
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Secure and Efficient
Computing on Private Data

Eleftheria Makri

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Electrical Engineering

July 2021

Supervisors:
Prof. dr. ir. Bart Preneel
Prof. dr. ir. Frederik Vercauteren

Secure and Efficient Computing on Private Data

Eleftheria MAKRI

Examination committee:
Prof. dr. ir. Paul Sas, chair
Prof. dr. ir. Bart Preneel, supervisor
Prof. dr. ir. Frederik Vercauteren, supervisor
Prof. dr. Nigel P. Smart
Prof. dr. Yves Moreau
Dr. Joppe W. Bos (NXP Belgium)
Prof. dr. Carmit Hazay
(Bar-Ilan University, Israel)

Prof. dr. Peter Scholl
(Aarhus University, Denmark)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical Engineer-
ing

July 2021

© 2021 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Eleftheria Makri, Kasteelpark Arenberg 10 box 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

Almost 4,5 years ago a wonderful journey started, my trip with COSIC; a real
roller coaster of emotions and experiences. Writing the last words to conclude
this journey, and despite my eagerness to finish my PhD, I cannot say I am
happy; the taste is more a bitter-sweet combination. This journey, and the
completion thereof, would never be possible without the support of some people,
and I can mention but a few of them.

First and foremost, I would like to thank my promotors, Bart Preneel, and Fre
Vercauteren. You trusted me (for no particular reason) to start a PhD in the
group, while having another part-time job, and living in another country. You
gave me the freedom to do research on the topics of my choice, while at the
same time always being there to mentor me. Fre, I have learned so much from
you, on content, on doing research, on being critical, and beyond. I am truly
grateful for your support!

I am very grateful to my supervisory committee, Joppe Bos, Yves Moreau,
and Nigel Smart for keeping track of my PhD progress, and providing me
with valuable feedback throughout these years. Special thanks to Nigel, for I
have learned so much from you, as well. You have been, in a way, also sort
of a co-supervisor for me. I would like to extend my gratitude to the external
members of my examination committee, Carmit Hazay, and Peter Scholl. Thank
you for all the work you put into reading and assessing my work, and for your
constructive feedback, which helped me make this thesis better. I also thank
Prof. Paul Sas for chairing my defenses.

Very special thanks go to my co-authors: Amin Ardeshirdavani, Charlotte Bonte,
Cyprien Delpech de Saint Guillem, Yves Moreau, Dragos Rotaru, Jaak Simm,
Nigel Smart, Titouan Tanguy, Fre Vercauteren, Sameer Wagh, and Tim Wood.
Without you, completing this thesis would have been impossible. I am forever
indepted to you for all you have taught me. For the exciting research moments
(including breaking what we considered a great result for a day, sometimes!), for

i

ii ACKNOWLEDGEMENTS

the fun times, for the stressful times (editing 74 seconds before the submission
deadline!), for your trust and support, and most importantly –for many of you–
for your friendship. I admire your spirit and intelligence, and I wish to work
with you again in the future.

COSIC is not a group, it is a family. Many thanks to all of my colleagues (or
by now friends), for the wonderful, unforgettable 4,5 years we spent together.
I have enjoyed beyond work, our game nights, the few Friday-beers I could
join, the lunch talks, and insightful conversations during the coffee breaks,
halloween parties, Christmas parties, seeing many of you becoming doctors,
and celebrating with you, and many more events that I am skipping. Many
of you have a special place in my heart, but I made a very special friend for
life in the group, Charlotte, who is simply an amazing person, a great listener,
an intelligent researcher, a helpful collaborator, and a person to have real fun
with. As every family has a mom, COSIC has Péla. Thank you for your genuine
interest in me and my progress (and since recently my puppy). For always
supporting me no matter what the request, and for solving all my administration
problems. I would also like to thank Dana, Saartje, Wim, and Elsy for all the
administrative support, and for taking care of the publicity of any event I was
participating, even when the announcement arrived last moment.

I am also very grateful to my employer, Saxion University of Applied Sciences,
for trusting me with such a challenging endeavor, and for funding my PhD.

Last but not least, I would like to thank my family for always supporting me
in whatever I undertake (regardless of whether they think it is crazy, or not).
Despite the thousands of kilometers between us, you have always been next to
me! I thank you for that immensly! I love you very much! Elmer, thank you
so much for believing in me so strongly, for always giving me a hand to stand
up again when I fall, for loving me and letting me love you, for being a great
friend, next to being my partner in crime (I mean in life)!

Eleftheria Makri
Leuven, July 2021

Abstract

Multiparty Computation (MPC) is a cryptographic primitive that allows a set
of mutually distrusting parties to compute a function over their private inputs,
without revealing to each other or to outside observers these inputs. In fact,
MPC allows one or more of the protocol participants to obtain the output of
the function to be computed, while learning no more information about other
participants’ inputs, beyond what can be infered from the protocol’s output.
Due to its rich functionality, allowing the computation of virtually any function
on private data, MPC is a largely researched cryptographic primitive.

The study of MPC dates back to the 80’s, when Yao introduced the well-
known Millionaires’ Problem, and proposed a solution for the problem. Yao’s
millionaires’ problem is to determine who is richer out of two parties, in a manner
that leaks no information about the amount of assets of one party to the other.
Despite the numerous theoretical and practical research results in the field of
MPC, the area is still actively researched as the goal is to design solutions that
are efficient for practical use, while satisfying strong provable security guarantees,
and have a rich functionality at the same time. MPC research today aims at
combating the inherent tradeoffs among efficiency, security, and expressiveness
of the computable functions, and combine the best of all three worlds either for
a specific cryptographic primitive, or for a particular application scenario.

In this thesis, we aim at improving as many of the three aforementioned
aspects as possible to construct both application-scenario-tailored solutions,
and improved MPC building blocks.

Firstly, we demonstrate that large-scale secure computation is practical, by
designing a solution for privacy-preserving Genome-Wide Association Studies. In
this setting, we compare the performance and security of two secure computation
methods: MPC, and Homomorphic Encryption (HE), and confirm that MPC
both outperforms HE, and can provide security in a more stringent security
model.

iii

iv ABSTRACT

Secondly, we design a private image classification protocol, which outperforms
the state-of-the-art in this sub-area at the time of publication. We show how
to leverage knowledge from complementary research fields, in this case from
the machine learning community, to boost the efficiency of our secure designs,
while also increasing the classification accuracy compared to previous secure
solutions.

Thirdly, we construct a protocol to securely generate RSA moduli. Our protocol
is more communication-efficient than the state-of-the-art, and it is comprised
by building-blocks (i.e., other sub-protocols), which we designed, that are of
independent interest.

In addition, we show how to garble multiparty arithmetic circuits with full-
threshold active security, and improve on the communication efficiency of a
specific garbled gate, namely a selector gate.

Finally, we devise a generic secure comparison protocol, outperforming the
state-of-the-art, while having the potential of offering higher security guarantees,
should the underlying implementation platform allow that. Secure comparisons
are a fundamental MPC building block that is both necessary for the realization
of larger tasks (e.g., online auctions), and challenging in terms of efficiency.

Beknopte samenvatting

Een beveiligde berekening met meerdere partijen (Engels: Multiparty
computation of MPC) is een cryptografisch primitief dat toelaat om een functie
te berekenen op private data van meerdere elkaar wantrouwende partijen zonder
deze invoerdata beschikbaar te maken voor andere partijen. Meer specifiek
maakt MPC het mogelijk dat een of meerdere van de partijen betrokken in
de berekening de uitkomst van de beveiligde berekening in handen krijgen,
zonder ook maar enige informatie te krijgen over de invoerdata van andere
partijen buiten wat afgeleid kan worden uit het resultaat en zijn eigen invoerdata.
Omwille van de talrijke mogelijkheden die MPC biedt, aangezien het vrijwel
toelaat om elke mogelijke berekening op een gegevens-beschermende manier uit
te voeren, is het een populair research topic.

MPC gerelateerd onderzoek startte in de jaren ’80, toen Yao het inmiddels
bekende Miljonairs Probleem bedacht en bovendien een oplossing voor dit
probleem aanbood. In het Miljonairs Probleem van Yao moet bepaald worden
welke van twee partijen rijker is, zonder dat de partijen iets te weten komen
over de omvang van de bezittingen en rijkdommen van de ander. Ondanks de
enorme hoeveelheid theoretische en praktische onderzoeksresultaten, is MPC
nog steeds een actief onderzoeksveld met als doel het ontwikkelen van efficiënte
oplossingen met sterke veiligheidsgaranties en brede functionaliteiten. Huidig
onderzoek in MPC zoekt naar de balans tussen efficiëntie, veiligheid en de juiste
vormgeving van de berekeningen om de beste oplossing te creëren voor een
specifieke primitieve functie of bepaald toepassingsscenario.

Dit proefschrift is gericht op het verbeteren van de drie genoemde aspecten om
zo toepassingsspecifieke oplossingen te ontwikkelen en primitieven voor MPC te
perfectioneren.

In een eerste werk tonen we aan de hand van een genoom-brede associatie
analyse aan dat het praktisch haalbaar is om beveiligde berekeningen op grote
schaal uit te voeren. In dit toepassingsscenario vergelijken we de prestaties en

v

vi BEKNOPTE SAMENVATTING

beveiliging van twee methoden voor het uitvoeren van beveiligde berekeningen
vergeleken: MPC en Homomorfe Encryptie (HE). Dit toont aan dat MPC HE
overtreft zowel op vlak van efficiëntie als op vlak van de veiligheidsgaranties.

Vervolgens hebben we een protocol ontwikkeld om op een privacy-beschermende
manier afbeeldingen te categoriseren, waarbij ons design op moment van
publicatie sneller was dan de State of the Art. We combineren de kennis
uit een ander vakgebied, in dit geval machine learning, om de efficiëntie van
onze privacy-beschermende oplossing te verbeteren. Onze oplossing verbetert
bovendien de nauwkeurigheid van de classificatie ten opzichte van eerdere
privacy-beschermende oplossingen.

Ook hebben we een protocol gemaakt waarmee we op een veilige manier RSA
moduli kunnen genereren. Ons protocol biedt efficiëntere communicatie dan de
State of the Art en bestaat uit, door ons ontworpen, bouwstenen (subprotocollen)
die ook zelfstandig bruikbaar zijn.

Daarnaast tonen we hoe we arithmetische circuits met meerdere partijen kunnen
obfusceren in de context van actieve beveiliging waarbij alle partijen op één na
kwaadaardig zijn. We verbeteren de efficiëntie van de communicatie van een
specifieke geobfusceerde logische poort, namelijk de multiplexer.

Tot slot hebben we een universeel vergelijkingsprotocol ontwikkeld dat sneller
is dan de State of the Art en, wanneer de onderliggende implementatie dat
toestaat, ook veiliger is. Privacy-beschermende vergelijkingen zijn fundamenteel
voor het realiseren van grotere taken (bijvoorbeeld online veilingen) maar het
efficiënt realiseren van deze vergelijkingen is een uitdaging in MPC.

Contents

Abstract iii

Beknopte samenvatting v

Contents vii

List of Figures xi

I Secure and Efficient Computing on Private Data 1

1 Introduction 2
1.1 Motivation for this work . 5
1.2 Summary of Contributions . 6
1.3 Organization . 8

2 Secure Computation Methods 11
2.1 Homomorphic Encryption . 11
2.2 Multiparty Computation based on Secret Sharing 13
2.3 Multiparty Computation based on Garbled Circuits 15

3 Cryptographic Primitives 21
3.1 Secret Sharing . 21

3.1.1 Linear Secret Sharing 22
3.1.2 Verifiable Secret Sharing 23
3.1.3 Applications of Secret Sharing 24

3.2 Oblivious Transfer . 24
3.2.1 1-out-of-2 OT . 25
3.2.2 1-out-of-n OT . 25
3.2.3 k-out-of-n OT . 25
3.2.4 OT Extension . 26

vii

viii CONTENTS

3.2.5 Oblivious Polynomial Evaluation - OPE 26
3.3 Garbling . 27

3.3.1 Half-Gates . 30
3.3.2 Multiparty Garbling . 31

3.4 Ingredients for Actively Secure MPC 32
3.4.1 Commitment Schemes 32
3.4.2 Message Authentication Code 33
3.4.3 Zero Knowledge Proofs 33

4 Provable Security 35
4.1 Adversary Models . 35

4.1.1 Adversarial Behaviors 35
4.1.2 Corruption Thresholds 36
4.1.3 Timing of the Corruptions 37
4.1.4 Computational Power of an Adversary 37

4.2 Security Proofs . 38
4.2.1 Game-Based Security Proofs 38
4.2.2 Simulation-Based Security Proofs 38
4.2.3 Modular Composition 39
4.2.4 Universal Composability 39

5 MPC in the Preprocessing Model 42
5.1 The Arithmetic Black Box Model 43
5.2 Active Security . 43

5.2.1 Pairwise MACs . 44
5.2.2 Global MACs . 44

5.3 Online Phase . 45
5.4 Preprocessing Phase . 46

5.4.1 OT-based Preprocessing 47
5.4.2 SHE-based Preprocessing 48

6 Conclusion and Future Work 50
6.1 Conclusion . 50
6.2 Future Work . 52

Bibliography 55

II Publications 64

7 Towards Practical Privacy-Preserving Genome-Wide Association
Study 65

CONTENTS ix

8 EPIC: Efficient Private Image Classification (or: Learning from the
Masters) 101

9 Rabbit: Efficient Comparison for Secure Multi-Party Computation 125

10 Full-Threshold Actively-Secure Multiparty Arithmetic Circuit Gar-
bling 150

11 The return of Eratosthenes: Secure Generation of RSA Moduli
using Distributed Sieving 184

Curriculum Vitae 227

List of Figures

2.1 Garbling of a circuit with three gates. 16

3.1 1-out-of-2 Oblivious Transfer. 25

5.1 Arithmetic Black Box Functionality. 43
5.2 Protocol for the online MPC phase. 46
5.3 Preprocessing Functionality. 47

xi

Part I

Secure and Efficient
Computing on Private Data

1

Chapter 1

Introduction

We live in the era of information, and it is becoming more and more common,
not only for businesses, but also for leisure activities, healthcare, and daily
personal activities to be information-driven, or at least information-based. The
interconnected person of today’s developed world cannot work, perform day-to-
day operations, or even imagine their lifestyle without the use of information
and information technology. All this information, which was initially stored
and processed locally under the user’s supervision, is now being processed by
distributed systems, and online applications. The advent of Cloud Computing,
the trend of Big Data, as well as the Internet of Things, which aims at the
integration of the physical world with the computer-based systems, necessitate
the information collection and processing to occur globally.

When appropriately processed (e.g., by using data mining techniques), all these
massive amounts of data can be of great benefit to society. Machine learning,
and other applications of artificial intelligence, offer excellent opportunities.
Concrete application scenarios include ambient intelligence settings, such as
smart homes and smart cities, where data collection can improve efficiency
and accuracy of the present infrastructure, resulting in both economic and
environmental benefits [28]. Advances in the field of medicine, such as predicting
epidemics, or devising new drugs, can be attributed to Big Data [72]. The
emerging home (self-)healthcare applications that appear to be the “care of the
future”, given our ageing population, and the predicted shortage of medical
doctors, present themselves as further interesting scenarios, where Big Data
is indispensable [74]. Furthermore, supporting the efforts of public emergency
services with real-time geolocation information can enable rapid, effective, and
efficient rescue operations [69]. The emergence of all sorts of autonomous

2

INTRODUCTION 3

systems, including autonomous driving applications, can fundamentally change
the way transportation is being implemented nowadays, and it is facilitated
by the collection of detailed sensor and map data [20]. In addition, current
everyday activities involve the dissemination of information amongst others for
leisure activities, shopping, professional and social networking that take place
online. Due to the vast amount of data that is required so as to facilitate these
online applications, users are often prompted to share personal information, in
order to receive more personalized recommendations for products, and targeted
advertisements [62].

Despite the profound benefits that information dissemination bares in the context
of the aforementioned applications, it comes at the cost of privacy, which is a
fundamental human right. The end users of online applications, such as the
ones facilitating the previously mentioned scenarios, run the risk of having their
privacy compromised, while disseminating their personal information. People
are still unaware of the implications of privacy breaches, often using the cliché
“I do not care about privacy, because I have nothing to hide”. Clearly, this
demonstrates that many users do not understand what privacy is about, and how
related breaches can be used against them. Privacy breaches can be accidental,
intentional, or simply the result of user’s negligence. Privacy breaches go beyond
the discovery of user’s personal preferences, or the discovery of user’s passwords
for particular websites. When users claim having nothing to hide, they have
not considered scenarios, where their sensitive health information gets released,
resulting in them being unemployable (due to health conditions that became
public); or resulting in an insurance company not accepting them as clients, or
increasing the insurance fees.

When users regularly release their location data, to facilitate ambient intelligence
applications, such as autonomous HVAC (Heating, Ventilation, and Air-
Conditioning) systems, or as part of their daily exercises and participation
in a social sport network, they essentially release patterns of their behavior
that can be used against them. It has been shown that combination of spatial
and temporal information shared by the users of online social sports networks
can facilitate physical crime [93]. Predicting where a user lives, when they
go out to exercise, and for how long, allows criminals to plan and execute
burglaries, or to otherwise offend the users. Although it seems to be the most
innocent of the applications collecting personal information, in terms of privacy
violations, a user’s shopping behavior can reveal significant information about
themselves. Companies can analyze buying behavior, and even predict certain
personal circumstances in one’s life before the persons in question themselves.
By predicting these circumstances accurately and timely, companies can deploy
very effective marketing strategies; but all this at the cost of privacy. For
example, a teenager in the U.S.A. was predicted by the Target store to be

4 INTRODUCTION

pregnant, before she knew it herself [41]. This demonstrates how high the
impact of collection of personal information can be.

Even when users trust the respective service provider with their personal
information, data breaches cannot be excluded. Suppose that we trust the
emergency services of the city where we live, to collect and process our location
information throughout the day, so as to assist in the progress of potential rescue
operations. We trust that the emergency services will treat our information
as confidential, while in transit, but a hacking attempt can compromise the
confidentiality of our data, and eventually our privacy, at the processing site
of the emergency services itself. Thus, trust in the service provider cannot
guarantee privacy preservation. These are not fictional scenarios, but rather an
everyday phenomenon. Prevalent examples of data breaches and information
leaks include one of the recent LinkedIn breach cases, revealing information
about 117 million accounts [19], the Ashley Madison breach, exposing married
people’s extramarital affairs [58], and the Cambridge Analytica Scandal in
2018 [97].

Based on the previous discussion, the following question is raised: “How to allow
the collection and purposeful processing of private data, without compromising
individual privacy?”. To address this research question, several approaches
have been examined; one of them is data anonymization. Data anonymization
techniques have been shown to be easily circumvented, if the data allows other
kinds of correlations [94]. More recent results by Narayanan and Shmatikov [80],
remove the “a priori knowledge” requirement, rendering de-anonymization
even more easily deployable. Another approach is differential privacy [40,
43]. Unlike anonymization approaches, differential privacy is robust against
adversaries aiming at recovering personally identifiable information, even when
these possess auxiliary information [42], and it offers provable privacy guarantees.
However, differential privacy applies primarily to statistical databases, and the
noise introduced to preserve privacy directly affects the accuracy of the query
responses.

In cases where the data processing necessary for an application goes beyond a
statistical database, or in cases where the accuracy of the private computations
is important, the aforementioned techniques are insufficient. This thesis focuses
on cryptographic techniques for secure computation, which are deployable not
only when individual privacy –in terms of personally identifiable information–
is concerned, but also when the confidentiality of the underlying data involved
in the computation needs to be protected. Example applications in this setting
include e-voting [31], online auctions [11], the more recent, also commercialized,
applications on cryptographic key management [95, 89], and the renowned
millionaires’ problem [98], Yao’s seminal work that initiated the study of secure
computation. Yao’s millionaires’ problem reads as follows: “Two millionaires

MOTIVATION FOR THIS WORK 5

wish to know who is richer; however, they do not want to find out inadvertently
any additional information about each other’s wealth. How can they carry out
such a conversation?” [98]. Generalizing the abovementioned problem, we come
to the overarching research question that we aim to address in this thesis: “How
can n mutually distrusting parties compute a predetermined function f(·) over
their private inputs x1, . . . , xn, in such a way that at the end of the computation
each party learns the output of the computation f(x1, . . . , xn) and nothing
more.” Specifically, we devise protocols to tackle this research challenge, while
being efficient, and provably secure.

1.1 Motivation for this work

Theoretically, an affirmative answer on whether we can achieve secure
computation has been already given in the 80’s, together with constructions
on how to realize it [98, 99, 5, 87, 86]. Since then, a lot of research has
been done in the field, but the proposed solutions are commonly subjected
to some kind of compromise. Some approaches, although provably secure,
offer only limited functionality (e.g., they only support secure addition on the
private inputs), which in certain application scenarios is insufficient to realize
the desired processing. Other solutions involve the execution of interactive
protocols among several parties, who potentially contribute their private inputs,
and require these parties to be available online, in a synchronous manner, and
be actively involved themselves to complete the computations. In addition,
there are solutions that may offer the necessary functionality to complete the
tasks at hand, but they are so inefficient that they cannot be deployed on
real-life applications. The efficiency requirement itself is further divided into
computational, communication, and memory efficiency, as well as throughput
of certain operations, especially when computations can be parallelized. Lack
of efficiency can render secure computation protocols inapplicable in practice,
as their costs –be it computational, communication, or memory costs– can
become impractical to be handled by current computing systems. Lastly, secure
computation solutions are proven secure in different security models, under
different security assumptions, where generally the weaker the security offered
by a secure computation protocol, the more efficient, or functional the solution
is. All in all, there are tradeoffs attributed to each secure computation approach
that can be appropriately adjusted to serve specific application scenarios.

The three main subfields of cryptography that aim at providing solutions to
the problem of secure computation are homomorphic encryption (HE), Secure
Multiparty Computation (MPC) based on Secret Sharing, and MPC based
on Garbled Circuits (GC). We elaborate on all three mentioned subfields in

6 INTRODUCTION

Chapter 2, but this thesis focuses on Secure Multiparty Computation, both
based on Secret Sharing, and based on Garbled Circuits. Concretely, we deploy
and devise general n-party MPC protocols (while there are also two-party
protocols, enjoying special properties) that are secure in the most stringent
security model, the active security model and the dishonest majority setting.
In this endeavor, there are two approaches one may take: (1) consider a specific
application scenario, and tailor the secure computation solution perfectly to
the scenario, so as to achieve the best tradeoff in the particular setting; (2)
improve a particular secure computation primitive that is of general nature,
and applies to many different application scenarios. In this thesis, we have
taken both approaches, with the common underlying goal of providing solutions
that are practical in terms of efficiency, competing favorably with the previous
state-of-the-art.

1.2 Summary of Contributions

Taking the first approach on the deployment of secure computation, tailoring
the protocols to a particular application scenario, this thesis makes the following
contributions:

We show on a specific use-case, namely Genome-Wide Association
Studies (GWAS), that large-scale secure computation is practical.
We study the GWAS problem in depth, and discover privacy-challenges that
fall beyond the goals of secure computation. Secure computation protects the
private inputs of the protocol, and allows the protocol participants and outside
observers to learn nothing more than the output of the protocol, and whatever
can be inferred from that. In the GWAS application, even what can be inferred
from the output of a secure χ2-statistic computation can reveal information
about individual research subjects [59]. To tackle this, we tailor our solution, so
as to not reveal the actual χ2-statistic value, but rather a flag on whether the
value is below or above a predetermined threshold, which indicates statistical
significance. We compare the efficiency and security of two secure computation
methods, HE and MPC, on a real-life application with appropriate sample
sizes, for a research task that scales to millions of individuals contributing
to the samples. We propose a masking technique, which allows to perform
more efficiently the required secret comparison that stems from the privacy
requirement to not reveal the χ2-statistic. The deployment of this comparison
strategy improves the efficiency of the HE-based solution.

We devise an efficient private image classification system, called
EPIC, based on Support Vector Machine (SVM) learning, and secure

SUMMARY OF CONTRIBUTIONS 7

against active adversaries. Outsourcing an image classification task raises
privacy concerns, both from the image provider’s perspective, who wishes to
keep their images confidential, and from the classification algorithm provider’s
perspective, who wishes to protect the intellectual property of their classifier.
EPIC addresses the privacy concerns of both of these parties, and allows for
complete outsourcing of the image classification task to a third independent
party. Although conceptually simple, based on SVM learning, EPIC is the first
actively secure solution for image classification, it does not leak any information
about the private images, nor the classifier, and yet it is faster and more accurate
than its predecessors, which employ more complex machine learning techniques.
We show how to increase the accuracy of a privacy-preserving approach without
necessarily involving computations that are inefficient to perform in a secure
manner, by deploying data-independent feature extraction methods that can
be performed prior to the privacy-preserving computations without affecting
privacy. Our implementation and experiments on realistic datasets demonstrate
that our approach is practical, both in terms of accuracy, and in terms of
efficiency.

We design a MPC protocol that securely generates an RSA modulus.
Generating an RSA modulus securely is a challenging task that finds several
applications nowadays. We design a generic protocol for the task, supporting
any underlying MPC technology, as long as it is based on linear secret sharing.
Our protocol is based on a distributed sieving technique, and leverages the
Chinese Remainder Theorem (CRT) for the representation of the shares to
increase efficiency. In our effort to design a novel protocol, which is efficient, we
design a sub-protocol that converts an additive sharing over a ring to an additive
sharing over the integers. This sub-protocol can be of independent interest.
We also performed a cost analysis of our approach, and compared it with the
state-of-the-art in this area [24]. Our protocol improves the communication
cost of the previously proposed solution. Particularly, in the case of malicious
security, candidate primes of 2048 bits, and 2 parties, we show a communication
cost improved by 37 times.

Looking at general purpose, rather than application-specific secure computation
primitives to be improved, this thesis makes the following contributions:

We show how to garble arithmetic circuits with full-threshold active
security in the general multiparty setting. Firstly, we extend the work
of Ben-Efraim [7] from the semi-honest security setting, to support malicious
security against up to n− 1 (out of the total n) corrupted parties. Like Ben-
Efraim’s protocol, we show how to allow interfacing between Boolean and
arithmetic circuit gates. Lastly, we provide a new construction for a particular
garbled gate, namely a selector gate (i.e., a gate that given two arithmetic
inputs and one binary input, outputs one of the two arithmetic values, based

8 INTRODUCTION

on the value of the binary input). The newly proposed selector gate reduces
the communication cost to almost half of the cost of its predecessor.

We devise an efficient comparison protocol for secure multiparty
computation. Our comparison protocol is based on the commutative nature of
addition over rings and fields, and it is information theoretically secure when the
underlying MPC protocol operates over Z2k . Unlike prior work, our comparison
protocol does not require the computation to take place in a statistically larger
dataspace to ensure security. The consequence of that is that we can perform
both the comparison operation, as well as all adjacent computations on smaller
datatypes, because we do not need a larger space to accommodate for the
statistical security parameter. Our design results in a straightforward protocol,
which we implemented in MP-SPDZ [63, 36]. We experimentally show that in
most adversarial settings our protocol efficiency compares favorably with the
previously fastest comparison protocol [45].

1.3 Organization

In the first part of this thesis, following the Introduction (Chapter 1), we
elaborate in Chapter 2 on the three main secure computation methods. In
Chapter 3 the fundamental cryptographic primitives serving as building blocks
throughout this work are explained. Chapter 4 discusses the different security
models and assumptions in the area of secure computation, and MPC in
particular. In Chapter 5 we present the neccessary ingredients to construct
MPC protocols in the preprocessing model, which is the model assumed in Part
II of this thesis, while Chapter 6 summarizes our conclusions, and lists some
interesting open questions, which may lead to future work.

The second part of this thesis is comprised by the five peer-reviewed, or under
submission papers (in chronological order of publication), which are the main
results of this work, namely:

1. Two methods to perform Genome-Wide Association Studies (GWAS)
and in particular securely computing the χ2-statistic, where we show
that such studies, scaling to millions of subjects, are practical to do in a
privacy-preserving manner [13]. We take two approaches on addressing
this challenge: a somewhat homomorphic encryption approach, and a
MPC computation approach, and compare how these perform in terms of
security and efficiency.

2. An efficient private image classification protocol, EPIC, which is a MPC
protocol that builds upon transfer learning techniques to achieve efficiency

ORGANIZATION 9

significantly improved compared to the state-of-the-art, while maintaining
the image classification accuracy [75].

3. A secure comparison protocol based on the commutative nature of addition
over rings and fields [76], with increased efficiency in most adversarial
settings, over the most recent secure comparison protocol [45].

4. A multiparty arithmetic garbling protocol, which is proven secure in the
full-threshold active security model, and it is the first of its kind in terms
of security [77]. At the same time we show how to reduce to almost half
the asymptotic communication cost of a particular garbled gate, namely
a selector gate, compared to the previously proposed solution [7].

5. A protocol to securely generate a biprime, based on a distributed sieving
technique and leveraging the CRT representation [38], which is shown to
improve the communication cost over the best previous work [24] by up
to a factor of 37.

Chapter 2

Secure Computation Methods

This chapter elaborates on the three main secure computation methods, namely
homomorphic encryption, multiparty computation based on secret sharing, and
multiparty computation based on garbled circuits.

2.1 Homomorphic Encryption

Encryption allows the encoding of (sensitive, or private) data, into a different
form, which does not reveal any information about the original data. The
encryption operation can only be inverted by authorized parties to retrieve the
original data. Homomorphic encryption (HE) is a form of encryption allowing
computations to be performed on private data, where the eventual private
result of the computation, when decrypted, matches the result of a possibly
different operation performed on the original data. The original (private) data
contributed to the computation is called plaintext data, following the same
terminology as in traditional encryption. This data gets encrypted, following
the encryption algorithm, with input the plaintext, and the public or private
key. This process results in the ciphertext. With HE the ciphertext can be
processed according to the computations allowed by the HE scheme. The result
of this processing is still in encrypted form, and the only entities able to decrypt
this are the ones in possesion of the private key of the cryptosystem. To do
so, they use the ciphertext and the private key as inputs to the decryption
algorithm. Once decrypted, the resulting plaintext is the result of the performed
computations, as if these had been performed on the plaintext data.

11

12 SECURE COMPUTATION METHODS

The concept of privacy homomorphisms [86] was formalized in the same year
as the first public key encryption scheme was proposed, namely the RSA
scheme [87], which itself enjoys the property of being homomorphic (i.e., allowing
certain computations to be performed on the ciphertext). More precisely,
RSA is multiplicatively homomorphic in that multiplication of two encrypted
integer numbers, results in an encryption of the result of the multiplication
on the original (unencrypted) integers. The homomorphic property of RSA
can be employed only when the scheme is being used unpadded, which is not
recommended, as unpadded RSA is not secure.

Following RSA, Goldwasser, and Micali [56] invented another public key
cryptosystem, with the following homomorphic property: multiplication of
two encrypted bits, results in an encryption of the result of an exclusive OR
(XOR) operation on the original plaintext bits. Later, ElGamal [44] proposed the
second multiplicatively homomorphic encryption scheme (after RSA). The first
additively homomorphic encryption scheme (operating on encrypted integers
instead of encrypted bits like the scheme of Goldwasser, and Micali [56]) was
presented by Benaloh [8]. With Benaloh’s scheme [8] the homomorphic property
is that the product of two encrypted integers, results in an encryption of the
result of an addition operation on the original plaintext integers. The famous
encryption scheme of Paillier [82] enjoys the same homomorphic property as the
one of Benaloh [8]. Paillier’s cryptosystem has been widely deployed, also in
combination with secure multiparty computation techniques, to address some of
the important research challenges we discuss in Chapter 1. Regev’s encryption
scheme [85], which is based on the Learning With Errors (LWE) problem, also
enjoys an additively homomorphic property.

The encryption schemes discussed so far in the first part of this section are
Partially Homomorphic Encryption (PHE) schemes. This means that with
these encryption schemes, we can perform either multiplication or addition
operations on the encrypted data, but not both at the same version of the
encrypted data. Note that all operations on integers boil down to addition,
and multiplication. If we are able to perform both of these operations on the
same version of the encrypted data, we can adequately address the challenges
of privacy enhancing technologies introduced in Chapter 1. When working
with Boolean circuits, a homomorphic encryption scheme that allows unlimited
multiplications and additions to be performed on the encrypted data, allows
us to represent encrypted NAND gates, which require one addition and one
multiplication operation to be performed on the inputs. We remark that NAND
gates alone provide functional completeness, which means that in the above
scenario, we can evaluate any circuit of any depth on the encrypted inputs. An
encryption scheme satisfying the above properties is called a Fully Homomorphic
Encryption (FHE) scheme.

MULTIPARTY COMPUTATION BASED ON SECRET SHARING 13

In 2009, Gentry [50] proposed the first fully homomorphic encryption scheme,
signifying a new era in the research field of homomorphic encryption.
Such a breakthrough invention allows all kinds of computations to be
performed on encrypted data, without requiring decryption or any intermediate
communication with the parties contributing the data. While partially
homomorphic encryption schemes need to be combined with secure multiparty
computation protocols to allow complete functionality, a fully homomorphic
encryption scheme supports all operations to be performed locally, with
no interaction. Although theoretically sound, the scheme of Gentry [50] is
impractical. All this great functionality comes at the cost of a steeply increasing
computation time, and an extensive enlargement of the size of the corresponding
encrypted data. The first implementation of the FHE scheme of Gentry [50]
was presented by Gentry, and Halevi [51]. This implementation is based on
a modified version of the original encryption scheme, combined with other
techniques introduced by Smart, and Vercauteren [92], and it remains highly
inefficient for practical applications.

Between the two extremes of PHE and FHE, there are the so-called
Somewhat Homomorphic Encryption (SHE) schemes. These schemes allow
both multiplications, and additions to be performed on encrypted integers, but
they only support a limited number of these operations on the ciphertexts. A
notable SHE scheme that appeared quite early in time, is the scheme of Boneh
et al. [12], which allows unlimited homomorphic additions to be performed on
the ciphertexts, and a single multiplication. After the multiplication we can
keep performing addition operations, albeit in a different group, which does not
allow further multiplications to be performed.

Since the breakthrough of Gentry [50], many SHE, and FHE schemes followed.
The most notable of these works include the schemes proposed by van Dijk
et al. [96], Brakerski, and Vaikuntanathan [16, 17], Fan and Vercauteren [47],
Brakerski [14], Brakerski et al. [15], Chillotti et al. [26], and Cheon et al. [25].

2.2 Multiparty Computation based on Secret Shar-
ing

Secure Multiparty Computation (MPC) was first identified as an interesting
problem to be researched by Yao [98]. We can describe MPC as the problem,
where several participants wish to compute a function, and reveal only the
result of this computation, on private variables contributed by all participants.
The correctness of the computed (common) result must be ascertained, and the
variables contributed as inputs by each participant should remain private (i.e.,

14 SECURE COMPUTATION METHODS

not be revealed to the other participants). A lot of fundamental work on secure
multiparty computation, such as the works of Goldreich et al. [55], Chaum et
al. [23], Beaver et al. [5], Beaver [3], Goldreich [53], and Cramer et al. [30],
followed Yao’s [99] seminal work. The field of Secure Multiparty Computation,
especially in combination with Secret Sharing, and HE is still being actively
researched, as it presents itself as an ideal solution to many interesting, real-life
application scenarios, such as the ones discussed in Chapter 1. This is because
MPC is significantly more efficient than HE solutions, which renders it practical.
Furthermore, when together with the privacy of the underlying plaintext data,
the correctness of the computed result is important, MPC can offer stronger
guarantees than HE approaches, in that certain MPC protocols offer security
against adversaries, who aim to manipulate the output of the computation.

Another reason to opt for MPC instead of HE approaches is that in several
applications, the data to be contibuted to the secure computation does not
come from a single individual, but from many individuals. In such applications
privacy of the contributed data needs to be guaranteed, but the collective
secure computation also needs to be deployed on a pool of data contributed
by several individuals. MPC is therefore an approach that fits naturally this
kind of applications. To overcome the limitations of traditional FHE in this
context (i.e., the fact that the contributed plaintext data has to be encrypted
under a single key, when standard FHE solutions are considered), we can deploy
threshold FHE, where the private key is shared among the protocol participants,
and hence the data does not need to be stored at a single place. The notion
of multi-key FHE [73], is also a viable alternative to address the distributed
computation scenario. However, the first attempts to construct multi-key FHE
have been shown to be insecure [1]. In addition, most multi-key FHE schemes
suffer from the inherent limitation of requiring all keys that will be involved
in the secure computation to be known in advance, as the output cannot be
combined with ciphertexts encrypted under other, new keys. Note, however,
that this latter limitation, of knowing the protocol participants in advance, is
also inherent in most MPC protocols.

When deploying a MPC solution, several considerations on the environment
and requirements must be taken into account. The most prevalent such
considerations are the following:

• The type of adversarial behavior that we need to combat. Are the
adveraries only interested in learning private information about the users’
private data, and intermediate computations, or are they willing to actively
sabotage the computation by deviating from the protocol specification?

• The number of parties involved in the MPC protocol. How many parties
participate in the MPC computation?

MULTIPARTY COMPUTATION BASED ON GARBLED CIRCUITS 15

• The type of parties involved in the MPC protocol. Are all the parties
participating actively in the computation, or do they simply contribute
their data in the protocol (playing only the role of a data dealer)?

• The computational power of the MPC parties. Are all MPC parties equally
powerful or do we need to distribute the computation in an unequal manner
(e.g., if some of the parties are mobile nodes with limited capabilities)?

• Whether the MPC parties can begin their computation and communica-
tion, prior to the actual protocol execution, to create auxilliary material
that can be used to speed up the so-called online phase, where the protocol
specification and the inputs are known. This is called the preprocessing
model, which once deployed can increase both the online, and the overal
MPC efficiency (i.e., including the preprocessing phase).

• The communication efficiency. Do we need to account for as few
communication rounds as possible (e.g., in network environments where
synchronous communication is a challenge), or do we focus on decreasing
the total communication cost (when the total bandwith is our main
consideration)?

As efficiency is one of the main considerations for the deployment of MPC in
real-life applications, next to provable security guarantees, most modern works
(e.g., the works of Bendlin et al. [9], Damgård et al. [35, 33], Keller et al. [66, 67])
are based on the preprocessing model.

2.3 Multiparty Computation based on Garbled Cir-
cuits

Garbled Circuits (GC) is a special-case MPC approach. While HE solutions
are non-interactive, in the sense that they do not require the data contributor
to be online, or otherwise participate in the secure computation (yet they do
incur a non-negligible communication cost), MPC solutions are interactive,
requiring several communication rounds (in contrast to only two rounds for HE
solutions), where the computing parties actively participate in the computation.
GC is a meet-in-the-middle solution, where the GC protocols do require online,
synchronous communication, but the protocol execution is completed in a
constant number of rounds, and not in a number of rounds proportional to the
depth of the circuit to be computed, as with standard MPC methods.

In fact, at the beginning of all MPC research, sits Yao’s work [99], which is
essentially a two-party garbling protocol. In the original two-party setting,

16 SECURE COMPUTATION METHODS

Figure 2.1: Garbling of a circuit with three gates.

a garbled circuit serves two parties, the garbler, and the evaluator, which
work through the protocol in an asymmetric fashion. The garbler generates
the “garbled” (i.e., randomized) version of the circuit, and hardwires their
own inputs in the circuit. This garbling procedure is based on symmetric key
encryption primitives, which makes it particularly efficient from a computational
point of view. For all gates in the circuit, the garbler selects random labels
for each entry, in each of the corresponding truth tables, hashes all possible
combinations of these labels, and uses the hash as the symmetric key to encrypt
the output value on this row of the truth table; then it permutes each truth
table. The garbling process of a simple circuit is depicted in Figure 2.1. On
receiving the garbled circuit, the (random) encoding of the garbler’s inputs,
and some encoding of the evaluator’s input, the evaluator can walk through
the circuit on a gate-by-gate basis to compute the final garbled result. At the
end, the two parties communicate to reveal the plaintext output to both. More
concrete techniques involved in the design of GCs are extensively discussed in
Section 3.3.

The seminal work of Yao [99] was followed by the well-known BMR protocol [5].
In that work, Beaver et al. [5] show how to extend Yao’s protocol from the
two-party to the multiparty setting, and they introduce the point-and-permute
technique, which allows the evaluator to decrypt only one out of the four received

MULTIPARTY COMPUTATION BASED ON GARBLED CIRCUITS 17

ciphertexts in each truth table, while originally they would have to decrypt all
four (and accept only the one that generates a valid message). To apply the
point-and-permute technique, the garbler, in addition to the input and output
labels, generates two select bits (aka color bits), encoding the real input value
in a uniformly random fashion. The evaluator can now use these two color bits
on each of the two inputs (per gate) to determine which row of the garbled
table to decrypt. In a nutshell, with point-and-permute the garbler still has to
send the whole truth table of each gate to the evaluator, but the evaluator can
identify and decrypt only one of the four possible outputs in the truth table.

Naor et al. [79] were the first to suggest a so-called row reduction technique,
which allows the GC to function according to the protocol specification, without
sending all four rows of the truth table for each gate in the GC, but instead
send only three of them. This is achieved by selecting one label in a way that
forces the corresponding ciphertext to always be zero. The next breakthrough in
the history of GC’s is the free-XOR technique of Kolesnikov and Schneider [71].
As the name implies, with the free-XOR technique, there is no need to garble
XOR gates in the circuit: the garbler does not send any garbled rows to the
evaluator, and the evaluator does not therefore need to perform any decryption
operations. This is achieved by selecting a uniformly random global difference
for the output wire, select the zero output label of the gate at random, and then
set the one output label to be the XOR of the global difference and the zero
output label, i.e., W 1 = W 0 ⊕∆, for W 0,W 1 the zero and one output labels
respectively, and ∆ the global difference. Another row reduction technique
followed in the timeline of GC’s, by Pinkas et al. [83]. While this technique
allows the elimination of two encrypted rows per truth table, instead of one
(that the work of Naor et al. [79] could eliminate), it is not compatible with the
free-XOR trick, which means that also XOR garbled gates cost two encrypted
rows each (instead of zero with free-XOR).

Kolesnikov et al. [70] propose the FleXOR technique, which tries to get the most
out of both the free-XOR, and the row reduction techniques. FleXOR manages
to get to the optimal two encrypted rows per AND gate (like the work of Pinkas
et al. [83]), while this flexible garbling allows also to get free XOR gates, but not
always. The number of encrypted rows required for XOR gates in this setting,
depends on the whole GC structure, and varies between zero and two. Focusing
again on the optimization of AND gates, while maintaining compatibility with
the free-XOR technique, Zahur et al. [100] designed the half-gates technique.
The half-gates indeed achieved the optimal two encrypted rows per garbled
AND gate, with compatibility with the free-XOR trick (i.e., zero encrypted rows
for garbled XOR gates). We further elaborate on the half-gates construction
in Section 3.3. In Table 2.1 we summarize the efficiency optimizations that
garbling has undergone.

18 SECURE COMPUTATION METHODS

Technique
Size per gate Encryption Calls per Gate

Garbler Evaluator
XOR AND XOR AND XOR AND

Classical [99] 4 4 4 4 4 4
Point-and-Permute [5] 4 4 4 4 1 1
Row Reduction 3 [79] 3 3 4 4 1 1

Free-XOR [71] 0 4 0 4 0 1
Free-XOR & 0 3 0 4 0 1Row Reduction 3

Row Reduction 2 [83] 2 2 4 4 1 1
FleXOR [70] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1

Half-Gates [100] 0 2 0 4 0 2

Table 2.1: Efficiency optimizations of Boolean Garbling. For each technique
listed in this table, after the classical Yao’s approach, we assume that the
point-and-permute optimization is applied.

So far we have considered only Boolean GC’s. Nowadays, however, arithmetic
GC’s are on the rise. Boolean circuits (garbled or not) are well suited to
non-linear operations (e.g., comparison operations). Although it is of course
possible to represent arithmetic inputs in a Boolean circuit, and apply linear
functions on them, based on their binary representation, such an endeavor
incurs a high computational and communication cost, compared to processing
linear functions on arithmetic circuits. Most modern applications require a
combination of linear and non-linear operations to be performed on the input
data. The reason why arithmetic circuits prevail is that arithmetic circuits
are significantly more efficient than Boolean circuits for the linear part, which
usually presents itself as the bulk of the computation.

The first work to consider garbling of arithmetic circuits is the work of Ball et
al. [2]. Firstly, Ball et al. [2] show how to extend the free-XOR technique of
Kolesnikov and Schneider [71] from the Boolean to the arithmetic setting. This
results in arithmetic GC’s, where linear operations over the integers are for free.
In addition, they leverage the Chinese Remainder Theorem (CRT) to represent
the inputs and intermediate values in the circuit, achieving great perfomance
gains over the straightforward conversion of integers to binary. Lastly, further
optimizations are suggested by Ball et al. [2], based on a conversion method
from CRT numbers to a positional number system, which allows non-linear
operations to be performed more efficiently than the straightforward conversion
to binary would allow.

MULTIPARTY COMPUTATION BASED ON GARBLED CIRCUITS 19

While Ball et al. [2] show how to do two-party arithmetic garbling, Ben-
Efraim [7] extends this to the multiparty setting. Ben-Efraim’s approach [7]
inherits the free addition property of its predecessor [2] (and extends this to
more than two parties), and it also comprises a “designated” construction to
garble multiplication gates, which is inspired by the half-gates technique [100].
Moreover, Ben-Efraim [7] suggests a construction for a garbled selector gate
(i.e., a gate that given two arithmetic inputs and one binary input, outputs
one of the arithmetic inputs, based on the value of the selection bit input),
which reduces the computational cost at the evaluation stage by ∼ 33%, i.e., 2
decryption operations instead of 3, compared to the naive implementation of a
selector gate.

Chapter 3

Cryptographic Primitives

In this chapter we present the main cryptographic primitives that are used
throughout this thesis. We begin by an elaborate discussion on Secret Sharing,
because our focus in on Secret-Sharing-Based MPC. We proceed with explaining
Oblivious Transfer, and then we get deeper into the details of garbling, which
has already been briefly introduced in Chapter 2. Finally, we present the
three main primitives that allow us to construct MPC protocols with active
security, namely Commitment Schemes, Message Authentication Codes, and
Zero Knowledge Proofs. The discussion on the latter primitives is not formal,
and only serves to explain the corresponding concepts.

3.1 Secret Sharing

Secret sharing refers to a cryptographic primitive, which allows a secret to be
distributed among a group of participants. Once the secret has been distributed,
each of the participants holds a share of the secret. When considering secure
secret sharing, each share on its own should not reveal any information about
the original secret. The secret can be reconstructed only if a sufficient number of
individual shares are combined together. A bit more formally: a secret sharing
scheme allows a dealer to distribute shares of a secret to n parties P1, . . . , Pn,
such that only authorized subsets of these parties can reconstruct the secret,
while any unauthorized subset of parties does not obtain any information about
the secret. Secret sharing was invented independently, but in the same year
(1979) by two different researchers: Adi Shamir [90], and George Blackley [10].

21

22 CRYPTOGRAPHIC PRIMITIVES

A threshold secret sharing scheme is a scheme where the authorized sets are
all the sets whose size is at least some threshold value t. If there are n parties
participating in the secret sharing and any t (or more) of them form an authorized
set then we say that the scheme realizes the t-out-of-n access structure, where
1 ≤ t ≤ n is an integer; and call it (t, n)-threshold secret sharing scheme. When
all parties’ shares are required for the secret reconstruction, and no t ≤ n− 1
parties are able to obtain any useful information about the secret, we refer to
the secret sharing scheme as a scheme for the (n, n)-threshold access structure.

Easy examples of secret sharing methods include the trivial secret sharing,
where the threshold t = 1, and the secret is handed in its entirety to all n
parties. Another straightforward example is that of splitting a secret phrase
or word in blocks of letters of predetermined size, and then distributing each
block to one party. Consider for instance that one wishes to secret share the
word “cryptography” to four parties, and they split it in the following way:
“cry - - - - - - - - -”, “- - - pto - - - - - -”, “- - - - - - gra - - -”, “- - - - - - - - -
phy”. In this case, an outsider possessing 0 shares has no information about
the secret, other than that it consists of 12 letters. Outsiders would therefore
need to guess the secret from the 2612 ' 95.5 quadrillion possible combinations.
On the other hand, a party with one share has a lot of information about
the secret, and only needs to guess 9 out of the 12 letters, which is 269 ' 5.4
trillion combinations. The more parties collude (and therefore combine their
knowledge), the more the secret gets exposed. Clearly, these two examples of
simple word concatenation, and trivial secret sharing are not secure; we use
these examples here only for illustration purposes. Strictly speaking, a secure
secret sharing scheme distributes shares so that anyone with fewer than t shares
has no more information about the secret than someone with 0 shares.

In the cryptographic sense, we consider only secure secret sharing schemes.
However, the level or type of security provided by each such secret sharing
scheme differs. There are secret sharing schemes, such as Shamir’s secret
sharing [90], providing information theoretic security [91], and thus satisfying the
property of perfect secrecy, and secret sharing schemes providing computational
security. The various levels of security provided by cryptographic primitives,
(e.g., the assumptions made on the power of the protocol adversaries) are further
discussed in Section 4.

3.1.1 Linear Secret Sharing

Linear Secret Sharing Schemes (LSSS) are the schemes for which the
reconstruction of the secret from the shares is a linear mapping. In practice, this
means that any linear operations performed on the individual shares translates

SECRET SHARING 23

to operations performed on the secret, upon reconstruction. This is a form
of additive homomorphism, which allows meaningful (linear) operations to be
performed indirectly on the secret, while actually being performed locally on the
shares by each individual party, without requiring the exchange of additional
information or other form of communication among the parties. It is this very
property that makes LSSS a popular choice for constructing MPC protocols on
top of them.

As the first to have been invented, but also satisfying strong security properties
(namely perfect secrecy) along with the property of being linear, Shamir’s
secret sharing scheme [90] is perhaps the most popular secret sharing scheme to
date. The goal of Shamir’s secret sharing is to divide a secret S into n shares
S1, . . . , Sn, such that if you know t or more Si shares, S is easy to reconstruct,
while if you know t− 1 or fewer shares you gain no information about S over
someone who possesses 0 shares. The intuition behind the scheme is that 2
points suffice to define a line, 3 points suffice to define a quadratic curve, 4 points
suffice to define a cubic curve and so on. More generally, one needs t points to
define a t− 1 degree polynomial. For the scheme to be secure, the secret and
shares are defined over a finite field F of size p, for p a prime number. To share a
secret S, one chooses at random t−1 field elements a1, . . . , at−1, and let a0 = S.
They construct the polynomial f(x) = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ at−1x

t−1.
Then, they find any n distinct points on the curve (except for the point (0, S),
for instance by setting i = 1, . . . , n, and distributing to each party i the point
(i, f(i)) (along with the public parameter p which defines the finite field). To
reconstruct the secret we need any t of the points constructed in the previous
step, and by using polynomial interpolation we can define the coefficients of the
polynomial, including the constant term, which is the secret.

Another example of a LSSS, which is widely used in secure computation
nowadays is additive secret sharing. Additive secret sharing, unlike Shamir’s
secret sharing is a scheme for the (n, n)-threshold access structure. Similarly
to Shamir’s secret sharing scheme, for traditional additive secret sharing the
secret and shares are again defined over a finite field F of size p, for p a prime
number. To split a secret S into n shares one chooses at random n − 1 field
elements S1, . . . , Sn−1, and lets Sn = S −

∑n−1
i=1 Si. Each party then gets one

of these shares. To reconstruct the secret all shares are required, and we simply
need to add them to retrieve S.

3.1.2 Verifiable Secret Sharing

Verifiable Secret Sharing [27] yields another class of secret sharing schemes, which
allow proving some property of a (secret shared) message, without revealing

24 CRYPTOGRAPHIC PRIMITIVES

the message itself. A milestone work in the field of verifiable secret sharing
is the work of Gennaro et al. [49]. Applications of (publicly) verifiable secret
sharing schemes made possible the construction of the first secure electronic
voting mechanisms, and platforms [88]. Other practical applications of this
special type of secret sharing include collaborative supply chain management,
where competing parties should collaborate by combining their private sensitive
data, so as to optimize the supply and demand configuration [37].

3.1.3 Applications of Secret Sharing

Beimel lists numerous cryptographic applications of secret sharing in their
survey [6], including secure information storage, Byzantine agreement, threshold
cryptography, access control, attribute-based encryption, and generalized
oblivious transfer. However, the most prominent such application is MPC.
Building MPC protocols on top of secret sharing primitives allows us to devise
practical (in terms of efficiency) privacy-preserving protocols for a variety of real-
life problems: from private genomics, to private machine learning applications.
There is a plethora of MPC protocols to choose from, based on the scenario at
hand, and the resources available.

3.2 Oblivious Transfer

Oblivious Transfer (OT) is a protocol executed between two parties: a sender
and a receiver. The most straightforward OT protocol is the so-called 1-out-of-2
OT, which allows the sender to transfer one piece of information to the receiver,
out of two possible values. More generally, OT allows the sender to transfer
some out of many pieces of information to the receiver. During this protocol, the
sender does not learn anything about which pieces of information were actually
transferred to the receiver; the receiver, on the other hand, does not gain any
information about the pieces they did not receive. The notion of OT dates
back to the work of Rabin [84], and it is a protocol that requires asymmetric
cryptographic primitives to be deployed for its implementation. In this seminal
work [84], which is based on the RSA cryptosystem [87], the sender sends only
one message to the receiver, with probability 1/2, and remains oblivious as to
whether the message was actually received.

OBLIVIOUS TRANSFER 25

Figure 3.1: 1-out-of-2 Oblivious Transfer.

3.2.1 1-out-of-2 OT

The first 1-out-of-2 OT scheme, i.e., a protocol where the sender transfers
two values, and the receiver only obtains one of them, is proposed by Even et
al. [46]. This primitive, illustrated in Figure 3.1, gives rise to the construction
of MPC protocols. More importantly, it has been shown that OT is complete
for MPC [55, 68], allowing to evaluate any function, given only a secure OT
implementation, and no additional cryptographic primitives. Recall, however,
that OT’s are based on asymmetric primitives for their implementation, which
renders them inefficient, since the oblivious transfer of a single bit requires two
encyption, and one decryption operations, as well as the transfer of the two
large ciphertexts over the network.

3.2.2 1-out-of-n OT

A 1-out-of-n OT protocol is a generalization of the standard 1-out-of-2 OT,
where the sender has n values (instead of 2 in the previous construction), and
the receiver has a selection index i, 0 ≤ i < n, allowing them to obtain the
ith value. From this protocol execution the sender learns nothing about the
selection index i of the receiver, and the receiver learns the ith value and nothing
about the n− 1 other values of the sender that they did not select. It is possible
to construct a 1-out-of-n OT, based on a 1-out-of-2 OT, in a straightforward
manner, by executing n parallel 1-out-of-2 OT’s. However, this would incur
computational and communication cost linear in n. Naor and Pinkas [78]
constructed a 1-out-of-n OT with complexity logarithmic in n.

3.2.3 k-out-of-n OT

Further generalizing the standard 1-out-of-2 OT primitive, Ishai and Kushile-
vitz [61] propose an oblivious polynomial evaluation construction, which gives
rise to new OT primitives, namely generalized-OT (GOT). The proposed GOT

26 CRYPTOGRAPHIC PRIMITIVES

can be regarded as a k-out-of-n OT, where the receiver obtains k messages out
of the n messages of the sender. The security requirement here is an extension
of the previous one, where the sender learns nothing at all from the protocol,
and the receiver learns the k messages, and nothing about the other n − k
messages of the sender.

3.2.4 OT Extension

A lot of research has been focused on improving the OT primitive, because
on the one hand it is a complete primitive for MPC, and on the other hand
it is an expensive primitive, since it is based on asymmetric cryptographic
primitives. Many works have considered extending OT to make it practically
efficient in the amortized sense, where the protocols incorporating the primitive
require (a lot) more than a single bit to be transferred obliviously. The first
OT extension protocol is due to Beaver [4], while the most notable one is that
of Ishai et al. [60]. In this latter work, Ishai et al. [60] show how to perform
only a few OT’s from scratch (i.e., using the standard expensive methodologies),
and then be able to perform many additional OT’s at the cost of a constant
number of invocations of relatively inexpensive symmetric key primitives. While
the first protocol of Ishai et al. [60] is passively secure, they also propose an
actively secure version of their protocol, which comes with an increased cost
by a factor σ, for σ a statistical security parameter. More recently, Keller et
al. [65] presented an actively secure OT extension protocol, where malicious
security comes at negligible extra cost (compared to the cost of the passively
secure protocol).

3.2.5 Oblivious Polynomial Evaluation - OPE

Getting an insight on why OT is complete for MPC, let us explain how we can
use OT to compute the AND operation between two bits held by two different
parties, where the result of the operation is additively secret shared. The sender
holds a bit s, and the receiver holds a bit r; together they wish to compute
the binary product p = s ∧ r = s′ ⊕ r′ in a secret shared form, where each of
them holds a share of the XOR operation over p at the end of the protocol.
To compute this, the sender selects a random masking bit s0, and masks their
input with it by setting s1 = s⊕ s0. Then the sender inputs to the OT s0, and
s1, while the receiver inputs r. The output of the OT will then be sr for the
receiver. The receiver then sets the output of the secure AND operation to be
r′ = sr, and the sender sets their output to be s′ = s0. The protocol above is

GARBLING 27

correct because r′ = sr = r ∧ s1 ⊕ (1⊕ r) ∧ s0 = r ∧ (s1 ⊕ s0)⊕ s0, and if we
XOR the two outputs, we indeed get: s′ ⊕ r′ = s0 ⊕ sr = r ∧ s.

