 407 
26 incorporating genome sequences, their country and date of sampling, epidemiological and mobility 408 

and/or connectivity data. Because of the relatively low degree of resolution offered by the sequence data, 409 

our full probabilistic model specification focuses on i) relatively simple model specifications and ii) 410 

informing parameters by additional non-genetic data sources. We modeled sequence evolution using an 411 

HKY85 nucleotide substitution model with gamma-distributed rate variation among sites and a strict 412 

molecular clock model. Our genome set includes three genomes from an early outbreak in Bavaria, which 413 

was caused by an independent introduction from China 27,28. We therefore constrained these genomes as 414 

an outgroup in the analysis, which according to root-to-tip regression plots as a function of sampling time 415 

resulted in a better correlation coefficient and R2 compared to the best-fitting root under the heuristic 416 

mean residual squared criterion (Supplementary Figure 2) 18.    417 

 418 

As a coalescent tree prior, we modeled the effective population size trajectory as a piecewise constant 419 

function that changes values at pre-specified times (following  29), with log population sizes modelled as a 420 

deterministic function of log COVID-19 case counts (following   30). This reduces the nonparametric skygrid 421 

parameterization to a generalized linear model (GLM) formulation with an estimable regression intercept 422 

(⍺) and coefficient (β). In this parameterization, a coefficient estimate centered around 0 would imply 423 

constant population size dynamics through time.  We specified two-week intervals and summarized as a 424 

covariate the total case counts over these time intervals for the 10 countries of sampling (obtained from 425 

https://www.ecdc.europa.eu/en/covid-19/data). The earliest interval with non-zero cases counts was 426 

from 2020-01-14 to 2020-01-28; before 2020-01-14, the log-transformed and standardized case count 427 

covariate was set to the equivalent of 1 case. We also tested whether a lag-time was required for the case 428 

count covariate using marginal likelihood estimation (MLE) 31. Specifically, we shifted the case counts by 429 

1, 2, 3 and 4 weeks before summarizing them according to two-week intervals and estimated the model 430 

fit of these covariates against case counts without lag time (Supplementary Table 1). To mitigate the 431 

computational burden associated with the MLE procedure, we performed these analyses on a subset of 432 

1,000 genomes (obtained using the Phylogenetic Diversity Analyzer tool 32). We estimated the highest 433 

(log) marginal likelihood for a two-week lag time (Supplementary Table 1) and used this for the case count 434 

covariate in our analyses.   435 

 436 

Similar to sequence evolution, we modelled the process of transitioning through discrete location states 437 

(countries of sampling) according to a continuous-time Markov chain (CTMC) 33. We employed a 438 

parameterization that models the log transition rates as a log linear function of mobility and connectivity 439 

covariates 10. The Bayesian implementation of this model simultaneously estimates phylogenetic history, 440 

ancestral movement and the contribution of covariates to the movement patterns 10. While we mainly 441 

use this approach to obtain well-informed phylodynamic estimates, we also make use of its capacity to 442 

identify the most relevant mobility measure to inform our reconstructions. As covariates we considered 443 



Facebook’s SCI, air transportation data and mobility data. For the two time-variable mobility measures, 444 

we used the average of the log-transformed and standardized monthly mobility measures as a single 445 

covariate in our time-homogeneous phylogeographic GLM model. In this GLM formulation, we estimate 446 

positive effect sizes for each covariate as well as their inclusion probability through a spike-and-slab 447 

procedure 10. Although we subsampled the number of SARS-CoV-2 genomes by country in proportion to 448 

case counts, they do not fully correspond because we used a minimum number of genomes for countries 449 

with low case counts. We therefore evaluated whether this resulted in signal for sampling bias by including 450 

an origin and destination covariate in the GLM based on the residuals for a regression analysis between 451 

genomes and case counts (following 14).  We performed this analysis using a set of empirical trees (see 452 

Time-inhomogeneous reconstructions) applying both a time-homogeneous and time-inhomogeneous 453 

model, but found no support for these additional covariates (Supplementary Table 2). 454 

