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A B S T R A C T   

An essential objective of Precision Livestock Farming (PLF) is to use sensors that monitor bio-responses that 
contain important information on the health, well-being and productivity of farmed animals. In the literature, 
vocalisations of animals have been shown to contain information that can enable farmers to improve their animal 
husbandry practices. In this study, we focus on the vocalisation bio-responses of birds and specifically develop a 
sound recognition technique for continuous and automatic assessment of laying hen vocalisations. This study 
introduces a novel feature called the “tristimulus-formant” for the recognition of call types of laying hens (i.e., 
vocalisation types). Tristimulus is considered to be a timbre that is equivalent to the colour attributes of vision. 
Tristimulus measures the mixture of harmonics in a given sound, which grouped into 3 sections according to the 
relative weights of the harmonics in the signal. Experiments were designed in which calls from 11 Hy-Line brown 
hens were recorded in a cage-free setting (4303 vocalisations were labelled from 168 h of sound recordings). 
Then, sound processing techniques were used to extract the features of each call type and to classify the 
vocalisations using the LabVIEW® software. For feature extraction, we focused on extracting the Mel frequency 
cepstral coefficients (MFCCs) and tristimulus-formant (TF) features. Then, two different classifiers, the back-
propagation neural network (BPNN) and Gaussian mixture model (GMM), were applied to recognise different 
call types. Finally, comparative trials were designed to test the different recognition models. The results show 
that the MFCCs-12+BPNN model (12 variables) had the highest average accuracy of 94.9 ± 1.6% but had the 
highest model training time (3201 ± 119 ms). At the same time, the MFCCs-3+TF+BPNN model had fewer 
feature dimensionalities (6 variables) and required less training time (2633 ± 54 ms) than the MFCCs-12+BPNN 
model and could classify well without compromising accuracy (91.4 ± 1.4%). Additionally, the BPNN classifier 
was better than the GMM classifier in recognising laying hens’ calls. The novel model can classify chicken sounds 
effectively at a low computational cost, giving it considerable potential for large data analysis and online 
monitoring systems.   

1. Introduction 

In the past, decisions on the management of farm animals have 
traditionally been based on the observation, judgment, and experience 
of farmers. However, the consolidation of livestock production 
throughout the world has made it increasingly difficult for farmers to 
monitor and manage their animals at the level of detail that was once 
possible. Currently, it has become possible for cameras, microphones, 
and sensors to take the place of farmers’ eyes and ears to monitor animal 
houses effectively (Vandermeulen et al., 2013; Kashiha et al., 2013). 

Moreover, such technology can provide further benefits by monitoring 
animals continuously for 24 h per day and 365 days per year to provide 
more complete information on livestock (Guarino et al., 2017). 

Automatic and continuous sound analyses can provide more detailed 
information about the state of farm animals. Sound analysis has been 
used to estimate the thermal comfort of chicks in different thermal en-
vironments (de Moura et al., 2008; Du et al., 2020). Sound analysis has 
also been used to monitor drinking behaviour by analysing pecking 
sounds (Pluk et al., 2010; Kashiha et al., 2013). Similarly, sound analysis 
has been used to predict broiler feed intake by acquiring pecking sounds 
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during feeding (Aydin et al., 2014; Aydin and Berckmans, 2016). 
Moreover, sound analysis has recently formed the basis of a pig cough 
monitoring system based on the fact that coughing can serve as a 
biomarker for respiratory disease and aerial pollution in livestock 
houses (Van Hirtum and Berckmans, 2004; Exadaktylos et al., 2008; 
Berckmans et al., 2015). Extensions of sound analysis include sound 
source localisation analysis, which has also been applied to detect the 
source of pig respiratory diseases and chicken nocturnal vocalisations 
(Silva et al., 2008; Du et al., 2018). 

Animal vocalisations are a fundamental component of animal 
behaviour, and they can be used to provide information on animal 
health and welfare (Manteuffel et al., 2004). Capturing animal sounds 
precisely and quickly on the farm has the capacity to help farmers 
improve their husbandry practices. In animal vocalisation studies, in-
formation about a specific vocalisation is often extracted manually from 
its spectrogram, while the choice of parameters is often driven by the 
intuition of the researcher. This manual extraction makes the process 
unsuitable for online and real-time large data analysis (Mielke and 
Zuberbühler, 2013). Moreover, given the high level of mechanisation 
and the large population of animals in typical livestock buildings, a large 
quantity of different sounds can be heard throughout the day and night. 
The goal of designing a suitable classifier is a particular challenge in the 
case of poultry buildings (containing approximately 50 K broilers or 80 
K laying hens) because it is difficult to realise accurate sound detection 
algorithms that can be implemented in such buildings (Cao et al., 2014). 
Therefore, to date, it has been almost impossible to realise accurate al-
gorithms for monitoring laying hen sounds and vocalisations. To 
improve the current state-of-the-art in this field, two key improvements 
are required for accurate animal vocalisation detection, namely, feature 
extraction and classification. 

