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Abstract. We consider a Stackelberg pricing problem in directed, uncapacitated networks. Tariffs

have to be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other

arcs are assumed to be given. There are n clients, the followers, that route their demand independent

of each other on paths with minimal total cost. The problem is to find tariffs that maximize the

operator’s revenue. Motivated by problems in telecommunication networks, we consider a restricted

version of this problem, assuming that each client utilizes at most one of the operator’s tariff

arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river.

We prove that this problem is APX-hard. Moreover, we show that uniform pricing yields both

an m–approximation, and a (1 + ln D)–approximation. Here, D is upper bounded by the total

demand of all clients. We furthermore discuss some polynomially solvable special cases, and present

a short computational study with instances from France Télécom. In addition, we consider the

problem under the additional restriction that the operator must serve all clients. We prove that this

problem does not admit approximation algorithms with any reasonable performance guarantee,

unless NP = ZPP, and we prove the existence of an n–approximation algorithm.

1 Introduction

The general setup for the tarification problem that we study involves two non-cooperative groups, an

operator that sets tariffs, the leader of the Stackelberg game, and n clients that have to pay these tariffs,

the followers of the Stackelberg game. More precisely, we assume that a network is given, and a subset of

m arcs, the tariff arcs, are owned by an operator. The operator can determine tariffs on these tariff arcs,

while the costs for utilizing all other arcs are assumed to be given. Each client wishes to route a certain

demand on a path connecting two vertices. Such a path can in general involve one or several of the tariff

arcs belonging to the operator, and we assume that each client selfishly selects a path with minimum

total cost to route his demand. Before the clients select their paths, the operator has to set the tariffs,

which he does in order to maximize total revenue. In order to avoid non-boundedness, we assume that

clients always have the alternative of routing on a path without using any of the operators arcs.

Notice that this problem is different in two aspects from the network congestion problems studied

recently, e.g., by Roughgarden and Tardos [13], and Cole et al. [4, 5]. First, we assume that there is no

congestion, hence the clients do not influence each other. They choose minimum cost paths to route their

demands, independent of each other. The Game Theoretic setting is only introduced by the fact that

⋆ This research was partially supported by France Télécom Research & Development. An extended abstract with

parts of the results appeared at WAOA 2004 [7].
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there exist an operator trying to maximize revenue using high tariffs, and the clients try to avoid high

tariffs by choosing minimal cost paths. Second, the pricing takes place before the users choose their paths,

so we are faced with a Stackelberg game, where the operator first sets the tariffs, and then, subject to

these tariffs, the clients react selfishly.

2 Model

In order to clarify the relation to previous work, we first formulate the general tarification problem, and

then discuss the restricted version considered in this paper.

An instance of the general tarification problem is a directed graph G = (N,A), where the arc set A is

partitioned into a set of m tariff arcs T ⊆ A and a set of fixed cost arcs F = A\T . There are n clients (or

commodities) k ∈ {1, . . . , n}, and each client k has a demand dk that has to be routed from source node

sk to target node tk. Because there is no congestion involved, we may assume without loss of generality

that all demand values dk are scaled to be integral. The tariff for the utilization of any tariff arc a ∈ T

must be determined by the operator; it is denoted by τa. The tariff for the utilization of any fixed cost arc

is assumed to be given for all fixed cost arcs. The clients route their demands from source to destination

according to a path with minimal total cost, where the total per unit cost of a path is defined as the sum of

the tariffs and fixed costs on the arcs of the path. Whenever the client has a choice among multiple paths

with the same total cost but with different revenues for the operator, we assume that the client takes the

path that is most profitable to the operator. (This can always be achieved with arbitrary precision by

reducing tariffs by some small value ε.) We assume that an (sk, tk)-path exists consisting only of fixed

cost arcs for every client k ∈ {1, . . . , n}, since the problem is otherwise unbounded. Without going into

further details, we mention that this problem is a classical Stackelberg game that can be modelled as a

linear bilevel program [11].

We next describe a simple transformation of the given graph G that allows one to restrict to very

specific graphs (although probably losing certain graph properties, such as planarity). When we replace

all shortest paths that only consist of fixed cost arcs by direct arcs, and possibly introduce additional

dummy arcs with zero or infinite cost, respectively, we obtain a shortest path graph model as described

by Bouhtou et al. [3]. After this transformation, we can assume that all tariff arcs are pairwise disjoint,

and there exists a direct arc from the source node sk to the tail node of any tariff arc a, and a direct

arc from the head node of any tariff arc a to any target node tk. Moreover, there exists a fixed cost arc

(sk, tk) for all clients k = 1, . . . , n, and the fixed cost for that arc, which we denote by uk, represents the

cheapest possible (sk, tk)-path (in the original graph) without using any of the tariff arcs. In other words,

uk represents the highest acceptable total per unit price for client k.

