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Abstract: Non-invasive determination of the optical properties is essential for understanding 

the light propagation in biological tissues and developing optical techniques for quality 

detection. Simulation-based models provide flexibility in designing the search space, while 

measurement-based models can incorporate the unknown system responses. However, the 

interoperability between these two types of models is typically poor. In this research, the 

mismatches between measurements and simulations were explored by studying the influences 

from light source and the incident and detection angle on the diffuse reflectance profiles. After 

reducing the mismatches caused by the factors mentioned above, the simulated diffuse 

reflectance profiles matched well with the measurements, with R2 values above 0.99. 

Successively, metamodels linking the optical properties with the diffuse reflectance profiles 

were respectively built based on the measured and simulated profiles. The prediction 

performance of these metamodels was comparable, both obtaining R2 values above 0.96. Proper 

correction for these sources of mismatches between measurements and simulations thus allows 

to build a simulation-based metamodel with a wide range of desired optical properties that is 

applicable to different measurement configurations. 
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1. Introduction 

Spectroscopic techniques have been widely combined with chemometrics methods to build 

quality prediction models for various agricultural and food products [1-4]. These models 

estimate the link between the obtained spectra and the corresponding quality parameters with 

the help of mathematical techniques. As the acquired spectra are influenced by factors such as 

light source condition, detection mode and type of instrument [5], transfer of the prediction 

model from one setup to another is not straightforward. Therefore, a new prediction model has 

to be built for every new setup, which greatly increases the workload and costs. In response to 

these limitations, the bulk optical properties (BOP), which are independent of the factors 

mentioned above, have been proposed as an alternative option [5]. The BOP are mainly 

composed of the bulk absorption (μa) and reduced scattering coefficient (μs’), which 

respectively reflect the chemical and physical properties of the tissue [6]. Therefore, separating 

the BOP is expected to improve the performance of models to predict the quality properties of 

interest. In general, the field of building measurement configurations and quality detection 

models is in urgent need of robust and reliable techniques to determine the BOP of complex 

(biological) materials [7]. 

The optical methods to detect the BOP can be mainly classified into four categories: 

integrating sphere [8], time-resolved [9], frequency-domain [10] and spatially resolved [11] 

measurements. Among these methods, the integrating sphere measurement is the only one that 
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requires destructive sample preparation. However, thanks to the rigorous control of the 

experimental conditions [12], accurate BOP can be obtained. Therefore, the integrating sphere 

measurement, which is usually regarded as the “gold standard” for the determination of BOP 

[13,14], is often used as a reference measurement. From the other methods, the time-resolved 

and frequency-domain methods are less popular than the spatially resolved measurement, due 

to their relatively expensive instrument and complex signal conversion [15]. The spatially 

resolved measurement can be further divided into two categories according to the sensing 

configuration: optical fiber arrays and reflectance imagery [16]. The limited number of 

detection points and the requirement for a good contact between the tissue and the fiber [15], 

which is actually not easy to control, make the optical fiber arrays less suitable for 

measurements on solid samples compared to the reflectance imagery [7].  

After measuring the spatially resolved diffuse reflectance profiles, light transport models 

are required to link the profiles to the BOP. The most frequently used model is the diffusion 

equation, an analytical approximation of the radiative transfer theory [17]. However, the 

requirements of the diffusion approximation are typically not met in the region near the 

illumination source, where the strongest reflectance signals can be acquired [18]. Moreover, 

the equation is only applicable for scattering dominated light propagation (μs’ >> μa) [7], which 

is not always true for biological products. As a consequence, these conditions restrict the 

applicability of the diffusion equation. Recently, a library concept, also referred to as lookup 

table, has been proposed to link the diffuse reflectance profiles with the BOP [5]. By 

interpolating between the values in these lookup tables, metamodels can be created, which can 

then be used to estimate the BOP [19-22]. The data for training these metamodels can either be 

generated with experimental measurements [11,21] or with Monte Carlo (MC) simulations 

[20,23,24]. The experimental measurements-based metamodels are typically trained on data 

acquired for samples with known BOP (e.g., optical phantoms). This approach allows to 

estimate the BOP of new samples without having to separately consider the inherent noise and 

response of the setup system [20,25]. Nevertheless, the prediction capabilities are limited to the 

same setup for which the model was built, which limits the flexibility of such models. In 

addition, different combinations of BOP are typically designed by adjusting the concentrations 

of the absorbing and scattering components. As the BOP of the absorber and scatterer are 

wavelength-dependent, a large set of samples has to be measured to create a metamodel 

covering a wide range of BOP values. On the other hand, the MC simulations-based 

metamodels are more flexible, as simulations can be performed for any desired combination of 

BOP independent of the wavelength [5]. In the past, the long computation times were a major 

shortcoming of the MC simulations, but thanks to the development of the Graphics Processing 

Units (GPU)-based MC, the required time has been greatly reduced.  

Several researchers have reported on the estimation of BOP from spatially resolved diffuse 

reflectance data. Palmer et al. [25] evaluated a Monte Carlo simulation-based inverse model 

and validated its performance on two sets of optical phantoms, obtaining average fitting errors 

of 3 % and 12 %. Similarly, good agreement between the predicted BOP obtained from the 

Monte Carlo simulation-based inverse model and the expected values was also reported by 

Rajaram et al. [19] and Hennessy et al. [20]. Both of these researches set the parameters of the 

fiber geometry fully in the simulation during the forward model generation. The good matching 

performance indicated that Monte Carlo simulations are a powerful tool to accurately simulate 

the light propagation in biological tissues. However, as mentioned above, fiber arrays require 

good contact between the fiber and the sample, which is not easy to control in practice. For the 

noninvasive and noncontact estimation of the optical properties, other researchers also used 

CCD cameras to capture the diffuse reflectance profiles. Kienle et al. [15] built a neural network 

based on the Monte Carlo simulation results and then used the network to predict the optical 

properties from the diffuse reflectance profiles, obtaining an rms error of 14 % for μa and 2.6 

% for μs’ over the range of 0.02 - 1 cm-1 for μa and 5 - 20 cm-1 for μs’. Zhang et al. [23] trained 

two neural networks respectively on Monte Carlo simulations and experimental results. The 



simulation-based neural network applied on simulated data resulted into a mean relative error 

below 2.5 %, while the measurement-based network applied on measured data provided a 

relative error of 9 % for μa and 3 % for μs’. However, the relative error of the bulk optical 

properties of measured samples that were estimated with the simulation-based network could 

be up to 50 % for μa and 25 % for μs’, which indicated that the well-trained network based on 

the simulations could not estimate the optical properties of the measurements properly.  

One reason for the large deviation could be caused by the oversimplification of the 

measurement configuration in the simulations. For instance, the light beam in the simulation is 

presumed as an infinite narrow beam, while in the real measurement, the light beam has its 

power, size and shape. Moreover, the illumination angle in the measurement configuration is 

typically neglected in the simulations. Although, several researchers have reported that an 

illumination angle within 5 ° - 10 ° [15] will not cause a significant difference in the diffuse 

reflectance profiles, the detailed influences from such factors haven’t been published. In 

addition, the detection angle is usually restricted by the settings of the measurement 

configuration, while in the simulation, all the photons exited at all directions were considered 

by default. Therefore, in this research, the influences from the key elements (light source, 

incident and detection angle) of a measurement configuration on the diffuse reflectance 

mismatch between measurements and simulations will be first explored.  