For feature extraction, the source-filter theory of vocal production is 
a robust framework for studying animal vocal communication (Taylor 
and Reby, 2010). According to this theory, calls are produced through 
the syrinx, which is regarded as a ‘source’ and located at the base of the 
trachea. Syringeal constriction functionally overlaps the role of the 
larynx in mammalian phonation, and the trachea acts as a ‘filter’ to 
remove certain frequencies or leave others unchanged (Fletcher, 1988; 
Beckers et al., 2003; Taylor and Reby, 2010; Favaro et al., 2015). Source- 
related vocal features (the fundamental frequency, F0), which are 
related to the vibrating mass in the syrinx, are stable (laying hens, F0: 
400–2500 Hz) (Cao et al., 2014), while filter-related features (formants), 
which are related to the supra-syringeal vocal tract, are dependent on 
different vocalisations. Specifically for the latter, the first three formants 
of each vocalisation and the tristimulus values of these formants contain 
the most energy and variance (Yeon et al., 2006; Favaro et al., 2017). 
These tristimulus values were first introduced as a timbre equivalent to 
the colour attributes in vision analysis, and they represent three 
different types of energy ratio, which allow a fine description of the first 

harmonic of the spectrum (Pollard and Jansson, 1982). Various studies 
have also shown that the widely used features of Mel frequency cepstral 
coefficients, MFCCs, can be employed when classifying animal sounds 
with good effect (Cheng et al., 2010; Chung et al., 2013; Noda et al., 
2016; Bishop et al., 2019). However, MFCCs often have more feature 
dimensionalities than other features, which can slow the computational 
rate. For this reason, an optimal feature combination from tristimulus 
values and MFCCs with fewer feature dimensionalities can perform 
better than individual features. 

The classification algorithm is the second key component of sound 
recognition algorithms that operates on the feature output. Researchers 
have mainly used classifiers such as the Decision Tree (DT) (Digby et al., 
2013; Moi et al., 2014; Mcgrath et al., 2017), Gaussian Mixture Model 
(GMM) (Cheng et al., 2010; Alonso et al., 2017; Jahn et al., 2017;), 
Neural Network (NN) (Mielke and Zuberbühler, 2013; Khunarsal et al., 
2013; Favaro et al., 2014; González-Hernández et al., 2017), and Sup-
port Vector Machine (SVM) (Steen et al., 2012; Chung et al., 2013; 
Bishop et al.,2019). Although there has been no agreement on which 
classifier is the most suitable for poultry vocalisation classification, 
classifiers for chicken calls should be carefully considered (Ramachan-
dran et al., 2002). The major challenge is that some laying hens’ sounds 
overlap in the frequency domain. The GMM and NN methods can 
potentially solve this problem because they both have the ability to 
differentiate overlapping features, which are already well known in ASR 
(Automatic speech recognition) and animal vocalisation recognition. 

Given the above rationale, this study aims to explore and develop an 
optimal recognition model for classifying hens’ call types (including 
drinking, laying, twitter and grunt calls). The objectives of this study are 
as follows: (i) sound feature extraction, (ii) sound classification, and (iii) 
modelling analysis and comparison. 

2. Materials and methods 

2.1. Animal and housing 

Experiments were conducted on a pilot farm (Shangzhuang Experi-
mental Station of China Agricultural University, Beijing, China). Eleven 
Hy-Line brown hens were reared to an age of 35–36 weeks. The floor- 
rearing area was 1.5 m L × 1.35 m W × 1.8 m H (Fig. 1). The birds 
were given ad libitum access to food and water, and a timer-controlled 
light schedule (light period: 6:00 a.m. to 10:00 p.m.) was applied during 
the experimental period (35–36 weeks). The room environment was 
suitably controlled to maintain a good level of thermal comfort. 