The additional assumption in the problem considered in this paper, to which we refer as the river

tarification problem (RTP), is the following: Independent of the tariffs, we assume that any client routes

her demand on a path that includes at most one tariff arc. In Section 4, we discuss practical applications for

this model, motivated by problems in telecommunication networks. In the shortest path graph model, this

restriction is equivalent to the deletion of any backward-arc that might exist between head nodes of tariff

arcs and tail nodes of other tariff arcs. Figure 1 illustrates the shortest path graph model of an instance

of the river tarification problem with three tariff arcs and two clients. The tariff arcs ai, i ∈ {1, 2, 3} are

the dashed arcs in the network. We may also assume without loss of generality that all fixed cost arcs

incident with the target nodes tk have zero cost, because otherwise we can just add their costs to the

fixed cost arcs incident with source nodes sk. Therefore, let us denote by cka the cost of the arc that

connects customer k to tariff arc a. The value uk − cka then represents client k’s highest acceptable tariff

for utilizing tariff arc a. It can as well be interpreted as client k’s valuation for tariff arc a. Notice that the

only difference to the general tarification problem described previously is the non-existence of backward

arcs in the shortest path graph model.
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Fig. 1. River tarification problem with n = 2 and m = 3.

To summarize, the parameters that define an instance of a river tarification problem are the number

of tariff arcs m, the number of clients n, their demand values dk, k ∈ {1, . . . , n}, and the costs for fixed

cost arcs. We have cka as the cost of the fixed cost arcs that connect customers k to tariff arcs a, and uk

as the cost of arc (sk, tk), the highest acceptable cost for client k. Due to the fact that any path taken by

a client involves exactly one fixed cost arc with non-zero cost, we may assume without loss of generality

that the costs cka of these fixed cost arcs are integral. Moreover, due to the integrality of the costs of the

fixed cost arcs, it is immediate that any reasonable solution will adopt only tariffs which are integral, too.

Notice that this might not be true for the general tarification problem, where a path chosen by a client

can consist of more than one tariff arc.

3 Related work and results

A formulation of the general tarification problem is the linear bilevel program described by Labbé et al.

[11]. They show, among other things, that already the problem with a single client is strongly NP-hard,

given that also negative tariffs are allowed. Roch et al. [12] show that the single client problem remains

strongly NP-hard, even when restricted to nonnegative tariffs. In the same paper, a polynomial time

(1 + 1/2 lnm)–approximation algorithm is proposed for the problem with a single client, where m is the

number of tariff arcs.

In contrast to these two papers, which mainly address the general tarification problem with a single

client, we consider the problem with multiple clients. However, as described above, we assume that each

client utilizes at most one tariff arc, yielding an instance of the river tarification problem. In fact, this

problem can equivalently be interpreted as a pricing problem for multiple products, where the tariff

arcs a ∈ T correspond to different products, and each user k is interested in buying dk units of one

product. Since we consider uncapacitated networks, products are available in unlimited amount (e.g.,

bulk products). Whenever there is an arc between a client k and a tariff arc a in the river tarification

problem, the interpretation is that client k is interested in buying product a. If she decides to buy product

a, she incurs a per unit shipment cost of cka, in addition to the per unit cost of τa for product a. The

fixed cost uk of the fixed cost arc (sk, tk) is simply interpreted as the maximum total (per unit) price a

client k is willing to pay to purchase any of the products. In other words, uk − cka represents client k’s

valuation for product a.

After this discussion, we can exhibit a close relation of the river tarification problem considered in this

paper to other papers that address multi-product pricing problems. Recently, two groups of researchers,

independently of each other, reported several results for such problems. Aggarwal et al. [1], among other

things, consider a multi-product pricing problem where any client k has different budgets bka for different



4 A. Grigoriev et al.

products a, which are available in unlimited amount. The operator has to determine prices for the

products in order to maximize the total revenue, under the assumption that a client buys (one unit of)

the cheapest product among the products she can afford. Aggarwal et al. [1] prove APX-hardness of

this problem, together with a (1 + lnn)-approximation algorithm. Notice that, despite of the obvious

similarities, the multi-product pricing problem is conceptually different from the tarification problem

considered in this paper. In the river tarification problem, clients choose the product with minimum total

per unit cost, also taking into account the shipment costs cka, rather than the cheapest product among

all affordable products.

