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Abstract 
 

Hyperspectral imaging increases the capabilities of traditional machine vision by extending the 

information content from three broad bands (RGB) to a spectrum of multiple narrow bands beyond 

the visible domain. This provides a combination of spectral and spatial information, which increases 

the potential for applications with respect to traditional color imaging or point spectroscopy. 

While hyperspectral imaging is a technology that has already shown high potential in a wide range of 

application domains, its adoption by Industry has been slow so far. This has been attributed to the 

high camera cost on one hand and processing expertise required for the large amounts of data 

generated on the other hand. In this sense, recent hyperspectral technology developments are trying 

to bridge this gap by creating more affordable cameras that can better meet industrial needs. 

Typically, the development of more industrially suited cameras is done at the expense of either a lower 

number of bands or lower spatial resolution, which may in turn reduce their discrimination 

performance with respect to high-end research equipment.  

To explore these trade-offs, a system-wide exploration was performed of hyperspectral imaging based 

on cameras, which target industrial needs. To this end, multiple system parameters such as 

wavelength range, camera hardware, illumination system or data analysis methods were varied for 

some specific applications.  

First, system level optimization was explored by using the wavelength range as a key system 

parameter to reduce camera hardware cost for a textile sorting application. In this application, it is 

shown that a suboptimal wavelength range may still be able to meet the discrimination requirements, 

while substantially reducing the hardware cost. 

Next, the focus was shifted to a case of seed mix ingredient discrimination and quantification.  The 

added value of data preprocessing and the integration of spatial information with the spectral 

information is demonstrated to increase the system performance and reach the application targets. 

Further, it is demonstrated that the illumination system is a key parameter in hyperspectral imaging 

applications, in particular with snapshot cameras. The presented results show how illumination can 

have a relevant impact on the performance (up to 10% increase in classification accuracy) by achieving 

a more balanced spectral and spatial illumination.  

Finally, different system parameters such as camera hardware, illumination system and data analysis 

methods are evaluated together. In terms of data processing, the impact of pre- and post-processing 

methods are explored, while pixel-based analysis is compared to a more joint spatial-spectral image 

analysis based on convolutional neural networks. It is demonstrated that the joint evaluation of all 

these system parameters allows to make the best choices to meet the application requirements and 

increased the mean classification accuracy by up to 25%. Moreover, it allows to explore varied system 

configurations that offer different performance-cost-speed tradeoffs. 

To conclude this dissertation, some guidelines for system level optimization and parameter selection 

are proposed from the application characteristics and requirements. This paves the way for a broader 

industrial adoption of hyperspectral imaging technology. 
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Beknopte samenvatting 
 

Hyperspectrale beeldvorming breidt de capaciteiten van traditionele machine vision uit door aan de 

informatie-inhoud van drie breedbandige kleurkanalen (RGB) die van verscheidene smalle banden 

buiten het zichtbare spectrum toe te voegen. Dit biedt een combinatie van spectrale en ruimtelijke 

informatie die het potentieel van toepassingen verhoogt ten aanzien van traditionele 

kleurenbeeldvorming of puntspectroscopie. 

Hoewel hyperspectrale beeldvorming een technologie is die al veel potentieel getoond heeft in een 

brede waaier van toepassingensdomeinen, wordt de technologie momenteel slechts beperkt ingezet. 

Een mogelijke verklaring hiervoor is enerzijds de hoge camerakost en anderzijds de expertise die nodig 

is om de grote hoeveelheden gegenereerde data te verwerken. Recente ontwikkelingen in 

hyperspectrale technologie proberen aan deze verzuchting tegemoet te komen door goedkopere 

cameras te produceren die beter inspelen op de noden van de industrie. De ontwikkeling van meer 

geschikte industriële camera’s gaat typisch ten koste van ofwel het aantal banden ofwel de ruimtelijke 

resolutie, wat op zijn beurt een negatief effect kan hebben op het  onderscheidend vermogen in 

vergelijking met hoogwaardiger onderzoeksapparatuur.  

In een nadere beschouwing van deze wisselwerking wordt een systeem brede exploratie uitgevoerd 

van hyperspectrale beeldvorming met ‘on-chip’ camera’s met de opzet tegemoet te komen aan de 

noden van de industrie. Hierbij worden verscheidene systeemparameters zoals golflengtebereik, 

camerahardware, belichtingssysteem en data-analysemethoden afgewogen voor enkele specifieke 

toepassingen.  

Ten eerste worden de optimalisatiemogelijkheden op systeemniveau onderzocht met het 

golflengtebereik als essentiële systeemparameter om de kost van de camera hardware voor een 

textiel-sorteersysteem te reduceren. In deze toepassing wordt aangetoond dat een suboptimaal 

golflengtebereik nog steeds het vereiste onderscheidend vermogen kan behalen en tegelijkertijd de 

hardware kost aanzienlijk kan reduceren. 

Daarna verschuift de focus naar een casus waarbij de ingrediënten in een zaadmengsel herkend en 

gekwantificeerd moeten worden. Hier wordt de toegevoegde waarde aangetoond van data pre-

processing en de integratie van ruimtelijke informatie met inbegrip van de spectrale informatie om de 

systeemperformantie te verbeteren en de beoogde toepassingsdoelstellingen te behalen. Verder 

wordt aangetoond dat het belichtingssysteem een cruciale parameter is in hyperspectrale 

beeldverwerkingstoepassingen en dan specifiek in combinatie met snapshot camera’s. De 

gepresenteerde resultaten tonen aan hoe een weloverwogen spectrale en ruimtelijke belichting een 

substantiële impact kan hebben op de performantie (een tot 10% hogere classificatie 

nauwkeurigheid).  

Finaal worden verschillende systeemparameters zoals camerahardware, belichtingssysteem en data-

analysemethoden samen geëvalueerd. Voor wat betreft dataverwerking wordt de impact van pre- en 

post-processing methoden bekeken, terwijl een pixel-georiënteerde analyse vergeleken wordt met 

een meer geïntegreerde ruimtelijk-spectrale beeldanalyse gebaseerd op convolutionele neurale 

netwerken. Het wordt aangetoond dat de gezamelijke analyse van al deze systeemparameters toelaat 

om de beste keuzes te maken om tegemoet te komen aan de toepassingsvereisten en verhoogde de 

gemiddelde classificatie nauwkeurigheid tot wel 25%. Deze aanpak laat bovendien toe om diverse  
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systeemconfiguraties te bekijken waarin verschillende afwegingen gemaakt worden tussen 

performantie, kost en snelheid. 

Op basis van de resultaten bekomen in dit doctoraatsonderzoek worden een aantal richtlijnen 

voorgesteld voor optimalisaties op systeemniveau en parameterselecties op basis van 

toepassingkarakteristieken en -vereisten. Dit effent de weg voor een bredere industriële toepassing 

van hyperspectrale beeldverwerkingstechnologie. 
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Chapter 1 

Introduction 

1 Introduction 
A worldwide growing population together with its increasing demand for food has led to a forecast of 

food scarcity to feed future population. This motivates the need for a more efficient and sustainable 

way of producing and consuming food (Kakani et al., 2020). Last but not least, food quality and safety 

need to be guaranteed. To achieve this, further automation in food processing and agro-food sectors 

play an important role. In this respect, the Fourth industrial revolution (or Industry 4.0), is enhancing 

the automation and control mechanisms in food production processes by allowing real time data 

monitoring and tracking of the product status. This revolution is fueled by modern smart technology 

such as artificial intelligence and the internet of things (Vaidya et al., 2018), (“Fourth Industrial 

Revolution”, 2020). As food sorting is still largely done through visual inspection, computer vision is 

widely investigated for automating this process (Brosnan et al., 2004), (Patel et al., 2012), (Kakani et 

al., 2020). 

This information technology provides opportunities for feeding and clothing this growing population 
in a more sustainable way.  Indeed, Industrial production processes account for a considerable share 
of the overall pollution and are accountable for many environmental problems (“Sustainable 
production and consumption”, 2020). One example is the fashion industry, which uses a huge quantity 
of raw materials and generates a substantial amount of waste in its production process (Toprak et al., 
2017). Moreover, only a small fraction of wearable textiles is recycled, while most of the used textile 
ends landfilled or incinerated, with a high environmental impact (Sandin et al., 2018). Therefore, a 
great deal of effort has been directed to better waste management and product recycling. In this 
respect, computer vision also plays an important role in the recycling industry (Tomaselli, 2019, Wang 
et al, 2020). 
 
The origins of computer vision date back to the 1960s and since then it has experienced considerable 
growth in diverse fields such as medical diagnostics, factory automation, remote sensing, and the food 
industry. Automatic inspection systems based on the combination of digital cameras and computers 
have proven to be successful for objective measurement and quality assessment in the agricultural 
and food production sectors (Timmermans et al., 1996), (Brosnan et al., 2004). Its main advantages 
are that it is more efficient, objective, non-invasive and it offers a fast and automatic tool to replace 
human visual inspection. To do so, a computer vision system includes a physical image sensor with 
which images are captured, and dedicated computing hardware and software to process and analyse 
the images to perform a predefined visual task. Traditionally, the image analysis performed was based 
on image characteristics such as color, shape or geometry, which were combined in an ad hoc 
algorithm elaborated by an expert. More recently, advances in machine learning, such as deep 
learning and convolutional neural networks, have largely automated this process and expanded the 
possibilities of computer vision for object detection or recognition (Kakani et al., 2020). Another 
technology with many applications in food quality control is Near InfraRed Spectroscopy (NIRS). This 
technology exploits the wavelength dependent conversion of electromagnetic energy into molecular 
vibrations to obtain a spectroscopic fingerprint in the wavelength range from 750 to 2500nm. This was 
the first part of the electromagnetic spectrum discovered outside the visible range (Pasquini, 2018).   
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The potential of point spectroscopy for the agri-food sector was discovered in the 1960s with the work 
of Karl Norris, which promoted advances in instrument manufacturing and analytical tools. Nowadays, 
it has become the preferred quality control method in the food industry because it offers multiple 
advantages over traditional chemical techniques (Manley et al., 2018). Its main advantages are being 
a non-invasive tool, not requiring chemical treatment of the sample and allowing fast and accurate 
chemical analysis. However, a disadvantage of point spectroscopy is the lack of imaging capabilities, 
which limits the acquired fingerprint to a local or average value and thus ignores the spatial 
heterogeneity. Some of the most important applications of near infrared point spectroscopy in the 
food and feed industry are, for instance, food quality assessment, process control (Manley et al., 
2018), food safety and authenticity (Qin et al., 2017). 
 
Hyperspectral imaging combines the characteristics of computer vision and point spectroscopy by 
obtaining an image with both spatial and spectral information. This technique enables therefore to 
analyse the chemical composition of materials and simultaneously visualize their spatial distribution 
(Kamruzzaman et al., 2012). In Figure 1-1, the trade-off offered by hyperspectral imaging in terms of 
spectral and spatial resolution is illustrated. Some of the advantages of hyperspectral imaging over 
point spectroscopy are that it allows visualization of feature distribution over a product, better dealing 
with heterogeneous products since more representative samples can be acquired and faster 
inspection over a batch of products.  The first hyperspectral imager was developed in the 1970s for 
Earth remote sensing. By the late 1980s several commercial hyperspectral imagers were available on 
the market (Goetz, 2011).  Since then, it has been a rapidly growing market with applications in remote 
sensing, medical imaging, forensics, and agri-food processing.  
The main disadvantages of hyperspectral imaging with respect to point spectroscopy or traditional 

colour imaging are related to the higher amount of data that has to be stored and processed. 

Moreover, the cost of hyperspectral cameras is typically higher than the one of colour cameras, and 

this for a lower spatial resolution. In addition, hyperspectral cameras generally require higher light 

intensity than colour imaging, which can result in higher integration and acquisition times. 

 

Figure 1-1: Schematic illustration of different configurations for hyperspectral imaging and their position as a method 
between point spectroscopy and RGB imaging. - Courtesy of Imec 
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Colour imaging acquires three broad spectral bands corresponding to the ranges of the 

electromagnetic spectrum which humans perceive as Red, Green and Blue. Hyperspectral imaging 

subdivides these broad bands into many more narrow bands and can potentially go beyond the visible 

light domain (400-750 nm) extending for instance to the infrared domain (750 nm – 1000 µm) or the 

ultra-violet range (10-400 nm). This greatly increases the amount of information from an image and 

provides for every pixel in the image a full spectrum, indicating how the light is reflected in the pixel 

for a range of wavelengths. Figure 1-2 shows the distribution of the full electromagnetic spectrum. 

The visible portion of the electromagnetic spectrum extends from 400 nm to 750 nm. It is only a very 

small part of the overall range of wavelengths in the spectrum. The infrared range includes a broad 

range of wavelengths from 750 nm to 106nm.  The part of the range closest to the visible spectrum is 

called near infrared (750 – 1000 nm), the 1000-3000 nm range is denominated as short-wave infrared 

(SWIR) and the 3000-8000nm as mid-wave infrared (MWIR). The longer wavelength parts of the 

infrared spectrum are called long-wave infrared (LWIR) in the (8-15 µm) and far infrared (FIR) from 15 

to 1000 µm.  

 

Figure 1-2: The electromagnetic spectrum (“Hyperspectral and Multispectral Imaging”, 2021) 

The hyperspectral image data can thus be perceived as a three-dimensional data cube, where every 

two-dimensional band image provides information about a specific reflected band. This is 

schematically illustrated in Figure 1-3. 

 

 

Figure 1-3: In hyperspectral imaging, n different band images are acquired, such that for every pixel in the image a 
spectrum is obtained.  - Courtesy of Imec. 
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Acquiring the spectrum or spectral signature for every pixel in the image has the potential to greatly 

increase the material information and discrimination capabilities with respect to traditional RGB 

machine vision. 

Like other spectroscopy techniques, hyperspectral imaging can be performed in transmittance, 

transflectance, or reflectance mode. These terms refer to different geometric arrangements of the 

radiation beam, sample, and detection system (camera, spectrometer) used to measure the spectral 

information of the sample. These three modes are schematically illustrated in Figure 1-4 (Skvaril et al., 

2017). 

 

Figure 1-4: Measurement modes in hyperspectral imaging/NIR spectroscopy: a) Transmittance b) Transflectance c) 
Diffuse reflectance. (Skvaril et al., 2017) 

In transmission mode we acquire the light that has travelled through the sample. In transflectance 
mode, a reflector is placed at the back of the sample to send all transmitted light back through the 
sample to be collected with the reflected light. When no mirror element is used this is also called 
interactance. Finally, in diffuse reflectance mode, the portion of the incident light reflected by the 
sample is quantified as a function of the wavelength. As most agrofood samples are highly turbid, 
diffuse reflectance imaging is most widely used for quality inspection of agrofood samples (Lu et al., 
2020). 
 

1.1 Potential and applications of Hyperspectral Imaging  

Some key advantages of hyperspectral imaging are that it is a non-invasive, non-contact and non-

destructive technology, which makes it suitable for product inspection applications such as food 

inspection (Amigo et al., 2013) or industrial recycling of plastics (Bonifazi et al., 2019), (Serranti, 2019) 

or textiles (Blanch et al., 2016), (Mäkelä et al., 2020).   

In (Khan et al., 2018) several applications are presented where hyperspectral imaging has gained high 

interest in the recent years: namely food inspection, forensic science, medical surgery and diagnosis 

and military applications. This growing interest was fuelled by technological advances in hyperspectral 

instrumentation as well as in computer technology. Hyperspectral cameras of lower size and cost 

factor providing faster acquisition and increased resolution have become available in the last decade 

(West et al., 2019). In addition, processing devices are becoming increasingly more powerful to 

process the large amount of data acquired by hyperspectral imagers (Traore, 2017), (Plaza et al., 

2011). Finally, the recent advances in machine learning and deep learning are also providing powerful 

means for processing these images (Gewali et al., 2018), (Paoletti et al., 2019). 

In terms of market, agriculture, military surveillance, environmental monitoring, food processing, and 

remote sensing are the major application domains for hyperspectral imaging (“Hyperspectral imaging 

market: Key insights”, 2018). In this respect, the use of hyperspectral imaging in these fields is 
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forecasted to have a cumulative annual growth rate of around 10% in the coming years 

(“Hyperspectral imaging market: growth, trends, and forecast (2019-2024)”, 2019). 

The high number of band responses provided by hyperspectral imaging allows to quantify the 

biological and chemical properties of materials. Therefore, there is a high number of applications in 

remote sensing for agriculture such as identification of crop species, soil analysis, crop management, 

detection of plant stress and diseases (Vinod et al., 2017). The growing adoption of Unmanned Aerial 

Vehicles (UAVs) across the countries, backed up by a more flexible government regulation in the use 

of UAVs, is also propelling the market growth in fields such as surveillance, remote sensing and 

precision agriculture. In this respect, the development of smaller and lighter hyperspectral cameras is 

also promoting the use of hyperspectral imaging on UAVs for remote sensing application (“Smallest 

hyperspectral camera”, 2014), (Lanaras et al, 2018) and precision agriculture (Van de Vijver et al., 

2020). 

One of the application fields where hyperspectral imaging has experienced a high growth is food 
quality and safety inspection (“Hyperspectral imaging market: growth, trends and forecast”, 2019), 
(Amigo et al., 2013), (Sun, 2010). Hyperspectral imaging technique has been identified as a promising 
tool as a fast and reliable method for food inspection with the additional advantage of being non-
destructive and non-invasive. In this respect, there is a growing need for efficient food control to 
reduce the food waste (caused partly by traditional destructive methods) (Ramanan et al., 2018). In 
fact, a third of all food produced in the world is wasted. In this respect, the authors in (Ramanan et 
al., 2018) believe that hyperspectral imaging can help reduce the food losses at production and supply 
level to ensure sustainable production patterns. It is believed that non-invasive, rapid, objective 
techniques for monitoring food products, such as hyperspectral imaging, are essential to improve the 
sorting and distribution processes. Therefore, a very important aspect in food control is food (and 
feed) quality assessment (Fernandez-Pierna et al., 2014), (Fernandez-Pierna et al., 2020), process 
control (Manley et al., 2018), and food safety and authenticity (Flemal et al., 2017), (Shen et al., 2020). 
 

The potential for fast product inspection in hyperspectral imaging is not limited to food inspection, 

but extendable to a variety of products. In this respect, research has been done as well to evaluate 

the feasibility of hyperspectral imaging for the sorting/recycling industry. In (Moroni et al., 2015) the 

authors demonstrate that a two-band relation in the 1100-1700 nm range can discriminate between 

PVC and PET plastics with 100% accuracy. In (Bonifazi et al., 2019) 8 different types of plastic polymers 

are accurately discriminated with hyperspectral imaging in the 1000-2500 nm range. 

In addition to the mentioned applications there are several fields where hyperspectral imaging is 

showing its potential. Hyperspectral Imaging has for instance been used for detection of biological 

traces in forensic evidence (Malegori et al, 2020) or forensic examination such as document forgery 

detection (Edelman et al, 2012). In addition, it has been successfully used for art inspection, for 

instance pigment determination in paintings (Daniel et al, 2016) or artwork authentication (Polak et 

al, 2017) or medical surgery and diagnosis such as tumor detection (Liu et al, 2012) or measurement 

of tissue oxygenation during surgery (Olweny et al, 2013). Last but not least, in (Krupnik et al, 2019) a 

review is made on the use of hyperspectral imaging for mining applications such as close-range 

material exploration in mines and quarries.  
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1.2 Challenges in Hyperspectral Imaging 

Despite the high potential of hyperspectral imaging for a wide variety of applications, this technology 

has not yet been widely adopted by industry (“Hyperspectral imaging market”, 2018), (“Hyperspectral 

imaging market – growth, trends and forecast (2019-2024)”, 2019). There are several challenges to be 

tackled for this to happen.  

One important challenge of hyperspectral imaging is that it generates high volumes of data that need 

to be processed (Bioucas-Dias et al., 2013). In fact, a high number of band responses comes with 

considerable data redundancy. A data cube of high spatial resolution and hundreds of band responses 

can easily represent Giga Bytes (GB) of data for one single hyperspectral image. In addition, expertise 

is needed to process and interpret this high volume of hyperspectral data (“Hyperspectral imaging 

market”, 2018). In this respect, machine learning techniques are frequently used to address 

hyperspectral data processing. 

Next to this, there are other technical challenges such as the use of adequate illumination systems 

(Katrašnik et al., 2013). For instance, for product inspection on a conveyor belt, hyperspectral cameras 

generally require higher intensity illumination than colour-based cameras. With traditional halogen-

based systems this implies generating a considerable amount of heat, which is undesirable in the food 

industry.  

Finally, a second main challenge remains the cost of hyperspectral cameras, which is still considerably 

higher than that of traditional colour cameras. In addition, it is still challenging for them to meet the 

acquisition speed or spatial resolution required in industrial inspection systems, typically of around 3 

m/s in terms of conveyor belt speed (He et al., 2018).  

In this respect, it is important to benchmark hyperspectral imaging with respect to colour imaging for 

any given application. Colour cameras are cheaper than hyperspectral cameras, allowing for high-

speed acquisition and available in high spatial resolution and compact form factors. Therefore, they 

must be considered as the preferred alternative to hyperspectral imaging whenever a traditional RGB 

camera can meet the application requirements in terms of discrimination power. Additionally, 

traditional computer vision with a colour camera may represent a compromise offering reduced (but 

potentially enough) discrimination power at a reduced cost or increased speed for instance. 
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1.3 Key elements in a hyperspectral imaging system 

This section introduces the key elements of a hyperspectral imaging system, while the following 

sections describe each of these elements and how state-of-the-art research has addressed them. The 

remaining research challenges and gaps concerning each of these system elements and the full system 

will be identified. In addition, we will explain how this thesis is tackling the identified challenges in the 

different chapters.   

The key elements of a hyperspectral system are basically identical to those of a generic computer 

vision system: illumination, a camera, an image capture board (frame grabber or digitiser), computer 

hardware and software (Wang et al., 2002), (Brosnan et al., 2004).  

 

Figure 1-5: Components of a hyperspectral imaging system 

Figure 1-5 illustrates the key elements that we can find in a hyperspectral imaging system: lights (in 

other words an illumination system), the imaging hardware (in this case a hyperspectral camera and 

lens system), computer hardware and software (namely pre/post-processing and analysis methods 

used) and finally, the samples considered (type and number of samples, background used...).   

All these elements in the hyperspectral system play a key role in determining the final discrimination 

accuracy. In the remainder of this section the relevance of each of these elements is discussed in more 

detail. 
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1.3.1  Sample presentation 

The way a sample is presented to the hyperspectral system, for instance in terms of background 

choice, can have a considerable impact on the system performance. Despite the relevance of the 

background choice as a mean to increase discrimination when samples are for instance translucent or 

in general to help avoid shades or specular effects, very few works exist in literature focusing on these 

aspects. In (Signoroni et al., 2020) the authors analyze the effect of how different background choices 

and the illumination set up impact the object spectral signature. It is concluded that proximity to light 

sources or non-homogeneous light distribution can cause unwanted glare. Moreover, white 

backgrounds tend to produce more glare as well than black backgrounds, and this particularly on 

darker objects.  In (Herrero et al., 2019) it is shown that the material of the petri dished used 

(polyestyrene or glass) interferes with agar measurements. A method is therefore developed based 

on orthogonal projection to reduce the measurement interference of the petri dish material. Indeed, 

when imaging translucent material there is a clear impact or spectral mixing with that of the 

background underneath. In (Mindermann, 2018) it is shown how the spectral signature of ink and 

background paper material is mixed, which may hamper the discrimination power of hyperspectral 

imaging. To reduce this impact of the background some methods such as Independent Component 

Analysis or Canonical Variance Analysis were successfully used. Glossy surfaces with high reflection 

also pose a challenge for hyperspectral imaging. To avoid this problem, Nguyen et al. (2016) used 

polarised light to block the specular reflections on glossy surfaces of aubergines and apples. It was 

shown that the use of polarised light increases the spectral signal-to-noise ratio from 1.1 to 3 times 

depending on the wavelength region. In a similar manner, to deal with the glossy surface of fish skin, 

(Folkestad et al, 2008) used an interactance system that blocks the light that is reflected on the surface 

and only measures the light that has penetrated sufficiently into the fish muscle before being 

reflected. This allowed better prediction of muscle pigment concentration through the skin in live or 

whole fish. Similarly, Wold et al. (2006) used an interactance system to estimate with high accuracy 

moisture in dried salted coalfish (bacalao). In this study, it was shown that interactance measurements 

outperformed reflectance measurements, thanks to the deeper penetration of light into the sample. 

In summary, one important aspect of the sample presentation is the choice of the background to avoid 

spectral interferences or unwanted glares and shades. When the sample itself is glossy or specular, 

we can partially deal with this by a careful choice of the illumination system and optical components. 

Sample presentation is not the focus of this thesis. However, the background considerations made to 

avoid the above-mentioned issues are addressed in the following chapters. 
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1.3.2 Illumination system  

The level and quality of illumination has a high impact on any vision system, including the human visual 

system. The appearance of an object and its features of interest can dramatically change with the 

lighting used. Therefore, the image quality and overall system accuracy is highly dependent on the 

illumination used (Sarkar, 1991), (Novini, 1995), (Brosnan et al., 2004). For instance, Gunasekaran 

(1996) found that suitable lighting can reduce unwanted reflections, shadows, and image noise.     

The illumination system is a key element for any imaging system, but in the case of hyperspectral 

imaging it plays an even bigger role than for traditional machine vision systems with color imaging 

(Herrala, 2020).   

When designing an illumination system, three important aspects must be considered: 

 

• Light intensity: hyperspectral imaging requires brighter illumination than color imaging. Since 

hyperspectral imaging systems split the reflected light in many more narrow wavebands than 

RGB cameras, the overall intensity is distributed over multiple narrow bands. This makes the 

fraction of the illumination power that reaches each detector element much smaller (Herrala, 

2020).  The way to compensate for this is to use longer integration/exposure times or to 

increase the illumination power on the sample.  

• Spectral distribution: to be able to measure the reflected/transmitted light over a specific 

wavelength range we should use a light source which emits in the desired wavelength range. 

In this respect, the illumination should emit continuously and with sufficient power over the 

wavelength range that we want to measure, this may be the full visual-near infrared range 

(400-1000 nm) or a portion of the short-wave infrared range (1000-1700 nm). In any case, it 

is also preferable that the energy is homogeneously distributed over the spectra, to achieve a 

more balanced Signal to Noise Ratio (SNR) over the full measured wavelength range. 

Specifically, in camera systems where all wavelengths are captured simultaneously (and 

therefore with the same exposure time) an energy unbalanced light spectrum may cause the 

sensor to saturate at some bands while being underexposed at other wavelengths. This is the 

case in the camera systems that will be presented in Section 1.3.3. 

• Spatial distribution: achieving a homogeneous spatial distribution of the light energy is also 

very important. This means that the incident light at each position of the imaged area should 

have the same spectral response and intensity.  In addition, shadows and specular reflections 

should be avoided in the illuminated area. This is, in practice, very difficult to achieve with a 

single light source. The use of multiple light sources instead of one helps to increase the spatial 

uniformity if they are positioned carefully (Gunasekaran, 1996) (Keresztes et al., 2016). 

It is important to note that in the case of line scan imaging where one line is imaged at a time 

it is easier to achieve homogeneous illumination over the scanned line with a bar type light. 

However, with Snapshot cameras (e.g Mosaic sensors in Section 1.3.3) or Snapshot-alike 

acquisition (e.g Snapscan camera in Section 1.3.3) homogeneous spatial ilumination is 

required over a broader area than for line scan systems. This is considerably more challenging 

to achieve. 

Traditionally, halogen lighting has been used since it emits radiation over the spectral range where 

NIR cameras are sensitive, as shown in Figure 1-6. However, some disadvantages of halogen lighting 

are that they have a low optical efficiency and emit over a broader range than the one sensed by NIR 

cameras. Consequently, halogen light sources are power hungry and generate a considerable amount 
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of heat which may increase the sample temperature.  For specific hyperspectral applications, such as 

food inspection, medical imaging, and art inspection this is very undesirable.   

In this sense, LED lighting could be a good alternative since it is less power hungry and generates very 
little heat. However, as illustrated in Figure 1-7, the emission spectrum of a LED is not flat over the full 
wavelength range covered by a VNIR or SWIR camera. Moreover, their light intensity is also lower than 
that of halogen sources. For all these reasons their use has been scarce so far, and halogen lighting 
systems remain widely adopted in hyperspectral imaging. 
 

 
 

Figure 1-6: Energy distribution of Halogen light source (Davidson, 2015) 

 

Figure 1-7: Spectral distribution of different kinds of LED lights (Kim et al., 2016) 

More recently, LED lighting technology is experiencing considerable advances that enable the use of 
LED illumination for hyperspectral imaging systems. This is achieved by adding phosphors or quantum 
dots which absorb photons emitted by the LED and re-emit photons at longer wavelengths (Mills, 
2005), (Goeltner, 2020). This way, LED manufacturers such as (CVR lighting, Ltd 2015), (Effilux LED 
lighting, 2009) or (Metaphase Technologies Inc) are now providing LED light sources with emission in 
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the 400-900 nm range) without band gaps, therefore, better matching the requirements of 
hyperspectral systems. Figure 1-8 illustrates the energy distribution over the spectrum for an Effilux 
LED bar. We can see that it succeeds in covering in a continuous way most of the 400-1000 nm of the 
visual-near infrared range, but still contains some clear peaks and valleys related to the emission peaks 
of the LEDs and phosphors.  

 

 

Figure 1-8: Energy distribution of Effilux LED bar (“Effi-flex”, 2020) 

 

The illumination unit in an HSI system has a considerable impact on the system performance (Peter, 

2015; Sawyer et al., 2017). Nevertheless, most researchers have dedicated considerably less effort to 

improve the illumination systems used than to develop more advanced machine learning techniques. 

As a broad-spectrum illumination is desired for hyperspectral imaging, halogen-tungsten illumination 

is generally used together with hyperspectral systems (Keresztes et al., 2016), (Lu et al., 2020). With 

the increasing availability of LEDs with different spectral characteristics, some research has also 

focused on exploring the suitability of LED illumination systems. To this end, Peter (2015) developed 

several LED ring illumination systems for 680, 780 and 800nm and tested these for a skin imaging 

application system, relating viewing angles to the number of LEDs required for uniform area 

illumination. However, they did not report on any benchmarking against halogen systems. Lawrence 

et al. (2007) compared a traditional halogen system with a LED system for fecal contamination 

detection obtaining a detection accuracy of 99% for both systems. Katrašnik et al. (2013) presented a 

method to compare lighting systems based on spatial-intensity and spatial-spectral non-uniformity 

measures. They aimed to avoid specular reflections, shadows, and shades, but did not consider a 

specific application for testing and benchmarking. Pan et al., (2017) explored the impact of different 

illumination patterns (reflectance, transmittance, and semi-transmittance) on the hollowness 

classification of white radish. The best classification accuracy of two-class hollowness, 97% on the 

prediction set, was reached with transmittance imaging.  Carstensen (2018) presented a LED based 

system for a food control application in combination with a color camera but did not benchmark it 

against halogen systems. Sawyer et al. (2017) compared the uniformity of halogen and LED based 

illumination systems for a biomedical application but did not report their impact on the discrimination 

power. 