Another possible reason for the difference in the prediction performance could be attributed 

to the noise in the measurements that was not considered in training the simulation-based neural 

network. The differences between the calculated and desired output values were generally used 

to update the connection weights in the neural network during the training process [23]. For the 

purely simulation-based neural network, the stochastic noise in the simulations was the major 

source of the difference which can be reduced by increasing the number of photons and was far 

smaller than the noise in the measurements. Therefore, the larger noise in the measurements 

being ignored in the simulations would make a difference in the input data, resulting in a poor 

prediction performance on the measured profiles. To incorporate the measurement noise into 

the model, Aernouts et al. [11] built a stochastic Kriging (SK) metamodel based on the diffuse 

reflectance profiles obtained from the imaging measurements to inversely predict the optical 

parameters. They considered both the intrinsic and extrinsic uncertainty in their SK metamodel. 

The extrinsic uncertainty refers to the inherent stochastic noise produced in the Gaussian 

process and the intrinsic uncertainty is represented by the standard deviation of the repetitions 

in the measurements. Such a measurement-based SK metamodel can closely link the BOP to 

the measured diffuse reflectance profiles and thereby obtain a good prediction performance (R2 

above 0.98), which is especially suitable for predicting the BOP from diffuse reflectance 

profiles acquired with a fixed measurement configuration. Given the good fitting performance 

reported for the SK metamodel, its potential for building measurement-based and simulation-

based metamodels will be explored.  

Although the constraints mentioned above could in theory be lifted by changing the settings 

(e.g., the incident and detection angle) in the original C code of the simulations, this would 

mean that the simulation-based metamodel would have to be rebuilt for every small change in 

the detection configuration. It is hypothesized here that a basic metamodel could be made 

applicable to different detection configurations with a few modifications. The main objectives 

of this research were to: (1) explore the influences from the light source and the incident and 

detection angle on the mismatch between measurements and simulations; (2) build metamodels 

to link the spatially resolved diffuse reflectance profiles with their respective BOP both for the 

measurements and the simulations and compare their performance; (3) evaluate the 

performance of the metamodels to estimate the BOP from measured diffuse reflectance profiles. 

2. Materials and methods 

2.1 Flowchart 

The steps followed to investigate the main objectives of this research are illustrated in Fig. 1. 



For the 1st objective, the influences from the light source and the incident and detection angle 

on the diffuse reflectance profiles were explored by changing the settings in the Monte Carlo 

simulations based on the BOP measured for a few representative calibration samples. 

Meanwhile, the diffuse reflectance profiles of these samples were measured and then compared 

with the values obtained in the simulations. The 2nd objective consisted of building the 

measurement-based and simulation-based metamodel and comparing the fitting performances. 

The measurement-based metamodel was built based on the BOP and diffuse reflectance profiles 

measured for the calibration samples, while the simulation-based metamodel was trained based 

on the designed BOP and their corresponding simulated diffuse reflectance profiles. The 3rd 

objective was to evaluate the prediction performance of these inverse metamodels. The 

measured diffuse reflectance profiles of the validation samples were fed to the measurement-

based and simulation-based inverse metamodel, and the corresponding BOP obtained from the 

inverse metamodels were then compared with the measured BOP. The detailed information for 

each of these steps is discussed in the following sections.  

 

Fig. 1. Flowchart of the steps that were followed to reach the (1) 1st, (2) 2nd and (3) 3rd objective 

2.2 Sample preparation 

Naphthol Blue Black (195243, Sigma Aldrich, Missouri, USA), Intralipid® 20% (Fresenius 

Kabi, Sweden) and distilled water were respectively used as the absorber, scatterer and diluent 

to prepare a series of liquid optical phantoms. To obtain a wide range of BOP combinations, 7 

concentration levels of absorber (15, 35, 55, 75, 115, 155 and 195 μM, marked as 1 to 7) and 7 

volume concentration levels of scatterer (1.135, 2.270, 3.405, 4.540, 5.675, 6.810 and 7.945 %, 

marked as A to G) were mixed to produce 49 liquid phantoms (black rectangles in Fig. 2) for 

the measurement-based metamodel building. To evaluate the prediction performance of the 

metamodels, an extra group of 12 validation phantoms (red dots in Fig. 2) with 6 concentration 

levels of absorber (20, 45, 70, 95, 135 and 175 μM) and 6 volume concentration levels of 

scatterer (1.816, 2.724, 3.632, 4.994, 6.356 and 7.718 %) were prepared.  



 

Fig. 2. Distribution of the absorption and scattering level of the liquid phantoms (absorption level increases from 1 to 

7, scattering level increases from A to G). Samples marked with black rectangles were used to build the 

measurement-based metamodel; Samples marked with red dots were used to validate the measurement-based and 

simulation-based metamodels. 

2.3 Measurement configuration 

A supercontinuum laser (SC450-4, Fianium Ltd., Southampton, UK) with 4 W output power 

and a spectral coverage from 440 nm to 2400 nm, was coupled into a monochromator (Oriel 

Cornerstone 260 ¼ m, Newport, Irvine, USA) to produce monochromatic light (530 nm to 970 

nm in steps of 5 nm) for both the double integrating spheres (DIS) (RT-060-IG, Labsphere Inc., 

North Sutton, USA) and the diffuse reflectance imaging measurements. As shown in Fig. 3, 

after leaving the monochromator, the light at the target wavelength was split by a beam splitter. 

A small fraction of the light was directed to a Si detector (PDA100A, Thorlabs Inc., New Jersey, 

USA) to monitor the stability of the laser system, while the rest of the light was controlled by 

two mirrors to direct to the sample path with three different directions. If the first mirror was 

up, then the light (marked as solid lines) was guided to the DIS to obtain the total diffuse 

reflectance and total transmittance of the sample in a cuvette (sample thickness of 0.58 mm) 

sandwiched between the two spheres. These signals were recorded by Si detectors installed on 

the spheres. If both the mirrors were down, then the light (marked as dotted lines) was sent to 

illuminate the sample in a cuvette (sample thickness of 0.16 mm) in the unscattered 

transmittance measurement path. A Si detector was installed 1.5 m behind the sample to 

measure mainly the unscattered photons. If only the second mirror was up, then the light 

(marked as dashed lines) was focused into an optical fiber (multimode, NA 0.22, 200 μm core 

diameter) for the diffuse reflectance imaging measurements. To exclude the specular 

reflectance from the diffuse reflectance measurements, the end of the fiber was fixed at an angle 

of 20 ° with respect to the normal of the sample surface. A CCD camera (TXG-14NIR, Baumer, 

Frauenfeld, Switzerland) in combination with an extender (2-EX, Pentax, Tokyo, Japan) and a 

35 mm fixed focal length lens (67-716, Edmund Optics, New Jersey, USA) with a f/4 aperture, 

installed right above the sample stage, was used to capture the diffuse reflected light. The 

detectable angle of the measurement configuration was calculated to be around 1.5 °. For more 

details about the configuration, the reader is referred to Aernouts et al. [26] and Van Beers et 

al. [27]. 