The aforementioned simple example gives rise to the so-called Oblivious
Polynomial Evaluation (OPE) primitive, which has been studied already by Naor
and Pinkas in 1999 [78]. The well-known Gilboa’s multiplication protocol [52]
is based on the same concept. In modern MPC applications a closely related
primitive has been suggested, namely the primitive of Correlated Oblivious
Product Evaluation (COPE) [66]. The COPE protocol presented by Keller et
al. [66] is essentially a generalization of Ishai et al.’s protocol [60] from the binary
to the arithmetic case, and it is also inspired by Gilboa’s multiplication [52].
Similarly to the previous example, there are two parties who wish to obtain
an additive sharing of the product x ·∆, where the sender holds x, and the
receiver holds ∆. To accommodate the arithmetic (instead of binary) inputs,
the parties run k sets of 1-out-of-2 OT’s for k-bit inputs. The proposed product
evaluation is correlated in the sense that the one party’s input ∆ is fixed at the
beginning of the protocol for many protocol runs. After a one-time expensive
initialization of the COPE protocol, the extension step, generating fresh OT’s
without the extensive costs incurred by the asymmetric key primitives, can be
repeated several times on new inputs.

3.3 Garbling

Having discussed in Section 3.2 OT as a primitive, allows us to elaborate further
on the concrete techniques used for garbling. In Section 2.3 we have introduced
garbled circuits as a secure computation methodology and we have briefly
explained the most notable optimizations that GC has undergone throughout
history. In this section we give more details on how garbling is concretely
deployed, as well as on the half-gates technique, and multiparty garbling, which
are relevant to the optimizations presented in Chapter 10.

Recall that a GC is a randomized version of a circuit allowing traditionally
two parties to evaluate a function on the union of their private inputs, without
revealing anything more about their private inputs than what can be inferred
from their own inputs and the output alone. While in the two-party setting the
garbling procedure is asymmetric, between the two parties called the garbler
and the evaluator, in the multiparty setting all parties play the role of the
garbler, and any parties can play the role of the evaluator. We now focus on
gates receiving two inputs and having one output wire. Each such fan-in-2 gate
g : F2 → F in the circuit has two input wires, denoted u and v, and one output
wire denoted w. The garbled gate is expressed as a truth table with one row

28 CRYPTOGRAPHIC PRIMITIVES

for each input combination (α, β) ∈ F2, and the corresponding output. Each
row has thus the following form: (α, β, g(α, β)), as shown also in Table 3.1a for
the case of arithmetic garbling.

The garbler samples a random key for each possible value of α, β and γ = g(α, β).
These keys typically live in a finite field extension of the basic field F`, where `
serves as a security parameter mandating the length of the keys. The length
of the keys depends on the GC implementation, and it is not predetermined.
However, some garbling optimizations do impose particular requirements on
the encryption scheme used. The real input values α, β in the truth table are
replaced in the garbled version by the corresponding encryption keys, as it is
shown in the first and second column of Table 3.1b. The keys corresponding
to the output wire w are double encrypted under both of the corresponding
input keys, using a Pseudorandom Function (PRF) on input the gate index g.
Finally, the key of the output wire w is added to create the ciphertext:

g̃α,β = Fku,α,kv,β (g) + kw,g(α,β).

These ciphertexts form the last column of the garbled truth table (see Table 3.1b),
and they are sent to the evaluator, once they are permuted.

The garbler’s inputs are hardwired in the GC. For instance, if the input of the
garbler to a gate is the u wire, then they perform the encryption only under
the keys corresponding to the v inputs. What still remains to be hidden is the
order of the ciphertexts in the table, as this would reveal the garbler’s inputs
to the evaluator. Thus, to protect the garbler’s input from the evaluator the
ciphertexts are randomly permuted using so-called permutation or masking
values chosen by the garbler, and denoted by λ. In the binary circuit case, the
permutation values are random bits, while in the arithmetic circuit case we aim
at acquiring a rotation of the table rows. The permuted, based on the masking
values, garbled table that is sent to the evaluator is shown in Table 3.1c.

For the GC evaluation phase, the evaluator receives the keys corresponding
to its inputs, via OT, so that the garbler remains oblivious to the evaluator’s
inputs, while the evaluator does not learn the keys for any values other than the
ones corresponding to its own inputs. Using these keys, the evaluator decrypts
gates as follows: g̃α,β − Fku,α,kv,β (g). The result of this decryption is a key
that can be used to decrypt the next gate in the circuit, together with the
corresponding output key of the next gate, which the evaluator has received
from the garbler. In this gate-by-gate manner the evaluator walks through the
GC, until the key of the final output gate is obtained.

To correctly evaluate the garbled gates, the evaluator needs next to the output
key, also a so-called external or signal value, denoted by e, which is the real
value v, masked with the masking value λ; that is, e = v + λ. This is because

GARBLING 29

u v w = g(u, v)
0 0 g(0, 0)
.
0 p− 1 g(0, p− 1)
.
p− 1 0 g(p− 1, 0)
.
p− 1 p− 1 g(p− 1, p− 1)

(a) Truth Table of an arithmetic fan-in-2 gate with input and output wires ∈ Fp.
ku,α kv,β g̃α,β = Fku,α,kv,β (g) + kw,g(α,β)
ku,0 kv,0 g̃0,0 = Fku,0,kv,0 (g) + kw,g(0,0)
.
ku,0 kv,p−1 g̃0,p−1 = Fku,0,kv,p−1 (g) + kw,g(0,p−1)
.

ku,p−1 kv,0 g̃p−1,0 = Fku,p−1,kv,0 (g) + kw,g(p−1,0)
.

ku,p−1 kv,p−1 g̃p−1,p−1 = Fku,p−1,kv,p−1 (g) + kw,g(p−1,p−1)

(b) All possible combinations of the secret keys on the input wires, for real input
values α, and β, together with the corresponding garbled output presented in the
third column.

g̃α,β = Fku,α,kv,β (g) + (kw,g(α−λu,β−λv)+λw ||g(α− λu, β − λv) + λw)

g̃0,0 = Fku,0,kv,0 (g) + (kw,g(0−λu,0−λv)+λw ||g(0− λu, 0− λv) + λw)
. . .

g̃0,p−1 = Fku,0,kv,p−1 (g) + (kw,g(0−λu,p−1−λv)+λw ||g(0− λu, p− 1− λv) + λw)
. . .

g̃p−1,0 = Fku,p−1,kv,0 (g) + (kw,g(p−1−λu,0−λv)+λw ||g(p− 1− λu, 0− λv) + λw)
. . .

g̃p−1,p−1 = Fku,p−1,kv,p−1 (g) + (kw,g(p−1−λu,p−1−λv)+λw ||g(p− 1− λu, p− 1− λv) + λw)

(c) Permutation of the garbled output presented in Table 3.1b, so that it can be sent
to the evaluator without revealing information about the order of the ciphertexts.

Table 3.1: Arithmetic garbling representation via the Truth Tables’ transition.

the evaluator needs to learn which ciphertexts to decrypt for each gate, despite
the rows of the garbled table being permuted. The ciphertexts are then

g̃α,β = Fku,α,kv,β (g) +
(

kw,g(α−λu,β−λv)+λw

∥∥∥(g(α− λu, β − λv) + λw

)
,

where g(α − λu, β − λv) + λw is the external value representing the masked
output wire, as shown in Table 3.1c. This is a generalized representation of

30 CRYPTOGRAPHIC PRIMITIVES

Beaver et al.’s point-and-permute technique [5], which applies both to binary
and to arithmetic GC’s.

3.3.1 Half-Gates

The half-gates technique, introduced by Zahur et al. [100], is the first garbling
technique that allows AND gates to be garbled at the cost of two ciphertexts
(instead of the straightforward implementation incurring a communication cost
of four ciphertexts), while being compatible with the free-XOR technique. The
half-gates technique extends from the binary to the arithmetic garbling case,
where the garbling of a fan-in-2 multiplication gate with inputs in Fp requires
2p ciphertexts, instead of p2 ciphertexts that straightforward garbling would
require. The idea behind the half-gates is to exploit the asymmettry between
the information held by the garbler and the evaluator, in order to garble two
(asymmetric) gates, the addition of which is the desired multiplication result.

Informally, for a multiplication gate with input wires u and v, and output wire
w, where we denote again the signal value as e, the real value as v, and the
permutation element as λ, we aim to have computed at evaluation time the
external value:

ew = vw + λw = vuvv + λw,

and the corresponding keys. To this end, the first half-gate aims at computing
vu(vv + λv), and the second half-gate computes −λvvu.

More formally, to design a half-gate, we observe what can be obtained from
products of external values with keys of input wires, i.e., from eu · kv,ev , or
ev · ku,eu . This is useful, because at the evaluation phase, the evaluator can
compute the product of an external value eu with a key kv,ev to obtain a value
related to the product vu · vv, and then it can correct the errors incurred from
the masking values using garbled gates. Concretely, such a product gives us:

eukv,ev = (vu + λu)(kv,0 + (vv + λv))

= vukv,0 + λukv,0 + vuvv + λuvv + vuλv + λuλv

= vuvv + vukv,0 + vuλv︸ ︷︷ ︸
Dependent on vu

+ λuvv︸︷︷︸
Dependent on vv

+ λukv,0 + λuλv︸ ︷︷ ︸
Dependent on neither

Recall that our goal is to obtain the output key kw,ew = kw,0 + (λw + vuvv). In
this expression the challenging computation is the product vu ·vv. The half-gates
technique exploits the fact that at evaluation time the product eukv,ev is easy to
be computed by the evaluator, and at the same time it contains the challenging
term vu · vv we are after. The remaining garbling aims at correcting the errors

GARBLING 31

introduced by the computation of eukv,ev , which incurs a lower communication
cost than straightforward garbling of multiplication gates, because these errors
are functions in the value of only one of the two real wire values vu or vv
together with the masking values, which are predetermined. This means that
the ciphertexts containing the “corrections” can be generated independently
for each pair of inputs in F2

p, requiring only p+ p ciphertexts, instead of p · p
ciphertexts that would be required in the conventional garbling manner (i.e.,
for all possible cross-terms).

To obtain kw,ew = kw,0 + (λw + vuvv), for every γ ∈ Fp, the garbler generates
two ciphertexts: one encrypting

kw,g,0 + λw − ((γ − λu)(kv,0 + λv) + (λukv,0 + λuλv)) ,

and the other encrypting

kw,e,0 − (γ − λv)(λu) .

The output wire key is set to kw,0 := kw,g,0 + kw,e,0. The evaluator decrypts
the ciphertexts corresponding to γ = eu for the first half gate, and γ = ev
for the second. Since eu − λu = vu and ev − λv = vv, the correct key can be
obtained by summing the two resulting plaintexts and the value eukv,ev . In
the original two-party garbling, one gate input comes from the garbler and
the other from the evaluator, meaning that the evaluator is also involved in
the garbling of the half gates. This results in reduced communication, because
each party knows one of the wire masks. In the multiparty setting, described
in the subsequent section, no party knows the wire masks, which makes the
setting more challenging. Still, the half-gates technique in the multiparty setting,
reduces the communication cost, in terms of number of ciphertexts that need
to be sent from quadratic (p2) to linear (2 · p).

3.3.2 Multiparty Garbling

In multiparty garbling, which is due to Beaver et al. [5], all parties act as garbler
and evaluator. Using MPC, each party generates keys for a circuit, and the
masking values are randomly chosen and secret shared among the parties (i.e.,
no single party knows the masking values). This way, for each gate, each party
holds n ciphertexts, indexed by j:

g̃jα,β =
n∑
i=1

Fkiu,α,kiv,β
(g, j) +

(
kjw,0 + (g(α− λu, β − λv) + λw)

)
.

Each party Pi generates one set of keys, indexed by i. The external values
on the wires can be learnt by each party, by looking at the output plaintext

32 CRYPTOGRAPHIC PRIMITIVES

mi from its own circuit; then they set ew = (mi − kiw,0) and kiw,ew = mi. The
aforementioned construction is a generalization of garbling protocols over F2.
Notice, however, that for a Boolean circuit, the half-gate technique is no more
efficient than the straightforward approach, except for the two-party setting,
where one party is the garbler and the other the evaluator, rather than all being
both, as in the multiparty setting.

3.4 Ingredients for Actively Secure MPC

This section presents the three main ingredients that allow us to construct MPC
protocols, secure in the presence of an active adversary, namely commitment
schemes, Message Authentication Codes (MACs), and Zero Knowledge Proofs
(ZKP). A more elaborate discussion on the active security model itself, and the
involved adversary types is given in Chapter 4.

3.4.1 Commitment Schemes

A commitment scheme is a cryptographic primitive, allowing a party to commit
to a certain value, while keeping it secret from the other parties in the protocol.
The commitment scheme serves to ensure that once committed, the parties can
no longer alter their inputs, upon observing the inputs of the other protocol
participants. The concept of commitments was introduced by Brassard et
al. [18]. Cryptographic commitment schemes need to satisfy two properties:

1. Binding: intuitively this property ensures that a party cannot change a
value or statement after they have committed to it; that is the party cannot
produce a proof that they commited to a value or statement different from
the original one. More formally, revealing two commitments Commit(m),
Commit(m′), where m 6= m′, should yield two different values.

2. Hiding: the commitment should not reveal any information about the
corresponding value or statement. More formally, two commitments
Commit(m), Commit(m′) are indistinguishable to an adversary.

A commitment scheme is executed in two phases:

1. the commit phase, when the value or statement is chosen and specified;

2. the reveal phase, when the value is revealed and checked.

INGREDIENTS FOR ACTIVELY SECURE MPC 33

3.4.2 Message Authentication Code

A message authentication code (MAC) is a short piece of information, often
referred to as the MAC, which serves –as the name implies– to authenticate
a message. Authentication means that the MAC ensures that the message
has not been altered, and that it indeed comes from the sender who claims
to have sent it. MACs are a symmetric key primitive, and thus require the
communicating parties to have established a common secret key prior to the
actual communication, which makes them different from digital signatures. For
a detailed discussion on MACs, we refer the reader to the book of Goldreich [54].
The use of MACs in the context of actively secure MPC is further discussed in
Chapter 5.

3.4.3 Zero Knowledge Proofs

A zero-knowledge proof is a protocol between two parties, called the prover and
the verifier. In such protocols, the prover aims to convince the verifier that
they know a secret witness (e.g., secret key) for a public statement (e.g., public
key) without disclosing any information about the witness. The essence of
zero-knowledge lies in that at the end of running the protocol, the verifier learns
nothing beyond the truth of the statement. ZKP systems were first introduced
by Goldwasser et al. [57].

A ZKP system is expected to satisfy the following properties:

1. Completeness: The property of completeness ensures that if the statement
of the prover is true, a verifier will be convinced by the protocol, and
thereby will accept the proof. This is true under the assumption that
prover and verifier are following the protocol honestly.

2. Soundness: The property of soundness guarantees that if the statement of
the prover is false (i.e., the prover attempts to cheat), they cannot convince
an honest verifier except with negligible probability. This protects the
verifier from a malicious prover.

3. Zero-Knowledge: The property of Zero-Knowledge ensures that a verifier
learns nothing beyond the fact that the statement is true. This is usually
formalized by constructing a simulation algorithm that simulates the proof
without knowing the witness.

A Zero-Knowledge Proof-of-Knowledge (ZKPoK) system is a special case of
ZKP systems, where the verifier does not learn anything about the witness

34 CRYPTOGRAPHIC PRIMITIVES

associated with the prover’s statement, other than the fact that the prover
knows the witness.

Proof-of-Knowledge (PoK) protocols can be either interactive or non-interactive.
In an interactive PoK system, which is also are known as a Σ-protocol (Sigma
Protocol), the prover and verifier interact in several rounds. Such protocols need
to satisfy Completeness, Special-Soundness, and Honest-Verifier-Zero-Knowledge
(HVZK) that are defined as follows:

1. Special-Soundness: Special soundness guarantees that if the prover does
not know the witness, they cannot convince the verifier about the public
statement. In Σ-protocols this is formalized by showing that there exists
an efficient extraction algorithm, so-called extractor, whuch given two
acceptable tuples of the protocol, can extract the witness.

2. Honest-Verifier-Zero-Knowledge: The property of zero-knowledge ensures
that if the prover has generated the proof honestly, the protocol transcript
does not reveal any information about the witness to the verifier. In
the case of Σ-protocols, this property is formalized by constructing a
polynomial-time algorithm, so-called simulator, which given an honestly
generated random challenge by the verifier, it can generate simulated
proofs that are indistinguishable from the real ones. Due to the need
for an honestly generated challenge by the verifier, this notion is called
HVZK, and it is weaker than the standard ZK.

Chapter 4

Provable Security

This chapter details how we model the adversaries acting against our MPC
protocols, based on their different behaviors, and the assumptions on their
powers. Then, it explains how security proofs are constructed, and focuses
on the Universal Composability framework, which is the most commonly used
framework to prove MPC protocols secure, during the last decade.

4.1 Adversary Models

First, we classify potential adversaries based on their behaviors and goals: Do
they wish only to learn information about the private inputs that the protocol
handles, or are they willing to actively deviate from the protocol to sabotage
its execution? Then, we discuss how many parties an adversary can corrupt,
and when they can be corrupted. Before we proceed with proving security, it
is also important to establish the assumptions on the computational resources
available to the adversary.

4.1.1 Adversarial Behaviors

The most commonly assumed adversarial behaviors fall under one of the following
two categories: passive adversaries, and active adversaries. However, there have
been also other types of behaviors identified in the literature, lying somewhere in
between these two extremes, with the most notable one being covert adversaries.

35

36 PROVABLE SECURITY

• Passive adversaries, also known as semi-honest or honest-but-curious
adversaries are assumed to be able to corrupt parties in a way that allows
them to read the version of the protocol transcript of these corrupted
parties, but all protocol participants (even the corrupted ones) are assumed
to follow the protocol instructions correctly. Using the transcripts of the
corrupted parties, the passive adversary tries to learn as much information
as possible about the private protocol inputs, hence the name honest-
but-curious. Although this adversarial model allows us to build rigorous
security proofs, the assumption of following the protocol instructions
honestly is strong. To build practical protocols in terms of efficiency, this
was the standard adversarial model used in MPC in the previous decade.
Nowadays, this model is considered weak.

• Active adversaries, also known as malicious adversaries are the other
extreme. This type of adversary can corrupt parties in a way that allows
them to arbitratily deviate from the protocol instructions. Given the
weaker assumption of active corruptions, this adversarial model provides
stronger security guarantees. Clearly, the adversary is more realistic in
this model, and this is the reason why MPC protocols nowadays aim to
be proven maliciously secure.

• Covert adversaries are assumed to be able to act maliciously, but when
they do so there is a certain probability that they will get caught. This
is essentially an attempt to bridge the two exremes of passive and active
adversaries, so that MPC protocols can be tailored to the security-efficiency
tradeoff that each application requires. This setting aims at modeling a
realistic adversary, where being caught comes with a penalty, therefore
minimizing the incentive for the adversary to cheat the more the probability
of getting caught increases.

4.1.2 Corruption Thresholds

One can assume any number of corruptions possible, as long as it applies to
a strict subset of the protocol participants. We denote by n the total number
of protocol participants, and by t the bound on the maximum number of
corruptions allowed by the MPC protocol. Although we can have any number
of corruptions, as long as t ≤ n − 1, the most notable classes of corruption
thresholds are the following, ordered from the least to the most secure:

• Honest Supermajority refers to the case where t < n/3, which means that
the adversary can corrupt strictly fewer than one third of the protocol
participants.

ADVERSARY MODELS 37

• Honest Majority refers to the corruption threshold t < n/2, where as the
name implies, the adversary can corrupt strictly fewer than half of the
parties.

• Dishonest Majority is the complementary of the previous case, where
t ≥ n/2.

• Finally, the most stringent setting is called full-threshold, and it refers
to the case where the adversary is allowed to corrupt all but one of the
protocol participants, i.e., t = n− 1.

The special case of two-party computation is worth mentioning in this context, as
the full-threshold corruption, coincides with the dishonest majority corruption,
and essentially refers to the bound of a single corrupted party.

4.1.3 Timing of the Corruptions

Based on when an adversary is allowed to fix their set of corrupted parties, we
discern two types of adversaries:

• Static adversaries are assumed to decide on the set of corrupted parties,
and fix it, prior to the protocol execution. The sets of honest and corrupted
parties cannot be changed throughout the computation.

• Adaptive adversaries on the other hand are more powerful, having the
freedom to arbitrarily decide the particular parties they wish to corrupt,
and when to do so, throughout the whole protocol execution.

4.1.4 Computational Power of an Adversary

Adversaries are further classified based on the computational power we assume
they have access to, to attack our MPC protocols. The two main classes of
adversaries in this context are:

• Computationally-bounded adversaries, are assumed to be able to execute
only polynomially many (randomized) steps, and as such they are also
known as probabilistic polynomial-time (PPT) adversaries. This is an
attempt to realistically model the possible adversaries, as in practice an
adversary can only have access to limited computational power. In MPC
protocols and their security proofs we consider a so-called computational
security parameter, usually denoted by κ, to quantify the computational
power of such an adversary.

38 PROVABLE SECURITY

• Computationally-unbounded adversaries, as the name implies, are assumed
to have limitless computational resources. Although this adversary type is
too strong to exist in practice, this assumption serves for proving protocols
and cryptographic primitives secure. Concretely, protocols and primitives
proven secure under this assumption are shown to be unconditionally
secure, or information theoretically secure, and they enjoy the property of
perfect secrecy.

4.2 Security Proofs

Commonly, proving security of a cryptosystem is based on a reduction of
its security to a hardness assumption. This means that we show that a
cryptosystem is secure, if the hardness assumption holds. Relying on well
established hardness assumptions, instead of attempting to prove each individual
primitive or cryptosystem secure, adds to the credibility of the proofs, as the
hardness assumptions withstand years of cryptanalysis. In this section we review
the two main approaches to proving security: game-based, and simulation-based
proofs, focusing on the latter, which is the most common technique used to
prove the security of MPC protocols.

4.2.1 Game-Based Security Proofs

Game-based security proofs are designed in the form of a game, where an
adversary plays against a challenger. The goal of the adversary in this game
is the condition we are trying to prove that does not hold (i.e., breaking the
cryptosystem). The challenger provides the adversary with the view of the game,
based on the information that the cryptosystem would allow external parties
to observe. The proof in the end shows that the probability of an adversary
winning the game is negligible with respect to a predefined security parameter.

4.2.2 Simulation-Based Security Proofs

In the simulation-based security paradigm, we distinguish between two worlds:
the real and the ideal world. In the real world, the protocol is executed
interactively among the participants, while the adversary can observe all public
values exchanged, and all private values that corrupted parties input. In the
active security model, the adversary can also force the corrupted parties in
the real world to input whatever the adversary wishes. In the ideal world, the
protocol participants interact only with a trusted party instead of exchanging

SECURITY PROOFS 39

values with each other. Concretely, they query the trusted party, which
is designed to provide them with the correct answers or results, based on
their predefined functionality. To write a simulation-based proof, we need to
construct a simulator, showing that the protocol execution in the real world is
indistinguishable from the protocol execution in the ideal world.

This proof technique is successful, if we can show that the view of the adversary
in the real world is indistinguishable from their view in the ideal world, where
a trusted party is assumed. Then, the security of the protocol at hand is
guaranteed under the given assumptions. This is because indistinguishability,
in this context, shows that the adversary cannot derive any information from
observing the corrupted parties’ private values, or the public values of the
protocol transcript. In practice, we aim at constructing a simulator in the ideal
world, interacting only with the trusted party. For the messages that differ
in the ideal and real world, to win the game, the adversary should be able to
distinguish whether they are interacting with the simulator or with the real
world. The reduction here aims at showing that distinguishing between these
two views, would break one of the hardness assumptions we have made.

4.2.3 Modular Composition

The description of simulation-based proofs, given in Section 4.2.2 assumes that
the cryptographic primitive, or MPC protocol to be proven secure is executed
in isolation. Canetti [21] proved that the same security guarantees hold, even
if the MPC protocol is executed as part of a larger computation. The so-
called modular composition theorem allows us therefore to prove secure smaller
subprotocols that can be invoked by other, possibly secure, protocols, while
the security of the whole system is still guaranteed. However, this sequential
composition of protocols still assumes that the protocols are executed in the
stand-alone setting, meaning that no other messages are being sent, and no
other secure protocols are being executed at the same time.

4.2.4 Universal Composability

Although modular sequential composition is a very strong tool to build secure
systems composed by different subprotocols, excluding concurrent protocol
execution is a critical limitation. In practice, we wish to be able to prove
security even when protocols are executed concurrently and other messages
are also exchanged between the protocol participants at the same time. In
fact, it is desirable to parallelize as much of the computation as possible for
efficiency reasons, without negatively affecting security. To this end, Canetti [22]

40 PROVABLE SECURITY

introduced the notion of universal composability (UC) and showed that protocols
proven secure in this framework, remain secure even when executed in parallel
with other (secure) protocols, or other instances of themselves.

To serve this more stringent UC framework, the simulation-based paradigm
of the stand-alone setting is augmented with an additional entity called the
environment. In the universal composability setting, the ideal vs. real world
views should remain indistinguishable to the adversary, but they should also be
indistinguishable to the environment. The environment is yet another observer,
like the adversary, but its powers are enhanced. The environment is allowed
to interact with the adversary, and force them to take action. In addition,
the environment may force the inputs of the honest parties, and observe their
outputs. However, the environment is assumed to not have access to any
intermediate results or communications between the honest parties. Essentially,
the environment tries to capture anything external to the protocol during a real
execution, to serve the UC framework in that security is preserved, regardless
of other corrupted entities that may be observing the parallel executions.

Chapter 5

MPC in the Preprocessing
Model

In this chapter we discuss the construction of MPC protocols in the preprocessing
model. The preprocessing model is the most common way to construct
MPC protocols in the last decade. We focus on this paradigm, because the
contributions of this thesis are based on the preprocessing model as well. The
reason why this paradigm has become so popular is because it increases the
efficiency of MPC protocols. In the preprocessing model the MPC computation
is divided into two parts: the offline or preprocessing phase, and the online
phase. The offline phase is input independent, and entails the evaluation of
the desired function on random inputs, which can be efficiently derandomized
in the online phase. MPC in the preprocessing model aims at increasing the
overall efficiency of MPC protocols, but the focus lies on the online phase. The
goal here is to satisfy a practical need for fast evaluation of functions once the
parties’ inputs are known, at the cost of a relatively slower offline phase, which
can take place anytime prior to the actual online execution.

In the rest of this chapter we present functionalities and protocols in the
preprocessing model, providing security against an active, static adversary in
the full-threshold setting (i.e., who can corrupt up to n−1 out of the n protocol
participants). We assume an additive secret sharing scheme implementing the
MPC functionalities, and denote the authenticated sharing of a value x as [[x]].
Each party Pi then holds a share xi ∈ F, such that x =

∑n
i=1 xi.

42

THE ARITHMETIC BLACK BOX MODEL 43

5.1 The Arithmetic Black Box Model

As discussed in Chapter 4, to prove a MPC protocol secure, we first need to
model what it is expected to do, using a so-called functionality. The functionality
models what the trusted party of the ideal world should provide the protocol
participants with, based on the requested commands. Here we model the most
common functionality for arithmetic MPC over any field F, which is known
as the Arithmetic Black Box. This functionality is denoted as FABB and it is
presented in Figure 5.1. In the functionality, we denote by S the ideal world
adversary.

Functionality FABB

Initialize: On input (Init,F) from all parties store the field F and initialize a new
database, DB := ∅.

Input: On input (Input, i, id1, . . . , id`, x1, . . . x`, sid) from Pi and
(Input, i, id1, . . . id`,⊥, sid) from all other parties, where xi ∈ F and idi

are distinct new identifiers, append the ` entries (idi, xi) to the database DB.
Add: On input (Add, idx, idy , idz , sid) from all parties, where idx and idy are identifiers

in the database and idz is a new identifier, retrieve (idx, x) and (idy , y) from
memory and append the entry (idz , x+ y) to the database DB.

Multiply: On input (Multiply, idx, idy , idz , sid) from all parties, where idx and idy

are identifiers in the database and idz is a new identifier, retrieve (idx, x) and
(idy , y) from memory, compute z := x · y, and append (idz , z) to DB.

Output: On input (Output, idx, sid) from all parties, retrieve the entry (idx, x) from
DB, send x to S, and await a message OK or Abort; if the message is OK then
send x to all honest parties, and otherwise send the message Abort to all honest
parties and halt.

Figure 5.1: Arithmetic Black Box Functionality.

5.2 Active Security

For actively secure MPC protocols, authentication is required. Authentication
provides us with a guarantee that the parties cannot change their inputs,
or intermediate values needed for the computation, during the protocol
execution. To this end information theoretic MACs are being generated (see
also Section 3.4.2 for an explanation on MACs). Then, we need to check these
MACs to confirm that parties did not cheat during the protocol execution by
altering their inputs or providing inconsistent intermediate values during the

44 MPC IN THE PREPROCESSING MODEL

computation. To maintain the linearity of the additive secret sharing scheme,
so as to be able to evaluate linear functions locally on the shares, without
any communication between the parties, the MACs must also be linear. The
literature on preprocessing-based MPC offers two ways of deploying MACs for
active security: using pairwise MACs, where each share is individually MACed,
or using global MACs, where the actual input values are MACed, and the
computed MACs are afterwards also shared.

5.2.1 Pairwise MACs

Following the paradigm of the well-known BeDOZa protocol [9], pairwise MACs
can be generated and verified as follows. The MAC key K is a random pair
K = (α, β) ∈ F2. The MAC on a value x is then generated as: MACK(x) =
αx+ β ∈ F. To apply now this MACing scheme we have one party Pi holding
the share x, and the MAC MACK(x), while another party Pj holds K. This
way when Pi reveals their share to Pj they can no longer lie about it, as the
MAC verification would reveal such a cheating attempt. To preserve linearity
of the MACs we fix the α component of the key, so that we can add the MACs
and get as the sum a valid MAC on the sum of the underlying shares.

When pairwise MACs are used, a sharing of the secret value x is represented as:

[[x]] = {xi, {Ki
xj ,MACKj

xi
(xi)}nj=1}ni=1.

Thus, for every share xi, all parties Pj 6= Pi hold a MAC key Ki
xj , while party

Pi holds their own share xi, and a pairwise MAC MACKj
xi

(xi) with each of the
other parties Pj . Although effective, pairwise MACs are inefficient, since for
every input x we need to generate, exchange, store, and verify O(n2) MACs.

5.2.2 Global MACs

Global MACs, first introduced in the original SPDZ protocol [35], overcome
the efficiency limitations of pairwise MACs in the following way: instead of
many two-component keys K = (α, β) ∈ F2 (one for each pair of parties), they
have one single MAC key α ∈ F, which is secret shared among the protocol
participants. Moreover, instead of MACing every share individually, the actual
secret value x is being MACed. The parties also hold a share of the MAC key
α ∈ F, but this is global (i.e., a single MAC key for the whole computation,
regardless of the number of inputs, or circuit gates). This results in a sharing
of the following form:

[[x]] = {xi,MACα(x)i}ni=1,

ONLINE PHASE 45

where MACα(x)i is the ith additive share of the MAC on x.

Global MACs, as it can be seen from the sharing representation, immediately
reduce the communication, computation, and storage cost compared to the
pair-wise MACs from quadratic to linear in the number of parties. To ensure
correctness of the MACs during the protocol execution, the MAC key α should
remain secret for as long as computations are being performed and parties may
change their inputs. SPDZ [35] addresses this challenge by opening the MAC
key only during the Output command, when no more computations are going to
take place in the protocol, and therefore also restricting the Output command
to be invoked only once. The actual checking of the MACs takes place also via
the Output command.

5.3 Online Phase

The online phase of MPC protocols is constructed in the FPrep hybrid model,
meaning that for the online phase execution we need to invoke the FPrep
functionality, which models the preprocessing phase. We elaborate on the
preprocessing phase in Section 5.4. The protocol for the online phase essentially
realizes the FABB functionality. Here we focus on the so-called SPDZ family of
protocols [9, 35, 81, 48, 66, 67], and detail the online MPC protocol, based on
global MACs, in Figure 5.2. Following standard notation, we denote the MAC
on a value x as γ(x), and the ith share of that MAC as γi(x). Note that in this
protocol the MAC-checking procedure is deferred to the end of the protocol;
thus, any intermediate values that get reconstructed from the parties’ shares
are unauthenticated.

Protocol ΠOnline

Initialize: The parties invoke FPrep.Init(F), receiving the shared secret key [[α]], where
each party Pi receives a share αi s.t. α =

∑n

i=1 αi; a number of multiplication
triples ([[a]], [[b]], [[c]]), and mask values (r, [[r]]).

Input: To share an input x, party Pi takes an available mask value (r, [[r]]), of which
only Pi knows the secret value r and does the following:
1. Broadcast ε← x− r.
2. The parties compute xi ← ri + ε.
3. The parties compute the MAC shares γi(x)← αi · ε+ γi(r).
4. The parties store [[x]] as {xi, γi(x)}n

i=1

Add: On input ([[x]], [[y]]), locally compute [[x+ y]]← [[x]] + [[y]].
Multiply: On input ([[x]], [[y]]) the parties do the following:

46 MPC IN THE PREPROCESSING MODEL

1. Take one authenticated multiplication triple ([[a]], [[b]], [[c]]) from the
preprocessing, s.t. c = a · b, compute [[ε]] ← [[x]] − [[a]], [[ρ]] ← [[y]] − [[b]],
and open these shares to get ε, ρ, respectively.

2. Set [[z]]← [[c]]+ε·[[b]]+ρ·[[a]]+ε·ρ, as the resulting sharing of the multiplication.
Output: To output a secret [[x]] all previously opened values are being checked:

1. The parties compute a random linear combination of all opened values in the
protocol.

2. The parties commit on the MACs of their shares of the linear combination.
3. Then, the sharing of the MAC key [[α]] is opened, and the linear combination

is checked over the MACs, using the opened MAC key.
4. If the previous check was successful, all parties broadcast their share xi, check

the open value x as previously, and if this last check fails they Abort; otherwise
they output x.

Figure 5.2: Protocol for the online MPC phase.

5.4 Preprocessing Phase

The goal of the preprocessing phase is to increase the efficiency of the online
phase, by producing input independent material that can be used in the online
phase to randomize the circuit. Concretely, two of the main online operations
supported can benefit from this approach: the Input, and the Multiply operations.
For the Input operation the preprocessing phase provides the so-called mask
values. A mask value is a random value r ∈ F additively secret shared among
all parties, such that all parties hold a share ri, and the party Pj who wishes to
share a private input also holds the secret value r. For the Multiply operation the
preprocessing provides us with the so-called multiplication triples, a technique
due to Beaver [3]. A multiplication triple is a set of values (a, b, c) ∈ F3 additively
secret shared among the protocol participants, such that c = a · b. These can
be used as shown in the online phase to randomize the real protocol inputs
of a multiplication gate, so that privacy is maintained when opening them to
compute the sharing of the product. The preprocessing functionality FPrep is
listed in Figure 5.3.

PREPROCESSING PHASE 47

Functionality FPrep

Initialize: On input (Init,F) from all parties store the field F, randomly sample
αi ∈ F, ∀i = 1, . . . , n, compute the global MAC key α :=

∑n

i=1 αi and initialize
a new database, DB := ∅.

Mask: On input (Mask, j, idr, sid) from all parties, where idr is a new identifier in
the database, call Sample(idr), append (idr, r) to DB, send r to Pj , and [[r]] to all
parties Pi, i = 1, . . . , n.

Triple: On input (Triple, ida, idb, idc, sid) from all parties, where ida, idb, and idc are
new identifiers in the database, call Sample(ida), Sample(idb); compute c := a · b,
and sample uniformly authenticated shares [[c]] = (ci, γi(c)), s.t. c =

∑n

i=1 ci

and γ(c) =
∑n

i=1 γi(c); append (ida, a), (idb, b), (idc, c) to DB; and send the triple
([[a]], [[b]], [[c]]) to all parties Pi, i = 1, . . . , n.

Internal Procedure:
Sample: When (Sample, idx) is invoked, randomly sample xi ∈ F,∀i = 1, . . . , n,

compute x :=
∑n

i=1 xi, compute γ(x) := α · x and set each MAC share γi(x)
uniformly s.t.

∑n

i=1 γi(x) = γ(x). Then store the authenticated shares [[x]] =
(xi, γi(x)).

Figure 5.3: Preprocessing Functionality.

To create the multiplication triples in the preprocessing, two approaches have
been taken: based on OT [81, 48, 66], and based on SHE [9, 35, 67].

5.4.1 OT-based Preprocessing

OT-based preprocessing is based on Gilboa’s multiplication protocol [52], and
the primitive known as OPE (Oblivious Polynomial Evaluation), discussed
in Section 3.2.5. OT-based preprocessing requires pairwise communication
channels between the parties. First each pair of parties needs to engage in a
2PC multiplication protocol, which outputs an encrypted sharing of the product
of their inputs. The underlying encryption scheme used in the OT protocol must
be linearly homomorphic to allow the evaluation in a single communication
round. This extends from the two-party to the multiparty setting, by having each
ordered pair of parties invoking the abovementioned 2PC multiplication protocol.
Given the pairwise communication channels requirement, this approach may
be more suitable for two-party computation, but considering MPC, it does not
scale well in the number of parties.

48 MPC IN THE PREPROCESSING MODEL

5.4.2 SHE-based Preprocessing

SHE-based preprocessing has more stringent requirements for the encryption
scheme. Concretely, a linear homomorphic encryption scheme does not suffice,
but it can be implemented with a depth-1 SHE scheme (i.e., the SHE scheme
must be parametrized to correctly allow the computation of one secret-secret
multiplication). Using the depth-1 SHE scheme, we can now compute the
multiplication on the encrypted values, and then perform distributed decryption,
so that each party obtains a share of the desired product. This is done without
deploying OT, which eliminates the need for pairwise communication channels,
and allows us to use a broadcast channel among the parties. Hence, SHE-based
preprocessing is more efficient for MPC applications, especially as the number
of parties n grows.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the last decade MPC started turning from a theoretical concept into
practical solutions. Nowadays MPC protocols have expanded from mere
theoretical constructs, or proof-of-concept implementations to actual company
services deployed on a wide range of privacy-preserving applications [32, 95, 89].
Although we can argue that the field is reaching maturity, there is room for
improvement both on the technical, or scientific side, as well as on the societal
acceptance of the technologies in question.

As discussed in Chapter 1, there are two ways one can approach the research
challenges and devise solutions in MPC: either look at a particular problem,
and tailor the MPC solution fully to the setting, so as to get optimal results
for the scenario at hand, or aim at improving a particular MPC primitive,
which is of more general interest and can be applied on different application
scenarios. Either way, the results are beneficial to the research community and
the general development of the field. Interestingly, one may begin a research
project focusing on a particular application scenario, and by digging deeper
into the details of addressing the problem one may still invent a primitive of
more general interest. Vice versa, one may attempt to invent a new primitive,
and instead end up with a construction that only serves particular application
scenarios.

We now take a closer look at the conclusions drawn by the concrete contributions
of this thesis. Our work on privacy-preserving genome-wide association studies,
showed that secure computation, and in particular both HE and MPC are

50

CONCLUSION 51

mature enough to be deployed on large-scale applications, with realistic, stringent
security requirements, and at the same time realistic scalability. The comparison
between the two approaches confirmed that MPC outperforms HE, despite
certain optimizations that we adopted for the secure HE comparisons –a crucial
component of the protocol in terms of computational cost. However, while
total execution time of the protocol is of utmost importance, we should not
underestimate the significance of the commmunication cost: while HE does
not require any communication during the protocol execution, MPC requires
the parties to synchronously and interactively execute the protocol. Moreover,
the security guarantees that the two approaches may offer are different: while
HE assumes that the computation party is semi-honest, MPC can offer active
security guarantees, which we opted for in this particular application.

When considering interdisciplinary research, where secure computation is only
one of the components that affect the effectiveness and efficiency of a solution,
leveraging the advances of the complementary research disciplines can improve
secure computation solutions. Our image classification protocol, although simple,
outperformed the state-of-the-art privacy-preserving classification techniques
both in terms of efficiency, and in terms of classification accuracy. While the
related work focused on producing secure classification algorithms equivalent
to the ones developed by the machine learning community, we approached the
problem differently by looking at how can we achieve the same accuracy results,
efficiently in the privacy-preserving domain. In this attempt we discovered that
we could leverage the techniques of transfer learning, to prepare our private
data in the plaintext domain, without compromising privacy. The related work,
on the other hand, focused on closely resembling the neural network techniques
used in the plaintext domain, but translated into secure protocols. This way
they ended up implementing complex, and therefore also less efficient functions
in the privacy-preserving domain.

Many works in secure computation have shown that particular approaches,
especially related to data representations execute some tasks efficiently, while
they perform poorly at other tasks. Specifically, Boolean circuits are more
suitable for non-linear operations, while arithmetic circuits are significantly more
efficient than Boolean circuits when it comes to linear operations. Given that
most modern applications require the execution of a combination of linear and
non-linear tasks, finding ways to bridge these two representations is imperative.
Our work on multiparty arithmetic garbling indeed makes a contribution towards
this end, by proposing a design for a garbled selector gate –more efficient than
the one proposed in prior work– which allows this interfacing between arithmetic
and Boolean gates.

52 CONCLUSION AND FUTURE WORK

6.2 Future Work

In this section we discuss possible future work that would be a useful follow up
for our research.

Switching protocols. Although switching protocols, and frameworks to
combine different secure computation methods already exist, this particular
subfield is young and it requires further exploration. A few years ago, one of
the first encryption switching protocols appeared [29], consisting of a MPC
protocol that facilitates switching between an additively homomorphic and
a multiplicatively homomorphic encryption scheme. In this thesis, we have
concluded that switching between arithmetic and Boolean representations is
needed for modern secure applications. Although we proposed a particular
garbled gate, namely a selector gate, serving as an interface between Boolean
and arithmetic representations, a seamless and efficient conversion between
the two representations remains an interesting open problem. We have also
discussed the already existing seamless combination of SHE with MPC, where
SHE serves as the main tool to create preprocessing material for MPC protocols.
Moreover, there exist secure computation frameworks where secret-sharing based
and garbling-based sub-protocols can be combined [39]. Hence, the combination
possibilities between different representations, or different computation methods
are numerous. It remains interesting to study how one computation, or
representation method can benefit from the other, and how they can be combined
to create efficient secure computation protocols.

Secure computation for non-linear functions. While in certain application
scenarios computing a simple statistic, represented by a low-degree polynomial,
may be sufficient (e.g., the χ2 statistic in the genomics application we considered
in this thesis), the need to securely evalutate more complex functions increases.
The readiness of secure computation to be deployed for computations on
sensitive data needed by the scientific community (e.g., machine learning,
epidemiology, statistics, genomics, etc.), highly depends on whether we can
efficiently compute non-linear functions in the privacy-preserving domain. It is
therefore an interesting open problem to improve the current MPC protocols in
terms of their ability to deal with non-linear functions efficiently. For instance,
one can consider as a stepping stone a heavier preprocessing phase, that can be
executed well ahead of time, to facilitate an efficient online computation (e.g.,
preprocessed look-up tables have been already proposed in the literature [34, 64]).

Preprocessing material for MPC protocols with flexible number of
communication rounds. Currently, we can either opt for MPC protocols
with constant number of rounds, following the garbling paradigm, or we can opt
for protocols, where the number of rounds is linear in the depth of the circuit to

FUTURE WORK 53

be computed, following the secret-sharing paradigm. This leads to the general
rule of selecting one of the two options based on the network over which our
MPC protocols will be executed: when we have a high-latency network (e.g.,
a Wide Area Network - WAN) then GC may be preferred; when we have a
low-latency network (e.g., a Local Area Network - LAN) then secret-sharing is
preferred. One reason why we are faced with this binary decision is that the
preprocessing phase of secret-sharing based MPC creates material for treating
at most quadratic functions in the online phase. It is therefore inevitable for the
number of communication rounds to depend linearly in the depth of the circuit
to be computed. Hence, an interesting research direction is to explore how we
can devise flexible MPC protocols anywhere between the two extremes of the
spectrum. Creating preprocessing material for higher degree functions, will allow
one to decide to trade additional preprocessing time for a more efficient online
phase that completes its execution in the desired number of communication
rounds.

MPC for machine learning applications. Privacy-preserving machine
learning (or artificial intelligence - AI) is currently on the rise, as the societal need
for them is becoming more and more urgent. For example, we are surrounded
by smart applications and IoT devices, all of which make decisions based on
some kind of machine learning algorithm. Given the vast data collection that
these applications require for their training phase, but also the potentially
sensitive conclusions that they draw during classification, privacy is an essential
consideration. Secure machine learning offers a wide range of applications, as
the security requirements differ from setting to setting, and there are different
protocols to be securely implemented: protocols for the training phase, or
protocols for the classification phase. As we concluded also in this thesis,
efficient and accurate solutions can be constructed by leveraging the advances in
both the MPC field and the machine learning field, and wisely combining them
together. Exploring this area of privacy-preserving AI is indeed an interesting
future direction.

It is the most interesting to consider what we can still do to improve and
advance the field of secure computation. However, we should also recognize the
limitations of our research area, and we should make sure to clearly communicate
those to any parties interested in this field. The two most profound limitations
of MPC, which are also inherent are the following:

1. MPC protects the private inputs of the involved parties, and guarantees
that nothing can be learned by observing the execution of the MPC
protocol, but as the output gets revealed (publicly, or to a subset of the
MPC participants), whatever can be inferred from this output cannot be
protected. In fact, the MPC parties may infer more information than

54 CONCLUSION AND FUTURE WORK

external observers, as they can combine their knowledge of the output,
with their knowledge of their own private inputs.

2. MPC allows the protocol participants to input their private values. Even
when considering actively secure MPC protocols, which check whether a
party tries to cheat, MPC does not provide any mechanism to force the
participants to input their “true” private values. MPC can only check
whether these inputs are being consistently used throughout the protocol,
but it cannot enforce honesty as far as the parties’ inputs are concerned.

Bibliography

[1] Albrecht, M., Bai, S., and Ducas, L. A Subfield Lattice Attack on
Overstretched NTRU Assumptions. In Annual International Cryptology
Conference (2016), Springer, pp. 153–178.

[2] Ball, M., Malkin, T., and Rosulek, M. Garbling Gadgets for
Boolean and Arithmetic Circuits. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016), pp. 565–
577.

[3] Beaver, D. Efficient Multiparty Protocols Using Circuit Randomization.
In Annual International Cryptology Conference (1991), Springer, pp. 420–
432.

[4] Beaver, D. Correlated Pseudorandomness and the Complexity of
Private Computations. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing (1996), pp. 479–488.

[5] Beaver, D., Micali, S., and Rogaway, P. The Round Complexity
of Secure Protocols. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing (1990), pp. 503–513.

[6] Beimel, A. Secret-Sharing Schemes: A Survey. In International
Conference on Coding and Cryptology (2011), Springer, pp. 11–46.

[7] Ben-Efraim, A. On Multiparty Garbling of Arithmetic Circuits. In
International Conference on the Theory and Application of Cryptology
and Information Security (2018), Springer, pp. 3–33.

[8] Benaloh, J. Dense Probabilistic Encryption. In Proceedings of the
workshop on selected areas of cryptography (1994), pp. 120–128.

[9] Bendlin, R., Damgård, I., Orlandi, C., and Zakarias, S. Semi-
Homomorphic Encryption and Multiparty Computation. In Annual

55

56 BIBLIOGRAPHY

International Conference on the Theory and Applications of Cryptographic
Techniques (2011), Springer, pp. 169–188.

[10] Blakley, G. R. Safeguarding Cryptographic Keys. In 1979 International
Workshop on Managing Requirements Knowledge (MARK) (1979), IEEE,
pp. 313–318.

[11] Bogetoft, P., Christensen, D. L., Damgård, I., Geisler, M.,
Jakobsen, T., Krøigaard, M., Nielsen, J. D., Nielsen, J. B.,
Nielsen, K., Pagter, J., Schwartzbach, M., and Toft, T. Secure
Multiparty Computation Goes Live. In International Conference on
Financial Cryptography and Data Security (2009), Springer, pp. 325–343.

[12] Boneh, D., Goh, E.-J., and Nissim, K. Evaluating 2-DNF Formulas
on Ciphertexts. In Theory of cryptography conference (2005), Springer,
pp. 325–341.

[13] Bonte, C., Makri, E., Ardeshirdavani, A., Simm, J., Moreau, Y.,
and Vercauteren, F. Towards Practical Privacy-Preserving Genome-
Wide Association Study. BMC bioinformatics 19, 1 (2018), 1–12.

[14] Brakerski, Z. Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP. In Annual Cryptology Conference
(2012), Springer, pp. 868–886.

[15] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (Leveled)
Fully Homomorphic Encryption without Bootstrapping. ACM
Transactions on Computation Theory (TOCT) 6, 3 (2014), 1–36.

[16] Brakerski, Z., and Vaikuntanathan, V. Fully Homomorphic
Encryption from Ring-LWE and Security for Key Dependent Messages.
In Annual cryptology conference (2011), Springer, pp. 505–524.

[17] Brakerski, Z., and Vaikuntanathan, V. Efficient Fully Homomorphic
Encryption from (Standard) LWE. SIAM Journal on Computing 43, 2
(2014), 831–871.

[18] Brassard, G., Chaum, D., and Crépeau, C. Minimum Disclosure
Proofs of Knowledge. Journal of computer and system sciences 37, 2
(1988), 156–189.

[19] Burgess, M. How to Check if your LinkedIn Account was
Hacked. https://www.wired.co.uk/article/linkedin-data-breach-
find-out-included. Accessed: 02/10/2020.

https://www.wired.co.uk/article/linkedin-data-breach-find-out-included
https://www.wired.co.uk/article/linkedin-data-breach-find-out-included

BIBLIOGRAPHY 57

[20] Campbell, M., Egerstedt, M., How, J. P., and Murray, R. M.
Autonomous Driving in Urban Environments: Approaches, Lessons
and Challenges. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 368, 1928 (2010), 4649–
4672.

[21] Canetti, R. Security and Composition of Multiparty Cryptographic
Protocols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[22] Canetti, R. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science (2001), IEEE, pp. 136–145.

[23] Chaum, D., Crépeau, C., and Damgard, I. Multiparty
Unconditionally Secure Protocols. In Proceedings of the twentieth annual
ACM symposium on Theory of computing (1988), pp. 11–19.

[24] Chen, M., Cohen, R., Doerner, J., Kondi, Y., Lee, E., Rosefield,
S., and Shelat, A. Multiparty Generation of an RSA Modulus. In
Annual International Cryptology Conference (2020), Springer, pp. 64–93.

[25] Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomorphic
Encryption for Arithmetic of Approximate Numbers. In International
Conference on the Theory and Application of Cryptology and Information
Security (2017), Springer, pp. 409–437.

[26] Chillotti, I., Gama, N., Georgieva, M., and Izabachene, M.
Faster Fully Homomorphic Encryption: Bootstrapping in Less than 0.1
Seconds. In international conference on the theory and application of
cryptology and information security (2016), Springer, pp. 3–33.

[27] Chor, B., Goldwasser, S., Micali, S., and Awerbuch, B. Verifiable
Secret Sharing and Achieving Simultaneity in the Presence of Faults. In
26th Annual Symposium on Foundations of Computer Science (sfcs 1985)
(1985), IEEE, pp. 383–395.

[28] Cook, D. J., Augusto, J. C., and Jakkula, V. R. Ambient
Intelligence: Technologies, Applications, and Opportunities. Pervasive
and Mobile Computing 5, 4 (2009), 277–298.

[29] Couteau, G., Peters, T., and Pointcheval, D. Encryption
Switching Protocols. In Annual International Cryptology Conference
(2016), Springer, pp. 308–338.

[30] Cramer, R., Damgård, I., and Maurer, U. General Secure
Multi-Party Computation from any Linear Secret-Sharing Scheme. In

58 BIBLIOGRAPHY

International Conference on the Theory and Applications of Cryptographic
Techniques (2000), Springer, pp. 316–334.

[31] Cramer, R., Gennaro, R., and Schoenmakers, B. A Secure
and Optimally Efficient Multi-Authority Election Scheme. European
transactions on Telecommunications 8, 5 (1997), 481–490.

[32] Cybernetica. https://cyber.ee/, 2020.

[33] Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P.,
and Smart, N. P. Practical Covertly Secure MPC for Dishonest Majority–
or: Breaking the SPDZ Limits. In European Symposium on Research in
Computer Security (2013), Springer, pp. 1–18.

[34] Damgård, I., Nielsen, J. B., Nielsen, M., and Ranellucci, S. The
TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling
Revisited. In Annual International Cryptology Conference (2017), Springer,
pp. 167–187.

[35] Damgård, I., Pastro, V., Smart, N., and Zakarias, S. Multiparty
Computation from Somewhat Homomorphic Encryption. In Annual
Cryptology Conference (2012), Springer, pp. 643–662.

[36] Data61. MP-SPDZ: A Versatile Framework for Multi-Party Computation.
https://github.com/data61/MP-SPDZ, 2019.

[37] de Hoogh, S. J. A. Design of Large Scale Applications of Secure
Multiparty Computation: Secure Linear Programming. PhD thesis,
Technische Universiteit Eindhoven, 2012.

[38] Delpech de Saint Guilhem, C., Makri, E., Rotaru, D., and
Tanguy, T. The return of Eratosthenes: Secure Generation of RSA
Moduli using Distributed Sieving. Cryptology ePrint Archive, Report
2021/565, 2021.

[39] Demmler, D., Schneider, T., and Zohner, M. ABY-A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation. In 22nd Annual
Network and Distributed System Security Symposium, NDSS (2015).

[40] Dinur, I., and Nissim, K. Revealing Information while Preserving
Privacy. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (2003), pp. 202–
210.

[41] Duhigg, C. How Companies Learn Your Secrets. https://
www.nytimes.com/2012/02/19/magazine/shopping-habits.html. Ac-
cessed: 02/10/2020.

https://cyber.ee/
https://github.com/data61/MP-SPDZ
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

BIBLIOGRAPHY 59

[42] Dwork, C. Differential Privacy: A Survey of Results. In International
conference on theory and applications of models of computation (2008),
Springer, pp. 1–19.

[43] Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating
Noise to Sensitivity in Private Data Analysis. In Theory of cryptography
conference (2006), Springer, pp. 265–284.

[44] ElGamal, T. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE transactions on information theory
31, 4 (1985), 469–472.

[45] Escudero, D., Ghosh, S., Keller, M., Rachuri, R., and Scholl,
P. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits.
In International Conference on the Theory and Application of Cryptology
and Information Security (2020), Springer, pp. 3–33.

[46] Even, S., Goldreich, O., and Lempel, A. A Randomized Protocol for
Signing Contracts. Communications of the ACM 28, 6 (1985), 637–647.

[47] Fan, J., and Vercauteren, F. Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

[48] Frederiksen, T. K., Keller, M., Orsini, E., and Scholl, P. A
Unified Approach to MPC with Preprocessing Using OT. In International
Conference on the Theory and Application of Cryptology and Information
Security (2015), Springer, pp. 711–735.

[49] Gennaro, R., Rabin, M. O., and Rabin, T. Simplified VSS and
Fast-Track Multiparty Computations with Applications to Threshold
Cryptography. In Proceedings of the seventeenth annual ACM symposium
on Principles of distributed computing (1998), pp. 101–111.

[50] Gentry, C. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of
computing (2009), pp. 169–178.

[51] Gentry, C., and Halevi, S. Implementing Gentry’s Fully-
Homomorphic Encryption Scheme. In Annual international conference on
the theory and applications of cryptographic techniques (2011), Springer,
pp. 129–148.

[52] Gilboa, N. Two Party RSA Key Generation. In Annual International
Cryptology Conference (1999), Springer, pp. 116–129.

[53] Goldreich, O. Secure Multi-Party Computation. PhD thesis, Weizmann
Institute of Science, Rehovot, Israel, 1998.

60 BIBLIOGRAPHY

[54] Goldreich, O. Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge university press, 2009.

[55] Goldreich, O., Micali, S., and Wigderson, A. How to Play Any
Mental Game, or a Completeness Theorem for Protocols with Honest
Majority. Proc. the Nineteenth Annual ACM Symposium on the Theory
of Computing (1987), 218–229.

[56] Goldwasser, S., and Micali, S. Probabilistic Encryption & How to
Play Mental Poker Keeping Secret all Partial Information. In 14th ACM
Symposium on the Theory of Computing (1982), vol. 365.

[57] Goldwasser, S., Micali, S., and Rackoff, C. The Knowledge
Complexity of Interactive Proof Systems. SIAM Journal on computing
18, 1 (1989), 186–208.

[58] Hackett, R. What to Know about the Ashley Madison Hack.
https://fortune.com/2015/08/26/ashley-madison-hack/. Accessed:
02/10/2020.