Guruswani et al. [8] consider a profit-maximizing envy-free pricing problem. Clients have different

valuations for different products, and each product is available in limited amount. The operator has to

determine prices for the products, and allocate the products to clients such that, again, total revenue is

maximized, and given the pricing, no client would prefer to be assigned a different product. Here, the

clients measure their preferences in terms of the difference between their valuation and the purchase price.

If the price is higher than the clients’ valuation, then the client does not purchase the product. In fact,

the profit-maximizing envy-free pricing problem with unlimited supply of products is equivalent to the

river tarification problem considered here. Guruswani et al. [8] independently prove APX-hardness of the

problem, and derive a (2 lnn)-approximation algorithm for the case of unit demand of clients, and with

limited supply of products.

In this paper, we derive several results concerning complexity and approximability of the river tarifi-

cation problem. In Section 5.1, by a reduction from the Max-2-Sat-3 problem, we show that the river

tarification problem is APX-hard, even if each client is connected to at most two tariff arcs. This result

coincides with the APX-hardness result of [8]; obtained independently. The quality of uniform tarification

policies, where all arcs are priced with the same tariff, is analyzed in Section 5.2. The problem to find an

optimal uniform tariff is well-known to be solvable in polynomial time, even for the general tarification

problem [14]. We show that uniform tarification is an m–approximation, and this is tight. Using a simple

geometric argument, we also show that uniform tarification is a (1 + lnD)–approximation, which is tight

up to a constant factor. Here, D is the total demand that is served by the operator in an optimal solu-

tion, which is upper bounded by the total demand. Hence, whenever the clients have unit demand, this

yields a (1 + lnn)–approximation. We empirically analyze the quality of uniform tarification policies in

Section 5.3, using instances from France Télécom. Finally, we briefly discuss some polynomially solvable

special cases of the river tarification problem in Section 5.4.

In Section 6, we consider another variant of the problem where the operator is not allowed to reject

any client. Notice that this might increase the total revenue, since some clients might exist that can only

be served at a low price, while others would be willing to pay much more. We show, by a reduction

from the Independent Set problem, that this problem does not allow approximation to within a factor

O(m1−ε) or O(n1/2−ε), unless ZPP = NP. (Recall that m is the number of tariff arcs and n is the number

of clients.) On the positive side, we can show that the problem admits an n-approximation.

4 Applications

For a first motivation, consider the internet. Whenever an autonomous system, represented by some

subnetwork, has to transit data, the data may enter and exit the autonomous system at different points.

Clients have to pay a price for transmitting data through the autonomous system, yielding revenue for

its owner. The data flow can be modelled such that once it is routed through the autonomous system,

it does not pass a second time. See Figure 2(a), where the clients have the choice between two different

autonomous systems (AS1 and AS2), with two entry- and exit-points. This can be modelled as a river

tarification problem, introducing a tariff arc for each entry-exit combination.
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For another motivation, consider point-to-point markets, where a telecommunications operator is

offering bandwidth capacity between two points A and B at a certain price. Other operators are active in

this market as well. Their prices for bandwidth capacity are known. Clients can choose between different

levels of Quality of Service (QoS) from each operator, and clients have a preference for the QoS-levels.

We can model this problem as an instance of the river tarification problem, too. Figure 2(b) shows a

small example with two customers, represented by two commodities (s1, t1) and (s2, t2). The operator

has three QoS levels, represented by the subnetwork between the nodes qis and qit, where i ∈ {1, 2, 3}. In

this example, customer (s1, t1) is interested in two QoS levels, namely QoS1 and QoS2, whereas customer

(s2, t2) is interested in QoS2 and QoS3. The preference of each customer k with regard to each QoS

level is determined by the cost of the edge from the source sk to the node qis, i ∈ {1, 2, 3}, smaller cost

indicating a higher preference for the QoS level. The prices of other operators for the same QoS level is

given by the cost on the (fixed cost) arcs (qis, qit), i ∈ {1, 2, 3}. The revenue for the operator for each

QoS level i, i ∈ {1, 2, 3} is then determined by setting appropriate tariffs on the tariff arcs (dashed arcs

in the figure).
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(b) Point-to-point markets.

Fig. 2. Applications of the river tarification problem.

Finally, the network topology of a river tarification problem may be assumed –possibly after the simple

transformation described previously– in telecommunication networks where it is known a priori that the

path of each client utilizes at most one tariff arc. This occurs, e.g., in the international interconnections

market, where several operators offer connections to a particular country. If we focus on the market for

one particular country, we can assume that it is not profitable for any client to enter the country twice.

5 River Tarification: Complexity and Approximation

We first show that the river tarification problem is APX-hard. Then, we derive bounds on the quality of

uniform tarification policies, where all tariffs are required to be identical. We present a short computational

study with instances from France Télécom, and briefly discuss some polynomially solvable special cases.