 

Fig. 3. Schematic diagram of the measurement configuration 

2.4 Bulk optical properties’ estimation 

The inverse adding-doubling (IAD) routine developed by Prahl et al. [28] was used to estimate 

the BOP from the DIS and unscattered transmittance measurements. The parameters used in 

the routine are detailed in Aernouts et al. [26]. The software code combining these parameters 

and the measurement results with the IAD routine was executed in Matlab (version 9.1, The 

Mathworks Inc., Massachusetts, USA). Three repetitions were performed for each phantom and 

the average values were used in the further analyses.  

2.5 Spatially resolved diffuse reflectance measurement 

Unlike the phantoms being filled in a thin glass cuvette for the DIS and unscattered 

transmittance measurements, the phantoms for the diffuse reflectance imaging measurements 

were loaded in a cylindrical container with a diameter of 3 cm and a depth of more than 6 cm 

to mimic the light propagation in a semi-infinite object and reduce the influence from the 

boundaries of the container. As a slight deviation in the distance between the sample surface 

and the optics (camera and illumination) would lead to a difference in the output intensity as 

well as the position of the incident beam and the observed reflectance profiles, this distance 

was adjusted for each sample until the center of the light spot was at the target position in the 

image before starting the measurement. During a measurement, images were successively 

acquired at different wavelengths by changing the monochromator setting without moving the 

sample. Thanks to this procedure, the center of the light spot could be assumed to be the same 

for all the wavelengths. As the power of the monochromatic light differed from wavelength to 

wavelength and the samples also absorb light at specific wavelengths, this resulted in variation 

in the illumination intensity for different wavelengths. The region of the illuminating beam in 

the image showed significantly higher reflectance signals. Accordingly, the region with 

reflectance intensities higher than 1/3 of the maximum value was first selected to determine the 

center of the light spot for each image. The average position of the spot in the high signal 

wavelength range 650 nm - 800 nm was then used to calculate the center for all the wavelengths 

(530 nm - 970 nm). After obtaining the position of the center, the pixels with the same distance 

from the center in the region of interest were averaged and the average value was regarded as 

the diffuse reflectance at that distance. The definition of this region of interest will be further 

discussed in the following section. Thus, by this step, the 2-dimensional image has been 

converted into a diffuse reflectance profile as a function of distance. The average diffuse 

reflectance profile of 3 repetitions for each phantom was retained for the further data analyses. 

2.6 Mismatch between measurements and simulations  



Among the prepared samples, 4 phantoms with the max/min concentration levels (A1, A7, G1 

and G7) were selected for exploring the diffuse reflectance mismatch between measurements 

and simulations. This exploration was mainly focused on 3 aspects: light source, incident angle 

and detection angle.  

The influence from light source mainly consists of two aspects: the power and the size of 

the light beam. The light beam here refers to the light incident on the sample surface. As shown 

in section 2.3, the light has to go through a series of optical elements when moving from the 

laser to the sample. So, a small change in any of the elements can alter the light beam incident 

on the sample surface. In the MC simulations, the power, size and shape (fixed in this research) 

are used to describe the light source. To make the simulations interchangeable among different 

configurations, it is necessary to know how these factors affect the diffuse reflectance profiles.  

The incident angle refers to the angle that the illuminating beam makes with the normal of 

the sample surface, as shown in Fig. 4 (a). The default setting in the simulations is an 

illuminating beam that is perpendicular to the sample surface. As in the real measurements, the 

relevant diffuse reflectance profiles with sufficient signal are relatively close to the illumination 

spot and the size of the camera is nonnegligible, an angle between the incident light and the 

normal of the sample surface is unavoidable. Together with this angle, the shape of the light 

spot changes, causing the central symmetry to be lost. Therefore, the influence from the region 

of interest (the selected part of the image spreading outward from the center of the light spot in 

Fig. 4 (b)) and the incident angle were studied together.  

The detection angle refers to the angle between the line that links the light spot to the edge 

of the camera aperture and the sample surface normal, as shown in Fig. 4 (a). The escaped 

photons, being counted into the diffuse reflectance profiles in the simulations, can exit the 

sample in a wide range of directions. However, in the real measurement, the camera is generally 

installed at a fixed position. Therefore, it is necessary to explore the spatial distribution of the 

exited photons. In addition, the size of the aperture and the distance between the sample and 

the camera can differ from configuration to configuration, both determining the detection 

angles. Therefore, the influence from the detection angle on the diffuse reflectance profile was 

further explored. 

The effect of light source and incident angle were studied in simulation using the Monte 

Carlo in voxelized media (MCVM) code [29], while the influence of detection angle was 

studied using CUDAMCML [30]. 

 

Fig. 4. Definition of the (a) incident angle, detection angle and (b) region of interest 

2.6.1 MCVM 

MCVM is a Monte Carlo code that allows to simulate the light propagation in a 3-dimensional 

heterogeneous medium [29,31]. In MCVM, a sample is split into small voxels in the 3-

dimensional structure and a combination of optical properties (e.g., μa, μs’ and refractive index), 

which corresponds to a tissue type, is assigned to each voxel. This technique allows to simulate 

the light propagation in tissues with irregular boundaries between the tissue types with different 

BOP and refractive indices. However, this property was not explored in this study. Two other 

advantages of this, namely the flexibility in defining the incident light and detailed recording 

of the state of each escaped photon, were fully exploited.  



MCVM simulations with 10,000,000 photons were used to explore the influences from light 

source and incident angle for the BOP measured for optical phantoms A1, A7, G1 and G7 at 

650 nm. The BOP of these phantoms were obtained from the DIS and unscattered transmittance 

measurements. In exploring the influence from the light source, the illumination beam was 

assumed to be perpendicular to the sample surface corresponding to an incident angle of 0 °. 

The region of interest initially covered the full 360 ° of the sample plane, while the detection 

angle corresponded to a cone of photon exit angles from 0 to 90 ° with the sample surface 

normal. Additionally, incident angles of 10 °, 20 ° and 30 ° were respectively used in the 

simulation to explore the influence from the incident angle. During this process, the detection 

angle still covered 0 to 90 ° of the photon exit angle, while the region of interest, as shown in 

Fig. 4 (b), was divided into 4 parts according to the relative position to the illumination spot: 

left, right (perpendicular to the plane formed by the illuminating beam and the normal of the 

sample surface), up (towards the fiber) and down (away from the fiber). As the light spot was 

still symmetrical in the direction of the illumination fiber, the left and right part were the same. 

Therefore, only the left, up and down part with specific extraction angles of 30 °, 60 ° and 90 ° 

were selected for the analyses. The minimal extraction angle of 30 ° was selected to maximize 

the differences in the different directions and ensure sufficient signal in the selected region of 

interest. To make the comparison clearer, the profiles were limited to a source-detector distance 

of 0.15 cm. 