[59] Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W.,
Muehling, J., Pearson, J. V., Stephan, D. A., Nelson, S. F., and
Craig, D. W. Resolving Individuals Contributing Trace Amounts of
DNA to Highly Complex Mixtures using High-Density SNP Genotyping
Microarrays. PLoS Genet 4, 8 (2008), e1000167.

[60] Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. Extending
Oblivious Transfers Efficiently. In Annual International Cryptology
Conference (2003), Springer, pp. 145–161.

[61] Ishai, Y., and Kushilevitz, E. Private Simultaneous Messages
Protocols with Applications. In Proceedings of the Fifth Israeli Symposium
on Theory of Computing and Systems (1997), IEEE, pp. 174–183.

[62] Jeckmans, A. J. P. Cryptographically-Enhanced Privacy for
Recommender Systems. PhD thesis, University of Twente, the Netherlands,
2014.

[63] Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party
Computation. Cryptology ePrint Archive, Report 2020/521, 2020.

[64] Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez,
E., and Vivek, S. Faster Secure Multi-Party Computation of AES
and DES Using Lookup Tables. In International Conference on Applied
Cryptography and Network Security (2017), Springer, pp. 229–249.

https://fortune.com/2015/08/26/ashley-madison-hack/

BIBLIOGRAPHY 61

[65] Keller, M., Orsini, E., and Scholl, P. Actively Secure OT
Extension with Optimal Overhead. In Annual Cryptology Conference
(2015), Springer, pp. 724–741.

[66] Keller, M., Orsini, E., and Scholl, P. MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (2016), pp. 830–842.

[67] Keller, M., Pastro, V., and Rotaru, D. Overdrive: Making SPDZ
Great Again. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2018), Springer, pp. 158–189.

[68] Kilian, J. Founding Cryptography on Oblivious Transfer. In Proceedings
of the twentieth annual ACM symposium on Theory of computing (1988),
pp. 20–31.

[69] Kitchin, R. The Real-Time City? Big Data and Smart Urbanism.
GeoJournal 79, 1 (2014), 1–14.

[70] Kolesnikov, V., Mohassel, P., and Rosulek, M. FleXOR: Flexible
Garbling for XOR Gates that Beats Free-XOR. In Annual Cryptology
Conference (2014), Springer, pp. 440–457.

[71] Kolesnikov, V., and Schneider, T. Improved Garbled Circuit: Free
XOR Gates and Applications. In International Colloquium on Automata,
Languages, and Programming (2008), Springer, pp. 486–498.

[72] Krumholz, H. M. Big Data and New Knowledge in Medicine: The
Thinking, Training, and Tools Needed for a Learning Health System.
Health Affairs 33, 7 (2014), 1163–1170.

[73] López-Alt, A., Tromer, E., and Vaikuntanathan, V. On-the-Fly
Multiparty Computation on the Cloud via Multikey Fully Homomorphic
Encryption. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing (2012), pp. 1219–1234.

[74] Lupton, D. The Commodification of Patient Opinion: The Digital
Patient Experience Economy in the Age of Big Data. Sociology of health
& illness 36, 6 (2014), 856–869.

[75] Makri, E., Rotaru, D., Smart, N. P., and Vercauteren, F. EPIC:
efficient private image classification (or: Learning from the masters). In
Cryptographers’ Track at the RSA Conference (2019), Springer, pp. 473–
492.

62 BIBLIOGRAPHY

[76] Makri, E., Rotaru, D., Vercauteren, F., and Wagh, S.
Rabbit: Efficient Comparison for Secure Multi-Party Computation. In
International Conference on Financial Cryptography and Data Security
(2021), Springer. To appear.

[77] Makri, E., and Wood, T. Full-Threshold Actively-Secure Multiparty
Arithmetic Circuit Garbling. Cryptology ePrint Archive, Report
2019/1098, 2019.

[78] Naor, M., and Pinkas, B. Oblivious Transfer and Polynomial
Evaluation. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing (1999), pp. 245–254.

[79] Naor, M., Pinkas, B., and Sumner, R. Privacy Preserving Auctions
and Mechanism Design. In Proceedings of the 1st ACM conference on
Electronic commerce (1999), pp. 129–139.

[80] Narayanan, A., and Shmatikov, V. Robust De-anonymization of
Large Sparse Datasets. In 2008 IEEE Symposium on Security and Privacy
(S & P) (2008), IEEE, pp. 111–125.

[81] Nielsen, J. B., Nordholt, P. S., Orlandi, C., and Burra, S. S.
A New Approach to Practical Active-Secure Two-Party Computation. In
Annual Cryptology Conference (2012), Springer, pp. 681–700.

[82] Paillier, P. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In International conference on the theory and
applications of cryptographic techniques (1999), Springer, pp. 223–238.

[83] Pinkas, B., Schneider, T., Smart, N. P., and Williams, S. C.
Secure Two-Party Computation is Practical. In International conference
on the theory and application of cryptology and information security (2009),
Springer, pp. 250–267.

[84] Rabin, M. O. How to Exchange Secrets by Oblivious Transfer. Technical
Memo TR-81, 1981.

[85] Regev, O. On Lattices, Learning With Errors, Random Linear Codes,
and Cryptography. Journal of the ACM (JACM) 56, 6 (2009), 1–40.

[86] Rivest, R. L., Adleman, L., and Dertouzos, M. L. On Data Banks
and Privacy Homomorphisms. Foundations of secure computation 4, 11
(1978), 169–180.

[87] Rivest, R. L., Shamir, A., and Adleman, L. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM 21, 2 (1978), 120–126.

BIBLIOGRAPHY 63

[88] Schoenmakers, B. A Simple Publicly Verifiable Secret Sharing Scheme
and its Application to Electronic Voting. In Annual International
Cryptology Conference (1999), Springer, pp. 148–164.

[89] Sepior. https://sepior.com/, 2020.

[90] Shamir, A. How to Share a Secret. Communications of the ACM 22, 11
(1979), 612–613.

[91] Shannon, C. E. Communication Theory of Secrecy Systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[92] Smart, N. P., and Vercauteren, F. Fully Homomorphic Encryption
with Relatively Small Key and Ciphertext Sizes. In International Workshop
on Public Key Cryptography (2010), Springer, pp. 420–443.

[93] Stottelaar, B., Senden, J., and Montoya, L. Online Social Sports
Networks as Crime Facilitators. Crime science 3, 1 (2014), 8.

[94] Sweeney, L. k-Anonymity: A Model for Protecting Privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10, 05 (2002), 557–570.

[95] Unbound. https://www.unboundtech.com/, 2020.

[96] Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V.
Fully Homomorphic Encryption over the Integers. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(2010), Springer, pp. 24–43.

[97] Wong, J. C. The Cambridge Analytica Scandal Changed the
World – But it Didn’t Change Facebook. https://www.theguardian.
com/technology/2019/mar/17/the-cambridge-analytica-scandal-
changed-the-world-but-it-didnt-change-facebook. Accessed:
02/10/2020.

[98] Yao, A. C. Protocols for Secure Computations. In 23rd annual symposium
on foundations of computer science (FOCS) (1982), IEEE, pp. 160–164.

[99] Yao, A. C.-C. How to Generate and Exchange Secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986) (1986), IEEE,
pp. 162–167.

[100] Zahur, S., Rosulek, M., and Evans, D. Two Halves Make a Whole.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (2015), Springer, pp. 220–250.

https://sepior.com/
https://www.unboundtech.com/
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook
https://www.theguardian.com/technology/2019/mar/17/the-cambridge-analytica-scandal-changed-the-world-but-it-didnt-change-facebook

Part II

Publications

64

Chapter 7

Towards Practical
Privacy-Preserving
Genome-Wide Association
Study

Publication data

C. Bonte, E. Makri, A. Ardeshirdavani, J. Simm, Y. Moreau, F. Vercauteren.
“Towards practical privacy-preserving genome-wide association study” In BMC
Bioinformatics 19, no. 1 (2018): 1-12.

This is the extended version of the paper published in BMC Bioinformatics,
available online at: https: // eprint. iacr. org/ 2017/ 955 .

65

https://eprint.iacr.org/2017/955

Towards Practical Privacy-Preserving
Genome-Wide Association Study

Charlotte Bonte2,4, Eleftheria Makri2,3,4, Amin Ardeshirdavani1, Jaak Simm1,
Yves Moreau1,5, Frederik Vercauteren2,5

1 STADIUS KU Leuven
2 imec-Cosic, Dept. Electrical Engineering, KU Leuven

3 ABRR Saxion University of Applied Sciences
4 Joint first authors
5 Joint last authors

Abstract. The deployment of Genome-wide association studies (GWASs) requires

genomic information of a large population to produce reliable results. This raises

significant privacy concerns, making people hesitate to contribute their genetic in-

formation to such studies. We propose two provably secure solutions to address this

challenge: (1) a somewhat homomorphic encryption (HE) approach, and (2) a se-

cure multiparty computation (MPC) approach. Unlike previous work, our approach

does not rely on adding noise to the input data, nor does it reveal any information

about the patients. Our protocols aim to prevent data breaches by calculating the

χ2 statistic in a privacy-preserving manner, without revealing any information other

than whether the statistic is significant or not. Specifically, our protocols compute the

χ2 statistic, but only return a yes/no answer, indicating significance. By not reveal-

ing the statistic value itself but only the significance, our approach thwarts attacks

exploiting statistic values. We significantly increased the efficiency of our HE proto-

cols by introducing a new masking technique to perform the secure comparison that

is necessary for determining significance. We show that full-scale privacy-preserving

GWAS is practical, as long as the statistics can be computed by low degree poly-

nomials. Our implementations demonstrated that both approaches are efficient. The

secure multiparty computation technique completes its execution in approximately

2 ms for data contributed by one million subjects.

1 Introduction

The goal of a genome-wide association study (GWAS) is to identify genetic
variants that are associated with traits. Large-scale sequencing provides reliable
information on single nucleotide variants (SNVs). To date, researchers worked
mostly on identifying genetic alterations which lead to classification of SNVs
and SNPs (single nucleotide polymorphims). Therefore, when we mention SNVs
we refer to both frequent SNPs, and less frequent SNVs. A common approach is

66

to divide the population into a disease, and a healthy group based on whether
the individual has the particular disease. Each individual gives a sample DNA
from which millions of genetic variants (i.e., SNVs) are identified. If a variant is
more frequent in individuals with the disease, it will likely be associated with the
specific genetic disorder and be classified as a potential marker of the disease.

1.1 Motivation for the distributed setup with secure computations

Having a large population size is crucial for GWAS, because it allows to improve
the accuracy of identified associations, especially for rare genetic disorders. Two
recent developments result in a significant increase of the available data for
GWAS: First, the development of cheap next generation sequencing (NGS). Sec-
ond, the creation of distributed genomic databases, which enable pooling of data
from many hospitals, and research centers, further increasing the population sizes
of the studies by 10-50 times. Several such distributed databases have recently
been proposed, including NGS-Logistics [4], Elixir, and GA4GH Beacon [39].

In studies like GWAS, which use personally identifiable genetic markers of the
participants as input, the privacy of the patients and protection of their sensitive
data becomes of great importance. It has been shown by Malin et al. [33], that
releasing the raw data even after removal of explicit identifiers, does not protect
an individual from getting identified. The classical approach to solve this privacy
problem involves a trusted third party who first collects both the SNV, and the
trait data, then carries out the statistical test, and finally either a) only reveals
the very few SNVs that have statistically significant association or b) reveals
all aggregate data on SNVs but masks them with sufficient noise to guarantee
differential privacy. For example, previous works by Uhlerop et al. [40], and by
Simmons and Berger [38] have focused on computing a differentially private χ2

test. However, setting up such a trusted third party has significant legal, and
technical difficulties given the sensitive nature of the underlying data.

The aforementioned privacy concerns make both individuals and medical cen-
ters hesitant to share this private data. Hence, centralized (third party) datasets
collected for research purposes remain small. Our goal is to address this chal-
lenge, in a way that the data can be shared without trusting an external third
party. In our setup, the medical centers aggregate and encrypt or secret share
the patient data before sending it to a third party for research purposes. This
ensures the privacy of the input data, because the only party with access to the
raw input data is the medical center which gathers it. Hence, our distributed
solution allows to combine input data from different medical centers to con-
struct a large dataset for research, while eliminating the privacy implications.
Our solution can even scale up to millions of patients, and perform millions or
tens of millions of hypothesis tests per day. This enables the first step towards

67

large-scale distributed GWAS, where multiple medical centers contribute data,
without relying on a trusted third party. Such large data collections would also
allow association studies on rare diseases.

Another reason to opt for our secure computation solution instead of the
trusted third party one, is that the latter does not provide defense against ma-
licious agents or operating system bugs, which might result in leakage of infor-
mation. In our case, such a mishap would reveal encrypted values (or shares of a
value, resp.), which essentially provides no information to the adversary, as long
as the secret key is not comprimised (or the adversary has fewer than n shares,
resp.).

1.2 Motivation for the yes/no response

Studies related to GWAS raised even more privacey concerns. Research has
brought to light that releasing aggregated statistics related to GWASs leaks
information in an implicit way. Therefore, it is not enough to protect only the
input data; care has to be taken when releasing aggregated results to the public,
as well. The work of Homer et al. [23] showed that the presence of an individual
in the case group can be determined from the aggregated allele frequencies.
One can argue that this attack requires an adversary to have at least 10, 000
SNVs from the victim. However, we assume that with the current sequencing
techniques, this is no longer a challenge and hence Homer’s attack is posing a
real threat nowadays. By computing with encrypted or secret shared data, and
only revealing a boolean value indicating significance, we prevent adversaries
from obtaining the aggregated allele frequencies, thus protecting against Homer’s
attack.

Shortly following Homer’s attack, Wang et al. [41] reported an attack based on
statistical values reported in GWAS papers. Even though, the attack of Wang et
al. [41] requires more statistical data than what our solution would reveal, such
developments show that we need to be careful with the amount of information
we publish. Our solution anticipates future statistical attacks, by not publishing
any statistic values at all.

1.3 Additional properties of the our setup

Our proposal consists of a cryptographic approach, where the trusted third party
performing research is replaced by a privacy-preserving system, which receives
the input in encrypted (protected) form from a set of distributed parties (e.g.,
hospitals), performs the χ2 test, and only publicly discloses whether the current
test is significant or not. Since nothing except the final answer is revealed during

68

the execution of our protocols, the proposed system enjoys various security guar-
antees, even against malicious agents who gain access to the servers executing
the system.

Even though the aforementioned attacks show it is not a good idea to reveal
the χ2 value, the value itself would be highly interesting for research purposes.
Therefore, it is worth mentioning that our current system can be easily adapted
to return the significance value itself. However, since revealing the values can
cause privacy issues, we suggest to incorperate an authentication process to the
system if the χ2 value should be revealed. This way the access to the actual χ2

values can be restricted to authenticated users. As such, the researchers can have
access to the actual result, while it stays hidden from the public and therefore
cannot be abused in an attack like the aforementioned ones.

By only revealing the yes/no answer, our system indicates whether the SNV
is a possible marker. To determine whether or not this SNV is actually causally
linked to the disease more statistics need to be computed. Therefore, we assume
that for the selected SNVs –indicated by our system– the researcher would re-
quest specific patient data from the different centers for further analysis. We
assume this will happen with the current techniques for requesting data for
GWASs. However, we expect patients to be more inclined to share their data for
research, even despite the potential privacy concerns, when the researchers ex-
plain to them, with the aid of the public tables, that their data is highly relevant
for the study of a specific disease.

Additionally, it is common practice in GWASs, and more general bioinfor-
matics studies to publish only when significant results are found. This means
that all the insignificant (yet identified) results are not published, despite the
fact that they could also contribute in finding, or eliminating interesting correla-
tions. In fact, a non-significant correlation between a genotype and a phenotype
can serve as a proof that a certain mutation is not related to a disease. Our
solution comes to bridge this gap, as we aim to construct a public table, listing
all possible mutations, versus all possible phenotypes, and indicating whether
the initial relationship between them (indicated by the χ2 test) is significant or
not. By publishing also the insignificant results in our public table, mutations
not related to phenotypes can be immediately shown, allowing the researchers
to discard them, and focus only on the significant ones.

To allow for a privacy-preserving system addressing our challenges, we pro-
pose two secure approaches: one based on homomorphic encryption (HE), and
one based on multiparty computation (MPC). We also compare their security
guarantees, and their efficiency in terms of execution time of practical imple-
mentations. Homomorphic encryption refers to a set of cryptographic tools that
allow certain computations to take place in the encrypted domain, while the re-

69

sulting ciphertext, when decrypted, is the expected (correct) result of operations
on the plaintext data. Secure multiparty computation aims at allowing a similar
functionality, amongst several mutually distrusting parties, who wish to compute
a function without revealing their private inputs. With the latter approach, com-
munication between the computing parties is required for the execution of the
cryptographic protocols.

In the MPC setting, there are two main security models used, offering pas-
sive, or active security, respectively. Passive security, also known as security
in the semi-honest model, assumes that the protocol participants are honest-
but-curious. This means that they are trying to collect as much information as
possible from the protocol execution, but they do follow the protocol instruc-
tions honestly. Active security, also known as malicious security, offers stronger
security guarantees, assuming that adversaries or corrupted protocol partici-
pants may arbitrarily deviate from the protocol instructions. In both security
models, we can build protocols assuming an honest majority of the protocol
participants, or a dishonest majority. Our solution with MPC offers the highest
security guarantees being built in the malicious model, with dishonest majority.

Specifically, we make the following contributions:

– We propose the first somewhat homomorphic encryption approach to with-
stand GWAS attacks such as the ones described by Homer et al. [23].

– We develop a multiparty computation solution for GWAS that is efficient for
realistic sample sizes.

– We propose a new masking technique to allow efficient secure comparisons.

– We compare the security, and efficiency of HE and MPC on a real-life appli-
cation.

– We demonstrate the practicality of our solutions, based on their short running
times, which are in the range of 1.9-2.4 ms for the MPC approach.

– We show that our solution scales logarithmically in the number of subjects
contributing their genetic information, allowing us to treat current population
sizes, and being able to scale to larger (future) GWASs for millions of people.

2 Related Work

2.1 Homomorphic encryption approach

There has already been some work on using homomorphic encryption to preserve
the privacy of the patients while performing statistics on genome data. Kim et

70

al. [28] present the computation of minor allele frequencies, and the χ2 statistic
with the use of the homomorphic BGV and YASHE encryption schemes. They
use a specific encoding technique to improve on the work of Lauter et al. [29].
However, they only compute the allele counts homomorphically, and execute
the other operations on the decrypted data. Another work on GWASs using
fully homomorphic encryption was published by Lu et al. [31]. They also start
from encrypted genotype/phenotype information that is uploaded to a cloud for
each person separately. Then they perform the minimal operations necessary
to provide someone with access to the decryption key with the necessary val-
ues to construct the contingency table for the requested case based on the data
present on the cloud. Hence, when performing a request, the scientist gets three
encrypted values, and based on those he can, after decryption, reconstruct the
contingency table, and compute the χ2 statistic in the clear. These solutions are
not resistant to attacks like the one described by Homer et al. [23]. Our solu-
tion improves on these previous works by performing the χ2 computation in the
encrypted domain, and revealing only whether or not the χ2 value is significant
for this case, which makes the previously mentioned attacks impossible.
Sadat et al. [37] propose a hybrid system called SAFETY, to compute various
statistical values over genomic data. This hybrid system consists of a combi-
nation of the partially homomorphic Paillier scheme with the secure hardware
component of Intel Software Guard Extensions (Intel SGX) to ensure both high
efficiency, and privacy. With this hybrid system they propose a more efficient way
to get the total counts of all patients for a specific case. By using the additive
property of the homomorphic Paillier scheme, they reduce the computational
overhead of decrypting all individual encrypted outputs received from the dif-
ferent servers. Afterwards it uses the Intel SGX component to perform the χ2

computations. Even though, the results of this system scale well for increasing
number of servers that provide data for the computation, the system does not
provide the same functionality as our solution. Sadat et al. [37] mention that
the only privacy guarantee for the final computation result against the attack
described by Homer et al. [23] is the assumption that the researcher decrypting
the result is semi-honest. This is the main difference with our work: with our so-
lution only the significance of the test will be made public. As mentioned before,
the current system can be easily adapted to return the χ2 value itself but due to
known attacks we want to avoid making these values public. Hence, we believe
that if our system is adapted to reveal the χ2 values, it should only reveal these
values after authentication of the requesting party.
Zhang et al. [43], construct an algorithm, which performs the whole χ2 statistic
in the homomorphic domain. To compute the division, they construct a lookup
table in which they link the result of their computation with the nominator and

71

denominator of the corresponding, simplified fraction. Therefore, an authenti-
cated user can look up the correct fraction in the lookup table after decrypting
the result, and hence recover the result of the χ2 statistic. Even though their
strategy performs well, it does not scale enough to treat the large datasets we
envision in our application. Increasing the number of patients in the study would
increase the circuit depth significantly, which comes with several disadvantages
including increasing the parameter sizes, and hence the key size, and ciphertexts
size, as well as the computation time.

2.2 Secure multiparty computation approach

Kamm et al. [25] propose a solution to address the privacy challenges in genome-
wide association studies. Their application scenarios, much like ours, focus on
large data collections from several biobanks, and their solutions are based on the
same fundamental techniques as ours. However, the setting of Kamm et al. [25]
requires all raw genotype, phenotype, and clinical data to be entered to the secure
shared database. To the contrary, our setting assumes that only the aggregate
values, necessary to identify the significance of a gene-disease relationship (i.e.,
the contingency tables recording the counts of genotypes vs. phenotypes), are
contributed by each biobank. This is a simpler, and more realistic setting, which
not only is likely to be implemented in the near future, but also alleviates the
computational cost of the proposed solutions. Unlike the approach of Kamm et
al. [25], and the alternatives that they suggest, our solution achieves active se-
curity with dishonest majority (contrary to the semi-honest security suggested).
This means that our protocols tolerate dishonest behavior by the majority of
the computing parties, while preserving privacy, and still guarantee the correct-
ness of accepted results. Kamm et al.’s protocols assume that the computing
parties –the biobanks– cannot be corrupted, which we consider to be a strong
assumption.

Independent and concurrent work by Cho et al. [10] tries to address the same
problem as we do in our work, using multiparty computation techniques. They
focus on a method that enables the identification and correction for population
biases before computing the statistics. However, just like the work of Kamm et
al. [25], they make the strong assumption of semi-honest security. In practice, the
semi-honest security is not a sufficient security guarantee for GWAS, as attackers
who have obtained access to the systems are likely to employ active measures to
obtain the data.

Constable et al. [11] present a garbled-circuit based MPC approach to perform
GWAS. Their solution can compute in a privacy-preserving manner the minor
allele frequency (MAF), and the χ2 statistic. Similarly to the work of Kamm
et al. [25], the framework of Constable et al. [11] requires the raw genotype,

72

and phenotype data, increasing the workload of the proposed privacy-preserving
system. In contrast to our solution, which can scale to hundreds of medical
centers contributing data to the GWAS, the solution of Constable et al. [11]
only works for two medical centers. Despite the strong security guarantees that
our approach offers, which generally presents itself as a tradeoff to efficiency,
our proposal is faster than that of Constable et al. [11]. This is also due to the
fact that we have optimized the computations of the χ2 statistic, in such a way
that the expensive computations in the privacy-preserving domain, are avoided
to the maximum extent possible.

Zhang et al. [42] propose a secret-sharing based MPC approach to solve the
same GWAS problem as Constable et al. [11]. Although Zhang et al.’s solution
can scale to more than two medical centers contributing data to the GWAS, the
approach has the same inherent limitations (e.g., requiring raw genomic data
as input) that their application scenario incurs. The works of Zhang et al. [42],
Constable et al. [11], and Cho et al. [10] have not considered protecting the
aggregate statistic result of the private computation, which –as Homer et al. [23]
showed– can be used to breach an individual’s privacy. We additionally protect
the aggregate statistic result, while at the same time allowing for a public list
to be created, showing which SNVs are significant for a certain disease.

3 Distributed GWAS Scenario

In this paper we aim at identifying which mutations are linked to which phe-
notypes, without compromising the privacy of the patients. Specifically, there
are K centers (hospitals) who each have genotype (SNV), and phenotype (trait)
data. For a single genotype-phenotype pair a center k has a 2 × 2 contingency
table6 of the counts of patients for all 4 possible combinations of genotype, and
phenotype (see Table 1). The goal is to perform a privacy-preserving compu-
tation that adds together all contingency tables from individual centers, then
computes the Pearson’s χ2 test statistic [35], and finally reveals a boolean value
indicating whether the computed statistic is larger than a predetermined sig-
nificance threshold t. This threshold is chosen based on the p-value, and the
correction for multiple hypothesis testing. For example, using significance level
0.01 with Bonferroni correction for 10 million tests results in t = 37.3, and for
100 million tests t = 41.8.

We propose two different methods for carrying out the χ2 test without disclos-
ing the input, and intermediate values. The first method performs all computa-
tions on homomorphically encrypted data, while the second applies techniques
of secure multiparty computation to achieve the same goal. Both methods follow

6 Our method can be also extended to contingency tables of larger size.

73

the same general outline, presented below. The first step is to encrypt (or secret
share) all the input tables from the centers, and securely compute the aggregate
contingency table

Oij =
K∑

k=1

O
(k)
ij , (1)

where O
(k)
ij is the data from k-th center. This step is straightforward in both

methods.
Next to determine the significance of the relation between a mutation, and

a phenotype, we calculate the Pearson’s χ2 test statistic [35] on the aggregated
contingency table O, and check whether this value is above the threshold t. The
Pearson’s χ2 statistic is given by the following formula:

χ2 =
∑

i,j∈{1,2}

(Oij −modelij)2
modelij

, (2)

where modelij = (RTi · CTj)/N with RTi = Oi,1 + Oi,2 being the row total,
CTj = O1,j +O2,j being the column total, and N the total number of patients.

phenotype ¬phenotype
genotype O1,1 O1,2 RT1 = O1,1 +O1,2

¬genotype O2,1 O2,2 RT2 = O2,1 +O2,2

CT1 = O1,1 +O2,1 CT2 = O1,2 +O2,2 N = CT1 + CT2 = RT1 +RT2
Table 1: Representation of a contingency table containing the number of observed
genotypes i per phenotype j noted by Oi,j. In the table we also calculate the
Row Totals (RTi), Column Totals (CTj), as well as the grand total (N).

Since division is a costly operation in both the homomorphic domain, and
secret shared domain, we will rewrite the formula of the χ2 statistic as follows:

χ2 =
RT1 · CT1 · (N ·O2,2 −RT2 · CT2)2

N ·RT1 ·RT2 · CT1 · CT2
+
RT1 · CT2 · (N ·O2,1 −RT2 · CT1)2

N ·RT1 ·RT2 · CT1 · CT2
+
RT2 · CT1 · (N ·O1,2 −RT1 · CT2)2

N ·RT1 ·RT2 · CT1 · CT2
+
RT2 · CT2 · (N ·O1,1 −RT1 · CT1)2

N ·RT1 ·RT2 · CT1 · CT2
.

(3)
As a final step, we need to compare whether χ2 ≥ t. To do that, we calculate

the numerator, and denominator of the fraction in Equation (3), separately.
Subsequently, we multiply the denominator of the fraction with the threshold
value t, and finally check inequality (4), without revealing any of the private
inputs in the contingency tables.

74

RT1 · CT1 · (N ·O2,2 −RT2 · CT2)2 +RT1 · CT2 · (N ·O2,1 −RT2 · CT1)2
+RT2 · CT1 · (N ·O1,2 −RT1 · CT2)2 +RT2 · CT2 · (N ·O1,1 −RT1 · CT1)2

?
≥ t · (N ·RT1 ·RT2 · CT1 · CT2).

(4)

This computation is repeated for every phenotype-genotype pair, and the re-
sults are aggregated in a public table indicating whether a mutation is significant
for a particular phenotype, or not. Since the price of DNA sequencing has de-
creased a lot, we assume new data will keep becoming available. Taking this new
data into account for the computation of our public table, requires running our
protocols anew, and it will change the table results. Therefore, we propose to
make the table dynamic. There will be a fixed time interval, which allows the
centers to gather more data and include this data in their contingency tables.
The new table values will then be encrypted/secret shared and the computation
of the fresh public table will be executed, after which the new results will be
published.

3.1 Efficient Masking-Based Comparison

To the best of our knowledge the state-of-the-art techniques to perform secure
comparisons, both in the homomorphic, and in the secret shared domain, require
bitwise operations on the secret inputs, which have a high total cost. To allow
for a practically efficient implementation of our solution, we consider a masking
technique to perform the comparison instead of the bit-decomposition of our
inputs. By masking the values we need to compare, we can later securely reveal
the masked result upon decryption, since the mask will hide the original secret
value. Hence, masking allows us to perform the comparison without revealing
the values we want to keep secret. Comparing two values x and y can be done
by comparing their difference with zero. Our mask for the value x−y consists of
multiplying this value with a positive random number. We require the multiplier
to be positive to preserve the original relation of our difference x− y with zero.
The second step is adding another random number (different than the previous
one) to the already multiplied result. We require this random number to be
smaller than the first one, again to preserve the original relation with zero.
Let us denote the masked difference with x̂− y, then for two positive random
numbers r and r′, with r′ in the range [1, r), our proposed masking is given by

x̂− y = r · (x − y) + r′. In our setup we are working with homomorphic (or
secret shared) values, so this masking has to be performed on encrypted (or
secret shared) values. For an integer x, we denote [[x]] either the homomorphic

75

encryption of x or its secret shared value. Masking in the homomorphic or secret
shared domain will then be computed as [[x̂− y]] = [[r]] · [[x − y]] + [[r′]], with r
and r′ random numbers satisfying the following condition: r is selected to be
a positive integer number (bounded properly so as to fit the largest possible
input sizes our framework can handle), and then r′ is randomly selected in the
range [1, r) (i.e., such that r′ < r) . Afterwards the masked value is revealed by
respectively decrypting or opening the calculated value. Depending on the sign
of (x̂− y) we can deduce the relationship between x and y (i.e., if (x̂− y) > 0
then x > y, otherwise x < y).

Given properly selected r, and r′, the correctness of this masking-based com-
parison is straightforward. To ensure preservation of the security and correctness
of the masking, we require one of the medical centers to properly select r, and r′

within suitable bounds. Note that this requirement does not increase the level of
trust we need to put in the medical centers (nor does it reduce the security of the
system). We already trust the medical centers to provide our privacy-preserving
system with their correct inputs. Upon selection of the values r, and r′, the med-
ical center in question homomorphically encrypts these values, or secret shares
them to the computation servers, along with its own contributed inputs.

The proposed type of masking, which allows us to perform the comparison,
could leak information about the secret input to the inequality, which in our case
is the difference x− y. Since none of the mutliplicative, or additive blindings we
deploy are performed based on a uniformly sampled randomness in the space
where the secret value lives, perfect security cannot be guaranteed. We also did
not account for a statistically larger space from which to sample either of the
multiplicative or additive randomness, hence the protocol including the masked
comparison is not statistically simulatable. Despite this information leakage, we
consider the combination of multiplicative and additive blinding to offer sufficient
privacy for this particular application scenario, where only information about the
range of the χ2 statistic may be leaked, and we reiterate that a lower bound on
this value (namely the threshold we compare against) is already publicly revealed
by the protocol.

The information leakage issue becomes more crucial, when the system is
queried multiple times with the same input. However, in our scenario, the pro-
posed system cannot be queried at will. We suggest the calculation of a table
listing all possible phenotypes, and all possible mutation positions, which will
become public. This table will be computed on updated input data after a fixed
time interval. While constructing the table we select r and r′ at random for each
contingency table, thus the random values r and r′ will only be used once with
certain input values. After the fixed time interval, we expect the input values
to be changed, so we repeat the whole setup and select new random values for

76

each contingency table. Hence, by recomputing the table at fixed times and not
allowing users to query, we ensure that no information is leaked by our system.

Let us for completeness briefly discuss the leakage that occurs if a party ob-
serving the masked result of the inequality check can submit multiple queries on
the same inputs and obtain the masked values for these queries. If this would
be possible, an adversary would be able to approximate the value of x− y from
the obtained list of masked values. The maximum of this observed list will be
close to the bound set for the randomness r times the difference x − y. Hence,
by deduction, if we divide the maximum observed masked value by the upper
bound on r, we will get a good approximation of the value x− y.

In the event of a malicious party being able to observe the intermediate values
revealed by our approach (i.e., the value of the masked difference), and given
that this malicious party can trigger multiple computations of the same table
entry, one can prevent the aforementioned leakage by selecting the random values
r and r′ once per table entry, and keep them thereafter fixed, until the actual
inputs to the protocol (contributed by each medical center) change.

4 Homomorphic Encryption Approach

4.1 Setup and security assumptions

To solve the problem described in Section 3 with homomorphic encryption, we
need multiple parties, as indicated in Figure 1. The steps of the process depicted
in Figure 1 are as follows. In the first step, the decryptor will select the secret
key, and associated public key for the homomorphic encryption, and make the
public key available to all medical centers. Then, all the medical centers will
encrypt their contingency tables with the given public key, and send these en-
cryptions to the computation server. Upon receiving all contingency tables, the
computation server will first add them to construct the aggregated contingency
table, and subsequently perform the operations of the Pearson χ2 test. Then,
the computation server will send the result, which is masked with the technique
described in Section 3.1 to the decryptor, who uses the secret key to decrypt the
masked value, and performs the comparison.

It is important to note that in this model we trust the decryptor to decrypt
the masked values, and post the corresponding correct yes/no value into the
public table. Since the decryptor only decrypts masked values, the decryptor
can only deduce the yes/no answer which will become public, anyway. No other
information about the χ2 value is revealed to the decryptor. If the system would
be adapted to reveal the actual χ2 value, the party receiving the encrypted result
would first have to authenticate itself to make sure that it is a trusted entity (like

77

Medical

center 1

Medical

center 2

Medical

center n

Medical

center n-1

.

.

.

Public Table Disease

position 1 significant

position 2 …

… non-significant

Position 3.000.000.000 …

Computation

Server
Decryptor

(sk, pk)

k Send

Encrypted contingency

tables

l Perform encrypted

computation

m Send intermediate result

n Send

Yes/No

answer

Fig. 1: A schematic representation of the homomorphic scenario.
Before the execution of the protocol, the decryptor generates a valid public and secret key

pair for the homomorphic encryption scheme. Step 1O of the protocol is to send the generated

public key pk to all participating medical centers. Then, the medical centers compute their local

contingency tables, encrypt them with the received public key, and send them to computation

server in step 2O. Step 3O is the actual secure computation of the encrypted, and masked χ2

value, which is then sent to the decryptor in step 4O. By decrypting the masked χ2 value (using

the secret key sk), the decryptor can only determine whether the result is significant or not,

which is published in a public table in step 5O.

78

a medical doctor, for example). If this authentication is considered insufficient
by the medical centers contributing their data, they could still prevent the au-
thenticated party from being a single point of trust by introducing a multiparty
computation to perform the decryption based on a secret shared decryption key.
The solution based on homomorphic encryption does rely on the following two
security assumptions:

– The computation server is honest but curious: It will follow the stated proto-
col to provide the desired functionality, and will not deviate, nor fail to return
the results. The computation server can however monitor the result of every
operation it performs. This assumption is reasonable for an economically mo-
tivated cloud service provider. The cloud is motivated to provide excellent
service, yet it would take advantage of extra available information.

– We only need the decryptor to perform the comparison. He should not be al-
lowed to see the input values, since he has the key to decrypt them. Therefore
we presume that the communication between the centers, and the computa-
tion server is hidden from the decryptor. This can be achieved by performing
the communication over authenticated, secure channels. An alternative way
to solve this is by introducing the multiparty computation for the decryptor.
Each party only has a part of the decryption key, and hence will never be
able to decrypt the values of the encrypted contingency table.

For the homomorphic evaluation of the χ2 statistic we use the FV scheme, intro-
duced by Fan and Vercauteren [21]. Moreover, we base our implementation on
the FV-NFLlib software library [13] in which the FV homomorphic encryption
scheme is implemented using the NFLlib software library developed for per-
forming polynomial arithmetic computations (as described in [1], and released
in [14]).

4.2 Preliminaries

The Fan-Vercauteren SHE scheme The Fan-Vercauteren SHE scheme is
a scale invariant SHE scheme whose hardness is based on the ring learning
with error problem (RLWE) [32]. It operates on polynomials of the ring R =
Z[X]/(f(X)) with f(X) = Xd + 1 for d = 2n.

The FV scheme makes use of a plaintext space Rt with R the polynomial
ring defined above, and t > 1 a small integer modulus. Each coefficient of a
plaintext polynomial is computed modulo t. The ciphertext space consists of a
pair of elements of Rq with R the polynomial ring defined above, and q > 1,
an integer modulus much larger than the plaintext modulus t. A homomorphic

79

encryption scheme consists of a standard encryption scheme specifically con-
structed to enable additions, and multiplications in the ciphertext domain. The
key generation, and encryption algorithms require elements sampled from two
probability distributions defined on R. The secret key of our scheme is sampled
from χkey, and for encryption some error polynomials are sampled from an error
distribution χerr. These probability distributions in combination with the degree
d of the defining polynomial f of R, and the size of the integer q determine the
security of the FV scheme.

Given the parameters d, q, and t, and distributions χkey, and χerr, and using
bold notation for a vector of two polynomials, we define the encryption, and
decryption mechanism of the homomorphic encrytion scheme introduced by Fan
and Vercauteren:

– Encrypt(pk,m): By multiplying the message m ∈ Rt with ∆ = bq/tc we
transfer the message m to the ring Rq. To hide the message we sample the
error polynomials e1, e2 ∈ χerr, and u ∈ χkey, and compute the polynomials
c0 = ∆ ·m+ bu+e1, and c1 = au+e2. Both the polynomials c0, and c1 belong
to Rq, and together they form the ciphertext c = (c0, c1) of the FV scheme.

– Decrypt(sk, c): First compute m̃ = [c0 + s · c1]q, then by scaling down the
coefficients of m̃ by ∆, and rounding the results we recover the message m.

Given a ciphertext c = (c1, c2) we can write the m̃ of the decryption algorithm
as [c0 + c1s]q = ∆ ·m+ e, with e the noise in the ciphertext. From this equation
one can clearly see that if the noise e grows too large, the decryption algorithm
will fail to output the original message m correctly. The property of ensuring
that decryption results in the original message is called the correctness of the
encryption scheme.

Every homomorphic operation will cause the noise in the ciphertexts to in-
crease. Knowing the computations we want to perform in advance enables us
to optimize the order of the computations for the sake of minimizing the noise
growth. In addition it enables us to make an estimation of the noise present in
the result, and hence allows us to determine parameters that can deal with this
noise.

Preprocessing of the data to improve the performance of the homo-
morphic computations The plaintext space of the FV scheme consists of the
polynomial ring Rt. Hence the first thing that needs to be done is encode the
given integer data values into polynomials in the ring Rt. We achieve this by ap-
plying the w-NIBNAF encoding introduced in [6]. The main idea of w-NIBNAF
encoding goes back to Dowlin et al. [18] (see also [19, 30, 34]), and was analyzed

80

in more detail by Costache et al. [12]. It consists of expanding the given number
θ with respect to a base bw, and replacing this base with the symbol X. So the
encoding of a number θ is given by:

θ = arX
r + ar−1X

r−1 + · · ·+ a1X + a0 − a−1Xd−1 − a−2Xd−2 − · · · − a−sXd−s .

For our encoding we use a well chosen non-integral base such that the encoding
of an input value results in a polynomial with coefficients in the set {−1, 0, 1},
with the property that each set of w consecutive coefficients has no more than
one non-zero coefficient. Hence encoding our inputs with w-NIBNAF leads to
sparse polynomials.

Starting our computations with sparse polynomials with coefficients in the
set {−1, 0, 1} leads to small coefficients in the resulting polynomial. Therefore
it enables us to work with a smaller plaintext modulus t, which improves the
performance of the homomorphic encryption scheme. Bigger values for w leads to
longer, and sparser encodings, which reduce the minimum size for t even further.
However, we have to ensure that when all the computations are done, decoding
will still provide the correct answer. Therefore, we need to carfully select our
base bw, which also determines the value of w.

Selecting the optimal parameters The three main concepts that will affect
the selection of our parameters are:

– the security of the somewhat homomorphic FV scheme

– the correctness of the somewhat homomorphic FV scheme

– the correctness of the w-NIBNAF encoding

To take the security restrictions into account, we rely on the work by Albrecht,
Player, and Scott [3], and the open source LWE hardness estimator implemented
by Albrecht [2]. The latter estimates the hardness of the LWE problem based
on three given parameters: the dimension d, the ciphertext modulus q, and a
parameter α, which is related to the error distribution χerr. It takes into account
the currently known attacks on the learning with error problem.
The parameters that satisfy the restriction of the security implications of a
security level of 90 bits are q = 2186, d = 4096, σ = 2657. From the description
of the FV scheme in Section 4.2, we know that for a ciphertext to be decrypted
correctly the error cannot grow too much. Therefore we make an estimation of
the infinity norm of the error in the ciphertext resulting from computing our

7 σ determines the error distribution χerr.

81

circuit, and select parameters that keep the error small enough. This results in
an upper bound for t. Since this upper bound is constructed specifically for our
circuit it will depend amongst other things on the number of centers that deliver
data to the computation server.

For correctness of the w-NIBNAF decoding, it is important to estimate the
size of the coefficients of the encodings after performing the necessary opera-
tions. This leads to a lower bound on the plaintext modulus t. The security,
and correctness of the FV scheme on one hand, and the correctness of the w-
NIBNAF encoding on the other hand, set conflicting requirements for t. In order
to solve this conflict, we make use of the Chinese Remainder Theorem to de-
compose the plaintext space, following the idea of [7, §5.5]. This implies that
we choose t to be the product of small prime numbers t1, t2, . . . , tn, with
∀i ∈ {1, . . . , n} : ti ≤ tmax, and t =

∏n
i=1 ti ≥ tmin, where tmax is determined

by the security, and correctness of the FV scheme, and tmin by the correctness
of the w−NIBNAF decoding.

4.3 Privacy-Preserving Homomorphic Chi-Squared Thresholding
Algorithm and Parameters

In this section, we combine all information given before in order to construct
the algorithm needed to perform the privacy-preserving χ2 thresholding in the
homomorphic setting. Algorithm 1 lists the computations for the algorithm cor-
responding to the order in which they need to be performed, and mentions the
parties that need to perform them. Hence the steps from Figure 1 are described
in more detail in Algorithm 1, and the combination of these two gives a clear
picture of our homomorphic solution for the privacy-preserving χ2 thresholding.

For the homomorphic solution we consider two scenarios: (1) the case in which
we compute the numerator and denominator of the χ2 statistic seperately, and
decrypt them both, and (2) the case where we use the masking technique, and
decode the masked value to determine the “True/False” answer to the signif-
icance question. As mentioned before, there are many parameters we need to
set, and their values depend highly on the homomorphic circuit we perform and
the values of other parameters. We selected parameters for different scenarios
in which we fix the number of patients per center to 10000 and vary the num-
ber of centers from 20 to 100. The parameters are listed in Table 2 and 3. We
use these paramters in our implementation later to assess the performance by
measuring the computation time, and communication cost for each of the three
parties mentioned in Algorithm 1.

The value of w and the splitting degree are dependent on the size of the
numbers we need to encode, but independent of the number of centers included

82

Algorithm 1 Privacy-preserving Homomorphic Chi-squaredTest
Medical center:

input: O[2][2] : the observed values of the 2× 2 contingency table (mutation vs. disease)

for Ck medical center k do

1. Encode each value Ok
i,j for i = 1, 2; j = 1, 2 using the w-NIBNAF encoding technique .

2. Transform this encoding to the plaintext ring Rti for all i such that t =
∏

i ti.

3. Encrypt the plaintext polynomials using the Fan-Vercauteren SHE scheme to obtain cipher-

texts cki,j.

end for

Computation center:

input: encrypted contigency table values cki,j, for k = 1, ..., Nc, with Nc the number of

centers contributing data

4. Compute the four values of the aggregated contingency table cm,n =
∑Nc

k=1 c
k
m,n .

5. Compute the χ2 numerator α and denominator β homomorphically

6. Compute the difference of the χ2 numerator and the product of the encrypted χ2 threshold

T and denominator, and mask the computed difference with the random values r and r′:
MR = r · (α− T · β) + r′

Decryptor:

input: MR the encrypted masked output value of the homomorphic circuit

7. Decrypt the masked result MR

8. Use the inverse CRT ring isomorphism to transfer the plaintext polynomials to the ring Rt.

9. Decode the w-NIBNAF polynomial, and evaluate the result in the correct basis bw to get

the value MaskedDifference of the masked result.
10. Determine the significance based on the sign of MaskedDifference:

if MaskedDifference > 0 then

return 1

else

return 0

end if

83

in the calculation. Therefore the value of w and the splitting degree will be
the same for all scenarios. Without comparison, they are respectively w = 271,
and splitting degree = 3166. The parameters that differ for different number of
centers in scenario (1) is the value for t, and its CRT factors. These are listed in
Table 2. For scenario (2) in which we perform the masked comparison, the value
of w will be different for each different number of centers participating in the
computations, because we have to encode the random variables r and r′, which
have sizes depending on the number of centers included in the computations.
The parameters for the second scenario are listed in Table 3.

Table 2: Parameter selection for scenario (1)

Centers Patients t

20 200000 17431 · 17443 · 17449

40 400000 1718713 · 1718719 · 1718723

60 600000 1558103 · 1558129 · 1558177

80 800000 1453043 · 1453057 · 1453061

100 1000000 1376213 · 1376231 · 1376237

Table 3: Parameter selection for scenario (2)

Centers Patients bit-length random value w splitting degree t

20 200000 100 118 3625 12253 · 12263 · 12269

40 400000 106 113 3629 885127 · 885133 · 885161

60 600000 110 111 3644 802651 · 802661 · 802667

80 800000 112 110 3653 747811 · 747827 · 747829

100 1000000 114 108 3651 707801 · 70813 · 707827

4.4 Implementation and performance analysis

In order to assess the practical performance, and verify the correctness of the
selected parameters of the homomorphic scenario, we implemented the privacy-
preserving χ2 computation using the FV-NFLlib software library [13]. Our pre-
sented timings are obtained by running the implementation on a computer
equipped with an Intel Core i5-4590 CPU, runnning at 3.30 GHz. We executed
the program 10 times per case, and calculated the average execution time for
our timing results. To evaluate the scalability of our protocol we have considered
the cases where our system receives data from 20, 40, 60, 80, and 100 medical
centers, respectively. We assume each medical center to contribute data of 10000

84

subjects (i.e., the total number of subjects per case is 200000, 400000, 600000,
800000, and 1000000, respectively). In order to measure these timings we used
the parameter set corresponding to the same scenario, so Table 2 for scenario
(1) and Table 3 for scenario (2).

For scenario (1) we compute the numerator and denominator seperately, and
do not perform the masked comparison with the threshold value. The CPU time
needed for the hospitals to encrypt the four values of the contingency table
is the same for any number of centers considered in the experiment. For our
selected parameters this is 15.2 ms. Also the time to decrypt the numerator and
denominator of the χ2 value is the same for any number of centers contributing
to the experiment. The average time we measured during our experiments is 38.8
ms. The timings of the computation server in scenario (1) are the times needed
to perform the calculations for computing the numerator and denominator of
the χ2 statistic. These timings are dependent on the number of centers that
participate in the computation. Therefore we list them in Table 4. We see that
the timings for increasing centers do not differ significantly. This is consitent
with the fact that homomorphic additions are not the most time consuming
part of our computations.

For scenario (2) the encryption time does not depend on the number of centers
either, since the centers can perform the encryption in parallel. The measured
encryption time for one contingency table in scenario (2) is 17.1 ms. The time
to decrypt the result does not depend on the number of centers participating in
the computation either. However it is smaller than for scenario (1), since now we
only have to decrypt one value instead of two. The measured decryption time
for scenario (2) is 21.1 ms. The timings for the computation server are listed
in Table 4, since these timings are dependent of the number of medical centers
participating. Here we see the same trend as for scenario (1): the timings do not
increase linearly in the number of medical centers. Interestingly, in this scenario,
the number of patients contributing data does not affect the efficiency of our
protocol, which further supports the important aspect of scalability in GWAS.
As long as the total frequencies in the contigency tables do not grow larger than
the HE parameters allow for correctness, the efficiency of the protocol remains
intact from an increasing number of patients.

From Table 4 one sees that the timings for the computation server do not
differ much between both scenarios. This is because addition and multiplication
with a constant (which are the extra operations we need to compute the masked
value) are not the most time consuming homomorphic operations. Hence our
masked comparison gives an efficient solution for keeping the χ2 value private.
We can also conclude that considering CPU time, our solution scales really well
for increasing number of medical centers participating in the computation.

85

Table 4: CPU time of the computation server for the homomorphic solution
using 1 CPU core.

Centers Patients scenario (1) scenario (2)

20 200000 1.40 s 1.48 s

40 400000 1.48 s 1.52 s

60 600000 1.44 s 1.53 s

80 800000 1.47 s 1.56 s

100 1000000 1.49 s 1.56 s

For the homomorphic setup, there is no communication cost during the com-
putations. The communication cost comes from sending values from each of the
three parties to the next. We have three points of communication: the public
key has to be sent from the decryptor to the medical centers; the encrypted
values of the contingency tables have to be sent from the medical centers to the
computation server; and the result has to be sent from the computation server
to the decryptor. The communication cost is similar for both scenarios since for
both scenarios the size of one ciphertext will be the same, and we only need to
sent ciphertexts form one party to another. The size of the public key that needs
to be sent to the different medical centers is 186 kB. The data needed to send
one contingency table to the computation server is 2.1 MB. The communication
cost between the medical centers, and the computation server is the number of
centers participating times the number of data needed to send one contingency
table. So this communication cost increases linearly in the number of centers
contributing to the computation. In scenario (1) we send both the numerator as
the denominator from the computation server to the decryptor, which results in
a communication cost of 1.8 MB. In scenario (2) we only have to send one value,
which gives a communication cost of 0.54 MB.

5 Secure Multiparty Computation Approach

To address the challenge of disease gene identification using secure multiparty
computation techniques, in the setting described in Section 3, we deploy MAS-
COT [27]. We selected MASCOT [27] as the most suitable multiparty compu-
tation solution, because it is currently the most efficient proposal, offering ma-
licious static security with a dishonest majority. This means that any number
of the computing parties may deviate from the protocol execution, and this will
be detected without leaking information, other than what the correct protocol
execution would reveal. Corruption may only occur prior to the beginning of the
protocol execution, affecting up to n− 1 (out of the n) computing parties.

86

5.1 Setup and Security Assumptions

For our multiparty computation approach, we first need to determine the number
of computation servers n (n ≥ 2) that we have at our disposal. Given that the
underlying protocol offers security against any coalition of n − 1 computation
servers, we consider the security of the whole system to increase as the number
of computation servers increases. However, the number of computation servers
is inversly proportional to the efficiency of the solution. Therefore, we consider
that three computation servers is an adequate number of servers, both from an
efficiency/plausibility perspective, and from a security perspective. If any two
of the three computation servers that we assume get compromised, or otherwise
behave dishonestly, or even collude, the solution still guarantees input privacy,
and does not accept incorrect results.

We assume a preprocessing phase that can take place offline, at any moment
prior to the actual protocol execution. This is to create the necessary randomness
for the medical centers to contribute their inputs in a secret shared manner to the
computation servers. In addition, the preprocessing phase creates authenticated
randomness to be used in the online phase, so as to boost the efficiency of
computing multiplications on the shares, which requires interaction amongst
the servers.

The medical centers that wish to contribute their private inputs, first need
to agree on a common format for this data (e.g., what is the order of sending
the contingency tables). Then, they need to secret share their contingency ta-
bles to the three computation servers, which can also be pushed to an offline,
preprocessing phase. Given that all contributing medical centers have shared
their private contingency tables to the computation servers, the online phase
starts. During the online phase the servers perform both local, and interactive
secure computations, and they finally reveal per contingency table whether the
relationship between a mutation at a certain DNA position, and a disease is sig-
nificant or not, without disclosing further information on the underlying data.
A schematic representation of this approach is presented in Figure 2.

5.2 Preliminaries

Additive Secret Sharing A secret sharing scheme is a protocol, which allows
(some of) the protocol participants to share their secret inputs amongst all other
protocol participants, in such a way that nothing is revealed to the individual
participants about the secret input. In some instances of secret sharing schemes,
a subset of the protocol participants, called the qualified set, can reconstruct the
original secret input, when they engage in the reconstruction protocol. Other

87

Medical

center 1

Medical

center 2

Medical

center n

Medical

center n-1

.

.

.

Public Table Disease

position 1 significant

position 2 …

… non-significant

Position 3.000.000.000 …

Computation

Server 1

j Secret

share the contingency

tables

k Collaboratively

perform secure

computation

l Send

Yes/No

answer

Computation

Server 2

Computation

Server 3

*authenticated

communication

channels

Fig. 2: A schematic representation of the multiparty computation scenario
Any time prior to the protocol execution each of the medical centers computes their local con-

tingency tables, and secret shares them to the three computation servers, as indicated in step
1O of the protocol. In step 2O, the computation servers securely compute the χ2 value, and

perform a secure comparison to determine whether the value is significant or not. This reveals

no information about the inputs, or the actual χ2 value to the individual computation servers.

In step 3O the computation servers reconstruct the final result, which indicates significance or

non-significance, by combining their individual secret shares, and they publish this result in the

public table.

88

schemes, such as additive secret sharing, require all protocol participants to
contribute their shares for the reconstruction protocol to work.

Additive secret sharing is essentially masking the input of a protocol partic-
ipant x by subtracting a random value r from it. Given that the value of r is
only known to the inputting participant, and that the rest of the participants
hold shares [[r]] of this value (which can be done in a preprocessing stage), secure
shares of x can be created as follows: The inputting party computes ε = x− r,
and broadcasts it to the rest of the participants. All other parties can now com-
pute their own shares of the input x as [[x]] = [[r]] + ε . It is easy to see that this
scheme enjoys an additively homomorphic property, allowing additions of shares,
and linear functions to be directly computed locally on the shares. Hence, no
communication amongst the protocol participants is required to perform addi-
tions on these additively secret shared values.

Oblivious Transfer Oblivious Transfer (OT) is a cryptographic primitive,
which allows a sender to transfer only one (or none) out of many values to a
receiver, while remaining oblivious as to which value has been received (if any).
Oblivious transfer was introduced by Rabin [36] in 1981. Basic OT construc-
tions make use of public key encryption primitives to allow the aforementioned
functionality. More precisely, an 1-out-of-2 OT requires the sender to be in pos-
session of a public/private key pair, generate, and send two random messages
to the receiver, decrypt two messages, and send two messages to the receiver.
The receiver obtains the public key of the sender, along with the two random
messages that the latter has selected, performs one encryption, and one blind-
ing, sends the resulting message to the sender, and finally inverts the blinding
to retrieve the desired message. For more information on basic OT, we refer the
reader to the work of Even et al. [20].

Many works have considered extending OT so as to make it practically effi-
cient, with the most notable work of Ishai et al. [24]. Under the assumption that
a random oracle H, which can be instantiated by a hash function family, exists,
Ishai et al. [24] show how to perform only a few OTs from scratch, and then
be able to perform many additional OTs at the cost of a constant number of
invocations of the random oracle. The actively secure version of their protocol
comes with an increase at the cost of the protocol by a factor σ, for σ a statistical
security parameter. More recently, Keller et al. [26] presented an actively secure
OT extension protocol, where malicious security comes at negligible extra cost.

Correlated Oblivious Product Evaluation - COPE The Correlated Obliv-
ious Product Evaluation (COPE) protocol presented by Keller et al. [27] is es-
sentially a generalization of Ishai et al.’s protocol [24] to the arithmetic case

89

(instead of the original binary). The protocol is executed between two parties,
and allows them to obtain an additive sharing of the product x · ∆, where the
sender holds x ∈ F, and the receiver holds ∆ ∈ F. COPE is based on Gilboa’s
oblivious product evaluation [22], where the parties run k sets of 1-out-of-2 OTs,
on k-bit inputs. The proposed product evaluation is correlated in the sense that
the one party’s input ∆ is fixed at the beginning of the protocol for many pro-
tocol runs. After a one-time expensive initialization of the COPE protocol, the
extension step, generating fresh OTs without the public-key crypto extensive
costs, can be repeated several times on new inputs x.

MASCOT Online Phase The online phase of MASCOT [27] is essentially
the same as the one of the SPDZ protocol [17, 16]. This family of protocols
uses additive secret sharing, allowing additions, and linear functions to be com-
puted locally by the protocol participants, without requiring communication. To
achieve active security, information-theoretic MACs are being used, which pro-
vide authenticity, and integrity of the messages. A secret shared value x, shared
amongst n parties, is represented as follows:

[[x]] = (x(1), ..., x(n),m(1), ...,m(n), ∆(1), ..., ∆(n)), (5)

where, x(i) is the random share, m(i) is the random MAC share, and ∆(i) is the
MAC key share, such that m = x ·∆.