From the above review of the state of the art it is clear that few researchers have investigated the 
impact of different illumination systems for a specific application case and in a quantitative way. 
Moreover, the effect of the illumination system has not yet been studied jointly with other system 
parameters such as camera hardware or analysis method employed.  Chapter 2 of this thesis will 
investigate the impact of illumination in hyperspectral systems as a key system component.  
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1.3.3 Imaging hardware/ hyperspectral cameras 

Hyperspectral image data can be acquired in different ways, known as spatial scanning, 
spectral/wavelength scanning, spatio-spectral scanning, and non-scanning (or snapshot) imaging 
(“Hyperspectral Imaging”, 2021), (Hagen et al., 2013). In Figure 1-9 these different acquisition 
methods are illustrated. 

 

                                                 

Figure 1-9:  The portions of the datacube collected during a single detector integration period for a) spatial scanning, b) 
spectral scanning, c) spatio-spectral scanning and d) snapshot acquisition. (“Hyperspectral Imaging”, 2021)  

In spatial scanning, each two-dimensional sensor output corresponds to a full slit spectrum. A strip of 

the scene is projected onto a slit, which is dispersed by a prism or a grating. The image is acquired line 

by line in a push broom manner (Elmasry et al., 2012), (Behmann et al., 2018), (Ortega et al., 2019), 

and a scanning movement is required to capture a full hyperspectral 3d cube. Traditional 

hyperspectral cameras performing spatial scanning are based on a prism grating system, relatively 

bulky and expensive (due to the required internal optical elements).  

In spectral scanning, the full image is acquired for an individual waveband at a time. This way, each 2-

D sensor output represents a single band image of the scene. These devices are typically based on 

optical band-pass filters, which can be tunable or fixed. An example of such tunable filter system is a 

filter wheel system, shown in Figure 1-10, where a rotating wheel is synchronized with the camera 

acquisition per filter. Such systems offer a reduced number of filters and their acquisition speed is 

limited to the mechanical rotation speed.  

 

Figure 1-10: Schemes of a) Filter wheel with optical bandpass filters and b) AOTF where sound waves are used to diffract 
and shift the frequency of light (Lapray et al, 2014) 

Among electronically-tunable filters, the two most used ones are liquid crystal tunable filters (LCTF) 

and acousto-optical tunable filters (AOTF). HSI techniques based on Acousto Optic Tunable Filters 

a) b) 

c) d) 
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(AOTF) and Lyquid Crystal Tunable Filters (LCTF) (Abdlaty et al., 2018) require polarized light to achieve 

spectral selectivity. For this reason, their use is limited in low light applications, since their throughput 

is at most 40%, lower than the 60–90% typically reached by thin film band-pass filters. 

Spatio-spectral scanning yields a series of thin, diagonal slices of the data cube, as shown in Figure 

1-9. Each acquired image is a 'rainbow-colored' spatial map of the scene, where different lines 

correspond to different wavelength responses. Therefore, to acquire the spectrum of a given object 

point, scanning is needed. Examples of spatio-spectral scanning systems are Imec line-scan (Gonzalez 

et al., 2016) and Snapscan camera systems, (Pichette et al., 2017). In both spectral and spatio-spectral 

scanning careful alignment of the camera sensor and the translational movement is required to 

reconstruct an accurate spectrum with all bands available in all sensor pixel positions (Gutierrez et al., 

2019). An example of a tunable filter system is the hyperspectral camera concept of (Ahlberg et al., 

2017) where a Continuous Variable Filter (CVF), a.k.a Linear Variable Filter (LVF) of Delta Film (Fabricius 

et al., 2014) is used. The 18 bands in the VNIR range are acquired with the translational movement of 

the UAV and used to reconstruct the 3D structure in the scene.  

Finally, in non-scanning or snapshot hyperspectral systems the full 3D hyperspectral data cube, with 
multiple bands per image point, is captured at once, without the need for scanning.  Lapray et al, 
(2014) provide a good review of the different technologies used to develop snapshot multispectral 
and hyperspectral systems. One of the first methods to be used to implement a snapshot spectral 
imager, limited to 3 or 4 bands, was beam-splitting, as shown in Figure 1-11. 

 
Figure 1-11: Multi-spectral snapshot system with three beam splitters. 

Another way to implement snapshot imagers is by means of a lenslet array, which in combination with 
a filter array inserted in front of the lenslet array or image sensor allows to duplicate and project the 
image of each lenslet on the corresponding area of the sensor. One example is shown in (Hubold et 
al., 2018) where a Continuous Variable Filter (CVF) of Delta Film is used together with a microlens 
array to provide simultaneous snapshot acquisition of 66 bands in the VNIR range (450-880 nm) with 
a spatial resolution of 400x400 pixels per band.  
 
Another way to implement a snapshot system is by using Multi-Spectral Filter Arrays (MSFA) that 
integrate multiple filter elements in a mosaic pattern. This results in superpixels, where the pixels for 
the different wavebands are spatially separated in a mosaic arrangement. The hyperspectral filters 
are arranged onto individual pixels extending the Bayer colour imaging concept to hyperspectral 
imaging where video rate acquisition can be reached without dedicated fore-optics or linear scanning. 
An example of this is shown in (Geelen et al., 2015), where snapshot cameras in the visible and near-
infrared ranges are showcased.  
 
Generally, scanning acquisition systems such as spatial scanning, spectral scanning or spatio-spectral 

scanning can obtain hyperspectral images with high spectral and spatial resolution, but require time 

for the scanning. In contrast, snapshot systems trade-off between spectral and spatial resolution to 

be able to provide instantaneous and faster acquisition than scanning systems. While scanning 

systems, requiring multiple exposures, are more exposed to motion artifacts, a snapshot imager 

capturing a multispectral image at one single exposure, can better avoid such artifacts.  

https://en.wikipedia.org/w/index.php?title=Spatial_map&action=edit&redlink=1
https://en.wikipedia.org/wiki/Spectrum
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Although the potential of hyperspectral imaging has been demonstrated for several applications using 

laboratory setups, it is generally still a scientific tool. Indeed, most commercial hyperspectral cameras 

are made for the research market, e.g., remote sensing (Van der Meer, 2012), (Vinod et al., 2017) and 

food science (Feng et al., 2012), (Amigo et al., 2013). The adoption of hyperspectral imaging by the 

industry has so far been limited due to the lack of fast, compact, and cost-effective hyperspectral 

cameras with adequate specifications (“Hyperspectral imaging market”, 2018). Nevertheless, over the 

last decade there have been important technological advances in the design of the sensors and 

cameras, which have fuelled the growth of the hyperspectral imaging market.  

“On-chip” hyperspectral camera systems   

One of these advances is the development of a unique hyperspectral sensor concept in which the 

hyperspectral filters are monolithically integrated on top of a chip, a standard CMOS sensor. This 

integration is done at wafer level, where a wafer contains multiple image sensor chips, as shown in 

(Figure 1-12). These filters are Fabry-Perot filters (Perot et al., 1899), (Gonzalez et al., 2016), consisting 

of a transparent layer (cavity) with two mirrors at each side. The central wavelength of the filter will 

be mostly determined by the thickness of this cavity layer. The integration of these filters on the image 

sensors at wafer level heavily reduces the cost and improves the compactness of the hyperspectral 

camera.  

                         

Figure 1-12: IMEC hyperspectral filter structures processed at wafer-level on top of commercial CMOS image 
sensor wafer (here on CMOSIS’s CMV2000 & CMV4000 sensors) - Courtesy of Imec. 

This filter processing technology is based on a wedge-based, or in other words staircase-alike, filter 

structure. Moreover, the processing technology used allows pixel level accuracies in filter alignment.  

Thanks to this, the filter layout (covering different groups of pixels or depositing filters per pixel) and 

performance (i.e., bandwidth, FWHM, etc) can be customized to match the requirements of specific 

applications. The result is a compact and fast hyperspectral imager made with low-cost CMOS process 

technology. This technology has been demonstrated with three specific instances: 

• A wedge-based line-scan hyperspectral imager: this is a spatial-spectral acquisition system 
offering 100 spectral bands in the range of 600-1000 nm or 150 bands in the 470-900 nm 
wavelength region (Gonzalez et al., 2016).   

• A tiled snapshot imager: 32 spectral bands in the range of 600-1000 nm and also with FWHM 
of each band around 10 nm. An optical duplicator is required in this case, such as microlenses 
that duplicate the image onto their corresponding 32 filter tiles (Geelen et al., 2013).  

• The mosaic snapshot imager (Geelen et al., 2015): in this sensor, the filters are arranged onto 
individual pixels, on a 5.5 micrometer pitch, extending the traditional Bayer color imaging 
concept to multi- or hyperspectral imaging at video-rates without the need for dedicated fore-
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optics or linear scanning. Two mosaic sensors are available: a VIS (470-620 nm range) with a 
4x4 filter repeated configuration (therefore 16 bands) and spatial resolution of 512x276 pixels, 
and a NIR (600-1000 nm) with a 5x5 configuration (25 bands in this NIR range) and a spatial 
resolution of 410x218 pixels.  

 

Some of the already mentioned characteristics for the different sensor types are summarized in Figure 

1-13: 

 

Figure 1-13: Illustration of the different hyperspectral sensors developed by IMEC with their spatial and spectral 
characteristics – Image Courtesy of Imec. 

 
The wedge layout enables the acquisition of hyperspectral images with high spectral and spatial 

resolution, while tiled/mosaic layouts inherently dictate a trade-off between spectral and spatial 

resolution. As a result, both designs will enable a different set of target applications. 

The wedge layout, where the filters are arranged in a staircase-like structure over the pixel array, is 
useful in applications where the scene of interest has a natural translation movement (e.g., in a 
conveyor belt) and the hyperspectral imager will be used as a line-scanner. An application example 
with the wedge layout sensor is given in (Blanch et al., 2017) where a line scan camera in the visible-
near infrared range is used for accurate prediction of chemical features in bones. In (Blanch et al., 
2016) the same camera is showcased for textile discrimination in a recycling application.  
 
An alternative design is a tiled layout, in which filters are laid out in rectangular or square shapes on 

top of (groups of) pixels. This tiled layout or mosaic layout is useful in applications where the scene of 

interest has objects that are dynamic or have random movements or that require snapshot video 

acquisition.  

The Snapshot Mosaic cameras enable a different range of applications where no scanning can be 
performed such as biomedical or surveillance applications. This way, in (Li et al., 2017) a compact 
Mosaic camera with 16 bands in the visual range was used for retinal imaging at 20fps, enabling 
potential applications for monitoring of retinal diseases. In (Xiong et al., 2019) the same Mosaic 
camera is used for a video surveillance application, where material-aware object tracking was 
showcased. In (Farooq et al., 2019) this Mosaic camera was used in combination with neural networks 
to achieve multi-resolution lawn weed classification. 
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Generally, snapshot Mosaic cameras such as (Geelen et al., 2015) offer lower fidelity than line-scan 

sensors such as (Gonzalez et al., 2016). This is due to the mosaic filter pattern and the crosstalk 

between these closely placed filters (Hahn, R. et al, 2020). On the other hand, snapshot Mosaic 

cameras provide an increased acquisition speed and are suitable for dynamic scenarios.  

In addition to previous camera systems, a new camera system concept for on-chip line scan sensors: 

the 'Snapscan' (Pichette et al., 2017) was introduced in 2017. This camera offers simultaneously the 

benefits of line scan (featured with high-speed image quality) and snapshot technologies (no 

translational movement required). The Snapscan camera system illustrated in Figure 1-14 is a camera 

system with the high spatial and spectral resolution of linescan hyperspectral imaging technology, 

namely 7Mpixels and 150 spectral bands. In addition, thanks to its internal translation stage, it 

provides the ability to acquire datasets as easily as with a snapshot camera. It provides the high 

spectral and spatial resolution of linescan sensors, without the need for any external scanning 

movement: scanning is handled internally, using a miniaturized scanning stage. Full hyperspectral 

images can be acquired in a few seconds. Currently, the maximal RAW spatial resolution that can be 

reached is 3650 x 2048px (7Mpx), with a spectral resolution of 150+ spectral bands within the 470-

900 nm (visible to near-infrared, VNIR) wavelength range.   

 

Figure 1-14: Schematic illustration of a traditional linescan imaging system (left) and the Snapscan system with internal 
scanning (middle and right) – Image Courtesy of Imec. 

One of the advantages of internal scanning is that it is straight forward to combine this camera with a 
microscope setup. This way, in (Chen et al., 2019) a Snapscan camera in the 470-900 nm range has 
been successfully used in combination with a microscope setup to discriminate live and dead human 
ovarian cancer cells in a non-destructive way. 
 
The on-chip hyperspectral imaging cameras have extended the visual-near-infrared range to cover the 

short-wave infrared (SWIR) range between 1100 and 1650 nm (Gonzalez et al., 2018). Similarly, Mosaic 

SWIR snapshot cameras have also been developed to extend this measurement concept to the SWIR 

range (1100-1650 nm). 

In this respect, “on-chip” hyperspectral cameras, (Pichette et al., 2017), (Geelen et al., 2015), have the 

potential to considerably reduce the technology cost since they can be mass produced and their price 

scales down for high order demands. 
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Other advances in hyperspectral imaging cameras 

Traditional hyperspectral camera manufacturers such as Specim (Herrala, 2020), have also developed 

more compact and portable hyperspectral cameras while still relying on push-broom technology 

(Behmann et al., 2018), (“Hyperspectral imaging market”, 2018).   

In (Oehlschläger et al., 2018) the snapshot camera Cubert UHD 185 Firefly with 125 bands in the 450-
950 nm range and a 50x50 pixel resolution has been introduced and evaluated for a remote sensing 
application, where accurate yield prediction of barley fields is shown. In (Bareth et al., 2014) the 
authors show another remote sensing application where the same compact snapshot camera achieves 
comparable NDVI results than a field spectrometer for crop growth monitoring. 

In (West et al., 2019) the authors give an overview on the currently available Snapshot hyperspectral 

imagers on the market enabling its adoption by consumer market as well as its expansion in 

application fields such as medical imaging, forensics, and remote sensing. Snapshot devices such as 

the Snapshot Mosaic cameras (Geelen et al., 2015) or the PixelCam camera from Pixelteq (PixelCam) 

are discussed. An overview of the different commercial Snapshot camera characteristics and their 

prices is given, where we can see that hyperspectral cameras are becoming more cost effective.  

In general, the development of snapshot cameras has helped increase acquisition speed and reduced 

the camera size and cost. However, the high cost and processing requirements for the large high and 

complex data seem to remain the limiting factors slowing down industrial adoption (“Hyperspectral 

imaging market”, 2018).  

As previously mentioned, one of the advantages of the “on-chip” hyperspectral technology is that it 

can potentially be mass-producible, which could considerably reduce the cost of hyperspectral 

cameras. Another advantage is that cameras can have a smaller form factor since traditional optical 

elements such as the grating prism are substituted by filters deposited on the sensor. Note that small 

and light weight cameras are of key importance for UAV remote sensing applications since low weights 

increase the flight time. Theoretically, a transmission efficiency close to 100% can be expected from 

thin-film filter technology for CVF (Pust, 2016), (Geelen et al., 2015). This potentially allows lower 

integration times and therefore faster acquisition speeds, which helps reach industrial inspection 

speeds. Finally, its production process provides high flexibility in terms of customization and band 

distribution over patterns of pixels. 

Unfortunately, the “on-chip” technology presented also has some disadvantages, such as a certain 

degree of sensor variability in the production process, which is addressed by adding redundancy in 

the design (Tack et al., 2012). Moreover, Fabry-Perot filters can suffer from higher-order responses 

(Tack et al., 2012), (Geelen et al., 2013) which produce a parasitic response at undesired wavelengths. 

In practice, this is addressed by restricting the spectral range to only those wavelengths free from 

higher-order responses.  In addition, while the theoretical transmission efficiency is of 100%, this is 

not yet the case for the full transmission range (Tack et al., 2012). Finally, Fabry-Perot filters are lower 

complexity filters in comparison with those offered by the technology in (Pust, 2016). They offer higher 

flexibility in terms of filter arrangement and allow implementation of mosaic patterns, but this comes 

at the cost of reduced out-of-band blocking capabilities (Pust, 2016). It is important to note, 

nevertheless, that this is a relatively recent technology, which is still undergoing substantial 

technological improvements.  
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Trade-offs in hyperspectral camera hardware 

As discussed in the previous sections, several technological advances in hyperspectral imaging 

cameras and sensors have been made during the last decade bringing hyperspectral imaging closer to 

industrial requirements in terms of lower cost and size factor, and higher acquisition speeds. However, 

this involves different tradeoffs at system level as shown in Figure 1-15.  Developing hyperspectral 

camera systems of lower cost and higher acquisition speed typically comes at the expense of a lower 

number of available spectral bands, spatial resolution, SNR or sensor sensitivity, compared to high-

end hyperspectral cameras. 

 

Figure 1-15: Schematic illustration of the hyperspectral camera tradeoffs 

Nevertheless, the high discrimination power available in high-end scientific cameras may not be 

required to meet the requirements of some industrial applications. In this respect, having a camera 

device, which just meets the application requirements in terms of discrimination accuracy while still 

offering a good tradeoff in size, cost and speed can be preferable. Moreover, at system level it may be 

possible to compensate for a lower discrimination power by shifting the efforts to other system 

aspects. This way, to meet the application goals with faster cameras with lower SNR, more effort can 

be invested for instance in the post-processing or analysis methods. Similarly, to compensate for the 

lower spatial/spectral resolution available we could for instance better exploit the spatial information 

in the image rather than relying on individual and very discriminative point spectra. 

The different camera systems presented offer different trade-offs with respect to spatial and spectral 

resolution, cost, and acquisition speed. This is generally the case between line scan/snapscan and 

mosaic snapshot systems. While line scan systems provide the highest spatial and spectral resolution 

available but require sequential scanning, snapshot imaging systems need to trade off some of the 

existing spatial and spectral resolution to achieve a higher acquisition speed or even video rates. We 

illustrate these different system trade-offs in Figure 1-15. In the VNIR case both available spatial 

resolution and camera system cost tend to be correlated. 

Similarly, in the mosaic sensors a trade-off is made between the number of spectral bands and the 

spatial resolution available per band on the sensor. This way, the Mosaic VIS sensor capturing 16 

spectral bands has a 512 x 272 spatial resolution, while the Mosaic NIR sensor captures up to 25 
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spectral bands and therefore offers a reduced spatial resolution of 410 x 218 pixels from the original 

sensor size of 2048 by 1088 pixels.  

In addition, comparing different wavelength ranges such as visual-near infrared (VNIR in the 400-1000 

nm range) and short-wavelength infrared (SWIR in the 1000-1700 nm range) different tradeoffs are 

offered as well. The SWIR range may offer more discrimination power than VNIR for specific 

applications, but this comes at an increased sensor cost. Moreover, they typically offer lower spatial 

resolution (VGA of 640x480 pixels) than the corresponding VNIR sensors. 

The Devil’s triangles corresponding to a hyperspectral application are shown in Figure 1-16. On the 

left the requirement triangle is shown, where achieving for instance high performance is generally 

going to increase either system cost or complexity. As mentioned before, an application may be 

implemented in the VNIR range or in the SWIR range, where for instance higher performance may be 

achieved incurring in higher system cost. On the right side a devil’s triangle on performance is shown. 

Three aspects can be considered in terms of performance: discrimination power, spatial resolution, 

and acquisition speed. Typically, for the highest discrimination power and spatial resolution the 

acquisition speed will be lower. Similarly, for a higher acquisition speed a tradeoff must be made in 

discrimination power (number of bands) and spatial resolution. One example is the use of Mosaic 

Snapshot cameras with respect to higher resolution linescan cameras. 

 

Figure 1-16: Devil’s triangles for a hyperspectral imaging application (left) and for its performance (right) 

In this thesis, we will evaluate how the different components in a hyperspectral imaging system 

illustrated in Figure 1-5 can be modified/selected to best fit the application and performance 

requirements in the Devil’s triangles mentioned above. 

Recent applications of “on-chip” and other compact-form hyperspectral cameras  

Research in different areas has been done using on-chip hyperspectral cameras. The fast acquisition 

of Mosaic Snapshot cameras makes them particularly useful for dynamic applications such as 

surveillance (Xiong et al., 2019). These compact form factor and light cameras are also being used for 

remote sensing UAV applications (Lanaras et al, 2018), (Goossens et al., 2018) as well as in the agro 

sector (Farooq et al., 2019). In addition, both Snapscan and Mosaic cameras have proven to be suitable 

for medical applications in combination or not with a microscope (Luthman et al., 2018), (Li et al., 

2017), (Chen et al., 2019). Finally, they have been evaluated for industrial applications such as textile 

recycling (Blanch et al., 2016) and for food control applications such as estimation of collagen 

extraction from bones (Blanch et al., 2017). 

In a similar way, the use of portable compact cameras with push-broom technology has been shown 

in a precision agriculture application (Behmann et al., 2018), where it has been successfully applied to 

measure plant stress-levels and to detect mildew on barley leaves. In (Bareth et al., 2014) two compact 

and portable snapshot cameras, suitable for UAV platforms (<1kb) were compared to a spectrometer 
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spectrally and in NDVI terms for a crop monitoring application (barley canopy) showing comparable 

results. In (Oehlschläger et al., 2018) the same snapshot camera showed good yield prediction in 

barley crops outperforming the accuracy of higher resolution RGB imaging.  

We can see that newly developed hyperspectral technology starts to be successfully applied in several 

applications ranging from precision agriculture (Bareth et al., 2014), (Oehlschläger et al., 2018), 

(Behmann et al., 2018) to medical (Li et al., 2017), (Luthman et al., 2018), (Chen et al., 2019). However, 

hyperspectral imaging has not yet been widely adopted by Industry. Moreover, current research work 

does not fully exploit the new trade-offs offered by these industrially oriented hyperspectral cameras. 

For instance, the use of different cameras is not compared for the same application. In addition, no 

reports were found on the most suitable illumination systems for snapshot alike cameras.  

1.3.4 Hyperspectral image analysis  

Hyperspectral image processing tasks can tackle a variety of imaging goals such as material 

classification, anomaly detection (Chang et al., 2002; Matteoli et al., 2010) or 

quantification/estimation of a chemical/physical property of the material (Kamruzzaman et al., 2012). 

In this respect, increasing the discrimination power of our hyperspectral imaging system in Figure 1-16 

will generally enable an increased accuracy for any of the mentioned tasks. It will help achieve an 

increased classification accuracy, reduce the estimation error of a chemical property estimation model 

or similarly, increase the probability detection of an anomaly. In this PhD thesis we will focus on the 

aspect of image classification, which suits bests the considered application cases.   

Aims and challenges of hyperspectral image analysis. 

In traditional computer vision with color imaging, the goal of image analysis is to recognize objects in 

the image to perform a visual task (Wang et al., 2002). Hyperspectral imaging, increases the capability 

of traditional color imaging by discriminating materials and obtaining more information about its 

chemical/physical properties, extending the potential targets of image analysis. However, it also 

introduces new challenges. One of the challenges relates to the high number of bands or dimensions. 

This results in higher computational cost and can decrease the classification performance, especially 

in absence of enough available training samples (Feng et al., 2017). For this reason, and since there is 

high redundancy present among adjacent band responses, methods for dimensionality reduction are 

usually applied as a pre-processing step in hyperspectral image. These aim at preserving the most 

relevant information while reducing the data dimensionality (Feng et al., 2017), (Kale et al., 2017). 

Another challenge is the high amount of data to be processed, since the increased spatial, spectral 

and temporal resolution of hyperspectral images creates large 3D data cubes with multiple band 

responses per pixel. This increases the computational cost considerably (Bioucas-Dias et al., 2013). 

Finally, the presence of spectral mixing or noise associated to the measurement process makes the 

analysis of hyperspectral images a complex task (Bioucas-Dias et al., 2013). 

The aim of this PhD research was to tackle the main challenges hampering industrial implementation 

in hyperspectral imaging. Besides the obvious challenge of the cost of hyperspectral imaging systems, 

which we are trying to deal with by using cost-effective “on-chip” hyperspectral cameras, we will also 

tackle some of the data analysis challenges introduced. In this respect, the use of lower resolution 

snapshot cameras results in a lower amount of data to be processed, despite an increase in the 

associated noise. Similarly, the use of spatial binning in high resolution cameras reduces the amount 

of data to be processed and its processing complexity, while it may still reach the required 

performance. 
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Image processing/analysis involves a series of steps which can be divided into three levels: low level 

processing, intermediate level processing and high-level processing (Brosnan et al., 2004).  

Low level processing includes image acquisition and pre-processing. Image acquisition involves the 

conversion of the imaging sensor signal into a numerical form. Image pre-processing refers to the 

processing of the raw image for correction of some spectral distortions, such as, for instance, 

reflectance correction, spectral correction, or removal of noise. The aim of pre-processing is to 

improve the image quality or image SNR by removing image distortions or noise or by enhancing the 

features of interest. Typical pre-processing steps, which rely exclusively on spectral information, are 

for instance Standard Normal Variate (SNV) (Barnes et al., 1989), Multiplicative Standard Correction 

(MSC) (Helland et al., 1995) and Savitsky Golay smoothing (Savitzky et al., 1964). Many of these 

techniques come from the field of chemometrics where typically, point spectroscopy is used, and no 

spatial information is available and therefore exploited. Other pre-processing steps that reduce noise 

by considering spatial information of neighboring pixels are spatial binning and median filtering 

(Gonzalez et al., 2002).  

A different type of pre-processing methods is feature selection. One type performs relevant band 

selection since this reduces redundancy in the spectra and can increase the performance. Some 

example methods are Principal Component Analysis (PCA) (Smith, 2002) or Linear Discriminant 

Analysis (LDA) (Naes et al., 2004). While PCA derives new variables as orthogonal linear combinations 

of the original variables which capture maximal variance, LDA obtains new variables from linear 

combinations to obtain maximal class separation. In this respect, variable reduction is much more 

important when it comes to hyperspectral signals than in traditional color imaging. This is due to the 

high redundancy present between contiguous wavelengths. 

Noise removal can be implemented on the raw image as well as on the classified image. We will refer 

to post-processing as one type of low-level image processing with the aim to increase the quality of 

the classified image. Some methods that fall into this category are for instance median filtering 

(Gonzalez et al., 2002) and bilateral filtering (Tomasi et al., 1998). Both methods use the information 

from neighboring pixels.  

High level analysis/ processing involves the recognition and interpretation of the image captured. This 

is typically done using statistical classifiers or artificial layer neural networks. These are the final 

processing steps that provide the required information to perform specific visual tasks. While some 

high-level analysis methods rely purely on the spectral information per pixel, some others exploit the 

spatial information available in the image as well. Therefore, classifiers can be categorized according 

to this into pixel-based (spectral-based), object-based and image-based (or spatial-based) (Oliveri et 

al., 2019). In traditional color imaging, typically object recognition is performed with image-

based/spatial-based analysis. Therefore, not only the intensity level per pixel is used but also the 

spatial relation between pixels: object shape, texture, context, and geometrical properties (Brosnan 

et al., 2004). In contrast, in the field of spectroscopy many chemometric tools were developed for 

pixel-based analysis of multivariate signals. Since hyperspectral imaging offers both pixel spectral 

information and spatial information the analysis methods applied were inherited from both color 

imaging and spectroscopy analysis methods.  

 

 

 



 ______________________________________________________________________ INTRODUCTION

 

22 
 

Pixel-based analysis 

Pixel –based processing methods are those machine learning classifiers that work based on each 

individual pixel spectrum. This way, the discrimination/classification is done based on the spectral 

information per pixel and disregarding the spatial information in the image. Typical pixel-based 

classifiers are Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) (Naes et al., 

2004), Spectral Angle Mapper (SAM) (Kruse et al., 1993) and Support Vector Machines (SVM) (Hsu, C-

W et al., 2016). 

Boelt et al, 2018 used linear discriminant analysis for the discrimination of sugar beet seeds in maturity 

levels and reported discrimination with 95% accuracy. Mahesh et al, 2011 showed that five Canadian 

wheat classes could be discriminated by quadratic discriminant analysis at 82-99% accuracy, 

independently of its moisture levels. Similarly, QDA could classify moisture contents with accuracies 

of 91-99% independent of the wheat class.  

In addition to these classifiers, Support Vector Machines are another common choice as pixel-based 

classifier. SVM is based on statistical learning theory and one of its main advantages is that it can offer 

high performance even when few samples are available for training. For this reason, it has been widely 

used in remote sensing applications (Melgani et al., 2004), (Camps-Valls et al., 2005), (Chen et al., 

2013). In (Guo et al., 2019) the authors show that a combination of SVM with a guided filter further 

optimized the classification map reaching an accuracy over 90% in a remote sensing application. In 

(Dong et al., 2011), SVMs were combined with a low complexity PCA with the purpose of reducing 

classification complexity for satellite images. After dimension reduction with PCA, the classification 

and mapping time could be dramatically reduced while retaining good accuracy. In (Bonah et al., 2020) 

Support Vector Machines reached over 94% accuracy in bacterial discrimination when combined with 

Linear Discriminant Analysis (LDA) as pre-processing step and optimal band selection. In (Feng et al., 

2019) the authors reviewed several applications in the food analysis and control domain, where SVMs 

have also been widely used for pixel-based analysis. In this review, (He et al. 2016) showed for instance 

discrimination of 4 varieties of maize seeds with SVM models achieving an overall accuracy of 98.3%. 

In (Park et al., 2007) hyperspectral imaging and Spectral Angle Mapper were used to discriminate the 

type and source of faecal contaminants on poultry carcasses with over 90% accuracy. In (Petropoulos 

et al., 2013) SAM is compared with object-based approaches for mapping land use characteristics in 

remote sensing. Object-based outperformed SAM by over 7% in mean accuracy. 

Object-based analysis  

One way to introduce spatial information in the classification/discrimination process is to base the 

analysis on objects instead of individual pixels. In this respect, object-based analysis inherits from 

traditional color imaging analysis methods (Brosnan et al., 2004) where an image is segmented into 

objects so that different features (such as width, length, shape, average intensity/spectral value...) can 

be extracted per object.  Segmentation is typically done after creating a virtual image with maximal 

contrast or a binary image from which objects can be segmented (Sun, 2000). 