2.2. Data collection 

A top-view Kinect camera for Windows V1 (Microsoft Corp., Red-
mond, WA, USA) was installed at a height of 1.8 m above the ground and 

Fig. 1. Schematic of the experimental platform.  
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used to continuously acquire sound data in WAV format (1 channel, 32 
bit, 16,000 Hz, recording at approximately 55 s of each file) (Fig. 1). The 
Kinect was connected to a mini industrial personal computer (IPC) via a 
USB cable. A 2 TB storage USB 3.0 mobile hard disk drive (HDD) was 
used to store recorded sound data. Data were recorded for approxi-
mately 24-h a day for seven days (a total of 168 h). NI LabVIEW 2015 
(American National Instrument Corp., Austin, TX, USA) and were used 
to pre-process and extract the sound features with the toolkits SVM 
(sound and vibration module) and MLT (machine learning toolkit), and 
the implementation was developed as part of the vocalisation classifier. 

2.3. Sound signal pre-processing 

An improved spectrum subtraction algorithm was used to pre- 
process raw sound data by filtering background noise. The algorithm 
transformed the sound signal from the time domain to the frequency 
domain, and squared difference values between the sound signal and 
noise were regarded as the estimated signal power spectrum (Fig. 2). 
Then, the results were retransformed into time-domain signals using the 
Fourier inverse transformation for the subsequent processing operation 
(Berouti et al., 1979; Upadhyay and Karmakar, 2013). This method has 
been proven to be a suitable de-noising approach with a low computa-
tional cost in practical situations (Du and Teng, 2017). 

The improved spectrum subtraction method was calculated 
following Berouti et al. (1979) and Upadhyay and Karmakar (2013): 

P(w) = Ps(w) − αPn(w) (1)  

P(w) = Ps(w) − αPn(w) (2)  

Ps(w) =
{

P(w),P(w) > βPn(w)
βPn(w),P(w)⩽βPn(w)

(3)  

where Ps(w) is the amplitude of the noisy signal power spectrum; Pn(w)

is the amplitude of the noise power spectrum; α is the subtraction factor; 
and β is the spectral floor parameter (α⩾1,0 < β⩽1). 

2.4. Labelling 

After filtering, the sound data were labelled by manual audio-visual 
inspection (Tullo et al., 2017) performed by the first author, who is an 
experienced researcher in animal sound analysis. Audacity® software 
version 2.3.0 was used to label the data by human observers to inspect 
each recording and annotate the start and end time of the call events. In 
the process of replaying and visualising the sound recordings using 
spectrograms, overlapped sounds were not selected as testing samples 
for further analysis due to their complex acoustic features and the cur-
rent limitations in sound source separation technology. Finally, there 
were approximately 15 min and 22 s of data being labelled for subse-
quent analysis (0.15% of the original data). 

2.5. Feature extraction 

2.5.1. Mel frequency cepstral coefficients 
One of the most popular sources of features that is widely used in 

animal vocalisation recognition is Mel frequency cepstral coefficients 
(MFCCs), which are short-term spectrum-based features. The extraction 
of MFCCs includes the following steps:  

(1) Pre-emphasis 

Usually, the system function is given by H(z) = 1 − az− 1, where 
a ∈ [0.95,0.98].  

(2) Framing 

Overlapping frames with a 50% overlap were recommended in each 
0.2 s sound clip to avoid losing information, and the Hamming window 
was used to reduce the edge effects and spectral leakage in each frame.  

(3) Discrete Fourier transform (DFT) 

Every frame passed through a DFT, and the frequency band was 
filtered using a filter-bank of triangular filters spaced on the Mel-scale 
(approximately linear below 1 kHz and logarithmic above 1 kHz) 
(Noda et al., 2016). 

Mel(f ) = 2595log
(

1 +
f

700

)

(4)    

(4) Discrete cosine transformation (DCT) 

The spectral envelope in the decibel unit was obtained by applying a 
logarithm to the amplitude spectrum. Then, the signal was processed via 
DCT. 

The zeroth coefficient of the MFCCs is usually dropped because its 
value is the average log-energy. The first and second order coefficients of 
the MFCCs are often used as feature parameters. At the same time, this 

Fig. 2. Flowchart of the improved spectral subtraction algorithm.  

Table 1 
Description of feature parameters.  

Feature 
parameter 

Description 

F1 (Hz) The lowest frequency band with substantial energy is regarded as 
the first formant. This is the first harmonic of resonance 

F2 (Hz) The second harmonic of resonance 
F3 (Hz) The third harmonic of resonance 
TF1 (%) F1 energy ratio derives from the tristimulus values 
TF2 (%) F2 energy ratio derives from the tristimulus values 
TF3 (%) F3 energy ratio derives from the tristimulus values 
MFCCs-12 12-dimensional MFCCs feature  
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study only chose a 12-dimensional MFCC (12 vectors) because of the 
smaller number of feature dimensionalities. 