To perform multiplications of secret shared values, multiplication triples à la
Beaver [5] from the preprocessing phase are required, with which the parties can
compute shares of the required product. The multiplication triples are of the
form: ([[a]], [[b]], [[c]]), with a, b uniformly random, and c = a · b. More precisely,
to compute [[z]] = [[x · y]], on input [[x]], [[y]], and given a multiplication triple
([[a]], [[b]], [[c]]), the parties compute ε = [[x]] − [[a]], and ρ = [[y]] − [[b]], and open
these two values. Then, they compute [[z]] = [[c]] + ε · [[b]] + ρ · [[a]] + ε · ρ .

MASCOT Offline Phase - Preprocessing The goal of the preprocessing
phase is to generate random values for the parties who wish to contribute in-
puts –so as to allow them to mask their inputs in an authenticated manner–,
and multiplication triples –so that multiplication of secret shared values can be
efficiently implemented in the online phase–.

The preprocessing is based on Oblivious Transfer techniques, and more pre-
cisely the authors of MASCOT [27], have generalized the OT extension idea
presented by Ishai et al. [24] to the arithmetic circuit case. For every party that
wishes to contribute an input, the COPE protocol is executed, to create an au-
thenticated version of the input, based on the global MAC key ∆. Creation of
(authenticated) additive shares is straightforward. Recall that both the shares,

90

and their MACs are linear. Hence, computing linear functions on (authenticated)
shared values is also straightforward. To ensure active security, the party that
wishes to contribute an input first authenticates a random input x0 together
with the actual inputs m. Then, the party opens a random linear combination
of the inputs including x0, and all other parties check the MAC on this linear
combination. This way the party contributing input is committed to them, and
the actual inputs are masked by the random input x0.

For the triple generation, the parties invoke an OT to compute the secret
sharing of b ∈ F, and a ∈ Fτ , where τ ≥ 3 is a security related parameter,
meaning that they run τ copies of the basic two-party COPE per pair of parties.
This ensures that a has enough randomness to produce a triple. To protect
against malicious behavior, the parties sample two sets of random coefficients r,
and r̂ ∈ Fτ , from which they generate two triples with the same b component.
Upon authentication of their shares, the parties ensure correctness of one of the
triples, by sacrificing the other triple.

5.3 Privacy-Preserving Chi-Squared Thresholding Protocol

Our protocol calculates the units of inequality (4) using MASCOT [27]. For the
inequality check, we apply the masking technique described in Section 3.1. In ad-
dition to the masking-based comparison, we have also implemented the protocol
using the standard, bit-decomposition based secure comparison, as implemented
in SPDZ-2 [8]. We have also made a non-secure implementation avoiding com-
pletely the comparison. All these cases are presented in Section 5.4, analyzing
their performance. The online phase of the masking-based version of our protocol
is detailed in Algorithm 2.

In our setting, we consider the computing parties that actually execute our
protocol (i.e., the computation servers), different from the parties contributing
their inputs (i.e., the medical centers), as shown in Figure 2. For the offline
phase, together with the preparation of the triples, and randomness discussed
in Section 5.2, we wish to perform the required preprocessing that will allow
the medical centers to correctly contribute their inputs, without compromising
privacy. To do that we use the protocols proposed by Damg̊ard et al. [15]. First
we use the Output Delivery protocol to reveal a preprocessed random value r
only to the inputting party, who can then broadcast his masked input x− r to
the computing parties. Based on this value, and the preprocessed randomness r,
the servers can locally compute their share of x, as [[x]] = (x− r) + [[r]].

5.4 Implementation and Performance Analysis

We have built a proof of concept implementation of our MPC approach using
the platform provided by the authors of MASCOT [27] in SPDZ-2 [8]. We ran

91

Algorithm 2 v ← Chi-squaredTest(Nc,N[Nc], [[O[4][Nc]]], t, [[r]], [[r′]])
1: Input: Nc: number of centers contributing data,

2: N[Nc]: a table of size Nc containing the total sample size Ni of every center i,

3: [[O[4][Nc]]]: secret shared observed values of the 2×2 contingency table (mutation vs. disease),

contributed by each of the Nc centers,

4: t : χ2 threshold value for the significance test,

5: [[r]], [[r′]]: secret shared random values r and r′

6: Output: v = 0 or 1; 0 → non-significant relationship between mutation, and disease, 1 →
significant relationship between mutation, and disease

7: for all Pj do

8: {Each party Pj engages in the protocol}
9: for all Ci do

10: [[Ok,l]]← [[
∑Nc

i=1Ok,l]]i, k = 1, 2; l = 1, 2

11: end for

12: N ←
∑Nc

i=1Ni

13: [[RTi]]← [[Oi,1 +Oi,2]], i = 1, 2

14: [[CTi]]← [[O1,i +O2,i]], i = 1, 2

15: [[modelk,l]]← [[RTk · CTl]], k = 1, 2, l = 1, 2

16: [[square]]← [[(N ·O1,1 −model1,1)2]]
17: [[Ui,j]]← [[square ·modeli,j]], i = 1, 2; j = 1, 2

18: [[numerator]]← [[
∑2,2

i=1,j=1 Ui,j]]

19: [[denominator]]← N · [[model1,1 ·model2,2]]
20: [[difference]]← [[numerator]]− t · [[denominator]]
21: [[MaskedDifference]]← [[difference · r + r′]]
22: MaskedDifference← Open([[MaskedDifference]])

23: if MaskedDifference > 0 then

24: return 1

25: else

26: return 0

27: end if

28: end for

92

our experiments for timing the execution of our protocol on a desktop computer
equipped with an Intel(R) Core(TM) i5-3570K processor, at 3.40GHz, with 16.00
GB RAM, and the Ubuntu 17.04 operating system.

We have only considered the online phase of the protocol, as the preprocessing
is protocol-independent, and can be executed at any moment, well before the
execution of the online phase. We note, however, that the offline phase is also
practically efficient, and we refer the reader to MASCOT [27] for more details
on the throughput of the offline phase. To give an indication of the cost of the
offline phase of the protocol, we estimate the triple generation throughput, based
on the experiment results presented by Keller et al. [27]. For three computation
servers, equipped with eight-core i7 3.1 GHz CPU, and 32 GB RAM, in a local
network with a 1 Gbit/s link per party, and a field Fp, with p a 128-bit prime,
approximately 2200 triples per second can be generated. Every time we recorded
timings, before the execution of the online phase, we ran the setup script provided
with the SPDZ-2 [8] software. This script simulates the offline phase, and creates
all the necessary randomness for the execution of the online phase. The fact that
the offline phase is simulated does not affect the performance, or efficiency of
the online phase.

Our experiments were conducted on localhost with three computation servers.
Hence, we do not take the network latency into account in the timing results we
report. We do present the size of the data that each server has to send, as well as
the communication rounds, and we consider this information to be sufficient for
the reader to calculate the additional communication cost, based on the available
network bandwidth.

For our performance analysis we have considered the following three scenarios:
(1) the case where we calculate the numerator, and denominator of the χ2 statis-
tic in the secret shared domain, and then open these two results; (2) the case
where the secure comparison is implemented as described in Section 3; and (3)
the case where we perform the secure comparison in the secret shared domain,
and then open only the “True/False” answer to this question, as implemented
in MASCOT. We selected these three scenarios, as the secure comparison is the
most costly operation we need to carry out, and we wish to assess its impact on
the performance of our protocol. Thus, with scenario (1) we completely avoid
the secure comparison by opening the numerator, and denominator separately;
with scenario (2) we perform the secure comparison using our randomization
approach; and with scenario (3) we use the most popular method to carry out a
secure comparison (see [9]), which is based on bit-decomposition –an inherrently
inefficient approach–. Note that scenario (1) does not satisfy the security re-
quirements of our application, and is presented only for the sake of performance
comparison.

93

For all our timing results we have executed our protocol 10 times per case, and
calculated the average execution time. The communication cost of the protocol is
constant. For our experiments we have established that all input data is shared
by one of the computation servers (namely Server 1), instead of the medical
centers that would contribute the data in a real setting. This is reflected in the
communication cost of the protocol for Server 1, which has to secret share all
input data. Note, that in practice the secret sharing step can be pushed to an
offline preprocessing phase.

In Table 5 we present the execution times of our approach, as well as the data
sent by Server 1 (including the sharing of the original inputs), without performing
a secure comparison (scenario 1). Server 1 is presented separately, because it has
to do some extra tasks, such as sharing the inputs, collect all the final results, and
print them, which is reflected in its execution times. The other two servers are
grouped together, as their execution times are similar. Although we would expect
the execution times to grow with the number of medical centers contributing
data, this is not the case. This is because the execution times are so small that
they can be highly affected by the computing environment. Furthermore, the
communication cost of Server 1 includes also the secret sharing of the inputs.
This is how all three scenarios have been executed. Recall, however, that the
sharing of the inputs can be performed in a preprocessing phase, prior to the
actual protocol execution, allowing the online phase to be less communication
intensive. The communication cost for the other two servers is constant –1228
bytes–, since they do not share any inputs. The protocol completes its execution
in 4 communication rounds, and consumes 9 triples, and 1 square from the
preprocessing.

Table 5: Performance with No Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Sent Data CPU Time

20 200000 1.6 ms 4152 bytes 1.3 ms

40 400000 1.6 ms 6712 bytes 1.4 ms

60 600000 1.5 ms 9272 bytes 1.3 ms

80 800000 1.7 ms 11832 bytes 1.4 ms

100 1000000 1.7 ms 14392 bytes 1.4 ms

In Table 6 we provide the execution times of our alternative secure approach,
which is based on randomizing the difference of the two numbers to be compared
(scenario 2). Note that in the previously presented scenario (1) it is sufficient
to work in a prime field of 128 bits, as the numbers we operate with never

94

grow larger than 114 bits. To perform the randomization of the difference of our
numbers securely, however, we need to multiply them with a (random) number
of roughly the same size. This implies that we need to work in a field of 256 bits
to be able to handle the size of our quantities. More precisely, we calculated the
largest that our quantities can grow in all cases, and we selected the random
numbers to be upper bounded by these sizes. Our numbers can grow up to
100, 106, 110, 112, and 114 bits for 20, 40, 60, 80, and 100 medical centers,
respectively. For this scenario, and the case of 20 centers, Server 1 has to send
82 (256-bit) elements (instead of 128-bit elements) to the two other servers.
The two additional elements that have to be sent are the randomness r, and
r′, which is used to mask the difference that facilitates the execution of the
secure comparison. The communication cost for Server 1 is analyzed in Table 6,
while for the other two servers is constant and equal to 1632 bytes. The protocol
completes its execution in 5 communication rounds, and consumes 10 triples,
and 1 square from the preprocessing.

Table 6: Performance with Randomized Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Data Sent CPU Time

20 200000 1.7 ms 7616 bytes 1.4 ms

40 400000 1.7 ms 12736 bytes 1.5 ms

60 600000 1.9 ms 17856 bytes 1.7 ms

80 800000 2.1 ms 22976 bytes 1.8 ms

100 1000000 2.2 ms 28096 bytes 1.9 ms

In Table 7 we display the execution times of our protocol, using the standard,
bit-decomposition based, secure comparison (scenario 3). Similarly to the second
scenario, due to the size of our inputs (up to 114 bits), we need to scale our inputs
representation to 256 bits field elements, so as to achieve adequate statistical
security (always ≥ 40 bits). The protocol communication cost of Server 2, and
3 is constant –4244 bytes–, while for Server 1 it varies, based on the number of
inputs it has to share, as shown in Table 7. The protocol completes its execution
in 10 communication rounds, and consumes 50 triples, 1 square, and 31 bits from
the preprocessing. As expected, this is the most inefficient of the three scenarios,
both in terms of communication, and in terms of computational cost.

6 Conclusion

From the setup description of both suggested techniques, one can determine
the first significant difference between them: in the homomorphic setting, the

95

Table 7: Performance with Standard Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Data Sent CPU Time

20 200000 2.2 ms 12712 bytes 1.9 ms

40 400000 2.3 ms 17832 bytes 2.0 ms

60 600000 2.3 ms 22952 bytes 2.0 ms

80 800000 2.5 ms 28072 bytes 2.2 ms

100 1000000 2.4 ms 33192 bytes 2.1 ms

medical centers only have to encrypt, and send their data to one party, namely
the computation server; while for the multiparty computation they have to secret
share their data with two or more computation servers. The execution times
resulting from our experiments show that the MPC approach is significantly
faster than the homomorphic approach. Even if we assume the encryption of the
contingency tables by the medical centers to be part of a preprocessing phase, the
homomorphic approach will take more than a second to complete its execution,
while the computations in the MPC setup take only a few milliseconds. In terms
of communication cost, the homomorphic setup has the advantage that it needs
no communication during the computations. However, in terms of total amount
of data that has to be transferred between the different parties, the MPC setup
outperforms the homomorphic setup once more. We therefore recommend the
MPC approach, as it is the most efficient out of the two approaches, and it does
not rely on the strong assumption of semi-honest parties participating in the
protocol.

Having compared the HE, and MPC approaches in a setting addressing the
exact same problem, we have established that MPC can provide more efficient
solutions with more relaxed security assumptions. Thus, we plan to proceed with
future work on computing state-of-the-art statistics used in GWASs (instead of
the more simple χ2 test) in a privacy-preserving way, using MPC. To this end,
we consider an interesting first step to study how we can express, or approximate
logistic regression with low degree polynomials. Then, we can deploy MPC for
computing them securely, which will yield solutions efficient enough to be used
in practice.

Our work shows that, as long as we can express the statistics to be calculated
with low-degree polynomials, privacy-preserving GWAS has become practical.
We made the first step to efficient privacy-preserving GWAS with the secure
calculation of the χ2 test. Our solutions provide provable security guarantees,
while being efficient for realistic sample sizes, and number of medical centers

96

contributing data to the studies. Interestingly, our solutions scale logarithmically
in the number of subjects contributing data to the study, which means that as
GWAS population sizes grow, our approach will remain suitable. We also propose
a new masking-based comparison method, and show that in certain application
scenarios, such as the GWAS scenario at hand, comparisons can be executed
efficiently even in the HE setting, without leaking useful information about the
underlying data.

Acknowledgements

This work was supported by the European Commission under the ICT pro-
gramme with contract H2020-ICT-2014-1 644209 HEAT. Additionally, Yves
Moreau, Jaak Simm, and Amin Ardeshirdavani were funded by Research Council
KU Leuven: CoE PFV/10/016 SymBioSys; Flemish Government: IWT: Exapta-
tion; O&O ExaScience Life Pharma; Exaptation, PhD grants Industrial Research
fund (IOF): IOF/KP (Identification and development of new classes of immuno-
suppressive compounds and discovery of new key proteins involved in the T and
B-cell activation); FWO 06260 (Iterative and multi-level methods for Bayesian
multi-relational factorization with features); imec strategic funding 2017.

References

1. Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier Killijian,

and Tancrède Lepoint. Nfllib: Ntt-based fast lattice library. In Kazue Sako, editor, Topics in

Cryptology - CT-RSA 2016, pages 341–356, Cham, 2016. Springer International Publishing.

2. Martin Albrecht. Complexity Estimates for Solving LWE. https://bitbucket.org/malb/

lwe-estimator/raw/HEAD/estimator.py, 2000–2004.

3. Martin R. Albrecht, Rachel Player, and Sam Scott. On the Concrete Hardness of Learning

with Errors. J. Mathematical Cryptology, 9(3):169–203, 2015.

4. Amin Ardeshirdavani, Erika Souche, Luc Dehaspe, Jeroen Van Houdt, Joris Robert Ver-

meesch, and Yves Moreau. NGS-Logistics: Federated Analysis of NGS Sequence Variants

Across Multiple Locations. Genome medicine, 6(9):71, 2014.

5. Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Annual

International Cryptology Conference, pages 420–432. Springer, 1991.

6. Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Fred-

erik Vercauteren. Faster Homomorphic Function Evaluation using Non-Integral Base Encod-

ing. Cryptology ePrint Archive, Report 2017/333, 2017. http://eprint.iacr.org/2017/

333.

7. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a

Ring-Based Fully Homomorphic Encryption Scheme. In Martijn Stam, editor, Cryptography

and Coding 2013, volume 8308 of LNCS, pages 45–64. Springer, 2013.

97

8. Bristol Crypto. SPDZ-2: Multiparty Computation with SPDZ Online Phase and MASCOT

Offline Phase. https://github.com/bristolcrypto/SPDZ-2, 2016.

9. Octavian Catrina and Sebastiaan De Hoogh. Improved Primitives for Secure Multiparty In-

teger Computation. In International Conference on Security and Cryptography for Networks,

pages 182–199. Springer, 2010.

10. Hyunghoon Cho, David J Wu, and Bonnie Berger. Secure genome-wide association analysis

using multiparty computation. Nature biotechnology, 36(6):547, 2018.

11. Scott D Constable, Yuzhe Tang, Shuang Wang, Xiaoqian Jiang, and Steve Chapin. Privacy-

Preserving GWAS Analysis on Federated Genomic Datasets. BMC medical informatics and

decision making, 15(5):S2, 2015.

12. Anamaria Costache, Nigel P Smart, Srinivas Vivek, and Adrian Waller. Fixed Point Arith-

metic in SHE Schemes. In SAC 2016, LNCS. Springer, 2016.

13. CryptoExperts. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib, 2016.

14. CryptoExperts, INP ENSEEIHT, and Quarkslab. NFLlib. https://github.com/

quarkslab/NFLlib, 2016.

15. Ivan Damg̊ard, Kasper Damg̊ard, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas Toft.

Confidential Benchmarking based on Multiparty Computation. IACR Cryptology ePrint

Archive, 2015:1006, 2015.

16. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P

Smart. Practical Covertly Secure MPC for Dishonest Majority–or: Breaking the SPDZ

Limits. In European Symposium on Research in Computer Security, pages 1–18. Springer,

2013.

17. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty Computation

from Somewhat Homomorphic Encryption. In Advances in Cryptology–CRYPTO 2012, pages

643–662. Springer, 2012.

18. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John

Wernsing. Manual for Using Homomorphic Encryption for Bioinformatics. Technical report,

November 2015.

19. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, Michael Naehrig, and

John Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data with High

Throughput and Accuracy. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,

International Conference on Machine Learning, volume 48, pages 201–210. JMLR.org, 2016.

20. Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Protocol for Signing

Contracts. Communications of the ACM, 28(6):637–647, 1985.

21. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption.

IACR Cryptology ePrint Archive, 2012:144, 2012.

22. Niv Gilboa. Two Party RSA Key Generation. In Annual International Cryptology Confer-

ence, pages 116–129. Springer, 1999.

98

23. Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill

Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W Craig.

Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures

using High-Density SNP Genotyping Microarrays. PLoS genetics, 4(8):e1000167, 2008.

24. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious Transfers

Efficiently. In Annual International Cryptology Conference, pages 145–161. Springer, 2003.

25. Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A New Way to Protect Privacy in

Large-Scale Genome-Wide Association Studies. Bioinformatics, 29(7):886–893, 2013.

26. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively Secure OT Extension with

Optimal Overhead. In Annual Cryptology Conference, pages 724–741. Springer, 2015.

27. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic

secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Con-

ference on Computer and Communications Security, pages 830–842, Vienna, Austria, Octo-

ber 24–28, 2016. ACM Press.

28. Miran Kim and Kristin Lauter. Private Genome Analysis through Homomorphic Encryption.

15:S3, 12 2015.

29. Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted

genomic data. In Diego F. Aranha and Alfred Menezes, editors, Progress in Cryptology -

LATINCRYPT 2014, pages 3–27, Cham, 2015. Springer International Publishing.

30. Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private Computation on Encrypted

Genomic Data, pages 3–27. Springer International Publishing, Cham, 2015.

31. Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-Preserving Genome-Wide Associa-

tion Studies on Cloud Environment using Fully Homomorphic Encryption. 15:S1, 12 2015.

32. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with

Errors over Rings. J. ACM, 60(6):Art. 43, 35, 2013.

33. Bradley Malin. Re-identification of familial database records. In AMIA annual symposium

proceedings, volume 2006, page 524. American Medical Informatics Association, 2006.

34. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can Homomorphic En-

cryption be Practical? In Christian Cachin and Thomas Ristenpart, editors, ACM Cloud

Computing Security Workshop – CCSW, pages 113–124. ACM, 2011.

35. Karl Pearson. X. On the Criterion that a Given System of Deviations from the Probable in

the Case of a Correlated System of Variables is such that it can be Reasonably Supposed

to have Arisen from Random Sampling. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 50(302):157–175, 1900.

36. Michael O Rabin. How to Exchange Secrets with Oblivious Transfer. Technical report, Aiken

Computation Lab, Harvard University, 1981.

37. Md Nazmus Sadat, Md Momin Al Aziz, Noman Mohammed, Feng Chen, Shuang Wang,

and Xiaoqian Jiang. SAFETY: Secure GWAS in Federated Environment through a Hybrid

Solution with Intel SGX and Homomorphic Encryption. CoRR, abs/1703.02577:1–17, 2017.

99

38. Sean Simmons and Bonnie Berger. Realizing Privacy Preserving Genome-Wide Association

Studies. Bioinformatics, 32(9):1293–1300, 2016.

39. The Global Alliance for Genomics and Health. A Federated Ecosystem for Sharing Genomic,

Clinical Data. Science, 352(6291):1278–1280, jun 2016.

40. Caroline Uhlerop, Aleksandra Slavković, and Stephen E Fienberg. Privacy-Preserving Data

Sharing for Genome-Wide Association Studies. The Journal of privacy and confidentiality,

5(1):137, 2013.

41. Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. Learning your

identity and disease from research papers: Information leaks in genome wide association

study. In Proceedings of the 16th ACM Conference on Computer and Communications

Security, CCS ’09, pages 534–544, New York, NY, USA, 2009. ACM.

42. Yihua Zhang, Marina Blanton, and Ghada Almashaqbeh. Secure Distributed Genome Anal-

ysis for GWAS and Sequence Comparison Computation. BMC medical informatics and

decision making, 15(5):S4, 2015.

43. Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong, and Shuang Wang. Foresee:

Fully outsourced secure genome study based on homomorphic encryption. BMC Medical

Informatics and Decision Making, 15(5):S5, Dec 2015.

100

Chapter 8

EPIC: Efficient Private Image
Classification (or: Learning
from the Masters)

Publication data

E. Makri, D. Rotaru, N. P. Smart, F. Vercauteren. “EPIC: Efficient Private
Image Classification (or: Learning from the Masters)” In Cryptographers’ Track
at the RSA Conference Springer, Cham., 2019, pp. 473-492.

101

EPIC: Efficient Private Image Classification
(or: Learning from the Masters)

Eleftheria Makri1,2, Dragos Rotaru1,3, Nigel P. Smart1,3, and Frederik
Vercauteren1

1 imec-COSIC, KU Leuven, Belgium.
2 ABRR, Saxion University of Applied Sciences, The Netherlands.

3 University of Bristol, UK.

firstname.lastname@esat.kuleuven.be

Abstract. Outsourcing an image classification task raises privacy concerns, both

from the image provider’s perspective, who wishes to keep their images confidential,

and from the classification algorithm provider’s perspective, who wishes to protect

the intellectual property of their classifier. We propose EPIC, an efficient private

image classification system based on support vector machine (SVM) learning, secure

against malicious adversaries. EPIC builds upon transfer learning techniques known

from the Machine Learning (ML) literature and minimizes the load on the privacy-

preserving part. Our solution is based on Secure Multiparty Computation (MPC),

it is 34 times faster than Gazelle (USENIX 2018) –the state-of-the-art in private

image classification– and it improves the communication cost by 50 times, with a 7%

higher accuracy on CIFAR-10 dataset. For the same accuracy as Gazelle reaches on

CIFAR-10, EPIC is 700 times faster and the communication cost is reduced by 500

times.

1 Introduction

Visual object recognition is an important machine learning application, deployed
in numerous real-life settings. Machine Learning as a Service (MLaaS) is becom-
ing increasingly popular in the era of cloud computing, data mining, and knowl-
edge extraction. Object recognition is such a machine learning task that can be
provided as a cloud service. However, in most application scenarios, straightfor-
ward outsourcing of the object recognition task is not possible due to privacy
concerns. Generally, the image holder who wishes to perform the image classifi-
cation process, requires their input images to remain confidential. On the other
hand, the classification algorithm provider wishes to commercially exploit their
algorithm; hence, requires the algorithm parameters to remain confidential.

We consider an approach, which facilitates the outsourcing of the image clas-
sification task to an external classification algorithm provider, without requiring

102

the establishment of trust, contractually or otherwise, between the involved par-
ties. We focus on the evaluation task (i.e., labeling a new unclassified image), and
not the learning task. Our proposal is based on Secure Multiparty Computation
(MPC), and allows for private image classification without revealing anything
about the private images of the image holder, nor about the parameters of the
classification algorithm. Unlike previous work [4,5,20], we can fully outsource
the task at hand, in such a way that the classification algorithm provider does
not need to be the same entity as the cloud computing provider. Although any
of the involved parties (i.e., the classification algorithm provider, and the image
holder) can play the role of one of the MPC servers, this is not a requirement for
guaranteeing the security of our proposal. MPC allows distribution of trust to
two or more parties. As long as the image holder (resp. the classification algo-
rithm provider) trusts at least one of the MPC servers, their input images (resp.
their classification algorithm parameters) remain secret.

MPC allows a set of mutually distrusting parties to jointly compute a func-
tion on their inputs, without revealing anything about these inputs (other than
what can be inferred from the function output itself). Currently, MPC allows
one to compute relatively simple functions on private data; arbitrarily complex
functions can be supported, but with an often prohibitive computational cost.
EPIC, our privacy-preserving image classification solution, combines the tech-
niques of transfer learning feature extraction, support vector machine (SVM)
classification, and MPC. In this work we use recently developed techniques for
generic image classification (within the ImageNet competition) such as transfer
learning to extract powerful generic features. Transfer learning using raw CNN
features has been studied extensively by Azizpour et al. [3], and Yosinski et
al. [55]. Then, the computation done in the MPC setting is minimized to only
evaluate a simple function with secret shared inputs.

We focus on classification via SVM, as opposed to using more sophisticated
techniques, such as Neural Networks (NNs), in the privacy-preserving domain to
minimize the computational cost. While the field of private image classification
is shifting towards NN-based approaches [25,33,43], we show that it is not neces-
sary to use private NNs, as we can achieve classification with better accuracy by
using generic NNs to improve the feature extraction techniques used. Although
Convolutional NNs (CNNs) are the state-of-the-art for image classification [23],
we confirm that SVMs can achieve high accuracy, as long as they are provided
with good quality features. Transforming a NN to a privacy-preserving one re-
sults in inefficient solutions (e.g., 570 seconds for one image classification by
CryptoNets [20]).

A schematic representation of the application scenario treated by EPIC is
given in Fig. 1. Using additive secret sharing techniques both the classification

103

Fig. 1. A schematic representation of the private image classification scenario.

algorithm provider, and the image holder share their inputs to the n ≥ 2 MPC
servers. Note that no information about the actual secret inputs can be gained
by the individual shares alone. Thus, each MPC server learns nothing about
the inputs of the two parties. The cluster of the MPC servers comprise the
cloud computing provider, which together execute the MPC protocol to produce
the final classification result. The MPC servers communicate via authenticated
channels to accomplish what the protocol prescribes. The protocol completes
its execution by having all MPC servers sending their share of the final classi-
fication result to the designated party, who can then reconstruct the result by
combining the received shares. This party can be the image holder, or an external
analyst, assigned to examine the classification results, without getting access to
the underlying private images. The involved parties (image holder, classification
algorithm provider, and –potentially– analyst), may play the role of the MPC
servers themselves, avoiding completely the outsourcing to the cloud provider(s).

A key aspect of our work is how the data is processed before the MPC engine
is used to perform the classification. The SVM classification is performed on so-
called feature vectors, and not directly on the images. The way one determines
these feature vectors not only affects accuracy, but it also has an impact on
security. As shown in Fig. 1 the image holder performs the feature extraction
on the input image before it is passed to the secure gateway. Thus this feature
extaction must not be specific to the algorithm classification provider; otherwise
the extracted features could reveal information about exactly what is being

104

classified. We apply a generic feature extraction method, which is independent
of the underlying classification task.

In particular, we employ TensorFlow [1], to extract features based on the ac-
tivation of a deep CNN (specifically the Inception-v3 [47] CNN) trained on a set
of object recognition tasks, different from the target task. This method is known
as CNN-off-the-shelf in the ML literature, and it has been successfully applied
in various image recognition tasks [15,42]. Since the CNN is generic, it can be
released in the clear, and hence become part of the image holder’s preprocess-
ing. This not only gives us a security benefit, but it also significantly improves
the accuracy of our method. There are many public CNNs available online for
generic feature extraction in Caffe’s Model Zoo, which can be used with our
EPIC solution to add a privacy dimension to a typical ML problem [24]. In our
paper we selected Inception-v3 as the public CNN to extract features, because it
suits many generic image recognition tasks, and allows us to benchmark EPIC
against previous solutions on traditional datasets such as CIFAR-10.

We also present a second variant of EPIC, which aims at allowing a tradeoff
between the accuracy of the classifier’s predictions, and its performance. It does
so by deploying a kernel approximation method, on top of Inception-v3 features
for dimensionality reduction.

We implemented our solution using SPDZ [7], which was introduced by Damg̊ard
et al. [12,13], it is based on additive secret sharing, and it is proven secure in the
active security model, in the full versions of the papers [12,13]. We assume the
reader to be familiar with MPC, but we discuss preliminaries on the techniques
used by EPIC for completeness in the full version of our paper [34]. EPIC outper-
forms the state-of-the-art in secure neural network inference [25], both in terms
of efficiency, and in terms of prediction accuracy. Our implementation shows that
privacy-preserving image classification has become practical. As shown in Ta-
ble 1, we are the only provably secure work in the active security model, which
is a property we inherit by the chosen implementation frameworks. A system
like EPIC could find application in numerous real-life cases, such as in purchase
scenarios where visual insepction is performed, or when targeted surveillance is
required without compromising non-targets’ privacy.

Our contributions are thus four fold: i) We enable full outsourcing of privacy-
preserving image classification to a third independent party using a simple tech-
nique yet much faster and accurate than others, which require complicated ma-
chinery. ii) Our solution does not leak any information about the private images,
nor the classifier, while being the first to provide active security. iii) We show
how to deploy a data-independent feature extraction method to alleviate the
privacy-preserving computations, while increasing accuracy and efficiency. iv)

105

We demonstrate the practicality of our approach, both in terms of efficiency,
and in terms of accuracy, by conducting experiments on realistic datasets.

2 Related Work

Privacy-preserving machine learning can focus either on providing a secure train-
ing phase, a secure classification phase, or both secure training and classifica-
tion phases. The first research works in the field aimed at designing a privacy-
preserving training phase. Recently, due to the advent of cloud computing, and
Machine Learning as a Service, more and more works focus on the design of a
privacy-preserving classification phase. Fewer works have attempted to address
both the training, and the classification phases in a privacy-preserving manner.

To facilitate an easy comparison of the related work, we summarize the main
features of each proposal in Table 1.

• The first column of Table 1 is the reference to the corresponding paper.
• The second column indicates whether the work considers secure training (T),

secure training and classification (T+C), or only secure classification (C).
• The third column indicates the security model, under which the proposed

protocols are secure, where P stands for passive security, and A stands for
active security. N/A (not applicable) refers to differential privacy techniques,
which are designed to protect against inference about the inputs from the
outputs, and thus are orthogonal to the issue of securing the computation
which we deal with.
• The fourth column denotes the method used to preserve privacy. DP stands

for differential privacy; SP stands for selective privacy, and refers to the unique
characteristic of the work of Shokri and Shmatikov [46] allowing the users to
decide how much private information about their learned models they wish
to reveal. SHE stands for Somewhat Homomorphic Encryption, 2-PC for 2-
Party Computation, and MPC stands for Multiparty Computation (which
could include 2-PC).
• The fifth column lists the training method(s) used. N-L SVM stands for non-

linear SVM, NN for Neural Networks, LM for Linear Means, FLD for Fisher’s
Linear Discriminant, HD for hyperplane decision, LIR for linear regression,
LOR for logistic regression, and DT for decision trees.
• The sixth column lists the information that is revealed by the protocol exe-

cution. C stands for information about the classifier, and TD for information
about the training data. We note with boldface letters the information that is
intentionally revealed by the protocol execution, and we mark with an asterisk
the information that is protected by means of differential privacy techniques.

106

Func. Sec. model Privacy mthd Train mthd Info leak Impl.

[30] T N/A DP N-L SVM C; TD∗ X
[31] T N/A DP N-L SVM C; TD∗ X
[46] T P SP NN C X
[51] T P MPC N-L SVM C X
[48] T P MPC; DP N-L SVM C X
[9] T P MPC; DP NN C∗ X
[21] T+C P SHE LM; FLD no X
[2] T+C P SHE Bayes; random forests no X
[29] T+C P 2-PC N-L SVM no ×
[10] T+C P 2-PC NN TD ×
[35] T+C P 2-PC NN; LIR; LOR no X
[20] C P SHE NN no X
[4] C P SHE N-L SVM C X
[8] C P SHE NN no ×
[6] C P SHE; 2-PC HD; Bayes; DT no X
[41] C P 2-PC N-L SVM no X
[5] C P 2-PC NN C ×
[36] C P 2-PC NN no X
[45] C P 2-PC NN no X
[33] C P 2-PC NN filter size X
[43] C P 2-PC NN; SVM no X
[25] C P 2-PC NN no X

EPIC C A MPC SVM no X
Table 1. Comparison of the related work.

Information that can potentially, and unintentionally be leaked is noted with
normal, non-boldface letters.
• The last column indicates whether the work provides an implementation.

Training a SVM in a privacy-friendly way, has been previously considered
based on techniques of differential privacy [30,31]. Despite the little overhead
that these techniques incur, which makes them competitive from an efficiency
perspective, they do not consider the security of the actual computation during
the training or classification. Shokri and Shmatikov [46] achieve such privacy-
preserving collaborative deep learning with multiple participants, while refrain-
ing from using cryptographic techniques. Their work focuses on learning the NN,
but they also consider protecting the privacy of each individual’s NN, allowing
the participants to decide how much information to share about their models.

A lot of research has been devoted to provable privacy-preserving techniques
for training a classifier. Privacy-preserving data mining has been an active re-

107

search area since the seminal work of Lindell and Pinkas [32]. More recently,
Vaidya et al. [51] showed how to train a SVM classifier, in a privacy-preserving
manner, based on vertically, horizontally, and arbitrarily partitioned training
data. In follow-up work, Teo et al. [48] improved upon the efficiency of the
solution of Vaidya et al. [51], and showed that their approach scales well to ad-
dress the challenges of data mining on big data. Chase et al. [9] combine MPC
techniques with differential privacy techniques to achieve private neural net-
work learning. Their work provides provable security guarantees for the learning
phase (in the passive security model), and adds noise to the resulting network
to protect its privacy during classification.

A parallel research line aiming to address the same challenge, namely privacy-
preserving data mining, is based on homomorphic encryption (instead of MPC).
The notion of homomorphic encryption dates back to the work of Rivest et
al. [44], but only recently fully homomorphic encryption was devised [19]. This
type of homomorphic encryption allows the computation of any polynomial func-
tion on the encrypted data, and unlike MPC, it does not require communica-
tion, as the task can be outsourced to one single party. Since the seminal work
of Gentry [19], a lot of somewhat homomorphic encryption schemes have been
proposed, allowing computations of polynomial functions of a limited degree.
Graepel et al. [21] consider both machine learning training, and classification
based on encrypted data, with their solutions being secure in the passive model.
Due to the selected homomorphic encryption scheme, Graepel et al. [21] cannot
treat comparisons efficiently, which excludes SVM-based solutions. Addressing
both learning, and classification based on extremely random forests, and näıve
Bayes networks, Aslett et al. [2], also work on homomorphically encrypted data.

One of the first private SVM classifiers was proposed by Laur et al. [29], which
addresses both the training and the classification in a privacy-preserving manner.
Their work combines the techniques of homomorphic encryption, secret sharing,
and circuit evaluation, into a passively secure 2-PC solution. Concurrently, and
independently Dahl [10] is working on using the same MPC framework as in our
work, to realize both the training, and the classification of CNN based privacy-
preserving algorithms. While Dahl [10] is deploying CNNs instead of SVM, he
needs to apply them in a non-black-box fashion. The protocol of Dahl [10] allows
some leakage of information during the training phase, which is not the case with
our approach. SecureML [35] also considers both training and classification in
the 2-PC setting, and the passive security model. These approaches [29,10,35]
can only treat the two-party setting, and cannot be trivially extended to allow
the classifier provider to be a different entity than the cloud provider.

Other works focus particularly on the private image classification problem,
instead of the training of the model. Gilad-Bachrach et al. [20] propose a solu-

108

tion applicable to the image classification problem, based on homomorphically
encrypted data. The resulting CryptoNets [20] provide an accuracy of 99% for
the MNIST dataset, and can make on average 51739 predictions per hour. How-
ever, this is only the case when the predictions are to be made simultaneously;
for a single prediction the task takes 570 seconds to complete.

Recent work by Barnett et al. [4] demonstrated the potential of polynomial-
kernel SVM to be used for classification in a privacy-preserving manner. Specif-
ically, Barnett et al. apply SVM techniques for the classification –as in our
work– but on encrypted data. Although they mention the potential of an MPC
approach to be more efficient in this setting, they do not consider it, because
direct translation of the protocols to MPC would require interaction between
the client and the classification algorithm provider during the computations. We
overcome this limitation by extending the application scenario in a way that
allows the classification task to be fully outsourced to a cluster of independent
third parties. We implement their approach using SPDZ in a more secure way by
keeping the PCA components private (they choose to make them public). This
implementation is more expensive than EPIC, due to the non-linearity of the
polynomial SVM, and it is also less accurate. Albeit inefficient and inaccurate,
it provides an initial benchmark, and it shows the gap between an FHE and
an MPC approach (see details in Section 4). Chabanne et al. [8] attempted to
approximate commonly used functions used in NN-based classification in a SHE-
friendly manner. Despite the high prediction accuracy that their work achieves,
Chabanne et al. do not provide any performance evaluation results.

In the 2-PC setting, Bost et al. [6], and Rahulamathavan et al. [41] focus on
the problem of private classification, where both the classifier parameters, and
the client’s input to be classified need to remain private. The latter approach
does not consider linear SVM, while both approaches only offer passive security.
Barni et al. [5] propose private NN-based data classification, also in the 2-PC
setting and passive security model. They suggest three protocols, which offer
different privacy guarantees for the classifier owner, while always protecting fully
the client’s input. Follow up work by Orlandi et al. [36] extends the work of
Barni et al. in terms of privacy. DeepSecure [45] is another work in the 2-PC
setting, and the passive security model, using Garbled-Circuit techniques. A
direct performance comparison of DeepSecure versus CryptoNets [20] confirmed
a significant efficiency improvement achieved by DeepSecure.

The recently proposed MiniONN [33] is one of the latest NN-based data clas-
sification approaches in the 2-PC setting. MiniONN demonstrates significant
performance increase compared to CryptoNets, without loss of accuracy; as well
as better accuracy compared to SecureML [35], combined with increased perfor-
mance. However, it still operates in the 2-PC setting, which is more restricted

109

than the MPC setting we consider, and it only offers passive security. Under a
comparable configuration as MiniONN, and still in the passive security model,
Chameleon [43] achieves a 4.2 times performance improvement. Chameleon oper-
ates in the 2-PC setting, under the assumption that a Semi-Honest Third Party
(STP) is engaged in the offline phase to generate correlated randomness. Despite
the strong STP assumption, Chameleon does not need the third party for the
online phase, while it gets a significant performance increase from this STP.

Gazelle [25], the latest work on secure NN classification, outperforms, in terms
of efficiency, the best previous solutions in the literature [20,33,43], by carefully
selecting which parts of the CNN to carry out using a packed additively ho-
momorphic encryption, and which using garbled circuits. EPIC performs better
than Gazelle, while also being secure in the active security model. This is because
EPIC only treats linear computations in the privacy-preserving domain.

To the best of our knowledge, we are the first to provide a privacy-preserving
image classification tool combining SVM classification with transfer learning
feature extraction, offering active security. EPIC is more efficient than previous
work and achieves prediction accuracy higher than that of the related work on the
same datasets, although it does not deploy sophisticated NN-based classification
on the private inputs. Interestingly, EPIC is not limited to the 2-PC setting,
allowing a broad range of application scenarios to be treated by our solution.

3 EPIC

The proposed private image classification solution, EPIC, is based on transfer
learning techniques [49] for feature extraction. The EPIC algorithm for image
classification runs in two phases. In the first phase the image is passed through
a generic feature extraction method. Being generic, i.e., not task specific, this
method can be published in-the-clear and hence can be applied by the image
holder before passing the output securely to the MPC engine. In the second
phase the actual classification, via an SVM, is applied. This SVM is specific to
the task at hand, and hence needs to be securely passed to the MPC engine. We
thus have two problems to solve Feature Extraction and SVM classification.

Feature Extraction. High quality features are key to the accuracy of a trained
classifier. We ensure high quality feature extraction by deploying the techniques
of transfer learning. Specifically, we perform feature extraction based on Inception-
v3 [47], which is a public CNN classifier trained on a set of non-privacy-sensitive
object recognition tasks. Commonly, the training for such a CNN classifier is
performed on large datasets, which enhances the prediction accuracy of the
classifier. In our context, the trained classifier extracts features based on the

110

activation of a deep convolutional network. Our work shows that powerful fea-
ture extraction is essential to the quality of the final classification accuracy. In
fact, we demonstrate that the high-complexity (CNN) tasks can be learned on
non-private datasets, and still use their power for feature extraction of unrelated
tasks. Eventually, this allows us to deploy only linear functions for the actual
classification, which enables accurate, and efficient privacy-preserving solutions.

SVM Classification. Despite the increasing popularity and high effectiveness
of CNN classification techniques, the direct deployment of CNN techniques re-
quires large training datasets [14] that are potentially difficult to obtain when
the underlying data is privacy sensitive. In addition, black-box transformation of
CNN-based methods to their privacy-preserving equivalents will result in clas-
sifiers that are computationally prohibitive to use. Thus using a light-weight
classification method such as SVMs can be beneficial in privacy sensitive envi-
ronments, and their evaluation can be done (as we show) in a secure manner.
With the CNN features, an SVM can learn quickly from very few positive exam-
ples, which shows that they are useful to perform one-shot learning [15]. Thus,
we opted for the design of a private SVM classifier, while using the techniques
of CNN-based transfer learning in the context of feature extraction, which does
not raise privacy concerns.

To classify a new unlabeled input with our classifier trained with a linear
SVM, we need to securely evaluate the following equation:

class(h) = arg max
i

(xi · h + bi), (1)

where:
• h is the vector representing the client’s image, and has been provided to the

MPC servers in shared form;
• bi is the model intercept (aka bias), calculated by the classification algorithm

provider during the learning phase and secret shared to the MPC servers;
• xi are the n support vectors.

The support vectors xi, and the model intercepts bi are assumed to need protec-
tion, as they represent the intellectual property of the learned model.

Feature Reduction. To achieve efficient training of kernel machines (such as
SVM) aimed at non-linear problems, several approximation methods (e.g., the
method of Rahimi and Recht [39]) have been proposed. Such approaches have the
goal to alleviate the (cleartext) computational, and storage cost of the training,
incurred by the high dimensionality of the data, especially when the training
datasets are large. The approximation generally is implemented by mapping the

111

input data to a low-dimensional feature space, such that the inner products of
the mapped data are approximately equal to the features of a more complex
(e.g., Gaussian) kernel. This is known as the kernel trick. These features are
then combined with linear techniques (e.g., linear SVM), yielding an efficient
training, but also an efficient classification, which we are able to implement in a
privacy-preserving way.

One of the first successful approaches for kernel approximations, achieving
high accuracy, was proposed by Rahimi and Recht [39], and is based on random
features, which are independent of the training data. To the contrary, Nyström
based kernel approximations [53,16], are data dependent. Although Nyström ap-
proximations outperform randomly extracted features [54] in terms of accuracy,
being data dependent makes them unfit for our purposes, as they require ap-
plying non-linear functions on the private inputs. From a computational, and
storage efficiency perspective, data independent approximations are favored.

We discovered that a variant of the method proposed by Rahimi and Recht [40]
is presented in the scikit-learn package [37]. This implements an RBF (Radial
Basis Function) sampler, which allows to transform the features without using
the training data. This dimensionality reduction (like the feature extraction) is
deployed both for the training, and for the data classification. Since the feature
selection is random (i.e., data independent), it can be performed on the cleartext
data, both by the classification algorithm provider, and by the client, without
raising privacy concerns.

Our second variant of EPIC (see below) supports dimensionality reduction
for free, by placing all the computational load on the cleartext. This variant
makes use of an algorithm implementing the RBF sampler listed in Fig. 2. In
our application scenario, the algorithm provider broadcasts the RBF sampler
parameters, namely the γ parameter and the feature size. The γ parameter does
not reveal any information about the dataset. Note that γ is a floating point
number, which is varied to match a cross-validation score on the training data.
The shape variable is the feature size of a point (set to 2048), which is the output
of Inception-v3.

EPIC – Simple Variant: The classification algorithm provider has already
trained their SVM classifier. The parameters for the SVM classification are
shared to the MPC servers by the classification algorithm provider and are never
revealed to the image holder (nor the analyst). The image holder applies the
Inception-v3 feature extraction to their image, and takes the next to last layer,
which has a feature size of 2048, as their output. The resulting features are then
shared (via the secure gateway) to the MPC servers by the image holder, and
thus are kept secret from the classification algorithm provider. We indicate se-

112

Scikit-learn variant of Random Kitchen Sinks [37].

Init: Set γ, shape, staterandom, nc.

Fit:

1. Select weightsrandom =
√

2 ∗ γ · staterandom.N (0, 1) of size nc× shape, with mean 0 and

standard deviation 1.

2. Assign offsetrandom = staterandom.U(0, 2 · π) of size nc.

Transform(x):

1. projection = x · weightsrandom + offsetrandom.

2. projection = cos (projection).

3. projection = projection · (
√

2/
√

nc)

Fig. 2. RBF Sampler.

cret shared data in square brackets (Fig. 1). The MPC engine then evaluates the
SVM securely on the features and outputs the result to the analyst (or image
holder).

Note that although EPIC does not allow any information leakage about the
private SVM parameters, recent work by Tramer et al. [50] showed that only
black-box access to the classifiers can still serve to recover an (near-)equivalent
model. We consider this problem to be out of this work’s scope, as it can easily
be tackled by restricting the number of queries an external party is allowed to
perform on the MPC Engine. This type of attacks has not been averted by any
of the secure computation solutions in the related work.

EPIC – Complex Variant: The second variant of EPIC protocol is summa-
rized in Fig. 3. This EPIC variant trades a small percentage of the classification
accuracy to increase efficiency. It achieves this tradeoff by deploying the kernel
approximation dimensionality reduction explained above, and in particular the
kernel approximation sub-step is also considered to be part of the feature ex-
traction phase. Here the algorithm provider needs to publish the feature size of a
point (in our case 2048) and the parameter γ from above. At first sight it might
seem that γ reveals information about the training data, but we noticed that for
our datasets one can fix γ = 2−13 to a small value and modify the regularization
parameter C of the SVM. This parameter C will always remain private to the
algorithm provider, hence there is no information leakage. We stress again that

113

for both cases, the CNN feature extraction is input independent, so privacy is
maintained for the image holder and algorithm provider.

Specifically, the protocol starts with the Setup phase, where the algorithm
provider (AP) performs the kernel approximation (from Fig. 2) on its own
dataset, and broadcasts the type of CNN used, and the Init parameters neces-
sary for the feature reduction at the image holder (IH) side. Then, the algorithm
provider secret shares the SVM parameters to the MPC Engine (Eng). Secret
shared values are denoted in double square brackets. In the evaluation phase,
the image holder performs the feature extraction locally (given the previously
obtained parameters), and secret shares the new point to be classified by Eng.
Then, the MPC protocol computes Eq. 1.

EPIC Protocol with kernel approximation as feature reduction

Setup:

1. Algorithm Provider (AP) broadcasts the type of CNN used for feature extraction.

2. AP computes γ from Fig.2 on its own training data. Then AP broadcasts the Init

variables from Fig. 2 and secret shares the support vectors xi, bi to the MPC engine

(Eng). These are stored on Eng as JxiK, JbiK.
Evaluate:

1. Image Holder (IH) uses public CNN to extract features h′ from its image. Then IH

maps h′ 7→ h locally using the RBF sampler initialized with the γ broadcasted by AP

to obtain a smaller number of features. The new point h is further secret shared to

the Eng and stored as JhK.
2. Eng uses JxiK, JbiK, JhK to compute Eq. 1 with a shared result: Jclass(h)K.

Fig. 3. Protocol for SVM classifcation with RBF sampler.

4 Experiments

Experimental Setup. Our experiments are conducted on two MPC servers,
which yields the most efficient solution, but we also show how the proposed sys-
tem scales with more than two MPC servers. We assume a protocol-independent,
input-independent preprocessing phase that takes place prior to the protocol ex-
ecution between the MPC servers. The inputting parties do not need to be
aware, nor contribute to this phase. The preprocessing creates the randomness
needed to boost the efficiency of the online phase, and allows the inputting par-

114

ties (image holder and classification algorithm provider) to securely share their
inputs.

The online phase begins with the image holder, and the algorithm provider
sharing their inputs (reduced CNN features, and SVM parameters, resp.) to the
MPC servers. This is performed by executing an interactive protocol between
each inputting party and the two MPC servers, as Damg̊ard et al. [11] proposed.
Then, the actual private image classification task is executed only between the
two MPC servers, as in the Evaluate phase of Fig. 3. In the end, each MPC
server sends their resulting share to the image holder, or the analyst, who can
combine the shares and reconstruct the cleartext result, which is the desired
class label.

From Fixed Point Arithmetic to Integers. For the secure integer com-
parison sub-protocols that EPIC deploys, we selected the statistical security
parameter to be κ = 40 bits. We stress that everywhere the computational se-
curity parameter is set to λ = 128. We observed experimentally after running
the scikit-learn’s RBF (see Fig. 2) on top of Inception-v3 that each feature is
bounded by abs(xi) ≤ 15 where len(x) ≤ 2048.

To avoid the costly fixed point arithmetic, we scale each feature xi by a factor
f , and then perform arithmetic on integers. Particularly, we compute xi · f
and then round it to the nearest lower integer. We varied f , and evaluated the
SVM’s accuracy. We experimentally concluded that setting f = 28 gives sufficient
accuracy, as if working on floating point numbers, while lowering the scale factor
f decreased the accuracy by more than 1%. If f = 28 then to compute a class
score from Eq. 1 becomes: s =

∑2048
j=1 (28 ·xij ·28 ·hj)+216 ·bi since we need to scale

both support vectors xi as well features h. Using the fact that each component
is bounded by 15 then clearly s ≤ 235.

To improve the underlying MPC performance we wanted to aim for using a
64-bit prime modulus for the underlying linear secret sharing scheme. Unfortu-
nately, if our inputs are of 35 bit size then there is no room left to perform the
secure comparisons in arg max with 40 bits statistical security, as 35 + 40 > 64.
Surprisingly, for all the datasets we experimented with, s was less than 20 bits
long, because some of the xij’s are negative. Hence, we could run everything on
64-bit primes with 40-bit statistical security, while ensuring there is no infor-
mation leak from the comparisons. We can achieve an even tighter bounding by
normalizing the features using the L2-Norm, after the RBF-Sampler invocation.
In our setting this is not necessary, since the expected bound on s is already low
(20 bits). We also experimented (see later) with higher statistical security of 100
bits by using 128-bit prime fields.

115

For the feature reduction we considered whether to use RBF or PCA, and
concluded that RBF is more suitable for our purposes. Despite the accuracy
loss that RBF incurs compared to PCA, it is justified to use RBF for reasons
of computational and communication efficiency. For a more detailed comparison
between RBF and PCA feature reduction in our setting, we refer the reader to
the full version of our paper [34].

Datasets. We selected three image datasets: CIFAR-10, MIT-67, and Caltech-
101, to show how EPIC scales in terms of performance, when increasing the
number of classes, and to illustrate its classification accuracy.
• CIFAR-10 [28]: This is a dataset of 60000 32x32 color images, out of which

50000 are training images and 10000 are test images. CIFAR-10 features 10
classes of objects, with 6000 images per class. The accuracy metric is the
quotient between correctly classified samples and total number of samples.
• MIT-67 [38]: MIT-67 has 15620 indoor images from 67 scene categories. We

used 80 images per class for training, and the rest of the pictures for testing.
The accuracy metric used here is the mAP (mean Accuracy Precision), which
consists of calculating the average over the accuracies of each class.
• Caltech-101 [17]: This dataset contains pictures of objects of 102 categories.

Each class has at least 31 images and we chose to use 30 images from each
class for the training. The accuracy metric is mAP, just as in MIT-67.

Training. We trained the SVM on the cleartext versions of the aforementioned
datasets. Feature extraction was done after resizing each image to 256x256. We
trained Linear SVMs based on the one-versus-all strategy (OvA) [52], because
it is more efficient to evaluate n classifiers in MPC instead of n(n− 1)/2. Note
that we chose to avoid the data augmentation trick, and adopted the training
method presented in DeCAF [15] using the original datasets, and raw features
from Inception-v3 [15]. To find parameters that yield high classification accuracy,
we have done a grid search for the γ required in the RBF, and the parameter C,
which denotes the size-margin hyperplane for the SVM decision function.

We stress that EPIC achieves a sufficient classification accuracy. Given that
EPIC workings have been purposely kept simple to allow for efficient secure com-
putations, we consider the classification accuracy of EPIC comparable to that
achieved by the state-of-the-art (non-privacy-preserving) works in the ML com-
munity. The best classification accuracy in-the-clear on the CIFAR-10 dataset is
97.14% [18], while EPIC achieves 88.8%. On the MIT-67 dataset, EPIC achieves
72.2% accuracy, while the state-of-the-art in-the-clear solution [27] reports an
accuracy of 83.1%. More interestingly, on Caltech-101, the state-of-the-art accu-
racy in-the-clear is still 93.42% [22], while EPIC achieves 91.4%.

116

Classification Accuracy and Performance Evaluation. We executed our
experiments, simulating the two MPC servers on two identical desktop computers
equipped with Intel i7-4790 processor, at 3.60 GHz over a 1Gbps LAN with an
average round-trip ping of 0.3ms.

Our algorithm hand matches the one listed in Fig. 3, where the Evaluate step
from Fig. 3 was implemented using the SPDZ software [7]. The preprocessing
phase for this step was estimated using the LowGear protocol by Keller et al. [26],
which is the fastest known protocol to produce triples for multiple parties with
active security. We do not report on the timings for the feature extraction and
reduction, since they can be done in the clear, locally by the external parties,
which provide inputs to the MPC engine, and they are not privacy-sensitive.

EPIC – Simple Variant: We evaluated the computational performance,
data sent over the network, and classification accuracy of EPIC on the default
2048 length feature from the output of Inception-v3. We report these experiment
results in Table 2. Increasing the number of classes n (from 10, to 67, to 102)
has a worsening effect on the performance, as the amount of data sent over the
network scales linearly with n. The runtime of the online phase is affected less
as n increases. Going from 10 classes (CIFAR-10) with 0.005 seconds runtime,
to 102 classes (Caltech) with 0.03 seconds, is an increase factor of six, whereas
for all other metrics it is roughly ten (i.e., linear in the number of classes).

In Table 3 we show that EPIC improves over Gazelle [25] in terms of every rel-
evant metric on CIFAR-10: accuracy with 7%, total communication by 50x, and
total runtime by 34x. This is because we start with secret shared (powerful) fea-
tures obtained from public CNNs, whereas Gazelle [25] starts with an encrypted
image. We expect Gazelle’s timings to considerably improve, if they adopt our
approach, starting from encrypted features produced by a public CNN.

EPIC – Complex Variant: To increase the performance of EPIC even
further, we tried to minimize the feature size used, while still matching the
classification accuracy achieved by Gazelle [25] or MiniONN [33] for CIFAR-10.
In the end, we settled with nc = 128, and then performed a grid search on γ for
the MIT and Caltech datasets. Our results are reported in Table 4. Since the
number of features decreases considerably from 2048 to 128 the timings decrease
as well. For example, if we look at the online runtime compared to Gazelle [25],
our solution improves by a factor of 700x and the total communication cost
decreases by almost 500x. We do recognize that our setting is different from the
one considered by Gazelle [25], but we see more the similarities, since the end
goal is the same, namely to classify secret shared (or encrypted) images.

Our results indicate that general image recognition, and user’s privacy can go
well together. In fact we showed that securing the private classification comes

117

nearly for free. A stronger case for why CNN features with a Linear SVM should
be considered, as a baseline benchmark is done by Razavian et al. [42].

Other optimizations: Note that one of the major improvements came from
running the dot products on multiple threads, and doing the argmax operation
in a tree-wise manner to decrease the number of communication rounds required.

Dataset Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

CIFAR 0.36 0.005 0.37 24 0.33 24.33 88.8

MIT 2.43 0.02 2.45 161.94 2.24 164.18 72.2

Caltech 3.71 0.03 3.74 246.59 3.41 250 91.4

Table 2. 1 Gbps LAN timings for EPIC – Simple Variant on different datasets with a Linear

SVM.