2.6.2 CUDAMCML 

In studying the influence of the detection angle, the cone of photon exit angles (0 to 90 ° with 

sample surface normal) was equally divided into 60 groups to include the 1.5 ° detectable angle 

of the measurement configuration. However, the number of photons captured in such a small 

detection angle segment of 1.5 ° was quite limited. Therefore, to enhance the stability of the 

simulation results, CUDAMCML simulations (see below) with more photons were used for this 

exploration. During this exploration, the incident angle was set at 0 ° and the region of interest 

was selected as the one that gave the best match between simulated and measured values, which 

was selected in studying the influence from incident angle. In studying the influence from the 

angular detection range, 0-1.5 °, 0-6 °, 0-15 °, 0-30 °, 0-60 ° and 0-90 ° were selected for the 

simulations, the corresponding simulated diffuse reflectance profiles were then compared with 

the measured values to further explore the influence from the detection angle on the mismatch 

between measurements and simulations. 

Since the MCVM simulations output the detailed state of all the photons, which took a large 

amount of time and space, CUDAMCML was also used to simulate the inputs for the 

metamodel. Considering the possible fluctuation in the results of the statistical method, 3 runs 

were performed for each simulation and the average value was used in further analyses. To 

make the results more accurate, the number of photons used in the CUDAMCML simulation 

was increased 20 times compared to the number used in the MCVM simulations, and much 

higher than the values reported by other researchers [20, 32-34]. The resolution in the depth 

and radius direction were both set at 0.001 cm, which were the same as the resolutions used in 

MCVM. Based on this resolution, the number of grids in the radius direction was 150 

considering a maximal radius of 0.15 cm. The detectable angle of the measurement 

configuration was calculated to be around 1.5 °. Hence, the number of grids in the detection 

angle was set at 60, resulting in detection angle segments of 1.5 ° each. The refractive index of 

the layer was set at the value reported for water at 650 nm [35]. The layer thickness was set at 

6 cm, similar to the value used in the measurements mentioned in section 2.5. To allow a 

comparison of the metamodels, the BOP in the simulations were set to be similar to the values 

used in the measurements. Therefore, the anisotropy factor (g) value was set to 0.7, which is 

close to the values obtained from the measurements at 650 nm. The range for μs’ and μa was 

first determined close to the BOP of the optical phantoms used in this research, and then the 

range for μs’ was converted into a range for μs according to μs= μs’/(1-g). The parameters used 



in the CUDAMCML simulations are summarized in Table 1. 

Table 1. Inputs for CUDAMCML simulations 

Parameter Value 

Number of runs 3 

Number of photons 200,000,000 

Resolution of depth (dz) and radius (dr) 0.001 cm; 0.001 cm 

Number of grid elements: depth-radius-angle 100 – 150 – 60  

Number of layers 1 

Refractive index of medium above and below 1; 1 

Refractive index of layer 1.3314 

Thickness of layer 6 cm 

 Absorption coefficient (μa) 0.01:0.4:16.01 cm-1 

Scattering coefficient (μs) 1:5:301 cm-1 

Anisotropy (g) 0.7 

2.6.3 Convolution 

The light beam in the simulation mentioned above was regarded as an infinite narrow beam, 

which is different from the one in the measurements. Therefore, the convolution program 

(CONV) developed by Wang et al. [36] was used to simulate the response of the light beam 

with finite size based on the output of MCVM and CUDAMCML. The power, shape and size 

of the light beam are three important factors in CONV. The signals obtained in the 

measurements are relative reflectance values, which involve the conversion between the optical 

and electrical signals. As the signals obtained in the simulation are absolute values in numbers 

of reflected photons, a scaling factor between these two has to be introduced (discussed in the 

following section). Therefore, a fixed input power of 1 J was used in the CONV program. A 

Gaussian beam was considered to simulate the monochromatic illuminating light beam of the 

measurements. The size of the light beam (1/e2 radius) was determined by the method detailed 

in Kienle et al. [15]. A mirror was placed at the sample position for the diffuse reflectance 

measurement. The mirror was positioned perpendicular to the incident light beam. The distance 

between the mirror and the camera was controlled by adjusting the center of the light spot to 

the fixed position in the image, similar to the sample measurements. The radius of the 

monochromatic light beam at 650 nm was calculated to be 0.03 cm. The other parameters (e.g., 

diffuse reflectance profiles, resolution of radius and number of grid elements) used in the 

CONV were kept the same as the ones in the simulation output.  

2.7 Measurement-based and simulation-based metamodels  

Stochastic Kriging (SK) surrogate modeling in the ooDACE toolbox was applied to link the 

BOP and the diffuse reflectance profiles with a metamodel, as proposed by Watté et al. [21]. 

SK is commonly based on a Gaussian process and uses the distances between the unknown 

point and its surrounding points to calculate their correlations and thereby determine the value 

of the unknown point [37]. During this process, the intrinsic and extrinsic uncertainty are both 

incorporated in the model [38]. To construct such a model, a set of Kriging models was first 

built based on a set of initial features, which were selected by a Bayesian approach. After that, 

new features were successively incorporated into the model and the model performance was 

evaluated by the maximum likelihood method for each incorporation. The model kept updating 

until it obtained a high accuracy and flexibility at the same time. Detailed information about 

the SK model can found in Watté et al. [21] and Chen et al. [39].  

In this study, metamodels were respectively built based on the measured and simulated data. 



In building the measurement-based metamodel, the diffuse reflectance profiles of the 49 

phantoms (black rectangles in Fig. 2) with their corresponding BOP in the wavelength range 

from 530 nm to 970 nm were selected as the inputs. Although the laser power varied with the 

wavelength, the wavelength was not considered as a variable in the metamodel. To minimize 

the effect of this wavelength-dependent intensity variation, the measured diffuse reflectance 

values at a certain wavelength were scaled by the values acquired in an integrating sphere for 

the same wavelength. These normalized values were then used in the metamodeling. In building 

the simulation-based metamodel, the designed BOP in Table 1 and their corresponding 

simulated diffuse reflectance profiles were used. 27 source-detector distances in steps of 

0.00115 cm and 31 source-detector distances in steps of 0.001 cm located between 0.04 cm and 

0.07 cm were respectively selected to build the measurement-based and simulation-based 

metamodel. In addition, the standard deviation on the diffuse reflectance profiles for the 3 

measured repetitions was used as the intrinsic uncertainty for the measurement-based 

metamodel. In the case of the simulation-based metamodel, the deviation between 

measurements and simulations was also included in the intrinsic uncertainty.  

The evaluation of the metamodels was quantified for three sample sets: calibration, 

validation and prediction samples. To make the figures clear, only parts of the samples were 

selected for the evaluation. The phantoms that combine 4 absorption levels (1, 3, 5 and 7) and 

4 scattering levels (A, C, E and G) on the whole wavelength range were selected for the 

calibration of the measurement-based metamodel, while 19 absorption levels (from 1.61 cm-1 

to 16.01 cm-1, in steps of 0.8 cm-1) and 26 reduced scattering levels (from 10.8 cm-1 to 85.8 cm-

1, in steps of 3 cm-1) were used to calibrate the simulation-based metamodel. The 12 validation 

phantoms (red dots in Fig. 2) and 49 calibration phantoms (black rectangles in Fig. 2) at 650 

nm were respectively used for the validation and prediction of the simulation-based metamodel. 