In this respect, Extended Morphological Profile (EMP) is a technique that has been often used in 

remote sensing applications where objects have typically distinct morphologies (e.g square for 

buildings, lines for roads...).  Therefore, adding the morphological information of the object to the 

pixels belonging to the object provides additional information to the spectra, which increases the 

discrimination (Benediktsson et al., 2005).  
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Object-based classification can considerably increase the classification accuracy as shown in works by 

(Trang et al., 2016) where object-based and pixel-based classification schemes were compared in a 

remote sensing application. Some researchers have proposed methods to increase discrimination 

power by combining/fusing pixel-based and object-based features such as (Liao et al., 2014), (Gewali 

et al., 2018) or (Chen et al., 2019). Typically, spectral and object features are stacked together as input 

vector to for instance SVM classifiers (Gewali et al., 2018), (Chen et al., 2019). In this respect, Liao et 

al, (2014) suggested that an accuracy improvement around 3% can be obtained with graph-based 

feature fusion and the SVM classifier when compared to traditional stacking. 

Another possible approach is to implement first pixel-based classification and only after this make use 

of the available spatial information. This was done in (Hu et al., 2018) by applying morphological 

operations on the SVM classified image, where it increased the pixel-based classification accuracy by 

up to 10%.  

While object-based analysis can potentially increase the accuracy with respect to pixel-based analysis 

it relies strongly on performing a correct segmentation of the image, which is not a trivial task. 

Moreover, Object-based methods require a significant computational effort for image classification 

(Amini et al., 2018). In addition, the quality of the object segmentation is highly dependent on the 

parameters chosen in the object segmentation method and automation of the parameter selection 

remains a challenging task (Dragut et al., 2014). 

Image-based analysis 

We refer here to image-based processing as those algorithms that jointly exploit spatial and spectral 

information without necessarily being object-specific.  

In this sense, approaches combining spectral and spatial information in a true joint spatial-spectral 

image analysis have recently been exploited. The most recent approach is based on deep learning 

techniques, and specifically for image analysis convolutional neural networks have been successfully 

used (Gewali et al., 2018), (Paoletti et al., 2019). A convolutional neural network is a supervised 

classification approach in which truly joint spatial-spectral analysis can be performed. For every pixel 

in the image not only a classification label is provided but also the spectra of all surrounding pixels in 

a block area. In the CNN different convolutional filters can be applied onto the image, each of those 

filters extracts spatial information of different kinds. Since hyperspectral imaging has an additional 

wavelength dimension with respect to color imaging, these filters can be three dimensional extracting 

spectral features simultaneously with spatial features in an input block.  

All previous analysis methods, pixel-based, object-based, or image-based have advantages and 

disadvantages with respect to each other. While Convolutional Neural Networks may reach high 

classification performance, they also have some drawbacks in terms of their computational cost, and 

lack of insight in the internal classification mechanism (once the CNN reaches 2-3 layers). Moreover, 

they need a high amount of training data and are easily prone to overfitting due to the high number 

of parameters to be trained. Traditional pixel-based classifiers (such as SVM, QDC...) are generally 

simpler to implement and require a lower amount of training data. However, they do not exploit the 

spatial relation between neighboring pixels and can therefore yield lower classification results. 

Recently, several researchers have investigated the added value of deep learning with traditional 
research cameras as well as with Snapshot cameras (Fotiadou et al., 2017), (Farooq et al., 2019). 
Although most of the work on convolutional neural networks is related to remote sensing (Chen et al., 
2016; Paoletti et al., 2017; Deng et al. 2018), lately more attention has been dedicated to food 
processing applications as well. In (Al-Sarayreh et al., 2018) a 3D-CNN has been used to detect meat 
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adulteration with both spatio-spectral features, outperforming a pixel based SVM classification.  Wang 
et al. (2018) used deep CNNs to detect internal mechanical damage of blueberries using hyperspectral 
transmittance data. 
While there is some research that compares pixel-based and image-based methods for specific 

applications (Liao et al., 2014), no system wide studies were found that compare these analysis 

methods as well as the impact of pre- and post-processing. Similarly, the most suitable processing 

method for different camera tradeoffs and the impact of an illumination system have not yet been 

considered together. Therefore, the relative impact/relevance of each factor in the system is not 

known as there is no such system study available where all system elements were evaluated together.  
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1.4 Research goals and thesis outline 

So far, the adoption of hyperspectral systems by industry has encountered several challenges, which 

are also linked to the key elements presented.  First, the hyperspectral imaging hardware available is 

still too expensive and cannot reach the acquisition speeds required by some applications of industrial 

inspection. Secondly, hyperspectral imaging produces a high amount of data to be processed, where 

expertise in analysis techniques is often required. Finally, there is a need for more suitable illumination 

systems, since halogen systems produce too much heat for industrial inspection and light is not 

homogeneously distributed over the wavelength range to which the camera is sensitive. 

We can see from the analysis of the state-of-the-art that there have been new advances in camera 

developments to try to suit industrial needs such as a reduced cost. This way, on-chip hyperspectral 

cameras have been evaluated with promising results for multiple applications (remote sensing, 

agricultural and medical sectors...). There has been considerable development in image analysis 

methods such as deep learning, which increase the capabilities of hyperspectral imaging applications. 

However, this increases the required computation power and the required level of expertise to 

process hyperspectral images. No reports were found on the impact of the lighting system on such 

snapshot cameras, where illuminating a surface in a homogeneous way becomes more challenging.  

In addition, little work has been done to explore different camera spatial-spectral trade-offs or 

different processing and analysis methods suitable for them. Finally, there are very few authors who 

have considered all these system aspects jointly, identifying their relative impact and determining 

optimal configurations for each application case. 

It is hypothesized here that the illumination is a key factor, even more important and challenging for 

these snapshot alike cameras, where a whole surface as field of view, instead of a line, needs to be 

homogeneously illuminated. Moreover, the impact of illumination must be evaluated jointly with 

other system aspects such as spatial-spectral camera trade-offs provided by different cameras, and 

pre-, post- processing methods and data analysis methods of different complexity-performance trade-

offs. Therefore, a joint and complete system evaluation is proposed to be able to determine the most 

optimal configurations and trade-offs that meet the application requirements in a cost-effective way. 

To this end, the different aspects of the full hyperspectral system with on-chip cameras will be 

investigated. To assess the impact of the different key elements we have described above; we will use 

two different application cases: 

1. A textile sorting application where different textile materials need to be discriminated.  

2. A food quality application case, namely ingredient discrimination and quantification in a flour 

mix, where several seeds and non-seed ingredients need to be classified and quantified. 

The textile sorting application was chosen to show the tradeoffs inherent to the choice of wavelength 

range. Most researchers in literature have focused on textile discrimination in the SWIR range (1000-

2500 nm range) (T4T), (Chen et al., 2020), (Mäkelä et al., 2020). We investigate textile discrimination 

in the visual near-infrared range (400-1000 nm) and show the tradeoffs made to make this feasible. 

The reason for choosing the seed ingredient discrimination case is that this application consists of seed 

and non-seed ingredients, which are challenging in terms of both spectral discrimination (similar 

spectra and relatively high intra-class variation) and spatial discrimination (small size and 

heterogeneous in shape). Choosing a challenging application allows us to better assess the impact of 

a better illumination system, a more advanced analysis technique or a higher resolution camera on 

the resulting classification accuracy. On the contrary, an easy enough application case, showing high 

classification accuracy already with a suboptimal illumination system, a low-resolution camera or a 
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basic classifier would not show the potential of an improved system aspect. The remainder of the 

manuscript is illustrated in Figure 1-17, and it is organized as follows: 

In Chapter 2 we show how an a-priori sub-optimal wavelength range can be successfully used for a 

textile discrimination application with the benefit of lower cost camera hardware and higher spatial 

resolution. Since different application scenarios demand different tradeoffs, the camera hardware 

(snapshot or line scan system) is adapted accordingly. Similarly, we show how the data processing 

pipeline can be modified to meet real-time constraints in a proof-of-concept implementation. 

Chapter 3 shows how the accuracy of pixel-based analysis can be increased by an object-based post-

spatial processing step. This allows to meet the goals of a seed quantification application that requires 

high spatial resolution. Band selection and benchmarking with respect to color imaging is also 

performed. 

Chapter 4 focuses on the impact of different illumination systems and how they can be optimized with 

respect to on-chip snapshot hyperspectral cameras. This is demonstrated on the same application of 

seed discrimination used in Chapter 3. 

In chapter 5 we investigate trade-offs between different camera systems (high resolution Snapscan, 

Mosaic snapshots) where different range and spatial-spectral resolutions are available. In addition, 

this chapter compares pixel-based and image-based analysis and jointly evaluates the impact of pre- 

and post-processing methods. Moreover, all previous elements are evaluated together with different 

illumination systems. This combined evaluation of all key elements of a hyperspectral system allows 

us to derive suitable system configurations and trade-offs for the considered application. 

Chapter 6 adds the wavelength range dimension to the system parameters explored in Chapter 5, 

extending the overall system performance-cost trade-offs. 

Finally, Chapter 7 draws conclusions and presents suggestions for further research and 

implementation perspectives. 

 

Figure 1-17: Schematic illustration of the topics covered in the different chapters and their interactions
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Chapter 2 

Wavelength-range as a system parameter in 

hyperspectral imaging for textile recycling 
2 Wavelength-range as a system parameter in hyperspectral imaging for textile recycling 

As it has been introduced in Figure 1-16 of previous chapter, we are generally faced with a Devil’s 

triangle when we intend to meet the application requirements in a hyperspectral imaging system. This 

means that we cannot optimize all system requirements at the same time. For instance, we cannot 

maximize performance while simultaneously minimizing system cost and complexity.   

In this chapter, an application case is introduced where the aim is to minimize/reduce the system cost 

while still meeting performance and complexity requirements. We therefore investigate the available 

system parameters that act upon our application requirements of cost, performance, and complexity. 

This chapter shows how the choice of camera hardware, and more specifically of wavelength range, 

can be the key system parameter to consider when reducing the system cost. An implementation 

meeting the application requirement in terms of discrimination accuracy may be feasible in different 

wavelength ranges, offering then different system tradeoffs. In particular, we focus on a textile sorting 

application, where typically the SWIR range (1000-2500nm) is used. In contrast, we explore the use of 

the VNIR range (400-1000nm) for this application and show that by trading off some discrimination 

accuracy we enable other system tradeoffs with lower cost camera hardware in the VNIR range and 

higher spatial resolution available. To be able to deal with an a-priori sub-optimal wavelength range 

in this application a different data analysis method had to be implemented, where hierarchical 

classification is required to meet our application requirements in terms of performance. In a similar 

manner, we show how tradeoffs are implemented in the processing pipeline for demo purposes. This 

way, a lower complexity processing pipeline is put in place so that the required performance can still 

be met while enabling real-time processing in a proof-of-concept implementation. Finally, we 

introduce a Genetic algorithm-based method for band relevance selection, which provides us with the 

most relevant bands for discrimination in our last experiment. In this case, with the aim to reduce 

complexity and potentially enable lower spectral resolution imagers of lower cost.  

This chapter is adapted from: 

Blanch, C.; Saeys, W.; and Lambrechts, A.; “Hyperspectral imaging for textile sorting in the visual-
near infrared range”, in Journal of Spectral Imaging 8, 2019. https://doi.org/10.1255/jsi.2019.a17  
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2.1 Introduction 

The textile sector uses a huge quantity of raw materials and produces a substantial amount of waste. 

This is partly due to the fact that only a small number of wearable textiles is recycled. Most of these 

textiles are landfilled or incinerated, with a high environmental impact. The European project 

RESYNTEX (Resyntex) aims at designing and developing an industrial symbiosis between the 

unwearable blends (wool, cotton, synthetic polymers) of garment textile waste, and the chemical 

industry. To enable chemical recycling, sorting of textile material according to material/blend is 

required first. In this respect Hyperspectral Imaging has a great potential for material discrimination. 

However, the adoption of hyperspectral imaging by the industry has so far been limited due to the 

lack of fast, compact and cost-effective hyperspectral cameras with adequate specifications. To bridge 

the gap between research and industry Imec has developed a unique hyperspectral sensor concept in 

which the spectral unit is monolithically integrated on top of a standard CMOS sensor at wafer level. 

This heavily reduces the cost and improves the compactness and speed of the hyperspectral camera, 

enabling the adoption of hyperspectral technology by industry. Therefore, we evaluate the use of the 

Imec line-scan 150 sensors (Gonzalez et al., 2016) providing us with 150 bands in the 450-950 nm 

range for the purpose of textile discrimination. Most of state-of-the-art work on textile discrimination 

so far has focused on textile sorting in the SWIR range (1000-2500 nm) (T4T), (Fibersort), (Chen et al., 

2020), (Mäkelä et al., 2020). We have explored instead the feasibility for textile discrimination in the 

VIS-NIR range covered by Imec sensors since our VNIR cameras allow for cheaper and more compact 

inspection devices. In addition to this, we have investigated the potential for sorting blue denim textile 

with respect to other blue cotton textile since this is a required step for some recycling processes. To 

our knowledge there is currently no state-of-the-art work on denim discrimination in the VNIR range. 

In (Yeom, 2014) discrimination in SWIR of pure cotton versus denim is addressed and very few samples 

are considered. In (Suzuki et al., 2001) and (Morgan et al., 2004) the authors focus on discrimination 

of single textile fibers with indigo dye and this is done with UV-VIS light in either transmittance (Suzuki 

et al., 2001) or based on fluorescence (Morgan et al., 2004).   

2.2 Materials and Methods 

2.2.1 Camera systems 

The imaging system used for all tests in this study is shown in Figure 2-1, with an Adimec hyperspectral 

camera and a translation stage where the textile pieces are placed. The Imec line scan sensor acquires 

150 bands in the 450-950 nm range. Its spectral unit is integrated in the standard CMOS sensor at 

wafer level, which reduces its cost and increases the acquisition speed. This way, for standard halogen-

based illumination (325W) the system can reach a speed of 1080 lines per second.  

 

Figure 2-1: Imec hyperspectral system with Adimec linescan camera on translational stage 
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For the proof-of-concept setup we use the same type of line scan sensor, but this time integrated in a 

Ximea camera (Ximea), instead of the Adimec camera of the hyperspectral imaging setup of Figure 

2-2. The main reason for choosing the Ximea camera in the demo setup is that it connects via USB 3.0 

cable to any laptop and does not require CameraLink interface or frame grabber connection to a 

desktop PC as the Adimec camera. This allows an easier development for demo purposes.  

The dimensions of our conveyor belt are approximately 11 by 50 cm, the camera is placed at 70 cm 

on top of the conveyor belt, with a lens of 35 mm. Next section explains the hierarchical classification 

method used for textile sorting based on our hyperspectral imaging setup.   

 

Figure 2-2: Conveyor belt proof-of-concept setup 

 

2.2.2  Materials and methods 

This section describes the materials and methods used for the different experimental tests performed. 

These tests are summarized in Table 2-1 and further explained in this section. 

Table 2-1: Summary of tests performed with its corresponding camera system, sample set and analysis method used. 

Experimental Test Camera system Textile set Analysis method 

Test 1: Reduced textile set Adimec  
(450-900 nm) 

Set of 50 textile pieces of 
different materials in 4 
colors 

Color classification: Lab based and 
Material classification: QDC/SVM 

Test 2: Extended textile 
set for one color category 

Adimec  
(600-1000 nm) 

Set of 100 black textile 
pieces of different 
materials 

Material classification (SVM) 

Test 3: Proof-of-concept 
implementation 

Ximea  
(600-1000 nm) 

Set of 16 textile pieces in 
black, red and white 

PCA + QDC for both color and 
material classification 

Test 4: Denim 
discrimination  

Adimec  
(450-900 nm) 

27 non-denim and 13 
denim textile pieces 

QDC classification 
Genetic Algorithm for band 
selection 
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Test 1: Hierarchical classification for textile material discrimination 

While in the SWIR range the impact of the color tint on the textile spectra is very low, in the VIS-NIR 

range the color impact is very high. This highly increases the intra-class variability per material type 

and increases the difficulty for material classification. Figure 2-3 shows how the average spectra of 

different colors of 100% cotton samples highly varies showing therefore a strong impact of the color 

tint. We display the reflectance spectra scaled back to its digital number (2 to the power of 10 bits in 

this case). Similarly, Figure 2-4 shows another example of the strong impact of the textile color on the 

measured spectra. In this case we show spectra of several textile samples in two color types: red and 

blue. For each of the colors 3 materials are considered: 100% cotton, 100% polyester and 100% silk. 

As we can see, the spectra of same color and different material has a more similar appearance that 

spectra of same material and different color.  

 

Figure 2-3: Color impact for different colored cotton on scaled reflectance spectra 

We deal with this color influence by implementing hierarchical classification, in which color 

classification is followed by material classification per color category. Therefore, we focus on testing 

mainly 4 color categories: black, white, blue and red, for which we have samples available for most of 

the different materials considered (cotton, polyester, wool, viscose, polyamide, silk, acrylic and cotton 

blends). All samples are extracted from waste textile garments provided by our partner in Resyntex 

project SOEX (Soex). To facilitate the scan process with our camera system we cut the textile garments 

received in approximately 5x5 cm samples with the typical thickness of the sample ranging between 

one and a few mm. Since some of the textiles are thin there can be an impact of the background 

material on the acquired spectrum of the textile sample. To avoid this, we use a black velvet 

background material of flat and low spectral response over the whole range. At this stage our set of 

available samples was rather limited (~ 50 for all four colors altogether), consisting of 1-3 samples at 

most per each color and material category. 

Not only the color tint has a strong impact on the spectra in the 400-1000 nm range, but there is also 

an impact of the textile material considered in the spectra. This results in the fact that even for 

identical color there will be differences in the measured spectra (otherwise no material discrimination 

would be feasible), this phenomenon is called metamerism (“Metamerism (color)”, 2021) and refers 

to different spectral signatures showing in the visual domain as the same color. 
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Figure 2-4: Scaled reflectance with combined material and color impact 

Due to this metamerism, it is advisable to approach color classification by translating the spectra into 

three color parameters typically considered for colorimetry: the CIE ‘L’, ‘a’ and ‘b’ parameters (“CIE 

1931 Color Space”, 2021). These parameters represent all possible colors since they mimic the way 

our eyes interpret color. The three coordinates of CIELAB represent the lightness of the color (L= 0 

yields black and L= 100 indicates diffuse white; specular white may be higher), its position between 

red/magenta and green (a*, negative values indicate green while positive values indicate red) and its 

position between yellow and blue (b*, negative values indicate blue and positive values indicate 

yellow). The L,a,b parameters are computed from the spectral signature as given in the equations in 

(“CIE LAB”), (“CIE 1931 Color Space”). With these equations the L,a,b values can be computed based 

on the given spectrum, S, the illuminant function I, (here assumed D65 standard for average daylight 

(“D65 illuminant”) and the CIE observer functions, x,y,z, (“CIE 1931 Color Space”) given by Figure 2-5 

corresponding to a 10 degree viewing angle (“CIE Standard Observers”). These observer functions, x, 

y and z are the numerical description of the chromatic response of the observer, mimicking the tri-

stimulus response of the human eye to blue, green and red colors respectively.  

 

Figure 2-5: Sensitivity in CIE observer functions 

Based on the L,a,b values we can then group colors in the color space according to pre-defined color 

categories. Since we do not have a high variety in sample color content, we choose 18 color categories 

coming from our training set. The categories selected within the available color samples are: 

‘Black’,’Grey’,’White’,’Darkblue’,’Blue’,’Lightblue’,’Turquoise’,’Green’,’Darkgreen’,’Bordeaux’,’Red’,’

Orange’,’Yellow’,’Pink’,’Fucsia’,’Flesh’,’Purple’,’Darkpurple’ and ‘Beige’. The purpose of this selection 

of this high number of colors is to test the accuracy of our color classifier. However, a color 

classification into a lower basic category may be sufficient to perform material classification 

afterwards. Color classification is then performed by means of L,a,b parameter computation of the 
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measured spectrum and selection of L,a,b value with closest Euclidean distance from the colors 

available in the library. 

To do so we first use a training set of different textile colors to build a library. This training set must 

contain different color samples that are representative for all the color categories identified. The 

library of Lab values is built by computing the mean Lab value of the textile samples in that category. 

Finally, to validate this approach, we use a test set with a different set of samples than the ones used 

as training set. We compute the mean Lab value for each textile piece in the test set and compare it 

with the available library Lab values. The one with the closest Euclidean Distance (“Euclidean 

Distance”) is selected as the most reassembling color (or corresponding color label). When a color in 

the test set is not present in the available color library then the most similar color (in Lab values) will 

be selected. 

After color classification is made, material classification is then performed per color category. From 

the spectra gathered for each textile sample and color we use 50% as training set for the classifier and 

the remaining 50% as testing set. Ground truth is available since we only use materials for which we 

know its composition. We use the Quadratic Discriminant Classifier (Naes et al., 2004) implemented 

in the Perclass software (PerClass BV 2008-2019). Support Vector machines (Hsu, 2016) also showed 

similar discrimination capabilities. 

Test 2: Extended test for black color category 

We have extended previous material discrimination test for one color category: black textiles. We now 

test a set covering almost 100 different black textile pieces coming from a real and representative 

waste textile sample of around 1ton of cloth items. In this ton of waste textile, specifically textile 

garments such as trousers or t-shirts, we found a relative abundance of material, as given in Table 2-2. 

This means that for example out of the 100 textile samples 33 of them correspond to pure cotton 

while only 1 to acrylic. The statistic or relative abundance found in these samples corresponds as well 

with the ones found in literature (Étude de Caractérisation des TLC, 2014) and can be considered 

therefore representative for typical garment waste. We start testing with black color items since it is 

expected to be an abundant color in the fashion industry (Bain, 2018).  

The material composition abundance among all our samples is given in percentages in Table 2-2:  

Table 2-2: Relative abundance in extended black set 

Pure (%) Blend (%) 
Cotton 33% Cotton & PET 18 % 

Viscose   8% PET & Cotton   6.8% 

PET   4.5% Cotton &Viscose   3.4% 

Polyamide   4.5% Viscose &PA   2.2% 

Wool   2.2% Acrylic & PA   2.2% 

Acrylic   1.1% Cotton & PA   2.2% 

Silk   1.1% Acrylic & Wool   2.2% 

Rayon   1.1% Acrylic & Cotton   1.1% 

Linen   1.1% Wool & PET   1.1% 

 

In this case, due to the increased number of materials, the classifier that performs best is an SVM 

classifier with RBF Kernel (SVM, PerClass). Training samples are based on spectral means of 200-pixel 

regions of every cloth item. The averaging is done in order to reduce the noise level, reduce the intra-

class variability and reduce the SVM training time simultaneously. As in previous experiment we train 

with 50% of the available mean spectra but 12 independent textile samples are also kept for validation 
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(5 for cotton, 1 for viscose, 1 for cotton & viscose, 1 for polyester, 1 for wool, 1 for polyamide, 2 for 

cotton & polyester). Since cellulose materials (such as cotton and viscose) are treated together in the 

recycling process we can group both in a common class. 

Note also that cellulose material (cotton & viscose), both as pure and in a blend (often with polyester) 

accounts for almost 70% of the textile waste. Cellulose is therefore, in pure form and in blend, one of 

the most economically relevant materials for textile recycling processes. The rest of pure materials 

such as polyester, polyamide, wool and silk account for around 15% of the total waste and they are as 

well quite relevant materials for further recycling. Other minor blends (e.g acrylic and polyamide 

blends with any other material) have very low presence and are discarded from this study due to its 

low relevance for the recycling processes. Blends of polyamide and acrylic are more difficult to process 

for recycling and in addition, not economically viable due to its very low abundance. We label all these 

materials in the ‘Other material’ category. 

Test 3: Proof-of-concept implementation 

We show a proof-of-concept implementation with the purpose to demonstrate real-time capability of 

textile discrimination with hyperspectral imaging. To achieve this, we need a modified processing 

pipeline better suiting our real-time constraints. We use the hierarchical classification scheme, 

composed of color classification first and second, material classification per color. To do so, we select 

a subset of the previously mentioned samples and place them on a small conveyor belt. Due to the 

limited space on the conveyor belt, we restrict ourselves to a subset of 16 of the previous samples. 

Figure 2-6 below shows the materials used in the demo and their composition. 

                                         

Figure 2-6: Textile materials included in the demo set 

As already explained, textile sorting in the VNIR range requires a hierarchical classification approach 

to deal with color interference in the VNIR spectrum: 

- Color classification to establish the textile color category 
- Material classification within each color category 

We add a first additional step which consists in classifying background versus objects. This allows us 

to later do some filtering or majority count vote at object level, which corrects a few miss-

classifications on individual pixels. After object discrimination, color classification is performed on the 

object pixel. Depending on the color label obtained the corresponding material classifier per color 

category is used. The result is a classifier label indicating a material type regardless of the textile color. 

Depending on the classification label attached to each pixel of the image a different color is shown on 

the screen. The colors used per classified label are green for polyester, blue for wool, pink for silk, 

yellow for cotton and red for viscose. 

Both Lab-based classifier for color classification and QDC and SVM classifiers trained and presented in 

the previous section for material classification could have been used to classify the textiles in the 

Wool 

Polyester Silk Viscose 

Cotton 
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proof-of-concept implementation. However, to be able to meet real-time classification in our 

implementation, we need to adapt our processing pipeline.  For this purpose, we skip LAB parameter 

computation for the color classification stage since this is a costly processing step. Instead, we modify 

previously presented step in color classification by training a QDC classifier directly from the spectra, 

to discriminate between red, white, and black color textiles, regardless of the material. For robust 

discrimination of a high number of colors, LAB parameter computation might be required, but for the 

three colors considered our simplified pipeline provides an accurate and more cost-effective 

discrimination, helping us reach real-time constraints. Second, to speed-up classification we use 

Principal Component Analysis as a preprocessing step for both color and material classifiers. Principal 

Component Analysis (Smith, 2002) reduces the spectral input dimensionality of the input, which is 

here mainly required to increase speed performance. This way, as the classification module is 

implemented on a reduced dimensionality the classification speed increases, helping us reach our real-

time classification goal. Therefore, in our proof-of-concept implementation each classifier module 

consists in Principal Component Analysis extraction followed by a Quadratic Discriminant Classifier 

(Naes et al., 2004), as implemented in the perClass hyperspectral analysis software (PerClass BV 2008-

2019). Training of the classification algorithms is done offline. After training, a combined executable 

file of the classifier (PCA + QDC) is created so that it can be used inline in the proof-of-concept 

application. In addition, an object level-based majority count vote is implemented for further accuracy 

increase. 

Test 4: Denim discrimination 

Denim textiles are mainly composed of cellulose and constitute around 15% of the total waste stream. 

Therefore, denim processing is very relevant for the recycling industry.  

The most common denim textile is indigo denim, in which the warp thread is dyed, while 

the weft thread is left white. In the textile recycling process de-coloration of textiles is generally 

required prior to any further chemical processing of the raw textile components 

(cotton/polyester/wool...). In this respect, since the indigo dye used in denim materials requires a 

specific de-coloration process, the separation of blue denim material prior to de-coloration becomes 

a useful step. For this purpose, we tested the discrimination possibilities as well of VIS-NIR 

hyperspectral to separate blue denim with respect to any other blue textile types. Note that in terms 

of composition both denim and other cotton/polyester blends can be very similar. 

To test denim discrimination, we have used 27 non-denim textiles and 13 denim textiles. Non-denim 

textiles are mostly polyester and cotton blends, some very similar in composition to Denim. As in 

previous tests the samples originate from textile garments (trousers mainly) and are cut to roughly 

5x5 cm. Additionally, a black velvet material with low and flat spectral response is used as background 

to minimize spectral interference from the background. We consider 4 classes: ‘Background’, ‘Denim’, 

’Other’ (i.e blue textile but non-denim) and ‘Paper’ (label attached to our textile samples). For denim 

discrimination we train a QDC classifier, since this classifier has shown good performance in previous 

textile discrimination tests as compared to linear classifiers, with 10.000-pixel spectra per class, out of 

which 50% are used for training and the other 50% for testing. In addition, we use as independent 

validation samples 2 pieces of denim textile and 3 pieces of non-denim. For this purpose, they are kept 

out of the training set. 

To find then the most discriminative bands in our wavelength range we use a Genetic Algorithm 

(Holland, 1992) in combination with our classifier. The aim is to find a near-optimal number of reduced 

bands providing still high accuracy classification. We use our own implementation of a genetic 

https://en.wikipedia.org/wiki/Indigo_dye
https://en.wikipedia.org/wiki/Warp_(weaving)
https://en.wikipedia.org/wiki/Weft
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algorithm, based on our previous work in (Blanch et al., 2012) and code it in Matlab 2015 (The 

Mathworks, Natick, MA, USA). 

The behavior of the Genetic Algorithm is summarized here and in Figure 2-7: 

• For a desired number of subset bands/wavelengths (e.g 3...) an initial ‘population’ of 
individuals is created. Every ‘individual’ consists of a specific set of random band selections 
(e.g. [630 nm, 770 nm, 900 nm]. We use a population of 20 individuals where an individual 
with a uniform band selection over the range is also included in the initial population. This is 
done to avoid missing any band ranges and make sure that solutions covering the whole range 
are explored.  

• For each individual solution (band selection) the fitness function of the Genetic Algorithm is 
computed as the mean classification accuracy obtained for that band subset on a fixed training 
and testing set. 

• We use an elitist selection of the fittest individuals, together with the crossover and mutation 
mechanisms, as described in our previous work in (Blanch et al., 2012). In this case, we use a 
crossover rate of 0.8 and a mutation rate of 0.6 and we focus on an algorithm optimizing a 
single objective, given by our fitness function as the mean classification accuracy achieved. 

 

The Genetic Algorithm iterates for a given number of iterations where the best ‘individual’ or band 

subset is kept. In our case 10 iterations are sufficient for convergence and different runs of the 

algorithm show good repeatability of results.  

 

Figure 2-7: Schematics of Genetic Algorithm 

 

2.3 Results and discussions 

2.3.1 Test 1: Hierarchical classification for material discrimination 

Table 2-3 shows an example of color classification results when applied on a test set of wool materials 

with a specific Lab value (left column) who gets assigned to the closest Lab value in the library (right 

column).   

Table 2-3: Real color of wool (left) and assigned color classification label based on Lab values (right). 

Wool real colour  L   a b Classifier label   L a b 
Black 29.0 -8.0 -7.4 Black       34.5 -12.2 -12.8 

Red 58.2 14.3 -17.2 Red           54.2 16.9 -12.9 

Light green 60.4 -6.0 02.2 Beige         69.5 -5.9 -4.1 

Beige 63.0 -0.7 -4.2 Beige          69.5 -5.9 -4.1 

Blue 40.9 -8.1 -10.8 Dark blue  43.1 -7.0 -10.2 

Combination of 

solutions, and 

mutation creates 

new solutions 

Evaluation of 

solutions: 

classification 

accuracy for a given 

classifier (SVM) 

Elitist selection of 

best solutions  
Iterative process 
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The color classification results are generally good. Only for a few colors that are not so well 

represented in current library there are slight deviations from the actual color and the color label 

attached by the classifier. This is due to the limited number of categories considered so far. This way, 

for instance ‘light green’ wool material ends up classified as ‘beige’ (see Table 2-3). Extending the color 

library to include some lighter shades of green and blue would increase the accuracy of color 

classification in this case. 