5.1 Complexity

Roch et al. [12] show that the general tarification problem is NP-hard in the strong sense, even when

restricted to a single client, using a reduction from the NP-complete problem 3-Sat [6]. Their reduction

works for tarification problems where paths are allowed to use (and indeed, must use) several tariff
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arcs. We consider a reduction of Max-2-Sat-3. This is a variant of the Satisfiability problem [6]. An

instance of the Satisfiability problem is a boolean function f : {0, 1}n → {0, 1} on n variables x1, . . . ,

xn, in conjunctive normal form. Such a function f is the conjunction of m clauses Ck, f =
∧m

k=1
Ck, each

clause being the disjunction of one or several literals. Any literal represents either a variable xi, or its

negation x̄i, i ∈ {1, . . . , n}. Function f is called satisfiable if there exists a truth assignment x1,. . . , xn

such that at least one literal per clause is true. In the 2-Sat problem, each clause Ck is the disjunction of

exactly 2 literals. In the 2-Sat-3 problem, in addition, each variable occurs at most 3 times in all literals.

The problem to find a truth assignment that fulfills the maximum number of clauses, Max-2-Sat-3, is

known to be APX-hard [2].

Theorem 1. The river tarification problem is APX-hard, even when each client is connected to at most

two tariff arcs.

Proof. We use an approximation-preserving reduction from Max-2-Sat-3. For each variable xi, i ∈
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Fig. 3. Subnetwork for variable xi, i ∈ {1, . . . , n}.

{1, . . . , n} of the Max-2-Sat-3 instance, we construct a constant-size subnetwork as shown in Figure 3.

Each of these subnetworks has three clients with unit demand, with origin-destination pairs {sij , tij},

j ∈ {1, 2, 3}. Moreover, each subnetwork has two tariff arcs, ai representing the truth assignment xi = 1,

and āi representing xi = 0.

An upper bound on the cost of routing commodities 1 and 3 is given by fixed cost arcs (si1, ti1) and

(si3, ti3), both with cost 5. For commodity 2, the upper bound on the cost is given by a fixed cost arc

(si2, ti2), with cost 3. We call this client the cheap client.

Next, for each clause Ck, k ∈ {1, . . . ,m}, we create a clause-commodity k with origin destination

pairs {sk, tk}, with unit demand. Whenever a variable xi (x̄i, respectively) appears as one of clause Ck’s

literals, we connect sk to si1 (si3, respectively), and ti1 (ti3, respectively) to tk, using arcs of zero cost. In

addition, we introduce a fixed cost arc (sk, tk) with cost 3, defining an upper bound of 3 for the cost of

routing clause-commodity k. The so-defined instance of the river tarification problem has 2n tariff arcs,

3n+m commodities (or clients), and at most 7m+11n fixed cost arcs, hence the transformation is indeed

polynomial.

Let an instance of Max-2-Sat-3 be given, and denote by ΠSAT the maximum number of satisfiable

clauses, and by ΠRTP denote the maximum revenue for the corresponding instance of the river tarification

problem. Moreover, we denote by s any feasible solution of Max-2-Sat-3, and we denote by S any feasible

solution for the river tarification problem.

In order to exhibit an approximation-preserving reduction, we need to establish the validity of two

inequalities:
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(i) there exists a constant α > 0 such that

ΠRTP ≤ αΠSAT ,

(ii) there exists a constant β > 0 such that for any feasible solution S of the river tarification problem,

there exists a solution s for Max-2-Sat-3 with

ΠRTP − ΠRTP
S ≥ β(ΠSAT − ΠSAT

s ) .

First, we prove (i). The maximal revenue for each subnetwork is given by setting one of the tariffs to

3, and another one to 5, yielding a revenue of 5 + 2 · 3 = 11. In all other cases, the revenue is not more

than 10. Therefore, we have that ΠRTP ≤ 11n + 3m. Since no more than two variables can be present in

a clause, m ≥ n/2. Notice that ΠSAT ≥ m/2 (just consider the best of the following two solutions: set

all variables to true, and set all variables to false). It follows that ΠRTP ≤ 50ΠSAT, hence (i) holds with

α = 50.

Now, we prove (ii). Given some solution S for the river tarification problem, we are going to build

another solution S′ for the river tarification problem such that ΠRTP
S′ ≥ ΠRTP

S . Next we associate to S′

a solution s for Max-2-Sat-3. Our goal is to build a solution S′ where the demand of each cheap client

is routed via one of the two tariff arcs of the respective subnetwork.