During this procedure, the measured BOP of these phantoms were selected as the inputs for the 

simulation-based metamodel and the predicted diffuse reflectance profiles, after dividing by a 

scaling factor (introduced in the following section), were compared with the measured values. 

To make a comparison between these two metamodels, the 12 validation phantoms at 650 nm 

were also used for validating the measurement-based metamodel, meanwhile, the 49 calibration 

phantoms at 650 nm were also selected as a separate prediction set for the measurement-based 

metamodel. To clearly present the comparison results, the intensities of the diffuse reflectance 

profiles were plotted on a logarithmic scale. 

When the simulation-based metamodel was applied on the measurements, a scaling factor 

was introduced to eliminate the scale difference between measurements and simulations. 

Considering the saturated values at source-detector distances below 0.04 cm for samples with 

high scattering levels (e.g., G1 and G7) and the low signal to noise ratio beyond 0.07 cm for 

samples with high absorption levels (e.g., A7 and G7), the scaling factor was calculated as an 

average value of the ratios between simulations and measurements for phantoms A1, A7, G1 

and G7 in the 0.04-0.07 cm source-detector range.  

2.8 Inverse metamodels 

With the metamodel, the diffuse reflectance profiles can be predicted based on the BOP. 

However, the objective of this research was to predict the BOP from the acquired diffuse 

reflectance profiles, which requires inversion of the metamodel. Therefore, the metamodel was 

implemented in an iterative optimization algorithm. This iterative process starts from an initial 

guess of the BOP and keeps updating the BOP until the corresponding diffuse reflectance values 

predicted by the metamodel match the acquired diffuse reflectance values. The following cost 

function Eq. (1) is iteratively minimized to select the set of BOP that gives the best fit to the 

acquired diffuse reflectance profile.  

min 𝐹 = 𝑚𝑖𝑛 ∑ (
𝐼𝑖,𝑚𝑒𝑎𝑠 − 𝐼𝑖,𝑝𝑟𝑒

𝐼𝑖,𝑚𝑒𝑎𝑠
)

2𝑁

𝑖=1

                                          (1) 



Where N represents the number of source-detector distances; 𝐼𝑖,𝑚𝑒𝑎𝑠 and 𝐼𝑖,𝑝𝑟𝑒 respectively 

represent the measured (the value obtained from measurements or MC simulations) and 

predicted (the value obtained from the metamodels) diffuse reflectance intensity at the ith 

source-detector distance. 

The evaluation of the inverse metamodels was performed on the same sample sets as 

mentioned in section 2.7. To compare the validation/prediction performance of both inverse 

metamodels, the measured diffuse reflectance profiles of the 12 validation and 49 calibration 

phantoms at 650 nm, with the same format as the data in each metamodel training, were selected 

as the inputs for both the inverse measurement-based and simulation-based metamodels and 

the predicted BOP were compared with the reference values. 

3. Results 

3.1 BOP of the optical phantoms 

The average BOP for each calibration (black rectangles in Fig. 2) and validation (red dots in 

Fig. 2) phantom in the wavelength range from 530 nm to 970 nm are presented in Fig. 5. As 

shown in Fig. 5 (a), the μa values of the prepared samples varied between 0 cm-1 and 17.5 cm -

1. The main absorption region for all the optical phantoms is located between 530 nm and 700 

nm, where the maximal μa value for each sample can be observed around 620 nm. On the other 

hand, the μa values in the wavelength range from 700 nm to 970 nm are close to zero. The μs 

values range from 20 cm-1 to 400 cm-1 and the μs’ values range from 10 cm-1 to 100 cm-1, both 

exponentially decreasing with increasing wavelength. The g value also decreases with 

increasing wavelength and varies between 0.45 and 0.80. Moreover, the decreasing trend seems 

to be steeper for the samples with higher scattering level than for those with lower scattering 

level. Detailed information on the BOP for A1, A7, G1 and G7 at 650 nm is listed in Table 2. 

 

Fig. 5. Measured values for (a) μa, (b) μs, (a) g and (b) μs’ of the liquid phantoms. 1 to 7 represent the absorption 

levels in increasing order and A to G represent the scattering levels in increasing order, Val refers to the validation 

phantoms. 



Table 2. Bulk optical properties of the phantoms used for comparison 

 650 nm 

 A1 A7 G1 G7 

n 1.3314 1.3314 1.3314 1.3314 

μa (cm-1) 1.053 14.500 1.176 14.660 

μs (cm-1) 51.241 53.247 257.672 258.011 

g 0.7381 0.7367 0.6839 0.6742 

3.2 Mismatch between measurements and simulations 

3.2.1 Influence from light source  

The diffuse reflectance profiles for optical phantoms A1, A7, G1 and G7 at 650 nm were 

simulated with different input powers for the same light beam radius (results not shown). All 

the results indicated that the spectral intensity at the same source-detector distance is in 

proportion to the input power and that the input power does not change the shape of the diffuse 

reflectance profiles. Generally, the input power is explained by the number of photons in the 

measurement, while in the simulation, once the distribution of the diffusely reflected photons 

is stable, the input power can be conceptually transferred to the weight of the input photon 

packets, which is directly related to the weight of the exit photon packets, namely the intensity 

of the obtained diffuse reflectance profiles.  

The influence from the size of the light beam (represented in the simulations by its radius) 

was also explored for the 4 selected phantoms. Light beams with a fixed power of 1 J and radii 

of respectively 0.01, 0.03 and 0.05 cm were used in the simulation. As shown in Fig. 6, samples 

illuminated by a light beam with a larger radius tend to have diffuse reflectance profiles with a 

lower intensity in the short source-detector distance and a flatter decreasing trend with the 

distance relative to the illumination center. Moreover, the influence from the size of the light 

beam diminishes with increasing source-detector distance, which is quite obvious for A1 in Fig. 

6 (a). For phantoms with high absorption and/or scattering levels, the diffuse reflectance 

quickly reduces over a short source-detector distance, as illustrated in Fig. 6 (b), (c) and (d). In 

these cases, the effect of the light beam size remains visible until the diffuse reflectance values 

become very low. This indicates that the size of the light beam has an important impact on the 

diffuse reflectance profiles.  

After applying the conditions of the light source used in the measurement (power of 1 J and 

beam radius of 0.03 cm at 650 nm) into the simulations, the simulated diffuse reflectance 

profiles (yellow line in Fig. 6) were scaled and compared with the ones extracted from the laser 

scattering images (blue line in Fig. 6). As shown in Fig. 6, the simulated profiles (yellow, beam 

radius 0.03 cm) for A1 and G7 generally match with the measured values, except for the zone 

close to the illumination point. Since all the samples were illuminated by the same light beam, 

the scaling factor was assumed to be suitable for all the samples. However, in Fig. 6 (b) and (c), 

the simulations either overestimate or underestimate the measured values, which might be 

linked to a high absorption and scattering, respectively. These two effects seem to partly cancel 

each other out in the case of G7 with high absorption and high scattering in Fig. 6 (d). 

Nevertheless, there is no perfect match between the simulations and measurements, thus further 

exploration of the other factors seems also crucial. 