2.5.2. Tristimulus-formant feature 
The first three formants (F1-F3) of each call can represent the main 

timbre information (Table 1). A popular autocorrelation approach was 
used for tracking formants (Rabiner and Schafer, 2007). Fig. 3 shows an 
example of how to locate and label the formants (F1-F3). In the spec-
trogram setting, each frame consisted of N = 512 samples to comply 
with the size of the short-time Fourier transform (STFT). Overlapping 
frames with a 50% overlap were recommended to avoid losing infor-
mation, and the Hamming window was used to reduce the edge effects 
and spectral leakage in each frame. To highlight the variability of the 
dominant formants, the tristimulus values of each of the formants were 
transformed into energy ratios of the first three formants as new 
tristimulus values (TF1, TF2, and TF3). 

TFi =
Fi

F1 + F2 + F3
, i = 1, 2, 3 (5)  

2.6. Classification 

Two classifiers, BPNN and GMM, were chosen to recognise different 
call types, and a total of 4304 samples were labelled as training data and 
testing data. To avoid overfitting, k-fold cross-validation was used to 
estimate the accurate performance of the algorithm (Refaeilzadeh et al., 
2009). Due to the limitations in the data size, the sound data were split 
into five smaller sets, and the algorithm was trained using four sets (80% 
of the data) and validated on the remaining set (20% of the data). The 
average of the five validation sets was used to measure the performance 
of the algorithm as demonstrated by Carpentier et al. (2018). 

2.6.1. BPNN 
The network selected for this study was a variation of a multilayer, 

backpropagation neural network, which is a commonly used NN for 
vocalisation recognition. The network consists of three parts: (1) the 
input layer; (2) hidden layer(s); and (3) the output layer (Mielke and 
Zuberbühler, 2013). The basic principle of the BPNN algorithm is that 
the learning process consists of two processes—information forward 
propagation and error back propagation. When information is 

propagated forward, the input sample is passed into the input layer and 
then transmitted to the output layer after processing in each hidden 
layer. If the actual output does not match the expected output, there is 
back propagation of the errors. In the back-propagation phase, the 
output is transmitted backward step by step through the hidden layers in 
a certain form, and the errors are distributed to all the elements of each 
layer to correct the weights according to the error signal. The definition 
of the error function is the sum of the square of the difference between 
the expected output and the actual output (Theodoridis, 2010). 

e =
1
2
∑m

p=1

(
yp − qp

)2 (6)  

where e is the error function; yp is the actual output; qp is the expected 
output; p is the index of the output vectors; and m is the number of 
output vectors. 

The training data set was used to minimise the error between the 
predicted call type (the output of the network) and the actual call type 
(the known sounds in the training set). The weights were adjusted using 
a gradient descent function with momentum and an adaptive learning 
rate (Khunarsal et al., 2013). The maximum iteration and tolerance were 
set at 1000 and 0.0001, respectively. Moreover, the accuracy, sensitivity 
and precision rates were chosen to assess the performance of the BPNN 
classifier (Carpentier et al., 2018). 

accuracy =
number of true positives + number of true negatives

number of total samples
×100%

(7)   

sensitivity =
number of true positives

number of true positives + number of false negatives
×100%

(8)   

precision =
number of true positives

number of true positives + number of false positives
×100%

(9)  

2.6.2. GMM 
Feature classification methods developed for human speech recog-

nition have been applied to species, individual and call type recognition 
in animals (Mielke and Zuberbühler, 2013; Jahn et al., 2017). GMM is 
also widely used because any probability distribution model can be 
approximated by a weighted combination of multiple Gaussian distri-
butions. The parameters of the Gaussian Mixture Model were calculated 
by maximising the likelihood function and iteratively using the 
expectation-maximisation algorithm (Alonso et al., 2017). The mathe-
matical expression of the GMM for the probability density function is 
shown as follows (Reynolds and Rose, 1995): 

p(x|λ) =
∑M

i=1
wipi(x) (10)  

where x is a d-dimensional random vector, pi(x), i = 1,2,…,M, is the 
component density and wi, i = 1,2,…,M, is the mixture weight. The 
component densities are d-variate Gaussian functions given by (Rey-
nolds and Rose, 1995): 

pi(x) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)ddet(Σi)

√ exp
[

−
1
2
(x − μi)

T Σ− 1
i (x − μi)

]

(11)  

where μi is the mean, Σi is the covariance matrix, and d is the number of 
features incorporated into every feature vector. The weights wi must 
satisfy the following relation (Reynolds and Rose, 1995): 

Fig. 3. Example of the extraction of the locations of the formants (twitter calls).  
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∑M

i=1
wi = 1 (12) 

Each model can be expressed as a function of the following param-
eters:λ = (wi, μi,Σi), i = 1,2,…,M. 