 455 

We performed inference under the full model specification using Markov chain Monte Carlo (MCMC) 456 

sampling and used the BEAGLE library v3 34 to increase computational performance. We specified 457 

standard transition kernels on all parameters, except for the regression coefficients of the piecewise-458 

constant coalescent GLM model. For these parameters, we implemented new Hamiltonian Monte Carlo 459 

(HMC) transition kernels to improve sampling efficiency. These kernels use principles from Hamiltonian 460 

dynamics and their approximate energy conserving properties to reduce correlation between successive 461 

sampled states, but require computation of the gradient of the model log-posterior with respect to the 462 

parameters of interest, in addition to efficient evaluation of the log-posterior that BEAGLE provides.  To 463 

accomplish this, we extended our previous analytic derivation of the gradient of the log-density from the 464 

skygrid coalescent model with respect to the log-population-sizes 35 to now be with respect to the 465 

regression coefficients using the chain rule and their regression design matrix.  466 

 467 

Due to the data set size, MCMC burn-in takes up considerable computational time. We therefore iterated 468 

through a series of BEAST inferences, initially only considering sequence evolution and subsequently 469 

adding the location data, to arrive at a tree distribution from which trees were taken as starting trees in 470 

our final analyses. The latter was composed of multiple independent MCMC runs that were run sufficiently 471 

long to ensure that their combined posterior samples achieved effective sample sizes (ESSs) larger than 472 

100 for all continuous parameters.    473 

 474 

- Data augmentation through online BEAST  475 

As we updated our dataset following initial analyses of the 2,909 genome collection using the approach 476 

discussed (see Bayesian evolutionary reconstructions), we sought to capitalize on these efforts to limit 477 

the burn-in for subsequent analyses of the 3,959 dataset. Specifically, we adopted the distance-based 478 

procedure to insert new taxa into a time-measured phylogenetic tree sample as implemented in the 479 

BEAST framework for online inference 36. We subsequently use the augmented tree as the starting tree 480 

for the analyses of the updated dataset.   481 

 482 

- Time-inhomogeneous reconstructions 483 

To accommodate the time-variability of the mobility measures, we constructed epoch model extensions 484 

of the discrete phylogeography approach that allow specifying arbitrary intervals over the evolutionary 485 

history and associating them with different model parameterizations 37. As a complement to testing 486 



covariates of spatial diffusion using a time-homogeneous model, we used the epoch extension to specify 487 

monthly intervals allowing us to incorporate monthly mobility matrices (air transportation data were only 488 

available as monthly numbers), but assuming time-homogeneous effect sizes and inclusion probabilities. 489 

Monthly covariates were again log-transformed and standardized after adding a pseudo-count to each 490 

entry in the monthly matrices. 491 

 492 

In addition, we performed another analysis in which we relaxed the constant-through-time inclusion 493 

probability of the covariates. In this model specification, each interval is associated with a specific set of 494 

indicator variables to represent the inclusion/exclusion of covariates, but we pool information about 495 

predictor inclusion across the intervals using hierarchical graph modelling 38. This approach uses a set of 496 

indicator variables to model covariate inclusion at the hierarchical level but allows interval-specific 497 

inclusion or predictors to diverge from the hierarchical level with a non-zero probability (with the number 498 

of differences modelled as a binomial distribution 38), which was set to 0.10 in our case. We estimated 499 

hierarchical and interval-level inclusion using spike-and-slab 38. 500 

 501 

Finally, we performed an analysis using the time-inhomogeneous model in which the interval-specific 502 

transition rates are modelled as a function of the single covariate that is supported by the analyses above 503 

leveraging aggregate mobility. We incorporated more variability through time by specifying two-week 504 

intervals (similar to the coalescent GLM interval specification). In addition, we add time-homogeneous 505 

random effects to the phylogeographic transition rate parameterization in order to account for potential 506 

biases in the ability of mobility to predict phylogeographic spread. While posterior mean estimates for 507 

these random effects vary, only very few indicate that individual phylogeographic transition rates 508 

significantly deviate from the mobility data (Supplementary Figure 3). The time-inhomogeneous GLM 509 

approach we employ allows modelling relative differences in transition rates, but also the overall rate of 510 