For each textile color category, material classification is performed. Figure 2-8 shows the material 

classification results for a ‘red’ set of materials.  

               

Figure 2-8: False color image of red textiles (left) and corresponding classified image (right). 

      While at pixel level there are few miss-classifications at object level the classification is 100% 

accurate. Similar results are obtained for other color categories tested and summarized in Table 2-4 

where the classification accuracy per material and color set is indicated. 

Table 2-4: Material pixel classification accuracy per color 

Color set Black White Blue Red 

100% Cotton 100%    93% 92.5% 91.5% 

100% PET 100%    95% 100% 95% 

100% Wool 100%  100%  90% 95% 

100% Viscose   97.5%  100%   - 92.5% 

100% Polyamide 100%  100%  75% 100% 

100% Silk 100%  100%  90% 100% 

100% Acrylic      -    90% 100% 100% 

  80% Cotton    -    60%   88% 70% 

   60% Cotton   100%    90%    - 85% 
 

2.3.2 Test 2: Extended test for one color category 

When inspecting the spectral signature of different black materials, we first notice that some pure and 

blend materials have an unusual and very low reflectance along the whole VNIR range. Figure 2-9 

shows such an example where the spectral signature of multiple black cotton samples is compared. 

Note that cotton item 11 has a distinctively low reflectance spectra as compared to all other black 

cotton samples. We observe this phenomenon in less than 10% of the samples of 

cotton/viscose/cotton blend. The reason for this different signature is not known although it is also 

found in literature and treated as outlier (Haran, 2008). It is not due to the impact of the background 

underneath, but one possible explanation could be the dye applied onto the cloth item. For the 
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purpose of the analysis, we consider these materials as outliers that are identified and discarded prior 

to material classification. Since cellulose materials (such as cotton and viscose) are treated together 

in the recycling process we can group both in a common class. The trained classifier results in a 100% 

accuracy of classification for the textile samples from the training set.  

 

Figure 2-9: Scaled reflectance spectra of pure cotton samples 

Figure 2-10 shows a classified image for black textiles in the training set. At pixel level there are few 

miss-classifications, but we can see that at object level all different materials can be well 

discriminated. This initial version of the hyperspectral sensor suffered from a bit of ghosting effect at 

the sides of it. This can be seen particularly at the bottom left corner, interfering with the classification 

of the cotton and viscose samples. 

 

Figure 2-10: False color image (left) and Classified image (right) for different black textile composition. A ghosting effect 
could be appreciated at the sides of the image in this early version of the sensor (bottom left corner). 

To test the generalization capabilities of the classifier we use an independent test set of samples and 

focus on the most relevant materials for the recycling processes, namely cellulose, polyester, cellulose 

blends, polyamide and wool. We therefore use an independent test set containing the following 

materials and number of cloth items: 5 cotton items, 1 viscose, 1 polyester, 1 polyamide, 1 wool and 

3 cotton blends (1 cotton/viscose, 1 cotton/pet and 1 pet/cotton). The classification accuracy on the 

independent test set is shown in Table 2-5: 
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Table 2-5: Classification accuracy on test set 

Test set material Accuracy (%) 

Cotton/Viscose    68% 

PET    70% 

Polyamide  100% 

Wool  100% 

Cotton&PET Miss-classified 50% as 
cotton and 40% PET 

PET&Cotton Miss-classified as cotton 
 

As we can see, the classification accuracy of most of the samples is reasonably high, especially pure 

samples. However, the 2 cotton and polyester blends are miss-classified. The cotton & PET blend 

spectral averages get miss-classified as either pure cotton or pure PET, which is at least consistent 

with the blend content. The ‘PET & Cotton’ blend gets miss-classified as cotton. The intra-class 

variability of cotton & polyester blends may require a higher number of samples within the training 

set for the classifier to achieve good generalization capabilities.  

In this respect, mixed textile classes such as polyester and cotton blends, with either polyester in 

higher percentage (‘PET & cotton’) or cotton as main constituent (‘Cotton & PET’) are considered 

separate classes, even though they could be considered a mix class where the specific fraction of 

cotton/polyester could be potentially estimated. For instance, Rodgers et al. (2009) used pre-

processing and partial least square regression (PLSR) to estimate the degree of cotton and polyester 

in textile blends in the SWIR range (1000-2500 nm) with an accuracy over 90%. In our case, we did not 

have a high enough number of blend samples to perform this kind of analysis. Therefore, and since 

that sufficed the requirements of our recycling process, we preferred to separate blends in two main 

groups, those of higher cotton and those of higher polyester content. Another approach to deal with 

class mixtures would be using soft labels. For example, Come et al. (2008) proposed a model to 

estimate mixtures based on the use of soft labels where a probability of class membership is assigned. 

It is recommended to extend the total number of textile samples considered in this study to obtain a 

more representative training sample of existing textiles and provide a robust validation. However, we 

were limited to the available black samples in 1 ton of clothes within one single color category, due to 

the material discrimination per color category required in the VNIR range.   

We leave for future work as well the discrimination within extended sample sets in other color 

categories (white, blue, grey...) where a more robust discrimination may be feasible than for black 

color items. In addition, in the textile market we can find combinations of textile blends as well of 

more than two components (e.g blends of cotton, polyamide and acrylic) which further increases the 

variability within textile samples. Covering all this textile variability and identifying these blends or its 

major components would be required to develop a system that can sort all these types of textiles. 

Finally, knowledge on the chemical recycling process of the different materials could help us tune the 

classification scheme. For instance, we know that viscose and cotton are treated together as cellulose 

material, which therefore can be grouped in the same class. Cotton blends can also be added to the 

cellulose stream but are initially sorted to better estimate the process yield. Moreover, we know that 

in the cellulose processing the presence of other textile types such as polyester or cotton blends is not 

jeopardizing, therefore miss-classifications of other materials into those is not critical, but only 

affecting slightly the yield estimation. Similarly, the processing of proteins from wool or silk is not 

affected greatly by other materials. On the contrary, the processing of Polyester or Polyamide requires 
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a pure flow with no other textiles present. In general acrylics are not processed but should be better 

removed from the previous flows. Although we can expect lower robustness in the VNIR range (400-

1000 nm) with respect to the SWIR range (1000-2500 nm), the VNIR range is still a relevant one since 

it allows for compact and faster inspection methods. Moreover, we believe it provides better 

discrimination capabilities than SWIR for denim textiles, as we will explain in the following sections.  

2.3.3 Test 3: Proof-of-concept conveyor belt demo  

The effect of majority count vote at object level can be seen in Figure 10a/b. This step cleans small 

miss-classifications present in a few pixels (usually at borders, creases) as seen in the screen shots of 

10a and 10b. With the additionally implemented object level majority vote the accuracy becomes 

100% on each textile. Without this additional step the accuracy is somewhere above 90% of pixels 

with correct classification on each textile. 

The classification speed of our current demo implementation is around 8 cm/s. This is a fast-enough 

speed to appreciate the textile pieces moving fast on the conveyor belt while still being able to 

visualize and control the classified output comfortably. 

 

Figure 2-11a and b: Classification output at pixel level (left) and after object-level majority vote (right). Each color 
indicates a different material class. 

However, there is still quite some room for parallelization and memory efficient optimizations. This 

would lead to considerably higher conveyor and classification speeds since our camera and conveyor 

belt system can easily deal with up to 80cm/s or 0.8 m/s, which would be enough for processing 1 

cloth item/s. 

The initial pilot system in the Resyntex project expects to reach speeds of 100kg/h of processed 

textiles. This is equivalent to 500 tons/year or 1 cloth item every 10 seconds (assuming a 300gr item 

on average). In the system under preparation each textile item will be processed separately and, 

according to the acquired spectra, sorted in a corresponding basket by an air-separator system.  

2.3.4 Test 4: Denim versus non-denim discrimination 

The tests performed to assess the discrimination capacity of VNIR range for blue denim textiles versus 

all other non-denim blue textiles show that accurate discrimination is feasible. Non-denim textiles are 

mostly polyester and cotton blends, some very similar in composition to Denim. Table 2-6 shows the 

pixel classification accuracy obtained in the 470-900 nm range. We train the classifier to discriminate 

the background and paper label for better visualization of the classified image but show here the 

accuracy of the relevant classes of denim and non-denim (‘Other textile class’). 
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Table 2-6: Model performance for discriminating denim versus non-denim 

Test set material Accuracy (%) 

Blue Denim    98% 

Other (Blue non-denim)    97% 
 

All 5 textiles in our independent test set (3 non-denim and 2 denim) are accurately classified for over 

90% of the pixels. An example of output of a classified textile image is shown in Figure 2-12 with the 

independent validation denim sample highlighted. Accurate discrimination of denim versus non-

denim textiles can be seen, even in cases where the color tint is very similar. 

 

Figure 2-12: RGB image (right) and classified image (left) for denim/non-denim mix 

The band relevance study performed with a Genetic Algorithm results in a selected subset of 3 bands 

(624, 696 and 884 nm) for which a discrimination accuracy of 90% can be obtained for both our denim 

& non denim set of blue textiles. Note that the found to be most discriminative wavelengths do not 

belong to the blue range of the spectra (450-595 nm) but closer to the visible range limit (700 and 

almost 900 nm) and one band in the red range of the spectrum (~ 624 nm).  

Higher spectral ranges, such as SWIR going from 1000 nm on to 1700 or 2500 nm are more agnostic 

from the color influence. This has the advantage of suffering lower or no interference from the textile 

color and being therefore more robust for material identification regardless of the color. However, in 

the case of blue denim discrimination this is a disadvantage since the chemical composition of denim 

is very similar to those of non-denim textiles, namely a cotton and polyester blend where cotton is in 

higher percentage. This, together with the good discrimination achieved in our tests, makes us believe 

that the VNIR range is more useful for the step of denim textile discrimination prior to textile recycling 

processes. 
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2.4 Conclusions 

The feasibility study performed over a variety of pure textile materials (cotton, viscose, polyester, 

wool, silk and polyamides) and blends (cotton and polyester, viscose and polyester) is promising and 

seems to indicate that material discrimination can be performed by means of hyperspectral imaging 

in the VIS-NIR range. Achieving the required performance in this range, which has generally lower 

discrimination power for this application than the SWIR range, involved using a different data analysis 

approach. In order to guarantee a robust sorting system for all textiles varieties it is advisable to 

include a more extensive sample set in the training phase, as well as more textile mixes. In the same 

spectral range, we have also assessed that good discrimination between blue denim and blue non-

denim textiles can be made, which is a required step prior to textile discoloration. 

Being able to sort textiles in the VNIR range brings many advantages since it offers higher spatial 

resolution, cheaper and more compact cameras than the traditional SWIR range. Moreover, the VNIR 

range enables sorting of blue denim, an abundant and relevant component of textile waste that could 

be difficult to sort in the SWIR range. 
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Chapter 3 

Exploiting the spatial dimension to increase 

performance in fast ingredient quantification 

with hyperspectral imaging 

3 Exploiting the spatial dimension to increase performance in fast ingredient quantification with hyperspectral imaging.  

In this chapter, we introduce our second application case: detection and quantification of seed 

ingredients in a flour mix.  This is an offline application case, so cost and complexity requirements are 

not so challenging in our Devil’s triangle. Our priority is to meet the required performance in this 

application, which is expressed as accuracy in seed count. With respect to the Performance devil’s 

triangle (right of Figure 3-1) we can see that acquisition speed is not a priority here, while 

discrimination power and spatial resolution are relevant parameters for our quality inspection and 

quantification of small seeds and other ingredients. For this reason, we choose a high spatial-spectral 

resolution camera. However, benchmarking with respect to color imaging is still advisable since a color 

camera might be more cost- effective if performance is not compromised.  

 

Figure 3-1: Devil’s triangles illustrating the trade-offs with respect to application and performance requirements. 

An intermediate goal of this application is to have high discrimination power in terms of spectral 

discrimination to be able to identify the different ingredients. However, the final goal is to be able to 

accurately quantify each ingredient abundance. Therefore, we need to satisfy the first goal (ingredient 

discrimination) with just enough performance to meet the final goal (ingredient quantification) with 

the required accuracy. That means, for instance, that a 70%-pixel discrimination accuracy might be 

sufficient to meet a 95% seed quantification accuracy. We will also investigate if the use of data 

preprocessing and the integration of spatial information in additional post-processing can increase the 

overall system performance sufficiently to reach our application targets. 

This chapter is adapted from: 

Blanch, C., Saeys, W. & Lambrechts, A. “Fast ingredient quantification in multigrain flour mixes using 

hyperspectral imaging”, in Journal of Food Control, vol. 118, 2020. 

https://doi.org/10.1016/j.foodcont.2020.107366 

https://doi.org/10.1016/j.foodcont.2020.107366


 _____ EXPLOITING THE SPATIAL DIMENSION TO INCREASE PERFORMANCE IN FAST INGREDIENT QUANTIFICATION WITH 

HYPERSPECTRAL IMAGING.
 

44 
 

3.1 Introduction 

Multigrain bread is a type of bread prepared with two or more types of grain. Grains used include 

barley, flax, millet, oats, wheat, and whole-wheat flour, among others. Some variants also 

include edible seeds in their preparation, such as flaxseed, quinoa, pumpkin seeds, and sunflower 

seeds. Sharkma et al (2008) have shown that multi-grain bread has higher nutritional value in proteins, 

fibers, antioxidants when compared to traditional wheat bread. Other researchers have shown that 

whole grain bread has been shown to have an impact on reducing cholesterol and triglycerides in the 

body (Giacco, 2010; Talaei, 2013). This makes it a healthy alternative to traditional wheat bread. Due 

to the uptake of the healthy lifestlyle concept, multigrain read is becoming increasingly popular with 

consumers and it is becoming a main driver for growth in the bread segment (Bakery products market- 

growth, trends and forecast 2019-2024). 

Flour milling and bread baking have become sophisticated processes with a high level of process 

technology, high volume, and efficient production. Quality Control, whether on-line or through 

sampling and laboratory analysis, is therefore becoming ever more important to achieve consistent 

ingredients, process conditions and products so as to guarantee its nutritional value and maintain 

customer satisfaction. To this end, several standard quality control methods are described ranging 

from wheat kernel inspection to chemical property analysis such as moisture or ash content (D. 

Shelton et al., 2004).  

In the case of multigrain flour mixes, it is important to verify that the different ingredients are present 

in the desired range. This requires the analysis of a subsample of the flour batch where all seed and 

non-seed ingredients have to be discriminated and then quantified to assess whether their presence 

in the mix is according to the recipe. This quality inspection is currently done manually, and the 

procedure involves manual sieving with multiple sieve sizes to separate the different 

seeds/ingredients and then weight each sorted ingredient independently. This is very time-consuming 

and as a result only a very small amount of the flour batch is typically inspected. 

The commercially available automatic seed counting machines cannot solve this quantification 

problem, because these devices only measure one seed type at a time. Therefore, to quantify the 

ingredients in a multi-grain mix with these systems the seeds should be sorted first and measured 

separately. This is a cumbersome process. Moreover, more heterogeneous and fractionable 

ingredients such as wheat or barley flakes may not be addressed with these machines.  

Machine vision is already widely used for food quality analysis (K. Patel et al., 2012). More specifically, 

in the flour industry, machine vision with color imaging has been used for cake crumb color analysis 

according to the type of flour used (F. Rezaghli et al., 2017) or for wheat kernel inspection, and brown 

versus yellow flax seed sorting (T.C. Pearson et al., 2013). (F. Kurtulmus et al., 2015) reported an 

accuracy of 84% in the identification of different pepper seed varieties for machine vision with color 

cameras. Similarly, P.M Szczypiński et al, (2015) classified barley seed varieties based on shape, color 

and texture features with accuracies between 67 and 86%. 

Hyperspectral imaging, combining spectroscopy and imaging, adds an extra dimension to machine 

vision techniques by providing images at a larger number of more narrow wavebands. Thanks to its 

higher discriminating power, it is gaining attention as a non-destructive, real-time detection tool for 

food quality analysis and control (Amigo et al., 2013; H.Huang et al., 2014; D. Lorente et al., 2011). 

Specifically for flour inspection, it has been shown to provide peanut contaminant detection in flour 

(A.Herrero et al., 2015; X. Zhao et al., 2018) and measurement of chemical properties such as protein 

https://en.wikipedia.org/wiki/Bread
https://en.wikipedia.org/wiki/Food_grain
https://en.wikipedia.org/wiki/Whole-wheat_flour
https://en.wikipedia.org/wiki/Edible_seed
https://en.wikipedia.org/wiki/Flaxseed
https://en.wikipedia.org/wiki/Quinoa
https://en.wikipedia.org/wiki/Pumpkin_seeds
https://en.wikipedia.org/wiki/Sunflower_seed
https://en.wikipedia.org/wiki/Sunflower_seed
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(Caporaso et al., 2018), sugar or azodicarbonamide (Wang et al, 2018). Most reported studies on flour 

inspection with hyperspectral technology focused on the SWIR range (1000 to 2500 nm), which 

contains the most detailed chemical information.  

Additionally, the use of hyperspectral imaging in the VNIR range has been shown to increase further 

the discrimination power for seed quality assessment. Ma et al. (2015) obtained a classification 

accuracy of 97% for sunflower seed quality inspection with hyperspectral imaging in the VNIR range. 

Vu et al. (2016) reported that adding VNIR spectral information to shape-based features increased the 

classification accuracy for rice seed varieties up to 84%. Boelt et al. (2018) reported on the application 

of hyperspectral imaging for sugar beet seed maturity level discrimination with 95% accuracy. Finally, 

Carstensen (2018) proposed a spectral imaging system in the VNIR range for discrimination of durum 

wheat versus common wheat seed reaching 99% accuracy. Most previous studies focused on viability 

or quality prediction for one type of seed and show the added value of hyperspectral imaging 

(combining spectral information and spatial/shape information). 

Feng et al. (2019) presented an extensive review on existing studies with hyperspectral imaging for 

seed quality and safety inspection. Most of the reviewed work on seed discrimination with 

hyperspectral imaging uses the spectra either from ROIs in bulk samples (Zhang et al., 2012, Kong et 

al., 2013) scanning one seed type per image, or by extracting the mean spectrum from a ROI of each 

individual seed (Sun et al., 2016). Vermeulen et al. (2018) showed that 99% classification accuracy 

between durum and common wheat kernels could be achieved by combining spectral and 

morphological features. Choudhary et al. (2009) and Manley et al. (2011) worked with spectra at pixel 

level, but with lower resolution imaging in the SWIR range. In all reviewed studies, each image was of 

a specific seed class/variety and different types were never mixed in one single image. Therefore, the 

aim of this study was to identify multiple seed and non-seed ingredients in one scan, while the spectra 

of each individual pixel are used for discrimination. 

To be able to accurately discriminate these similar looking seed or grain ingredients it is expected that 

more spectral information is required than the R, G and B channels used in color imaging. Moreover, 

we focus here on an industrial inspection application that requires high spatial resolution since we 

need to inspect sufficient amount of multi-ingredient flour mix (imaging enough seeds/flakes per scan) 

and this mix often consists of small seeds (e.g poppy, chia...). For this reason, it was assumed that the 

additional chemical information provided by the SWIR range would not be as relevant as having the 

high spatial resolution available in the VNIR range. 

In addition, for industrial inspection we need high acquisition speed to sample enough product, while 

retaining enough discrimination power. From previous studies, only Carstensen et al., (2018) 

addressed fast and high-resolution imaging in the VNIR range. However, this was done for a maximum 

of 20 spectral bands and to discriminate between only two wheat varieties. 

In contrast, in our industrial application we need fast acquisition of multiple seed and non-seed 

ingredients simultaneously. These seeds will be of different varieties and adjacent to each other, 

which further challenges accurate discrimination and quantification requiring high spatial and spectral 

resolution. Moreover, to be able to estimate component abundance in weight we need to assume 

similar thickness for some ingredients such as flakes. However, in practice, we can expect a variability 

of around 30% in the flake thickness, as reported for oat (Rosentrater et al., 2018) or for other types 

of flakes (Mathison et al., 1997), (Schwandt et al., 2017). 
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To the best of our knowledge our study is the first to focus on the use of hyperspectral imaging for 

accurate seed type discrimination and quantification in a multiple seed and flake type mix in industrial 

inspection.  

3.2 Materials and Methods 

3.2.1 Hyperspectral imaging setup 
 
Figure 3-2 shows the imaging system used: a snapscan camera (Pichette et al., 2017), which offers 

both high spatial resolution (up to 7Mpixels) and high spectral resolution (150 bands) over the 

wavelength range of 470 to 900 nm. Thanks to its internal translation stage, there is no need for an 

external scanning movement. Scanning is handled internally, performing data-set acquisition as easily 

as with a snapshot camera. Full hyperspectral images can be acquired in less than 10 seconds.   

 

Figure 3-2: Imec Snapscan System with Snapscan camera USB-connected to laptop 

3.2.2 Multigrain flour samples 

Table 3-1 shows two typical flour formulas that we replicate in our tests. We can see that the most 

abundant ingredient is wheat flour, while the seed ingredients are present in small percentages. In 

this respect, the quality inspection of ingredients requires that the estimation error on the mass 

fraction is below 1%.    

Note that the relative abundance of wheat flour cannot be estimated based on a hyperspectral image 

since no 3D or depth information from the layer of wheat flour can be obtained. Therefore, it was 

decided to sieve the flour away from the flour-mix. This allows to weight the flour separately and 

prevents flour from covering other ingredients and making them undetectable for the hyperspectral 

camera. 

Table 3-1a: Composition of flour mix formula 1 

Ingredients Sunflower 
seeds 

Wheat 
bran 

Yellow 
millet 

Red 
millet 

Poppy 
seeds 

Sesame 
seeds 

Brown 
linseed 

Corn 
crispy 

Wheat 
flour 

Percentage(%) 1.75 4.00 2.00 2.00 1.75 2.00 2.00 1.75 84.75 
      Table 3-1b: Composition of flour mix formula 2 

Ingredients Oat flakes Cracked wheat Barley flake Linseed Corn crispy Wheatflour 

Percentage (%)    5.00       2.50       5.00   2.50     3.75   81.25 
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We created five flour mix samples of 5 g for formula 1 by weighting the different ingredients to respect 

their mass fractions listed in Table 3-1 and b. The error on the weight measurement from our device 

being around 0.01 gr. We then mixed the ingredients in a petri dish, sieved away the flour and imaged 

the petri dishes with the hyperspectral camera. For formula 2 we also created five mixes, but in this 

case, we varied this time the absolute weight of non-seed ingredients. An area of roughly 2000x2000 

pixels (4Mpixels) was imaged to match the size of the petri dish. Since some of the ingredients in this 

application can be very small (such as the poppy seeds), an imager with high spatial resolution is 

required. Figure 3-4 shows a close-up of a complete image of Formula 1 ingredients in Figure 3-3.  

 

Figure 3-3: Image of Formula 1 with indicated cropped portion for Figure 3-4     

 

Figure 3-4: Crop of Formula 1 image with indicated ingredients. 

As previously mentioned, we have sampled 5 g of formula 1 for every petri dish and used 5 petri dishes 

per recipe. In this respect, the suitable amount of recipe ingredients to be inspected from the 

produced formulas is unknown but it depends on the homogeneity degree of each ingredient. In this 

sense, the more homogeneous the ingredients the lower amount required to achieve representative 

sampling of it. In our case, the reference implementation for this application is human visual 
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assessment based on a single petri dish, followed by manual sieving, and counting of each separate 

ingredient. Therefore, the use of an automated imaging system for discrimination and quantification 

offers clear advantages: a higher speed automation of the quantification process and with it an 

increased capacity for product sampling. 

3.2.3 Preprocessing and classification methods  

We first define a ground truth by creating masks selecting different seed types. From the masks 1000 

spectral pixels are randomly selected, corresponding to roughly 20% of the available ingredient pixels 

in the full image. Out of these 1000 spectra per ingredient type, 50% were randomly selected for 

training and the remaining 50% for validation. These sets were then used to compare the different 

feature selection and well-known classification methods in the PerClass software tool (PerClass BV 

2008-2019). The classification performance is then validated on the full image and on four 

independent images. 

The number of pixels selected to calibrate our classification algorithm provides good accuracy on all 

test images provided. In this respect, Zhao et al. (2018) evaluated the impact of the number of samples 

used for the calibration process in maize seed identification. While in our work each pixel is considered 

a training sample, in their study, each full seed is considered a training sample for SVM classification. 

Zhao et al show that although bigger calibration sets increase the classification accuracy on the test 

set, from a certain size on, 1000 seeds per maize variety in their case, there is no further accuracy 

increase. In our application, 500 pixels for each different ingredient class was sufficient to achieve high 

accuracy values on the test set without the need to further increase the calibration set. Nevertheless, 

we are aware that a lower number of training samples would have not reached the same accuracy on 

the test set. Similarly, having enough test samples is required to accurately evaluate the generalization 

capabilities of the algorithm. 

As feature selection method we used either none, Linear Discriminant Analysis (LDA) or Principal 

Component Analysis (PCA) (Smith et al., 2002). For PCA we selected the number of components that 

captured 99% of the variance, this allowed us to keep 9 PCA components and provided better results 

than targeting lower variance or higher (100% retains all bands). 

The following classification methods available in the PerClass software tool were tested for 

discriminating the different ingredients based on their spectra: 

• Linear Discriminant Analysis (LDA) or Linear Discriminant Classifier (LDC) (Naes et al., 2004), 
assuming normal densities for our classes. 

• Quadratic Discriminant Classifier (QDC), also known as Quadratic Discriminant Analysis (Naes 
et al., 2004) assuming as well normal densities for our spectral classes. 

• Support Vector Machines (SVM) (Hsu et al., 2016): with an RBF Kernel selection and a grid 
search of sigma and C parameters. 

• Random forest (RF) (Yiu, 2019) with the default value of 20 trees, considering a subset of 20% 
of features at each node 

• Artificial Neural Networks (ANN) (Han et al., 2012): a feed-forward network with 30 hidden 
neurons was selected and 5000 iterations allowed. 
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3.2.4 Image spatial post-processing 

Some of the recipe ingredients such as all seed types (linseed, sunflower, poppy, millet...) are very 

homogeneous in shape and size. Therefore, both an average number of pixels per seed and an average 

weight per seed can be estimated for a given camera-object distance, lens type and image spatial 

resolution. These are summarized in our case in Table 3-2. 

Table 3-2: Pixel-weight relation for different seeds 

Ingredient Weight/seed (g) Pixels/seed 

Sunflower seeds 0.03-0.05     3000 

Yellow millet 0.0066      330 

Red millet 0.0066      400 

Brown linseed 0.0066     1000 

Sesame seeds 0.0014      400 

Poppy seeds 0.0006     120 

Corn crispies  0.0175     2000 

We used formula 1 (Table 3.1a) to study seed discrimination and quantification, while formula 2 (Table 

3.1b) was used to study the quantification of non-seed ingredients. For each formula we used one 

image for training and four images as independent test set for validation. Non-seed ingredients, such 

as wheat bran or even barley flakes, are heterogeneous in size and shape. This makes it difficult to 

obtain an average weight or pixel number. Their abundance estimation will be explained in more detail 

in the following section. 

3.2.5 Estimation of abundance per seed ingredient 

Since the seeds are very homogeneous in size and shape, we assume that its abundance in grams can 

be safely estimated from the number of seeds present in the classified/labelled image. As we will later 

see, the presence of miss-classified pixels can make the seed count challenging. In order to correct 

these miss-classifications we perform some additional spatial imaging post-processing step. This step 

cleans the classified mask images and helps obtain a more accurate seed count. 

The additional image processing proposed is done in Matlab 2015 (The Mathworks, Natick, MA, USA) 

and consists of a combination of the following common morphological operations in this order: 

• Area open: the operation of area opening removes from a binary image all connected 
components (objects) that have fewer than P specified pixels, defining the cluster size to be 
removed. The default connectivity for pixels to belong to an object is 8 for two dimensions.  

• Area fill: a morphological operation with the purpose to fill small pixel holes in objects/seeds 
by setting a pixel to 1 if five or more pixels in its 3x3 neighborhood are 1’s.  

• Object count: this operation counts all 8-connected objects (Ghuneim, Pixel connectivity) in 
the image. With this final step the total seed count is extracted.  

 

The first step in our spatial post-processing consists of removing clusters of miss-classified pixels. Our 

P parameter tuning allows to specify the object size to be considered as miss-classification and 

removed from the image. Parameter P is related both to the expected size of the seed as well as to 

the proportion of expected miss-classified pixels. On one hand, this parameter must be roughly below 

50% the pixel size of the target seed to avoid eliminating partially eroded seeds or half seeds present 

in the image. This is particularly the case for sunflower and linseeds, which tend to fracture. On the 

other hand, the P parameter must be large enough to safely eliminate miss-classified shades/borders 
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coming from non-target seeds. This is typically obtained with values around 10-20% the pixel size of 

the target seed. In the case of sesame and millet seeds, where there are more miss-classified pixels 

but no fractured seeds, values up to 40% the size of the seed were found to be suitable. 

Table 3-3 shows the selected P parameter, found experimentally, and validated over several 

independent images, where P parameter can be set to 30% of the seed size for sunflower and linseed, 

while P parameters of 40% the seed size are required for sesame and yellow millet but are also suitable 

for the remaining seed ingredients.   

Table 3-3: ‘P’ parameter selection versus average seed size in pixels 

 Sunflower Corn Linseed Sesame Millet Red millet Poppy 

Average size S 3000 2000 1000   400   330  400 120 

P parameter 0.3*S=900 0.4*S=800 0.3*S=300 0.4*S=160 0.4*S=130 0.4*S=160 0.4*S=50 

The estimation of some seed types requires additional post-processing. This is the case of millet, 

where a higher number of miss-classifications occur, and an additional step is added to count only 

circular shaped objects.  

• Find circular shapes: This algorithm, based on the circular Hough transform, detects circular 
shapes within a predefined diameter range. For our images, the range was set from 8 to 20 
pixels.  

Another seed that requires an additional post-processing is the poppy seed. Its spectral discrimination 

is very accurate, but their seeds often cluster together and can be mistakenly counted as one single 

object or seed. Therefore, instead of an object count we use in this case:  

• Pixel-count based estimation: this step divides the total number of pixels labelled as ‘poppy 
seed’ by the average size of a poppy seed (here 120 pixels). This quotient provides then a more 
accurate estimation of the total number of seeds when clustered. 

 

3.2.6 Estimation of non-seed ingredients 

The size and shape heterogeneity of non-seed ingredients such as flakes or bran (from oat, barley or 

wheat) makes it more challenging to estimate the weight/percentile abundance based on the number 

of flakes or pieces. In this case, considering the number of total pixels labeled as a specific cereal gives 

a better indication of its actual weight.  To do so we assume a similar thickness for these ingredient 

flakes. Since multiple flakes are imaged simultaneously, we will see that on average a good estimation 

of the weight in grams can be obtained from the pixel count. 