For the Gaussian Mixture Model, different numbers of Gaussian 
components were selected. The EM algorithm was implemented with a 
maximum of 1000 iterations, and the value for tolerance was set to 
0.0001. The Rand index was used to assess the clustering effect, which is 
expressed as (Theodoridis, 2010): 

RI =
a + b

Cnsamples
2

× 100% (13)  

where C represents the actual call category, K represents the clustering 
result, a means that both C and K are elements of the same call type, b 
means that both of C and K are in different categories, and Cnsamples

2 rep-
resents the number of coupled samples from the data set. The value 
range of RI in Eq. (13) was 0–100%, which indicates the performance of 
the clustering effect of GMM. 

3. Results and discussion 

Comparative trials were conducted to determine the best features 
and classifier suitable for recognising the call types of laying hens. 

Table 2 and Fig. 4 present the descriptions of the different sound types 
and their spectrograms, respectively. 

3.1. Using BPNN with different features 

Comparative trials were designed, such as MFCCs-12+BPNN, 
MFCCs-3+TF+BPNN, Formants+TF+BPNN, and MFCCs-3+BPNN. As a 
result, MFCCs-12 had the highest accuracy, which was 94.9 ± 1.6% 
(Table 3). However, MFCCs-12 also had the longest training time. For 
this reason, dimensionality reduction is a must for practical online 
identification for analysing large data sets. After a series of tests, the 1st, 
2nd and 5th dominant vectors of the MFCCs were extracted and reas-
sembled into one 3-dimensional vector (MFCCs-3), which gave an 
acceptable recognition rate of 87.3 ± 3.3% (Tables 3 and 4). Next, a 
combination of multiple features was explored to determine whether the 
recognition rates might be improved, as suggested in the literature 
(Scheumann et al., 2012; Fukushima et al., 2015). Two combined fea-
tures, formants-TF and MFCCs-3+TF, were selected for training and 
testing. Although formants-TF exhibited a non-ideal recognition rate, 
the joint-feature (MFCCs-3+TF) approach worked well. Both Figs. 5 and 
6 give information about the visual classification results, which were 
evaluated by observing a distinct block class of each call type. As shown 
in the two figures, the feature points of MFCCs-12 are much closer than 
those of MFCCs-3+TF and the latter testing points have a more dispersed 
distribution, which means that MFCCs-3+TF can better disperse the 
feature points of different animal call types. In summary, compared with 
using MFCCs-3 or MFCCs-12 as single, independent features, the com-
bined MFCCs-3+TF feature can not only increase the recognition effect 
of MFCCs-3 (from 87.3 ± 3.3% to 91.4 ± 1.4%) but also significantly 
reduce the model training time (from 3201 ± 119 ms to 2633 ± 54 ms). 

Two confusion matrices were created to analyse the classification 
performance and difference between MFCCs-3+TF and MFCCs-12 (Ta-
bles 5 and 6). As shown in Table 3, fan noise was easily distinguished from 
the total 4304 sound clips because of the difference between the signal of 
a dynamic sound system (animal) and a static sound system (machine) 
(Du and Teng, 2017). In terms of the classification rates of drinking vs. a 
twitter call, MFCCs-3+TF outperforms MFCCs-12. The reason for the 
difference in performance could be due to the different vocal productions 
of the two call types because MFCCs-3+TF can better differentiate based 
on the TF feature. In contrast, MFCCs-12 is superior to MFCCs-3+TF in the 
recognition of laying vs. grunt calls. The main reason for the low precision 
and sensitivity of the grunt call might be due to the similarity of the first 
three formants in the laying call. Another reason might be the difficulty of 
tracking accurate formants in the grunt call. 

Table 2 
Description of different sound types.  

Sound 
type 

Description Number of 
sound clips 

Drinking Pecking sound for water, contains a short duration 
(<0.3 s) and a wide range of frequency band (1–8 
kHz) 

353 

Twitter Normal chirp call, contains a long duration (<1.0 s) 
and a distinct harmonic structure (0.1–2 kHz) 

744 

Laying Sounds in the process of egg laying, contain a 
succession of shorter notes (>1.0 s) and a distinct 
harmonic structure 

1984 

Grunt Sounds of hens snoring at night, contain a long 
duration (>0.5 s) and a narrow range of frequency 
band (0.1–5 kHz, concentrated energy within 0.1–2 
kHz) 

893 

Fans Sounds of mechanical noise, contain a random 
signal and a stable and narrow fundamental 
frequency band (<1000 Hz) 

330 

Total  4304  

Fig. 4. Spectrograms of four hens’ vocalisations and one mechanical noise.  
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3.2. Using GMM with different features 

Comparative trials were also designed based on the GMM model, 
such as MFCCs-12+GMM, MFCCs-3+TF+GMM, Formants+TF+GMM, 
and MFCCs-3+GMM. As shown in Table 7, MFCCs-12 still shares the 
highest RI index of 91.7 ± 5.3%, with the longest model training time. 