migration between countries varies through time, and importantly, this is strongly affected by 511 

intervention strategies. To accommodate these dynamics, we further extended this model by 512 

incorporating a time-inhomogeneous overall CTMC rate scaler and parameterize it as a log linear function 513 

of the total monthly between-country log-transformed and standardized mobility (time-variable rate 514 

scalar GLM in Extended Data Table 2). To generate realisations of the discrete location CTMC process and 515 

obtain estimates of the transitions (Markov jumps) between states under this model, we employed 516 

posterior inference of the complete Markov jump history through time 10,39. 517 

 518 

While the epoch model allows us to flexibly accommodate time-variable spatial dynamics, it considerably 519 

increases the computational burden associated with likelihood evaluations. In order to efficiently draw 520 

inference under this model for our large data set, we fit the time-inhomogeneous spatial diffusion process 521 

to a set of trees inferred under the time-homogeneous GLM diffusion model described above. Although 522 

likelihood evaluations remain computationally expensive, even with the speed-up offered by GPU 523 

computation with BEAGLE, eliminating simultaneous tree estimation tremendously reduces parameter-524 

space, requiring only modest MCMC chain lengths to adequately explore it. Model and inference 525 

specifications for the different analyses are available as BEAST XML input files on GitHub 526 

(https://github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY) and Zenodo 527 

(https://doi.org/10.5281/zenodo.4876442). 528 

 529 

- Posterior Summaries 530 



We assessed MCMC mixing (e.g. using ESSs) and summarized continuous parameter estimates using 531 

Tracer v1.7.1 40. Credible intervals were computed as 95% HPD intervals. Trees were visualized using 532 

FigTree v1.4.4 (available at https://github.com/rambaut/figtree/releases). In terms of phylogeographic 533 

estimates, we mainly focused on i) transitions to each location and from each location (based on Markov 534 

jump estimates) instead of pairwise transitions, ii) ratios of these transitions and iii) how these transitions 535 

structured transmission chains in individual countries. Transitions to each and from each location avoid 536 

drawing conclusions about direct migration between countries, which can be tenuous given the 537 

incomplete genomes coverage of Europe, while their ratios avoid using absolute numbers of transitions, 538 

which are highly sample-dependent. Phylogeographic inference is limited to reconstructing the transitions 539 

in the ancestral history of a sample of sequences, which will only be a small fraction of the actual migration 540 

events especially when these events result in insufficient onward transmission to be captured in our 541 

limited sample. In addition, SARS-CoV-2 genome data can be poorly resolved and identical genomes in 542 

different locations are consistent with hypotheses that involve both a sparse and a rich number of virus 543 

flows between these locations. As the data hold little information to distinguish these hypotheses, we 544 

only consider sparse scenario's by including only unique sequences for each location. A joint inference of 545 

sequence evolution and discrete spatial diffusion would err on the side of sparse hypotheses anyway 546 

because it will tend to cluster identical sequences that share a location. Despite the general 547 

underestimation of spatial dispersal, a phylogeographic inference is still likely to capture the transition 548 

events with important onward transmission, and evaluating the importance of such events relative to 549 

persistence is a major focus of this study. Cryptic transmission also complicates the ability to reconstruct 550 

spatial dispersal, but we expect this to be equally likely for introductions and persistence and therefore 551 

focus on their ratio for each location.  552 

 553 

We provide three new tree sample tools in the BEAST codebase available at https://github.com/beast-554 

dev/beast-mcmc) to obtain posterior summaries of location transition histories using posterior tree 555 

distributions annotated with Markov jumps:  556 

 557 

● TreeMarkovJumpHistoryAnalyzer allows collecting Markov jumps and their timings from a 558 

posterior tree distribution annotated with Markov jumps histories in a .csv file for further 559 

analyses.  560 

 561 

● TreeStateTimeSummarizer decomposes the total tree time into the times associated with 562 

contiguous partitions of a tree estimated to be in a particular location state, with the partitions 563 

determined by the Markov jumps. An arbitrary lower- and upper-time boundary can be specified 564 

to restrict the summary to a particular time interval in the evolutionary history. We use the time 565 

estimates for the separate partitions associated with each state to calculate an entropy measure 566 

that summarizes the genetic make-up of country-specific transmission chains. Specifically, we use 567 

for each location a normalized Shannon entropy: 568 

− $
%&(&)∑ %) 	ln	(%))&

) , (1) 569 

where pi is the proportion of time associated with that location for partition i of a phylogeographic 570 

tree and n represents the number of partitions for that location in the tree. 571 