Framework Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

MiniONN [33] 472 72 544 3046 6226 9272 81.61

Gazelle [25] 9.34 3.56 12.9 940 296 1236 81.61

EPIC 0.36 0.005 0.37 24 0.33 24.33 88.8

Table 3. 1 Gbps LAN timings for CIFAR-10 dataset on different frameworks. The EPIC – Simple

Variant is compared to the state-of-the-art private classification solutions, and outperforms them

in all metrics.

Dataset Runtime (s) Communication (MB) Accuracy

Offline Online Total Offline Online Total %

CIFAR 0.037 0.0003 0.037 2.472 0.027 2.5 81.74

MIT 0.259 0.002 0.261 17.22 0.180 17.4 64.4

Caltech 0.395 0.004 0.399 26.27 0.273 26.543 85.56

Table 4. 1 Gbps LAN timings for EPIC – Complex Variant on different datasets with a RBF-

SVM and a 128 feature size.

Multiparty Setting. We benchmarked EPIC on different number of comput-
ers with the RBF-128 variant on the CIFAR-10 dataset and measured through-
put (operations per second) for the online and offline phases in Fig. 4. For the

118

two party case our protocol can carry around 2650 evaluations per second. The
throughput decreases with a growing number of parties and reaches 870 ops per
second for the five parties case. Notice that the main bottleneck when executing
these protocols is still the preprocessing phase, generating the necessary triples.

2 3 4 5

101

102

103

104

Number of parties

T
h
ro

u
gh

p
u
t

(/
s)

Online
Offline

Fig. 4. Throughput of CIFAR-10 evaluations of secret features with RBF-128 EPIC for multiple

parties.

Similar work. It is worth mentioning that we also implemented the method of
Barnett et al. [4] in SPDZ, after fixing some security bugs such as cleartext PCA
coefficients. They report 124s for one binary classification thus to extrapolate
this to 10 classes takes roughly 1240s. To translate the work for Barnett et al. in
SPDZ we used a feature extraction algorithm based on Histogram of Oriented
Gradients (HOG) and then reduced their dimension using PCA. The reduced
points where then plugged into a polynomial SVM to classify the inputs. This
methodology yielded a 6.7s execution time of the online phase, and an expensive
preprocessing phase of 12 hours for CIFAR-10. The classification accuracy was
also poor (58%). This showed that the input dependent phase in MPC is faster
than in FHE, by at least two orders of magnitude, confirming that our EPIC
solution outperforms traditional attempts at classifying images using SVMs.

The closest work to ours that tried to solve the issue of linear SVM classifica-
tion is a semi-honest 2-PC protocol due to Bost et al [6]. In this work party A
owns the model and party B holds the features to be classified. To compare our
method with theirs in an accurate manner we took their open sourced code and
tailored it to our feature length (2048), input size (27 bits) and computational
security λ = 128 and run it on our computers; whilst maintaining their statisti-
cal security of 100 bits. In Table 5 the method of Bost et al. [6] is benchmarked
with the recent libraries (NTL-11.3.0, HElib, etc.). We then compare with EPIC
using the same parameters as the ones used in the experiments of Bost et al.,

119

namely statistical security κ = 100 and computational security λ = 128, where
the shares live in Fp and p ≈ 2128. For more details on the selection of the secu-
rity parameters, we refer the reader to the full version of our paper [34]. EPIC
has a faster online phase than Bost et al., by at least a factor of 20, at the cost of
a slower preprocessing phase. This shows that the main bottleneck in the entire
protocol is the triple generation, which deploys expensive cryptographic tools.

Method Classes Runtime (s) Communication (MB)

Offline Online Total Offline Online Total

[6] 10 0 0.48 0.48 0 5.36 5.36

EPIC 10 1.04 0.014 1.054 46.35 0.66 47.01

[6] 102 0 1.67 1.67 0 54.85 54.85

EPIC 102 10.72 0.083 10.8 475.96 6.68 482.64

Table 5. 1 Gbps LAN timings for EPIC – Simple Variant and Bost et al. with different number

of classes.

5 Conclusion and Future Work

We have introduced EPIC, a private image classification system, trained with
SVM, while having the input features extracted based on the techniques of trans-
fer learning. We showed how to achieve privacy-preserving image classification in
such a way that the task can be fully outsourced to a third, independent party.
For our solution we deployed generic MPC tools and showed how to avoid the
restricted two-party setting. Unlike all previous work, our approach provides ac-
tive security, does not leak any information about the private images, nor about
the classifier parameters, and it is orders of magnitude more efficient than the
privacy-preserving classification solutions proposed in the literature.

Due to their highly accurate predictions, especially for multiclass classification
tasks, CNNs have superseded SVM as the state-of-the-art for image classifica-
tion. However, our work shows that in the privacy-preserving domain, SVM clas-
sification can still produce accurate results, as long as it is provided with high
quality features. Thus, we chose to focus on improving the feature extraction
phase, using a transfer learning, CNN-based approach, while avoiding the exe-
cution of such complex functions in the MPC domain. An interesting advantage
of our solution is that it can be applied to the homomorphic encryption domain,
since performing the linear operations has depth 1, and the costlier operation is
computing the argmax, which requires to branch on secret comparisons.

120

Our experiments confirmed that there is a tradeoff between the complex-
ity, and therefore also accuracy of the classification algorithms used, versus the
efficiency of the privacy-preserving variants of the proposed solutions. In the ac-
tive security model that we consider in this work, deploying CNNs in the same
manner as they are used on cleartext data, is computationally prohibitive with
current privacy-preserving methods.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070. This work has been supported in part by the Research
Council KU Leuven grants C14/18/067 and STG/17/019.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner,

B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: A

System for Large-Scale Machine Learning. In: OSDI. pp. 265–283 (2016)

2. Aslett, L.J., Esperança, P.M., Holmes, C.C.: Encrypted Statistical Machine Learning: New

Privacy Preserving Methods. arXiv:1508.06845 (2015)

3. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of Transferability

for a Generic Convnet Representation. IEEE transactions on pattern analysis and machine

intelligence 38(9), 1790–1802 (2016)

4. Barnett, A., Santokhi, J., Simpson, M., Smart, N.P., Stainton-Bygrave, C., Vivek, S., Waller,

A.: Image Classification using non-linear Support Vector Machines on Encrypted Data. IACR

Cryptology ePrint Archive: 2017/857 (2017)

5. Barni, M., Orlandi, C., Piva, A.: A Privacy-Preserving Protocol for Neural-Network-Based

Computation. In: Multimedia and security workshop. pp. 146–151. ACM (2006)

6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine Learning Classification over Encrypted

Data. In: Network and Distributed System Security Symposium (2015)

7. Bristol Crypto: SPDZ-2: Multiparty computation with SPDZ, MASCOT, and Overdrive

offline phases. https://github.com/bristolcrypto/SPDZ-2 (2018)

8. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-Preserving Clas-

sification on Deep Neural Network. IACR Cryptology ePrint Archive: 2017/35 (2017)

9. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private Collaborative

Neural Network Learning. IACR Cryptology ePrint Archive: 2017/762 (2017)

121

10. Dahl, M.: Private Image Analysis with MPC: Training CNNs on Sensitive Data using SPDZ.

https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/ (2018)

11. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential Benchmarking

based on Multiparty Computation. IACR Cryptology ePrint Archive: 2015/1006 (2015)

12. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical Covertly

Secure MPC for Dishonest Majority–or: Breaking the SPDZ Limits. In: ESORICS. pp. 1–18.

Springer (2013)

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation from Somewhat

Homomorphic Encryption. In: CRYPTO, pp. 643–662. Springer (2012)

14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A Large-Scale Hier-

archical Image Database. In: CVPR. pp. 248–255. IEEE (2009)

15. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF:

A Deep Convolutional Activation Feature for Generic Visual Recognition. In: ICML. pp.

647–655 (2014)

16. Drineas, P., Mahoney, M.W.: On the Nyström Method for Approximating a Gram Matrix for

Improved Kernel-Based Learning. Journal of Machine Learning Research 6(Dec), 2153–2175

(2005)

17. Fei-Fei, L., Fergus, R., Perona, P.: Learning Generative Visual Models from Few Training

Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. In: CVPR.

pp. 178–178. IEEE (2004)

18. Gastaldi, X.: Shake-Shake Regularization. arXiv:1705.07485 (2017)

19. Gentry, C.: Fully Homomorphic Encryption using Ideal Lattices. In: STOC. pp. 169–178

(2009)

20. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryp-

toNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy.

In: ICML. pp. 201–210 (2016)

21. Graepel, T., Lauter, K., Naehrig, M.: ML Confidential: Machine Learning on Encrypted

Data. In: ICISC. pp. 1–21. Springer (2012)

22. He, K., Zhang, X., Ren, S., Sun, J.: Spatial Pyramid Pooling in Deep Convolutional Networks

for Visual recognition. In: ECCV. pp. 346–361. Springer (2014)

23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional

Networks. In: CVPR. pp. 4700–4708. IEEE (2017)

24. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. In: ACMMM.

pp. 675–678. ACM (2014)

25. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency Framework

for Secure Neural Network Inference. In: USENIX. pp. 1651–1668 (2018)

26. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EUROCRYPT.

pp. 158–189. Springer (2018)

122

27. Khan, F.S., van de Weijer, J., Anwer, R.M., Bagdanov, A.D., Felsberg, M., Laaksonen, J.:

Scale Coding Bag of Deep Features for Human Attribute and Action Recognition. Machine

Vision and Applications 29(1), 55–71 (2018)

28. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images. Tech-

nical report, University of Toronto (2009)

29. Laur, S., Lipmaa, H., Mielikäinen, T.: Cryptographically Private Support Vector Machines.

In: SIGKDD. pp. 618–624. ACM (2006)

30. Lin, K.P., Chen, M.S.: Privacy-Preserving Outsourcing Support Vector Machines with Ran-

dom Transformation. In: SIGKDD. pp. 363–372. ACM (2010)

31. Lin, K.P., Chen, M.S.: On the Design and Analysis of the Privacy-Preserving SVM Classifier.

Knowledge and Data Engineering 23(11), 1704–1717 (2011)

32. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: CRYPTO. pp. 36–54. Springer

(2000)

33. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious Neural Network Predictions via MiniONN

Transformations. In: SIGSAC. pp. 619–631. ACM (2017)

34. Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: EPIC: Efficient Private Image Classifi-

cation (or: Learning from the Masters). IACR Cryptology ePrint Archive: 2017/1190 (2017)

35. Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving Machine

Learning. In: S&P. pp. 19–38. IEEE (2017)

36. Orlandi, C., Piva, A., Barni, M.: Oblivious Neural Network Computing via Homomorphic

Encryption. EURASIP Journal on Information Security p. 18 (2007)

37. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal

of Machine Learning Research 12, 2825–2830 (2011)

38. Quattoni, A., Torralba, A.: Recognizing Indoor Scenes. In: CVPR. pp. 413–420. IEEE (2009)

39. Rahimi, A., Recht, B.: Random Features for Large-Scale Kernel Machines. In: NIPS. pp.

1177–1184 (2008)

40. Rahimi, A., Recht, B.: Weighted Sums of Random Kitchen Sinks: Replacing Minimization

with Randomization in Learning. In: NIPS. pp. 1313–1320 (2009)

41. Rahulamathavan, Y., Phan, R.C.W., Veluru, S., Cumanan, K., Rajarajan, M.: Privacy-

Preserving Multi-Class Support Vector Machine for Outsourcing the Data Classification in

Cloud. Dependable and Secure Computing 11(5), 467–479 (2014)

42. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN Features off-the-shelf: An

Astounding Baseline for Recognition. In: CVPRW. pp. 512–519. IEEE (2014)

43. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.:

Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications.

In: ASIACCS. pp. 707–721. ACM (2018)

123

44. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homomorphisms.

Foundations of secure computation 4(11), 169–180 (1978)

45. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: Scalable Provably-Secure Deep

Learning. In: ACM/ESDA/DAC. pp. 1–6. IEEE (2018)

46. Shokri, R., Shmatikov, V.: Privacy-Preserving Deep learning. In: SIGSAC. pp. 1310–1321.

ACM (2015)

47. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Archi-

tecture for Computer Vision. In: CVPR. pp. 2818–2826. IEEE (2016)

48. Teo, S.G., Han, S., Lee, V.C.: Privacy Preserving Support Vector Machine using non-linear

Kernels on Hadoop Mahout. In: CSE. pp. 941–948. IEEE (2013)

49. Thrun, S.: Is Learning the n-th Thing any Easier than Learning the First? In: NIPS. pp.

640–646 (1996)

50. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing Machine Learning

Models via Prediction APIs. In: USENIX. pp. 601–618 (2016)

51. Vaidya, J., Yu, H., Jiang, X.: Privacy-Preserving SVM Classification. Knowledge and Infor-

mation Systems 14(2), 161–178 (2008)

52. Vapnik, V.N.: Statistical Learning Theory, vol. 3. Wiley New York (1998)

53. Williams, C.K., Seeger, M.: Using the Nyström Method to Speed up Kernel Machines. In:

NIPS. pp. 682–688 (2001)

54. Yang, T., Li, Y.F., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström Method vs Random Fourier

Features: A Theoretical and Empirical Comparison. In: NIPS. pp. 476–484 (2012)

55. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How Transferable are Features in Deep Neural

Networks? In: NIPS. pp. 3320–3328 (2014)

124

Chapter 9

Rabbit: Efficient Comparison
for Secure Multi-Party
Computation

Publication data

E. Makri, D. Rotaru, F. Vercauteren, S. Wagh. “Rabbit: Efficient Comparison
for Secure Multi-Party Computation” In International Conference on Financial
Cryptography and Data Security. Springer, 2021, To appear.

125

Rabbit: Efficient Comparison for
Secure Multi-Party Computation

Eleftheria Makri1,5, Dragos Rotaru2,1, Frederik Vercauteren1, and Sameer Wagh3,4

1 imec-COSIC, KU Leuven, Belgium
2 Cape Privacy

3 University of California, Berkeley, USA
4 Princeton University, Princeton, USA

5 ABRR, Saxion University of Applied Sciences, The Netherlands

emakri@esat.kuleuven.be, dragos@capeprivacy.com,

frederik.vercauteren@kuleuven.be, swagh@berkeley.edu

Abstract. Secure comparison has been a fundamental challenge in privacy-preserving

computation, since its inception as Yao’s millionaires’ problem (FOCS 1982). In this work,

we present a novel construction for general n-party private comparison, secure against an

active adversary, in the dishonest majority setting. For the case of comparisons over fields,

our protocol is more efficient than the best prior work (edaBits: Crypto 2020), with �1.5�

better throughput in most adversarial settings, over 2.3� better throughput in particular in

the passive, honest majority setting, and lower communication. Our comparisons crucially

eliminate the need for bounded inputs as well as the need for statistical security that prior

works require. An important consequence of removing this “slack” (a gap between the

bit-length of the input and the MPC representation) is that multi-party computation

(MPC) protocols can be run in a field of smaller size, reducing the overhead incurred by

privacy-preserving computations. We achieve this novel construction using the commutative

nature of addition over rings and fields. This makes the protocol both simple to implement

and highly efficient and we provide an implementation in MP-SPDZ (CCS 2020).

Keywords: Secure Comparison · Multi-party Computation · Unconditional Security ·

Dishonest Majority.

1 Introduction

After years of active research, both in theoretical results and system building, multi-
party computation (MPC) is becoming practical as a paradigm. Recent research
results and practical implementations [13,1], deployment of MPC in real-life appli-
cations [3], as well as organizations beyond academia offering commercial MPC so-
lutions [30,27,26], confirm that MPC is reaching maturity. However, MPC, just like
any other cryptographic primitive deployed to enhance privacy, comes at a significant
efficiency penalty, in terms of computation and communication. While some research

126

focuses on tailoring MPC solutions to a particular problem, to compensate for this ef-
ficiency penalty, other works focus on improving the efficiency of fundamental MPC
building blocks, which are applicable to a wide variety of problems.

Secure comparison is an important problem in multi-party computation – it in-
volves the comparison of two or more secret values in a privacy-preserving manner.
Comparison is a fundamental building block, necessary for the realization of various
larger tasks: from online auctions to big data analytics and machine learning. Given
the privacy considerations that today’s digital infrastructure entails, protocols for
secure comparison are a fundamental MPC tool in privacy-preserving applications.

Since the introduction of the secure comparison problem by Andrew Yao in
1982 [34] as the millionaires’ problem, research efforts have pushed the frontiers
of performance of this primitive. MPC has traditionally been efficient either on lin-
ear operations, when it is based on arithmetic circuits, or on non-linear operations,
when it is based on Boolean circuits. Recent applications require a combination of
linear and non-linear operations, and they are most of the time addressed with solu-
tions based on arithmetic circuits, because these are significantly more efficient than
Boolean circuits for the linear part, which presents itself as the bulk of the computa-
tion. Given the non-linear nature of the comparison operation, protocols for secure
comparison still remain a bottleneck for privacy-preserving computation. Thus, any
improvement in this line of work has a compounding impact on improving the overall
efficiency of privacy-preserving computations.

In this work, we present a novel comparison protocol that is secure against an
active adversary in the dishonest majority setting and holds for general n-party com-
putation. Our work improves upon the state-of-the-art protocol for comparison in
dishonest majority in both the total time and communication by a factor of two for
the OT-based preprocessing. In addition, our protocol is easy to implement requiring
no heavy cryptography. Notably, our protocol is highly conducive to amortization
and preprocessing, which makes it attractive for deployment in real-life applications,
as these are important considerations in building practical secure systems.

1.1 Our Contribution

We present Rabbit1, a novel secure comparison protocol, which leverages the commu-
tative nature of addition over rings and fields. Our protocol exploits recent advances
in the generation and deployment of doubly authenticated shared bits (daBits [25]),
which are bits living both in Fp and in F2k, as well as extended doubly authenticated
bits (edaBits [14]), which correspond to shared integers in the arithmetic domain,
whose bit decomposition is shared in the binary domain. The proposed comparison
is more efficient than previously proposed secure comparison protocols, while at the

1 The name is an extension of the daBit [25], maBit [24] and edaBit [14] line of work.

127

same time removing the dependence on bounds and statistical parameters. This al-
lows the MPC engines used for our secure comparison to be smaller than the ones
required by previous protocols, which has a positive impact on the concrete efficiency
of the MPC protocols. Concretely we make the following contributions:

(i) Novel comparison protocol: We propose Rabbit, a novel secure comparison pro-
tocol based on the commutative nature of addition over rings and fields. Rabbit
is a general n-party protocol and crucially eliminates the need for any “slack” – a
statistically larger dataspace to ensure security of computations, and thus enables
computations over smaller datatypes. For instance, to compute over 64-bits, prior
works require the use of 128-bit datatypes, while we can support these computa-
tions in standard 64-bit datatypes.

(ii) Security: Since we eliminate the slack and keep an exact tab of overflows, our
comparison algorithms are unconditionally secure. However, our protocols use
edaBits [14], which requires us to account for a statistical security parameter.
Lastly, when implemented in a larger body of MPC computation, our protocols
inherit the security properties of the platform. The current implementation of
our protocols uses MP-SPDZ [13], which further reduces the overall security to
computational, against active adversaries in the dishonest majority setting.

(iii) Simplicity and Efficiency: Our protocol is straightforward to implement. As
shown in Fig. 1b, it is merely a few lines of code in MP-SPDZ. This also makes our
protocol highly amenable to secure implementation. As for efficiency, the benefits
of our work over the state-of-the-art are most pronounced in the case of compar-
ison over fields. In this case, we improve end-to-end computations such as secure
evaluation of ResNet-50 up to 2x faster, albeit at a higher communication.

1.2 Technical Overview

Our central focus in this work is to propose novel and efficient protocols for se-
cure comparison. Comparison protocols usually rely on statistical security or bit-
decomposition combined with prefix computation to achieve the results. We observe
that:

(i) When considering arithmetic secret shares, the bit encoding modulus overflow of
secrets enables exact integer relations between the secret, the secret shares, and
the modulus.

(ii) Using the commutativity of addition over standard structures, such as rings and
fields, we can express a sum in two different ways and thus equate the correspond-
ing constraint equations.

128

These two observations together enable more efficient protocols for comparisons.
More specifically, the core idea behind our comparison protocols lies in our ability
to detect when a sum over a particular modulus overflows (i.e., wraps around), and
when this happens we can correct it. Observe that given two integers x,yPZM , their
sum x� y mod M is less than either of the two summands, iff the sum wrapped
around the modulus. That is, given a comparison function:

LTp�,�q :Z�ZÑt0,1u � Z :

#
LTpx,yq�1 if px yq;

LTpx,yq�0 otherwise,

we can compute the modular sum x�y mod M, by performing computations over
the integers as:

x�y mod M�x�y�M �LTpx�y mod M,xq�x�y�M �LTpx�y mod M,yq

This is due to the observation that LTpx�y mod M,xq (or LTpx�y mod M,yq) is
true, iff the sum wrapped around. Given that the LTp�,�q function detects (i.e., out-
puts true) when a wrap around happens, we can indeed realize the modular sum,
while performing computations over the integers, by conditionally subtracting the
quantity of the wrap around (i.e., M), when LTp�,�q returns true.

Notation. We use rxsN to denote the sharing of a secret x in the ring ZN . We
primarily consider two values of the modulus: N�M and N�2, where M is a fixed
constant, set to either a prime p, or a power of two 2k. The types of sharings are:

(i) rxsM , where the secret is xPZM or rbs2, where the secret is a bit bPF2;

(ii) rxsM and rx0s2,...rxm�1s2 such that x�
°m�1
i�0 xj �2

j pmod Mq and M 2m (this is
also known as an edaBit [14])

Similarly, given a (public) constant value RPZM , we denote by R0,...,Rm�1 the bit
decomposition of R, and by Ri its individual bits (at the corresponding position i).

2 Comparison Protocols

In this section we present our comparison protocols and their workings on a step-by-
step basis. Then, for each presented protocol, we also show correctness. We do not
provide any formal proofs of security of our protocols, as these follow trivially from
the arithmetic black box functionality paradigm [11]. We present the protocols in
the following order:

(i) First, we present the protocol ΠLTBits (Fig. 3), which realizes a comparison be-
tween a secret bit-decomposed value, and a public value, and outputs a secret bit
indicating the result of the comparison. This is a building block that uses prefix
computation for comparison.

129

rxsM a�rx�rsM

c�rx�BsM b�rx�r�BsM

�r

�B �B

�r

(a) Intuition behind Rabbit comparison protocol (b) Rabbit code snippet

Fig. 1: Our protocol relies on the commutative properties of addition over rings/fields as shown in

Fig. 1a. This diagram indicates the two different ways we can obtain the value b. The r�sM notation

indicates that the corresponding values or sums are taken modulo M. The horizontal arrows indicate

addition of a uniformly random value rPt0,...,M�1u, used to mask the secret input of the comparison

x (so that we can later open it without information leakage, to perform a comparison). The vertical

arrows indicate addition of a known constant B Pt0,...,M�1u related to the public quantity to be

compared against. These two ways of computing the sum b, are necessary for the comparison protocol

between a secret value x and a public constant M�B. The code on the right (Fig. 1b) shows the

simplicity of implementing our protocol, implemented in this case in the MP-SPDZ codebase [13].

(ii) Second, we introduce the protocol ΠLTC (Fig. 4), which invokes ΠLTBits and per-
forms a comparison between a secret value (without bit-decomposition), and a
public value, where the output is a secret bit indicating the result of the compar-
ison.

(iii) Third, we present a specialized comparison protocol, ΠReLU (Fig. 5), that can be
applied when the modulus is a power of 2 and the public constant against which we
compare is half the modulus. Note that this is an important case, as it corresponds
to computation of the ReLU function, which is widely used in machine learning.

(iv) Finally, in ΠLTS (Fig. 6), we show how to generalize ΠLTC to compare two secret
shared values, where once again the output is a secret bit.

Note that given our novel approach of comparison, there is a difference between
secret-public constant comparison (ΠLTC) and secret-secret comparison (ΠLTS), which
often comes for free when using standard techniques that require a slack. For more
details on this, we refer the reader to Section 4. Finally, for all proposed protocols,
the output can either be an element of ZM or F2 (depending on the needs of the
follow-up computations) indicating the result of the comparison. An overview of all
our comparison protocols, their inputs, and their interdependencies is given in Fig. 2.

130

Fig. 2: Proposed comparison protocols, their inputs, and their interdependencies.

2.1 Comparison with Bitwise Shared Input – LTBits Protocol

The protocol ΠLTBits, listed in Fig. 3, follows a standard bit decomposition idea to
privately compute a secret bit, indicating the result of a comparison. It is essentially
an adaptation of the BIT-LT protocol by Damg̊ard et. al. [9], which instead of two
secret bit-decomposed inputs (that BIT-LT receives), it receives one bitwise secret
shared input and a public arithmetic value to compare upon, while its output is a se-
cret Boolean value indicating the result of the comparison. Notably, each component
of our bit-decomposed secret lives in F2, unlike Damg̊ard et. al.’s [9] construction,
where each secret bit lives in Fp. The protocol LTBits computes the following:

1. The XOR of each bit of the secret input rxis2 value with the corresponding bit
of the public value Ri. This results in a bit-string ry0s2,...rym�1s2 with ones on all
positions where the bits of the values to be compared differ.

2. A prefix OR (circuit computes for each position i of a bit vector, the OR between
all previous bits in the vector up to position i. - more details in Catrina and de
Hoogh [6]) of the previously computed bits ryis2, which results in a vector rzis2 of
0’s followed by 1’s with the transition from 0 to 1 occurring at the first bit where
the secret and the public value differ.

3. In this step, the previous vector is converted into a vector rwis2, i�0,...,m�1 of
all 0’s and a single 1 at the index of the first differing bit.

4. In the last step, we take the inner product between the vector w (which is a vector
of 0’s in all positions, except for the position of the first differing bit of the values
to be compared) and the bits of the public valueR. This inner product results in 0,
if at the position of the differing bit R was 0, which further implies that x is larger
than R, and it results in 1 otherwise. We have computed the value rpx Rqs2, but
we are actually after rpR xqs2, thus 1�rpx Rqs2 concludes the protocol.

131

Less Than Bits ΠLTBitspR,rx0s2,...rxm�1s2q

Inputs: Secret value x shared bitwise, such that parties hold rx0s2 , ... rxm�1s2, where x �°m�1
i�0 xj �2

j, and public value R.

Outputs: Compute the Boolean value rcs2�rpR¤xqs2.

Protocol: Complete steps 1-3 for all iPt0,1,...,m�1u

1. Parties compute ryis2�rxis2`Ri.

2. Parties compute rzis2�_
m�1
j�i ryjs2 using PrefixOR circuit.

3. Parties compute rwis2�rzis2�rzi�1s2, where zm�0.

4. Output rcs2�1�rpx Rqs2, where rpx Rqs2�
°m�1

i�0 Ri�rwis2.

Fig. 3: Protocol for comparison between an input shared bitwise and a public value.

Correctness of ΠLTBits: To see the correctness of ΠLTBits, note the following series
of observations:

1. To compare two numbers, we start from the most significant bit (MSB) and look
for the first bit where the two numbers differ. This is precisely what is computed
in Step 1 of ΠLTBits. Thus, ym�1,...,y0 contains a series of 0’s, followed by a 1, which
in turn is followed by bits that are irrelevant to the comparison.

2. As a consequence, zm�1,...,z0 contains a series of 0’s followed by 1’s starting at
the first location where xi and Ri differ. Let kPt0,...,m�1u be the largest index
where xi�Ri. Thus, wi�1 iff i�k and wi�0 otherwise.

3. Finally, multiplying wi by Ri ensures the following:

output�

#
1 if Rk�1, xk�0 (implying R¡xq

0 otherwise (implying R¤x)

�
2.2 Comparison with a Constant – LTC Protocol

The protocol ΠLTC, listed in Fig. 4, is a comparison protocol between a shared se-
cret value, and a public constant. Unlike ΠLTBits, it does not require the secret input
value to be bitwise secret shared, but it invokes the protocol ΠLTBits twice. These
two invocations can be parallelized, decreasing the total number of rounds of the
comparison protocol. ΠLTC requires an edaBit as an input. An edaBit is a shared
value in the arithmetic domain, accompanied by its own bit decomposition in the
binary domain [14]. The core idea behind this comparison protocol is that addition
in a ring or field is commutatitve as explained in Fig. 1a.
The ΠLTC protocol proceeds as follows:

132

Less Than Constant ΠLTCprxsM ,Rq

Inputs: Value x secret shared, such that parties hold rxsM , a shared edaBitprrsM ,rr0s2,...,rrm�1s2q

and public value R.

Outputs: Compute the Boolean value rpx Rqs2.

Protocol:

1. Parties compute the value rasM�rx�rsM (and rbsM�rx�r�M�RsM).

2. Parties open the value a (b�a�M�R can be opened locally).

3. Parties compute the following quantities:

 rw1s2�ΠLTBitspa,rr0s2,...,rrm�1s2q.

 rw2s2�ΠLTBitspb,rr0s2,...,rrm�1s2q.

 w3�pb M�Rq.

4. Output rws2�1�prw1s2�rw2s2�w3q or use one classical daBit to output rwsM .

Fig. 4: Protocol for comparison between an input shared in ZM and a public value R for any modulus

M (in particular, M can be 2k or a prime p).

1. Using the arithmetic value rrsM of the random edaBit from the input, the parties
mask the input value x, computing ras.

2. ras is opened, without revealing any information about x.

3. The parties then do the following:

(a) Invoke ΠLTBits to compare the masked value ras against the random edaBit (in
bitwise sharing), resulting in rw1s2.

(b) Invoke ΠLTBits to compare b � ra�M �RsM against the random edaBit (in
bitwise sharing), resulting in rw2s2.

(c) Compare in the clear b against the public value B�M�R, resulting in w3.

4. Finally, they conclude the comparison test by computing rws2�1�prw1s2�rw2s2�
w3q. This equation follows from the way we exploited the commutative property
of addition, and its correctness is explained in the next paragraph. The output at
this step is the binary value indicating the result of the comparison, shared in F2.
Depending on the follow-up computations in the larger MPC protocol that uses
the comparison, if the next input needs to be arithmetic, a classical daBit [25] can
be used to transform the representation of this bit in ZM .

Correctness of ΠLTC: Let us denote by rxs the value of x PZM , i.e., the modular
reduction in t0,1,...,M�1u. We are interested in securely computing the Boolean

133

value px Rq, for R a public constant. Furthermore, let LTpx,yq be defined as follows:

LTpx,yq�

#
1 if x y

0 otherwise
(1)

Recall from Section 1.2 that the LTpx,yq function enables writing exact integer rela-
tions for the sum of two numbers as follows:

rx�ys�rxs�rys�M �LTprx�ys,rxsq

�rxs�rys�M �LTprx�ys,rysq
(2)

To be consistent with the notation followed in Fig. 1a, we define B �M�R, and
c�rx�Bs. We then use the commutative nature of addition to represent the sum
b� rx�r�Bs in two different ways, as shown in Fig. 1a. Using Eq. 2 for the two
additions in the top path and noting that a,b,BPZM :

b�ra�Bs�a�B�M �LTpb,Bq

�x�r�M �LTpa,rq�B�M �LTpb,Bq
(3)

Similarly, using Eq. 2 for the two additions on the bottom path , we get:

b�rc�rs�c�r�M �LTpb,rq

�x�B�M �LTpc,Bq�r�M �LTpb,rq
(4)

Equating the RHS of Eq. 3, and Eq. 4, we get:

LTpa,rq�LTpb,Bq�LTpc,Bq�LTpb,rq (5)

Recall that the result we are after is LTpx,Rq, which is equivalent to p1�LTpc,Bqq,
since B�M�R, and c�rx�Bs. Thus, from Eq. 5 we have LTpc,Bq�1�pLTpa,rq�
LTpb,Bq�LTpb,rqq, which is exactly what we compute in Step 4 of ΠLTC. Finally, to
complete the proof, we reiterate that LTpc,Bq�0 iff px Rq and that LTp�,�q correctly
computes the function defined by Eq. 1. �

The correctness argument above holds, under the assumption that the edaBit func-
tionality produces correct and secure tuples. We note that the security of our ΠLTC

protocol reduces to statistical, due to the use of edaBits (which offer statistical se-
curity). Since edaBits are sampled on a bit-by-bit basis, and then composed (first
locally, by each party, and then globally) to the arithmetic sharing, we require both
for correctness, and for statistical security that our modulus M is close to a power
of 2. We further elaborate on this matter in Section 4.3.

134

2.3 ΠReLU – Special Case of ΠLTC for R�2k�1, M�2k

ΠLTC is a general comparison protocol for comparing against any public value. How-
ever, a special case of interest is when the modulus is a power of 2 and the public
constant to be compared against is half the modulus. When considering privacy-
preserving alternatives to machine learning, the use of fixed-point arithmetic converts
the widely used ReLUpxq�maxpx,0q function to the above comparison, when consid-
ering such a special modulus (power of 2). In this case, where R�2k�1 and M�2k,
the protocol can be optimized further to improve performance. We present this op-
timized protocol in Fig. 5. This comparison setting is useful in a number of privacy-
preserving machine learning frameworks [22,32], where fixed point encoding trans-
forms the ReLU function into a comparison withR�2k�1 andM�2k. In this case, we
can simplify our protocol to open the masked value a�rx�rs (Step 1 of the protocol),
subtract the mask r from it using a binary circuit in the secret shared domain (Steps 2,
3, 4 of the protocol), and extract the MSB of this result (Step 6). This way we are
essentially extracting the MSB of x. This replaces the overhead of two invocations of
ΠLTBits with a single invocation of a binary addition protocol (ΠBitAdder). The computa-
tion in Step 4 can also be used to perform comparisons when R�2` is another power
of two, however that would require additional computation over the bits sk�1,...,s`.

ReLU ΠReLUprxs2k,2
k�1q

Inputs: Value x secret shared, such that parties hold rxs2k, a shared edaBit prrs2k,rr0s2,...,rrk�1s2q

and the public value 2k�1.

Outputs: Compute shares rys2k where y�x if px¤2k�1q and 0 otherwise.

Protocol:

1. Parties compute the value ras2k�rx�rs2k and open a.

2. Parties locally compute rt0s2,...rtk�1s2�r1�r0s2,...,r1�rk�1s2

3. Parties set a0,...ak�1 to be the bits of pa�1q.

4. rs0s2,...,rsk�1s2,rsks2�ΠBitAdderpa0,...,ak�1,rt0s2,...,rtk�1s2q
a.

5. Output rsk�1s2 or use one classical daBit to output rsk�1s2k if only the derivative of ReLU

is required in the computation.

6. Use one multiplication triple and output y�rxs2k �rsk�1s2k.

a ΠBitAdder is a circuit performing addition over bitwise shared values.

Fig. 5: Protocol for comparison between an input shared in Z2k and 2k�1.

Correctness of ΠReLU: Observe that in this special case comparison with the con-
stant 2k�1 where the modulus is 2k, the MSB of the secret input defines the result of

135

the comparison. Our protocol essentially performs a bit decomposition of the input
rxs2k by masking it (using the arithmetic version of the edaBit) and then again sub-
tracting this mask in a binary circuit (using the binary version of the edaBit). This
results in the bit decomposition of x, and by extracting its MSB we conclude the
comparison, and hence the computation of this ReLU function.

Remark – Optimizing ΠReLU: Note that Step 4 in Figure 5 can be optimized as
we only require a single bit rsk�1s2. In particular, this requires log2k rounds and
klog2k invocations of bit-triples. This can be reduced to log2k rounds and 2k�2 bit-
triples by simply modifying the MSB values and using a prefix computation protocol
ΠPreOpL (cf [6]). We modify the most significant bit of the input tuple to be p1,0q
before passing to the ΠPreOpL. Consequently, the second element of the output tuple
of the ΠPreOpL protocol is the carry bit rsk�2s2 and thus rsk�1s2 can be computed
locally as the XOR of the MSB’s of the two bits and the bit rsk�2s2.

2.4 Comparison with Secret – LTS Protocol

While the protocol described in Sec. 2.2 provides an efficient way to compare with a
public constant, the protocol described in this section, ΠLTS, listed in Fig. 6, enables
the comparison of two secret values x and y. In most prior works, due to the use
of a slack or bounds on inputs, the corresponding protocols for these two settings
are nearly identical. In our case, the elimination of slack requires slightly different
protocols. We provide a brief discussion on applications of either of these protocols
in Sec. 4.2.
Each step of the protocol ΠLTS computes the following:

1. Parties mask the input values rys and rxs using the arithmetic shares of two
random edaBits rrs and rr1s, resulting in shared values rbs and ras PZM .

2. These masked values are opened (without revealing any information about x or
y) and the value T�a�b pmod Mq is computed locally.

3. The parties then perform the following computations:

(a) Using ΠLTBits, a secret comparison between the open value b and the bitwise
sharing of the edaBit r, and store the result rw1s2.

(b) A similar comparison between a and the bitwise sharing of r1, and store the
output in rw2s2.

(c) Check in the clear whether pT bq, and store this value in w3.

(d) Compute a circuit for bitwise addition of two binary (secret) vectors, where
the result is a bitwise secret shared vector of the bits of pr�r1q.

(e) Extract the last carry bit from the binary adder (Step 3d) as rw4s2.

136

Less Than Secret ΠLTSprxsM ,rysMq

Inputs: Values x and y secret shared, such that parties hold rxsM and rysM , two shared

edaBitsprrsM ,rr0s2,...,rrm�1s2q and
�
rr1sM ,rr

1
0s2,...,

�
r1m�1

�
2

�
.

Outputs: Compute the Boolean value rpx yqs2.

Protocol:

1. Parties compute the values rbsM�ry�rsM , rasM�rr1�xsM

2. Parties open the values a and b, and compute T�a�b pmod Mq locally.

3. Parties compute the following quantities:

 rw1s2�ΠLTBitspb,rr0s2,...,rrm�1s2q.

 rw2s2�ΠLTBitspa,rr
1
0s2,...,

�
r1m�1

�
2
q.

 w3�pT bq.

 rs0s2,...,rsm�1s2,rsms2�ΠBitAdderprr0s2,...,rrm�1s2,rr
1
0s2,...,

�
r1m�1

�
2
q.

 rw4s2�rsms2
 rw5s2�ΠLTBitspT,rs0s2,...,rsm�1s2q.

4. Output rws2�rw1s2�rw2s2�w3�rw4s2�rw5s2, or use one classical daBit and output rwsM .

Fig. 6: Protocol for comparison between two arithmetic inputs shared in ZM , for any modulus M (in

particular, M can be 2k or a prime p).

(f) Finally, using ΠLTBits, compare the value T against the bitwise secret sharing
of r�r1 (computed in Step 3d), and store the output in rw5s2.

4. In the end, the parties conclude the comparison protocol by computing the out-
put rws2�rw1s2�rw2s2�w3�rw4s2�rw5s2. This final step, similarly to the LTC
protocol follows from the way we exploit the commutative nature of addition, and
we show correctness subsequently. The final output is the binary sharing of the
comparison result, which can be transformed to a shared bit in ZM if needed.

Correctness of ΠLTS: Following the same notation set-up as in Sec. 2.2 for ΠLTC,
we denote by rxs the value of xPZM , and the function LTpx,yq as defined in Eq. 1.
We are interested in securely computing the Boolean value px yq, for x and y two
secret shared values in ZM . The intuition for our protocol is presented in Fig. 7 and
follows the same idea as in ΠLTC, viz., computing a sum in two different ways and
using Eq. 2 to find a constraint between the various wrappings around the modulus.

First note that rxs rys iff LTpry�xs,rysq�1. We then mask the inputs y and �x
using the two edaBits: rbs � ry�rs, ras � rr1�xs. Finally, we look at computing the
value rT s � ry�x�r�r1s in two different ways, as the sum of a and b, and as the

137

rxs,rys b�ry�rs and a�rr1�xs

ry�xs T�ry�x�r�r1s

�r1, �r

�B

�pr�r1q

Fig. 7: Intuition behind the comparison protocol for two secret values, once again based on the

commutative nature of addition over rings and fields.

sum of y�x and r�r1. Looking at the addition using the first way, we first open the
values a and b, and write the exact integer relation (using Eq. 2):

T�b�a�M �LTpT,bq (6)

We can also write similar expressions for b and a,

b�rys�rrs�M �LTpb,rrsq

a�r�xs�rr1s�M �LTpa,rr1sq
(7)

Thus the first expression for the sum T is given by (combining Eqs. 6, 7):

T�rys�rrs�M �LTpb,rrsq�r�xs�rr1s�M �LTpa,rr1sq�M �LTpT,bq (8)

Grouping the terms differently and computing the sum using the latter expression:

T�ry�xs�rr�r1s�M �LTpT,rr�r1sq (9)

Once again, ry�xs and rr�r1s can be expanded using Eq. 2 as:

ry�xs�rys�r�xs�M �LTpry�xs,rysq

rr�r1s�rrs�rr1s�M �LTprr�r1s,rrsq.
(10)

Plugging Eq. 10 into Eq. 9, and equating that with the expression in Eq. 8, we get
the following expression for LTpry�xs,rysq, the quantity of interest:

LTpry�xs,rysq�LTpb,rrsq�LTpa,rr1sq�LTpT,bq�LTprr�r1s,rrsq�LTpT,rr�r1sq

This completes the correctness proof. To generate an efficient protocol for this ex-
pression, the final observation is that LTprr�r1s,rrsq is generated as a by-product of
the computation required to generate the bit decomposition of r�r1 from the bit
decompositions of r,r1 (to enable a call to ΠLTBits). �

138

3 Evaluation

We implement our protocol in the MP-SPDZ Framework [13]. The entire protocol is a
handful of lines of python code, as shown in Fig. 1b, and reads directly from the pseu-
docode; this makes it highly amenable to implementation. We evaluate our protocol
over various MPC settings and a brief summary of our experiments is provided below:

(i) Throughput of Comparisons: In this experiment, we measure the through-
put of comparison operations and compare this with prior art. These results are
presented in Sec. 3.1.

(ii) Private Evaluation of ResNet-50: We provide benchmarks for evaluating
ResNet-50 [17] using dishonest majority privacy-preserving computation. We use
the state-of-the-art matrix triple generation algorithm [7] and combine that with
our comparison protocol and compare that against the prior art [7,14]. These
results are presented in Sec. 3.2.

Set-up Details: We use an MPC set-up similar to prior works [14,25,24]. Each
party is run on an Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz with 128GB of
RAM over a 10Gb/s network switch with an average round-trip ping time of 1ms.
For the WAN setting we use two or three machines depending on the protocol wich
are equipped with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz and 54GB of RAM
while the network capability was slowed down using the Linux tc command limiting
the bandwidth to 100Mb/s and 100ms round-trip ping time.

3.1 Throughput of Rabbit comparisons

We conduct experiments in all combinations of the possible adversarial models (ac-
tive, passive), adversarial settings (honest majority, dishonest majority), and domains
(OT-based in Z2k, OT-based in Fp, HE-based in Fp), and in both the LAN and WAN
network settings. Table 1 provides a summary of the primitives used as preprocess-
ing (i.e., offline cost) for a Rabbit comparison, vs. an edaBit comparison [14], their
online round complexity, security, and the need for slack, in Z2k and in Fp. As in
Escudero et. al. [14], we benchmark the time required for a million comparisons
between two (DM) or three (HM) servers described in the setup above. Table 2, 3
show the number of comparisons per second (throughput) and communication per
party (kbits) for a single operation in the LAN and WAN settings respectively. Our
protocol improves prior art in runtime and communication by upto 2�, and in all
cases, achieves these without any slack.

Communication for ΠLTC over Fp. Note that our protocol incurs higher commu-
nication cost, when performing comparisons over fields. This is due to the use of

139

Sub-protocols
Rabbit edaBits Comp. [14]

Z2k Fp Z2k Fp

edaBits 1:tku 1:tku 1:tlu 2:tl�m�

s,mu

daBits 1 1 1 1

ANDs 3pk�1q klog2k* 3pl�1q 2pk�1q

Rounds 2�log2k log2k 2log2l 2log2k

Security, slack Perfect, No Statistical,

No

Statistical,

Yes

Statistical,

Yes

Table 1: Theoretical complexity comparison of exact comparison functionality over Z2k and Fp where

k is the bit-size of the datatypes, l is the log2 bound on the inputs/data, and m refers to the number

of bits to be truncated.

a more expensive Prefix OR computation. Prior works encode the data in a larger
dataspace and simply extract the MSB for the comparison. In a manner similar to
the optimization from ΠLTC to ΠReLU, we can extract the MSB to compute a com-
parison. This operation requires using a prefix computation protocol ΠPreOpL (cf [6]),
which has a linear overhead of 2pk�1q bit-triples in log2k rounds – matching that of
edaBits [14]. If a different encoding is used, where positive and negative numbers are
determined by comparison with tp{2u, the same protocol can be used with statistical
correctness, determined by the specific choice of prime (with a small gap between
p and 2k). A suitable choice of prime p would also further lower the prepossessing
time, when performed using HE.

3.2 Neural Network Evaluation

In this section, we provide benchmarks for using our approach for comparison on
evaluating the ResNet-50 architecture [17]. In our experiments, we consider neural
network inference over 64-bit datatypes and compare the offline and online perfor-
mance of our protocol with the state-of-the-art protocols with active security in the
dishonest majority setting. For prior art, we use the recent protocol for matrix triple
generation [7] in conjunction with our ΠLTC comparison protocol. The results are
summarized below.

The work of Chen et. al. [7] requires the plaintext modulus to be 128-bits, due to
the slack required in the comparison. In this work, we eliminate that slack and hence
only require generation of matrix triples using homomorphic encryption (HE) with
a plaintext space of 64-bits. While Chen et. al. [7] require a 128-bit modulus and
N �215 (degree of the cyclotomic polynomial), we can generate 64-bit triples. This
enables us to run the algorithm with lower HE parameters (and consequently bet-

140

Domain
Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest
Majority

Active

2k (OT) 2936 1252.4 3038 1252.2

p (OT) 1537 2847.0 1056 4458.6

p (HE) 1495 1678 1495 1635.99

Passive

2k (OT) 165368 39.5 172211 38.3

p (OT) 73947 87.8 51478 132.2

p (HE) 65750 67.63 41175 41.71

Honest
Majority

Active
2k 117607 5.62 116616 5.54

p 88780 9.43 41028 19.62

Passive
2k 5706569 0.5 5600265 0.5

p 1421412 0.96 472316 1.58

Table 2: Throughput and communication for running secure comparisons using Rabbit in contrast to

prior art over LAN for 16 threads, with 2 million comparisons in total.

ter performance). We use N � 214, a plaintext modulus of 64-bits and a ciphertext
modulus of 480. With a conservative analysis this leaves enough room for 40-bits
of statistical security. We set the block size to 64 instead of 128 and thus pack 4
matrices in a single ciphertext (compared to 2 in Chen et. al. [7]). We list the sizes
of matrices required for the computations in ResNet-50 and then measure the time
required (and communication overhead) for matrix triple generations using these
different set-ups. We run the protocols on a similar set-up as Chen et. al. [7], using
a 5Gb/s LAN bandwidth and about 300 Mbps WAN bandwidth. Hence, just for
the triple generation, our communication complexity reduces by about 60% and the
total time by about 40% of [7] for the same set of triple generations (LAN and WAN
settings are fairly similar as the protocols are compute dominated). Furthermore, our
computational burden for the matrix triple computations reduces from about 72GB
to 9.3GB – a critical improvement for systems based on HE.

We also run the offline and online computations for the comparisons in ResNet-
50 and compare the total time. Our protocol takes about 11 hours and 2883.3 GB
of communication. When compared to prior art of Chen et. al. [7], they evaluate
the same network in about 24hrs with 2036 GB (using improved comparisons using
edaBits). Thus, our work is 2� faster albeit uses slightly more communication due to
the communication gap for Rabbit and edaBit for dishonest majority within a char-
acteristic p field. Thus, our comparison protocol, combined with the improvement in
the triple generation phase due to slack elimination, provides a significant throughput
improvement over state-of-the-art MPC protocols for neural network evaluation.

141

Domain
Rabbit edaBits Comp. [14]

Thru.(ops/s) Comm.(kb) Thru.(ops/s) Comm.(kb)

Dishonest
Majority

Active

2k (OT) 33 1237 33 1237

p (OT) 1.37 29646 0.37 112594

p (HE) 2 19089 N/A N/A

Passive

2k (OT) 596 39.26 604 38.18

p (OT) 366 87.59 245 131

p (HE) 427 67.01 431 41.71

Honest
Majority

Active
2k 5444 5.54 5488 5.52

p 1639 16.96 1463 19.53

Passive
2k 15096 0.49 15182 0.49

p 11492 0.96 7640 1.53

Table 3: Throughput and communication for running secure comparisons using Rabbit in contrast to

prior art over WAN. All numbers were produced using 2 million comparisons with 8 threads, except in

the active security, dishonest majority field cases where we used only 32,000 comparisons due to time

constraints. Note that for the active security, dishonest majority field case with HE preprocessing, the

54GB RAM machines ran out of memory due to the large ciphertexts kept in memory by MP-SPDZ -

for Rabbit there were no memory issues as the memory footprint is reduced to half due to ciphertexts

that only need to accommodate 64-bits plaintexts.

4 Discussion

In this section, we provide a deeper discussion on the following aspects of this work.
We (1) elaborate on our central contribution of removing the slack and how it enables
computation over smaller data types; (2) we discuss applications of these protocols;
and (3) provide an analysis of the statistical security provided by our protocol along
with the choice of modulus for the case of fields.

4.1 Elimination of “Slack” in Comparisons

One important contribution of this work is the elimination of a “slack” between the
inputs (in other words the computable part of the data) and the actual size of the
datatypes used in the MPC engines. Note that prior work in the dishonest majority
setting requires a slack to accommodate for the statistical parameter. Commonly, this
statistical parameter, which is necessary to ensure security, is at least 40-bits. This
implies that the actual datatypes used in the MPC are at least 40-bits longer than
the values we need to compute upon. As a consequence, prior work requires 128-bit
datatypes for the MPC, necessary to support 64-bit computations. On the contrary,
our comparison protocol achieves exact comparison without the need for any slack
and thus operates on smaller, 64-bit datatypes. As shown in Section 3.2, when the

142

slack removal is combined with recent advances such as the contributions of the work
of Chen et. al. [7], the smaller MPC datatypes enable faster triple generation, reduce
the communication and computational overhead and increase the overall efficiency
of the MPC computations, beyond secure comparisons.

4.2 Applications to Machine Learning and Beyond

Privacy-preserving machine learning, which is of increasing interest in the field of
MPC, often relies on efficient protocols for computing ReLU, a non-linear function
that is given by ReLUpxq�maxpx,0q. Using fixed-point encoding, computation of the
ReLU function reduces to a comparison with an encoding of 0 (i.e., a constant). Given
that this non-linear function is the bottleneck of many state-of-the-art secure machine
learning protocols [21,18], our proposed protocol improves this entire line of work.

The thresholding operation is yet another application where we require a compar-
ison with a public constant. In image processing and computer vision, threasholding
is used for segmenting images (e.g., turn a grayscale image into a binary one). In
particular, it replaces a pixel with a black (resp. white) pixel, if the image intensity is
less (resp. greater) than a fixed constant. In yet another application, Cryptography
for #metoo [19], the system heavily relies on the use of public value thresholding.
In adversarial machine learning, algorithms for robustness that work over privacy-
preserving computation also require thresholdings with small public values. In all
these applications, the functionality can be efficiently achieved using our comparison
with constant protocol. Thus, our efficient comparison with constant protocol, ΠLTC

(Sec. 2.2), is deployable on several application scenarios.
On the other hand, there are applications, where secure comparisons with a con-

stant do not suffice, but a comparison between two values that are both secret is
required. In such cases, our comparison with secret protocol, ΠLTS (Sec. 2.4) can be
deployed. Applications in this line of work go as far in the past as the first instance
of the problem: Yao’s millionaires’ problem [34], and include amongst others also
secure auctions [4], and secure linear programming [28].

4.3 Statistical Security

We remark that ΠLTBits, ΠLTC, ΠReLU and ΠLTS are all inherently information theo-
retically secure. However, the current implementation needs to account for a small
statistical security due to the use of edaBits [14]. The protocol for edaBit generation
produces shares:

rrsM and trris2u
m�1
i�0 such that r�

m�1̧

i�0

ri�2
i pmod Mq (11)

In particular, for the correctness of ΠLTC in Sec. 2.2, we require that r�
°
ri�2

i, and
this condition is different from Eq. 11 in a subtle yet important way. In the case

143

where M�2m, this does not raise an issue. However, in all other cases, in particular
including the field case, we have 2m�1 M 2m, and so we can have r�p

°
ri�2

iq�M.
In this case, the correctness of ΠLTC does not hold, as the set of sharings trris2u

m�1
i�0

does not correspond to the bit decomposition of r. To address this issue, we note that
this failure probability depends on the size of the gap between the modulus and the
bounding power of 2 in relation to the modulus. The failure probability is given by:

Failure probability �
2m�M

2m
(12)

which is simply the probability that r is between M and 2m. Thus, if δ�2m�M, the
failure probability can be made small for suitable choice of δ{2m. Thus, in practice,
we choose the largest 64-bit prime p� 264�59 for our implementation. This gives
our protocol a failure probability of less than 2�59. However, from a security point

of view, for statistical hiding, we use the fact that r
R
ÐÝt0,1,���,2m�1u when reduced

modulo M is still close to uniform in ZM (to ensure the masked value is hidden). If
the former distribution is D1 and the latter is D2, then this statistical distance can
be computed exactly as given in Eq. 13. Thus, the statistical closeness can also be
made negligible by a suitable choice of δ{2m. A union bound over the two expressions
(Eq. 12 and 13) allows us to achieve both correctness and privacy with a statistical
parameter close to 58-bits.

Statistical closeness �DistancepD1,D2q

�
1

2

��
δ�1̧

i�0

2

2m
�

1

M

�
�

�
2m�1¸
i�δ

1

M
�

1

2m

��

�
δ�pM�δq

M �2m
¤
δ

2m

(13)

Furthermore, we note that one can use rejection sampling as follows: run ΠLTBits over
the bit decomposition of r and the modulus M to check if r¥M. If this is the case
then reject the sample. This way we can eliminate such edaBits and note that the
rejections happen with probability similar to the expression in Eq. 12 and is thus
ideal once again when the prime p is close to a power of 2.

As an aside, the closer the prime is to the power of two, the lower is the failure
probability. However, when combining with other protocols, such as those mentioned
in Sec. 3.2, there are other considerations in choosing the prime. For instance, for
efficiency reasons BFV [15,5] requires special prime modulus, where p�1 has a large
factor (around 214 - 216). One such prime is p� 264�83, where 33196 � p�1 and
φp33196q�16128 (with φ the Euler’s Totient function), which would be secure given
the 16k degree and appropriately chosen modulus q.

144

Lastly, we reiterate that when combined with a larger MPC platform, the overall se-
curity is set by the weaker between the MPC platform and the protocol or algorithm,
and hence when using implementations such as SPDZ [12], BDOZa [2], SPDZ2k [10],
as the underlying MPC platform, our security reduces to computational.

5 Comparison with Related Work

After the seminal work of Yao [34], which operates in the two-party setting, and is
based on garbled circuits, many works studied the problem of secure comparisons,
both in the two-party [8,29,35], as well as in the multi-party setting [9,23,6,20]. In
this work, we focus on the general n-party setting. Damg̊ard et. al. [9] were the first
to tackle the challenge of secure, constant-round bit decomposition of secret shared
inputs, which is a necessary building block for most comparison protocols. In the
same work [9], they extend and apply their bit-decomposition protocol to develop
a secure comparison protocol (amongst other applications). Their comparison proto-
col works in the general n-party setting, with any underlying linear secret sharing
scheme (LSSS), and provides unconditional security against active adversaries (as-
suming that the multiplication protocol of the LSSS is also actively secure), in the
honest majority setting.

Improving upon the complexity of Damg̊ard et. al.’s [9] bit decomposition, com-
parison, equality, and interval test protocols, Nishide and Ohta [23] provide new,
simplified protocols. In addition, Nishide and Ohta [23] construct new secure com-
parison, equality, and interval test protocols, which do not rely on bit decomposition.
For their deterministic equality test protocol that is independent of bit decomposi-
tion, Nishide and Ohta [23] apply a masking technique similar to the one we use in
our comparison protocol: they use a random shared value that the parties possess
both in its Fp and in its bit decomposed form to mask and afterwards open the secret
shared input of the equality test.

In an attempt to design comparison protocols with concrete efficiency instead of
asymptotic, Catrina and de Hoogh [6] propose several versions of secure equality
and comparison tests. Their protocols run in logarithmic number of rounds, in the
bit-length of the values to be compared, but also with logarithmic communication
cost (instead of the usually linear communication cost). The efficiency of these pro-
tocols comes also at the cost of statistical, instead of unconditional security and have
been adopted and implemented in a number of MPC platforms (e.g., [13,1]). Our
comparison protocol, in combination with the recent advances in the generation of
daBits [25], and edaBits [14] performs concretely better than the one of Catrina and
de Hoogh [6], while offering unconditional (instead of statistical) security in Z2k.