Both MFCCs-3 and MFCCs-12 outperform MFCCs-3+TF in regard to the 
clustering effect, but MFCCs-3+TF is superior to other features at the 
model training time. Both Figs. 7 and 8 show the visual clustering results 
that can be intuitively evaluated by observing the matching degree be-
tween the training set and testing set. Unfortunately, many feature 
points cannot be classified correctly by using MFCCs-3+TF, but it can 
better disperse the feature points of different call types (Fig. 7). In short, 
compared with MFCCs-3 and MFCCs-12 that take a single feature at a 
time, the combined feature MFCCs-3+TF using GMM can decrease the 
model training time but has an inferior classification rate. 

3.3. Comparison of BPNN and GMM performances 

To identify an optimal recognition model for recognising hen call 
types, the accuracy rate, RI and model training time of all of the call 
types were calculated. Figs. 9 and 10 show the differences in the per-
formance between the BPNN and GMM classifiers. As shown in these 
two figures, the BPNN classifier obviously outperforms the GMM clas-
sifier, and the former also has a shorter model training time. Moreover, 
the MFCCs-12 feature shares the longest model training time in spite of 
its high classification rate, which is not suitable for big data analysis. In 
contrast, the novel MFCC-3+TF feature is more competent for big data 
analysis as well as for real-time monitoring because it can effectively 
recognise hen call types at a low computational cost (a 12.8–22.3% 
decrease in the execution time). 

Artificial Neural Networks (ANNs) were first introduced in animal 
behavioural studies in the early 1990s of the past century, and today, 
they have been widely used as a valuable acoustic classification tool 
(Reby et al., 1997; Pozzi et al., 2009). Compared with traditional sta-
tistical approaches, the largest advantage of ANNs is their ability to 
model complex and non-linear relationships among acoustic parameters 
(Favaro et al., 2014). In this paper, the proposed method can be used to 
recognise the five call types of laying hens with a high accuracy of 94.9 
± 1.6% (MFCCs-12+BPNN model) and 91.4 ± 1.4% (MFCCs- 
3+TF+BPNN model). The average precision rates are 93.6 ± 1.7% 
(MFCCs-12+BPNN model) and 91.3 ± 1.7% (MFCCs-3+TF+BPNN 
model). Other similar animal sound recognition rates are the following: 
98% for blue monkeys (2 call types: ‘pyow’ and ‘hack’ calls) (Mielke and 
Zuberbühler, 2013), 92% for geese (an average accuracy for 3 behav-
iours) and 84% (an average precision for 3 behaviours) (Steen et al., 
2012), 80.4–92.5% for birds (Cheng et al., 2010), 90% for marine 
mammals (three call types: whistles, calls and squeaks) (González- 
Hernández et al., 2017), 84% for cattle (three ingestive behaviours: 
chews, bites and composite chew-bites) (Chelotti et al., 2016) and 
92.5–95.6% for black lemurs(Pozzi et al., 2009). Favaro demonstrated 
that ANNs are a powerful tool for studying goat kid contact calls. For 
each call, 27 spectral and temporal acoustic parameters (including 
formant parameters) were measured, and the accuracy rates were 71.1 
± 1.2% (vocal individuality, 10 goats), 79.6 ± 0.8% (3 social groups), 
91.4 ± 0.8% (maturation, 2 classes) (Favaro et al., 2014). Similarly, the 
proposed Formants+TF (5 classes) also show a low accuracy of 68.4 ±
1.6%. At the same time, the novel combined feature MFCCs-3+TF has a 
high accuracy of 91.4 ± 1.4%, which overmatches the classification 
performance found in previous research with fewer feature di-
mensionalities. In previous research, fuzzy logic values and a feedfor-
ward network was used to classify alarm call barks, with 21 neurons in 
the input layer and 50 neurons in the hidden layer. For different pred-
ator species, the lowest accuracy of 79% was obtained when classifying 
all four species together (Placer and Slobodchikoff, 2000). Compared 
with previous studies, the proposed method can better classify 5 classes 
with a smaller number of neurons and features. It is very difficult to 
theoretically estimate the number of hidden layers due the possibility of 
overfitting and additional training time. Increasing this number can 
further enhance the risk of overfitting. Training time can be saved by 
avoiding overfitting (Reby et al., 1997). The problem of overfitting the 
training set (overlearning) can be overcome using cross-validation sets 

Table 3 
Classification performance using the BPNN classifier.  