 572 

● PersistenceSummarizer also uses posterior tree distributions annotated with Markov jumps to 573 

summarize the number of lineages at a particular point in time (evaluation time, Te, see Extended 574 



Figure 5), which location states they are associated with, since what time point in the past they 575 

have maintained that state and how many sampled descendants they have after time Te 576 

(Extended Figure 5). In addition, it allows summarizing how long these lineages have circulated 577 

independently prior to Te, so before sharing common ancestry with other lineages that 578 

maintained the same location state. This information allows us to determine how many lineages 579 

are circulating at Te that stem either from a unique persistent lineage (maintaining the same 580 

location states) or unique introduction event since a particular time prior to Te (Ta in Extended 581 

Figure 5). The association between incidence and the difference in the logit proportion of unique 582 

introductions and the logit proportion of their descendants on August 15th was evaluated using a 583 

p-value obtained by a linear regression analysis. 584 

 585 

Data availability 586 

BEAST XML input files are available at  587 

https://github.com/phylogeography/SARS-CoV-2_EUR_PHYLOGEOGRAPHY (DOI: 588 

10.5281/zenodo.4876442). The SARS-CoV-2 genome data required for running these XML files can be 589 

downloaded from https://www.gisaid.org; all GISAID accession numbers are listed in the GISAID 590 

acknowledgments table (Supplementary Table 3).  591 

The Google COVID-19 Aggregated Mobility Research Dataset and the Facebook mobility data are not 592 

publicly available owing to stringent licensing agreements. Information on the process of requesting 593 

access to the Google mobility data is available from A.S. (sadilekadam@google.com) and the COVID-19 594 

Community Mobility Reports that were derived from the Google data are publicly available at 595 

https://www.google.com/covid19/mobility/. The Facebook mobility data are made available through 596 

the Data for Good program (https://dataforgood.fb.com) under the terms of a data license agreement 597 

which defines the allowed terms of use by partners (contact: disastermaps@fb.com). Once a partner 598 

institution’s request for access is vetted and an appropriate data license agreement is signed, then 599 

access is granted through a Facebook’s web-based spatial visualization tool called GeoInsight. Air travel 600 

data were obtained from the International Air Transport Association (http://www.iata.org). 601 

Log-transformed and standardized among country mobility and air travel data are specified in the 602 

available XML files. COVID-19 incidence data was obtained from https://www.ecdc.europa.eu/en/covid-603 

19/data.  604 

 605 

Code availability 606 

The code for running BEAST analyses is available in the hmc_develop branch of the BEAST codebase 607 

available at https://github.com/beast-dev/beast-mcmc (DOI: 10.5281/zenodo.4895235). The tools 608 

TreeMarkovJumpHistoryAnalyzer, TreeStateTimeSummarizer and PersistenceSummarizer are available 609 