A total of five petri dishes with different abundances of non-heterogeneous ingredients (such as 

flakes), corresponding to the flour mix in formula 2, were also imaged and then classified. One image 

was used for training and the remaining four for testing. 
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3.2.7 Waveband selection 

To identify the most discriminative bands in the VNIR wavelength range a Genetic Algorithm was used 

(Holland, 1992), in combination with our best performing classifier: LDA as feature selection followed 

by QDC. The aim was to find a near-optimal number of reduced bands providing still high classification 

accuracy. This information could be used for instance to enable customizing the hyperspectral sensor 

or alternatively to process less bands and simplify the classification process. We use our own 

implementation of a genetic algorithm, based on our previous work in (Blanch et al., 2012) and code 

it in Matlab 2015 (The Mathworks, Natick, MA, USA). 

The behavior of the Genetic Algorithm is schematically illustrated in Figure 2-7 of Section 2.2.2. 

• For a desired number of subset bands/wavelengths (e.g 3...) an initial ‘population’ of 
individuals is created. Every ‘individual’ consists of a specific set of random band selections 
(e.g. [630nm, 770nm, 900nm]. An individual with a uniform selection is also included in the 
initial population. 

• For each individual solution (band selection) the fitness function of the Genetic Algorithm is 
computed as the mean classification accuracy obtained for that band subset on a fixed training 
and testing set. 

• The Genetic Algorithm iterates for a given number of iterations. In each generation (iteration) 
the best performing ‘individual’ or band subsets are kept breeding new generations. 

Our LDA+QDC classifier is trained on 50% of our random sample selection and tested on the remaining 

50%.  

3.2.8 Comparison with RGB image discrimination accuracy 

To benchmark hyperspectral imaging in the VNIR range (460-900nm) with respect to regular color 

imaging cameras we create RGB images from our hyperspectral image. This way, we can compare both 

imaging systems under the same system conditions: illumination, lens, and identical sample selection.  

To obtain the corresponding RGB image from the hyperspectral image we use XYZ parameter 

computation (Goodman, 2012) from our hyperspectral image. The CIE XYZ color space is a device-

invariant representation of color. From the given spectrum, S, the illuminant function, I, (here 

assumed E standard of theoretical equal energy radiator (Goodman, 2012)) and the CIE color matching 

functions, we can obtain X, Y and Z color values. We can then transform these X, Y, Z values to RGB 

color components (International Colour Consortium 1999, sRGB).  

3.3 Results and discussion 

Figure 3-5 shows the mean reflectance spectra of the different ingredients in Table 3-1, where we can 

see that some ingredients have a visually similar mean spectrum (e.g wheat bran and sesame). Table 

3-4 summarizes the classification accuracies obtained for the validation set of said ingredients. The 

different feature selection and classification methods are compared using the exact same set of 

training and validation samples.  
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Figure 3-5: Mean reflectance spectra for the ingredients in the seed mixes 

Table 3-4: Classification performances at pixel level for different combinations of feature selection and classifier  

Feature selection Classifier Minimum 
accuracy (%) 

Mean accuracy 
(%) 

PCA QDC  66.8% 91.8% 

PCA SVM  68.1% 91.4% 

LDA  LDC  61.4% 90.3% 

LDA QDC 75.0% 93.0% 

LDA SVM  49.9% 87.6% 

LDA  RF      68.6% 92.0% 

None ANN 53.4% 89.1% 

 

We can see that the combination of Linear Discriminant Analysis (LDA) as feature selection step and 

Quadratic Discriminant Analysis (QDC perClass) as classification method outperforms all other 

methods in terms of minimum and mean accuracies. It is interesting to notice for instance that PCA as 

feature selection method provides in this case a significant lower accuracy than LDA as feature 

selection to QDC. However, for the SVM classifier it is PCA that performs best. While the mean 

accuracy is comparable for all classification methods, it is for the challenging classes (minimum class 

accuracy) where we can see LDA+QDC clearly outperforming all other methods. Moreover, its 

computational time is lower than for more advanced classifiers such as Support Vector Machines 

(SVM) or random forest (RF). The normalized confusion matrix for LDA+QDC classifier and the seed 

ingredients given in Table 3-1 is shown in Table 3-5 below. 
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  Table 3-5: Confusion matrix for LDA+QDC classifications of the ingredients in formula 1 

                    

Values shown are fractions of one, where one is equivalent to 100% of the pixels correctly classified. 
The left column shows real class labels while the upper row shows decisions or labels attached by the 
classifier. Values in the main diagonal mean correctly labeled samples while values outside the 
diagonal are miss-classifications between classes. We can see that, although classifications accuracies 
are generally high (over 75%) pixel miss-classifications can be expected. This way, corn and millet are 
sometimes miss-classified due to their spectral similarity. This can also happen between wheat bran 
and sesame. In Figure 3-6, a small crop of the original image acquired for the ingredients in Formula 1 
and the corresponding classified image is illustrated. We can see that, after sieving, some remaining 
small amount of flour may be detected and classified. We can as well observe how small miss-
classifications happen on seed parts, especially for millet and corn, which suffer miss-classifications 
with each other. These miss-classifications interfere with the individual seed recovery/count required 
for ingredient quantification and need to be corrected by post-processing.  

 

Figure 3-6: Close-up RGB image of a seed (left) and the corresponding classified image obtained with QDC applied to LDA 
features (right)  

Figure 3-7 shows the resulting original and spatially post-processed masks for sesame (top), yellow 
millet (middle) and poppy seeds (bottom). The middle row shows for instance the mask of pixels 
classified as millet, where quite some pixel miss-classifications occur. Small miss-classifications are in 
general efficiently removed by the morphological operations described in Section 3.2.5. We can see 
now in Figure 3-7 (right) that pixels corresponding to the real seeds (four millet seeds) can be identified 
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better. Occasionally, however, some seed portions may be eroded away, or a small cluster of miss-
classified pixels may persist. In the case of poppy seeds (bottom row), the classification accuracy is 
already high, and fewer miss-classifications are present. However, to deal with seed clusters, the total 
pixel count step is required.     

 

Figure 3-7: Close-up color images of seed mixes (left), with corresponding classification masks (middle) and spatially 
post-processed classification masks (right) for sesame (top row), yellow millet (middle row) and poppy seeds (bottom 

row) with circled seed clusters.  

Table 3-6 shows the final seed count obtained for the full-size petri dish of Figure 3-6, as well as the 
abundance estimation errors in relative and absolute terms. The relative error per ingredient has been 
computed from the number of estimated and actual seeds. For instance, 15 seeds are detected out of 
the 16 linseeds, resulting in a 6.25% relative error. To compute the absolute error, we considered the 
specific abundance of linseeds in the flour mix. Since linseed constitutes 2% of the mix, the absolute 
error has been computed as 6.25% * 2%, which corresponds to an absolute error of 0.12%. We can 
see in Table 3-6 that yellow millet has the highest estimation error (16% relative error). All other seed 
types are estimated accurately with relative estimation errors below 10%. Our industrial application 
requires that the absolute estimation error is below 1%. This way, a seed of 5% abundance in the flour 
mix can be estimated in the 4-6% range with up to 20% relative estimation error. Therefore, for the 
ingredients in Table 3-1, all present at a maximum of 5%, we are within the required 1% absolute error 
even in the case of a 20% relative error.  
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Table 3-6: Final seed count accuracy for the seed ingredients in Formula 1 

Ingredient   Perc 
 (%) 

Actual # 
seeds 

Estimated # 
seeds 

Relative 
error (%) 

Absolute 
error (%) 

Sunflower        1.75 2 2   0.00    0.00 

Linseed            2.00 16 15   6.25    0.12 

Corn                1.75 5 5   0.00    0.00 

Red millet       2.00 14 14   0.00    0.00 

Yellow millet   2.00 22 26 18.18    0.36 

Sesame             2.00 37 34   8.10    0.16 

Poppy seed     1.75 113 106   6.19    0.11 

 
Our classification and quantification method, trained on one image, has been validated over four 
independent test images from petri dishes of the same formula 1. The results are summarized in Table 
3-7.  

Table 3-7: Final seed count accuracy for the seed ingredients in Formula 1, average over validation dishes 

Ingredient  Perc 
(%) 

Relative % error per validation dish Mean relative 
error (%) 

Mean absolute 
error (%) Dish 1 Dish 2 Dish 3 Dish 4 

Sunflower    1.75   0.00  0.00  0.00   0.00 0.00 0.00 

Corn             1.75   0.00  0.00  0.00   0.00 0.00 0.00 

Linseed         2.00   0.00  6.25  6.25   6.25 4.68 0.09 

Sesame           2.00   5.41  0.00  0.00   8.11 3.38 0.07 

Yellow millet  2.00   4.54 22.72  4.54   9.09 10.22 0.20 

Red millet    2.00   0.00  8.33 15.38   8.33 8.01 0.16 

Poppy seed   1.75   8.84 10.61  6.19   7.96 8.40 0.13 

As we can see, all ingredient estimates are below the 1% absolute error required, except for the more 
challenging ingredient, yellow millet, in one of the test images (dish 2). In this case, a relative error of 
22% (higher than 20%) translates in an absolute error above 1% for seeds with higher abundance than 
10%.  However, typically seed abundance in a flour mix is lower than 10%, in particular for small size 
seeds such as millet. It is also interesting to note that the relative errors for different images of the 
same recipe can vary. This is probably related to seed distribution, where some ingredients can end 
up clustered, occluded or imaged at a different angle. Therefore, by averaging over different images 
of the same recipe we can also expect to reduce our estimation error, as it can be seen in the mean 
error over the 4 test dishes in Table 3-7. 

By performing hyperspectral imaging followed by spatial post-processing, and averaging over images, 
we have achieved relative errors below 10%, equivalent to a discrimination/quantification accuracy 
over 90%. This high seed discrimination accuracy has been reported as well in literature by combining 
hyperspectral and texture/spatial information.  This way, Sun et al, (2016) also found that combining 
hyperspectral imaging in the VNIR range and spatial information (such as texture/morphology) 
achieves the highest discrimination accuracy (98% versus 86% for only texture based), for black bean 
varieties. Similar conclusions are drawn for maize variety discrimination in (Zhang et al., 2012) where 
combining textural information with VNIR hyperspectral achieves 98.8% accuracy on 100x100 pixel 
ROIs from bulk samples. Choudhary et al, (2009) showed 99% classification accuracy of 8 wheat 
varieties by combining wavelet texture features from ROIs with hyperspectral data in the SWIR range 
(900-1700nm). Manley et al, (2011) assessed the impact of kernel topography on pixel spectra from 
wheat, barley and sorghum kernels, but no classification results are provided. 

In our work we have used a high-resolution imager in the VNIR (4Mpx with respect to 0.3Mpx in 
previous works) to better image multiple seed types in one scan, instead of one single type (or even 
one single seed) per image. Sun et al. (2016), Zhang et al. (2012) limited their spectral information to 
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the mean spectra from manually pre-defined ROIs. In contrast to this, we have used pixel-based 
spectral analysis.  

Moreover, we have combined hyperspectral and spatial/shape information in a different way than 
previous approaches. In previous works this was done by extracting texture features from defined 
ROIs covering bulk samples (Zhang et al., 2012) or single seeds (Sun et al., 2016), or by more complex 
wavelet analysis (Choudhary et al., 2009). Instead, we have done this by applying a few morphological 
steps such as erosion on the already pixel-based classified image. We have shown that this 
combination of pixel-based spectral analysis and spatial post-processing can reach high discrimination 
and quantification accuracy. 

Implementing an object segmentation approach can be useful to increase object discrimination, as 

shown in the work of Gewali et al. (2018) and Chen et al. (2019). Some researchers have included 

shape information for seed discrimination such as Sun et al. (2016) and Huang et al. (2016), who used 

morphological/shape features to increase the discrimination power for both black beans and corn, 

respectively. In those works, each seed was either imaged separately or placed separated from each 

other to ease the segmentation task. A similar approach could be helpful for some of our seed objects 

with homogeneous and distinctive shape features, such as millet, linseed, or sesame seeds. However, 

occasionally these seeds can be partially fractured or occluded by neighbouring seeds, which distorts 

their shape. Moreover, we have non-seed ingredients as well that are very heterogeneous in shape 

and size, such as soy grit, soy mill, wheat bran or any type of flake (barley, oat). For this kind of 

ingredients such a segmentation approach would be more difficult to implement, and the shape 

features would remain very heterogeneous within a class. 

Non-seed ingredient estimation based on pixel count  

We related the number of pixels labelled by the classifier as a specific ingredient with its absolute 
weight in grams. Table 3-8 shows an example of such measured relation for barley flakes and wheat 
bran in different weights, with a confidence level given for our weight measurement error. 

Table 3-8: Corresponding weight and number of pixels for barley (left) and bran (right) ingredients for different images 
of Formula 2 

Formula 2 # pixels (barley flakes) Weight # pixels (wheat bran) Weight  

Image 1 91277 0.54+/-0.01 gr 207692 0.11+/-0.01 gr 

Image 2 51685 0.31+/-0.01 gr 378763 0.23+/-0.01 gr 

Image 3 131929 0.72+/-0.01 gr 114861 0.09+/-0.01 gr 

Image 4 169292 0.91+/-0.01 gr -    - 

Image 5 -   - 286406 0.15+/-0.01 gr 

In percentual value this error can range from 1 to 10% error depending on the total weight measured. 
For all weight and pixel values in Table 3-8 we obtain an average weight versus average number of 
pixels ratio. Based on this ratio, we then compute the estimated ingredient weight based on the 
number of pixels identified in each image. To extract the estimation error, we compare estimated 
weight and real known weight and compute both the coefficient of determination 𝑅2 and the mean 
error incurred with respect to the measured weight, extracted as the RMSE of the estimation errors 
in percentual value.  
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Note that the error in the weight estimation can happen due to several factors such as: 

- the error on the measurement device 

- the fact that ingredients may lay on top of each other (this is particularly the case for wheat 

bran, which is very light and tends to overlap) 

- small variations in flake thickness that may not be averaged out over this quantity of flakes. 
 

Table 3-9 summarizes the weight estimation error incurred for each of the tested non-seed 

ingredients: 
Table 3-9: Weight estimation error for non-seed ingredients 

Ingredient Barley flake Wheat bran Oat flake Cracked wheat 

Mean weight error estimation  4.6% 13.0% 5.6% 1.9% 

𝑅2 coefficient 0.98 0.91 0.76 0.99 

 

Considering that our measurement error ranges from 1 to 10%, the mean errors obtained in the pixel 

to weight estimation are acceptable. For instance, on wheat bran our estimation error of 13% is only 

slightly higher than our measuring error (5-10%). These errors are acceptable for our industrial context 

that requires absolute errors within 1%.  For our example recipe containing 3.75% of wheat bran this 

would correspond to a 0.48% absolute error (below the required error of 1%). However, for recipes 

with more than 10% of wheat bran the error would be 1.3%, slightly over 1%. In such case we could 

still reduce the estimation error by averaging over different images, spreading out the ingredients or 

performing the study with a higher precision weight measuring device. 

From literature, we could expect up to 30% variation in flake thicknesses for oat (Rosentrater et al., 

2018) and barley (Schwandt et al., 2017). Therefore, we could expect some weight variation between 

flakes even of the same size contributing to an increased weight estimation error. However, we have 

incurred in low errors of around 5% for both oat and barley flakes. Therefore, we hypothesize that by 

measuring several flakes simultaneously, we have also averaged out potential thickness variations 

between flakes.  

Band analysis with Genetic Algorithm and comparison to RGB 

The Genetic Algorithm is run together with our selected classification method (LDA+QDC). The results 

obtained are shown in Table 3-10, comparing the mean and minimum class accuracies per pixel for 

different band subsets. 

Table 3-10: Seed discrimination accuracies as a function of the number of selected wavebands 

 #  bands bands Mean accuracy (%) Min accuracy (%) 

All bands 147 470-900nm 93.1 75.3 

Best 15  15 470,492,500,518,553, ...817nm 89.9 65.2 

Best 5   5 500,567,624,773,884nm 88.1 54.1 

Best 3   3 492,632,842 nm 83.8 53.2 

RGB    3 3 broad bands  76.9 35.9 

 

As we can see, using all 147 available bands provides the highest mean pixel accuracy for our test set 

(93.1%) as well as the highest minimum pixel accuracy per class (75% corresponding to millet). 

However, the number of bands can be reduced to, for instance, 15 bands without heavily 

compromising the mean accuracy (~90%). The selected bands show that the visible range is important, 

for instance to discriminate red millet from yellow millet. In the case of millet, the relevant pigments 
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are carotenoids for yellow millet in the 450-480 nm range (Yano et al., 2017) and anthocyanins for red 

millet in the 450-600nm range (Kobayashi et al., 2006). Kong et al, (2013) have also shown that the 

selection of a reduced number of bands can still maintain high classification accuracy. In that study 

100% accuracy was obtained for rice seed discrimination when all bands were used and around 90% 

accuracy when 12 selected bands were used. Boelt et al, (2018) and Carstensen et al, (2018) also 

achieved high discrimination accuracy above 90% with only 20 bands provided by their multiple LED 

system. Nevertheless, for some applications it may be preferable to have an initial higher number of 

bands available (such as 150 in our hyperspectral system) to maximize discrimination. 

It is also interesting to notice that the best combination of 3 bands (492, 632 and 842nm) outperforms 

the use of RGB bands considerably, increasing both mean and minimum accuracies. Similar findings 

were obtained by (Vu et al., 2016) where rice seed variety discrimination is increased from 74% for 

RGB features to 84% with VNIR hyperspectral imaging.  

The same classifier and spatial post-processing described for the hyperspectral image were applied to 

the RGB image. This results in high seed estimation error for some ingredients in Table 3-11: 1.72% 

absolute error for millet, and 0.65% for sesame, corresponding to 2% real abundance. Therefore, for 

a sesame abundance of 4% this would result in 1.3% absolute error, above the maximum allowed. We 

can conclude that hyperspectral imaging clearly outperforms RGB making it a promising tool for 

accurate and fast multi-ingredient estimation. 

Table 3-11: Seed estimation accuracies for RGB broadband image 

Ingredient   Percentage 
(%) 

Actual # 
seeds 

Estimated # 
seeds 

Relative 
error (%) 

Absolute 
error (%) 

Sunflower      1.75      2 2    0.00    0.00 

Linseed          2.00    16         16    0.00    0.00 

Corn               1.75      5 4  20.00    0.35 

Red millet       2.00    14         14    0.00    0.00 

Yellow millet   2.00    22 4  81.81    1.63 

Sesame             2.00    37 25  32.43    0.64 

Poppy seed  1.75  113        103    8.84    0.15 

 

For non-seed ingredients such as wheat bran the classification accuracy with hyperspectral imaging is 

of 86% (see Table 3-5) and with RGB bands this decreases to 63% accuracy. For this reason, we can 

also expect higher error in the weight estimation of non-seed ingredients since it is based on the pixel 

count.  
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3.4 Conclusions 

Hyperspectral imaging in the VNIR range was shown to provide quantification of both seed and non-

seed ingredients in multigrain wheat flour mixes in an automatic way and with higher accuracy than 

regular color imaging. Combination of spectral and spatial processing provides a total seed count with 

an absolute error below 1% for most ingredients. For non-seed ingredients (flakes and wheat) the 

estimation was done based on a total pixel count of the labelled pixels and resulted as well in the 

required accuracy in most cases.  

This application requires relatively high spatial resolution to be able to correctly classify small 

ingredients, while still being able to cover a large enough area with a representative amount of 

different flour ingredients. For this reason, the new generation of VNIR hyperspectral cameras with 

high spectral and spatial resolution (up to 7 Mpixels) are considered suitable for this application. A 

comparison has been made with the discrimination accuracy of a hypothetical color camera with the 

same spatial resolution and measurement setup. Hyperspectral imaging, even with a reduced number 

of 15 bands, outperforms colour imaging by up to 15% in terms of the mean classification accuracy, 

which results in more accurate estimates for the ingredient fractions.  
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Chapter 4 

Illumination as a key element in hyperspectral 

imaging 

4 Illumination as a key element in hyperspectral imaging 
The highest priority in this chapter’s devil’s triangle is to optimize performance in terms of 

discrimination power, while reducing complexity or cost is secondary. In terms of application 

performance, we focus specifically on increasing the discrimination power while the spatial resolution 

remains the same and the acquisition speed may even be increased. 

 

Figure 4-1: Devil’s triangle of application requirements (left) and application’s performance (right) 

In Section 1.4 we hypothesized that the illumination is a key factor in hyperspectral systems, even 

more important and challenging for snapshot cameras, where a whole surface as field of view, instead 

of a line, needs to be homogeneously illuminated. Therefore, the impact of different illumination 

systems and how they can be optimized with respect to on-chip snapshot-alike hyperspectral cameras 

are investigated in this chapter. For this purpose, halogen illumination systems and two different led 

illumination systems will be compared on the same application of seed discrimination used in Chapter 

3. 

This chapter is partially adapted from: 

Blanch, C., Luyten, H., Saeys, W., and Lambrechts, A. “Optimized custom LED illumination for 
hyperspectral imaging” in the International Conference for Near Infrared Spectroscopy (ICNIRS), 15-20 
September 2019.  
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4.1 Introduction  
 
As previously indicated, the illumination system is an important element of a hyperspectral imaging 
system. As recent developments in LED lighting create possibilities for optimizing the illumination in 
an energy efficient way, we will evaluate the added value of a tunable LED system compared to a 
traditional halogen-based system for the case of seed ingredient quantification in flour mixes. To our 
knowledge, our research is the first to compare the use of a halogen versus a custom tunable LED 
illumination for a specific hyperspectral imaging application.  
 

4.2 Materials and Methods 
4.2.1 Camera System 
 
We use the Snapscan camera system which was also used in Chapter 3 and illustrated in Figure 3-2. 
This camera system combines the high spatial and spectral resolution of imec’s hyperspectral linescan 
sensor, in our case 7Mpixels and 150 spectral bands, and the ability to acquire datasets as easily as 
with a snapshot camera.  
 

4.2.2  Illumination Systems 

Halogen illumination system 

We use 4 halogen Osram lamps (12v 2800k 20W). Halogen systems are broadly used in hyperspectral 

imaging due to its broad emission spectrum and its relatively low cost. Figure 4-3 shows the radiance 

spectrum of a white reference tile under halogen light. The spectrum shows here a combined effect 

of light source, sensor sensitivity and filter transmission efficiency. The energy is not evenly distributed 

over the full wavelength range, as it was illustrated in Figure 1-6 for Halogen illumination (Chapter 1).  

In addition to this, the hyperspectral sensor sensitivity is also wavelength dependent. Figure 4-2 shows 

our combined sensor and filter sensitivity, as a function of the wavelength in the 450-900 nm range 

(Gonzalez et al, 2016). We can see that our hyperspectral sensor is more sensitive at some 

wavelengths than others and this may not necessarily match our light source distribution with the 

result that some bands may be underexposed while others may be saturated for the same integration 

time for all bands.  

 

Figure 4-2: Combined transmission efficiency of filters and sensor as a function of wavelength for full filter bank (left) 
and transmission efficiency for five selected bands (right) (Gonzalez. et al. 2016) 
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Finally, the imaged materials will have a different energy response in different bands, typically 

stronger in the infra-red region (>700nm) than in the visible range (<700nm). All these aspects 

together result in an un-matched energy distribution and sensitivity. One way to deal with this is to 

have a more balanced light source, for which we investigate a tunable LED system from CVRL (CVRL 

Ltd). We can then compensate for our sensor sensitivity by tuning our LED system accordingly and 

potentially also for a specific object reflectance. 

Another way to tackle this is to allow for multiple exposure times to be used according to the targeted 

wavelength range and its specific sensitivity and received energy. This is implemented in our camera 

as a High Dynamic Range mode. 

High Dynamic Range (HDR) 

Generally, the exposure time of the camera is set to a fixed value to maximize the dynamic range while 

avoiding pixel saturation to happen. This means that the bands of the sensor receiving the highest 

energy/ having highest sensitivity will saturate and limit the exposure time for the remaining bands, 

causing very different SNR values for different wavelength ranges in the spectral image. To overcome 

this, the HDR mode combines multiple frames, each acquired with a different exposure time. After 

acquisition of the first frame at a given exposure time, other frames are acquired with larger exposure 

times to provide a better signal on pixels that capture less light. The HDR mode is configured through 

the number of frames and longest exposure time to use. In our case we use 3 HDR frames as a good 

tradeoff between efficiency and acquisition speed. The optimal exposure time for each HDR frame is 

computed based on the exposed scene. In our case the 3 HDR frames were acquired at 13, 26 and 39 

ms. Figure 4-3 shows the radiance spectrum of the white reflectance tile for the halogen system with 

and without HDR. We can see how HDR tries to balance the energy distribution by increasing the 

integration time on the visual range and reducing it for the infrared range.  

 

Figure 4-3: Comparison of radiance of white tile for halogen lights with and without HDR functionality 

Tunable LED system 

Figure 4-4 shows a sketch of the tunable-LED system prototype consisting of 4 identical LED bars in a 

square formation. Every LED bar consists of 3 repeated units which are 10 cm long. Every unit contains 

16 LEDs of a different wavelength between 451nm and 940nm. The LED bars are controlled 2-by-2 by 

the same circuitry giving us 32 tunable channels (16 types of LEDs x 2 circuitries). The LEDs are placed 

symmetrically, with identical disposition front-rear and left-right to achieve a more homogeneous 

spatial distribution. The relative intensity of each LED is tuned to obtain a balanced energy distribution 

for our sensor. 
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Figure 4-4: Sketch of custom tunable LED system with repeated units of 16 led types 

Figure 4-5 compares the radiance spectrum of a white reference tile showing how the tunable LEDs 

achieve a more homogeneous spectral distribution of the energy over the different wavelengths. We 

can see that the LED has more energy over the blue range (400-600nm) and less energy in the infrared 

range from 800nm on. 

 

Figure 4-5: Comparison of radiance of white tile for halogen versus custom tunable LED system 

Fixed LED system 

We now evaluate the added value of a recently developed Fixed LED bar system of Effilux (“Effi-flex”, 

2020). The Fixed LED bars can illuminate in the visible and near-infrared area, with the energy 

distribution provided in Figure 1-8. In the fixed LED bar case, we cannot optimize/tune portions of the 

spectrum intensity to match our sensor sensitivity, like in our tunable prototype. However, the 

spectral distribution provided in Figure 1-8 is relatively balanced over the spectrum, in any case more 

balanced than regular halogen lamps. Other advantages of the fixed LED system are that it can provide 

higher output intensity than our tunable prototype and it has a more compact factor.  

We first evaluate the impact with a single bar element. Each led bar has three types of glass that can 

be placed in front of the lenses, as shown in Figure 4-6. These different glasses have different diffusion 

strengths to allow different tradeoffs in terms of light intensity and homogeneity: 

• Transparent glass: allows maximum intensity with no diffusing elements and therefore lower 

homogeneity.  

• Semi-diffuse: allows intermediate intensity and some degree of light diffusion. 
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• Opaline: lowest intensity but highest diffusion and homogenization  

 

Figure 4-6: Different glasses to be used with the fixed LED bar (“Effi-flex”, 2020)  

We tested all three glass systems in combination with the LED bar. The integration times used to 

obtain maximum exposure while avoiding saturation to happen are 15 ms for the halogen system, 29 

ms for the semi-diffused and 180 ms for the opaline configuration.  We assumed that a more diffused 

component should provide us with more homogeneous illumination and potentially higher 

discrimination accuracy or lower spectral standard deviation. However, the associated energy loss was 

of factor 6 in opaline configuration with respect to semi-diffused. In addition, the improvement in 

terms of both spectral standard deviation and classification accuracy was marginal (below 1%) in 

opaline versus semi-diffuse configuration. For this reason, we considered the semi-diffuse glass to 

provide a good trade-off in terms of intensity and diffusion/illumination homogeneity. 

The different systems, tunable led system, halogens, and fixed led bar system are shown in Figure 4-7 
(left). On the right the radiance spectrum of a white reference tile is shown for Halogen versus the 
fixed LED bar. We can observe a higher intensity in the visible range and a lower intensity in the NIR 
for the LED bar. 
 

 

Figure 4-7: Left image: Location of Effilux bar (indicated by yellow arrow) and halogen lights (see red arrows). Right 
image: radiance distribution on white tile (right) comparing halogen and fixed LED bar from Effilux 

In addition, we tested a LED-based system with 4 fixed LED bars, with semi-diffuse configuration, 

which are placed symmetrically to have more homogeneous spatial illumination. The setup is shown 

in Figure 4-8. In the right side we show the halogen system placed inside the fixed led one. 
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Figure 4-8: Fixed LED-based system with 4 bars placed symmetrically (A) and Fixed LED system with halogen lights 
inside (B). Halogen lights are indicated by red arrows while LED bars with yellow arrows. 

In this respect, it is important to note that two different experimental setup conditions have been 

used. The first experiment aimed to compare Halogen illumination, with and without HDR, with 

tunable LED illumination. The second experiment aimed instead at comparing Halogen illumination 

with the 4-bar fixed LED system. These two experiments cannot be compared to each other in absolute 

numbers since the setups were not identical in terms of camera height for instance, which impacts 

slightly the final discrimination accuracy obtained. Therefore, the most relevant aspect here is the 

relative discrimination increase obtained in each of the comparisons: Halogen versus tunable LED 

system, and Halogen versus commercial fixed LED system. 

4.2.3  Sample selection and processing pipeline 
 
To compare the different illumination systems, we use the challenging case of seed mixture 
inspection, which was already introduced in Chapter 3, with the goal to accurately classify and quantify 
different seed types. We imaged identical seed scenes under the different illumination systems and 
randomly selected train and test pixel positions in the hyperspectral images. We created a mask of 
train/test pixel locations that we apply to HDR and LED images to guarantee identical pixel selection. 
We also fix all random seed generators to make all results reproducible. This way, we can make the 
comparison for identical train/test input and identical classifier method which illumination method 
yields better classification results.  
For the spectral processing we used Matlab 2015 (The Mathworks, Natick, MA, USA) and the Perclass 

5.2 software (PerClass BV 2008-2021, Delft, NL). Specifically, we use Linear Discriminant Analysis as a 

pre-processing step and Quadratic Discriminant Classifier as a classification method. 

4.3 Analysis and results 

4.3.1 Evaluation of HDR and the tunable LED system 

Figure 4-9 shows the mean reflectance spectra obtained under the halogen illumination and the 
tunable LED one for a variety of seeds. We can see that with the Halogen system in the visual range 
(470-600nm) we have a bit more noise due to the low emission of the halogen source in this range. 
We can see in the mean reflectance spectra obtained under the custom tunable led system that the 
visible range (470-600 nm) becomes less noisy thanks to more balanced visible and infrared energy.               