Lipmaa and Toft [20] propose three different comparison protocols. Only one of
these comparison protocols works for the general n-party setting with active security,

145

Protocol
Communication Computation

Rounds Security Adversary Setting
Offline Online Offline Online

[9] - Op`log`q - Op`log`q Op1q perfect active HM

[23] - Op`q - Op`q Op1q perfect passive HM

[6] - Oplog`q - Oplog`q Oplog`q statistical passive HM

[20] Op`q Oplog`q Oplog`q Oplog`q Oplog`q statistical active HM

Rabbit Op`q Op`log`q Op`q Op`q Oplog`q perfect* active DM

Table 4: Comparison of the related work in the n-party setting in terms of offline, and online

communication and computation complexity; in terms of rounds; in terms of security; and in terms of

adversarial model and adversarial settings supported. In the context of adversarial setting HM stands

for honest majority, while DM stands for dishonest majority. *perfect security holds only when the

underlying secret sharing scheme operates over Z2k.

and while it offers sublinear online communication complexity, it is not constant-
round and it has linear offline communication cost. Like other protocols in the
literature [29,8], the core of [20] lies in the idea of splitting the two strings to be
compared into smaller, equal length blocks, and perform the comparison on the first
block where they differ. This way the problem of comparison only needs to be ad-
dressed on smaller strings (the blocks), and equality testing can be applied to the
larger strings (to allow for the necessary reduction of the size of the blocks on which
comparison is to be performed). Other recent concretely-efficient comparison proto-
cols such as [16,32,33,31] also eliminate the need for a slack but operate in fixed
adversarial models and are tied to a 3-party MPC setting.

In Table 4 we detail the asymptotic costs and security features of the related
work in secure comparisons for the general n-party setting. It is important to remark
that most prior secure comparison protocols require the values to be compared to
be smaller than the space where the comparison takes place. Although this may re-
sult in efficient protocols for the particular comparison operations, it also requires a
larger MPC engine to perform all (other) computations. Essentially, this means that
all adjacent computations should be performed in a larger space, and all values to
be communicated throughout the protocol need to be larger by a factor proportional
to the necessary slack for the secure comparison. Our protocol crucially overcomes
this limitation.

6 Conclusion

In this work, we propose novel comparison protocols for general n-party computa-
tion. Our protocols enjoy perfect security, when we operate over Z2k, and crucially

146

eliminate the need for “slack” – a larger dataspace to compute secure comparisons,
enabling computations over smaller datatypes. In terms of concrete efficiency, our
protocols improve prior art by twice for most adversary structures, while keeping a
smaller communication complexity. Given that comparisons are a fundamental secure
computation primitive, many MPC applications can benefit from our protocols.

Acknowledgements

This work was supported in part by the Research Council KU Leuven grant C14/18/067,
and by CyberSecurity Research Flanders with reference number VR20192203, and
by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

References

1. Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Nigel P.

Smart, and Tim Wood. SCALE-MAMBA v1.2: Documentation, 2018.

2. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic

Encryption and Multiparty Computation. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 169–188. Springer, 2011.

3. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas Jakobsen, Mikkel

Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael

Schwartzbach, and Tomas Toft. Secure Multiparty Computation Goes Live. In International

Conference on Financial Cryptography and Data Security, pages 325–343. Springer, 2009.

4. Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter, and Tomas Toft. A

Practical Implementation of Secure Auctions based on Multiparty Integer Computation. In Inter-

national Conference on Financial Cryptography and Data Security, pages 142–147. Springer, 2006.

5. Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical

GapSVP. In Advances in Cryptology—CRYPTO, pages 868–886. Springer, 2012.

6. Octavian Catrina and Sebastiaan de Hoogh. Improved Primitives for Secure Multiparty Integer

Computation. In International Conference on Security and Cryptography for Networks, pages

182–199. Springer, 2010.

7. Hao Chen, Miran Kim, Ilya Razenshteyn, Dragoş Rotaru, Yongsoo Song, and Sameer Wagh.

Maliciously Secure Matrix Multiplication with Applications to Private Deep Learning. In

Advances in Cryptology—ASIACRYPT, 2020.

8. Geoffroy Couteau. New Protocols for Secure Equality Test and Comparison. In Applied

Cryptography and Network Security (ACNS), 2018.

9. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally

Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and

Exponentiation. In Theory of Cryptography Conference (TCC), pages 285–304. Springer, 2006.

147

10. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart.

Practical Covertly Secure MPC for Dishonest Majority–or: Breaking the SPDZ Limits. In

European Symposium on Research in Computer Security, pages 1–18. Springer, 2013.

11. Ivan Damg̊ard and Jesper Buus Nielsen. Universally Composable Efficient Multiparty Computation

from Threshold Homomorphic Encryption. In Annual International Cryptology Conference, pages

247–264. Springer, 2003.

12. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty Computation from

Somewhat Homomorphic Encryption. In Annual Cryptology Conference, pages 643–662. Springer,

2012.

13. Data61. MP-SPDZ: Versatile Framework for Multi-party Computation, 2019.

https://github.com/data61/MP-SPDZ.

14. Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved

Primitives for MPC over Mixed Arithmetic-Binary Circuits. Cryptology ePrint Archive, Report

2020/338, 2020. https://eprint.iacr.org/2020/338.

15. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption.

Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

16. Wataru Fujii, Keiichi Iwamura, and Masaki Inamura. Secure Comparison and Interval Test

Protocols Based on Three-Party MPC. In 6th International Conference on Information Systems

Security and Privacy, ICISSP 2020, pages 698–704. SciTePress, 2020.

17. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

18. Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A Low

Latency Framework for Secure Neural Network Inference. In 27th USENIX Security Symposium

(USENIX Security 18), pages 1651–1669, 2018.

19. Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. Cryptography for# metoo. In Privacy

Enhancing Technologies Symposium (PETS), 2019.

20. Helger Lipmaa and Tomas Toft. Secure Equality and Greater-Than Tests with Sublinear Online

Complexity. In International Colloquium on Automata, Languages, and Programming, pages

645–656. Springer, 2013.

21. Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious Neural Network Predictions via

MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 619–631, 2017.

22. Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-Preserving

Machine Learning. In IEEE Symposium on Security and Privacy (S&P), 2017.

23. Takashi Nishide and Kazuo Ohta. Multiparty Computation for Interval, Equality, and Comparison

without Bit-Decomposition Protocol. In International Workshop on Public Key Cryptography,

pages 343–360. Springer, 2007.

148

24. Dragos Rotaru, Nigel P Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood.

Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019.

https://eprint.iacr.org/2019/1300.

25. Dragos Rotaru and Tim Wood. Marbled Circuits: Mixing Arithmetic and Boolean Circuits with

Active Security. In International Conference on Cryptology in India, pages 227–249. Springer, 2019.

26. Sepior. https://sepior.com/, 2020.

27. Sharemind. https://sharemind.cyber.ee/, 2020.

28. Tomas Toft. Solving Linear Programs Using Multiparty Computation. In International Conference

on Financial Cryptography and Data Security, pages 90–107. Springer, 2009.

29. Tomas Toft. Sub-Linear, Secure Comparison with Two Non-Colluding Parties. In International

Workshop on Public Key Cryptography, pages 174–191. Springer, 2011.

30. Unbound. https://www.unboundtech.com/, 2020.

31. Sameer Wagh. New Directions in Efficient Privacy Preserving Machine Learning. PhD thesis,

Princeton University, 2020.

32. Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party Secure Computation

for Neural Network Training. In Privacy Enhancing Technologies Symposium (PETS), 2019.

33. Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal

Rabin. FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning.

In Privacy Enhancing Technologies Symposium (PETS), 2021.

34. Andrew C Yao. Protocols for Secure Computations. In 23rd annual symposium on foundations

of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

35. Ching-Hua Yu and Bo-Yin Yang. Probabilistically Correct Secure Arithmetic Computation

for Modular Conversion, Zero Test, Comparison, MOD and Exponentiation. In International

Conference on Security and Cryptography for Networks, pages 426–444. Springer, 2012.

149

Chapter 10

Full-Threshold
Actively-Secure Multiparty
Arithmetic Circuit Garbling

Publication data

E. Makri, T. Wood. “Full-Threshold Actively-Secure Multiparty Arithmetic
Circuit Garbling”. In IACR Cryptology ePrint Archive, 2019, 1098.

150

Full-Threshold Actively-Secure Multiparty
Arithmetic Circuit Garbling

Eleftheria Makri1,2 Tim Wood1,3

1 imec-COSIC, KU Leuven, Belgium.
2 ABRR, Saxion University of Applied Sciences, The Netherlands.

3 University of Bristol, UK.

Abstract. In this work, we show how to garble arithmetic circuits with full active

security in the general multiparty setting, secure in the full-threshold setting (that

is, when only one party is assumed honest). Our solution allows interfacing Boolean

garbled circuits with arithmetic garbled circuits. Previous works in the arithmetic

circuit domain focused on the two-party setting, or on semi-honest security and as-

suming an honest majority – notably, the work of Ben-Efraim (Asiacrypt 2018) in

the semi-honest, honest majority security model, which we adapt and extend. As an

additional contribution, we improve on Ben-Efraim’s selector gate. A selector gate

is a gate that given two arithmetic inputs and one binary input, outputs one of the

arithmetic inputs, based on the value of the selection bit input. Our new construction

for the selector gate reduces the communication cost to almost half of that of Ben-

Efraim’s gate. This result applies both to the semi-honest and to the active security

model.

Keywords: Arithmetic Garbling · Active Security · Efficient Selector Gate

1 Introduction

Garbled circuits have been an indispensable cryptographic tool in the field of
secure computation since the seminal work of Yao [26]. From a theoretical point
of view, garbled circuits are important as they provide the means by which we
can construct constant-round secure computation protocols, originally only in
the two-party setting, but later generalised to the multiparty setting, following
the paradigm of Beaver et al. [5]. In the two-party setting, garbled circuits are
typically Boolean circuits executed between two asymmetric parties – a garbler
and an evaluator. However, many secure computation problems require arith-
metic operations to emulate integer arithmetic, which are inefficient to realise
with a Boolean circuit (e.g., requiring 1000 AND gates for an addition mod p
and 100000 AND gates for a multiplication mod p, for p ≈ 2128). Towards the

151

goal of efficient constant-round computation of arithmetic circuits, one theoret-
ical approach was given by Applebaum et al. [2] and more recently a practical
solution was proposed by Ball et al. [4], in the two-party setting.

In this work we focus on multiparty arithmetic garbling. The work of Ben-
Efraim [6] was the first to explore multiparty garbling of arithmetic circuits,
and gave protocols secure in the presence of a passive adversary in the honest-
majority setting. The goal of multiparty arithmetic garbling protocols is the
functionality FAC for computing an arithmetic circuit, given in Figure 1. This
functionality is the goal of all Multiparty Computations (MPC), but offers only
security with abort instead of full robustness, in which honest parties can always
obtain the correct output after the initial inputs are provided, or fairness, in
which honest parties always receive the output if the corrupt parties receive it.

Functionality FAC

Let S denote the ideal-world adversary and A ([n] the indexing set of corrupt parties.

Evaluate On input (Evaluate, C,xi) from each party Pi, or S if i ∈ A, if C is an arithmetic
circuit over Fp and xi ∈ Ftip for all i such that

∑n
i=1 ti is the arity of C, send y :=

C(x1, . . . ,xn) to S and await a message Abort or OK from S. If the message is OK, then
send y to all honest parties and halt; otherwise, send the message Abort to all honest
parties and halt.

Fig. 1: Functionality FAC for evaluating an arithmetic circuit, secure with abort.

In our approach, we allow a (limited) combination of arithmetic and Boolean
circuits, as this appears to be desirable for many real-world applications. From
the simplest motivating example that one can consider, such as the one of condi-
tional summation that Ben-Efraim [6] suggests, to the most complicated compu-
tations, such as evaluation of Machine Learning (ML) algorithms, a combination
of arithmetic with Boolean gates is required to yield an efficient solution. Ma-
chine Learning as a Service is becoming increasingly popular, and when privacy
concerns arise, secure computation solutions should be deployed. The most com-
monly used ML algorithms (e.g., Support Vector Machines (SVMs) and Neural
Networks) contain one or more components that require linear operations – for
which arithmetic operations are more appropriate – and one or more components
that require non-linear operations, such as argmax or sign computation – where
Boolean computation is best. Thus it seems sensible to attempt to support both
types of gates to achieve efficient solutions to realistic applications.

Related Work. Our work combines the work of Ben-Efraim [6], and Ball et
al. [4], and extends them in such a way as to achieve full-threshold active secu-

152

rity by using recent actively-secure secret-sharing-based MPC to construct the
circuit, a technique initiated by Lindell et al. [19]. In the work of Ball et al.,
which is based on some of the techniques discussed also in the work of Malkin
et al. [20], the authors propose a two-party arithmetic garbling scheme, secure
in the presence of a semi-honest adversary, where the arithmetic takes place
in a ring isomorphic to a cyclic group of primorial modulus. They show how
to use a Chinese Remainder Theorem (CRT) representation of the inputs (and
intermediate values) of the circuit to achieve great performance gains over the
straightforward conversion of ring elements to binary. In this approach, garbling
of linear gates (e.g., addition and scalar multiplication) requires no communica-
tion and can be viewed as an arithmetic analogue of the FreeXOR technique due
to Kolesnikov and Schneider [18] for Boolean circuits; multiplication, exponenti-
ation by (public) constant, and high fan-in gates are also significantly improved
beyond the näıve implementations. However, operations such as comparison of
two numbers remain challenging, and prohibitively costly in the CRT represen-
tation. To overcome this issue, Ball et al. suggested a method to convert CRT
numbers to a positional number system other than the binary system, namely
the primorial mixed radix (PMR) system. Although highly improved over the
straightforward (convert to binary) approach, the solution is still costly.

The work of Ben-Efraim [6] is secure in the presence of a passive adversary
and assumes an honest majority, and involves a circuit construction comprising a
mixture of arithmetic and Boolean gates. Ben-Efraim’s construction also allows
linear operations to be performed for free, while for multiplication gates a “des-
ignated” solution is proposed, inspired by the half-gates approach of Zahur et
al. [27], extended to the multiparty setting. This is because projection gates (that
is, gates that convert values in one ring to the equivalent values in another ring)
are difficult to achieve in the multiparty setting, unlike the two-party setting,
where as shown by Ball et al. [4], general projection gates are feasible.

Unfortunately, row-reduction techniques [21, 23] in the Boolean setting, and
also applied in [4], cannot be directly applied in the multiparty setting as proto-
cols for more than two parties are (usually) symmetrical – that is, every party
acts both as garbler and evaluator. However, by elegantly re-applying a variation
of the half-gates approach [27], Ben-Efraim proposes a construction for a “desig-
nated” selector gate solution (i.e., a gate which selects one out of two arithmetic
inputs u and v, based on a third, binary input b) that reduces computation cost.
Specifically, after describing the construction of a straightforward selector (pro-
jecting the bit to characteristic p, and then performing a multiplication using
the standard multiplexing equation u+ (v− u)b), Ben-Efraim demonstrates the
designated selector gate, which has the same communication cost as the straight-

153

forward one (2p+ 2 ciphertexts), but it improves the computation cost by 33%
(i.e., 2 decryptions for the designated construction, instead of 3).

Concurrently and independently of our work, Ball et al. [3] propose a series
of optimisations over the previous state-of-the-art in the two-party setting [4],
which is tailored to the garbling of neural networks. One of their main techni-
cal contributions is the new mixed-modulus half-gate, which allows efficiently
multiplying circuit wires from different domains. This can be thought of as a
generalisation of the alternative selector gate that we present in this work, as
we can only multiply bit wires by arithmetic wires, while their construction is
not limited to bits. While our method can only treat mixed-modulus half-gate
multiplications if one of the two domains is the F2, the approach of Ball et al. [3]
is generalisable to multiplication of wires from any (different) domain. This is
achieved by exploiting the asymmetry between the parties in the two-party case,
where we can choose certain labels to only be used in one of the parties’ half-
gates. This does not extend to the multiparty garbling setting, which is our focus,
because all parties play the role of the garbler. Still, we maintain that garbled
multiplication of an integer by a bit is indeed the most commonly occurring
mixed-modulus multiplication (e.g., selector gates). Note that the communica-
tion cost of our approach is almost the same as the cost of the approach of Ball
et al. [3] (in the case of multiplying by a bit). The second contribution of that
work is an improved mixed-radix addition, which is important for increasing
the efficiency of the non-linear parts of a garbled neural network. Mixed-radix
operations (other than the ones where the one operand is base 2) do not appear
to extend readily to the multiparty case.

Our Contribution. We continue the study of Ben-Efraim [6] of multiparty gar-
bling of circuits that contain both arithmetic and Boolean gates. Ben-Efraim [6]
showed how to construct a designated selector gate in this setting, based on an
extension of the half-gate technique. The communication cost of Ben-Efraim’s [6]
selector gate is the same as in the straightforward construction, while that work
manages to reduce the computation cost by approximately 33% (i.e., 2 decryp-
tions instead of 3 at evaluation time). We propose an alternative designated
selector gate, which while it requires again 3 decryptions at evaluation time, it
reduces the communication cost to almost half of that of Ben-Efraim’s solution.
We achieve this by making use of preprocessed data called daBits, proposed by
Rotaru and Wood [24] and improved on in [1].

The other contribution of this work is to show how to perform multiparty
garbling of both arithmetic circuits with active security in the full-threshold
multiparty setting. We achieve this by using an authentication subprotocol akin
to those in MASCOT [16] and in SPDZ2k [11] to apply the Boolean circuit
garbling approach by Hazay et al. [14] to arithmetic garbling. One can view our

154

contribution as extending the work of Hazay et al. [14] to the arithmetic case
and combining it with recent arithmetic garbling techniques.

2 Preliminaries

Security Model. The protocols in this work are proved secure in the universal
composability (UC) framework of Canetti [10]. We consider an active, static
adversary that can corrupt up to n − 1 out of the n total parties. An active
adversary may deviate arbitrarily from the protocol description, and a static
adversary can choose which parties it will corrupt at the beginning of the protocol
execution but not thereafter. Consequently, the functionalities are assumed to
know at the beginning of their execution the set of corrupt parties: in the more
general setting, the ideal-world adversary sends special “corruption” messages
so that the functionality knows how to interact with different parties. Security
is parameterised by the statistical security parameter, σ, and the computational
security parameter, κ. We do not provide an implementation but typically one
sets κ ∈ {64, 96, 128} and σ ∈ {40, 80} with σ < κ. We will make use of the
standard functionalities FRand given in Figure 2 and FCommit given in Figure 3.

Functionality FRand

On input (Rand, X) from all parties, sample x
$← X uniformly and send x to all honest

parties and S.

Fig. 2: Functionality FRand for agreeing on random strings sampled uniformly
from a specified domain.

Functionality FCommit

The ideal-world adversary is denoted by S and the indexing set of corrupt parties by A.

Initialise On input (Initialise, sid) from all honest parties, initialise a database DB.

Commit On input (Commit, x, i, sid) from party Pi, sample idx,i, store (idx,i, x) in DB, and
send idx,i to all honest parties and S.

Open On input (Open, idx,i, sid) from all parties and S, retrieve (idx,i, x) in DB;

– If i ∈ A then await a message OK or Abort from S. If the message is OK then send
x to all honest parties; otherwise, send the message Abort to all honest parties and
halt.

– If i ∈ [n] \ A, then send x to all honest parties and S and continue.

Fig. 3: Standard commitment functionality.

155

Secret-Sharing. We use the notation 〈x〉 to denote that the secret x is addi-
tively shared amongst the n parties: that is, the dealer samples {xi}n−1i=1 uniformly

at random from F, sets xn := x−∑n−1
i=1 x

i, and for each i ∈ [n] sends xi (i.e., the
ith additive share of x) to party Pi.

We denote an authenticated shared value x by [[x]], which means that x is
shared as above, and additionally there is some procedure for verifying that
the sharing of x is not modified by the adversary. In the full-threshold setting,
this is typically achieved by secret-sharing an information-theoretic Message
Authentication Code (MAC) on every secret, as is done in BDOZ [8], TinyOT
[22] and SPDZ [12]. The details of how secrets are authenticated in Fp and
verified for correctness are not important for this work. If an error is introduced
on any variable written as [[x]], this will be detected by the honest parties.

Garbling. We assume the reader is familiar with circuit garbling, but provide
an overview here. A garbled circuit is a randomised version of a circuit that
allows multiple parties to evaluate a function on the union of their private in-
puts without revealing anything more about their private inputs than what can
be inferred from their own inputs and the output alone. In the two-party set-
ting, this procedure is asymmetric; the high-level idea is as follows: one party,
called the garbler, generates a “garbled” version of a circuit, hardwiring its own
inputs in the circuit; then the other party, called the evaluator, evaluates the
garbled circuit on its inputs (given some encoding information by the garbler
that is provided in such a way that the garbler does not learn the evaluator’s
inputs) to obtain a “garbled” encoding of the output. At the end, the two parties
communicate to reveal the final output to both.

Now we make things more concrete. Each fan-in-2 gate g : F2 → F in the cir-
cuit with input wires u and v and output wire w is expressed as a table with one
row for each (α, β) ∈ F2 so that a row in the table has the form (α, β, g(α, β)).
The garbler then samples a key for each possible value of α, β and γ := g(α, β).
These keys typically live in some finite extension of the base field F` where ` is
O(κ) so that the keys live in O(2κ), but general garbling does not prescribe how
these keys should look except that certain garbling optimisations constrain the
encryption scheme to have certain properties. The values in the input/output
table are replaced with their corresponding encryption keys. Finally, the keys
corresponding to the output wire w of the table are encrypted first under the
key corresponding to the input on wire u input, and then under the key corre-
sponding to the input on wire v input. In practice, the encryption function is a
pseudorandom one-time-pad using a pseudorandom function (PRF) taking two
keys, and using the gate index as a nonce so that the entry for input (α, β) in

156

the table representation of gate g is converted to a ciphertext:

g̃α,β := Fku,α,kv,β (g) + kw,g(α,β),

where g is a gate index and acts as a nonce for the encryption, and kw,g(α,β) is the
key. All of these |F|2 ciphertexts (i.e., the final column of the table) are handed to
the evaluator. To begin evaluating, the evaluator is handed keys corresponding
to its inputs and decrypts gates by computing g̃α,β −Fku,α,kv,β (g). This results in
a key that can be used to decrypt the next gate in the circuit (after the evaluator
has also obtained the output key of another gate from elsewhere in the circuit).
The evaluation involves proceeding iteratively through the circuit in this way,
decrypting using pairs of keys, until a final output key is obtained.

To hide the inputs of the evaluator from the garbler when obtaining the ini-
tial gate input keys, the keys are sent using oblivious transfer (OT). Oblivious
transfer is a channel in which a sender sends many messages, and the receiver
selects one, with the guarantees that the sender cannot know which option the
receiver selected and the receiver learns nothing about the messages it did not
pick. In circuit garbling, for each wire on which the evaluator has input, the
garbler sends the |F| different possible keys and the evaluator chooses the one
corresponding to its input.

The circuit has the values of the garbler hardwired in. This is achieved, for
example, by only encrypting under the “v” keys if the garbler provides the in-
put on wire u for a given gate. However, this way the order of the ciphertexts
may reveal to the evaluator the input of the garbler. To hide the garbler’s input
from the evaluator, the ciphertexts are randomly permuted using so-called per-
mutation or masking values chosen by the garbler. In the arithmetic case, this
is a rotation of the table rows. In order to evaluate the gates correctly, when
evaluating a gate, in addition to learning the output key, the evaluator must
learn a so-called external or signal value, which is the real value v masked with
the masking value λ, that is, e := v + λ, so that it knows which ciphertexts to
decrypt for each gate despite the rows being permuted. The ciphertexts are then

g̃α,β := Fku,α,kv,β (g) +
(
kw,g(α−λu,β−λv)+λw

∥∥∥(g(α− λu, β − λv) + λw
)
,

where g(α−λu, β−λv)+λw is the masked output wire (i.e., external) value. (The
reader should think of the key as being in F` for some ` of size O(κ), and the
external value as being in F, and F : F`× F`×{0, 1}log2(|g|) → F`+1.) The reader
is referred to the original work of Beaver et al. [5] for a complete discussion of
the permutation method (known as point-and-permute).

A technique known as FreeXOR, generalised for arithmetic circuits by Ben-
Efraim et al. [7], can be employed to allow linear gates to be evaluated for free:

157

the garbler chooses a global difference R and then for every non-linear gate, the
wire key for the value 0 is a random element kw,0 of F and the wire key for each
value γ ∈ Fp \ {0} is set to kw,γ := kw,0 + γ · R. Then for linear (i.e., addition)
gates, the output 0 wire key is defined as kw,0 := ku,0+kv,0 and the corresponding
mask as λw := λu + λv. Other gates are computed as:

g̃α,β :=Fku,α,kv,β (g) +

+
(
kw,0 + (g(α− λu, β − λv) + λwR)

∥∥∥(g(α− λu, β − λv) + λw)
)
.

Note that instead of encrypting a concatenation of the masking bit with the
key, the garbler can use a form of authenticated encryption, and then the evalu-
ator decrypts ciphertexts until it finds a valid decrypted message and considers
this the output key. This technique will be used in the garbling described later.

Half Gates. During the evaluation of the circuit, the signal values learnt by the
evaluator “contain” the real values (in the sense that they are linearly dependent
on them); likewise, the keys contain information regarding the real values. The
idea behind half-gates is to exploit this information to reduce the amount of
garbling required: during evaluation, the evaluator can compute the product
of a signal value eu with a key kv,ev to obtain “almost” a key for the product
vu · vv, and then can correct the errors that arise from the masking values using
garbled gates (i.e., ciphertexts) in the more usual way4. In a sense, the difficult
part of the multiplication gate, namely the cross-term vu · vv in the output key
kw,ew = kw,0+(λw+vuvv)R, is computed by computing eu ·kv,ev . The reason this is
useful is that the errors that must be corrected in the product are each functions
in the value of only one of the two real wire values vu or vv (and a combination
of the (fixed) masking values). This means that the ciphertexts containing the
corrections can be generated independently for each pair of inputs in F2

p into the
gate, which means only p+p ciphertexts are needed, rather than p ·p as required
by garbling in the conventional manner.

To design a half gate, one observes what can be obtained from products of
signal value with keys of input wires, namely from eu · kv,ev , or from ev · ku,eu. For

4 This is analogous to the key-switching operation required for relinearisation of ciphertexts in
somewhat-homomorphic encryption (SHE) schemes, where one first does a “näıve” multipli-
cation, and then corrects the errors.

158

example,

eukv,ev = (vu + λu)(kv,0 + (vv + λv)R)

= vukv,0 + λukv,0 + vuvvR + λuvvR + vuλvR + λuλvR

= vuvvR + vukv,0 + vuλvR︸ ︷︷ ︸
Dependent on vu

+ λuvvR︸ ︷︷ ︸
Dependent on vv

+ λukv,0 + λuλvR︸ ︷︷ ︸
Dependent on neither

Now since the goal is to obtain kw,ew = kw,0 + (λw + vuvv)R, for every γ ∈ Fp the
garbler generates two ciphertexts: one encrypting

kw,g,0 + λwR − ((γ − λu)(kv,0 + λvR) + (λukv,0 + λuλvR)) ,

and the other encrypting

kw,e,0 − (γ − λv)(λuR) .

The output wire key is set to kw,0 := kw,g,0 + kw,e,0. The evaluator will decrypt
the ciphertexts corresponding to γ = eu for the first half gate and γ = ev for
the second; since eu − λu = vu and ev − λv = vv, they will obtain the correct
key by summing the two resulting plaintexts and the value eukv,ev . Note that in
the original two-party protocols, one gate input was assumed to come from the
garbler and the other from the evaluator, so the evaluator would also be involved
in the garbling of the half gates. This results in reduced communication since
each party knows one of the wire masks. In the multiparty setting described
later, no party knows the wire masks, so the main saving comes from reducing
the quadratic cost p2 to the linear cost 2 · p.

Some recent papers evaluate over a ring of primorial modulus rather than over
a prime field in order to reduce the size of multiplication gates from (

∑t
i=1 pi)

2 to∑t
i=1 p

2
i total ciphertexts. However, using the half-gate technique, the cost is the

same regardless of the modulus, at 2 ·∑t
i=1 pi ciphertexts. The CRT approach

is also useful for performing non-linear operations such as computing powers.
These operations are quite expensive even in the passive security setting. While
it may be useful to have an actively-secure protocol for arithmetic circuits over
a composite modulus ring, there are difficult challenges to overcome arising from
the presence of zero divisors; thus we leave this to future work.

We evaluate the garbled circuits in Fp, for which the straightforward garbling
approach requires that p be small enough to allow parties to send O(p) cipher-
texts per multiplication gate, but large enough so that the PRF keys used for
encryption are computationally secure. To do this, we evaluate circuits in Fp,
but take keys in an extension field, specifically Fp`κ , where `κ := 1 + dκ/ log pe.

159

Multiparty Garbling. In multiparty garbling, originally developed by Beaver
et al. [5], all parties act as garbler and evaluator. Lindell et al. [19] showed how to
use actively-secure secret-sharing-based MPC to compute a multiparty garbled
circuit with active security. Using MPC, each party generates keys for a circuit,
and the masking values are chosen randomly and are unknown to the parties.
This way for each gate, each party holds n ciphertexts, indexed by j:

g̃jα,β :=
n∑

i=1

Fkiu,α,k
i
v,β

(g, j) +
(
kjw,0 + (g(α− λu, β − λv) + λw)Rj

)
.

Since each party Pi generates one set of keys (those indexed by i), the external
values on the wires can be learnt by each party examining the output plaintext

mi from its own circuit and setting ew := (mi − kiw,0) ·Ri−1 and kiw,ew := mi.
In many ways, the protocol we present in this work is a straightforward gen-

eralisation of garbling protocols over F2. Notice that for a Boolean circuit, the
half-gate approach is no more efficient than the näıve approach, unless we are
in the two-party setting in which one party is the garbler and one the evaluator,
rather than all being both as in the multiparty setting.

PRF Assumption. To encrypt a gate, a single-keyed PRF is evaluated on a
nonce and used to one-time-pad encrypt a key. To make use of the (generalised)
FreeXOR technique, the following assumption is required.

Let F : Fp`κ ×N→ Fp`κ be a keyed pseudorandom function (PRF). Define the
oracle OF,R in the following way:

OF,R : Fp`κ × Fp × N× Fp → Fp`κ
OF,R(k, γ, x, δ) 7→ Fk+γ·R (x) + δ ·R

Now define FRO to be an oracle that, on input a query m = (k, γ, x, δ) ∈
Fp`κ × Fp × N × Fp, if m has not been queried before, samples r

$← Fp`κ and
outputs r, and otherwise outputs whatever was sampled previously.

The following definition was given by Hazay et al. [14] for Boolean functions,
and a similar definition for arithmetic circuits was given by Ball et al. [4].

Definition 1 (Circular Correlation Robustness). For the oracles above,
define legal queries as those with inputs in the correct domain, and additionally:
1. The oracle may not be queried when γ = 0.
2. The oracle may not be queried twice for the same δ unless at least one other

variable changes.

160

Then we say that F is circular correlation robust if for all probabilistic polynomial-
time distinguishers D, it holds that

∣∣∣∣∣∣
Pr

R
$←Fp`κ

[DOF,R(1κ)]− Pr[DFRO(1κ)]

∣∣∣∣∣∣
= O(2−κ)

In the garbling protocols, the PRF is queried on values (g, j), where g ∈ N
is the gate index and j ∈ [n] is the party index, parsed as a natural number
dlog n/ log 10e · g + j.

The choice for this definition comes from the fact that parties should not be
able to distinguish between keys generated using global differences and uniform
keys in the field. Note that while the keys generated for each wire are only in
some coset kw,0 + {γR : γ ∈ Fp} of Fp`κ , the distinguisher is only allowed to
query once per key per nonce for a fixed δ. This corresponds to the fact that in
the garbling, the evaluator(s) can only decrypt a single ciphertext.

3 Full-Threshold Active Security

We define an n-party arithmetic garbling protocol by extending the state-of-the-
art techniques used by Hazay et al. [14] for Boolean garbling to arithmetic gar-
bling, using actively-secure MPC over Fp as a black box, and using the half-gate
techniques described for arithmetic circuits by Ben-Efraim [6]. In this section
we describe the actively-secure garbling of the “standard” multiplication gate,
since using the classical garbling techniques one can replace the multiplication
function with any gate g : F2

p → Fp; our techniques for active security also apply
to other gates, and indeed in the protocol later we garble multiplication half
gates. Many of the techniques due to Hazay et al. [14] apply almost immediately
to the arithmetic case and so the exposition here closely follows theirs. We will
first explain the components of the garbling protocol at a high level, then dis-
cuss how to realise these different parts, and finally we will give the complete
protocol.

3.1 Overview

In the arithmetic analogue of the multiparty garbling protocol of Beaver et al. [5],
with the optimisations of Section 2, we aim to produce a set of p2 ·n ciphertexts,
indexed by j ∈ [n] and (α, β) ∈ F2

p, for each multiplication gate, of the form:

g̃jα,β :=

(
n∑

i=1

Fkiu,α,k
i
v,β

(g, j)

)
+ kjw,0 +Rj · ((α− λu) · (β − λv) + λw) ,

161

where the wire masks λu, λv and λw are not known to any party and the keys
indexed by i are generated by Pi. For now, the reader can think of ku,α, kv,β, kw,0
and Rj as lying in a finite extension of Fp – the same space as the codomain
of the PRF. The approach of Hazay et al. for Boolean circuits to produce these
ciphertexts with active security is to generate a secret-shared version of g̃jα,β for
every j ∈ [n] and open them, in the following way:
1. Use a generic “Bit-MPC” functionality, FBitMPC, for parties to obtain authen-

ticated secret-shared random bits [[λu]], [[λv]] and [[λw]] and to compute [[λu ·λv]].
2. Use correlated oblivious transfer (COT) to compute the products by the global

differences: for each j ∈ [n] to compute secret-shared versions of:

Rj · λu, Rj · λv, Rj · (λw + λu · λv).

3. Locally combine the secret-shared values with local PRF evaluations to obtain
a sharing of each gate g̃jα,β.

4. Open all the sharings.
A key observation, first made by Lindell et al. [19], is that the sharings need
not be authenticated, as the parties will abort during circuit evaluation with
overwhelming probability if the adversary introduces errors. This means that
the PRF evaluations need neither be authenticated, nor proved correct using a
zero-knowledge proof. Authentication is required on the wire masks to ensure
the multiplication is performed correctly. Thus, only one secure Bit-MPC mul-
tiplication is required per AND gate, along with an amortised COT operation.

Our approach here is to give the simple generalisation for the field Fp, noting
that the keys must live in the space Fp`κ , where `κ := 1 + dκ/ log pe. We first
describe the replacement of FBitMPC with MPC over a field, denoted by FMPC, and
second show how to replace COT with correlated oblivious product evaluation
(COPE) (also known as vector oblivious linear function evaluation (vOLE)).

3.2 Secret-Sharing-Based Wire Mask Arithmetic

For arithmetic circuits, the bit masks are replaced with masks in Fp and the
functionality FBitMPC is replaced with FMPC, shown in Figure 4. Instead of any
generic FMPC functionality, we model here a secret-sharing-based functionality,
which can be instantiated with any actively secure protocol for secret-sharing-
based arithmetic MPC. We denote by [[x]] an authenticated secret shared value x
that is stored internally by FMPC. Then, xi denotes party Pi’s additive share of x.
In the garbling protocol, just as in the work of Hazay et al. [14], to obtain a wire

mask λu, each party samples λiu
$← Fp and calls FMPC to create an authenticated

sharing of this value; then they call Add to obtain [[λu]] =
∑n

i=1[[λ
i
u]]. They do

162

similarly for λv and λw so that the parties obtain [[λu]], [[λv]] and [[λw]], and then
call Multiply to multiply [[λu]] and [[λv]], and obtain [[λuv]] = [[λu · λv]].

Functionality FMPC

The functionality assumes n parties P1, . . . , Pn, and the ideal-world adversary S, who
controls a subset of parties I ⊂ [n]. If a command is received where sid differs from what
was sent during Initialise, ignore the command and await the next. At any point, the ideal-
world adversary S can send the message Abort and the functionality sends the message
Abort to all honest parties and halts.

Initialise On input (Initialise,F, sid), store the field F and initialise a new database, DB :=
∅.

Input On input (Input, i, id1, . . . , id`, x1, . . . x`, sid) from Pi and (Input, i, id1, . . . id`,⊥, sid)
from all other parties, where xi ∈ F and idi are distinct new identifiers, append the `
entries (idi, xi) to DB.

Add On input (Add, idx, idy, idz, sid) from all parties, where idx and idy are identifiers in
the database and idz is a new identifier, retrieve (idx, x) and (idy, y) from memory and
append the entry (idz, x+ y) to DB.

Multiply On input (Multiply, idx, idy, idz, sid) from all parties, where idx and idy are identi-
fiers in the database and idz is a new identifier, retrieve (idx, x) and (idy, y) from memory
and compute z := x ·y. Receive shares zi ∈ F from S, for i ∈ I, randomly sample honest
parties’ shares zj ∈ F for j /∈ I s.t.

∑n
i=1 z

i = z, send zi to Pi, i ∈ [n], and append
(idz, z) to DB.

Output On input (Output, idx, sid) from all parties, retrieve the entry (idx, x) from DB,
send x to S, and await a message OK or Abort; if the message is OK then send x to all
honest parties, and otherwise send the message Abort to all honest parties and halt.

Fig. 4: Functionality FMPC for performing general MPC, secure with abort.

3.3 Wire Mask/Global Difference Products

In the garbling protocol, for every wire w the parties require (unauthenticated)
sharings of Rj · λw for every j ∈ [n]. Since λw is additively shared, the parties
actually compute sharings of Rj ·λiw for every j ∈ [n] and i 6= j. Since the global
difference is fixed for all gates in the circuit, in the Boolean case such sharings
can be generated using COT, in which a sender chooses a fixed correlation,
namely Rj, and the receiver inputs their sharing of the mask λiw; then the sender
obtains some qj,i and the receiver some ti,j such that qj,i + ti,j = λiw ·Rj. Hazay
et al.’s [14] protocol for computing the wire mask/global difference products is
called ΠBit×String, since Rj ∈ F2k and the masks are bits.

We can apply essentially the same techniques here, and correctness of the
protocol follows in exactly the same way. The difference is that we are now

163

interested in masks in Fp and global differences in Fp`κ . Thus, we must use the
correlated oblivious product evaluation (COPE) presented in Figure 5, which is
an extension of the protocol ΠBit×String [14], operating in any finite field, instead
of only in F2. Note that FCOPE accepts inputs from the sender in Fp`κ , but in
our protocol the inputs are assumed to be in Fp, as they are circuit wire masks.
Thus a corrupt sender could send an element of Fp`κ \ Fp in the instance of
FCOPE. However, the follow-up checks that take place during the execution of the
subprotocol ΠMask×Diff (Fig. 6) ensure that secrets lie in Fp. A functionality such

as F t,1
OLE by Ghosh et al. [13] that accepts input from the sender in a small field,

from the receiver in an extension field and outputs a sharing in the larger field
could be used, but for a technical reason it is not amenable to OT extension [15]
as is FCOPE and is therefore less efficient when performing a large number of
multiplications. Realising a product functionality more efficiently would improve
the overall efficiency of the garbling protocol and we leave this for future work.

Functionality FCOPE (from [16])

Let g : Fdlog |F|e → F be any map such that for every x ∈ F, if x ∈ {0, 1}dlog |F|e represents
its bit-decomposition, then g(x) = x. Let g−1(x) denote the bit-decomposition of x, which
is well-defined by uniqueness of decomposition.

Initialise On receiving the message (Initialise,F, Pj, Pi, sidj,i) from parties Pi and Pj, await
∆ ∈ F from Pj, store ∆, and set ∆ := g−1(∆).

Extend On receiving the message (Extend, sidj,i) from both parties,

1. – If Pi and Pj are honest then await x ∈ F from Pi, sample q
$← F and set

t = x ·∆− q

– If Pi is corrupt and Pj is honest then await t ∈ F and x ∈ Fdlog |F|e from S and set

q = g(x ∗∆)− t

where ∗ denotes the coordinatewise product.
– If Pi is honest and Pj is corrupt then await x ∈ F from Pi and q ∈ F from S and

compute
t := x ·∆− q.

2. Send t to Pi and q to Pj.

Fig. 5: Functionality for Correlated Oblivious Product Evaluation.

The subprotocol for mutliplying global differences with wire masks is given in
Figure 6.

164

Subprotocol ΠMask×Diff

Initialise For every ordered pair of parties (Pj, Pi), call an instance of FCOPE, de-

noted by F (j,i)
COPE with Pi as the sender and Pj as the receiver, with input

(Initialise,Fp`κ , Pj, Pi, sidj,i), and input Rj from Pj.

Multiply To compute unauthenticated sharings (〈xk ·Ri〉)mk=1 from authenticated sharings
([[xk]])

m
k=1 for which the parties additionally hold (〈xk〉)mk=1, the parties do the following:

1. Mask The parties generate `σ := dσ/ log pe masks: for each l ∈ [`σ],

(a) For each i ∈ [n], party Pi samples xim+l
$← Fp and calls FMPC with input

(Input, i, xim+l, idxim+l
) while each party Pj, j 6= i, provides corresponding input

(Input, i,⊥, idxim+l
).

(b) The parties obtain [[xm+l]] =
∑n

i=1[[x
i
m+l]] by creating a new identifier idxm+l

and
calling the Add procedure of FMPC multiple times.

2. Generate For each j ∈ [n],
(a) For every i 6= j,

i. Pi and Pj call F (i,j)
COPE with input (Extend, sidi,j):

A. Pi provides xi1, . . . , x
i
m+l as input.

B. Pi receives (ti,jk)m+l
k=1 and Pj receives (qj,ik)m+l

k=1 .

ii. It holds that qj,ik + ti,jk = xikR
j. Party Pi sets zi,jk := ti,jk .

(b) Party Pj sets zj,jk := xjkR
j +

∑
i 6=j q

j,i
k .

3. Check
(a) Call FRand with input (Rand,F`σ×mp) to obtain a matrix H = (χl,k)l∈[`σ],k∈[m].

(b) Let x := (xk)
m
k=1 and x̂ := (xm+l)

`σ
l=1. The parties compute [[c]] := H · [[x]] + [[x̂]] and

call FMPC with input (Output, idc, sid) to obtain c. If it aborts, then the parties
abort.

(c) Each party Pi computes ci,j := H · (zi,jk)mk=1 + (zi,jm+l)
`σ
l=1 and ci,i := −c · Ri + H ·

(zi,ik)mk=1 + (zi,im+l)
`σ
l=1.

(d) Each party Pi calls FCommit with input (Commit, ci,j, i, sid) for all j ∈ [n].
(e) When idci,j has been received from FCommit for all i, j ∈ [n]2, call FCommit with

input (Open, idci,j , sid).
(f) Check that

∑n
i=1 ci,j = 0 for all j ∈ [n]. If so, then each party Pi (locally) outputs

(zi,jk)k∈[m],j∈[n]; otherwise, they abort.

Fig. 6: Subprotocol ΠMask×Diff for multiplying global differences with wire masks.

For active security, it is necessary to check that each Pj provides the same
global difference Rj with every other Pi, and that every Pi provides the same
sharing λiw with every other Pj. Observe that

xj ·Rj +

∑

i6=j
qj,i

+

∑

i6=j
ti,j

 = Rj ·

xj +

∑

j 6=i
(qj,i + ti,j)

 = Rj ·

(
n∑

i=1

xi

)

165

where the first summand is computed by party Pj and for each i 6= j, ti,j is
held by Pi. The fact that this relationship must hold (by design) can be used
to check correctness of a batch of secrets {[[xk]]}mk=1 as follows: parties can take
an additional mask [[xm+1]], reveal a random linear combination c := xm+1 +∑m

k=1 χkxk, χk ∈ Fp∀k, and check for all j ∈ [n] that 〈zj〉 defined by

zi,j := ti,jm+1 +
m∑

k=1

χk · ti,jk (i 6= j)

and

zj,j := −c ·Rj +

xjm+1 ·Rj +

∑

i 6=j
qj,im+1

+

m∑

k=1

χk ·

xjk ·Rj +

∑

i 6=j
qj,ik

is an additive sharing of 0. It will be shown in the proof of Lemma 1 that
the probability that parties are inconsistent but all of the n sharings {〈zi〉}ni=1

are zero is bounded above by p−1; thus the check is performed independently
`σ := dσ/ log pe times in parallel to ensure at least σ bits of statistical security.
Concrete instantiation. One of the reasons that the protocol of Hazay et al. [14]
is so efficient is that the functionality FBitMPC can be realised using the n-party
variant [9] of the TinyOT [22] protocol, in which bits are authenticated exactly
via sharings of bi ·Rj, where Rj is taken to be the secret key of Pj. Thus sharings
of the wire mask/global difference products are immediately available to the
parties by the correctness of the FBitMPC functionality, without the need for a
separate ΠBit×String protocol. However, currently the most efficient protocols in
the setting of a large prime field use a different form of authentication and so this
optimisation cannot be directly applied here. Instead, we can use, for example,
the most recent version of the SPDZ protocol [12] known as Overdrive [17].
Note that in MASCOT [16], pairwise MACs are generated and then combined
to create global MACs, so it may be that this approach, which then obviates the
need to perform the protocol ΠMask×Diff separately, is better in practice.

Lemma 1, states that an adversary succeeds in cheating without detection in
ΠMask×Diff with negligible probability in the statistical security parameter, σ.

Lemma 1. For the outputs (zi,jk)i,j∈[n] of the subprotocol ΠMask×Diff it holds that∑n
i=1 z

i,j
k = xik ·Rj for all j except with probability at most 2−σ.

Notice that in order to establish a unique signal value after decrypting cipher-
texts, it is necessary to multiply by R−1, which means that R must be invertible.
However, since R is sampled from a field, the random choice is invertible except
if it is 0, which happens with probability p−`κ < 2−κ < 2−σ.

166

Proof. The proof follows the same line as that of Hazay et al. [14, Lem 3.1] and
Cramer et al. [11, Thm 3]. There are two possible ways to cheat in the protocol:
(a) one or more parties use different inputs to the initialisation of FCOPE with
different honest parties; (b) one or more parties use different shares xik with
different honest parties. We show that if these errors are non-zero then the
protocol aborts with overwhelming probability, by showing that the probability
that the checks pass but a non-zero error has been introduced is negligible.

Fix an honest party Pi∗ arbitrarily5 and for each i 6= i∗ let Ri be the global
difference provided by Pi into the instance F i∗,i

COPE and let xik be the input of Pi
into the instance F i,i∗

COPE. Then for each i 6= i∗, for each j 6= i let R̃j,i be the input

of Pj into the instance F i,j
COPE, or the local contribution to zj,jk when i = j, and

let εj,i := R̃j,i−Rj. Similarly, for each j 6= i∗, for each i 6= j let x̃j,ik be the input

of Pj into the instance F j,i
COPE, or the local contribution to zj,jk when i = j, and

let δj,i := x̃j,ik − xjk.
Let εj be the error introduced when creating cj,j and εl be the sum of the

errors introduced just before the lth commitment. Now since the checks pass, for
all j ∈ [n] and all l ∈ [`σ] it holds that

0 =
n∑

i=1

ci,jl = cj,jl +
∑

i6=j
ci,jl

=

(
εl − clRj +

(
zj,jm+l +

m∑

k=1

χl,k · zj,jk

))
+
∑

i6=j

(
zi,jm+l +

m∑

k=1

χl,k · zi,jk

)

= εl − clRj +
n∑

i=1

(
zi,jm+l +

m∑

k=1

χl,k · zi,jk

)

= εl − clRj +
n∑

i=1

zi,jm+l +
n∑

i=1

m∑

k=1

χl,k · zi,jk

= εl − clRj +

x̃j,jm+lR̃

j,j +
∑

i6=j
qj,im+l

+

∑

i 6=j
ti,jm+l

+

m∑

k=1

χl,k ·

x̃j,jk R̃j,j +

∑

i 6=j
qj,ik

+

∑

i6=j
ti,jk

5 It can be shown that if there are multiple honest parties then the sum of the errors subse-
quently defined with respect to Pi∗ is well-defined (i.e., the sum is independent of the choice
of “reference” honest party).

167

= εl − clRj +

((
n∑

i=1

x̃i,jm+lR̃
j,i

)
+

(
m∑

k=1

χl,k ·
n∑

i=1

x̃i,jk R̃
j,i

))

= εl − clRj +
n∑

i=1

(
x̃i,jm+l +

m∑

k=1

χl,kx̃
i,j
k

)
· R̃j,i

= εl −���clR
j +

���
���

���
���

���
��n∑

i=1

(
xim+l +

m∑

k=1

χl,kx
i
k

)
Rj +

n∑

i=1

(
δi,jm+l +

m∑

k=1

χl,kδ
i,j
k

)
Rj

+
n∑

i=1

(
xim+l +

m∑

k=1

χl,kx
i
k

)
εj,i +

n∑

i=1

(
δi,jm+l +

m∑

k=1

χl,kδ
i,j
k

)
εj,i

= εl +
n∑

i=1

(
δi,jm+l +

m∑

k=1

χl,kδ
i,j
k

)

︸ ︷︷ ︸
=:δjl

Rj +
n∑

i=1

(
xim+l +

m∑

k=1

χl,kx
i
k

)
εj,i

+
n∑

i=1

(
δi,jm+l +

m∑

k=1

χl,kδ
i,j
k

)
εj,i

Suppose Pj is an honest party; then we aim to show that δi,jk = 0 for all k ∈ [m],
i ∈ [n] and that εj,i = 0 for all i ∈ [n], except with negligible probability in σ.

If δjl 6= 0 then since Rj is generated by the honest party, the second summand
is uniform in Fp`κ and unknown to the adversary, so the adversary can choose
the other errors so that the equation above holds with probability at most p−`κ.

If δjl = 0 then δi,jk = 0 for all k ∈ [m] except with probability p−1, since
the coefficients are unknown before the errors are introduced; thus the fourth
summand is also 0. The greatest upper bound on the probability is only p−1

and not p−`κ, because although these errors are in Fp`κ , the coefficients lie in Fp.
Since the matrix H is sampled after the errors εj,i are introduced on the global
differences – i.e., the values χl,k are unknown to the adversary when introducing
these errors – if one or more εj,i is non-zero then the third summand is uniformly
random in Fp, so the adversary must choose each εl to correct the error, which
can be done for a given l with probability at most p−1. Thus the probability that
some δi,jk or some εj,i is not 0 but the equation above holds for all l ∈ [`σ] is at

most p−`σ . Thus for every honest party j ∈ [n]\A, all errors {δi,jk } and {εj,i} are
0 except with probability at most max{p−`κ, p−`σ} < 2−σ. �

168

3.4 The Complete Garbling and Evaluation Protocols

Following the analysis of the necessary components for garbling we now present
the complete garbling and evaluation protocols. The subprotocol for garbling is
given in Figure 7, and the one for evaluation in Figure 8.

Theorem 1. The execution of the subprotocol ΠGarble followed by the execution
of the subprotocol ΠEval, making use of the subprotocol ΠMask×Diff, UC-securely
realises the functionality FAC in the presence of a static, active adversary that
corrupts up to n− 1 parties, in the FCommit,FCOPE,FMPC,FRand-hybrid model, as-
suming the PRF F satisfies correlation-robustness.

We define a security game in which a successful adversary breaks the circular
correlation robustness assumption of a PRF F in the following way:

Game

1. The challenger C samples a bit b
$← {0, 1}; if b = 0 then it initialises the

oracle O := FRO; if b = 1 then it samples R
$← Fp`κ and initialises the

oracle O := OF,R.
2. The adversary D is provided with black-box access to O.
3. After polynomially-many queries to O, D outputs a bit b′ to C.
4. The adversary D wins the game if b′ = b.

We are now ready to prove the theorem.

Proof. Note that, in contrast to the work of Hazay et al. [14], the output masks in
our work are not revealed after garbling; instead, the parties remove the masks
after evaluating the circuit. Opening the wire masks after the evaluation is a
common approach, taken for example by Wang et al. in their recent multiparty
Boolean garbling protocol [25] and leads to a more straightforward proof.

To prove that the protocol UC-securely realises the functionality FAC under
the assumption that the PRF is correlation-robust, we will construct a simulator
interacting with the real-world adversary A and the ideal functionality FAC such
that if an environment can determine that A is interacting with S instead of
real honest parties then it must have been able to break the assumption on the
PRF. To do this, we will construct a situation in which distinguishing between
worlds immediately leads to a way to break the PRF assumption. Consider the
simulator S defined as follows:
1. ExecuteΠGarble honestly, sampling keys, masks and global differences as honest

parties would in the execution of ΠMask×Diff and honestly executing internal
copies of the oracles FCommit, FCOPE, FMPC and FRand. Recall that we have
shown in the proof of Lemma 1 that ΠMask×Diff provides statistical security
against an active adversary, except with probability at most 2−σ.

169

2. Sample inputs uniformly in Fp on behalf of emulated honest parties, compute
signal values honestly, and send these signal values to A; await the broadcasts
from corrupt parties and extract the inputs using knowledge of the masks from
the calls to FMPC in Step 1, and send the inputs to FAC. Store the signal values
for all of these input wires.

3. Await the final circuit output from FAC.
4. Determine the “evaluation path” through the circuit based on all the broad-

casted input signal values and the wire masks determined in the execution of
ΠGarble, and then fix the wire mask for the final circuit output wire w to be
ew− vw, where vw is the output from FAC. (If there are multiple output wires
then do similarly for each.)

5. For all honest parties, for all gates and wires, sample new wire keys uniformly
at random.

6. Fix the shares of honest parties so that the gates are consistent with keys and
ciphertexts from Step 5 instead of the ones generated in the honest execution
of ΠGarble in Step 1. Specifically, for each honest party Pi, for every j ∈ [n]\{i},
for every γ ∈ Fp, set

g̃j,ig,γ = Fkiu,γ (g, j) + ρij,g,g,γ

g̃j,ie,γ = Fkiv,γ (g, j) + ρij,g,e,γ

and then for every γ ∈ Fp, set

g̃i,ig,γ = Fkiu,γ (g, i) + kiw,ew −
∑

j 6=i
ρji,g,g,γ

g̃i,ie,γ = Fkiv,γ (g, i)− eukiv,ev −
∑

j 6=i
ρji,g,e,γ

(Note that S knows the values of ρji,g,e,ev for all (i, j) ∈ [n]2 because it emulates
the copies of FCOPE locally, from which these values are computed.)

7. Open the gates honestly by sending the shares of (emulated) honest parties
to corrupt parties.

8. Await the call to FMPC to open the final output mask(s) and execute this
honestly. If an emulated honest party would abort, send Abort to FAC, and
otherwise send OK.
The execution of ΠGarble is simulated perfectly by the simulator, which samples

contributions to masks and keys for emulated honest parties. The fact that the
simulator samples inputs on behalf of emulated honest parties in Step 2 does
not affect the correctness of simulation or change the distribution as viewed by
the environment in any way, because each broadcasted external wire value is a

170

real value masked by a uniform wire mask not revealed to the environment, and
the final output is fixed by the simulator to the correct value regardless of these
sampled values and the path traversed through the garbled circuit. In Step 6,
the simulator fixes shares as honest parties would for the contributions to ci-
phertexts encrypting keys generated by corrupt parties, but for honest parties
it fixes the shares so that the parties will compute the uniformly-sampled keys
from Step 5 instead of keys according to a global difference that was chosen in
Step 1. The reason for fixing keys and ciphertexts for honest parties in this way
is that the honest party’s actual global difference will be different from the sim-
ulator’s sampled random global difference (used in the simulation of ΠMask×Diff)
with high probability, so instead of arguing that a set of ciphertexts generated
using keys with a fixed global difference is indistinguishable from another set of
ciphertexts generated using keys with a different global difference (which is an
alternative way to define the simulator), we show that such a set of ciphertexts is
indistinguishable from a set of ciphertexts generated using uniformly-randomly
sampled keys. This latter assumption is exactly the correlation-robustness as-
sumption. Furthermore, since this is the only point in the distribution as viewed
by the environment that is potentially different from a real execution, this is the
only way to distinguish. Thus any environment that can distinguish between the
hybrid and ideal worlds must do so by observing a difference in the distributions
of ciphertexts generated, which breaks the PRF assumption.

It remains to show how to use a distinguishing environment Z to construct
an adversary D (for the game outlined above). To this end, we first define a
modified simulator S ′ that uses the oracle O provided to D. The simulator S ′
executes exactly as S, but it fixes an arbitrary choice of honest party Pi∗, and
when it fixes the keys and ciphertexts in Step 6, it alters the shares of Pi∗ for
each ciphertext as follows:

For every j ∈ [n] \ {i∗}, for every γ ∈ Fp \ {0}, set

g̃j,i
∗

g,eu+γ = O
(
ki
∗
u,eu

, γ, (g, j), 0
)

+ ρi
∗
j,g,g,eu+γ

g̃j,i
∗

e,ev+γ = O
(
ki
∗
v,ev
, γ, (g, j), 0

)
+ ρi

∗
j,g,e,ev+γ

and set

g̃j,i
∗

g,eu
= Fki∗u,eu

(g, j) + ρi
∗
j,g,g,eu

g̃j,i
∗

e,ev
= Fki∗v,ev

(g, j) + ρi
∗
j,g,e,ev

.