from the master branch in the same codebase. 610 
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Extended Data Figures 699 
 700 
Extended Data Figure 1. Monthly international mobility data matrices: international air traffic data (a), international 701 
Facebook mobility data (b), and international Google mobility data (c). For Facebook data, we also report the single 702 
social connectedness index matrix (SCI, b). 703 
 704 
Extended Data Figure 2. Estimated introductions through time in the 10 European countries and circular migration 705 
flow plots summarizing the estimated transitions between the countries for different time intervals throughout the 706 
SARS-CoV-2 evolutionary history. (a) The introductions through time serve as an illustration and are based on the 707 
Markov jump history in the MCC tree. We note that the posterior distribution of trees is accompanied with 708 
considerable uncertainty about the location of origin, destination and timing of the transitions, which is difficult to 709 
appropriately visualize. The grey box represents the time period from 15 June to 15 August. (b) The circular migration 710 
flow plots are based on the posterior expectations of the Markov jumps. The sizes of the plots reflect the total 711 
number of transitions for each period. In these plots, migration flow out of a particular location starts close to the 712 
outer ring and ends with an arrowhead more distant from the destination location. 713 
 714 
Extended Data Figure 3. Pairwise mobility data among the 10 countries included in the phylogeographic analysis 715 
and other European countries. Heatmap cells are coloured according to international Google mobility data for the 716 
time period between January and October 2020. 717 
 718 
Extended Data Figure 4. Conceptual representation of persistent lineages and introductions during the time interval 719 
delineated by the evaluation time (Te) and the ancestral time (Ta). At Te, we evaluate how many lineages are 720 
circulating in the location of interest, in this case 12 (lineages in other locations are represented by thick grey 721 
branches). We subsequently identify whether these lineages maintained this location up to Ta in their ancestry or 722 
whether they result from an introduction event in the time interval of interest. By determining whether other 723 
lineages circulating in the location of interest at Te are descendants of the same persistent lineage or whether they 724 
share an introduction event, we identify the unique persistent lineages or introductions, in this case 2 and 4 725 
respectively. In addition to the proportion of unique introductions (p1 = 4/6), we also summarize the proportion of 726 
their descendants at Te (p2 = 9/(9+3) in this case) and the proportion of their descendants in terms of  sampled tips 727 
after Te (p3). Those tips are not shown here but conceptually represented for both introductions and persistent 728 
lineages by ovals. 729 
 730 
Extended Data Figure 5. Scatter plots of the difference in the logit proportion of unique introductions (p1) and the 731 
logit proportion of their descendants on 15 August (p2) against incidence and the difference in the logit proportion 732 
of unique introductions and the logit proportion of descendant tips after 15 August (p3) against incidence. Both plots 733 
are shown for the period between 15 April and 15 June, for the period between 15 June and 15 August, and for the 734 
period between 15 August and 15 October, respectively. The p-values in the lower right corner of the plots are the 735 
p-values for the hypothesis tests based on the t-statistic evaluating whether the regression coefficient in a linear 736 
regression model is different from 0. 737 
 738 
Extended Data Figure 6. Estimated geographic origin of viral influx over the summer (15 June – 15 August, 2020) in 739 
each country. Each bar plot summarizes the posterior Markov jump estimates into a specific country.  For the bar 740 
representing a low number of introductions into Portugal, a magnified view is provided. 741 
 742 
Extended Data Figure 7. Phylogeographic transitions for lineages B1.1777/20A.EU1 and B1.160/20A.EU2. 743 
Cumulative phylogeographic transitions are summarized as posterior mean estimates with 95% HPD intervals over 744 
time for four types of Markov jumps. For B1.1777/20A.EU1: i) from Spain to the UK, ii) from Spain to other 745 
countries, iii) from the UK, and iv) from other countries; For B1.160/20A.EU2: i) from France to the UK, ii) from 746 
France to other countries, iii) from the UK, and iv) from other countries. 747 