Feature 
category 

Model 
training 
time ±
SD (ms) 

Call type Classification 
performance  

Sensitivity 
± SD (%) 

Precision 
± SD (%) 

Accuracy 
± SD (%) 

MFCCs-12- 
12D 

3201 ±
119 

Drinking 84.2 ± 4.9 83.3 ±
4.3 

– 

Twitter 90.1 ± 4.1 92.1 ±
2.0 

– 

Laying 97.5 ± 2.9 97.3 ±
1.9 

– 

Grunt 95.4 ± 5.5 95.2 ±
5.4 

– 

Fans 100.0 ±
0.0 

100.0 ±
0.0 

– 

Total 93.4 ± 1.4 93.6 ±
1.7 

94.9 ±
1.6  

MFCCs-3+TF- 
6D 

2633 ±
54 

Drinking 84.3 ± 3.7 89.3 ±
2.3 

– 

Twitter 93.8 ± 1.1 91.6 ±
1.5 

– 

Laying 92.3 ± 0.6 94.5 ±
0.2 

– 

Grunt 87.3 ± 2.4 81.1 ±
3.3 

– 

Fans 97.2 ± 0.9 100.0 ±
0.0 

– 

Total 91.0 ± 1.5 91.3 ±
1.7 

91.4 ±
1.4  

Formants+TF- 
6D 

2667 ±
28 

Drinking 77.6 ±
12.1 

79.1 ±
5.6 

– 

Twitter 18.7 ± 3.9 59.0 ±
8.5 

– 

Laying 89.6 ± 4.8 67.3 ±
1.9 

– 

Grunt 61.5 ± 4.8 67.5 ±
5.8 

– 

Fans 61.2 ± 9.6 82.5 ±
16.1 

– 

Total 61.7 ± 1.5 71.7 ±
4.5 

68.4 ±
1.6  

MFCCs-3-3D 2395 ±
38 

Drinking 78.7 ± 7.4 75.6 ±
8.2 

– 

Twitter 83.5 ± 4.1 86.8 ±
4.5 

– 

Laying 89.5 ± 8.0 92.0 ±
5.6 

– 

Grunt 84.5 ±
12.6 

82.3 ±
13.4 

– 

Fans 100 ± 0.0 97.6 ±
5.4 

– 

Total 87.2 ± 2.3 86.8 ±
3.1 

87.3 ±
3.3 

Note: D is an abbreviation for dimension. – means null value. 

Table 4 
Accuracy rate of each MFCC vector using the BPNN classifier.  

Vector 1 2 3 4 5 6 

Accuracy ±
SD (%) 

75.4 ±
0.6 

62.8 ±
1.4 

54.6 ±
2.0 

56.5 ±
1.1 

66.3 ±
0.8 

58.4 ±
1.0 

Vector 7 8 9 10 11 12 
Accuracy ±

SD (%) 
60.7 ±
0.7 

54.2 ±
0.9 

54.1 ±
1.2 

61.6 ±
0.3 

56.5 ±
2.1 

48.0 ±
1.0  
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Fig. 5. Classification results using the BPNN classifier (MFCCs-3+TF feature).  

Fig. 6. Classification results using the BPNN classifier (MFCCs-12 feature).  

Table 5 
Confusion matrix of one validation set (MFCCs-3+TF+BPNN model).  

Actual call type Classified by MFCCs-3+TF feature 

Drinking Twitter Laying Grunt Fans Total Sensitivity (%) 

Drinking 65 12 0 0 0 77 84.4 
Twitter 5 158 2 0 0 165 95.8 
Laying 0 2 382 30 0 414 92.3 
Grunt 0 0 20 128 0 148 86.5 
Fans 0 0 0 1 56 57 98.2 
Total 70 172 404 159 56 861 – 
Precision (%) 92.9 91.9 94.6 80.5 100.0 – 91.6* 

Note: * means the accuracy rate. – means null value. 

Table 6 
Confusion matrix of one validation set (MFCCs-12+BPNN model).  

Actual call type Classified by MFCCs-12 feature 

Drinking Twitter Laying Grunt Fans Total Sensitivity (%) 

Drinking 57 13 0 0 0 70 81.4 
Twitter 10 138 1 0 0 149 92.6 
Laying 0 0 392 5 0 397 98.7 
Grunt 0 0 5 174 0 179 97.2 
Fans 0 0 0 0 66 66 100.0 
Total 67 151 398 179 66 861 – 
Precision (%) 85.1 91.4 98.5 97.2 100.0 – 94.0* 

Note: * means the accuracy rate. – means null value. 
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(as employed in this study). The proposed method chose 5 hidden 
neurons after optimised tests (Khunarsal et al., 2013). 