 

Fig. 6. Comparison of the measured diffuse reflectance profiles at 650 nm for optical phantoms (a) A1, (b) A7, (c) G1 

and (d) G7 with the corresponding profiles simulated with radii of the illuminating beam of 0.01, 0.03 and 0.05 cm  

3.2.2 Influence from incident angle 

Next, the effect of the incident angle on the mismatch between simulations and measurements 

was explored. As shown in Fig. 7, the diffuse reflectance profiles extracted from the left part 

with incident angles of 10 °, 20 ° and 30 ° fit well with the ones with 0 ° incident angle (called 

“standard state/value” in the following section). This indicates that the incident angle had little 

influence on the profiles at the left side. On the other hand, the deviation between the profiles 

extracted at the up/down-side and the standard values (for an illumination angle of 0 °) 

increased with increasing incident angle. In addition, it can be observed that under the same 

nonzero incident angle, the profiles extracted at the up and down sides are nearly equidistant 

from the ones extracted for the “standard state” with the same reflectance intensity for the high 

scattering levels (G1 and G7). For the low scattering levels (A1 and A7), the reflectance profiles 

extracted at the upside were further away from the “standard value” than those at the downside. 

This indicates that the illumination angle influences the diffuse reflectance profiles in different 

ways, depending on the BOP of the sample.  



 

Fig. 7. Comparison of the simulated diffuse reflectance profiles for different combinations of the direction of the 

region of interest (left, up and down) and incident angle (0 °, 10 °, 20 ° and 30 °) for (a) A1, (b) A7, (c) G1 and (d) 

G7 at 650 nm. The extraction angle was fixed at 30 °. 

As observed above, the influence from the incident angle on the profiles extracted from the 

left side was quite limited. Therefore, this region of interest was used in the further analyses. 

Although the solid lines in Fig. 7 (c) and (d) matched quite well, small deviations can be noticed 

in Fig. 7 (a) and (b). Thus, the data for phantoms A1 and A7 were used to further explore the 

influence from the incident angle. As already mentioned above, an incident angle larger than 

0 ° changed the shape of the illumination spot, and thus changed the spatial distribution of the 

diffusely reflected light. Therefore, the combined effect of the direction of the region of interest 

(left, up and down) and the incident angle were explored, following to that, the area of the 

region of interest (30 °, 60 ° and 90 °) and the incident angle were combined to further study 

their influence. To make the comparison clearer, only the diffuse reflectance values within the 

source-detector distance of 0.05 cm were used. As shown in Fig. 8, the diffuse reflectance 

profiles start to deviate from the “standard values” (blue lines) for increasing incident angles. 

However, by increasing the area of the region of interest, the average profiles obtained from 

that area partially compensate the mismatch caused by the non-zero incident angle. For example, 

under the incident angle of 20 ° (yellow lines), which was used in the measurement 

configuration in this study, the diffuse reflectance profiles extracted from the left 90 ° area 

(yellow dotted lines) matched better with the “standard values” (blue lines) than the ones 

extracted from the left 30 ° area (yellow solid lines).  



 

Fig. 8. Comparison of the simulated diffuse reflectance profiles with different combinations of the area of the region 

of interest (30 °, 60 ° and 90 °) and incident angle (0 °, 10 °, 20 ° and 30 °) for optical phantoms (a) A1 and (b) A7 at 

650 nm 

3.2.3 Influence from detection angle 

To investigate the effect of the detection angle, the diffuse reflectance profiles were collected 

in every detection angle segment of 1.5 °, 6 of which, with an interval of 15 ° were used for the 

comparison. As shown in Fig. 9, all the selected diffuse reflectance profiles, no matter at which 

detection angle, decreased exponentially with increasing source-detector distance. At a specific 

distance, the diffuse reflectance first increased with the increasing detection angle until 

reaching a maximum at a detection angle around 45 °. Afterwards, the intensity started to 

decrease again. It should be noted that the differences in the diffuse reflectance values are not 

linearly proportional to the difference in the detection angle. As the detection angle deviates 

more from the 45 ° direction, the difference in the diffuse reflectance values gradually increases. 

However, when the diffuse reflectance profiles were plotted on a logarithmic scale (results not 

shown), they were more parallel.   

 



 

Fig. 9. Effect of the detection angle on the simulated diffuse reflectance profiles at 650 nm for optical phantoms (a) 

A1, (b) A7, (c) G1 and (d) G7 

In spatially resolved spectroscopy based on reflectance imagery (e.g., hyperspectral laser 

scatter imaging), the camera used to capture the diffuse reflectance images is typically installed 

right above the sample. This allows to easily use the obtained image without correcting for the 

spatial distortion. However, the range of detection angles can vary among different 

configurations. Therefore, different ranges of detection angles defined from the sample surface 

normal were used to further explore the influence from the detection angle on the mismatches. 

As the profiles extracted from the left 90 ° region of interest were least influenced by the 

incident angle in section 3.2.2, this region of interest of the measured images was used for this 

comparison. Similar to the comparison in section 3.2.1, the simulated results were first 

convoluted by applying the conditions of the light source used in the measurements, and then 

the convoluted profiles were divided by a scaling factor. Since the spectral intensity differed 

with the detection angle range, a scaling factor was calculated for each of them. In Fig. 10, the 

simulated diffuse reflectance profiles obtained for different detection angles are compared with 

the measured ones for the 4 selected optical phantoms.  

For detection angles within the cone of 30 ° relative to the sample surface normal, the 

relative deviations are basically within (+/-) 6 %, except for the values at the distance within 

0.05 cm for A7 and beyond 0.06 cm for G7. The deviations at 0.04 cm distance in A7 may be 

attributed to an error in locating the center of the illumination spot in the acquired diffuse 

reflectance image. A high absorption level reduced the diffuse reflectance profiles significantly 

with increasing source-detector distance, while a low scattering level reduced the overall 

diffuse intensity, both highlighting the distortion of the light spot caused by the incident angle 

in the measurement. The slightly larger deviations for G7 may be attributed to the low signal 

to noise ratio in the measurements, which can also be observed in Fig. 6 (d). Furthermore, the 

relative deviations increase for larger detection angle ranges. This indicates that the detection 

angle range should be correctly taken into account in the simulations to avoid large mismatches 



between the simulated and measured diffuse reflectance profiles.  

 

Fig. 10. Relative deviation of the diffuse reflectance values simulated for different detection angle ranges (0 - 1.5 °, 0 

- 6 °, 0 - 15 °, 0 - 30 °, 0 - 60 ° and 0 - 90 °) from the measured values at 650 nm for optical phantoms (a) A1, (b) A7 

(c) G1 and (d) G7 

3.2.4 Improvement of the matching performance 

The effect of minimizing the impact of the identified sources of mismatch between 

measurements and simulations is illustrated in Figure 11. Compared to the traditional approach 

of radial averaging and ignoring the effect of the detection angle (Fig. 11 (a)), the simulation 

results match quite well with the measurements after implementing these corrections (Fig. 11 

(b)), with R2 values above 0.99 for all the 4 samples and mean relative errors of 1.83 %, 5.18 %, 

0.96 % and 3.57 % for A1, A7, G1 and G7, respectively.  

 

Fig. 11. Comparison between measurements and the simulated diffuse reflectance profiles at 650 nm based on (a) the 

region of interest of the full 360 ° and detection angle range of 0 - 90 ° and (b) the region of interest of left 90 ° and 

detection angle range of 0 - 1.5 °. The solid lines and symbols respectively represent the measured and simulated 

profiles. 