171

Then set

g̃i
∗,i∗

g,eu+γ = O
(
ki
∗
u,eu

, γ, (g, i∗), 0
)

+ ki
∗
w,ew
−
∑

j 6=i∗
ρji∗,g,g,eu

g̃i
∗,i∗

e,ev+γ = O
(
ki
∗
v,ev
, γ, (g, i∗), 0

)
− euki

∗
v,ev
−
∑

j 6=i∗
ρji∗,g,e,ev

and set

g̃i
∗,i∗

g,eu
= Fki∗u,eu

(g, i∗) + ki
∗
w,ew
−
∑

j 6=i∗
ρji∗,g,g,eu

g̃i
∗,i∗

e,ev
= Fki∗v,ev

(g, i∗)− euki
∗
v,ev
−
∑

j 6=i∗
ρji∗,g,e,ev .

Now observe that all queries to the oracle O are legal because:
– In all queries, γ 6= 0.
– Although the fourth entry is 0 for all queries, the remainder of the query

message is different in every query.
Thus both requirements on the oracle queries are met.

We now show that the execution of S ′ with Z is the same as hybrid-world
and ideal-world executions with S.

Claim. The execution of Z with S ′ when O = FRO is indistinguishable from the
execution of Z with S in the ideal world.

Proof. If the oracle is O = FRO, then in the execution with S ′, every ciphertext
indexed by i∗ is a one-time-pad encryption. All the keys in S are uniformly
sampled (i.e., they are not generated using a global random difference), so if
there is a distinguisher between the distribution of each set of p ciphertexts under
the keys {ki∗w,γ}γ∈p and the uniform distribution, then there is a distinguisher for
the PRF. Since this does not exist by assumption, the claim follows. �

Claim. The execution of Z with S ′ when O = OF,R is indistinguishable from an
execution in the FCommit,FCOPE,FMPC,FRand-hybrid world.

Proof. It is easy to verify that if the oracle is O = OF,R, then the ciphertexts
generated according to the simulation with S ′ follow exactly the distribution as
in a FCommit,FCOPE,FMPC,FRand-hybrid-world execution, where the honest party
Pi∗ has global difference R that is the same as the fixed value R in the oracle’s
definition, where effectively the key ki

∗
u,eu

is sampled instead of the key ki
∗
u,0,

in order to make the oracle queries legal (which makes no difference to the
distribution of the resulting keys). �

172

Now we define the distinguisher D to execute the environment against the
simulator S ′ using the oracle O provided the challenger of its game. If the envi-
ronment guesses the execution was the ideal world, then the distinguisher guesses
b′ = 0; if the environment guesses the execution was the hybrid world, then the
distinguisher guesses b′ = 1. Thus if there is an environment that can distin-
guish between worlds with non-negligible advantage, then the distinguisher D
defined above wins the security game defined above that breaks the correlation-
robustness assumption on the PRF, and thus the protocol UC-securely realises
FAC assuming the PRF satifies correlation-robustness. �

Subprotocol ΠGarble

For simplicity, the session identifiers for functionalities are taken as implicit.

Initialise

1. Agree on a new session identifer, a computational and statistical security parameter,
κ and σ, and a circuit C to evaluate, with circuit input wires Win, circuit output
wires Wout, and a set of gates G comprised of a set of multiplication gates Gmul, a
set of addition gates Gadd, and a set of selection gates Gsel. Let PID() : Win → [n]
denote the map determining which party provides input on which wire.

2. Set `κ := dκ/ log pe.
3. For each i ∈ [n], Pi samples Ri $← Fp`κ and then the parties execute the procedure

Initialise from ΠMask×Diff.
4. Call an instance of FMPC with input (Initialise,Fp, sid).

Wire Masks and Keys

Circuit Input Wires For circuit input wire w ∈ Win, let i := PID(w) and then do the
following:

1. Party Pi samples λw
$← Fp and calls FMPC with this value as input.

2. Each party Pj, j ∈ [n], samples a key kjw,0
$← Fp`κ and for each α ∈ Fp sets

kjw,α := kjw,0 + α ·Rj.

Addition Output Wires For each wire w that is an output of an addition gate with
input wires u and v, do the following:

1. Compute [[λw]] = [[λu + λv]] by calling FMPC.
2. For each i ∈ [n], party Pi computes kiw,0 := kiu,0 + kiv,0 and for each α ∈ Fp sets

kiw,α := kiw,0 + α ·Ri.

Multiplication Output Wires For a wire w that is an output of a multiplication
gate with input wires u and v,

1. For each x ∈ {g, e},
(a) For each i ∈ [n], party Pi samples λiw,x

$← Fp and calls FMPC with this value as
input.

(b) Compute [[λw,x]] := [[
∑n

i=1 λ
i
w,x]] by calling FMPC.

(c) For each i ∈ [n], party Pi samples a key kiw,x,0
$← Fp`κ and for each γ ∈ Fp sets

kiw,x,γ := kiw,x,0 + γ ·Ri.

173

2. For each i ∈ [n], party Pi sets kiw,0 := kiw,g,0 + kiw,e,0 and for all γ ∈ Fp sets

kiw,γ := kiw,0 + γ ·Ri.

Wire Mask/Global Difference Products

Multiplication Gates For each g ∈ Gmul, let u and v be the input wires and w the
output wire; then do the following:
1. Compute [[λuv]] := [[λu · λv]] by calling FMPC.
2. Execute the procedure Multiply from ΠMask×Diff on the set
{λu, λv, λuv, λw,g, λw,e}g∈Gmul to obtain, for all i ∈ [n], (unauthenticated)
sharings

{
〈Ri · λu〉, 〈Ri · λv〉, 〈Ri · λuv〉, 〈Ri · λg,w〉, 〈Ri · λe,w〉

}
g∈Gmul

.

3. For each i ∈ [n], for each γ ∈ Fp, set

〈ρi,g,g,γ〉 := −γ · 〈Ri · λv〉+ 〈Ri · λuv〉+ 〈Ri · λg,w〉
〈ρi,g,e,γ〉 := −γ · 〈Ri · λu〉+ 〈Ri · λe,w〉

Garbling

Multiplication Gates For each g ∈ Gmul, for each i ∈ [n], for each γ ∈ Fp,
1. The parties compute the garbler half gate:

– Pi sets g̃i,ig,γ := Fkiu,γ
(g, i) + kiw,g,0 + ρii,g,g,γ

– For every j 6= i, Pj sets g̃i,jg,γ := Fkju,γ
(g, i) + ρji,g,g,γ

2. The parties compute the evaluator half gate:
– Party Pi sets g̃i,ie,γ := Fkiv,γ

(g, i) + kiw,e,0 − γ · kiu,0 + ρii,g,e,γ
– Every party Pj, j 6= i, sets g̃i,je,γ := Fkjv,γ

(g, i) + ρji,g,e,γ

Fig. 7: Subprotocol ΠGarble for garbling a circuit.

Subprotocol ΠEval

Input Wires For each wire w ∈ W which is an input wire, the parties do the following:

1. Let i = PID(w): then party Pi computes and broadcasts ew := vw+λw, where vw ∈ Fp,
is Pi’s input.

2. For each i ∈ [n], party Pi broadcasts kiw,ew .

Opening For each g ∈ Gmul, for each x ∈ {g, e}, for each i ∈ [n],

1. For each j ∈ [n], for each γ ∈ Fp, Pi broadcasts g̃j,ix,γ.

2. All parties compute g̃ix,γ :=
∑n

j=1 g̃
i,j
x,γ.

Circuit Evaluation Traversing the circuit in topological order, for every gate G with
input wires u and v and output wire w, the parties do the following:

– If g is an addition gate, each party does the following:
1. Set the external wire value to be ew := eu + ev.

174

2. Compute the output keys as: for each i ∈ [n], kiw,ew := kiu,eu + kiv,ev .
– If g is a multiplication gate, each party does the following:

1. For each i ∈ [n], compute

kiw,ew := g̃ig,eu −
n∑

j=1

Fkju,g,eu
(g, i)

︸ ︷︷ ︸
Garbler half gate

+ g̃ie,ev −
n∑

j=1

Fkjv,e,ev
(g, i)

︸ ︷︷ ︸
Evaluator half gate

+ev · kiu,eu .

2. Each party Pi determines the signal value ew by computing ew := (kiw,ew − kiw,0) ·
(Ri)−1.

Output To obtain the output of wire w ∈ Wout, call FMPC to execute the procedure
Output to reveal the value ew − [[λw]].

Fig. 8: Subprotocol ΠEval for evaluating the garbled circuit.

All of the protocols in this section can be realised using protocols (with minor
modifications) given in MASCOT [16]; however, the two parts of the computation
outlined above are most optimally performed using a mixed approach: using the
Overdrive protocol [17] to realise FMPC, and using MASCOT-like protocols to
perform the Wire Mask/Global Difference products. The reason is that Overdrive
is more efficient over large prime fields, as opposed to large extension fields such
as F2k for which MASCOT is better.

4 Selector Gate

It was argued by Ben-Efraim [6] that a selector gate taking a Boolean selection
bit and choosing between field elements is a desirable feature of garbling proto-
cols as the selection bit is likely to come from the evaluation of some Boolean
subcircuit. Such a construction was given in [6]; in this section we give an alterna-
tive construction, which we call the alternative selector gate, which, specifically,
takes one input in F2, held as a signal bit with a corresponding key in F2κ and
viewed as output from a Boolean circuit, and two inputs in Fp, and outputs one
of the field elements according to the selection bit. Note that if the selection bit
is also a field element then the standard 2 · p ciphertexts for general field/field
multiplication is required, as is the case in Ben-Efraim’s work [6].

Multifield Shared Bits Rotaru and Wood [24] showed how to generate secret-
sharings of uniformly-random bits shared in two fields with authentication in
each; these were called daBits, for doubly-authenticated bits. This can be viewed
as an actively-secure version of the multi-field bits discussed by Ben-Efraim,
which can be used in arithmetic garbling of selector gates. The protocol for

175

generating such bits uses authentication in a black-box way, and so any actively-
secure MPC protocol can be used to generate them. In this work, we use daBits
shared in Fp and F2κ for our selector gates.

4.1 New Selector Gate

Recall that the standard cost of multiplication in Fp is p · p ciphertexts; the
garbler/evaluator half-gate approach reduces this to p+p ciphertexts. The main
observation driving our alternative selector gate is that the actual selection op-
eration is a multiplication of a bit by an element in Fp, and thus the goal is to
reduce the näıve 2 · p ciphertexts to (almost) 2 + p.

A selection gate based on selection bit b between the values on wires u and v
is computed via the standard multiplexer u+ (v− u) · b. Since linear operations
are garbled without communication or preprocessing, we focus on the product
of the wire w := v−u ∈ Fp with the bit b ∈ F2; the output wire is denoted by z.

The point is that while the previous approach by Ben-Efraim involved con-
verting the bit to Fp using a so-called projection gate and evaluating a standard
multiplication gate in Fp, we can use daBits to perform this projection directly.
We will now explain how to garble the new selector gate; this explanation is
followed by a formal protocol description.

Let b′ be the Boolean wire, and let b be the Fp wire to which we wish to
convert. We let the wire mask output of the Boolean wire be a daBit λb′ ∈ {0, 1}
and convert it to an Fp wire using 2n ciphertexts in Fp`κ as follows: for every
β ∈ {0, 1}, for every j ∈ [n],

gjβ :=
n∑

i=1

Fki
b′,β

(g, j) + kjb,0 + ((β + λb′ − 2 · β · λb′) + λb) ·Rj,

where kib′,β ∈ F2κ for all i ∈ [n] and λb is a uniform mask in Fp. Since the PRF
used in previous sections takes keys of length at least κ bits, we may assume the
same PRF is used here, with additional padding if necessary. Here, we use the
fact that in any field, if a and b are in {0, 1} then their XOR is computed as

a⊕ b = a+ b− 2 · a · b,

which means that we can remove the mask in Fp since the mask λb′ used in the
garbling of the Boolean circuit was a daBit. The two ciphertexts (for each i ∈ [n])
are indexed by the two possible Boolean external values, which is denoted by eb′;
the external value on the output, denoted by eb, is not needed in the next steps,
but can be computed by the evaluators in the usual way (i.e., by Pi comparing
the output key indexed by i to its own p keys). In doing so, the evaluators learn

176

either 0 + λb or 1 + λb, but do not learn which they hold. In fact, this external
value eb is never used by the evaluators.

The multiplication gate is then computed in two halves:

gjg,α :=
n∑

i=1

Fkiw,α(g, j) + kjg,z,0 − α(kjb,0 + λbR
j)

gje,β :=
n∑

i=1

Fkib,β
(g, j) + kje,z,0 − (β + λb′ − 2βλb′)λwR

j + λzR
j

Now when evaluating, the parties will obtain ew and eb′, will compute a :=
Dec(gg,ew) and b := Dec(ge,eb′) and will compute

kz,ez = a+ b+ ewkb,eb

=
(
kjg,z,0 − ew(

�
��kjb,0 + λbR

j)
)

+
(
kje,z,0 − (eb′ + λb′ − 2eb′λb′)λwR

j + λzR
j
)

+ ew(�
��kb,0 + ebR

j)

=
(
kjg,z,0 − ewλbRj

)
+
(
kje,z,0 − vbλwRj + λzR

j
)

+ ewebR
j

=
(
kjg,z,0 − (vw + λw)λbR

j
)

+
(
kje,z,0 − vbλwRj + λzR

j
)

+ (vw + λw)(vb + λb)R
j

=
(
kjg,z,0 −(((((((

(((
(vw + λw)λbR

j
)

+
(
kje,z,0 − vbλwRj + λzR

j
)

+ ((vw + λw)vb +(((((
((((vw + λw)λb)R

j

= kjg,z,0 +
(
kje,z,0 + λzR

j −�����vbλwR
j
)

+ ((vw +��λw)vb)R
j

= kjz,0 + (vwvb + λz)R
j.

In total, this requires p + 4 ciphertexts per party: 2 for the conversion, 2 for
the first half gate and p for the second.

We do not provide a complete proof of the security of the alternative selector
gate as it follows straightforwardly from the security of the selector gate of Ben-
Efraim [6]. The high-level intuition is that the keys kjg,z,0 and kje,z,0 are sampled
uniformly at random, and independently of one another, and so their sum kz,0
is also uniformly random, as is required of 0 keys; furthermore, the wire mask
λz is uniform and not known to any individual party, so the external value of
the output wire perfectly hides the real value vw · vb. The complete protocol for
garbling these new selector gates is given in Figure 9. The evaluation protocol
is the same as the evaluation of a multiplication gate and is therefore omitted.

177

Subprotocol ΠSelect

This subprotocol takes a gate with Boolean input wire b′ and arithmetic inputs u and v
and output wire z = u+ (v − u) · b′.
Wire Masks and Keys

Wire Mask/Global Difference Products

Selection Gates If g is a selection gate with input wires u and v, selection bit wire
b, and output wire z,
1. If b′ is the Boolean input wire, let λb′ be the Fp daBit mask stored as [[λ′b]] in
FMPC.

2. Generate an Fp wire mask [[λb]]:

(a) For each i ∈ [n], party Pi samples λib
$← Fp and calls FMPC with this value as

input.
(b) Compute [[λb]] := [[

∑n
i=1 λ

i
b]] by calling FMPC.

3. Each party Pi samples a key kib,0
$← Fp`κ .

4. Generate an Fp output wire mask [[λz]] in the same way as for [[λb]], above.
5. Let [[λu]] and [[λv]] be the masks stored in FMPC for wires u and v, respectively,

generated when garbling an addition or multiplication gate or input wire. Set
[[λw]] := [[λv]]− [[λu]] by calling FMPC.

6. Let kiu,0 and kiv,0 be the keys previously generated by party Pi for wires u and

v. For each i ∈ [n], party Pi sets kiw,0 := kiv,0 − kiu,0.

7. For each i ∈ [n], party Pi samples a wire key kiw,g,0
$← Fp`κ and sets kiw,e,0 :=

kiw,0 − kiw,g,0.
8. Compute [[λb′w]] := [[λb′ · λw]] by calling FMPC.
9. Execute ΠMask×Diff to obtain

{
〈Ri · λb′〉, 〈Ri · λb〉, 〈Ri · λw〉, 〈Ri · λb′w〉, 〈Ri · λz〉

}
.

10. For each i ∈ [n], for each α ∈ Fp and β ∈ {0, 1}, set

〈ρi,g,b,β〉 := (1− 2 · β) · 〈Rj · λb′〉+ 〈Rj · λb〉
〈ρi,g,g,α〉 := −α · 〈Rj · λb〉
〈ρi,g,e,β〉 := −β · 〈Rj · λw〉 − (1− 2 · β) · 〈Rj · λb′w〉+ 〈Rj · λz〉.

Garbling

Selection Gates If g is a selection gate with input wires u and v and selection bit wire
b,

1. The parties generate ciphertexts for converting the Boolean input wire b′ to an Fp
wire b: for every i ∈ [n],
– Pi sets g̃i,ib,β := Fkib,β

(g, i) + kib,0 + β ·Ri + ρii,g,b,β

– For every j 6= i, Pj sets g̃i,jb,β := Fkib,β
(g, i) + ρji,g,b,β

2. The parties compute the gates for the product of wire w := (v − u) with wire b:

178

(a) The parties compute the garbler half gate:
– Pi sets g̃i,ig,α := Fkig,z,α

(g, i) + kig,z,0 − α · kib,0 + ρii,g,g,α
– For every j 6= i, Pj sets g̃i,jg,α := Fkjg,z,α

(g, i) + ρji,g,g,α
(b) The parties compute the evaluator half gate:

– Pi sets g̃i,ie,β := Fkie,b,β
(g, i) + kie,z,0 + ρii,g,e,β

– For every j 6= i, Pj sets g̃i,je,β := Fkje,b,β
(g, i) + ρji,g,e,β

Fig. 9: Subprotocol ΠSelect for garbling a selector gate.

5 Evaluation in comparison to previous work

We evaluate our work in comparison to all previous works in the field of arith-
metic garbling; both in the two-party, and in the multiparty paradigm. As shown
in Table 1, we are the only work providing full-threshold active security, and
proving our garbling techniques UC-secure under the named assumptions. Pre-
vious work provided either two-party, passively secure constructions [3, 4], or
multiparty, passively secure constructions in the honest majority setting [6].

Recall that, in the multiparty setting, projection gates (significantly increasing
the efficiency of previous work [3, 4]) are non-trivial to construct, and are not
universal (i.e., tailored techniques per gate are required). Given that in the
multiparty setting all parties play the role of the garbler, we cannot exploit
the asymmetry between garbler and evaluator that two-party solutions enjoy.
In addition, as already pointed out by Ben-Efraim [6], each garbled table row
in the multiparty setting requires n ciphertexts, versus a single ciphertext in
the two-party setting, and each row decryption requires n2 PRF calls in the
multiparty setting, versus a single PRF call in the two-party setting. These
values are reflected in our cost description provided in Table 1.

For the works that did not suggest an improved version of a specific garbled
gate (e.g., multiplication gates in both our work, and the work of Ball et al. [3]),
we assume the same cost as the cost of the best previous technique of which
they make use. Our work almost halves the communication cost of the selector
gate, compared to the previous work in the multiparty setting [6], at the cost of
losing the ∼ 33% improvement of computation cost that Ben-Efraim’s approach
enjoys (in addition to the generation of daBits). This is an overall improvement,
given that the main bottleneck is the communication cost, and that the com-
putation cost is dominated by hash function calls, which are efficient. Garbling
is a technique suitable for secure computation over unreliable networks, where
continuous connectivity cannot be guaranteed. Although most of the communi-
cation happens during the preprocessing phase, the communication cost remains

179

the main bottleneck of garbling. Performing one additional PRF call during the
online phase, given that it comes at such a significant efficiency increase of the
offline phase, is less of a concern, since PRFs are a symmetric primitive, with
significant hardware optimisations on modern processors. Our selector gate re-
mains competitive even with the related work in the two party setting [3], where
we consider a selector gate to be the so-called cross-modulus multiplication for
q = 2. We require p+ 4 ciphertexts per party, while Ball et al. [3] require p+ 1.
This minor difference comes mainly from the fact that we cannot deploy the
row reduction techniques in the multiparty setting. Note that the cost of our
protocols that comes from applying actively secure MPC techniques, instead of
the passively secure approach in previous works, is not digested in Table 1.

Protocol Model Parties
Multiplication Selection

#Ciphertexts #Decryptions #Ciphertexts #Decryptions

[4] passive 2 6p− 5 6 2p− 1 2

[6] passive n 2p · n 2n2 (2p+ 2) · n 2n2

[3] passive 2 6p− 5 6 p+ 1 2

Ours active n 2p · n 2n2 (p+ 4) · n 3n2

Table 1: Comparison of our garbling techniques with the garbling of [4], [6],
and [3], in terms of security model supported, number of parties supported,
number of ciphertexts required per multiplication and selection gate, and number
of decryptions required per multiplication and selection gate.

6 Conclusion

Our work continues the study of multiparty arithmetic garbling initiated by
Ben-Efraim [6]. Specifically, we extend the previous work from the semi-honest,
honest majority setting, to the full-threshold actively-secure setting. Given the
practical importance of circuits, which combine Boolean and arithmetic gates, we
follow this paradigm, also considered in the work of Ben-Efraim [6]. We consider
a selector gate as suggested by Ben-Efraim [6] (essentially a multiplexer); we
extend it to the full-threshold actively-secure equivalent, and show how to garble
such a gate, while almost halving the communication cost it incurs.

Representations of Boolean circuits have clear advantages over arithmetic cir-
cuits when it comes to non-linear operations. On the other hand, appropriate
representations of arithmetic circuits are orders of magnitude more efficient than
Boolean circuits for linear operations on arithmetic values. Garbling techniques
that enable the construction of circuits, which integrate both Boolean and arith-
metic gates, are essential to treat numerous real-world application scenarios, and

180

allow computation of arbitrary circuits in constant rounds. This is the reason
why the design of such garbling schemes is on the rise. It remains an interesting
open problem to devise techniques that allow a seamless and efficient conversion
between the two representations with active security in the multiparty setting.

References

1. Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P Smart, and Tim Wood.

Zaphod: Efficiently combining lsss and garbled circuits in scale. In Proceedings of the 7th

ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, pages 33–

44, 2019.

2. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.

In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer Science,

pages 120–129, Palm Springs, CA, USA, October 22–25, 2011. IEEE Computer Society Press.

3. Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski. Garbled

neural networks are practical. Cryptology ePrint Archive, Report 2019/338, 2019. https:

//eprint.iacr.org/2019/338.

4. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arithmetic

circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,

and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communica-

tions Security, pages 565–577, Vienna, Austria, October 24–28, 2016. ACM Press.

5. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols

(extended abstract). In 22nd Annual ACM Symposium on Theory of Computing, pages 503–

513, Baltimore, MD, USA, May 14–16, 1990. ACM Press.

6. Aner Ben-Efraim. On multiparty garbling of arithmetic circuits. In Thomas Peyrin and

Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part III, volume

11274 of Lecture Notes in Computer Science, pages 3–33, Brisbane, Queensland, Australia,

December 2–6, 2018. Springer, Heidelberg, Germany.

7. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multi-

party computation for the internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on

Computer and Communications Security, pages 578–590, Vienna, Austria, October 24–28,

2016. ACM Press.

8. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic

encryption and multiparty computation. In Kenneth G. Paterson, editor, Advances in Cryp-

tology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages

169–188, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

9. Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt, Clau-

dio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High performance multi-

party computation for binary circuits based on oblivious transfer. Cryptology ePrint Archive,

Report 2015/472, 2015. http://eprint.iacr.org/2015/472.

181

10. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.

Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

11. Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD Z2k :

Efficient MPC mod 2k for dishonest majority. In Hovav Shacham and Alexandra Boldyreva,

editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in

Computer Science, pages 769–798, Santa Barbara, CA, USA, August 19–23, 2018. Springer,

Heidelberg, Germany.

12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation

from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, edi-

tors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer

Science, pages 643–662, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,

Germany.

13. Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious linear

function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas Peyrin, edi-

tors, Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes

in Computer Science, pages 629–659, Hong Kong, China, December 3–7, 2017. Springer,

Heidelberg, Germany.

14. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC

combining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors,

Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Com-

puter Science, pages 598–628, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,

Germany.

15. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers

efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of

Lecture Notes in Computer Science, pages 145–161, Santa Barbara, CA, USA, August 17–21,

2003. Springer, Heidelberg, Germany.

16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic

secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd

Conference on Computer and Communications Security, pages 830–842, Vienna, Austria,

October 24–28, 2016. ACM Press.

17. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again.

In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-

CRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer Science, pages 158–189,

Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

18. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and

applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson,

Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th International Collo-

quium on Automata, Languages and Programming, Part II, volume 5126 of Lecture Notes in

Computer Science, pages 486–498, Reykjavik, Iceland, July 7–11, 2008. Springer, Heidelberg,

Germany.

182

19. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round

multi-party computation combining BMR and SPDZ. In Rosario Gennaro and Matthew

J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of

Lecture Notes in Computer Science, pages 319–338, Santa Barbara, CA, USA, August 16–20,

2015. Springer, Heidelberg, Germany.

20. Tal Malkin, Valerio Pastro, and abhi shelat. An algebraic approach to garbling. Unpublished

manuscript, 2016.

21. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism

design. In 1st ACM Conference on Electronic Commerce, EC ’99, pages 129–139. Citeseer,

1999.

22. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.

A new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini

and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture

Notes in Computer Science, pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012.

Springer, Heidelberg, Germany.

23. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-

party computation is practical. In Mitsuru Matsui, editor, Advances in Cryptology – ASI-

ACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 250–267, Tokyo,

Japan, December 6–10, 2009. Springer, Heidelberg, Germany.

24. Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic and boolean circuits

with active security. Cryptology ePrint Archive, Report 2019/207, 2019. https://eprint.

iacr.org/2019/207.

25. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty compu-

tation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,

ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 39–56,

Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

26. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd

Annual Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illinois,

November 3–5, 1982. IEEE Computer Society Press.

27. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data

transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,

Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in

Computer Science, pages 220–250, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,

Germany.

183

Chapter 11

The return of Eratosthenes:
Secure Generation of RSA
Moduli using Distributed
Sieving

Publication data

C. Delpech de Saint Guilhem, E. Makri, D. Rotaru, T. Tanguy. “The return of
Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving”. In
IACR Cryptology ePrint Archive, 2021, 565.

184

The return of Eratosthenes:
Secure Generation of RSA Moduli using

Distributed Sieving

Cyprien Delpech de Saint Guilhem1, Eleftheria Makri1,2, Dragos Rotaru1,3, and
Titouan Tanguy1

1 imec-COSIC, KU Leuven, Belgium
2 ABRR, Saxion University of Applied Sciences, The Netherlands

3 Cape Privacy

Abstract. Secure multiparty generation of an RSA biprime is a challenging task,

which increasingly receives attention, due to the numerous privacy-preserving ap-

plications that require it. In this work, we construct a new protocol for the RSA

biprime generation task, secure against a malicious adversary, who can corrupt any

subset of protocol participants. Our protocol is designed for generic MPC, making it

both platform-independent and allowing for weaker security models to be assumed

(e.g., honest majority), should the application scenario require it. By carefully “post-

poning” the check of possible inconsistencies in the shares provided by malicious

adversaries, we achieve noteworthy efficiency improvements. Concretely, we are able

to produce additive sharings of the prime candidates, from multiplicative sharings via

a semi-honest multiplication, without degrading the overall (active) security of our

protocol. This is the core of our sieving technique, increasing the probability of our

protocol sampling a biprime. Similarly, we perform the first biprimality test, requiring

several repetitions, without checking input share consistency, and perform the more

costly consistency check only in case of success of the Jacobi symbol based biprimal-

ity test. Moreover, we propose a protocol to convert an additive sharing over a ring,

into an additive sharing over the integers. Besides being a necessary sub-protocol for

the RSA biprime generation, this conversion protocol is of independent interest. The

cost analysis of our protocol demonstrated that our approach improves the current

state-of-the-art (Chen et al. – Crypto 2020), in terms of communication efficiency.

Concretely, for the two-party case with malicious security, and primes of 2048 bits,

our protocol improves communication by a factor of ∼ 37.

1 Introduction

An RSA modulus, also known as a biprime, and usually denoted by the variable
N , refers to a number which is the product of two prime numbers, usually de-
noted by p and q; thus, N = p · q. The RSA modulus is a crucial component of
the first public key encryption scheme, the RSA scheme [33], as well as many

185

other public key encryption schemes that followed it. The security of the RSA
cryptosystem is based on the hardness of factoring, and as such N is part of the
public key of the RSA scheme [33], while its factors p and q determine the secret
key. Specifically, the security of the cryptosystem is determined by the bit-length
of the biprime, and therefore efficient methods to generate (large) biprimes have
been of interest since RSA was devised.

Initially, the generation of the parameters of a public key cryptosystem (in-
cluding the biprime generation) was assigned to a trusted third party. However,
there are applications were no single party can be entrusted with such a task,
which gave rise to the study of distributed biprime generation. The problem of
secure distributed RSA modulus generation is being studied since 1997, when
the seminal work of Boneh and Franklin [5] appeared. After the initial interest
in the problem, in the years around the work of Boneh and Franklin, with lit-
erature attempting to improve the efficiency, or security aspects of the original
work, the subject ceased being studied for about a decade. Then, again, dur-
ing the last decade the interest on secure distributed RSA modulus generation
is increasing. This is due to the sheer number of recent applications, requiring
distributed RSA modulus generation.

Traditionally, the study of distributed RSA modulus generation has found
numerous applications in threshold cryptography [13–15, 19, 32]. Nowadays,
blockchain applications requiring permissionless consensus, also need to deploy
the techniques of threshold cryptography, which explains the recently revived
interest in RSA modulus generation. A concrete example of applications for the
RSA modulus generation in the context of decentralized systems and consen-
sus protocols is that of Verifiable Delay Functions (VDFs) [4, 30,39]. Threshold
cryptography requiring the distributed generation of an RSA modulus is now
expanding beyond academia, as companies and foundations (e.g., Unbound, the
VDF Alliance, the Ethereum Foundation, Ligero) are providing services based
on top of these technologies to the public.

1.1 Related Work

The study of secure multiparty RSA modulus generation was initiated by Boneh
and Franklin [5]. Boneh and Franklin [5] devised a biprimality test to perform
the distributed RSA modulus generation, instead of individually testing the pri-
mality of the two prime factors of N . Given that N is the public output of their
protocol, this granted them an efficiency advantage, since their expensive multi-
party computations can be computed modulo the publicN this way. On the other
hand, the biprimality testing approach, requires that two prime numbers are si-
multaneously sampled, which leads to an increased number of iteratively invoking
the subroutines of the protocol, since efficient primality testing is probabilistic

186

in nature. Trial division, applied individually on each of the prime candidates,
somewhat relaxes the abovementioned performance penalty. The blueprint of
Boneh and Franklin [5], which is also adopted by most of the follow-up protocols
in the literature, consists of three main steps: (1) pick prime candidates (via trial
division); (2) securely multiply candidates; (3) biprimality testing (followed by
the RSA key generation step, whenever key generation is actually needed).

The Boneh-Franklin protocol was implemented, together with some newly
introduced optimizations by Malkin et al. [29]. Malkin et al. [29] first deploy a
(simpler) Fermat test to check biprimality, which with low probability introduces
false positives. If this simpler test passes, then they deploy the Boneh-Franklin
biprimality test, to eliminate any potential false positives. The most important
optimization proposed by Malkin et al. [29] is a distributed sieving technique,
which results in a 10× improvement in running time for the generation of a 1024-
bit biprime. The distributed sieving ensures that the candidate primes p and q
are not divisible by the first small primes, up to a predetermined bound. This is
done by each party randomly selecting multiplicative shares, which are coprime
to the predeterimined bound (and therefore their product is also coprime to the
bound), and then transforming these to additive shares to proceed with the rest
of the protocol.

Frankel et al. [16] were the first to propose a distributed RSA key generation
in the malicious security, honest majority setting. One of the main tools, devised
and used for the RSA key generation by Frankel et al. [16], is an unconditionally
secure multiplication protocol over the integers. To generate the RSA modulus
Frankel et al. [16] deploy a maliciously secure version of the Boneh-Franklin
biprimality test, and then show how to produce the actual RSA keys: a more
efficient version for small keys, and a less efficient one for larger keys. Although
their tailored protocol is more efficient than a solution merely deploying a passive
to active security compiler, it still remains inefficient.

Limited to the two-party case, Poupard and Stern [31] propose a maliciously
secure protocol for the RSA modulus generation, based on OT. Although their
protocol is less efficient than the Boneh-Franklin one, it is secure in a more
stringent security model, and it can serve two parties (instead of three that are
required by the Boneh-Franklin protocol), in application scenarios where this is
needed. However, the protocol suffers from a leakage of information in the pres-
ence of a malicious party, who can learn up to

∑
p∈P log(p)/p bits of the prime

factor p, with P being the set of tested primes. Another OT-based, two-party
protocol for the RSA key generation (and the RSA modulus generation) was pro-
posed by Gilboa [20]. Unlike Poupard and Stern’s solution, Gilboa’s protocol of-
fers only semi-honest security, but it is more efficient. The well-known OT-based
multiplication protocol of Gilboa, which by now is a classic, and adaptations

187

thereof are frequently used in the construction of secure multiparty computa-
tion protocols, is also the basis of the RSA key generation protocol that they
devised.

Algesheimer et al. [1] perfom a distributed primality test, unlike the protocol
of Boneh and Franklin [5] that was based on biprimality testing. Specifically,
they show how to perform a distributed version of the Miller-Rabin primality
test, and do proceed with the multiparty computations modulo a secret prime,
that the previous work avoided. To achieve this, they deploy three types of secret
sharing schemes, and show how to convert shares from one to another. Moreover,
their constructions allow the generation of an RSA modulus, whose prime factors
are actually safe primes. Both the work of Algesheimer et al. [1] and the work
of Boneh and Franklin [5] are proven secure in the semi-honest, honest majority
security model, and require minimally three parties.

Damg̊ard and Mikkelsen [12] were the first to efficiently achieve malicious
security for the task of distributed RSA modulus generation, though in the
honest majority setting. In fact, the first to adjust the protocol of Boneh and
Franklin to the active security model were Frankel et al. [16], but malicious se-
curity was achieved at the cost of protocol efficiency. The work of Damg̊ard and
Mikkelsen [12] can be seen as a hybrid of two of its predecessors [1, 5], trying
to combine the most efficient aspects of both of these approaches. Concretely,
by using replicated secret sharing they can do both multiplications, and the
modular reductions suggested by Algesheimer et al. [1], which require the pro-
tocol to work over the integers (instead of a field), without having to convert
between different secret sharing schemes. The downside of the Damg̊ard and
Mikkelsen’s [12] protocol is that it does not scale well in the number of parties,
and it is not straightforward to extend to more than three parties.

Hazay et al. [22, 23] deploy partially homomorphic encryption to complete
the two first steps of the Boneh and Franklin blueprint, and proceed to step 3
with biprimality testing. They achieve the first general n-party protocol (i.e.,
for any n ≥ 2) in the active security model, and the dishonest majority setting.
Active security in this setting is achieved by deploying tailored zero-knowledge
proofs. Hazay et al. [22, 23] build upon Gilboa’s technique [20] achieving two-
party actively secure RSA modulus generation à la Boneh and Franklin, but
they are the first to adapt also the trial division step of the protocol, achieving
therefore a significant efficiency boost. For the multiplication step that follows to
compute the candidate biprime, Hazay et al. [22,23] carefully use a combination
of the Paillier and ElGamal encryption schemes.

In the two party setting, Frederiksen et al. [17] propose an OT-based, ma-
liciously secure protocol for the distributed RSA modulus generation, which is
more efficient than previous work. The efficiency improvement is due to one

188

single compact zero-knowledge argument of correct behavior at the end of the
protocol, instead of the numerous (one per message) tailored zero-knowledge
proofs required in the protocol of Hazay et al. [22, 23]. The maliciously secure
protocol of Frederiksen et al. [17] is provably secure, and concretely efficient, as
shown by the authors with an implementation. However, it suffers from some
information leakage at the trial division step. This leakage is formalized in the
functionality, and taken into account in the security proof, and it is argued to
be justified both in theory and in practice, as leakage of a few bits of the prime
factors should not be able to break the RSA assumption, and therefore also not
the security of the protocol. Nevertheless, in the malicious case, this leakage may
lead to selective failure attacks, which also impacts the efficiency of the protocol.

Recently, Chen et al. [7] successfully ovecame the limitations of the proposal
of Frederiksen et al. [17]. Benefiting from the efficiency advantages that a CRT
number representation allows, Chen et al. [7] devise a maliciously secure n-
party protocol, tolerating n − 1 (active) corruptions, while avoiding both the
deployment of expensive cryptographic primitives, and the information leakage
incurred by the protocol of Frederiksen et al. [17]. Leveraging the CRT represen-
tation, Chen et al. [7] not only gain efficiency from the linearity of the smaller in
bit-size computations that can be performed locally, but they also constructively
sample their primes such that they are not divisible by the small primes used
for the CRT representation. This way they significantly increase the probabil-
ity of hitting a prime, and therefore also increase the overall protocol efficiency.
Their distributed RSA modulus generation protocol follows the general Boneh
and Franklin paradigm.

A large scale implementation of the distributed RSA modulus generation, and
improvement of the previous work of Chen et al. [7], named Diogenes [8], is the
most recent result in the area. From a scalability point of view, Diogenes [8] is
the first MPC implementation for a non-trivial task that scales to thousands of
parties. To achieve efficiency and scalability, Diogenes [8] deploys the so-called
coordinator model, which is a setting consisting of a powerful coordinator, and
thousands of relatively lightweight computation parties. The RSA modulus gen-
eration protocol proposed in Diogenes [8] is secure against n − 1 (out of the
n) malicious parties, and the coordinator. Although security of the protocol is
proven against a semi-honest coordinator, Diogenes [8] is actually secure with
identifiable abort for any active corruption of the coordinator, and upto n − 1
parties, as the coordinator’s actions can be verified by a public bulletin board
construction. Building upon the work of Chen et al. [7], Diogenes [8] also deploys
the CRT representation, and constructive sampling techniques. To avoid the
communication cost that pairwise messages incur, and to exploit the potential
of packing and SIMD to the fullest, Diogenes [8] is based on a Ring LWE addi-

189

tively homomorphic encryption scheme (AHE), where the coordinator is tasked
to perform all the homomorphic additions necessary, as well as relay messages.
Malicious security for such a large scale application, is achieved by a composi-
tion of zero-knowledge techniques, the certification of which is aggregated and
verified only once, at the end of the protocol, and only for the successful protocol
iteration. In Table 1 the main functionality and security features of our work
and the related works are summarized.

Protocol Security
Dishonest

#Parties Test No Leakage
Majority

[5] Passive × n ≥ 3 biprimality X
[16] Active × n ≥ 3 biprimality X
[31] Active X n = 2 biprimality ×
[20] Passive X n = 2 biprimality X
[1] Passive × n ≥ 3 primality X
[12] Active × n = 3* primality X
[22]

Active X n ≥ 2 biprimality X
[23]

[17] Active X n = 2 biprimality ×
[7] Active X n ≥ 2 biprimality X
[8] Active** X n ≥ 2 biprimality X

Ours Active X n ≥ 2 biprimality X
Table 1. Comparison of the related work.

1.2 Our Contribution

In this work we show how to securely generate an RSA biprime in the standard
multiparty setting, where all parties contribute equally to the computation. We
assume a static active adversary who can corrupt up to n − 1 (out of the total
n) parties, but remark that our proposal works with generic MPC, allowing the
deployment of different security models, based on the needs of the application at
hand. This makes our protocol MPC-platform-independent, as it can be realized
with any MPC technology that is based on linear secret sharing techniques. For
example, Shamir’s secret sharing [37] can be deployed, if our goal is to produce
the RSA moduli in the honest majority setting; or (a variant of) the replicated
secret sharing scheme of Araki et al. [2,18], should high throughput be the main
goal of the MPC implementation.

*The protocol can be non-trivially extended to support more than 3 parties, but efficiency
does not scale.

**Diogenes achieves the stronger notion of (active) security with identifiable abort.

190

Following the paradigm of recent work [7], we design a constructive distributed
sampling sub-protocol that increases the probability of our overall protocol gen-
erating a biprime. Crucially, we achieve this constructive sampling having the
parties first sample multiplicative sharings of a certain form, and then transform-
ing them into additive sharings, by computing their product in a semi-honest
fashion. This does not degrade the security of the RSA generation protocol,
because subsequently we reveal the public biprime N (i.e., the product of the
sampled candidate primes p and q). An adversary who succeeds in introducing
an additive error in the sharings of p or q that is consistent with the error in their
product N , should effectively factor N , which is hard by the original assumption
for an RSA biprime. This semi-honest multiplication presents itself as a major
bulk of the protocol’s cost, so the savings from performing it semi-honestly are
substantial.

Another important technique we deploy is to run the biprimality test in terms
of checking the Jacobi symbol (which identifies most of the biprimes successfully)
without checking the consistency of the input shares in the test. Note that the
Jacobi test has to be repeated once for each candidate and sec times for a
candidate that passes the first iteration of the test, for sec a statistical security
parameter. This means that any cost savings in this part of the protocol impact
significantly the overall efficiency. The more computationally and communication
intensive consistency checks are only performed on the candidate for which all
repetitions of the Jacobi test have succeeded.

To perform the consistency check that follows the Jacobi symbol test, our pro-
tocol requires to convert a bounded additive sharing from its CRT representation
to a single additive sharing over the integers. This is to match the computations
performed in the exponent over the integers for the completion of the Jacobi
test. We design a protocol that performs the aforementioned conversion, and we
remark that in addition to being necessary for our RSA modulus generation,
this protocol is of independent interest. For example, one of the PRF construc-
tions in Grassi et al. [21], requires the MPC preprocessing field to be compatible
with an elliptic curve group G. Our exponentiation protocol, with public output
and secret exponent, would make their preprocessing field compatible with the
latest SHE techniques [3,28], since those require special primes, which might be
incompatible with elliptic curve groups. Our work might also improve the pre-
processing efficiency in other works, which need to compute gx in public, where
x is secret shared [10,24,38], but we leave this for future investigation.

Lastly, we analyze our protocol, and set concrete parameters to compute the
communication cost it incurs. We also show how the communication cost of our
protocol scales in the number of parties, and for different parameter sets. With
conservative estimations, and a statistical security parameter set to σ = 80, our

191

protocol outperforms the current state-of-the-art [7] in all but one settings: the
semi-honest security with 16 parties setting. For malicious security, and primes
of 2048 bits, our protocol improves the previous work by over 30 times, both in
the two-party, and in the 16-party case.

To summarize, our main contributions are as follows:

1. Our RSA modulus generation protocol works for generic MPC, being able to
leverage any MPC technology based on linear secret sharing.

2. We constructively sample candidate primes, transforming multiplicative shar-
ings to additive sharings, by computing their product in a semi-honest fashion,
which is checked for maliciously inserted additive errors later in the protocol,
resulting in the protocol’s cost reduction.

3. The first biprimality check, implemented by means of checking the Jacobi
symbol, is costly and repeated sec times in our protocol. We show how to
postpone the even costlier consistency check on the shares contributed to the
Jacobi test, in order to again gain efficiency.

4. We design a protocol to convert an additive sharing over a ring to an additive
sharing over the integers, which is of independent interest.

5. We demonstrate that our protocol improves the communication cost over the
current state-of-the-art [7].

1.3 Technical Overview

Our main protocol, ΠRSAGen, works in five distinct phases: (1) the sampling phase,
aiming at generating two prime numbers p and q, secret shared among the proto-
col participants; (2) the combine phase, computing the product N of the previ-
ously sampled candidate primes, which is securely computed and then revealed to
all parties; (3) the Jacobi test, checking whether the computed N is a biprime;
(4) the consistency check, ensuring input consistency in the presence of mali-
cious adversaries, should the Jacobi test indicate a candidate biprime; and (5)
the GCD test, which checks again whether N is a biprime, to ensure that the
protocol did not accept a false positive that the Jacobi test may not catch.

Our Sampling phase first deploys a technique similar to the one introduced
by Malkin et al. [29], which they term distributed sieving, and variations thereof
have been also deployed in more recent works [7, 8, 22, 23]. Distributed sieving
entails each party sampling a multiplicative share for each of the two primes
p and q, then performing a (semi-honest) multiplication on these shares, and
then re-share them to transform them into additive shares. With the distributed

192

sieving we increase the probability of sampling primes p and q. Similarly to
recent related work [7, 8], we leverage the Chinese Remainder Theorem (CRT)
to further increase the efficiency of our protocol. To this end, we show how
to extend the standard actively secure MPC functionality to work on separate
MPC engines: one for each of the CRT components we consider. We call this
functionality FMPC-CRT.

In the Combine phase of ΠRSAGen, based on the aforementioned FMPC-CRT func-
tionality, we perform an actively secure multiplication between the two sampled
primes, we reveal the result to all parties, and check whether the product falls
within the predetermined bounds, and whether it is coprime to a value Msample,
which is the product of `1 primes. Should both of these checks pass, the combine
phase is completed and we proceed to the Jacobi test on the generated candidate
biprime.

The Jacobi test aims at establishing whether the product N is a biprime.
Although this test introduces no false negatives, it has a probability of 1/2
of introducing a false positive (i.e., accepting a non-biprime). To increase the
probability of N being a biprime to 2−sec (before proceeding to the ultimate
GCD test) we repeat the Jacobi test sec times. The core of the Jacobi test lies in
a secure exponentiation protocol, with public output, where the computations
in the exponent are performed over the integers. We deploy the exponentiation
protocol proposed by Grassi et al. [21] to compute the desired Jacobi symbol. If
the Jacobi symbol is ±1, we proceed to the next phase, which is the Consistency
Check.

The consistency check ensures that the protocol will abort, in the presence of
active adversaries who have input inconsistent shares of the candidate primes.
To achieve this, we carefully mask the exponent of the Jacobi test, with bounded
randomness (for which we have devised a specialized protocol, ΠRand2k) so that
all computations are performed over the integers without wrap around. Then,
the masked value itself needs to be an additive sharing over the integers. To this
end, we have devised a protocol to convert an additive sharing over a ring, into
an additive sharing over the integers, named ΠConvInt. By ensuring that indeed
no computation wrapped around, we check an equivalent relationship for the
exponentiation performed for the Jacobi symbol computation, which serves as a
proof of input consistency of the shares contributed by each party to the Jacobi
test. This ensures security against malicious adversaries.

The last phase of our protocol aims at eliminating any false positives that
are not filtered out by the Jacobi test. Concretely, in the GCD phase we wish
to verify that gcd(N, Jp+ q + 1K) = 1. This phase requires again the generation
of bounded randomness, for which we deploy the same protocol we devised for
the Jacobi test, as well as a careful selection of the bounds, and number of

193

necessary CRT components, ensuring that no wrap around happens during the
secure computations. Note that according to the original work of Boneh and
Franklin [5], the latter test introduces a false negative, in the particular case of
N = p · q, with p, q primes, and q = 1 mod p.

2 Preliminaries

2.1 Chinese Remainder Theorem - CRT

Following the blueprint of the two most recent works in distributed RSA modulus
generation [7, 8], we deploy in our work the Chinese Remainder Theorem to
increase the efficiency of our protocol. We recall here the Chinese Remainder
Theorem [25].

Theorem 1. Let N = pq where p and q are relatively prime. Then ZN ' Zp×Zq
and Z∗N ' Z∗p × Z∗q. Moreover, let f be the function mapping elements x ∈
{0, . . . , N − 1} to pairs (xp, xq) with xp ∈ {0, . . . , p− 1} and xq ∈ {0, . . . , q − 1}
defined by f(x) = ([x mod p], [x mod q]). Then f is an isomorphism from ZN to
Zp × Zq, as well as an isomorphism from Z∗N to Z∗p × Z∗q.

The CRT generalizes to any vector of pairwise relatively primes p1, p2, . . . , p`,
whose product is N =

∏`
i=1 pi. Then the function f mapping elements x ∈

{0, . . . , N−1} to tuples (xp1, . . . , xp`) with xpj ∈ {0, . . . , pj−1}, is an isomorphism
from ZN to Zp1×· · ·×Zp` and from Z∗N to Z∗p1×· · ·×Z∗p`. We refer to the tuples
(xp1, . . . , xp`) as the CRT representation of x.

To convert an element from its CRT representation to its representation mod
N , we deploy the so-called CRT Reconstruction algorithm, which is presented
in Fig. 1.

Algorithm CRTrec((xp1 , . . . , xp`), (p1, . . . , p`))

1. Compute N =
∏`
i=1 pi.

2. For all i ∈ {1, . . . , `} compute Ni = N/pi and find Mi satisfying Ni ·Mi = 1 mod pi.

3. Compute x =
∑`

i=1 xpiNiMi mod N .

Fig. 1. CRT Reconstruction Algorithm.

2.2 Notation

We define Msample = 3 ·5 · · · · pb to be the product of the first b primes (excluding
2). This is the space from which we sample the first multiplicative sharings of the

194

candidate primes p and q in our protocol. Further, we define M` = p1 · p2 · · · p`
to be the product of ` distinct primes of size 128 bits each. To achieve efficient
arithmetic over M` we use ` distinct MPC engines, each of which operates over
pi. At different stages of our protocols we work either with these distinct MPC
engines, or we perform the CRT reconstruction of the variables we work with
over an MPC engine M`.

To compress and simplify notation throughout this paper, we denote by (x, `)
the CRT representation of x mod M`, that is all ` CRT components (x mod
p1, . . . , x mod p`). The local operation of CRT reconstruction of x mod M` from
its CRT representation is denoted as CRTrec(x, `).

We use square brackets to denote additively secret shared values, e.g., the
shared version of x is denoted by [x]. We use double square brackets for the
authenticated secret shared values, e.g., the authenticated shared version of x
is denoted by JxK. When the sharings are over the CRT representation with `
CRT components, we denote the sharings as [x, `], and Jx, `K, respectively, and
assume ` MPC engines operating in parallel, one for each CRT component.

3 Protocol Ingredients

Our main protocol for the biprime generation depends on several functionalities.
In this section we present all functionalities that are necessary for the realization
of the final FRSAGen functionality, and elaborate on the non-standard ones. We
begin the description of the ingredients that comprise our final protocol with
a roadmap explaining the dependencies between the functionalities required to
realize FRSAGen.

3.1 Roadmap

In Fig. 2 we demonstrate the functionality dependencies for the RSA modulus
generation. We denote functionalities with circles, and protocols with rectangles.
On the dependency vectors ‘H’ stands for hybrid (as in which hybrid model
do we assume for the protocol), and ‘R’ stands for realizing, and leads to the
functionality that the origin protocol realizes. In this section we show how to
reach the root of the depicted tree, namely the ΠRSAGen protocol, which in turn
realizes the FRSAGen functionality.

The first functionality that our protocol makes use of, is the FABBWithErrors.
This is used in the sampling phase of ΠRSAGen, where we resort to a semi-honest
multiplication protocol to compute the additive shares of the two primes con-
tributed by each party, from their multiplicative shares. This is realized by the
ΠABBWithErrors protocol, which in turn is constructed in the FABBWithErrors−Prep-
hybrid model (realized by ΠABBWithErrors−Prep). The reader can think of this func-

195

tionality as the standard MPC arithmertic black-box, secure against passive
adversaries. The preprocessing phase of the arithmetic black-box produces unau-
thenticated input tuples, and multiplication triples. We elaborate on the work-
ings of ΠABBWithErrors in Section 3.2.

Then, the rest of the sampling phase, as well as the combining phase of ΠRSAGen

uses the FMPC-CRT functionality, realized by the ΠMPC-CRT protocol, which is in
turn designed in the standard FMPC-hybrid model. For completeness, we present
the FMPC functionality in Fig. 17, Appendix B. In Section 3.3 we show how to
generalize the standard actively secure MPC functionality to support parallel
MPC engines operating over sharings of the CRT representation of the inputs,
designing therefore the FMPC-CRT functionality.

The Jacobi test phase of ΠRSAGen makes use of the standard broadcast, and
randomness sampling functionalities, which are presented for completeness in
Appendix B, Fig. 18, and Fig. 19, respectively. The consistency check that fol-
lows the Jacobi test of ΠRSAGen requires two additional functionalities. To support
these two additional functionalities, we augment the FMPC-CRT functionality with
two additional commands, and integrate them into the ΠAdvMPC−CRT protocol,
realizing the corresponding FAdvMPC−CRT functionality. This is presented in Sec-
tion 3.4. Concretely, the first command implements a functionality that generates
bounded randomness to accommodate computations that would otherwise wrap
around in the original CRT representation. This construction is presented in
Section 3.4 and the protocol that realizes uses the additional FmaBits command
of the FMPC-CRT functionality. The latter functionality facilitates the generation
of multiply authenticated random bits [35]. Furthermore the consistency check
that follows the Jacobi test requires certain computations to be performed over
the integers. To realize this second command we need to convert a sharing from
its CRT representation to an additive sharing of the CRT reconstructed value
over the integers. We explain how to achieve this in Section 3.4.

3.2 Unauthenticated Arithmetic Black Box Functionality

FABBWithErrors (Fig. 3) is the functionality implementing an unauthenticated arith-
metic black box MPC. Our ΠRSAGen protocol makes use of this functionality to
perform a multiplication, in a more efficient manner than the actively-secure
version. This does not cause the overall security of our protocol to depreciate,
because the range in which the parties’ inputs lie are implicitly checked when
opening the product of the two sampled candidate primes, and the remaining
primitives used in ΠRSAGen are actively secure.

For completeness, we detail the protocol realizing the unauthenticated ABB
functionality, ΠABBWithErrors, in Appendix A, Fig. 14. The ΠABBWithErrors protocol
implements the online phase of the unauthenticated arithmetic black box, and

196

FRSAGen ΠRSAGen

FABBWithErrorsΠABBWithErrors

FABBWithErrors−Prep ΠABBWithErrors−Prep

FAdvMPC−CRT ΠAdvMPC−CRT

FMPC−CRTΠMPC−CRT FmaBits

FMPC

FAgreeRandom FBroadcast

R

H
H

R

H

R

R

H
H

R

H

H H

Fig. 2. Functionality dependencies for RSA modulus generation.

it works in the FABBWithErrors−Prep-hybrid model. This functionality, realized by
ΠABBWithErrors−Prep, is used to generate the necessary preprocessing material for
the online phase. Concretely, the required preprocessing material is (unauthenti-
cated) input tuples and multiplication triples. The protocol for the preprocessing
for tuples is listed in ΠInputTuple (Fig. 15), while the protocol for the preprocess-
ing of triples is listed in ΠTripleGeneration (Fig. 16), in Appendix A. Note that the
ΠTripleGeneration protocol makes use of the standard FRand functionality, which is
presented for completeness in Fig. 20, Appendix B.

For simplicity and clarity of presentation we present here (and in Appen-
dices A and B) the protocols implementing the standard unauthenticated arith-
metic black box functionality. We also invoke the corresponding functionality in
our protocol in the usual manner. However, we recommend this functionality to
be implemented over a CRT representation of the sharings and inputs, meaning
that we would need multiple MPC engines operating in parallel for each CRT
component. We detail how to achieve the standard actively secure MPC func-
tionality over CRT components in Section 3.3. The FABBWithErrors functionality
can be also implemented over CRT components in the same manner. We have
assumed the aforemenioned implementation of the FABBWithErrors functionality for
the efficiency analysis of our protocol.

197

Functionality FABBWithErrors

Initialize: Parties call FABBWithErrors−Prep to receive preprocessing tuples and triples.

Input: Receive a value x from some party and store x.

Mult([x], [y]): Await for ∆ from the adversary. Compute z = (x · y) +∆ and store [z].

Share([x]): For each corrupt party i ∈ A receive xi from the adversary. Sample uniformly

honest parties’ shares xjj /∈A such that
∑n

i=1 xi = x. Send xi to Pi.

Fig. 3. Arithmetic Black Box Functionality with Errors.

3.3 MPC on CRT Components

In this subsection we describe a new functionality and its associated protocol
to perform secure multiparty computation over a big composite modulus, by
relying on the Chinese Remainder Theorem. The functionality FMPC−CRT (Fig. 4)
essentially implements the standard MPC functionality, but on sharings in their
CRT representation. To accommodate computations on this type of sharings, we
deploy ` MPC engines, for ` the maximum possible number of CRT components
in the representation, as shown in ΠMPC−CRT (Fig. 5). Each of these MPC engines
operates over one of the prime moduli of the CRT representation, and each of
these ` prime moduli is 128-bits long. All ` MPC engines operate in parallel,
in a much smaller space than the big composite modulus over which the final
reconstruction is performed. This has a profound impact on the efficiency of our
ΠRSAGen protocol.

Functionality FMPC−CRT

Let [x, `] denote the identifiers for the ` components of the CRT representation a value x

stored in the functionality. Let A ⊂ {1, . . . , n} denote the index set of the corrupted parties.

Init: Receive p1, . . . , p` primes from all parties, store them and compute M` = Π`
i=1pi.

Input: Receive a tuple (x, `′) ∈ ZM`′ with `′ ≤ ` from some party and store ([x, `′]).
Add([x, `′], [y, `′]): Check if (x, `′) and (y, `′) exist in memory. If so compute z = x+ y mod

M`′ and store ([z, `′]).
Mult([x, `′], [y, `′]): Check if (x, `′) and (y, `′) exist in memory. If so, compute z = x ·
y mod M`′ and store ([z, `′]).
Open([x, `′]): Check if (x, `′) exists in memory.If so send the value x to all parties.