 

A) B) 
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Figure 4-9: Normalized mean reflectance spectra of different seed types acquired with the halogen system (left) and 

tunable LED system (right) 

We test the impact of the tunable LED system and the Halogen system with and without HDR 

functionality scanning the same scene of challenging seed ingredients for the different methods but 

with identical training and testing pixel locations. Table 4-1 shows the pixel-based classification 

accuracy for each ingredient class and the different illumination systems. We can see that the 

classification accuracy is lowest (60-70% in the halogen system) for some challenging ingredients such 

as soy grit, soy hull, yellow millet, and sesame. When the HDR method is enabled on the halogen 

system we can see that classification accuracy increases for the most challenging ingredients by 5 to 

9% and on average for all ingredients from 80% to 84%.  

Table 4-1: Comparison of pixel classification accuracy under the different illumination systems: Halogen, Halogen + HDR 
and Tunable LED system 

 Halogen system Halogen with HDR Tunable LED system 

Background        95%       96%      100% 

Soy grit        64%       69%         83% 

Linseed        88%       90%         91% 

Corn        87%       89%         97% 

Soy hull        73%       79%         81% 

Millet        69%       71%         85% 

Oat flake        96%       98%         98% 

Sesame        67%       76%         83% 

Mean accuracy        79.8%       83.5%         89.7% 

 

By using the tunable LED illumination, we can obtain an even more noticeable improvement. With 

respect to Halogen with HDR, the pixel classification accuracy increases by 2 to 14% for the most 

challenging ingredient classes, while the average classification accuracy increases from 83.5% to 

89.7%. If we now compare the discrimination power of the halogen system without HDR and the 

tunable LED system a more significant gain in classification accuracy is obtained: from 12 to 19% for 

specific ingredients and overall, the mean accuracy increases from 80.8% to 89.7%. Note that the 

tunable LED system does not require HDR mode since it already achieves a balanced spectral energy 

distribution.   

For a better visualization Figure 4-10 shows the per pixel classified image, obtained under halogen 

lights and under custom tunable LED illumination. Zooming in on a small, circled area of the image 

(Figure 4-11) shows a noticeably improved classification.  Higher pixel classification accuracy translates 

into a higher percentage of the pixels in one seed being correctly labeled. This allows better seed 

definition and potentially a more accurate detection of seed ingredients.  
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Figure 4-10: Classified images of seed mixes under halogen lights (left) and tunable LED lights (right), with false color 
image in the middle. 

 

Figure 4-11: Zoomed-in area from Figure 4-10: under halogen light (left), false color image (center) and tunable LED 
lights (right) 

Table 4-2 shows how the improved per-pixel classification accuracy translates into a better seed 
quantification. For this purpose, the spatial post-processing step presented in Chapter 3 has been 
applied for seed detection and quantification. We can see how the average ingredient quantification 
error decreases from 23.4% to 12.8% with tunable LED illumination. The effect is the largest for the 
most challenging ingredients, for soy grit with a reduction from 48% to 15% and for sesame with a 
reduction from 41 to 23%. 
 

Table 4-2:  Estimation error in ingredient quantification for Halogen versus Tunable LED systems 

 
Ingredient 

 
Actual # 
seeds 

Halogen System Tunable LED System 

Estimated # 
seeds 

Relative 
error (%) 

Estimated 
# seeds 

Relative 
error (%) 

Soy grit      33       17   48%         28   15% 

Linseed                30       25   16%         26   13% 

Corn               6        6     0%           6    0% 

Soy hull           58       37    36%         44   24% 

Yellow millet       13       16    23%         15   15% 

Oat flake                 18       18     0%         18     0% 

Sesame       17        10    41%         13   23% 

Average Error                                                  23.4%                           12.8%            
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4.3.2 Evaluation of a fixed LED bar system 

 
Figure 4-12 shows the mean reflectance spectra of the different ingredients for one flour mix under 
different halogen illumination and the fixed LED system with one bar. We can see how the more 
balanced energy distribution of the LED system (in this case with transparent glass) increases the SNR 
in the visible range of the spectra with respect to the halogen illumination. 
 

 

Figure 4-12: Normalized mean reflectance spectra show reduced noise in 450-550nm range under Halogen light (left) 
and Fixed LED (right) 

Nevertheless, when we evaluate the discrimination accuracy for the exact same image, same training 

samples and same classification method (LDA+QDC) we do not obtain an increased discrimination 

accuracy under LED illumination.  Table 4-3 shows the classification accuracy per pixel for the different 

ingredient classes. We can see that, despite the improved appearance of the spectra, the accuracy is 

considerably reduced with a 1-bar Fixed LED illumination (mean of 73.5%) with respect to halogen 

illumination (81.7%).             

Table 4-3: Pixel classification accuracy for Halogen System and 1-bar Fixed LED system (semi-diffused) 

 Halogen system 1-bar fixed led 
system  

Background       99%      92% 

Soy grit       68%      57% 

Linseed       88%      78% 

Corn       86%      70% 

Soy hull       71%      70% 

Millet       68%      66% 

Oat flake       97%      81% 

Sesame       77%      74% 

Mean accuracy       81.7%      73.5% 

 

The reason for this decreased performance with the LED bar with respect to halogen, despite higher 

SNR spectra in the visible range, is probably the lack of spatially homogeneous illumination with one 

single led bar. In this respect, the lamp placement for the halogen system, and for the tunable LED 

system presented in the previous section, is more symmetrical than with one single fixed LED bar, as 

illustrated in Figure 4-13. 
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Figure 4-13: Lamp positioning for the different illumination systems compared 

The effect of the lack of spatially homogeneous illumination can be seen in Figure 4-14, where a small 

portion of the seed image is shown. We can see how under one 1 fixed LED bar sharp shades are 

created on the opposite side of the LED bar position. In the halogen and tunable LED systems light is 

coming from at least 4 directions having a more balanced distribution of the illumination. This results 

in similar shading effects around each seed, especially those which are thicker.   

Spatially homogeneous illumination results in the seeds being equally illuminated over their entire 

surface, while in the 1-bar fixed LED case we can see that some parts of the seed are more illuminated 

than others increasing the spectral variation within a seed. 

 

Figure 4-14: Illustration of the impact of the spatial distribution of illumination: Halogen (left), Tunable LED system 
(middle), Fixed LED system semi-diffuse (right). The arrows indicate the seed shadow locations. 

To check this, we compute for the same pixel samples of three different ingredient classes (soy grit, 

linseed, and corn) the standard deviation of the spectra by averaging the standard deviation for all 

wavelengths in our 470-900 nm range. 

This can be seen in Figure 4-15, where the mean reflectance spectrum and its standard deviation are 

shown. Especially in the near-infrared range we can see that the standard deviation is noticeably 

higher in the 1-bar fixed LED case than in the halogen system. Table 4-4 shows the comparison of the 

spectral standard deviation, averaged over all wavelengths, for the same samples under halogen, fixed 

LED system and tunable LED systems. 

Fixed LED (1 bar) 

Tunable 

LED 
Halogens 
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Figure 4-15: Normalized mean reflectance spectra in the (0..1) range +- standard deviation for three ingredients: soy grit  
(red), linseed (green) and corn (yellow). Halogen-based illumination (left) and fixed LED based (right). 

The standard deviation is the highest in the fixed system with 1 LED bar, which would explain the 

lowest achieved discrimination accuracy. On the tunable LED system, we achieve in general the lowest 

standard deviation resulting in lower intra-class variation and highest discrimination accuracy.  

Table 4-4: Standard deviation of normalized reflectance spectra (0 to 1), per class for different illumination systems 

Mean Standard Deviation Halogen Fixed LED (1 bar)  Tunable LED system 

Class 1 (Soygrit)  0.072     0.127       0.074 

Class 2 (Linseed)  0.056     0.059       0.037 

Class 3 (Corn)  0.038     0.078       0.035 

 

In conclusion, we can see that having a homogenous spatial distribution of the illumination can be as 

important or more than achieving a spectrally homogeneous energy distribution over the full range. 

For this reason, we now test a setup with a fixed LED system with 4 LED bars and place them more 

symmetrically to try to mimic what was done with the halogen and tunable LED systems.Table 4-5 

shows the pixel-based class accuracies for the LDA-QDC classifier and both halogen-based systems and 

fixed LED-based system with 4 bars. We can see that now a slightly better performance is achieved 

with the LED system. This is noticeable in terms of the minimum classification accuracy, which 

increased from 61 to 67%. A similar integration time is used for both systems, 20 ms for the halogen-

based and 25 ms for the fixed LED one. This relatively low integration time is advantageous with 

respect to the tunable LED-based system where roughly double integration time than halogen-based 

was required. 
Table 4-5: Pixel classification accuracy per ingredient on images acquired with the Halogen and fixed LED systems 

 Halogen system 4-bar fixed Led 
system 

Background       99%      98% 

Soy grit       67%      72% 

Linseed       92%      95% 

Corn       91%      94% 

Soy hull       91%      90% 

Millet       61%      67% 

Oat flake       94%      91% 

Sesame       87%      84% 

Mean accuracy       85.2%      86.3% 
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In terms of performance, however, the fixed LED system does not reach the accuracy increase 

obtained by the tunable LED system, which was around 10% better in mean accuracy than the 

halogen-based system. This is due to the fact that the fixed LED system has a more balanced energy 

distribution in the VNIR range than halogen systems, but it does not fully optimize the energy 

distribution according to our sensor sensitivity. 

Figure 4-16 shows the standard spectral deviation of three ingredient classes for the halogen system 

(left) and the 4-bar fixed LED system (right). We can see how the standard deviation of the spectra is 

always higher for the LED system. Again, despite an improved SNR in the visual range a bigger intra-

class variation is obtained, which probably explains why the accuracy increase over the halogen is 

more limited than expected.  

 

Figure 4-16: Standard deviation of normalized reflectance spectra for 3 ingredients and halogen-based illumination 
(left) and fixed LED based (right). The solid lines indicate the mean value with their mean +- one standard deviation. The 

ingredients are: soy grit (red line), linseed (green line) and corn (yellow line) 

Moreover, from the analysis in Table 4-6 of the standard deviation of the normalized radiance spectra 

over the full surface of a white tile, it seems the fixed LED system might not achieve an equally 

homogeneously spatial distribution as our tunable LED system. We can see that the spatial deviation 

is very similar in the fixed LED system to that in the halogen system. In particular in the lower range 

(460-615 nm) the standard deviation is proportionally higher in the fixed LED system, which may be a 

more relevant wavelength range for seed discrimination than the higher 750-900 nm range where the 

spectral curves flatten. 

Table 4-6: Comparison of spatial homogeneity in Halogen and fixed LED systems calculated for a white tile 

 Halogen 4 bar fixed LED system  

Spatial Std Dev  10.29     9.9 

Spatial Std Dev(mean)   0.065     0.063 

StdDev (460-615nm)   1.73     3.69 

StdDev (615-750nm)   3.48     3.56 

StdDev (750-900nm)   5.07     2.63 
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4.4 Conclusions 
 
We have compared the impact of a halogen illumination system with a tunable LED system with a 
more balanced energy distribution over the spectrum. In addition, we have tested the impact of a High 
Dynamic Range mode, which compensates for the variation in the emission spectrum of the halogen 
system. The use of HDR mode in combination with the halogen illumination increased the average 
classification accuracy from 80.8% to 84.1%, with up to 9% improvement for the most challenging 
ingredients. The tunable LED illumination system gave an even larger improvement increasing the 
average accuracy from 80.8% till 89.7% and almost 20% extra accuracy for the most challenging 
ingredients.  
In addition, we have tested a fixed LED system with a more compact factor and with an illumination 

intensity more comparable to the halogen system. We have seen that an improved spectral response 

in the visible range is achieved due to a more balanced energy distribution over the full wavelength 

range. However, this is not sufficient to guarantee an increased discrimination accuracy since 

achieving a balanced spatial energy distribution is also a relevant aspect. A better spatial distribution 

of the led bars provides an increased discrimination accuracy in this respect although the performance 

increase was more limited than in the tunable LED case.  This can be seen as well from the higher intra-

class spectral standard deviation than obtained with the tunable LED system.   

We can conclude that it is advisable to invest in an illumination system that provides more 

homogeneous spatial and spectral distribution. This is particularly the case when the information of 

our application resides in the spectral dimension. In this case, lack of spatial homogeneity increases 

intra-class variation for different image locations, which can negatively impact our discrimination 

power, in particular for pixel-based analysis. In contrast, an analysis based on shape and spatial 

information would be more robust to these spatial variations.  However, even in the case that more 

information is present in the spatial domain than in the spectral one, having spatially homogeneous 

illumination is important. This was shown as well in Chapter 1 for computer vision systems using 

regular color imaging. 
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Chapter 5 

Joint evaluation of the combined effect of 

illumination, camera hardware and analysis 

methods 

5 Joint evaluation of the combined effect of illumination, camera hardware and analysis methods   

In this chapter, we test the hypothesis that all system parameters should be jointly investigated. In 
this respect, system parameters such as camera hardware, illumination system and data analysis 
methods need to be considered. This should allow us to explore different tradeoffs at system level to 
find the best combination of system parameters. 

 

Figure 5-1 shows the Devil’s triangle for our hyperspectral system. In this chapter we are going to focus 

on the three corners of this triangle, exploring therefore all tradeoffs available between these three 

application aspects. In this respect, camera hardware and illumination system are system parameters 

with an impact on cost and performance, while data analysis methods typically have a larger impact 

on performance and system complexity. 

 

Figure 5-1: Devil’s triangle in hyperspectral system’s design requiring tradeoffs between performance – cost – 
complexity.  

We show in this chapter how different system configurations can be used to offer different 

performance-cost-complexity tradeoffs to best match the application requirements. We also show 

that the same performance may be achieved with different system configurations. For example, in our 

specific application a configuration with a basic pixel-based classifier and a high-quality illumination 

system achieved the same performance as a configuration of a more basic halogen illumination with 

more advanced image-based processing.  

Figure 5-2 illustrates the Devil’s triangle in terms of application performance, where tradeoffs have to 

be made between spectral discrimination power, spatial resolution, and acquisition speed. To this end, 

we will consider multiple system parameters, which will impact each of these aspects. For instance, 

the use of a low spatial-spectral resolution Snapshot camera will increase the acquisition speed, but 

this will happen at the expense of a reduced spatial resolution and discrimination power. 
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Figure 5-2: Devil’s triangle representing the tradeoffs of application performance. 

 

This chapter is adapted from: 

Blanch-Pérez-del-Notario, C., Saeys, W., and Lambrechts, A. (2019, September). “Convolutional neural 

networks for heterogeneous ingredient discrimination with hyperspectral imaging”. In 2019 10th 

Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing 

(WHISPERS) (pp. 1-6). IEEE. 

Blanch-Pérez del Notario, C., López-Molina, C., Lambrechts, A. and Saeys, W. “Hyperspectral system 

trade-offs for illumination, hardware and analysis methods: a case study of seed mix ingredient 

discrimination”, in Journal of Spectral Imaging 9, a16 (Dec 2020). 

https://doi.org/10.1255/jsi.2020.a16. 

 

5.1 Introduction 

Hyperspectral Imaging (HSI), which combines spectroscopy and imaging, is increasingly investigated 
as a non-destructive, real-time tool for food quality analysis and control (J. Amigo et al., 2013). Key 
factors in hyperspectral systems and in computer vision systems in general are the illumination system 
used (Brosnan et al., 2004), the trade-offs in the camera characteristics (spatial resolution, spectral 
resolution, speed and SNR) and the type of data analysis used (Signoroni et al., 2019, Lv et al., 2020), 
which can be broadly categorized as either pixel-based (purely spectral analysis) or space-aware 
(jointly exploiting the spatial and spectral information available).  

While many researchers have investigated trade-offs at the level of individual system components, 
very few have explored the full configuration of HSI systems, either collectively optimizing all factors 
or exploring the potential synergies and trade-offs they involve.  For example, Kerekes et al. (2003) 
developed a model for a hyperspectral imaging system in remote sensing relating sensor settings and 
processing algorithms to a probability of detection. They concluded that the number of spectral bands 
is the most relevant parameter for a subpixel detection application. More recently, Li et al, (2019) 
proposed an evaluation model based on imaging conditions, sensor parameters and data processing 
methods to estimate the application capability, measured as a normalized mean distance between 
mineral classes, in a remote sensing application. However, the joint effect of the system parameters 
was not analyzed. Gutierrez et al. (2019) focused on system design aspects and trade-offs in a 
biomedical application, where mostly optical and image acquisition aspects were considered. They 
focused on time inefficiencies caused by API communications and the effect of Field of View selection 
on the elimination of spatial distortions. While they did not analyse illumination aspects, they 
acknowledged their importance as a future line of work.  
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Indeed, the illumination of an HSI system has a considerable impact on the system performance 
(Peter, 2015; Sawyer et al., 2017), as previously explained in Chapter 1. In section 1.3.2 we discussed 
how tungsten-halogen illumination is generally used in hyperspectral systems since it provides a 
broad-spectrum illumination. However, with the increasing availability of LED lighting solutions with 
different spectral characteristics, some research has also focused on exploring the suitability of LED 
illumination systems. This way, Lawrence et al. (2007) compared a traditional halogen system with a 
LED system for a faecal contamination detection showing that similar detection accuracy of 99% could 
be reached for both systems. Katrašnik et al. (2013) developed a method to compare lighting systems 
based on spatial-intensity and spatial-spectral non-uniformity measures. They focused on avoiding 
specular reflections, and shades but did not quantify the performance of these systems on a specific 
application. Peter (2015) developed several LED ring illumination systems for a skin imaging 
application system, relating viewing angles to the number of LEDs required for uniform area 
illumination. Sawyer et al. (2017) compared the uniformity of halogen and LED based illumination 
systems for a biomedical application but did not report their impact on the discrimination power. 
Carstensen (2018) presented a LED based system for a food control application in combination with a 
colour camera but did not benchmark it against halogen systems. The importance of the illumination 
was also highlighted by Shahrimie et al. (2016) and Mishraa et al. (2020) who focused on compensating 
the impact of illumination on the plant spectra in a close range indoor hyperspectral setup, depending 
on the distance and angle from the light source. 
In Chapter 4, the discrimination power of a halogen-based and a tunable LED-based system is 
compared in a specific application case. We concluded that a considerable gain in discrimination 
power (up to 10% in mean classification accuracy) can be obtained by using a customized LED system 
thanks to the more balanced energy distribution. 

Whereas the hardware/camera configuration is somehow limited to a list of parameters and devices, 
the options for data analysis strategies are very diverse (Signoroni et al., 2019, Lv et al., 2020). Imaging 
analysis methodologies can present very different levels of complexity, normally featuring a trade-off 
between complexity, tractability and need for training data. Recently, there is a shift in the image 
processing domain from simple, traceable methods based on classical image processing which require 
relatively little training data (such as Quadratic Discriminant Classifier (QDC) (Naes, T et al., 2004) or 
Support Vector Machines (SVM) (Hsu, C-W et al., 2016) to high-dimensional, untraceable machine 
learning methods with heavy training (such as Deep Learning and Convolutional Neural Networks). 
While the latter tend to outperform the former, at least when finely tuned, the former are still 
preferred in industrial applications, because they offer a more robust and reliable alternative, e.g., 
featuring a lower risk of overfitting and/or over segmentation of the problem space.  

Especially Convolutional Neural Networks (CNNs), currently the most popular family of deep learning 
algorithms, are widely investigated for hyperspectral image processing. However, most of the work 
on the application of deep learning algorithms on hyperspectral data so far has focused on remote 
sensing applications (Paoletti et al., 2017; Chen et al., 2016; Deng et al. 2018). Moreover, most studies 
were limited to the spectral (pixel-by-pixel) analysis, ignoring the spatial information in the images. 
Very recently, a few authors have introduced CNN approaches for joint spatio-spectral analysis in 
different types of close-range applications. For example, Al-Sarayreh et al. (2018) used a 3D-CNN 
combining spatio-spectral features to detect meat adulteration and found that it outperformed a pixel 
based SVM classification. Wang et al. (2018) used deep CNNs to detect internal mechanical damage 
in blueberries using hyperspectral transmittance data reaching classification accuracies between 85-
90% on test data. In this respect, food control applications are well suited for CNNs thanks to the 
abundance of ground truth data samples, which are much needed by CNNs in the training phase.  
Farooq et al. (2019) used transfer learning to train CNNs to discriminate weeds from low resolution 
hyperspectral images. Gruber et al. (2019) compared deep learning schemes with more traditional 
classifiers for a black plastic recycling application based hyperspectral imaging in the VNIR range. 
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Finally, Gao et al. (2020) achieved 98% discrimination accuracy on ripeness level of strawberries with 
CNNs in the VNIR range.  
While Convolutional Neural Networks can offer high classification performance, they also have some 
drawbacks in terms of their computational cost, lack of insight in the internal classification mechanism 
(once the CNN reaches 2-3 layers), robustness to noise and lack of coherence in results. The latter two 
problems can be solved by adaptively smoothing the original image prior to classification and/or the 
labelled image produced by the classifier. In the former case, adaptive smoothing is needed to cope 
with noise and signal irregularities, while in the latter the smoothing is carried out to remove isolated 
pixels or non-coherent neighboring relationships. Some of the best known adaptive smoothing 
algorithms are Anisotropic Diffusion (Perona et al, 1998) and its extensions (Weickert, 1998), Bilateral 
Filtering (Tomasi et al., 1998) and Mean-Shift (Comaniciu et al., 2002). In the context of Hyperspectral 
Imaging, Liao et al. (2016) combined Extended Morphological Profile (EMP) information with the 
hyperspectral image by bilateral filtering to improve discrimination in a remote sensing application. 
Kang et al. (2013) presented an edge-preserving classification method based on bilateral filtering. They 
applied bilateral filtering to the classification map obtained from a pixel-based classifier such an SVM, 
resulting in an increased classification accuracy. An even simpler approach to combine (and simplify) 
spatial and spectral information jointly is the use of a Median Filter (Gonzalez et al., 2002). Median 
filters are widely used as a simple yet effective denoising method to correct pepper and salt noise in 
colour and hyperspectral images (Thirilogasundari et al., 2012). Similarly, median filtering can be used 
on a pixelwise labelled image to correct locally incoherent pixel miss-classifications. 

As there is interaction between the different factors involved in optimizing an HSI study, the aim of 
this study was to explore the joint impact of all involved factors on the resulting discrimination 
accuracy. This is evaluated for a challenging case study from the food industry, namely ingredient 
quantification in a seed flour mix. Specifically, we study the use of the illumination systems presented 
in Chapter 4 with cameras of different spatio-spectral resolutions and combine these with the use of 
different pre-processing and analysis methods. For the latter we compare a pixel-based classifier such 
as QDC (Naes et al., 2004) with a joint spatial-spectral classifier such as CNN. We analyse the impact 
as well of pre- and post-processing methods such as spatial/spectral binning, bilateral filtering (Kang 
et al, Liao et al) and median filtering (Gonzalez et al, Thirilogasundari et al). We also benchmark our 
work against colour imaging systems restricted to the human-visible spectra. To our knowledge, this 
is the first study where the individual and joint impact of all these system aspects (illumination, 
analysis method, camera spatial-spectral resolution) is investigated for a specific hyperspectral 
imaging application.  

With this study we pursue several goals. First, we want to assess what is the highest achievable 
performance of our hyperspectral system, starting from a basic system configuration and gradually 
enabling additional system parameters. Second, we want to study the relative impact of the different 
system parameters once they are jointly considered. Third, we intend to investigate the available 
system trade-offs to meet varied application requirements in terms of spatial resolution, classification 
performance, computing and memory cost, acquisition speed or hardware cost. Finally, we want to 
investigate the suitability of low spatial-spectral resolution cameras, which initially may seem 
insufficient to reach high discrimination accuracies for the application considered. 
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5.2 Materials and Methods 

This section presents all system parameters studied: the camera system used, the illumination systems 
and the different analysis methods investigated.  

5.2.1 Materials 

We imaged an identical seed mix scene containing oat flakes, corn, millet, sesame, linseeds, sesame 
and pieces of soy grit and soy hull. The seed mix is to be later added to wheat flour for baking. This 
seed scene is imaged under both halogen and tunable led illumination to obtain the corresponding 
images for the same scene. This later allows us to force the selection of identical training samples for 
all illumination and analysis methods under comparison. We created ground truth masks for all these 
ingredients scanned by manually selecting all pixels corresponding to each ingredient with the help of 
the Gimp software (GNU Image Manipulation Program, 1997). An example of this ground truth 
selection for a hyperspectral image is shown in Figure 5-3.  

 

Figure 5-3: Color image of seed mix (left) and ground-truth mask selection for all ingredients (right))  

We used one single image per camera system for the study, where half of the image was used as 

training set, while the other half was used for the validation. In the lower resolution images, since the 

seeds are not so homogenously distributed, we made sure that training and testing pixels were 

selected from different groups of seeds in the image. In this sense, we avoided selecting random 

train/test pixels from the same individual seeds, which could create pseudo replicas. The created 

image ground truth was used to compute the classification accuracy.  

It is important to note that the use of several seed images, such as in Chapter 3, would be advisable 

to develop a robust model for the end application. However, in this chapter our focus is to analyze the 

impact of the different system elements on identical train and test sets. For this purpose, the approach 

of a single image per camera system with the defined train and test sets is sufficient.   

5.2.2 Illumination systems 

We used the two illumination systems already presented Chapter 4: a halogen-based system and a 
tunable custom LED system. For the halogen system we use a basic configuration and a High Dynamic 
Range (HDR) mode that balances energy distribution by using a different exposure time per 
wavelength range. To perform HDR the camera performs scans at several, in our case 3, integration 
times (13, 26 and 39 ms). The highest integration time is used for the band range where less energy is 



 ____ JOINT EVALUATION OF THE COMBINED EFFECT OF ILLUMINATION, CAMERA HARDWARE AND ANALYSIS METHODS

 

80 
 

provided by the halogen source, while the lowest integration time is used for the band range receiving 
the highest energy.  

The advantage of the tunable LED system with respect to the halogen system is that we can achieve a 
more balanced energy distribution on our sensor over the full visible and near-infrared wavelength 
range. Moreover, the illumination is also spatially homogeneously distributed. This translates in a 
reduced spectral variability, which translates into higher discrimination power for the different 
ingredient classes. In Chapter 4 we found that both a halogen system with the HDR method and our 
tunable LED illumination system (CVRL Ltd) outperformed a halogen system for the QDC classifier and 
a high-resolution hyperspectral image. In particular, the tunable LED system resulted in a higher SNR 
spectra and noticeable improvement in class discrimination/classification accuracy, with up to 10% 
higher mean pixel accuracy.   

Figure 5-4 shows a sketch of the tunable-LED prototype with 4 LED bars. The four identical LED bars 
are placed in a square formation to achieve a homogeneous spatial distribution of the light. Each LED 
bar consists of 3 repeated units and every unit contains 16 LEDs with a different peak wavelength 
between 451nm and 940nm. The relative intensity of each LED was tuned to obtain a balanced energy 
distribution for our sensor. The spectral improvement of the tunable LED on some example seeds is 
shown as well. 

 

Figure 5-4: Tunable LED system (left), spatial layout (middle left), LED characteristics (middle right) and impact on the 
seed acquired spectra (right) 

In this work, we evaluate the impact of the tunable LED system on the classification performance 
obtained with other two Snapshot cameras with reduced wavelength ranges. In addition, we now 
consider the use of additional pre-processing methods (binning, median filtering) and analysis 
methods which jointly exploit spatial and spectral information (bilateral filtering, convolutional 
networks). 

5.2.3 Camera systems 

We use the Imec Snapscan VNIR range camera system (Pichette et al, 2017), shown in Figure 5-5: a 
camera system concept that combines the high spatial resolution and spectral resolution of line scan 
hyperspectral imaging technology (Gonzalez et al, 2016). It can acquire datasets for a static scene as 
easily as with a snapshot camera. There is no need for any external scanning movement: scanning is 
handled internally, using a miniaturized scanning stage.  
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Figure 5-5: Traditional linescan sensor and scanning system (left), Snapscan VNIR system (middle) and Snapshot mosaic 
Vis sensor (right) 

Full hyperspectral images can be acquired below 10 seconds. The maximal RAW spatial resolution that 
can be reached is 3650 x 2048px (7Mpx), with a spectral resolution of 150+ spectral bands within the 
470-900 nm wavelength range. Some industrial applications, however, require portable and fast 
image acquisition even at the cost of a reduced spatial and spectral resolution. For this reason, we 
also test an Imec snapshot camera with a mosaic layout sensor where the full hyperspectral image is 
acquired for all bands simultaneously in one shot (B. Geelen et al, 2015). We have two flavours of the 
Mosaic camera. A Mosaic NIR camera with spatial resolution of 409 x 216 pixels, and 25 bands evenly 
spread in the 600-875nm range and a Mosaic VIS camera with spatial resolution of 512x256 and 16 
bands in the 460-630nm range.  The use of a Mosaic NIR or VIS camera allows even faster image 
acquisition (potentially 180 frames per second) at the cost of a reduced spatial and spectral resolution.  

For our high-resolution Snapscan images there are around 150.000 ground-truth pixels. 
Approximately 40% of the pixels are randomly selected from the training half image. For our binned 
Snapscan or low-resolution Mosaic images there are 10.000-35.000 ground truth pixels available and 
therefore up to 80-90% of the pixels of the training set are used. 

5.2.4 Analysis methods 

The different analysis methods considered are summarized in the processing pipeline illustrated in 
Figure 5-6. The first pre-processing method that can be applied onto the input image is a denoising 
step, which can be implemented by either median filtering with a 3x3 or 5x5 window or by 
spatial/spectral binning of the original image. Another type of pre-processing method that can be 
applied next is feature extraction to reduce the input dimensionality. In this study, LDA (Linear 
Discriminant Analysis) was selected for this purpose, based on our previous study in Chapter 3. This 
step is applied prior to the training of the classifier, for which we test two different classification 
methods: The first is the Quadratic Discriminant Classifier (Naes et al. 2004), a pixel-based classifier 
exploiting only spectral information per pixel. The second method is a convolutional neural network 
(CNN), which is a more image-based method that jointly exploits spatial and spectral information. The 
final parameter or processing step is a post-processing method, which acts on the classified image 
with the purpose to correct some pixels miss-classifications by smoothing or imposing spatial 
coherence on the obtained classified image. For this purpose, either bilateral filtering (Kang et al. 
2013), median filtering (Gonzalez et al, 2002), or both were evaluated. Our performance metric is the 
pixel classification accuracy as percentage of correctly classified pixels. The mean pixel classification 
accuracy for all seeds as well as the pixel accuracy for the worst performing seed class are provided. 
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Figure 5-6: Processing pipeline for input image, with the following consecutive steps: denoising, pre-processing for 
feature selection, classification and post-processing on the classified image 

The feature selection and classification model building were performed in the PerClass software 
(PerClass BV 2008-2019).  For the remaining analysis methods (median filtering, binning, and bilateral 
filtering), we code our own Matlab scripts or use the Image processing toolbox in Matlab version 
R2015 (The Mathworks, Natick, MA, USA). The remainder of this section explains all these methods in 
greater detail. 