3.3 Metamodeling  

3.3.1 Inputs of the metamodel 

After obtaining the good matching performance between measurements and simulations, the 

measured and simulated diffuse reflectance values were used for metamodel building. For each 

selected source-detector distance, a metamodel was built to predict the diffuse reflectance value 

at that distance from the BOP µa and µs’. As mentioned above, Monte Carlo simulations provide 

the flexibility to use a uniform distribution of the BOP over the design space, as illustrated in 

Fig. 12 (b). In the case of the measurements, the BOP combinations are limited to what can be 

designed by changing the concentrations of the absorber and scatterer in the liquid phantoms. 

As shown in Fig. 12 (a), many data points are available in the region with low μa values, 

corresponding to wavelengths outside the absorption peak of the absorber. As shown in Fig. 5 

(a), the main absorption region of the liquid phantoms is located between 530 nm and 700 nm, 

while the μa values are close to zero for the remaining wavelengths. Since the μa values are 

combined with the μs’ values, excluding the μa values in the non-absorption region would result 

in removing important parts of the μs’ values. As a result, more samples would have to be 

prepared to obtain a wide range of BOP. In this research, all the measured BOP in the 530 - 970 

nm wavelength range were used to build the measurement-based metamodel.  

 

Fig. 12. Visualization of the data used for building the (a) measurement-based and (b) simulation-based metamodels 

for a source-detector distance of 0.04 cm.  

3.3.2 Evaluation of the metamodel 

The performance of the metamodels was evaluated by comparing the diffuse reflectance 

profiles obtained from the metamodel with the values measured/simulated based on the same 

BOP. As shown in Fig. 13, most of the data points are on the target line for both the 

measurement-based and simulation-based metamodel, which indicates that the diffuse 

reflectance values predicted by the metamodels are in good agreement with the corresponding 

values obtained from the measurements/simulations. The R2-values above 0.98 for all the 

samples indicate that the SK metamodel is well able to predict the diffuse reflectance values 

from the BOP. Meanwhile, small deviations can be observed for parts of the calibration samples 

with higher diffuse reflectance intensities (black rectangles in Fig. 13 (a)) in the measurement-

based metamodel and parts of the prediction samples with lower diffuse reflectance intensities 

(blue triangles in Fig. 13 (b)) in the simulation-based metamodel. The deviated samples in Fig. 

13 (a) actually correspond to the data points from the 700 nm to 900 nm wavelength range, 

where the μa values are low, as shown in Fig. 5 (a). The deviation of these data points could be 

mainly attributed to the variation in the diffuse reflectance values for the different data points 

corresponding to nearly the same BOP combinations. As the BOP values used for training the 

simulation-based metamodel were designed to be evenly distributed over a smooth search space, 



the fitting performance outperformed the one for the measurement-based metamodel. The 

slightly deviated prediction samples in Fig. 13 (b) correspond to the values for phantom A7 at 

the selected source-detector distances. As can be viewed in Fig. 11 (b), after minimizing the 

impact of the identified sources of mismatch on the diffuse reflectance profiles, the simulated 

values are still slightly higher than the measured values, especially at the short source-detector 

distances. Therefore, the slight deviation in Fig. 13 (b) can be attributed to the remaining 

mismatch between simulations and measurements for some specific samples. In general, the 

diffuse reflectance profiles obtained from the metamodels matched well with the 

measured/simulated values. 

 

Fig. 13. Scatterplots of the diffuse reflectance values predicted by the metamodels against the (a) measured and (b) 

simulated values. The red line is the 1:1 line, the dark rectangles, red dots and blue triangles respectively represent 

the calibration, validation and prediction samples. 

3.3.3 Evaluation of the inverse metamodel 

The performance of the inverse metamodels was evaluated by comparing the BOP obtained 

from the inverse metamodel with the corresponding reference values. As shown in Fig. 14 (a1) 

and (b1), the calibration and validation performances of the measurement-based and 

simulation-based metamodels for the absorption coefficient μa were comparable, with R2 values 

above 0.98. However, the prediction performance of the simulation-based metamodel was 

slightly worse than the corresponding performance of the measurement-based metamodel. For 

the prediction performance (blue triangles in Fig. 14 (b1)), one sample out of each absorption 

level obviously deviated from the target line, with predicted μa smaller than the measured values. 

These data points corresponded to the samples with low scattering levels (A1 to A7). If these 

samples were excluded, then the prediction performance of the simulation-based metamodel 

would be comparable with that of the measurement-based metamodel. As already explained in 

section 3.3.2, these deviations can be attributed to the remaining mismatch between simulations 

and measurements for those samples. As can be observed in Fig. 13 (b), the predicted diffuse 

reflectance profiles for these samples were slightly higher than the measured values in the 

forward metamodel. In other words, the measured diffuse reflectance profiles, as the input of 

the inverse metamodel, were lower than the simulated values. As a consequence, the predicted 

BOP combination shifted towards lower μa and lower μs’. Moreover, as the resolution of μa 

values was higher than that of μs’ values in the metamodel, the deviation in the μa values was 

more obvious. For the scattering coefficient μs’, the calibration performance of the 

measurement-based metamodel was slightly worse than for the simulation-based metamodel, 

which can be attributed to the deviating data points in Fig. 13 (a). The validation and prediction 

performances both for the measurement-based and the simulation-based inverse metamodel 

were quite good, with R2 values above 0.98. In general, the simulation-based metamodel 

obtained comparable prediction performance on measurements as the measurement-based 

metamodel, with mean relative errors of 8.19 % (validation) and 10.96 % (prediction) for μa 

and 5.12 % (validation) and 6.42 % (prediction) for μs’. 



 

Fig. 14. Scatterplot of (1) μa and (2) μs’ predicted by the inverse metamodel against the reference values for the (a) 

measurement-based and (b) simulated-based inverse metamodels. The red line is the 1:1 line, the dark rectangles, red 

dots and blue triangles respectively represent the calibration, validation and prediction samples. 

4. Discussion  

In this research, the mismatch between simulated and measured diffuse reflectance profiles was 

explored for the three key elements of a measurement configuration: light source, incident angle 

and detection angle. For a configuration composed of optical fiber arrays, the incident angle is 

perpendicular to the sample surface and the detection angle covers photon exit angles that bare 

much larger than an imagery-based configuration. Accordingly, the fiber-based systems are 

more consistent with the default settings in the MC simulations considering photon exit angles 

from 0 to 90 °. For such a configuration, once the conditions of the light source were applied 

in the simulations, the simulated diffuse reflectance profiles fitted relatively well with the 

measured values. This can explain the good prediction performance of the simulation-based 

model on the measurements in the research of Hennessy et al. [20]. In the case of a reflectance 

imagery-based configuration which is more suitable for contactless, fast and non-destructive 

BOP measurement, the incident and detection angle have a large impact on the acquired signals. 

However, these effects are ignored in most studies. For instance, in the research of Zhang et al. 