OpenTo([x, `′], j): Check if (x, `′) exists in memory. If so send the CRT represented values

(x, `′) to party Pj .

Fig. 4. MPC over CRT Functionality

198

ΠMPC−CRT

Init(`): To initialize ` CRT MPC engines, parties call FMPC.Init(Fmi) ∀ ` primes

[m1,m2, . . . ,m`].

Input(x, `′): To provide an input x ∈ ZM`′ , `
′ ≤ `, any party calls FMPC.Input(x mod mi) ∀ `′

primes [m1,m2, . . . ,m`′], and defines Jx, `′K as ((x, `′)(1), (x, `′)(2), . . . , (x, `′)(n)), where each

(x, `′)(j) represents the `′ CRT shares that each player j obtains.

Add(Jz, `′K, Jx, `′K, Jy, `′K): To add two shared values Jx, `′K, Jy, `′K parties call

FMPC.Add(Jz, `iK, Jx, `iK, Jy, `iK) ∀ `′ MPC engines operating over [m1,m2, . . . ,m`′],

and set Jz, `′K← Jx, `′K + Jy, `′K.
Mult(Jz, `′K, Jx, `′K, Jy, `′K): To multiply two shared values Jx, `′K, Jy, `′K parties call

FMPC.Mult(Jz, `iK, Jx, `iK, Jy, `iK) ∀ `′ MPC engines operating over [m1,m2, . . . ,m`′], and set

Jz, `′K← Jx, `′K · Jy, `′K.
Open(Jx, `′K): To open a shared value Jx, `′K all parties call FMPC.Open(Jx, `iK) ∀ `′ MPC

engines operating over [m1,m2, . . . ,m`′], and receive (x, `′).
OpenTo(Jx, `′K, j): To open a shared value Jx, `′K party Pj calls FMPC.OpenTo(Jx, `iK, j) ∀ `′
MPC engines operating over [m1,m2, . . . ,m`′], and receives (x, `′).

Fig. 5. Protocol for arithmetic MPC over CRTmoduli.

3.4 Advanced MPC CRT

Functionality FAdvMPC−CRT

This functionality reproduces all the commands of FMPC−CRT and extends it with:

Rand2k(`′, k): Sample r
$← Z2k and store ([r, `′]), for `′ ≤ `.

ConvInt([x, `′]): Check if (x, `′) exists in memory. If so, uniformly sample shares x
(i)
Int ∈ Z

for each party Pi s.t.
∑n

i=1 x
(i)
Int = x, and send them to the corresponding parties. (Note: the

sum is taken in Z).

LevelUp([p, `], [q, `], `′): Receive p`+1, . . . , p`′ from all parties, store them and compute

M`′ =
∏`′

i=1 pi. Store ([p, `′]) and ([q, `′]).

Fig. 6. Advanced MPC over CRT Functionality

The functionality FMPC−CRT (Fig. 4) is similar to the classic MPC functionality,
but over a direct product of finite fields. We also define FAdvMPC−CRT, which is
the functionality FMPC−CRT augmented with three additional commands. The
first one is the Rand2k command, which samples a random secret shared value
r < 2k in its CRT representation over `′ moduli, used in our ΠRSAGen protocol
to ensure no overflows during computation. The second one is the ConvInt com-
mand, which allows the parties to convert a CRT sharing to an integer sharing

199

of the same value. The third one is the LevelUp command, which extends the
CRT representation of the sharings of the candidate primes p and q to the CRT
representation of the same sharings, but with additional CRT components. This
augmented functionality FAdvMPC−CRT is described in Fig. 6. We subsequently
detail how the three additional commands are realized.

Bounded Randomness in Shared CRT Representation. The Rand2k com-
mand allows us to sample a random CRT sharing, the reconstruction of which
falls within a predetermined range. This is necessary in our main protocol to ac-
commodate computations that would otherwise overflow over the intial (smaller)
CRT representation. The protocol implementing the Rand2k command is listed
in ΠRand2k (Fig. 8), and it uses an additional command of the FMPC−CRT func-
tionality, namely the FmaBits command. The FmaBits command itself, presented in
Fig. 7, is a slightly different version of the one presented by Rotaru et al. [35].
In our case, we modify the command so that it outputs the integer sharing of
the bit, which was discarded in the original paper. We need this integer sharing
later, in the ΠConvInt protocol.

Functionality FmaBits

1. For i = 1, . . . ,m the functionality calls FMPC.GenBit() so as to store a bit bi.

2. The bits bi are retrieved from FMPC and are enterred into the FMPC-CRT functionality.

3. The functionality samples a sharing of bi in Zp and send its share b
(j)
i to every party Pj .

It also publicly outputs ki = b
∑
b
(j)
i

p c.
4. The functionality waits for a message Abort or Ok from the adversary. If the message is

Ok then it continues.

Fig. 7. The ideal command for generating random bits

200

ΠRand2k

Rand2k: On input (`′, k), to generate a random CRT sharing Jr, `′K with r < 2k, parties do

the following:

1. All parties call FmaBits to generate k random bits {Jbi, `′K}i∈[k] shared across all MPC

engines, and receive ki which gives an integer sharing of bi w.r.t. the first CRT com-

ponent of Jbi, `′K.
2. All parties compute Jr, `′K =

∑
i∈[k] 2

i · Jbi, `′K.
3. Output Jr, `′K and the integer sharing [rInt].

Fig. 8. Protocol for generating a random CRT sharing Jr, `′K, which CRT recon-
structs to a bounded random value r < 2k, and the corresponding integer sharing

Converting a CRT Sharing to an Integer Sharing. Our main protocol
requires a command which converts a CRT sharing to an integer sharing of the
same underlying secret. This is necessary during the Jacobi test of ΠRSAGen,
because we need to ensure that all computations in the exponent are performed
over the integers, and hence the shares in the exponent are also reconstructed
over the integers; otherwise, the correctness of the protocol is not guaranteed due
to potential wrap around. To ensure that indeed the computations are done over
the integers, we realize the ConvInt command with the protocol ΠConvInt, listed
in Fig. 9. This protocol allows the parties to obtain an unauthenticated integer
sharing of the CRT sharings they already hold, without leaking any information
about the underlying secret value.

The execution of the protocol ΠConvInt does not leak any information about the
secret. Indeed, the only opened value in the protocol is Jx, `JacK + Jr, `JacK with

r
$← [2B+sec] and x < 2B. Therefore, by Theorem 2, we have that the distance

between the distribution of this opened value and the uniform distribution is
upper bounded by 2−sec.

This protocol only produces an unauthenticated integer sharing, but the con-
sistency of the shares is checked later in the ΠRSAGen protocol. During the broad-
cast at step 5 of the Consistency Check, a malicious adversary can broadcast
any arbitrary value, but if the value of the shared secret would be altered by
the adversary’s broadcast, then the equality check which follows will fail with
probability 1/2.

201

ΠConvInt

Let B ∈ N be an upper bound for the bit-length of the input; i.e. for any input x, we assume

x < 2B. We select `Jac, such that M`Jac =
∏`Jac
i=1mi is the minimal moduli product bigger

than 2B+sec+1

ConvInt: On input Jx, `JacK, to convert the CRT sharing Jx, `JacK to an integer sharing [xInt]

that reconstructs to the same underlying secret, parties do the following:

1. Parties call Rand2k with input (`Jac, B + sec) to get a CRT sharing Jr, `JacK and an

integer sharing [rInt] of a random value r, with r < 2B+sec.

2. Parties call (t, `Jac) = FMPC-CRT.Open(Jx, `JacK + Jr, `JacK) and do the local CRT re-

construction t = CRTrec(t, `Jac).

3. To obtain an integer sharing of x parties locally compute x
(i)
Int = t− r(i).

4. Parties store x
(i)
Int as their integer share of x.

Fig. 9. Protocol for converting a bounded CRT sharing to an integer sharing.

Theorem 2 ([36, Appendix A]). Let M and K be positive integers, where
M ≤ K. Let the random variable X take values from {0, . . . ,M − 1} and let
the random variables U be uniform on {0, . . . , K − 1}. Then ∆(U,X + U) ≤
(M − 1)/K is an upper bound for the distance between the two distributions.

Extending the CRT Representation. The LevelUp command extends the
CRT representation of [p, `] and [q, `], allowing us to compute over M`′ > M` for
these two values. In our ΠRSAGen protocol, we use LevelUp command whenever
a new operation on p and q could overflow the current CRT modulus. This
happens twice: first during the consistency check, and then in the GCD test. We
note that we execute this command only on [p, `] and [q, `], which have passed
the biprimality test, and for which the product N is publicly known. We use
both of these properties in the ΠLevelUp protocol (Fig. 10), which implements the
LevelUp command.

202

ΠLevelUp

For the execution of this protocol, we assume that the parties have access to an integer

sharing of the values they wish to extend, and that the product of the values to be reshared

has passed the biprimality test.

LevelUp: On input (Jp, `K, Jq, `K, `′), with `′ > `, publicly known N = p · q parties do the

following:

1. Each party Pj retrieves its integer sharings p(j) and q(j) of Jp, `K and Jq, `K.
2. Each party Pj calls FMPC.Input(p

(j) mod mi) and FMPC.Input(q
(j) mod mi) for i ∈

{`+ 1, . . . , `′}.
3. All parties call FMPC−CRT.Add to obtain Jp, `′K =

∑n
j=1Jp(j), `′K and Jq, `′K =∑n

j=1Jq(j), `′K.
4. All parties call JN, `′K = FMPC−CRT.Mult(Jp, `′K, Jq, `′K) and then call

FMPC−CRT.Open(JN, `′K), abort if the result is not equal to the publicly known

N .

Fig. 10. Protocol for extending the CRT representation of Jp, `K and Jq, `K.

The protocol ensures that the new Jp, `′K and Jq, `′K are sharings of the same
value as Jp, `K and Jq, `K. Indeed, checking that both multiply to N acts as a
MAC check. To be successful, a cheating adversary would have to introduce
additive errors on Jp, `′K = Jp, `K + ∆p and Jq, `′K = Jq, `K + ∆q, such that ∆p ·
q +∆q · p+∆q ·∆p = 0; that is an adversary would have to guess either p or q
from N . Because N is an RSA modulus, we assumed that factoring N is a hard
problem, thus making ΠLevelUp secure.

4 Distributed Generation of an RSA Biprime

Our ideal functionality FRSAGen, listed in Fig. 11, consists of 5 steps: Sample,
Combine, Jacobi, Consistency Check, and GCD Test. The first step, samples two
candidate primes p and q of approximately 1024 bits each which are both coprime
with Msample, which significantly increases our chances of selecting a prime. The
second step computes the product of the previously sampled candidate primes,
and checks that it lies in the expected range (respecting the aforementioned
bit-length), and that it is not coprime with Msample. The third step follows the
blueprint of Boneh and Franklin [5], checking biprimality in a way similar to
Miller-Rabin primality testing, and returing Abort, if the product computed is
not a biprime. The fourth step serves as a constistency check, confirming that
all parties have input consistent shares in the so-called Jacobi step above. The

203

last step is the GCD test, which catches some false positives that can potentially
be introduced by the Jacobi test.

Functionality FRSAGen

For λ the bit-length of each of the candidate primes p and q we aim to sample, and σ a

statistical security parameter, let `1 be the number of primes, the product of which (Msample)

serves as the space over which we sample the candidate primes p and q, such that
∏`1
i=1mi =

Msample > 2λ+σ. In addition, let `c be the number of primes, the product of which (M`c)

serves as the space over which we compute without overflow the product of the candidate

primes p and q, such that
∏`c
i=1mi = M`c > 22·(λ+σ).

1. On receiving Sample from all parties, First query S for the values mp = p mod Msample

and mq = q mod Msample together with the shares p(j), q(j) of corrupt parties Pj ∈ C.
Then, uniformly sample p(j), q(j) and send them to honest parties Pj ∈ H with the

condition that
∑

j p
(j) mod Msample = mp and

∑
j q

(j) mod Msample = mq.

2. On receiving Combine from all parties, send Ni = (p · q) mod mi for all i ∈ [`c] to all

parties. If gcd(N,Msample) 6= 1 send AbortGCD to all parties; if N 6∈ [22λ, 22·(λ+σ)] send

AbortOutOfRange to all parties.

3. On receiving Jacobi(γ) from all parties, First, compute y = γ(N−p−q+1)/4 mod N and

send y to S. Then, receive y′ from S and send y′ to all parties. Finally, if y′ 6= ±1 then

send Abort to all parties.

4. On receiving Consistency Check from all parties, if y′ received during the Jacobi command

was not equal to y, then send Abort to all parties.

5. On receiving GCD Test from all parties, compute b = gcd(N, (p + q − 1)). If b = 1, send

(b,Biprime) to all parties, otherwise send (b,Non Biprime).

Fig. 11. RSA Modulus Generation Functionality

We now concretely detail the protocol ΠRSAGen (Fig. 12), realizing the FRSAGen

functionality. Each party Pj samples a multiplicative share p̂(j), such that
gcd(Msample, p̂

(j)) = 1. The goal of the Sampling phase is to convert the mul-
tiplicative sharing p̂ = p̂(1) · · · p̂(n) over the integers, into an additive sharing
p′ = p′(1) + · · · + p′(n) over Z/(MsampleZ), such that p′ = p̂ mod Msample =
p′(1) + · · ·+ p′(n) = p̂(1) · · · p̂(n) mod Msample. So, each party Pj engages in a (semi-
honest) multiplication with their secret share p̂(j). In the end, all parties hold

an additive sharing of the product p̂(j) = p̂
(j)
1 + · · · + p̂

(j)
n mod Msample. After

the multiplication is done over Z/(MsampleZ), parties set their local share as
p(j) = p′(j) + r(j) ·Msample and use this in the CRT Input procedure, over `c CRT
components, and thus `c MPC engines.

204

Once two candidate primes p and q have been sampled in a secret shared
fashion as described above, the Combine phase begins. First, the parties sum the
contributions of each party into the additive sharing, over `cCRT components.
Then, the candidate biprime is computed, using an actively secure multiplication
over the CRT representation of the sharings of p and q. Lastly, the parties open
the resulting candidate biprime N , and each party Pj locally performs the CRT
reconstruction and obtains the biprime N in the standard form. Each party
checks that the biprime respects the bounds in which it should lie, and that it
is not coprime to the upper bound of the sampling range.

The parties then begin the biprimality testing with the Jacobi test, which
needs to be repeated 128 times. The core of the Jacobi test we design offers
passive security; to achieve active security, should the Jacobi test pass, we pro-
ceed with the Consistency Check phase. This step ensures that parties cannot
go undetected, if they use inconsistent sharings in the Jacobi test. To realize
this, first we need to increase our computing space to avoid potential overflows.
We do that by means of the LevelUp command, which allows us to receive the
same sharings in a CRT representation with additional CRT components (to ac-
commodate the computations). Concretely, we extend from `c components of
the combine step, to `Jac components, which suffice for the correctness of the
consistency check of the Jacobi. Then, using the Rand2k command, we receive
bounded shared randomness in the CRT form with `Jac components. Using this
randomness, we multiplicatively mask (guaranteed without overflow) the expo-
nent of the Jacobi test, where the parties’ shares have been contributed. This
latter product is then converted from a CRT sharing with `Jac components to an
integer sharing by calling the ConvInt command. The integer sharing is used to
exponentiate the public value γ used in the Jacobi test, and it is then broad-
casted. The randomness used in the masking operation is revealed, so that the
parties can perform the final exponentiation of the Jacobi value computed to the
power of the randomness in the clear. From the broadcasted values, the parties
can also reconstruct again the masked version of the Jacobi test exponentiation.
If the two latter values do not match, then some parties have input inconsistent
shares, and the protocol aborts.

The last phase of our protocol is the GCD test, aiming at detecting (and
discarding) any false positive biprimes that passed the Jacobi test. The GCD
test is performed between the public biprime N , and the secret Jp+ q − 1K, and
if their GCD equals 1, the test passes. Let Qgcd > V ·N , where V = 23λ+4σ. The

goal is to output the product a · (p + q − 1) + v · N mod Qgcd, where a
$← [N],

and then perform the gcd computation between N and a · (p + q − 1) + v · N
on public values. In our case v needs to statistically mask the product between

205

a, which has 2(λ + σ) bits length, and p + q − 1, which has λ + σ bits length.
Hence, log2 v = 3(λ + σ) + σ. Next, M`gcd is computed, so that v · N fits Qgcd,
which makes M`gcd5λ+ 6σ bits long.

On a step by step basis, for the GCD test we use again the LevelUp command
to extend the number of CRT components in our sharings of p and q. For the
masking, similarly to the Jacobi test, we sample bounded randomness in CRT
form with `gcd components, using again the Rand2k command. Before we open
and reconstruct the final value ẑ, the gcd of which needs to be checked against the
public biprime N , we also perform an additive masking with a bounded random
value v. This ensures that no information about the sum of p and q, involved in
the multiplicatively masking, can be factored out upon opening. Upon opening
and reconstuction of the masked value, the final GCD test is performed, and if
the open value is not coprime to N the protocol outputs abort and restarts.

Theorem 3. The execution of the protocol ΠRSAGen UC-securely realizes the
functionality FRSAGen, in the (FABBWithErrors, FMPC, FAgreeRandom, FBroadcast)-hybrid
model with statistical security against a static, active adversary that corrupts up
to n− 1 parties.

206

ΠRSAGen

Sampling phase. All the steps below are done in parallel for p and q.

1. Each party Pj samples a multiplicative share p̂(j), such that gcd(Msample, p̂
(j)) = 1.

2. Each party Pj calls FABBWithErrors.Input(p̂
(j)).

3. The parties call FABBWithErrors.Mult(p′′, p̂(1), . . . , p̂(n)).

4. Parties call FABBWithErrors.Share(p
′), such that Pj receives the residues of p′′(j) for all

primes in Msample.

5. Parties reconstruct p′(j) = CRTRec([p′(j), 3 · δj,0], [Msample, 4]) where δj,0 is the Kronecker

delta.

6. Each party Pj samples r(j), and computes p(j) = p′(j) + r(j) · 4 · Msample, such that

p(j) ∈ [2λ, 2λ+σ], for σ a statistical security parameter.

7. Each party Pj calls FMPC-CRT.Input(p
(j), `c).

Combine

1. Parties call FMPC-CRT.Sum(Jp, `cK, Jp(1), `cK, . . . , Jp(n), `cK) and

FMPC-CRT.Sum(Jq, `cK, Jq(1), `cK, . . . , Jq(n), `cK).
2. Parties call FMPC-CRT.Mult(JN, `cK, Jp, `cK, Jq, `cK).
3. Parties call FMPC-CRT.Open(JN, `cK).
4. Each party locally reconstructs N = CRTrec(N, `c), checks that N ∈ [22λ, 22(λ+σ)], and

GCD(Msample, N) = 1, abort if false.

Jacobi test This is executed sec times (Grassi et al. fashion but carefully so that adding

shares in the exponents is done over the integers).

1. Parties call FAgreeRandom to sample a public γ ∈ ZN . Repeat until Jacobi symbol (γN) = 1.

2. Using their integer shares of p and q, P1 computes y(1) = γ(N−p
(1)−q(1)+1)/4 mod N and

calls FBroadcast(y(1)), and each party Pj , j 6= 1 computes y(j) = γ(−p
(j)−q(j))/4 mod N and

calls FBroadcast(y
(j)).

3. All parties compute y =
∏n
j=1 y

(j).

4. If y 6= ±1 Abort.

Fig. 12. RSA modulus generation protocol based on distributed sieving

207

ΠRSAGen (continued)

Consistency Check

1. Parties call FAdvMPC−CRT.LevelUp with input (`Jac, Jp, `cK, Jq, `cK) and publicly known

N = pq, and receive (Jp, `JacK, Jq, `JacK)
2. Parties call FAdvMPC−CRT.Rand2k with input (`Jac, sec) to get a CRT sharing Jx, `JacK of

a random value x, bounded by 2sec.

3. All parties call FMPC-CRT.Mult(Jt, `JacK, Jx, `JacK, J((N − p− q + 1)/4), `JacK), where the

multiplication result is actually bounded by M`c and CRT shared in M`Jac .

4. Parties call FAdvMPC−CRT.ConvInt(Jt, `JacK) to obtain an additive sharing of t over the

integers, denoted as [t]Int.

5. Each party calls FBroadcast(γt
(j)
Int).

6. All parties call FMPC-CRT.Open(Jx, `JacK), and compute x = CRTrec(x, `Jac).

7. All parties locally check that
∏n
j=1 γ

t
(j)
Int = yx. Abort if equality fails.

GCD test

1. Parties call FAdvMPC−CRT.LevelUp with input (`gcd, Jp, `cK, Jq, `cK) and publicly known

N = pq, and receive (Jp, `gcdK, Jq, `gcdK)
2. Parties call FAdvMPC−CRT.Rand2k with input (`gcd, 2λ+2σ) to get a CRT sharing Ja, `gcdK

of a random value a, bounded by 22λ+2σ.

3. All parties call FMPC-CRT.Mult(Jz, `gcdK, Ja, `gcdK, J(p+ q − 1), `gcdK). Note that this is fine

because open N = p · q in MPC in the first steps of candidate generation to enforce input

consistency.

4. Parties call FAdvMPC−CRT.Rand2k with input (`gcd, 3λ+4σ) to get a CRT sharing Jv, `gcdK
of a random value v, bounded by 23λ+4σ.

5. All parties call FMPC-CRT.Add(Jẑ, `gcdK, Jz, `gcdK, Jv ·N, `gcdK).
6. All parties call FMPC-CRT.Open(Jẑ, `gcdK), and compute ẑ = CRTrec(ẑ, `gcd).

7. Locally check whether gcd(N, ẑ) = 1. Otherwise parties output Abort and restart the

protocol.

Fig. 13. RSA modulus generation protocol based on distributed sieving (continue)

Proof Sketch. Let A be a static malicious adversary, who interacts with the
parties running ΠRSAGen and can corrupt up to n − 1 parties. We construct a
simulator S, simulating the ideal functionality FRSAGen, such that no environment
Z can distinguish whether it is interacting with A and the ΠRSAGen, or with A

208

and FRSAGen. Let C denote the set of (up to n − 1) corrupted parties and let H
denote the set of honest parties. The simulator S proceeds as follows:

Sample: The simulator performs all the steps below in parallel for p and q.

1. For each honest Pj ∈ H, S samples p̂(j) such that gcd(Msample, p̂
(j)) = 1.

2. For each honest Pj ∈ H, S calls FABBWithErrors.Input(p̂
(j)). For each corrupt

Pj ∈ C, S receives FABBWithErrors.Input(p̂
(j)) from A.

3. When all parties call FABBWithErrors.Mult, S waits for ∆p fromA. After receiving
∆p, S computes p′ = ∆p +

∏n
j=1 p̂

(j).

4. When all parties call FABBWithErrors.Share(p
′), S receives from A the shares p′(j)

for each corrupt Pj ∈ C. It then samples and stores the remaining shares p′(j)

for honest Pj ∈ H such that p′ =
∑n

j=1 p
′(j).

5. For each honest Pj ∈ H, S samples an appropriate r(j) such that p(j) =
p′(j) + r(j) ·Msample lies in the range [2λ, 2λ+σ].

6. When each party calls FMPC-CRT.Input(p
(j), `c) in Step 7, S receives from A

the inputs (p(j), `c) for each corrupt Pj ∈ C. With these, S can reconstruct p(j)

for each corrupt Pj and then compute mp =
∑

j p
(j) mod Msample using also

its simulated shares. It then sends Sample to FRSAGen on behalf of the corrupt
parties and, when prompted, submits mp and the p(j) that it reconstructed.
To continue simulating the protocol, S inputs its own simulated p(j) into
FMPC-CRT on behalf of the honest parties Pj ∈ H.

By computing the residue of p and q modulo Msample as influenced by A in Step
6 of the protocol, S ensures that the distribution of N mod Msample produced
by FRSAGen is identical to the one in the protocol. At this stage of the protocol,
there is no transcript for S to simulate as the parties have only executed calls to
other functionalities. We also note that the simulated shares p(j) are statistically
close to the random shares sampled by FRSAGen, as measured by Lemma 1, and
identically distributed to the honest shares in a real execution.

Combine:

1. When all parties call FMPC-CRT.Sum(Jp, `cK, Jp(1), `cK, . . . , Jp(n), `cK) and
FMPC-CRT.Sum(Jq, `cK, Jq(1), `cK, . . . , Jq(n), `cK) in Step 1, S internally executes
the corresponding MPC sums.

2. When all parties call FMPC-CRT.Mult(JN, `cK, Jp, `cK, Jq, `cK) in Step 2, S inter-
nally executes the corresponding MPC multiplications.

209

3. When all parties call FMPC-CRT.Open(JN, `cK) in Step 3, S sends Combine to
FRSAGen on behalf of the corrupt parties. Once the honest parties also send
Combine to the functionality, S receives Ni for all i ∈ [`c]. To simulate the
FMPC-CRT.Open instruction, S then sends the Ni values it received to each
corrupt party. S also updates its internal simulations of the FMPC-CRT instances
so that they hold the correct values for N .

4. If S receives AbortGCD or AbortOutOfRange from FRSAGen, it makes the simulated
honest parties also output the corresponding Abort in the protocol.

As the shares input by A are passed on FRSAGen for the generation of N , and as
the shares simulated by S are statistically close to those sampled at random by
FRSAGen, the distribution of N output by FRSAGen is statistically close to the one
produced by S, which is itself identically distributed to those of a real execution.

Jacobi:

1. When parties call FAgreeRandom, S simulates the sampling of the public γ.

2. The simulator then queries FRSAGen.Jacobi(γ) and receives y.

3. To simulate the broadcast calls, S samples rj at random to compute y(j) = γrj

for the honest parties Pj ∈ H and then modifies one of these shares y(i)

for Pi ∈ H such that y(i) = y · (∏j 6=i y
(j))−1. Here, to compute y(j) for the

corrupt parties Pj ∈ C, the simulator uses the shares p(j), q(j) that A input to
FABBWithErrors during sampling. Then S uses these simulated honest y(j)’s as
the broadcast values of the honest parties.

4. When the corrupt parties call FBroadcast(y
(j)), S computes the new value of

y′ =
∏

j y
(j) and sends it to FRSAGen.

5. If S receives Abort from FRSAGen, it makes the simulated honest parties output
Abort.

Since the simulated p(j) and q(j) values that S holds for Pj ∈ H are statistically
close to uniform, the distribution of the broadcast y(j) values are statistically
close to the protocol and consistent with the correct Jacobi test result first
output by FRSAGen. If A cheats by using inconsistent values during its broadcast,
then S correctly updates the result of the Jacobi test by passing the new y′ to
FRSAGen.

Consistency Check:

1. When all parties call FAdvMPC−CRT.Rand2k, S samples a random x < 2sec

and receives the shares (x(j), `Jac) for each corrupt Pj ∈ C from A. It then

210

samples the remaining shares (x(j), `Jac) for honest Pj ∈ H, such that x =
CRTrec(x, `1) =

∑n
j=1(x

(j), `Jac).

2. When all parties call FMPC-CRT.Mult(Jt, `JacK, Jx, `JacK, J((N − p− q + 1)/4), `JacK),
S internally executes the MPC multiplication.

3. When all parties call FAdvMPC−CRT.ConvInt(Jt, `JacK), S samples t
(j)
Int for each

party Pj such that t =
∑n

j=1 t
(j)
Int , and sends them.

4. To simulate the broadcast calls, S modifies one of the honest shares γt
(i)
Int for

Pi ∈ H such that γt
(i)
Int = yx · (∏j 6=i γ

t
(j)
Int)−1, where y is the value given to S by

FRSAGen during the Jacobi command and where S uses its internal values of

x and p(j), q(j) to compute t
(j)
Int of the corrupt parties. S then broadcasts γt

(j)
Int

on behalf of the honest parties.

5. When all parties call FMPC-CRT.Open(Jx, `JacK), S simulates the opening and
sends Consistency Check to FRSAGen on behalf of the corrupt parties.

6. To reply to FRSAGen about the abort, S checks whether
∏

j γ
t
(j)
Int = yx using the

values that were broadcast. If the equality fails, S sends Abort to A on behalf
of the honest parties.

The values used by S in Step 2 are identically distributed to those in the protocol,

so the distribution of the modified share γt
(i)
Int in Step 4 is statistically close, as

measured by Lemma 1. As x is sampled at random identically, and the influence
of A in the integer conversion of t is preserved, then the distribution of the
broadcast of Step 4 is statistically close to the distribution of a real transcript.

Finally, the probability of abort when A behaves honestly remains the same,
since Step 4 modifies the honest shares to be consistent with the y output. When

A acts maliciously in the broadcast of γt
(j)
Int , we claim that it has a negligible

chance of making the equality hold, if it had already cheated in the Jacobi test.
If it successfully makes the equality hold, this creates a difference between real
and ideal world as FRSAGen would abort, since it received a modified y′ from S
but S would not abort. As we assume that A successfully cheated in the Jacobi
test, we can assume that Ñ = (N − p − q + 1)/4 6= 0 mod φ(N) and that the

adversary introduced an error ∆j such that y′ = γÑ+∆j = ±1 mod N . When
the adversary cheats in the broadcast of the consistency check, the simulator
computes γtInt+∆t, where ∆t 6= 0 represents the error introduced by A. Thus, for
the equality to hold, A needs to commit to ∆t during the broadcast, such that

γxÑ+∆t = yx = γxÑ mod N . Since the distribution of xÑ is uniform with a

211

min-entropy of 2− sec, because of the sampling of x, A has probability at most
2− sec+1 of finding the correct ∆t. We finally note that ∆t cannot simply be the
right value in the group of exponents with higher probability than this, because
Rosser and Schoenfeld [34] showed that

φ(N) >
N

eγ log logN
,

where γ is the Euler–Mascheroni constant. This gives us that log2(φ(N)) > sec,
when log2(N) > 2048 and sec ∼ 80.

GCD Test:

1. When all parties call FAdvMPC−CRT.Rand2k in Step 2, S samples a random
a < 22λ+2σ and receives the shares (a(j), `gcd) for each corrupt Pj ∈ C from A.
It then samples the remaining shares (a(j), `gcd) for honest Pj ∈ H, such that
a = CRTrec(a, `c) =

∑n
j=1(a

(j), `gcd), and stores them.

2. When all parties call FMPC-CRT.Mult(Jz, `gcdK, Ja, `gcdK, J(p+ q − 1), `gcdK), S in-
ternally executes the MPC multiplication.

3. When all parties call FAdvMPC−CRT.Rand2k in Step 4, S samples a random
v < 23λ+4σ and receives the shares (v(j), `gcd) for each corrupt Pj ∈ C from A.
It then samples the remaining shares (v(j), `gcd) for honest Pj ∈ H, such that
v = CRTrec(v, `c) =

∑n
j=1(v

(j), `gcd), and stores them.

4. Before opening, S queries FRSAGen.GCD Test and receives b = gcd(N, p+q−1).
It then computes b′ = gcd(N, a) and samples a new z̃ subject to the condition
that gcd(N, z̃) = max{b, b′}. It finally replaces ẑ by the new value ẑ = z̃+v·N .

5. When all parties call FMPC-CRT.Open(Jẑ, `gcdK), S simulates the opening using
the modified ẑ and outputs Abort if FRSAGen output Non Biprime.

If gcd(N, p+q−1)) = b then b | z+v ·N and b | z = a(p+q−1). Now, gcd(N, ẑ)
in the protocol can differ from b = gcd(N, p+ q− 1), if gcd(N, a) = b′ > b; thus,
by sampling a random z̃ such that gcd(N, z̃) = max{b, b′}, the simulator remains
consistent with both b and the probability that gcd(N, a) = b′ > b occurs, since
a is sampled identically. By adding a sufficiently random v to z any information
about p+q−1 other than b is masked, therefore the distribution of the modified
ẑ output by the simulator is both statistically close to the distribution of ẑ in
the protocol, and consistent with the (N, p, q) values generated by FRSAGen. ut
Lemma 1. In Step 5 of the Sampling Phase of ΠRSAGen, the distribution of
each p(j) value is within statistical distance (1 − ε)εMsample/S of uniform over

212

[2λ, 2λ+σ), where S = 2λ+σ − 2λ is the size of the range and ε = S/Msample −
bS/Msamplec ∈ [0, 1) is the decimal remainder in the division of the range size by
Msample.

Proof. We can write S = Msample(bS/Msamplec+ε) with 0 ≤ ε < 1. When dividing
the range of size S into blocks of size Msample, the last block will not be complete
(if Msample does not divide S). When reducing the elements of [2λ, 2λ+σ) modulo
Msample, some residue classes will therefore be present one more time than others:
those classes which have representatives in the included portion of the last block.
Let X1 denote the subset of x ∈ [2λ, 2λ+σ), whose residue class is more present,
and let X2 = [2λ, 2λ+σ)\X1 be those elements, whose residue class does not have
a representative in the included portion.

Let x ∈ [2λ, 2λ+σ), by Euclidean division, x can be uniquely written as x =
aMsample + b with a ∈ N and b ∈ [0,Msample). As p(j) is computed as p(j) =
p′(j) + r(j) ·Msample in Step 5 of the sampling phase, this implies:

Pr
[
p(j) = x

]
= Pr

[
p′(j) = b ∧ r(j) = a

]
=

{
1

Msample
· 1
bS/Msamplec+1 x ∈ X1,

1
Msample

· 1
bS/Msamplec x ∈ X2,

as p′(j) is uniform in [0,Msample), because of FABBWithErrors.Share(p
′) and r(j) is

uniform subject to the condition that p(j) ∈ [2λ, 2λ+σ). Let P denote the above
probability distribution. To compute the statistical distance between P and uni-
form, we compute the size of both X1 and X2, which is

|X1| = εMsample ·
(⌊

S

Msample

⌋
+ 1

)
and |X2| = (1− ε)Msample ·

⌊
S

Msample

⌋
.

This yields the following distance calculation:

∆(P,U) =
1

2

∑

x∈[2λ,2λ+σ)
|Pr[P = x]− Pr[U = x]|

=
1

2

(
|X1| ·

∣∣∣∣Pr[P = x | x ∈ X1]−
1

S

∣∣∣∣+ |X2| ·
∣∣∣∣Pr[P = x | x ∈ X2]−

1

S

∣∣∣∣
)

=
1

2

∣∣∣∣∣∣
ε−

εMsample

(⌊
S

Msample

⌋
+ 1
)

S

∣∣∣∣∣∣
+

∣∣∣∣∣∣
(1− ε)−

(1− ε)Msample

⌊
S

Msample

⌋

S

∣∣∣∣∣∣

=
1

2

(∣∣∣∣
εMsample (ε− 1)

S

∣∣∣∣+

∣∣∣∣
(1− ε)εMsample

S

∣∣∣∣
)

=
(1− ε)εMsample

S
.

ut

213

5 Parameters and Efficiency Analysis

We generate biprimes of various bit-lengths, and hence security levels; namely
λ = {1024, 1536, 2048} as in the work of Chen et al. [7]. In the cases where a
statistical security parameter σ needs to be considered, such as in the Sampling
Phase, Jacobi test, masking and underlying MPC engines, we make sure to set
σ = 80 to have a fair comparison with the analysis of Chen et al. [7], since they
also used σ = 80, when measuring their concrete costs.

Given that our protocol requires several types of MPC engines, e.g., the
ABBWithErrors, or the MPC-CRT, we use the MP-SPDZ framework [26] to get
concrete communication costs for different adversary structures. In the case of
dishonest majority, we instantiate ABBWithErrors using the semi-honest version
of the MASCOT protocol [27], whereas for the malicious case, which we need
for building the MPC-CRT, we use LowGear [28], with TopGear [3] as the un-
derlying ZK proof. For the 16 parties case, we use the HighGear protocol with
the TopGear ZK-proof, which is also implemented in MP-SPDZ. The reason for
choosing HighGear over LowGear is that for HighGear communication scales
better in the number of parties.

We also give concrete costs for RSA-Sieve in the semi-honest, dishonest ma-
jority model. The only difference with the malicious case is that MPC-CRT can
be instantiated with a cheaper protocol and no zero-knowledge proofs. For this
variant, we use the classical SPDZ triple generation with no ZK proofs [6, 11],
for which we get concrete costs by running the hemi protocol in MP-SPDZ [26].
The results are given in Table 2 for the two party case, while in Table 3 we
have results for the 16 party case, where we also compare them with the the
protocol of Chen et al. [7]. As shown in Table 2, for two parties, our protocol
is a factor of 3.3-3.9 more communication-efficient than the state-of-the-art [7]
in the semi-honest case, and by a factor of 32-37 in the malicious case (ranging
for different bit-lengths of the birprimes generated). For the 16 party case, the
protocol of Chen et al. [7] outperforms ours by a factor of approximately 2 in
the semi-honest case. We left the corresponding cell in Table 3 empty, to avoid
confusion, as the rest of the improvement factors refer to our work outperfom-
ing that of Chen et al. Then again, for the malicious case and for 16 parties,
our protocol improves the communication cost over the state-of-the-art [7] by
approximately 14-30 times.

Although Diogenes [8] works in a model much different than ours, namely
the coordinator model, it is interesting to compare our estimates of the com-
munication cost with theirs. An important feature of Diogenes [8] is that the
communication cost per party, scales logarithmically in the number of parties,
which is due to the message aggregation and relaying function of the coordina-

214

tor. For generating a 2048-bit modulus, running a semi-honestly secure version
of their protocol, Diogenes [8] incurs a communication cost of 150MB per party,
for 1024 parties. This makes the two-party instantiation of our protocol 3.6×
more efficient than Diogenes [8], while the effect of better scalability becomes
evident when compared to our 16-party instantiation, where Diogenes is 29×
more communication efficient. Looking at the actively secure variant of Dio-
genes [8], again for the generation of a 2048-bit modulus with 1024 parties, the
communication cost is 170MB per party. Thus, for the actively secure version of
the protocols, Diogenes outperfoms both our two-party, and our 16-party instan-
tation, by 3.8×, and 405×, respectively. Note, however, that the abovementioned
communication cost estimates do not account for the coordinator, which receives
and relays messages from all 1024 parties.

Scheme [7] Ours [7] Ours [7] Ours Improve

Factor

Range

κ 1024 1024 1536 1536 2048 2048

semi-

honest

(MB)

139 41.68 416 116.55 910 243.30 3.3-3.9×

malicious

(GB)

20.81 0.64 43.42 1.188 74.52 1.99 32.5-37.4×

Table 2. Communication per party (two parties). For [7] the cost of the semi-honest protocol is

based on the use of the OT extension of Keller et al. [27]. We consider this to be a fair comparison,

as the sampling protocol is the major bottleneck and can be implemented using SilentOT. In

our case the underlying MPC engine for sampling also used the same OT extension.

In the following, we give an example of how we compute the cost using λ =
1024, in the dishonest majority case with malicious security. The number of
primes used in the distributed sieving is fixed to 130, as in the work of Chen et
al. [7], to achieve the same number of Sample iterations. Note that the product of
the first 130 primes is 1019 bits long. Frankel et al. [16] select r(j) in the sampling
phase at random from [0, 2n/Msample] where n was the desired bit-length of p.

For λ being the bit-length of the candidate primes, we need to take their
product in a space of double the size to avoid wrap around. Hence, M`c, the
product of primes in which the biprimes live, needs to be of length at least
2λ + 2σ bits, which results in `c = 18 (i.e., we need 18 CRT components of 128
bits each). Similarly, we compute `Jac = 21 and `gcd = 46.

215

Scheme [7] Ours [7] Ours [7] Ours Improve

Factor

Range

κ 1024 1024 1536 1536 2048 2048

semi-

honest

(GB)

2.09 4.34 6.24 12.17 13.65 25.23

malicious

(GB)

1020 68.8 4734 153.20 8100 281.91 14.8-30.9×

Table 3. Communication per party malicious case (16 parties). For [7] the cost of the semi-honest

protocol is based on the use of the OT extension of Keller et al. [27].

1. Sampling phase. The cost per semi-honest multiplication per party with
ABBWithErrors is (n − 1)(128 · k + k2), where n is the number of parties
and k is the field size [27]. Since the cost is quadratic in the field size, our
ABBWithErrors will work over all the small primes composing Msample.

This brings the communication cost per triple at 17.027 kilobits with a
total communication including the Beaver openings. The Input calls to
ABBWithErrors in Step 4 amount to 0.264kbits. This makes step 3+4 hav-
ing a cost of 17.556 kbits.

The remaining cost here comes from the Input calls to FMPC-CRT. This is in-
stantiated using LowGear with TopGear as ZK proof, where the input tuple
cost is 1.35 kbits for a 128-bit prime. This makes Step 6 in the Sampling
phase amount to 48.67 kbits. One iteration of this phase has a total cost of
66.23 kbits.

2. Combine. The cost per multiplication triple using FMPC-CRT amounts to
12.862 kbits per party. This brings the cost of one execution of Step 2 to
231 kbits. The opening (Step 4) takes another 2.176 bits. One iteration of
this step has a total cost of 233 kbits.

3. Jacobi test. The cost of this step is simply log2(N) · n, which is 2n · λ or
about 4 kbits.

4. Consistency check. This step begins with a call to LevelUp from `c to `Jac,
thus requiring 21 − 18 = 3 inputs per party, as well as a multiplication and
an opening in the additional CRT components. Summing up to a total of
8.1 + 38.6 + 0.4 = 47.1 kbits. Next, parties call Rand2k, which costs sec bit

216

generations in one of the CRT components, sec outputs in this CRT compo-
nent, and sec inputs in all the CRT components per party, for a total cost of
sec·(12.862+20·2·1.35+0.128) = 8575 kbits for sec = 128. As before, the mul-
tiplication cost is simply 21 ·12.862 = 270.1 kbits. The call to ConvInt requires
a call to Rand2k and one opening, which amounts to 177084 + 2.7 = 177087
kbits. Finally, the parties need to broadcast an element in ZN and then open
an element in all the `Jac CRT components, which requires communicating 4.8
kbits. One iteration of this phase has a total cost of 185984 kbits.

5. GCD test. Here again we start with a call to LevelUp, which costs 358.6 kbits,
and then a call to Rand2k for a cost of 297387.2 kbits. Next is a multiplication
on all the 46 CRT components for a total cost of 591.7 kbits. Second to last,
we do a final call to Rand2k with bigger parameters, so the cost this time is
583999 kbits. Finally, we open ẑ for 5.9 kbits. This phase thus requires a total
of 882423 kbits.

We present the detailed per-phase cost for 2 and 16 parties, and for λ =
{1024, 1536, 2048} in Table 4 for the malicious case, and in Table 5 for the
semi-honest case.

Reducing the number of Input calls in generating bounded random-
ness. In the maBit protocol designed in [35], each random bit JbK produced in
the main MPC engine producing randomness is later fed into the other MPC
engines by every party calling Input command on a different sharing of b. By
plugging their method directly into our Rand2k protocol, in order to generate
nB shared bits with n parties shared across ` engines will require nB · n Input
calls to each of the ` 128 bit prime MPC engines.

We can reduce the number of input calls by a factor of ∼ 128− (σ + log2m),
where m is the batch size for generating maBits. The key insight is for parties to
batch their bit shares instead of inputting them one by one. For example, if they

want to batch 16 bit inputs at once, they can call FMPC.Input(
∑15

k=0 2kb
(j)
k mod

mi), where b
(j)
k would be party Pj’s share of the kth bit in the maBit protocol.

We need to take into account now that the random linear combination at the
end is done over slightly larger secrets (16 bits instead of a single one), so we
need to increase the random coefficients by 16 bits in order for the security
reduction to go through easily. The proof of this small optimization is relatively
straightforward, since one can use this as an oracle to solve the MSSP problem
described in [35] by simply scaling the random coefficients. To fit everything in
a 128-bit prime MPC engine, we pack 16 inputs together, while maintaining a
maBit batch of 215 bits produced at once.

217

κ 1024 1536 2048

n 2 16 2 16 2 16

per-phase cost for one instance (Megabits)

Sieving 0.36 51.2 0.5 73.5 0.68 95.7

BP test 0.004 0.03 0.006 0.04 0.008 0.06

Check 45.63 4296 67.63 8071 92.4 13029

expected cost to sample a biprime (GBytes)

E[Iterations] 3607 3607 7251 7251 11832 11832

E[Total] 0.64 68.8 1.18 153.2 1.99 281.91

Table 4. Communication per party: malicious case. The GCD test is included in E[Total], as

that is an one-time cost. Check step happens σ times.

κ 1024 1536 2048

n 2 16 2 16 2 16

per-phase cost for one instance (kilobits)

Sieving 82.97 9391 118.10 13175 152.44 16784

BP test 4.096 32 6.144 49.152 8.192 65.536

expected cost to sample a biprime (megabytes)

E[Iterations] 3607 3607 7251 7251 11832 11832

E[Total] 41.68 4346 116.55 12173 243.3 25230

Table 5. Communication per party: semi-honest case.

The honest majority case with active security. Since our protocol works
with any actively secure protocol, where the secret reconstruction is linear, we
can instantiate it with the most efficient protocols for MPC for large field arith-
metic [9]. The cost analysis of such an instantiation can be seen in Table 6.

κ 1024 1536 2048

megabytes 105.26 222.99 401.452

Table 6. Communication per party: malicious honest majority case (3 parties).

218

References

1. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products. In Moti Yung, editor,

CRYPTO 2002, volume 2442 of LNCS, pages 417–432. Springer, Heidelberg, August 2002.

2. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-

throughput semi-honest secure three-party computation with an honest majority. In

Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi, editors, ACM CCS 2016, pages 805–817. ACM Press, October 2016.

3. Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using TopGear in overdrive: A more

efficient ZKPoK for SPDZ. In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019,

volume 11959 of LNCS, pages 274–302. Springer, Heidelberg, August 2019.

4. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In

Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of

LNCS, pages 757–788. Springer, Heidelberg, August 2018.

5. Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys (extended

abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 425–

439. Springer, Heidelberg, August 1997.

6. Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko. MOTION

- A framework for mixed-protocol multi-party computation. Cryptology ePrint Archive,

Report 2020/1137, 2020. https://eprint.iacr.org/2020/1137.

7. Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield,

and abhi shelat. Multiparty generation of an RSA modulus. In Daniele Micciancio and

Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 64–93.

Springer, Heidelberg, August 2020.

8. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Micciancio, Tarik Riv-

iere, Abhi Shelat, Muthuramakrishnan Venkitasubramaniam, and Ruihan Wang. Diogenes:

Lightweight Scalable RSA Modulus Generation with a Dishonest Majority. IACR Cryptol.

ePrint Arch., 2020:374, 2020.

9. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,

and Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Ho-

vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of

LNCS, pages 34–64. Springer, Heidelberg, August 2018.

10. Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman.

Securing DNSSEC keys via threshold ECDSA from generic MPC. In Liqun Chen, Ninghui

Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of

LNCS, pages 654–673. Springer, Heidelberg, September 2020.

11. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.

Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.

In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134

of LNCS, pages 1–18. Springer, Heidelberg, September 2013.

219

12. Ivan Damg̊ard and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed

RSA key generation. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages

183–200. Springer, Heidelberg, February 2010.

13. Yvo Desmedt. Threshold cryptography. European Transactions on Telecommunications,

5(4):449–457, July/August 1994.

14. Yvo Desmedt. Some recent research aspects of threshold cryptography (invited lecture). In

Eiji Okamoto, George I. Davida, and Masahiro Mambo, editors, ISW’97, volume 1396 of

LNCS, pages 158–173. Springer, Heidelberg, September 1998.

15. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,

CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.

16. Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key

generation. In Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, page 320. ACM,

June / July 1998.

17. Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast dis-

tributed RSA key generation for semi-honest and malicious adversaries. In Hovav Shacham

and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages

331–361. Springer, Heidelberg, August 2018.

18. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-

party computation for malicious adversaries and an honest majority. In Jean-Sébastien

Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of

LNCS, pages 225–255. Springer, Heidelberg, April / May 2017.

19. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty

computations with applications to threshold cryptography. In Brian A. Coan and Yehuda

Afek, editors, 17th ACM PODC, pages 101–111. ACM, June / July 1998.

20. Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor, CRYPTO’99,

volume 1666 of LNCS, pages 116–129. Springer, Heidelberg, August 1999.

21. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart.

MPC-friendly symmetric key primitives. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-

pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 430–443.

ACM Press, October 2016.

22. Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA key

generation and threshold Paillier in the two-party setting. In Orr Dunkelman, editor, CT-

RSA 2012, volume 7178 of LNCS, pages 313–331. Springer, Heidelberg, February / March

2012.

23. Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and Angelo Agatino Nicolosi.

Efficient RSA key generation and threshold paillier in the two-party setting. Journal of

Cryptology, 32(2):265–323, April 2019.

24. Lukas Helminger, Daniel Kales, Sebastian Ramacher, and Roman Walch. Multi-party revo-

cation in sovrin: Performance through distributed trust. Cryptology ePrint Archive, Report

2020/724, 2020. https://eprint.iacr.org/2020/724.

220

25. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC press, 2020.

26. Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings

of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages

1575–1590, 2020.

27. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic

secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages

830–842. ACM Press, October 2016.

28. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again.

In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume

10822 of LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

29. Michael Malkin, Thomas D. Wu, and Dan Boneh. Experimenting with shared generation of

RSA keys. In NDSS’99. The Internet Society, February 1999.

30. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS 2019,

volume 124, pages 60:1–60:15. LIPIcs, January 2019.

31. Guillaume Poupard and Jacques Stern. Generation of shared RSA keys by two parties. In

Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT’98, volume 1514 of LNCS, pages 11–24.

Springer, Heidelberg, October 1998.

32. Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,

CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg, August 1998.

33. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the Association for Computing

Machinery, 21(2):120–126, 1978.

34. J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime

numbers. Illinois Journal of Mathematics, 6(1):64 – 94, 1962.

35. Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood.

Actively secure setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https:

//eprint.iacr.org/2019/1300.

36. Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for Paillier encrypted val-

ues. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 522–537.

Springer, Heidelberg, May / June 2006.

37. Adi Shamir. How to share a secret. Communications of the Association for Computing

Machinery, 22(11):612–613, November 1979.

38. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve based protocol. In

Martin Albrecht, editor, 17th IMA International Conference on Cryptography and Coding,

volume 11929 of LNCS, pages 342–366. Springer, Heidelberg, December 2019.

39. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent Rijmen,

editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407. Springer,

Heidelberg, May 2019.

221

A Unauthenticated Arithmetic Black Box Protocols

ΠABBWithErrors

Initialize: The parties create the necessary preprocessing material for the online phase,

receiving a number of multiplication triples ([a], [b], [c]), and mask values (ri, [ri]).

Input: To share an input xi, party Pi takes an available mask value (ri, [ri]) and does the

following:

1. Broadcast ε← xi − ri.
2. The parties compute [xi]← [ri] + ε.

Multiply: On input ([x], [y]) the parties do the following:

1. Take one multiplication triple ([a], [b], [c]), compute [ε]← [x]− [a], [ρ]← [y]− [b], and

open these shares to get ε, ρ, respectively.

2. Set [z]← [c] + ε · [b] + ρ · [a] + ε · ρ.

Share: On input [x], each party Pi retrieves its own share x(i) of x from its local memory.

Fig. 14. Protocol for passively secure MPC adjusted for passive security from
MASCOT [27].

ΠInputTuple

Input: On Input (Input, Pj) from all parties do the following:

1. Pj samples r
$← F

2. All parties output [r] and Pj outputs r.

Fig. 15. Protocol for passively secure Input Tuples as presented in MASCOT [27].

222

ΠTripleGeneration

Multiply:

1. Each party samples a(i)
$← F, b(i) $← F.

2. Every ordered pair of parties Pi, Pj does the following:

(a) Both parties call Fk,kROT, where Pi inputs (a
(i)
1 , . . . , a

(i)
k) = g−1(a(i)) ∈ Fk2.

(b) Pj receives q
(j,i)
0,h , q

(j,i)
1,h ∈ F, and Pi receives s

(i,j)
h = q

(j)

a
(i)
h ,h

, for h = 1, . . . , k.

(c) Pj sends d
(j,i)
h = q

(j,i)
0,h − q

(j,i)
1,h + b(j), h ∈ [k].

(d) Pi sets t
(i,j)
h = s

(i,j)
h +a(i) ·d(j,i)h = q

(j,i)
0,h +a

(i)
h ·b(j), for h = 1, . . . k. Set q

(j,i)
h = q

(j,i)
0,h .

(e) Pi sets c
(i)
i,j = 〈g, t〉 ∈ F, for t the above k-element vector.

(f) Pj sets c
(j)
i,j = −〈g,q〉 ∈ F, for q the above k-element vector.

(g) Now we have: c
(i)
i,j + c

(j)
i,j = a(i) · b(j) ∈ F

3. Each party Pi computes: c(i) = a(i) · b(j) +
∑

j 6=i(c
(i)
i,j + c

(i)
j,i)

Combine:

1. Sample r, r̂
$← FRand(F).

2. Each party Pi sets:

(a) a(i) = 〈a(i), r〉, c(i) = 〈c(i), r〉, and

(b) â(i) = 〈a(i), r̂〉, ĉ(i) = 〈c(i), r̂〉

Output: ([a], [b], [c]) as a valid triple.

Fig. 16. Protocol for Triple Generation adjusted for passive security from MAS-
COT [27].

223

B Standard functionalities

Functionality FMPC

Let [x] denote the identifier for a value x stored in the functionality. Let A ⊂ {1, . . . , n}
denote the index set of the corrupted parties.

Input: Receive a value x ∈ Fp from some party and store x.

Mult([x], [y]): Compute z = x · y and store [z].

Share([x]): For each i ∈ A receive xi ∈ Fp from the adversary. Sample uniform honest

parties’ shares xjj /∈A s.t.
∑n

i=1 xi = x. Send xi to Pi.

Random: Sample r
$← Fp and store [r].

Sum([x1], . . . , [xk]): Compute x = x1 + · · ·+ xk and store [x].

GenBit(): Sample b
$← {0, 1} and store [b].

Open([x]): Send the value x to all parties.

OpenTo([x], j): Send the value x to party Pj .

Fig. 17. Arithmetic MPC Functionality

Functionality FBroadcast

1. Receive a value x from party Pj .

2. Send x to all parties Pi, i 6= j.

Fig. 18. Broadcast Functionality

Functionality FAgreeRandom

1. Receive a value xi from all parties Pi.

2. Compute x =
∑

xi.

3. Send x to all parties Pi.

Fig. 19. Functionality to Agree on a Common Public Value

224

Functionality FRand

Init: On input (Init, sid,F) from all parties await for incoming messages.

Random: On input (Random, sid) from all parties sample r
$← U(F) and send it to S. Wait

for S reply: if message is OK then send r to all parties. If the message is Abort and send

Abort to all parties and halt.

Fig. 20. Rand Functionality

225

Curriculum Vitae

Eleftheria Makri was born in Athens, Greece in 1987. She completed her M.Sc.
in Information & Communication Systems Security at the University of the
Aegean, School of Engineering (Karlovasi, Greece) in 2011. Between 2012
and 2014, she worked as a junior researcher at the University of Twente, the
Netherlands, focusing on Privacy-Preserving Data Mining in Electronic Health
Records. Since 2014, she functions as a lecturer and researcher in the area of
Information Security, at Saxion University of Applied Sciences, the Netherlands.
Concurrently, in 2017 she joined COSIC, KU Leuven, as a part-time research
assistant, where she works towards the completion of her PhD degree, under
the supervision of Prof. Bart Preneel, and Prof. Frederik Vercauteren.

227

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

IMEC-COSIC
Kasteelpark Arenberg 10 box 2452

B-3001 Leuven

	Abstract
	Beknopte samenvatting
	Contents
	List of Figures
	I Secure and Efficient Computing on Private Data
	Introduction
	Motivation for this work
	Summary of Contributions
	Organization

	Secure Computation Methods
	Homomorphic Encryption
	Multiparty Computation based on Secret Sharing
	Multiparty Computation based on Garbled Circuits

	Cryptographic Primitives
	Secret Sharing
	Linear Secret Sharing
	Verifiable Secret Sharing
	Applications of Secret Sharing

	Oblivious Transfer
	1-out-of-2 OT
	1-out-of-n OT
	k-out-of-n OT
	OT Extension
	Oblivious Polynomial Evaluation - OPE

	Garbling
	Half-Gates
	Multiparty Garbling

	Ingredients for Actively Secure MPC
	Commitment Schemes
	Message Authentication Code
	Zero Knowledge Proofs

	Provable Security
	Adversary Models
	Adversarial Behaviors
	Corruption Thresholds
	Timing of the Corruptions
	Computational Power of an Adversary

	Security Proofs
	Game-Based Security Proofs
	Simulation-Based Security Proofs
	Modular Composition
	Universal Composability

	MPC in the Preprocessing Model
	The Arithmetic Black Box Model
	Active Security
	Pairwise MACs
	Global MACs

	Online Phase
	Preprocessing Phase
	OT-based Preprocessing
	SHE-based Preprocessing

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

	II Publications
	Towards Practical Privacy-Preserving Genome-Wide Association Study
	EPIC: Efficient Private Image Classification (or: Learning from the Masters)
	Rabbit: Efficient Comparison for Secure Multi-Party Computation
	Full-Threshold Actively-Secure Multiparty Arithmetic Circuit Garbling
	The return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving
	Curriculum Vitae