The major disadvantage of machine learning algorithms is that they 
require large numbers of samples to train the model for high accuracy. 
Moreover, the training stage of most of the ML algorithms is computa-
tionally demanding due to the large number of features used as inputs 
(Acevedo et al., 2009). To overcome this problem, an optimal feature 
combination of TF and MFCCs with fewer feature dimensions can clas-
sify well without compromising precision or accuracy (training time 
reducing from 3201 ± 119 ms to 2633 ± 54 ms). In this paper, each call 
with only 6 feature variables is sufficient to obtain an acceptable 
classification. 

Source-filter theory has been considered to be the commonly used 
theory for explaining the acoustic characteristics of bird vocalisations 
(Favaro et al., 2015). Williams concluded that the syrinx in birds can 
vary the harmonic amplitude output (Williams et al., 1989). Moreover, 

formants are completely independent of the fundamental frequency (F0) 
(Fitch and Kelley, 2000). In this paper, the chosen filter-related features 
(F1-F3, TF1-TF3) are different among the five call types of laying hens, 
which is helpful to disperse the feature points for better recognition 
performance. Additionally, the formant parameters can be used to es-
timate the biological information of mammals, such as the vocal tract 
length (Reby and McComb, 2003). At the same time, the mammal vocal 
tract model might not be suitable for hens because the structure of their 
respiratory system is very different from that of mammals (Taylor and 
Reby, 2010). Unfortunately, we did not perform a physiological autopsy 
on the test chicken and were unable to verify the true vocal tract length. 
This matter remains to be fully investigated in future research. 

Moreover, on-site machinery noise is an influencing factor that can 
reduce classification rates. Other researchers have suggested that ANNs 
may be very helpful to assign calls with high background noise (Pozzi 
et al., 2009). To date, it is still a challenge for researchers to implement 
sound algorithms in a commercial henhouse that stocks a large popu-
lation of animals (approximately 50 K broilers, 80 K laying hens) 
because of the large quantity of sounds produced during the daytime. At 
the same time, it was found that hens’ vocalisations during the night 
were less than those during the daytime and that most of the vocal-
isations were sounds that indicated animal health and production per-
formance, such as the sound of egg laying, grunting and coughing. The 
application of sound source localisation (SSL) algorithms makes it 
possible to detect anomalous animal vocalisations at night by moni-
toring the number of concerned vocalisations and the area distributions 

Table 7 
Classification performance using the GMM classifier.  

Performance 
parameters 

MFCCs-12- 
12D 

MFCCs- 
3+TF-6D 

Formants+TF- 
6D 

MFCCs-3- 
3D 

RI (%) 91.5 ± 5.3 73.0 ± 2.1 62.1 ± 0.7 81.9 ±
0.5 

Model training 
time (ms) 

3458 ±
151 

2587 ± 107 2689 ± 41 2876 ±
55 

Note: D is an abbreviation for dimension. 

Fig. 7. Classification results using the GMM classifier (MFCCs-3+TF feature).  

Fig. 8. Classification results using the GMM classifier (MFCCs-12 feature).  
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for precision analysis (Du et al., 2018). Here, it is recommended to use 
the tristimulus-formant model to monitor birds when there are fewer 
than one thousand in a subarea and the SNR (Signal-to-noise ratio) >5 
dB (Du and Teng, 2017). Additionally, the performance of the algorithm 
might be lower than expected in a chicken barn because the distance 
between a sound source and a microphone is an affecting factor. A long 
distance can lead to an inadequate sound quality and a low sound in-
tensity. These problems have not yet been solved completely and remain 
to be fully investigated. Further studies can explore the possibility of 
combining call type recognition and SSL algorithms for the automatic 
detection of specific sounds in a sub-area, which can be considered to be 
one of the potential applications. 

4. Conclusions 

In this study, we determined which acoustic features and classifiers 
have the potential to better recognise each call type of laying hens. The 
novel model “MFCCs-3+TF+BPNN” performs well without compro-
mising accuracy in recognising hen vocalisations. This model also has 
less training time and fewer feature dimensions (6 variables) than those 
of other models. Compared with other animal sound recognition ap-
proaches, the proposed model shows considerable potential for online 
identification and for large data analysis. Further research could be 
performed to study the relationship between animal behaviour recog-
nition and animal sound recognition by using a multi-modality of video 
and sound streaming technology. 
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