[23], the CCD camera was installed at an angle of 8 ° with respect to the sample surface normal, 

while the illumination beam coincided with the sample surface normal. This angle of 8 ° was 

neglected in the simulations, given the reason that the image was symmetric to the incident 

point as this angle would not cause a significant difference in the diffuse reflectance profiles. 

As the positions of the camera and the illumination light were exchanged compared to the ones 

in the present research, this angle can be regarded as the incident angle. According to the results 

obtained in the present research, such an incident angle would indeed change the radial 

symmetry of the diffusely reflected light and its influence depends on the BOP of the object as 

well as the selected source-detector distances. For the samples with high scattering levels, the 

incident angle made the spectral intensity at the sides towards/away from the illumination fiber 



deviating from the expected value with a similar extent in opposite directions. Radial averaging 

thus balanced the deviations. However, for the samples with low scattering levels, the spectral 

intensity at those two sides still deviated in opposite directions but with different extents, 

resulting in a mismatch between the radial averaged spectral intensity and the desired values. 

This may partly explain the poor prediction performance of their simulation-based model on 

the measurements (relative error increased from 2.5 % and 2 % to 50 % and 25 %).  

Compared to the BOP prediction performances obtained by other researchers, some 

improvements were made in this research. Qin et al. [7] used a trust-region nonlinear least-

squares fitting algorithm to fit the measured diffuse reflectance profiles for a set of liquid 

phantoms with the diffusion equation to estimate the optical properties. The average fitting 

errors in μa and μs’ were respectively 12 % and 7 %, while for the samples with relatively high 

μa values (0.4 - 0.8 cm-1), the fitting errors could be up to 17 % and 11 %. In the present research, 

not only the μa values increased 20 times, which could be up to around 16 cm-1, but at the same 

time, the fitting errors were slightly reduced to 10.98 % and 6.42 %. Similarly, the ranges in μa 

and μs’ values were both extended compared to the work executed by Aernouts et al. [11] to 

better match the relevant range for biological products characterized by high absorption levels. 

Moreover, the simulation-based metamodel presented here provides a more flexible option for 

the determination of BOP.  

In the research of Palmer et al. [25], a model with wide ranges of BOP was built based on 

Monte Carlo simulations. The validation performance of that model was evaluated on optical 

phantoms, obtaining average fitting errors within 12 %, which were comparable with the results 

obtained in the present research. However, they measured the diffuse reflectance profiles of the 

phantoms with a fiber optic probe.  

When comparing the measurement-based and simulation-based metamodel, several 

advantages can be observed for the latter one. The prediction performance of the SK 

metamodels largely depends on the design of the inputs during the training process. For instance, 

the value of an unknown point in a SK model is determined by its distances to the surrounding 

points, while the prediction performance would be worse for the points at the edge of the search 

space. To avoid this problem, a large number of samples with a wide range of optical properties 

need to be prepared to cover the desired search space for the training of the measurement-based 

metamodel. Although the simulation-based metamodel faces the same limitation, the search 

space can be freely extended to be sufficient to cover the desired space. Moreover, as shown in 

Fig. 12 (a) and Fig. 13 (a), the overrepresentation of the low μa values had a negative impact 

on the quality of the measurement-based metamodel. Therefore, the data points in that region 

need to be carefully selected to get a more even distribution and without losing regions of the 

search space. In the case of the simulation-based metamodel, the distribution of the data points 

can be arbitrarily designed, which is far more convenient. 

Another advantage of the simulation-based metamodel is the universality. The inputs (a 

wide range of BOP) and the outputs (diffuse reflectance profiles as a function of source-detector 

distance and detection angle) obtained from the simulations in the present research can be 

regarded as the original database. For the future application on measurements, the light source 

condition, the resolution in the source-detector distance direction and the detection angle can 

be easily updated by using the convolution program (CONV) developed by Wang et al. [36]. 

The difference in the diffuse reflectance intensity caused by the power difference among 

wavelengths and the signal transformation between measurements and simulations, can be 

corrected with a scaling factor that is obtained on a small set of samples (e.g., 4 samples used 

in this research). In this way, the built metamodel can be easily transferred and applied to 

different measurement configurations.  

However, several recommendations can be made towards the further application of the 

simulation-based metamodel. First, the use of an incident angle of 0° in the simulations is 

inconsistent with the actual value in the measurements. As a consequence, a diffuse reflectance 

mismatch between measurements and simulations will be present for some specific samples 



(e.g., A7 in this research). Decreasing the incident angle in the measurement configuration will 

help to reduce this mismatch. Second, the detection angle used in this research was calculated 

based on the central point right below the camera. Since the distance between the camera and 

the sample was far greater than the size of the camera and because the latter is larger than the 

source-detector distance of interest, the asymmetric exit angle that can be detected for points 

away from the center could be neglected. However, for a configuration with opposite conditions, 

the change in the captured exit angle with the source-detector distance should be considered as 

well. Otherwise, it may introduce an extra mismatch between the simulations and the 

measurements. Third, the SK model allows to set the intrinsic uncertainty manually. For the 

simulation-based metamodel, especially for application on the measurements, the intrinsic 

uncertainty should be set to a similar level as the measurement noise. Moreover, the remaining 

relative deviations between measurements and simulations after applying the correction 

procedures (e.g., 6 % in this research) should also be considered in the metamodel training. 

5. Conclusions  

The effects of the power, size and incident angle of the illumination beam and the detection 

angle on the diffuse reflectance profiles were investigated with Monte Carlo simulations. The 

power of the light source was found to determine the intensity level of the diffuse reflectance 

profiles, while the size of the light beam influenced the decreasing trend of the profiles with 

increasing source-detector distance, which was most obvious in the region with high signals 

near the illumination center. Deviation of the incident angle from the normal of the sample 

surface changed the central symmetry of the light spot, thereby influencing the spatial 

distribution of the diffusely reflected light. The diffuse reflectance profiles extracted from the 

sides perpendicular to the illuminating beam were close to the profiles extracted with 0 ° 

incident angle. Through optimization of the area of the region of interest, the mismatch between 

simulations and measurements could be further reduced, especially for the samples with low 

scattering level. At any detection angle within 0 ° - 30 °, the relative deviations between 

measured and simulated diffuse reflectance values remained below (+/-) 6 %. A good match 

(R2 above 0.99) between the simulated and measured diffuse reflectance profiles over source-

detector distances from 0.04 cm to 0.07 cm was achieved after accounting for the detection 

angle of 0 ° - 1.5 ° and with the profiles extracted from the measured images at the left 90 °. 

After minimizing the impact of the considered sources of mismatch on the diffuse reflectance 

profiles, the stochastic Kriging metamodels linking the optical properties with the diffuse 

reflectance profiles were respectively built for the measurements and the simulations. Small 

deviations in the predicted diffuse reflectance profiles were found in the wavelength range with 

extremely low absorption levels in the measurement-based metamodel. Moreover, the fitting 

performance of the simulations-based metamodel outperformed the one for the measurement-

based metamodel thanks to its even distribution of the BOP over the search space. Except for a 

few specific samples with remaining mismatch between measurements and simulations, the 

simulation-based inverse metamodel obtained an equally good BOP prediction performance as 

the one based on measurements, obtaining R2 values above 0.98 both for the μa and μs’.  
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