 Pre-processing methods for denoising and feature selection 

Median Filtering 

Median filters are a simple yet effective method for denoising colour and hyperspectral images by 

correcting for instance pepper and salt noise. In this sense, a median filter can be applied spatially to 

denoise the hyperspectral image, as well as on a classified image to correct for small pixel miss-

classifications. This was implemented by median filtering each waveband image in two dimensions. 

Each output pixel contains the median value in a N-by-N neighborhood around the corresponding pixel 

in the input image. We analyse its impact for pre-processing when applied as a 5x5 filter on the 

Snapscan image or as a 3x3 filter in the Mosaic images. A lower filter size is selected on these lower 

spatial resolution images to minimize the image blurring. 

Spatial and Spectral Binning 
 
Another method to increase the Signal to Noise ratio in our hyperspectral image is to implement 

spatial or spectral binning since averaging over pixel spectral values reduces the noise in the spectra. 

Both spatial and spectral binning were implemented. Spatial binning combines a cluster of NxN pixels 

(in our case 2x2 or 4x4) into a single pixel with its average value. This reduces the overall number of 

pixels and reduces the impact of noise at the cost of a lower resolution. Spectral binning by N bins is 

implemented by substituting each N bands by one band with their average value. As indicated, binning 

samples reduces the number of spatial or spectral samples available, this is, the effective spatial and 

spectral resolution available. This can have a noticeable impact when we are dealing with low spatial 

resolution images (e.g Mosaic cameras) or with small objects (e.g seeds of few pixels size) in a high-

resolution image from the Snapscan camera.  Therefore, binning may only be a valid alternative for 

denoising when the pixel size of the smallest objects is big enough.  

For the first camera system, the Snapscan (1088x1048 pixels), we want to compare the different 
complexity – performance tradeoffs for different spatial-spectral resolutions of our seed image. We 
create these different resolutions by binning the full resolution image both spatially and spectrally by 
either factor 2 or factor 4. For our Mosaic images (max of 512x256 pixels) we do not consider binning 
since the original spatial resolution is lower. 

 

https://en.wikipedia.org/wiki/Pixel
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Linear Discriminant Analysis (LDA) or Linear Discriminant Classifier (LDC) (Naes et al. 2004) 

This method is used to reduce the feature dimension since it identifies the components (linear 
combination of the variables) with the highest information. LDA is a supervised method, assuming 
normal densities for the classes, in which the new features or components maximize the class 
variation. In our previous work on seed ingredient discrimination in Chapter 3 we observed that for 
this application LDA provided better performance than Principal Component Analysis (PCA) (Smith et 
al. 2002) as feature selection method. For this reason, we select LDA as the feature selection 
mechanism for both pixel-based and image-based (CNN) classifiers considered in this study.  It is 
computed with PerClass (PerClass BV 2008-2019) software by finding a projection that separates each 
class from all others. The number of features obtained in this implementation is equal to the number 
of classes we are considering, minus one. In our case, with 10 classes we compress the initial 147 
bands to 9 new spectral features. 

Classifiers 

Classifiers can be broadly categorized into pixel-based classifiers, exploiting the spectral information 
per pixel, or image-based classifiers, jointly exploiting spatial and spectral information. To compare 
the impact of both types of classifiers as system parameters we use the following classifiers, as 
implemented in PerClass software. Both classifiers are applied after the LDA preprocessing step: 

Quadratic Discriminant Classifier (QDC):  

Also known as Quadratic Discriminant Analysis (Naes et al, 2004) assuming as well normal densities 
for our spectral classes. Our work in Chapter 3 shows that for this application, QDC is the most 
performing classifier among the pixel-based ones and therefore we select it as the pixel-based 
classifier. 

Convolutional Neural Networks: 

We use a 3D convolutional neural network, illustrated in Figure 5-7 to extract simultaneously both 
spatial and spectral features from the Hyperspectral Image. We first reduce the hyperspectral image 
dimensionality by applying Linear Discriminant Analysis. From the initial 147 bands we obtain 9 LDA 
bands that are input to the network. This reduces the input dimensions to the network and with it the 
network complexity and computational time while still retaining the most salient features. 

 

Figure 5-7: Schematic illustration of the structure of a CNN network 

The convolutional neural network is then composed of two convolutional layers. Each of them 
followed by their corresponding batch normalization layer and Recitified linear (Relu) units. A ‘Batch 
normalization’ layer uses statistics of individual batches to re-normalize outputs of the previous 
convolutional layer, but it does not alter network geometry. A ‘Rectified linear’ unit is a simple transfer 
function that turns all negative values in zero and lets all positive values pass through. It is known to 
significantly improve convergence speed. We then add two fully connected layers at the end, one with 

LDA  

7x7x9 

3D Conv 

BNorm 
Relu 

Fully Connected 
(10 units) 
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50 hidden units and the final one with 10 (identical to the number of classes). While the inner 
convolutional layers are performing the so-called feature extraction from the input images, the last 
fully connected layers are performing the classification of the corresponding features into one of the 
output labels or classes. (Yang et al. 2018). 

We base our CNN parameter selection, in accordance with previous work (Paoletti et al., 2017; Chen 
et al., 2016; Al-Sarayeh et al., 2018) and opt for 16 convolutional filters of size 5x5, for an input block 
image of 7x7, a learning rate of 0.005, batch size of 100 and a maximum number of 40 iterations. We 
see experimentally that these parameters work well while still limiting the complexity of the network. 

To choose the input block size we evaluate the impact of the selection of different image block sizes 
on the final classification accuracy. For this purpose, we test the use of image block sizes of 1x1, 3x3, 
5x5, 7x7, 9x9 and 11x11 pixels on the full resolution Snapscan image (1048x1048 pixels).  

The size of the convolutional filters chosen for the CNN network for the different input image block 
sizes are given in Table 5-1. The larger the image input block size taken the larger convolutional filter 
we can use, the limit being the input block size. We describe the convolutional filters here as 2D, but 
they have a third dimension, given by the number of spectral bands, in this case the 9 LDA bands. In 
the case of considering a 1x1 block size, this is, a single pixel, we want to exploit only the spectral 
information per pixel and not the spatial information or any spatial features. This is interesting to 
evaluate the amount of information which is present in the spectra or present in the spatial features 
in the image. For any larger image block size, the CNN uses the information from a pixel and its 
neighbouring pixels, therefore the spatial information is exploited as well. 

Table 5-1: Input image block sizes versus convolutional filters used 

Block size 1x1 3x3 5x5 7x7 9x9 11x11 

1st Conv Filter 1x1 3x3 3x3 5x5 5x5 7x7 

2nd Conv Filter 1x1 1x1 3x3 3x3 5x5 5x5 

 

The larger the block size the more information we are giving as input to the network, in terms of input 
pixels. The network was trained with the same input pixels/training examples, which are the centre 
pixels of each input block. For instance, for a block size of 3x3, this corresponds to inputs of 9 pixels 
for every training example, resulting in a total of 3x3x9017 = 81153-pixel data. For the comparison we 
use the same number of network iterations for all block sizes and the same network architecture.  

Post-processing techniques 

We consider two different techniques to smooth the labelled images produced by the classifiers. The 

first and most simple one is median filtering, where median filters of 5x5 pixels are applied. The second 

technique is Bilateral Filtering. We used the Bilateral Filtering method as described in (Kang et al. 

2013). In this method, first the probability maps from the classifier for every class label need to be 

extracted. This probability map is then bilaterally filtered based on a reference image. In (Kang et al. 

2013) the reference image was created from the first 3 PCA components. In our case, we used as 

reference image the LDA bands, since in our case this shows better performance than PCA. This is in 

accordance as well with LDA performing better as pre-processing technique for the QDC classifier than 

PCA. 

The probability maps per pixel are then bilaterally filtered according to the spatial and spectral 
similarity of a pre-defined block size around the pixel in the reference image. This way, the joint 
bilateral filter is based on the widely used Gaussian filter, considering the distance in the spatial 
domain and the distance or similarity in the spectral domain. The spatial and spectral distances are 
defined using two Gaussian decreasing functions, as described for the Joint Bilateral Filtering process 
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in (Kang et al. 2013). The main parameters to tune the bilateral filtering are 𝛿𝑠 and 𝛿𝑟, defining the 
decay of these Gaussian functions, or weight decrease with respect to spatial distance and spectral 
distance (in terms of intensity similarity) respectively. In this sense, 𝛿𝑟  defines how the pixel weight 
decreases with the intensity difference while 𝛿𝑠 defines the size of the local window used to filter a 
pixel: Block size = (2𝛿𝑠 +1) * (2𝛿𝑠 +1). 

We explored the performance of these two parameters and set for the following parameter values 
according to the different spatial resolutions considered:  

Table 5-2: Parameter selection per image size: input block size, and gaussian decay functions  

𝜹𝒔 (wrt spatial distance) and  𝜹𝒓 (wrt spectral distance) 

Camera Image Image size 𝜹𝒔 𝜹𝒓 Block size 

Snapscan original 1088 x 1048 pixels              3          4     7x7 

Snapscan binned by 2    544 x 524 pixels              3          4     7x7 

Snapscan binned by 4    272 x 256 pixels              1          0.4     3x3 

Mosaic NIR    409 x 216 pixels              2          0.4          5x5 

Mosaic VIS    512 x 256 pixels              3          4      7x7 

 

As we can see in Table 5-2, different 𝛿𝑠 and block sizes are used for the different image resolutions 
considered. This can be related to the size of the seed spatial features in the different image 
resolutions. Table 5-3 shows how the approximate seed sizes for the smallest seeds relate to the image 
resolution used. We can see that the biggest seed sizes can be obtained for the Snapscan original and 
binned by 2 and the Mosaic VIS. The Mosaic NIR camera has only slightly lower spatial resolution than 
the Mosaic VIS. However, in our experiments the Mosaic NIR was placed slightly further from the 
scanned objects, and this causes it to image the seeds with roughly half the size of those in the Mosaic 
VIS.  

We can see in Table 5-3 that the smallest seed size in pixels is related to a good performing value of 
block size where bilateral filtering around the central pixel is performed. This way, block sizes of 7x7, 
49 pixels, are considered suitable for all image resolutions where the seed sizes are at least 100 pixels. 
For the Mosaic NIR and the Snapscan binned by 4 block sizes of 25 and 9 pixels respectively perform 
better since they correspond to a portion of an individual seed. In this sense, performing bilateral 
filtering over a too big block size would not be advantageous since the pixel labels would differ strongly 
within the same block size when a block size comprises different adjacent seed types.   

Table 5-3: Approximate seed sizes in pixels for the considered image resolutions and corresponding suitable block size 

Image Spatial resolution Sesame size Millet size Linseed size Block size 

Snapscan original 1088x1048 pixels         500 pixels       400 pixels 800 pixels     7x7=49 

Snapscan binned by 2    544x 524 pixels         125 pixels       100 pixels  200 pixels     7x7=49 

Snapscan binned by 4    272x 256 pixels          32 pixels         25 pixels    50 pixels     3x3=9 

Mosaic NIR    409x 216 pixels          95 pixels         87 pixels    205 pixels     5x5=25 

Mosaic VIS    512x 256 pixels        200 pixels       205 pixels    350 pixels     7x7=49 

 

Moreover, next to previous parameters we need to define our distant metric from pixel i to 
neighbouring pixel j,  ||𝑖 − 𝑗||. For simplicity we choose it to be the Chebyshev metric (Cantrell, 2000). 
In our image, if the points i and j have Cartesian coordinates (𝑖1, 𝑖2) and (𝑗1, 𝑗2), their Chebyshev 
distance is defined by equation (1) as: 
 
𝐷𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑖, 𝑗) = 𝑚𝑎𝑥(|𝑖1 − 𝑗1|, |𝑖2 − 𝑗2|)  (1) 

https://en.wikipedia.org/wiki/Cartesian_coordinates
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Benchmark RGB color imaging  

To benchmark hyperspectral imaging in the VNIR range (460-900nm) against regular colour imaging 
cameras we create RGB images from our hyperspectral image. This way, we can compare both imaging 
systems under the same system conditions: illumination, lens, and identical sample selection. We are 
aware that color cameras could be available at higher spatial resolution or SNR. However, we obtain 
the RGB image from our hyperspectral image since this allows us to evaluate the added value of 
hyperspectral imaging, while keeping all other parameters identical (spatial resolution, SNR).   

To obtain the corresponding RGB image from the hyperspectral image we use XYZ parameter 
computation (Goodman, T.A 2012) from the Snapscan hyperspectral image. The CIE XYZ color space is 
a device-invariant representation of color. From the given spectrum, S, the illuminant function I, (here 
assumed E standard of theoretical equal energy radiator (Goodman, T.A 2012)) and the CIE color 
matching functions, we can obtain X, Y and Z color values. We can then transform these X, Y, Z values 
to RGB color components (International Colour Consortium 1999, sRGB).  

To benchmark hyperspectral with respect to colour imaging we applied the same type of pre-
processing, classification, and post-processing techniques to the RGB images as we applied to the 
hyperspectral images. The only difference is that, since we only have three bands in RGB images, there 
was no need to apply feature reduction with LDA. Therefore, the CNN was directly applied on the 
three RGB channels. Since the spectral information was limited to these three broadbands, input 
blocks 11x11 were used to exploit as much as possible the spatial information. The size of the 
convolutional filters was then chosen as given in Table 5-1.  
 

5.3  Results and Discussions 

5.3.1 Impact of illumination system 

We compare the use of different illumination systems: halogen system, halogen with HDR and custom 
tunable LED system on the pixel classification accuracy for the QDC classifier and the Snapscan camera 
image. No other pre-processing or post-processing methods were used at this stage. Both mean pixel 
accuracy and minimum pixel accuracy (for the most challenging ingredient) are increased by better 
balancing the energy of the illumination system. This way, using HDR functionality on top of a halogen 
system increases mean accuracy from 70.4 to 73.2% and up for the most challenging class from 45.9% 
to 50.6%. The tunable LED system achieves the highest performance increase resulting in a 10% 
improvement in mean accuracy (reaching 81%) and up to 14% increase for the most difficult ingredient 
(59.5% versus 45.9% of halogen). This happens thanks to its more homogeneous spectral and spatial 
distribution, which is seen in a factor 6 reduction of the standard deviations of the spectral intensity 
over the white tile. 

5.3.2 Impact of classifier and camera system 

We analyse the effect of the image block size on the classification performance of the convolutional 
neural network for the Snapscan camera system under halogen illumination. To obtain a fair 
comparison, the same number of network iterations and the same architecture were used for all block 
sizes. We can observe in Table 5-4 that for a 1x1 block size the CNN performance increases the mean 
accuracy by 3% with respect to QDC classifier, even though no spatial information is exploited yet. 
With an increased block size, we increase further the mean and minimum pixel accuracies. The largest 
performance increase, 11% in mean accuracy, happens when going from a block size of 1x1 pixel to a 
3x3 block size, since the network can then start to exploit spatial/spectral information of surrounding 
pixels. From 3x3 block size on till a 11x11 block size the performance increase is less noticeable, but 
there is still a total gain of around 5% in mean accuracy and 8% for the minimum accuracy (most 
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challenging ingredient). From a block size of 7x7 on, the gain is more limited (less than 1% in mean 
and 2% for the minimum). In terms of convergence time, we can see that for this block size a lower 
number of iterations required results in the minimum computing time required. A larger block size 
than 7 increases both network complexity and convergence time, therefore the 7x7 block size seems 
to be a good compromise and is used in all further experiments.  

Table 5-4:   Impact of input image block size on CNN performance (pixel accuracy) for an image acquired with the 
Snapscan camera under halogen illumination. 

Block size CNN feature size Mean 
accuracy 

Minimum 
accuracy 

Iterations 
required 

Convergence 
time (s) 

1x1 9 73.3% 50.1%    35 90.0 

3x3 9x9=81 84.6% 68.0%    35 87.0 

5x5 25x9=225 87.9% 75.7%    35 94.3 

7x7 49x9=441 89.1%  74.3%    25 75.6 

9x9 81x9=729 90.0% 76.2%    25 101.0 

11x11 121x9=1089 89.4% 71.0%    25 119.2 

 
It should be noted that even the largest image block size considered, 11x11=121 pixels, is below the 
smallest seed sizes in our image, which is around 400 pixels for millet seeds. All other ingredients are 
bigger (e.g linseeds around 1000 pixels and oat flakes from 3000 pixels on). 
In this respect, the performance of the CNN classifier with a 7x7 block size, is considerably higher than 
that of the QDC classifier, for all camera systems considered. The Snapscan system, with the highest 
spatial-spectral resolution, outperforms Mosaic camera systems, independently of the classifier: 
70.4% as mean and 45.9% minimum for QDC, increasing to 89.1% mean and 74.3% minimum for the 
CNN. Both Mosaic systems, with a reduced spatio-spectral resolution and lower pixel SNR than the 
Snapscan camera, achieve poor performance with the QDC classifier (~45-50% in mean and 2-5% as 
minimum). However, their performance is considerably increased by the CNN, reaching 78.8% as 
mean and 50.7% as minimum for the VIS and 76.1% mean and 51.1% minimum for the NIR. 

While CNNs have the potential to extract shape and size features (Szegedy 25 al., 2014), it is unlikely 

that our CNN implementation with 2 convolutional layers extracted much shape information. 

Moreover, our input block size was limited to 7x7=49 pixels, which cannot cover more than a fraction 

of even the smallest seeds. Therefore, most probably it is not extracting enough shape information 

per ingredient to rely on morphological information per seed as proposed by Vu et al. (2016) and 

Vermeulen et al. (2018). In contrast, our CNN is most likely relying on spatial textural information. 

Additionally, for less flat components such as soy grit, the presence of shade near the edge of the soy 

grit could be relevant information that the CNN might be exploiting. Moreover, to address an image 

containing multiple seeds of different size and shapes (e.g oat flakes versus millet seeds), this is 

probably not possible with one single size of convolutional filters, as used in our implementation. A 

different range of filter sizes may be required to optimally address different feature sizes. Finally, a 

combination of object segmentation and object classification tasks would probably be required, first 

to identify where seeds in the scene and then to analyze the shape at object level. 

In this respect, Redmon et al. (2016) developed Yolo, a CNN with 9 to 24 convolutional layers with the 

purpose of pure object detection with high real-time performance. However, they did not extract 

object shape information. In contrast, CNNs from GoogLeNet (Szegedy et al., 2014) used a modified 

structure with several convolutional kernels of different sizes to capture features at different scales 

for an image classification task. More recently, Castorena et al. (2020) have addressed CNN 

modifications to be able to capture 2D – shape information since typically CNNs rely more on textural 

information, while Mishra et al. (2020) implemented CNN modifications to allow the network to 

extract 3D information. However, these latter works have addressed one single object per image. 
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Therefore, an image with multiple objects of varying size and shape, such as our application case, may 

require a combination of multiple different approaches and will incur in higher complexity than the 

CNN approach presented here. 

Note that despite the potential of CNNs to include shape information, to discriminate heterogeneous 

ingredients in size and shape such as wheat bran or soy hull, the CNN would probably still need to rely 

more on spectral information. 

5.3.3 Impact of pre-processing steps 

 Pre-processing for denoising by median filtering 

We assess here the impact of applying median filters as pre-processing step to our classifiers for all 

camera systems with a halogen system. Identical training samples are used for the comparison of the 

different methods and accuracy is given over the whole image as test set. Median filtering as pre-

processing step is a simple yet effective method to improve the classification performance. This is 

particularly the case for the QDC classifier with the Snapscan image. As we can see in Table 5-5, an 

increase up to 10% on mean accuracy and 16% on the minimum one can be achieved with a 5x5 

median filter.  

For the Mosaic VIS and Mosaic NIR images the median filtered applied is of 3x3, to avoid excessive 
blurring on these lower resolution images. Median filtering increases mean accuracy by 5-7% for the 
QDC classifier in both Mosaic systems. For the CNN there is also a 5% increase for the Mosaic VIS. For 
the Mosaic NIR CNN the performance decreases when median filtering is applied, which could be due 
to excessive image blurring for this lower resolution image. 

Table 5-5: Impact of Median Filtering for the classification performance obtained with QDC and CNN on the images of 
seed mixes acquired with the Snapscan, Mosaic VIS & Mosaic NIR cameras 

Camera 

Classifier & 

Preprocessing 

Snapscan, (Halogen) Mosaic VIS, (Halogen) Mosaic NIR, (Halogen) 

QDC 

Mean/Min 

CNN 

Mean/Min 

QDC                      

Mean/ Min 

CNN              

Mean/Min 

QDC                      

Mean/ Min 

CNN              

Mean/Min 

None 70.4%/45.9% 89.1%/74.3% 45.5%/2.3% 78.8%/50.7% 50.2% /5.6% 76.1%/51.1% 

MF 80.8%/61.9% 88.8%/75.0% 52.6% /9.1%  83.0%/70.9% 55.3%/24.0% 70.0%/26.9% 

 

Preprocessing for denoising by spectral/spatial binning 

Applying spatial/spectral binning on an image can also help denoise the spectra. However, this is done 
at the cost of a reduced spatial or spectral resolution. We experiment with spatial and spectral binning 
of factor 2 and 4, on the Snapscan image (1048x1088 pixels). Figure 5-8 shows the impact of median 
filtering on a close-up of our seed image. We can see how filtering reduces the textural information. 

No binning is performed on the Mosaic images since these ones have lower spatial-spectral resolution. 
Table 5-6 shows the impact of binning and median filtering on the classification accuracy with the 
Snapscan image and Halogen illumination. The use of binning increases classification accuracy for the 
QDC classifier up to 8.5% in mean and up to 16% for the minimum class accuracy. Therefore, it is 
another simple yet effective measure to increase performance. For the CNN classifier, with initial 
performance around 90%, the impact of binning is marginal. The benefit of binning being in this case 
that the memory and computational requirements for the CNN are heavily reduced (by factor 16 when 
binning by 4).   
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Figure 5-8: Impact of median filtering (MF) visualized on a close-up of the Snapscan image 

As for the joint impact of binning and median filtering, we can observe that their individual 
performance increases do not add up when jointly applied. In fact, the highest performance increase 
is achieved by performing median filtering and not binning at all. The advantage of binning remains 
nevertheless, that a lower amount of data needs to be processed. This can be interesting when using 
the computing intensive CNNs. In this case, binning does not increase the performance of the CNN, 
but it heavily reduces computational and memory requirements while maintaining a similar 
performance.  

Table 5-6: Joint impact of binning and median filtering as pre-processing on the mean and minimum classification 
accuracies obtained with QDC and CNN classifiers on seed images acquired with the Snapscan camera under halogen 

illumination.  

Classifier/ 
Resolution 

QDC            
Mean / Min  

CNN                     
Mean / Min 

Original 70.4%/45.9% 89.1%/ 74.3% 

Original + MF 76.0%/ 46.6% 89.5%/ 74.1% 

Bin 2 72.2%/ 29.2% 90.5%/ 68.0% 

Bin 2 + MF 74.4%/ 21.9% 90.6%/ 67.2% 

Bin 4 76.4%/ 44.4% 87.9% /61.4% 

Bin 4 + MF 77.6%/ 33.1% 87.6%/ 58.2% 

 

Impact of post-processing steps: Median filtering and Bilateral filtering 

We now evaluate the individual and joint impact of median filtering and bilateral filtering as post-

processing steps applied on the labelled output image. The result of post-processing methods on the 

performance of the different camera systems is shown in Table 5-7. Bilateral filtering results in a higher 

performance increase than median filtering (11% versus 6% mean increase for Snapscan with QDC) at 

the cost of higher complexity. Combination of both, barely increases the performance. For the CNN 

there is also a modest performance increase by applying post-processing. The increase is less 

noticeable since the starting accuracy was high with lower potential for increase.  

 

 

 

Original MF 5x5 MF 3x3 
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Table 5-7: Impact of post-processing steps on the mean and minimum classification accuracies obtained with QDC and 
CNN classifiers on images of seed mixes acquired with the Snapscan camera under halogen illumination and the Mosaic 

cameras under LED illumination.  

Camera syst Snapscan (Halogen) Mosaic VIS (LED) Mosaic NIR (LED) 

Classifier / 

Post-process 

QDC          

Mean / Min  

CNN             

Mean / Min 

QDC          

Mean / Min  

CNN             

Mean / Min 

QDC          

Mean / Min  

CNN             

Mean / Min 

None 70.4% /45.9% 89.1%/ 74.3%  52.5%/9.3% 80.5%/59.3% 49.4%/6.1%  83.1%/63.8% 

MF  76.0% /46.6% 89.5%/ 74.1% 57.1%/11.6% 81.2%/59.9% 53.9%/8.0%  84.8%/66.0% 

BF 81.5% /55.4% 90.3%/ 71.1%  59.3%/0.4% 83.2%/60.3% 49.4%/6.1%  83.1%/63.9% 

BF + MF  81.6% /55.5% 90.3%/73.8% 59.5%/0.1% 83.3%/60.5% 53.9%/8.0%  84.9%/66.0% 

 
These post-processing techniques correct miss-classified pixels by assuming most neighboring pixels 
are correctly classified. Otherwise, spatial filtering cannot correct for this poor classification and may 
make it worse. This specially occurs with Mosaic systems and QDC where some ingredient accuracies 
are below 10%. We can conclude that applying a pre-processing step to denoise the input spectra, is 
more effective than post-processing an already classified image with low accuracy and high number 
of miss-classifications, as in the Mosaic case. 

 

Combined impact of pre-processing and post-processing steps 

Table 5-8 shows the combined impact of the pre-processing and post-processing techniques with our 
QDC and CNN classifiers. In the case of QDC median filtering of 5x5 provides best results while in 
combination with the CNN, median filtering of 3x3 as pre-processing step is slightly preferable. 

Table 5-8: Joint impact of pre- and post-processing techniques on the mean and minimum classification accuracies 
obtained with QDC and CNN classifiers on images of seed mixes acquired with the Snapscan camera under halogen 

illumination.  

Pre & Post-processing + 

Classifier 

QDC                      

Mean / Min  

CNN                                               

Mean / Min 

Classifier 70.4% / 45.9% 89.1% / 74.3% 

Classifier + MF  76.0% / 46.6% 89.5% / 74.1% 

Classifier + BF 81.5% / 55.4% 90.3% / 74.1% 

MF + Classifier 80.8% / 61.9% 88.8% / 75.0% 

Classifier + BF + MF 81.6% / 55.5% 90.3% / 73.8% 

MF + Classifier + MF 82.7% / 62.4% 89.1% / 74.8% 

MF + Classifier + BF 85.4% / 66.3% 89.9% / 76.2% 

MF + Classifier + BF +MF 85.5% / 66.6% 89.9% / 76.2% 

 

From this table we can make several observations. Firstly, for QDC classifier, median filtering is more 
effective as pre-processing step than as post-processing step. Secondly, a pre-processing step such as 
median filtering achieves similar performance increase than bilateral filtering as post-processing step 
(around 10% for QDC). In addition, the joint use of median filtering as pre-processing and bilateral 
filtering provides further improvement even though the contribution of each individual performance 
does not fully add up (10% mean increase for each technique and 15% for the combination of both). 
For CNN, the conclusions are different though, the use of median filtering as pre-processing can even 
slightly decrease the mean accuracy. The reason might be that the blurring effect of median filtering 
decreases the spatial information provided to the CNN. Only the use of some post-processing (as BF) 
can slightly increase the performance (by 1%). 
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Combined impact of all system parameters 

We now analyse the combination of all system parameters considered in previous sections: 
illumination system, pre-processing, analysis, and post-processing parameters for our two classifier 
types and different camera systems. Table 5-9 shows a summary of the basic configurations (only 
classifier without pre- or post-processing), those with pre and postprocessing methods (excluding 
binning) and the different illumination systems proposed for the Snapscan camera. Configurations 
illustrated in the same colour correspond to a similar performance achieved. Last row on Table 5-9 
corresponds to the corresponding classification accuracy for the corresponding RGB image.  

 
Table 5-9: Joint impact of system illumination and analysis methods on the mean and minimum classification accuracies 

obtained with QDC and CNN classifiers on images of seed mixes acquired with the Snapscan camera. 

Configuration Halogen                             

Mean / Min accuracy 

Halogen HDR                  

Mean / Min accuracy  

Tunable LED                        

Mean / Min accuracy 

QDC 70.4%     45.9% 73.2%      50.6% 81.1% 59.5% 

MF+QDC+BF+MF 85.5%     66.6% 87.0%      68.5% 91.4% 70.7% 

CNN 89.1%     74.3% 88.8%      77.7% 94.1% 86.0% 

CNN+BF+MF 90.3%     73.8% 90.5%      80.2% 95.4% 87.5% 

CNN+BF+MF (RGB) 67.6%     34.1%    -               - 73.5% 35.6% 

 
Figure 5-9 illustrates the preceding table showing which system parameters can be gradually added 
to increase the system performance. Starting from a basic configuration (QDC classifier, halogen 
system and no pre-post processing steps), we can considerably increase the performance, by up to 
25% mean accuracy, till the most complex configuration (CNN classifier, LED system and pre/post 
processing). Moreover, different parameter configurations can be used to achieve similar 
performance (showcased in same color) while meeting different application requirements. 

 

Figure 5-9: Suggested configuration map to increase system performance. Starting from a configuration with halogen 
lights and QDC classifier different components can be modified: use of CNNs (+CNN), use of pre- and postprocessing 
(+MF, BF), use of LED illumination (+LED) or a combination of them. Similar colors indicate similar accuracy levels. 

This way, from the basic configuration (halogen system and QDC classifier) we can increase the 
accuracy to over 80% in mean and around 60% for the minimum by either: 

• Combining MF, QDC and BF in the halogen-based system 

• Using the basic classifier QDC without pre/post-processing but in the LED-based system 
To further increase performance, to around 90% for mean and over 70% the minimum, we can either: 



 ____ JOINT EVALUATION OF THE COMBINED EFFECT OF ILLUMINATION, CAMERA HARDWARE AND ANALYSIS METHODS

 

92 
 

• Use CNNs, in combination or not with pre/post-processing. 

• Use the LED-based system in combination with QDC classifier, pre- and post-processing 
(Median Filtering and Bilateral Filtering). This allows us to reach similar accuracy without 
resorting to CNNs.  

The highest reachable performance is achieved by combining the following system parameters: CNNs, 
LED system and pre- and post-processing methods. 