Extended Data Tables 748 
 749 
Extended Data Table 1. Genome sampling by country, collected on November 3rd, 2020, and updated on January 750 
5th, 2021. 751 
 752 
The numbers in between brackets represent the number of available genomes that were subsampled. *For Portugal, 753 
almost all available genomes were included to increase the number of genomes to 200. 754 
 755 
Extended Data Table 2. Parameter estimates for the various Bayesian time-measured phylogeographical models. 756 
 757 
The coalescent generalized linear model (GLM) parameterizes bi-weekly effective population sizes as a log-linear 758 
function of COVID-19 incidence data, with ⍺ and β representing the log intercept and log regression coefficient. In 759 
the time-inhomogeneous spatial diffusion models, no coalescent prior was used as these models were fitted onto 760 
posterior trees inferred from the time-homogeneous model (see Methods). For the spatial GLM model, we report 761 
inclusion probability estimates through the expectations of the boolean indicators (δ) associated with each predictor 762 
and log conditional effect sizes (the regression coefficient conditional on the predictor being included in the model, 763 
β|δ=1). SCI = Social Connectedness Index, based on Facebook data. For the model with time-variable inclusion 764 
probabilities, we report the parameters at the hierarchical level (δh and β|δh, see Methods). In the model with a time-765 
variable rate scalar, we parameterize this rate scalar as a log-linear function of the overall between-country mobility, 766 
with ⍺ and β representing the log intercept and log regression coefficient.  767 
Using a time-homogeneous model of spatial diffusion, we estimate a maximum inclusion probability for the mobility 768 
data whereas air transportation data and SCI offer no predictive value. We also estimate a strong positive association 769 
between viral population size change through time and COVID-19 incidence in the coalescent GLM. We further 770 
confirm the support for the mobility covariate in a time-inhomogeneous spatial model that incorporates monthly 771 
mobility measures, with either constant or time-variable inclusion probabilities. In addition to parameterizing the 772 
relative rates of spread between countries according to this covariate, we extend our time-inhomogeneous 773 
approach to also model bi-weekly variation in the overall rate of spread between countries as a function of mobility 774 
measures (time-variable rate scalar GLM). This approach estimates a positive association between the overall rate 775 
of spatial spread and mobility data.  776 
 777 
Extended Data Table 3. Mobility to or from each country within our 10-country sample as the percentage of the 778 
total between-country mobility for these countries within Europe. 779 
 780 
The pairwise mobility measures summarized in this table are shown in Extended Data Figure 3.  781 
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country genomes (Nov. 3rd, 2020) genomes (Jan 5th, 2021)  total 

Belgium 183 (1091) 53 (957) 236 

France 600 (1441) 167 (762) 767 

Germany 246 (486) 75 (482) 321 

Italy 281 (795) 75 (257) 356 

The Netherlands 159 (2387) 47  (1032) 206 

Norway 100 (414) 92 (482) 192 

Portugal 100 (1370) 100* 200 

Spain 647 (2443) 191 (827) 838 

Switzerland 100 (3,019) 98 (1421) 198 

The United Kingdom 493 (26,366) 152 (50,175) 645 

total 2909 1050 3959 

 

 



 
Model Parameter estimates 

Time- 
homogenous 
spatial diffusion 

coalescent GLM 
 
spatial GLM 

⍺ = 2.604 [2.487,2.735], β = 1.711 
[1.603,1.898]  
 
air travel: E[δ] = 0.018, (β|δ=1) = 0.044 
[0.001,0.123] 
SCI: E[δ] = 0.004, β(|δ=1) = 0.013 
[0.003,0.032] 
mobility: E[δ] > 0.999, β(|δ=1) = 0.358 
[0.258,0.456] 

 

 

 

Time- 
inhomogeneous 
spatial diffusion 

spatial GLM, constant inclusion 
probabilities 

air travel: E[δ] = 0.018, β(|δ=1) = 0.029 
[0.001,0.105] 
SCI: E[δ] = 0.008, β|δ=1 = 0.024 [0.001,0.078] 
mobility: E[δ] > 0.999, β(|δ=1) = 0.333 
[0.229,0.438] 

 

 
 

spatial GLM, time-variable inclusion 
probabilities 

air travel: E[δh] = 0.010, β|(δh=1) = 0.047 
[0.002,0.139] 
SCl: E[δh] = 0.012, β|δh=1 = 0.018 [0.000,0.062] 
mobility: E[δh] = 0.949, β(|δh=1) = 0.357 
[0.230,0.503] 

 

 
 

spatial GLM 
 
time-variable rate scalar GLM 

mobility: β = 0.271 [0.118,0.444] 
 
mobility: ⍺ = 0.740 [0.618,0.856], β = 0.504 
[0.350,0.646]  

 

 

 
 

 



 
country Mobility percentage 

Belgium 87.2 

France 89.5 

Germany 63.9 

Italy 64.8 

The Netherlands 93.2 

Norway 27.1 

Portugal 94.0 

Spain 90.3 

Switzerland 84.8 

The United Kingdom 48.6 

 
 