Finally, we benchmark the results with respect to RGB imaging in Table 5-9. For this purpose, we take 
the best possible configuration for RGB imaging of CNN’s in combination with post-processing. Even 
though the use of LED illumination also benefits RGB by around 6% in mean accuracy we can see that 
hyperspectral imaging outperforms RGB imaging even when comparing to the pixel-based approach 
of QDC, even by a 10% in the minimum accuracy. When compared to the same analysis method, CNN, 
hyperspectral outperforms by 20% on the mean accuracy and around 40% on the minimum accuracy.  

To visualize the effect of these different system aspects on the classification accuracy we show the 
classified images for the Snapscan binned by 2 case. Figure 5-10 shows the impact of the classification 
accuracy on the resulting classified images for some of these configurations. Figure 5-11 shows a crop 
of the original seed image with its corresponding classified images. For some seeds, the QDC has many 
pixel miss-classifications (circled in red), which make the seeds unrecoverable even after majority vote 
in a seed. The use of median filtering prior and after classification helps to increase the accuracy in 
some cases but fails in others. Indeed, the central part of the image shows one miss-classified sesame 
seed, miss-classified soy hull and soy grit wrongly detected as either millet or corn. This is corrected 
in the images acquired with the LED system and classified with the CCN, where the right type of seeds 
is correctly discriminated. 
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Figure 5-10: False color image of seeds with labelled ground-truth (top-left), classified image for halogen illumination with 
a QDC classifier without (top right), and with (bottom left) median filtering, and for the combination of LED illumination 
with a CNN (bottom right).                                                   

 

Figure 5-11: Close-up of Figure 5-10 and corresponding classified images, left to right with a) Halogen QDC, b) Halogen 
(MF+QDC+MF) and c) LED system and CNN. 

Table 5-10 shows the performance of selected system configurations for the Mosaic VIS and the 

Mosaic NIR, respectively. In both cases the basic configuration with a pixel-based classifier (LDA+QDC) 

obtains poor performance. However, by modifying some system parameters that either reduce the 

spectral noise (MF, LED) or exploit more spatial information (CNNs), the performance can be 

dramatically increased (35 to 45% mean accuracy increase and up to 70% increase in minimum 

accuracy) achieving then very high performance with both Mosaic VIS and NIR. Note that median 

filtering is applied as pre-processing step on the image obtained with the Mosaic VIS and CNNs but 

not on the image obtained with the Mosaic NIR and CNNs. In this case no median filtering is applied 
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since this reduces the overall performance, probably due to the excessive loss of texture information, 

as it was seen in Table 5-5.  

Table 5-10: Joint impact of system illumination and analysis methods on the seed classification performance for Mosaic 
cameras 

Camera           Mosaic VIS                     Mosaic NIR 

Configuration Halogen      

Mean / Min  

Tunable LED 

Mean / Min  

Halogen           

Mean / Min  

Tunable LED        

Mean / Min  

QDC 45.5%/2.3% 52.5%/ 9.3% 50.2%/ 5.6% 49.4%/ 6.1% 

MF+QDC+BF+MF 56.8%/ 0.7% 65.0%/ 7.9% 60.1%/ 32.1% 62.6%/ 43.2% 

CNN 78.8%/50.7% 80.5%/ 59.3% 76.2%/ 51.1% 83.1%/ 63.8% 

(MF)+CNN+BF+MF 87.6%/75.6% 90.3%/ 75.1% 77.8%/ 52.5% 84.9%/ 66.0% 

 

It is important to note that LED illumination can help increase performance significantly in either 

Mosaic VIS or NIR range. This is also the case for the CNN classifier, where over 10% accuracy increase 

is achieved for the most challenging ingredients. The use of pre- and post-processing techniques can 

also increase the performance by over 10% in mean accuracy. However, for this application to reach 

a mean classification accuracy around 80% with the mosaic cameras, CNNs are required, exploiting 

both spectral and spatial information. Once a CNN is enabled, a more equivalent performance can be 

obtained from either adding LED illumination or pre/post-processing. For a mean classification 

accuracy closer to 90%, we would need to resort to the optimal configuration combining LED 

illumination, pre-processing through median filtering, a CNN classifier and post-processing. The most 

performing configuration under all illumination systems and cameras is achieved by using CNN, 

median filtering as pre- and post-processing and bilateral filtering. Only for Mosaic NIR images with 

CNN, due to the reduced spatial resolution, the optimal configuration does not use median filtering as 

pre-processing step. 

 

Figure 5-12 shows an example of a classified image for the Mosaic VIS under different system settings. 

We can see how QDC poorly discriminates most seeds, while using CNN (bottom left) enables correct 

discrimination of the different ingredients with a mean accuracy close to 80%. The use of LED lights 

and extra pre- and post-processing on CNN (named as CNN+) further improves the classified image 

reaching up to 90%pixel classification accuracy. 
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Figure 5-12: Classified images for illustration of the classification performance obtained on images acquired with the 
Mosaic camera in the Vis range. (Top row: False color image (left) and classified Halogen QDC+(right), Middle row: 
classified Halogen CNN (left) and classified LED CNN+ (right), Bottom row: manually masked ground-truth image   

5.4 Conclusions 

In this chapter, we proposed a methodology to find the optimal combination of several system 

parameters that allows to increase our hyperspectral system performance, measured as pixel 

classification accuracy. We compared the impact of different parameters of a hyperspectral imaging 

system, such as illumination, camera, and analysis methods. From our experiments we observe that 

illumination is a key aspect of a hyperspectral system since a customized led system can increase 

accuracy over a traditional halogen system in the order of 10% in mean accuracy and close to 15% for 

the minimum accuracy. In addition, the use of pre-processing and post-processing methods (such as 

median and bilateral filtering) can also increase the accuracy significantly: over 10% in mean, and 

around 20% for the minimum accuracy for a pixel-based classifier but also around 1-3% the minimum 

accuracy in the CNN case. The impact of using and image-based versus a pixel-based classifier is even 

more noticeable for our application, where an increase in 15-20% mean accuracy can be obtained with 

respect to our pixel-based classifier. In total, the mean pixel classification accuracy for the Snapscan 

camera increased from 70% to 95% by replacing the basic combination (halogen illumination with 

quadratic discriminant classification and no pre/post processing) by the most advanced one: tunable 

LED illumination with a convolutional neural network and pre/post-processing methods applied. For 

more portable low-resolution Mosaic cameras, enabling all system parameters in this advanced 

configuration can noticeably increase our application mean pixel accuracy from 50% to over 90%.  

Our system analysis has shown that similar performance can be achieved by enabling a different set 

of system parameters. For instance, we can reach the same performance than a CNN under halogen 

lights by using a QDC classifier and enabling tunable LED illumination and the use of pre- and post-

processing techniques. This specific system trade-off is valid for the application considered. A basic 
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system with QDC and halogen lights might suffice to reach the highest accuracy in another application. 

Similarly, a tunable LED illumination providing more balanced spectral and spatial distribution is 

beneficial, but its advantage could be more limited for a different sensor or camera system. Another 

important aspect is the degree of spatial and spectral information available in our application. The 

more information available in the spatial dimension the more beneficial a joint spatial-spectral analysis 

with CNN will be with respect to a purely spectral pixel-based analysis such as QDC.  This is application 

dependent. In addition, a higher degree of spatial information in our application motivates 

benchmarking with respect to color cameras. For instance, in our case, high spatial resolution RGB 

color imaging with LED illumination and CNN classification could achieve similar or higher performance 

than with a low-resolution Snapshot hyperspectral camera with pixel-based classification. 

A way to assess whether the classification mainly relies on the spatial or spectral dimension could be 

the following: If we can discriminate the different objects/classes reasonably well by visually 

inspecting an RGB image corresponding to the hyperspectral image, then there is either a certain 

degree of spatial information present or the problem can be solved with regular color imaging. 

Moreover, in this case discrimination based on color images could still provide reasonable accuracy. 

In this sense, there is generally some degree of spatial information available in the image since 

neighboring pixels typically belong to the same objects/materials. On the other hand, we can evaluate 

the degree of spectral information available in the image by analyzing the performance of a pixel-

based classifier such as QDA, where no spatial information is exploited.   

The existing performance-complexity trade-offs between high-resolution and low-resolution camera 

systems often hold for a generic hyperspectral system. This said, for some applications a low-

resolution system may suffice to reach the application target performance. A general conclusion that 

can be drawn is the need for a joint study of all system parameters. By performing this joint analysis, 

we can enable the system parameters that better fit the application requirements in terms of 

performance, spatial resolution, computation cost or speed of acquisition. Therefore, system-wide 

analysis can lead to better decisions when adapting to the specific application requirements.  
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Chapter 6 

Adding wavelength range to the joint system 

evaluation of hardware, illumination, and data 

analysis 

6 Adding wavelength range to the joint system evaluation of hardware, illumination, and data analysis. 

In this Chapter, we extend the system aspect analysis covered in Chapter 5 by introducing, as in 

Chapter 2, the wavelength range as a system parameter with high impact on the system cost. To this 

end, we study the impact of the SWIR camera hardware (1100 – 1700 nm range) on the Devil’s triangle 

of performance – cost – complexity for the same seed application used in previous chapters.  

By considering, in addition to the VNIR range, cameras in the SWIR range it might be possible to 

increase discrimination performance. This would then happen at the expense of a camera system cost 

increase since sensors in this range are typically more expensive. In addition, SWIR sensors offer lower 

spatial resolution (typically VGA). On the other hand, their potentially higher discrimination power 

may help to reduce the associated processing complexity. This is the case if, for instance, pixel-based 

classification suffices to attain the required performance and more advanced processing methods 

such as CNNs are not needed. In this chapter, both types of SWIR camera systems are considered: 

Snapscan cameras with high spatial-spectral resolution and Mosaic snapshot cameras with lower 

spatial-spectral resolution.  

Figure 6-1 shows the focus of our Devil’s triangle in this chapter on Performance and System Cost 

where RGB, VIS/NIR and SWIR range systems are considered in both high spatio-spectral resolution 

(Snapscan system) and low spatio-spectral resolution (Snapshot system). 

 

Figure 6-1: Devil’s triangle of application requirements considering different camera wavelength ranges. 
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6.1 Materials and Methods 

6.1.1 Camera systems 

Recently, the on-chip hyperspectral imaging technology has been extended to cover the short-wave 

infrared (SWIR) range between 1100 and 1650 nm (Gonzalez et al., 2018). Figure 6-2 shows the 

corresponding Snapscan camera system with its main characteristics, being 100 bands in the 1100 to 

1700 nm range and a maximum spatial resolution of 1200 x 640 pixels.  

 

Figure 6-2: Compact Snapscan SWIR camera system (left) and measurement after calibration of its 100 spectral bands in 
the 1100-1700 nm range. - Courtesy of Imec 

Similarly, Mosaic SWIR Snapshot cameras have also been developed to enjoy the benefits of mosaic 

snapshot cameras at the expense of a reduced spatial-spectral resolution with respect to the Snapscan 

SWIR camera system. This way, the Mosaic SWIR camera system used for this study offers 16 bands 

at a spatial resolution of 128 x 160 pixels. The lay-out of the 16 bands selected in the 4x4 Mosaic SWIR 

design is illustrated in Figure 6-3.  

                     

Figure 6-3: Band selection and distribution in 4x4 Mosaic SWIR sensor 

Both camera systems were used with halogen lights since no high-power LEDs in the SWIR range were 

commercially available at the time of the study. 

Figure 6-4 benchmarks these SWIR range camera systems with respect to the VNIR systems used in 

previous chapters by illustrating the Spatial – Spectral resolution tradeoffs that can be expected from 

each of the camera systems considered. While RGB cameras could offer higher spatial resolution than 

hyperspectral cameras, their spectral resolution is very low. Although this is application dependent, 

the SWIR range is considered to contain more detailed chemical information. Therefore, we could 

expect our SWIR Snapscan camera to offer the highest spectral discrimination and an average spatial 

resolution, comparable to that of Mosaic VIS/NIR cameras. A Snapshot SWIR camera would provide 

lower discrimination power than the Snapscan SWIR, but it may be comparable or even better than 
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that of a VNIR Snapscan camera for specific applications such as the seed discrimination application 

of Chapter 3 to 5, in which both VNIR and SWIR ranges are discriminative.  

 

Figure 6-4: Tradeoffs in Spatial-spectral resolution provided for this particular application with the different camera 
systems used in this research. 

 

6.1.2 Sample selection and processing pipeline 

To evaluate these trade-offs, we used the same seed application with the ingredients presented in 
Chapter 4 and 5. Similar to the procedure followed in the previous chapters, half of the image was 
used for training the algorithms, while the other half was used for the validation. As the seeds were 
not so homogenously distributed, we made sure that training and testing pixels are selected from 
different groups of seeds in the lower resolution image (Mosaic camera) by manually selecting 
different masks with different seed selection for training/testing. The created image ground truth with 
all seeds was used to compute the classification accuracy.  

The Mosaic SWIR 4x4 image was upsampled from a resolution of 128 x 160 per band to obtain the 
original sensor resolution of 512 x 640 pixels. This was done to increase the size of the spatial features 
of our Mosaic SWIR image to a size comparable that that of the camera systems in the VNIR range, 
presented in Chapter 5.  

The data analysis pipeline used in Chapter 5 for the VNIR range images was also used for processing 

these images in the SWIR range: median filtering 3x3 as pre- and post-processing technique, LDA as 

pre-processing band selection method, the pixel-based QDC classifier and the CNN to implement the 

joint spatial-spectral analysis. As the upsampled Mosaic SWIR image has similar spatial features as the 

Snapscan VNIR image, the CNN parameters optimized for the Snapscan VNIR image, as provided in 

Table 5.2 in Chapter 5, were also used here.  

Similar to Chapter 5, all analyses were performed in Matlab and PerClass. 
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6.2 Results and discussion 

The mean reflectance spectra of the seed ingredients are illustrated in Figure 6-5 for the Snapscan 

SWIR and the Mosaic SWIR cameras. We can see how the Mosaic SWIR 4x4 band selection is restricted 

to the 1300 to 1600 nm range (marked by the dotted vertical line), and this eliminates some interesting 

features around 1200 nm.  

 

Figure 6-5: Normalized mean reflectance spectra for different seed types acquired with the Snapscan SWIR (left) and 
Mosaic SWIR (right) hyperspectral cameras. 

Table 6.1 summarizes the performance in terms of mean and minimum pixel accuracies per camera 

system: the ones in the VNIR range presented in Chapter 5 and the additional camera systems in the 

SWIR range. The Snapscan SWIR camera provides the highest pixel-based accuracy, which is 

comparable to the one obtained with the VNIR Snapscan system under tunable LED illumination in 

combination with a CNN approach. Similar to the Mosaic Vis and NIR systems, the Mosaic SWIR system 

requires a spatial-spectral approach to achieve higher performance. However, even for the QDC 

classifier the 4x4 Mosaic SWIR system achieves clearly better pixel accuracy than the Mosaic VIS and 

NIR systems with a similar number of bands. This suggests that the SWIR range (1100-1600 nm) is 

more discriminative than the VNIR range (450-900 nm) for this application.  

Table 6-1: Mean and minimum pixel classification accuracies for different combinations of illumination system, 
hyperspectral camera classifier. 

 RGB LED LED + Mosaic 
VIS   4x4                    

Halogen +VNIR 
Snapscan 

LED + VNIR 
Snapscan                                              

Mosaic SWIR 
4x4                        

SWIR Snapscan                        

QDC 67.6% 34% 52.5%    9.3% 70.4%    45.9% 81.1%  59.5% 84.9%   60.0% 97.0%   92.7% 

CNN 73.5% 35% 90.3%  75.1% 89.1%    74.3% 94.1%  86.0% 95.8%   86.9%           - 

 

The false color and classified image for the Snapscan SWIR image are illustrated in Figure 6-6. A cleaner 

per-pixel classification can be seen with respect to VNIR images despite the lower spatial resolution. 
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Figure 6-6: False color image (left) and classified image (right) for a seed mix acquired with the Snapscan SWIR camera. 

In Figure 6-7 the Performance – Cost tradeoffs for the different camera systems are visualized. 

Performance is quantified in terms of the minimum and mean per-pixel classification accuracy, while 

the systems have been ordered from lower to higher hardware cost along the X-axis.  

 

Figure 6-7: Performance – cost tradeoffs for all camera systems considered. 

Before deciding on the practical implementation, several system tradeoffs such as Performance – Cost 

tradeoffs have to be made. Depending on the performance and cost requirements different system 

configurations (combination of camera system, illumination system, data analysis) will offer the most 

suitable tradeoff.  For instance, while the most economical option would be to opt for a color camera, 

this would most likely not meet the required discrimination requirements. On the other hand, the 

option with the highest discrimination power would be the use of a Snapscan camera in the SWIR 

range. However, a more cost-effective choice could be to use a Snapscan camera in the VNIR range, 

preferably with LED illumination and image-based data analysis (CNN).  
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At this point, Snapscan VNIR is a more cost-effective option than Mosaic SWIR unless acquisition speed 

plays an important role. Moreover, the spatial resolution provided is higher for the Snapscan VNIR 

camera and this allows to image more product in one single scan. 

Other system aspects such as system complexity have not been addressed in this study. While we 

could generally assume that pixel-based classification (QDC) will be simpler to implement and require 

a lower amount of training data than CNN-based classification, a more in-depth study of these 

implementation aspects would be required. Similarly, the impact of the spatial resolution offered by 

each camera system has not been considered yet. In this respect, a camera system with higher spatial 

resolution brings a two-fold advantage: increased spatial information and also the capacity of covering 

a larger amount of material/product in one single scan. 

 

6.3 Conclusion 

In this chapter the wavelength range dimension has been added to the evaluation of the system trade-

offs discussed in the previous chapter. We have shown that this is a key parameter which influences 

both camera system cost and discrimination performance. Therefore, it enables new system tradeoffs. 

For the application considered the most performing configuration is that of the Snapscan system in 

the SWIR range, reaching the highest discrimination accuracy without resorting to convolutional 

neural networks. Since the Snapscan SWIR is also the most expensive camera system a more cost-

effective camera system choice is the Snapscan VNIR system, that reaches very similar performance 

with the help of a LED illumination system and CNNs but at a lower system cost. 

In general, if there is a high degree of information in the spatial domain it may be worth considering 

the VNIR range instead of the SWIR range since we may have higher spatial resolution available there. 

On the other hand, if most of the information can be found in the spectral dimension and our camera 

hardware does not achieve enough discrimination, it might be advisable to consider camera hardware 

in a different wavelength range. 
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Chapter 7 

Conclusions and future work 

7 Conclusions and future work  

In this PhD dissertation, the most relevant parameters in a hyperspectral imaging system, namely 

the illumination, camera hardware and analysis methods, have been studied. The impact of each key 

element on the performance accuracy has been assessed in a joint evaluation of all system 

parameters.  

In chapter 2, it was hypothesized that the wavelength range is an important system parameter since 

it enables system tradeoffs such as a reduction of the hardware cost. This was evaluated for a textile 

sorting application, where costly equipment in the SWIR range is typically used. However, we 

demonstrated on a limited number of samples that this camera hardware could be replaced by a lower 

cost camera in the VNIR range with higher spatial resolution. Achieving the required performance in 

this range, which has generally lower discrimination power for this application than the SWIR range, 

involved using a different data analysis approach. Extending this work by measuring a higher number 

of samples and more textile mixes would be advisable. However, current VNIR discrimination power 

can already be useful for increasing the number of textile sorting points at a lower cost. In addition, it 

offers the advantage of a better discrimination of denim textile, which is one of the most important 

materials for textile recycling.  In this sense, it is worth exploring the suitability of different wavelength 

ranges or camera hardware when this can enable new tradeoffs at the application level, such as lower 

cost or higher acquisition speed. Typically, this exploration of other camera hardware options may 

trigger to shift complexity to the data analysis.  

Chapter 3 introduced our main application case of seed mixture quantification and showed the impact 

of the data analysis techniques such as preprocessing and pixel-based classification where only 

spectral information is used. In this respect, benchmarking with respect to color imaging is important 

since this may reach the application requirements at a lower cost. For instance, depending on the seed 

ingredient selection, RGB imaging could offer enough discrimination power. Moreover, we showed 

that the use of data preprocessing and the integration of spatial information with the spectral 

information can be useful to increase the system performance and reach the application targets. 

In Chapter 4, it was shown that the illumination system is one of the key elements in a hyperspectral 

imaging system. In addition, it was observed that both spectral and spatial homogeneity of a light 

source are required qualities in order to maximize the system’s performance. In this respect, achieving 

suitable system illumination is more challenging in the case of Snapshot imagers. Ideally, the light 

source would also be customized to fit the sensor requirements.  

In Chapter 5, our hypothesis that all system parameters should be jointly evaluated has been 

confirmed. In this respect, system parameters such as camera hardware, illumination system and data 

analysis methods had to be considered. This allowed us to find the best combination of system 

parameters and explore different tradeoffs at system level.  This way, we have shown how different 

system configurations can be used to offer different performance-cost-speed tradeoffs to best match 

the application requirements. It was also shown that the same performance may be achieved with 

different system configurations. For example, in our specific application a configuration with a basic 
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pixel-based classifier and a high-quality illumination system achieved the same performance as a 

configuration of more basic halogen illumination with more advanced image-based processing.  

Finally, in Chapter 6, wavelength range has been added as an additional system parameter to the joint 

evaluation of camera hardware, illumination system and data analysis methods performed in Chapter 

5 by considering camera hardware in the SWIR range. This way, for the application considered, the 

Snapscan SWIR system reaches the highest discrimination performance at the expense of a higher 

system cost while the Snapscan camera system in the VNIR range remains the most cost-effective 

choice. 

While the performance obtained with a certain system configuration depends on the specific 

application, the existing performance-complexity trade-offs between high-resolution and low-

resolution camera systems holds for a generic hyperspectral system. For some applications, a low-

resolution system may suffice to reach the application target performance. Another important aspect 

is the degree of spatial and spectral information available in our application. The more information 

available in the spatial dimension the more beneficial a joint spatial-spectral analysis with CNN will be 

with respect to a purely spectral pixel-based analysis such as QDC.  Similarly, to increase the SNR of 

the system, trading-off spatial resolution (if enough available) by SNR can be considered. This can be 

done by spatial binning or even median filtering. Alternatively, the camera distance can be shortened 

to increase the spatial resolution. Moreover, HDR mode and averaging of images (increasing 

acquisition time) can be used or a better illumination system such as a customized tunable LED system 

(impacting cost and possibly acquisition time again) can be implemented. A last and most costly option 

may be to upgrade the camera system to one providing higher resolution and SNR, such as going from 

a Mosaic camera to a Snapscan camera. Finally, benchmarking with respect to color imaging is 

advisable, especially when a considerable portion of the information may be present in spatial 

features. For instance, in our application, high spatial resolution RGB imaging with LED illumination 

and CNN classification could achieve similar or higher performance than with a low-resolution 

Snapshot hyperspectral camera with pixel-based classification. 

Figure 7-1 shows the different guidelines that can be followed depending on a) whether the 

information resides mostly on the spectral dimension or on the spatial one and b) the available spatial 

and/or spectral resolution of the chosen camera hardware. For instance, if the application relies 

strongly on spatial information and the camera has high enough spatial resolution, it makes sense to 

benchmark it with an RGB camera, since this might provide sufficient discrimination and be more cost-

effective. Similarly, image-based processing will be more suitable than pixel-based processing if there 

is a higher degree of spatial information than spectral information. 

However, if most of the information is on the spectral axis, instead of the spatial one, a camera 

hardware of high spatial resolution will not be as relevant, but this extra availability of pixels can be 

used to increase the SNR by averaging the spectra acquired over different pixels (binning, median 

filtering). Having a low spatial resolution camera will not trigger in this case any action to increase 

performance and it is therefore excluded from the guidelines. In addition, when the information 

resides mostly in the spectra it makes sense to improve the illumination making it more spectrally and 

spatially balanced, both in case of higher or lower spectral resolution.  

When information is present in both spectral and spatial domains a mix of previous guidelines is 

applied. In this case, however, we have to find the right balance between sacrificing spatial resolution 

to increase SNR and retain sufficient spatial information for successful spatial analysis. It should also 

be noted that improving the illumination system may always be beneficial, but especially when the 

information is mainly in the spectral domain. 
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Figure 7-1: Guidelines for system-wide performance optimization 

The information in our application may rely mostly on the spatial or spectral domain. However, our 

camera hardware may not offer enough spatial or spectral resolution. Next, different approaches can 

be followed to further either increase our spatial or spectral resolution. To artificially increase the 

spatial resolution of our camera we can spatially up-sample the image as a pre-processing step or/and 

reduce the camera distance. This will increase the physical resolution in the image at the cost of a 

lower subsampling capacity. Another alternative is to change the camera hardware from a Mosaic 

Snapshot to a Snapscan system for instance, which will lower the acquisition speed and increase the 

system cost. When the spectral resolution of the camera system is not sufficient, it may be possible to 
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increase the discrimination power by either relying more on spatial analysis (e.g CNNs or spatial post-

processing instead of pixel-based analysis). Alternatively, another approach, with higher impact on 

the system cost and speed is to modify the camera hardware by using a different wavelength range 

(e.g SWIR system instead of VNIR one) or going from a Mosaic system to a Snapscan one with higher 

number of spectral bands. 

As we have seen, it is important to assess the relative proportion of spatial and spectral information 

available in the image since this can motivate later system configuration aspects. A way to assess 

whether the classification mainly relies on the spatial or spectral dimension could be the following: If 

we can discriminate the different objects/classes reasonably well by visually inspecting an RGB image 

corresponding to the hyperspectral image, then there is a certain degree of spatial information 

present. Moreover, in this case discrimination based on color images could still provide reasonable 

accuracy. In this sense, there is generally some degree of spatial information available in the image 

since neighboring pixels typically belong to the same objects/materials. On the other hand, we can 

evaluate the degree of spectral information available in the image by analyzing the performance of a 

pixel-based classifier such as QDA, where no spatial information is exploited.   

In addition, depending on whether our application requirements are maximizing speed or 

minimizing cost, different strategies can be taken. For instance, to reduce cost we can evaluate the 

discrimination capacity of the VNIR range with respect to the SWIR range. In some cases, the additional 

spatial information may compensate for a lower resolving power in the spectral domain. This would 

reduce the camera equipment cost. Similarly, by assessing if a Mosaic snapshot system can fulfill the 

application requirements, the cost can be reduced with respect to a high resolution Snapscan system. 

Moreover, more advanced processing methods may enable a VNIR system to perform equally well 

with a more economical illumination system (such as halogen with respect to LEDs), but at the expense 

of a higher computational cost. 

It is important to note that when we increase the discrimination power of our system due to a suitable 

choice of a system parameter such as the camera hardware or the illumination, this can have a 

beneficial impact, not only on a classification accuracy task but on other hyperspectral imaging tasks 

such as anomaly detection or quantitative analysis of chemical/physical properties. In this respect, an 

increased discrimination power can be reflected for instance as higher fidelity spectra or lower intra-

class variation. 

To increase the system’s speed several strategies can be adopted as well. We can move from a 

Snapscan system to a Snapshot camera system, where both acquisition and processing speeds will be 

increased thanks to the lower amount of acquired data per frame. An alternative to this is to perform 

spatial and spectral binning of the image, as well as relevant band selection. These methods can 

heavily reduce the amount of data generated and reduce its processing time. An increase in the 

illumination intensity can also help to reduce the integration time and therefore speed up acquisition. 

Finally, the choice of less time consuming/optimized processing methods, avoiding multi-frame 

acquisition or HDR also help to reduce the acquisition and processing times. 

Future work 

A system-wide study has been addressed in this thesis evaluating the impact of multiple key 

parameters. However, it was not possible to cover all system aspects and possible options in terms of 

system illumination, camera hardware and analysis and processing methods in one thesis. Several 

system elements can be further explored.  
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The tunable LED illumination setups could be further optimized and tested. There are also processing 

methods to increase the SNR that are worth investigating such as specific camera parameters, or 

super-resolution methods to increase the spatial resolution of Snapshot cameras. Moreover, new 

developments in the hardware for the SWIR range may also bring new tradeoffs. Next to this, it could 

be interesting to develop a more quantitative method to assess the spatial and spectral information 

available in the image, relating this to the actual physical resolution. This could guide the choice of the 

system parameters. One way to do this might be by comparing the classification accuracy obtained by 

relying purely on spectral or purely on spatial information. This could be done for instance by 

comparing the performance of a CNN on a 1x1 blocksize, exclusively relying on the spectral 

information per pixel with the performance of a CNN with a larger input blocksize applied to the 

corresponding RGB image. The difference between both model accuracies could give an indication of 

which type of information, spectral or spatial, is more important for a specific application case. 

It could also be interesting to quantify and compare the computational and memory cost of the 

different analysis and pre/post-processing methods. This would allow to judge which methods are 

suitable for use at high processing speeds and at which cost. 

Finally, all work presented in this thesis built on the assumption that data training and testing of the 

classifier models is done for each specific hyperspectral system (e.g., Snapscan camera with halogen 

lights). In other words, training and testing of the algorithms has to be repeated for every setup and 

no transfer model between hyperspectral systems has been used. Ideally, we would like to have robust 

classification models that are transferable, valid, and equally performant, across different 

hyperspectral systems with differences in illumination setup or camera system.  This would further 

enable industry to implement multiple camera systems, while only training the classifier model once. 

While the extensive research on how to perform calibration transfer between master and slave point 
spectroscopy instruments has recently been extended to hyperspectral devices (Pu et al., 2018), 
(Rehman et al., 2020), (Li et al., 2020), a different approach could be investigated. The manufacturing 
process of the hyperspectral filters on the sensors can introduce deviations from the original design, 
such as variations in the wavelength dependent sensitivity (QE). However, since all hyperspectral 
sensors are calibrated and their respective spectral responses known, this information could 
potentially be used to reduce the need for this model calibration transfer by bridging the gap between 
both systems based on the known spectral responses on calibration material such as Macbeth charts. 
Therefore, it may be possible to devise a method that would automatically calibrate a slave camera 
with respect to the master camera with minimal requirements for additional measurements for a 
specific target application.   
For calibration transfers between setups of different characteristics such as lens, illumination system, 

camera position or even different sensor type (corresponding to different spatial-spectral resolution) 

a different transfer model may be required, because the above-mentioned method may not be able 

to cope with these additional setup modifications.  

In this thesis, we have used CNNs to perform the ingredient discrimination/classification at pixel level. 

However, to estimate each ingredient specific abundance a second spatial post-processing step, as 

shown in Chapter 3, was required. In this respect, it could be interesting to investigate the possibility 

to estimate the ingredient abundance in one single step with the convolutional neural network. To do 

so, a high number of images should be provided to the network with its corresponding ingredient 

abundance. This would allow the network to not only discriminate the different ingredients, but also 

to quantify them simultaneously. For classification purposes we used small image blocks (7x7) that 

would contain generally one single seed or a portion of it. To extend the goal to quantification, the 
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training could be done with full hyperspectral images or at least portions of it where several seeds are 

present and more global ingredient features can be learned by the network. 
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