First, we consider the subnetworks in which both tariffs are greater than 3. If both tariffs are greater

than 3 in a subnetwork, we set arbitrarily one to 5, the other one to 3, and we route the demand of the

cheap client via the arc with tariff 3. Observe that this does not decrease the subnetwork’s contribution

to the value of the resulting solution. If we can route a not-yet-routed clause commodity through the

tariff arc with tariff 3, we do so.

Second, we consider the subnetworks in which one tariff is greater than 3, and the other one is less

than or equal to 3. In that case, we set the higher tariff to 5, and the smaller tariff to 3. In case the

demand of the cheap client had not yet been routed, we route it via the tariff arc with tariff 3. Again, one

can verify that this does not decrease the subnetwork’s contribution to the value of the resulting solution.

If we can route a not-yet-routed clause commodity through the tariff arc with tariff 3, we again do so.

Finally, we consider the subnetworks in which both tariffs are less than or equal to 3. Let there

be p subnetworks of this type. These p subnetworks contribute to the value of the current solution at

most 9p + ℓ where ℓ is the number of clause commodities that are routed via a tariff arc of one of the

p subnetworks. For these p subnetworks, let us consider two different partial solutions. In one of these

partial solutions the demand of the cheap client is routed upwards at tariff 3, the tariff of the lower arc is

set to 5, and we simply disconnect all clause commodities that were previously routed via the lower arc

before. In the other partial solution, the demand of the cheap client is routed downwards at tariff 3, the

tariff of the upper arc is set to 5, and we simply disconnect all clause commodities that were previously

routed via the upper arc. Also, if we can route a not-yet-routed clause commodity through the tariff arc

with tariff 3, in both partial solutions, we do so.

We claim that at least one of these two partial solution has a contribution to the solution’s value

that is not less than the original contribution 9p + ℓ. Indeed, we now have 11p + ℓ/2 for at least one of

these two partial solutions, since each clause commodity had to go via an upper or a lower arc. Notice

that 11p + ℓ/2 ≥ 9p + ℓ holds if p ≥ ℓ/4. Since we are dealing with Max-2-Sat-3 where each variable

(subnetwork) is connected to at most 3 clauses, it follows that ℓ ≤ 3p, or p ≥ ℓ/3.

Now we have completed the construction of S′ and we have verified that ΠRTP
S′ ≥ ΠRTP

S . Notice

that in S′ the demand of each cheap client has been routed via a tariff arc. This determines the truth

assignment of the corresponding variables in solution s of Max-2-Sat-3: We define the truth assignment

of s according to the utilized tariff arcs of the cheap clients. Thus, the number of clause commodities

routed via a tariff arc in S′ equals the number ΠSAT
s of satisfied clauses in the Max-2-Sat-3 solution s.
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Let us now finish the argument for (ii). We have that ΠRTP ≥ 11n + 3ΠSAT, since the optimal

solution for Max-2-Sat-3 yields a feasible solution for the river tarification problem where ΠSAT clause

commodities contribute a revenue of 3, and each subnetwork contributes a revenue of 11. Also, ΠRTP
S ≤

ΠRTP
S′ = 11n+3ΠSAT

s by our previous construction. Thus ΠRTP−ΠRTP
S ≥ 11n+3ΠSAT−(11n+3ΠSAT

s ) =

3(ΠSAT − ΠSAT
s ), which finishes the proof with β = 3. ⊓⊔

Observe that, in a sense, we have delineated a borderline between easy and hard instances of the river

tarification problem, since if each client is connected to at most one arc the problem is trivial, while in

the described reduction each client is connected to at most two tariff arcs. Hence, even for that case no

polynomial time approximation scheme can exist, unless P = NP.

5.2 The quality of uniform tarification policies

The uniform tarification problem (UTP) is the same as the general tarification problem, with the ad-

ditional restriction that all tariffs are required to be identical. As shown by van Hoesel et al. [14], the

uniform tarification problem can be solved in polynomial time, even in the general setting where clients

may use paths with several tariff arcs. The algorithm described by van Hoesel et al. [14] uses the para-

metric shortest path algorithm of Young et al. [15] and Karp and Orlin [10] to determine the tariff values

(i.e. breakpoints) for which the shortest path tree changes for any client. Calculating the revenue for the

operator at each breakpoint and maintaining the best solution yields the optimal uniform tarification

policy in polynomial time.

We next analyze the loss that can be experienced by adopting such a uniform tarification policy for

the river tarification problem. Therefore, denote by ΠUTP the revenue for an optimal uniform tarification,

and by ΠRTP the revenue for an optimal non-uniform tarification. By definition, ΠUTP ≤ ΠRTP.

Lemma 1. If an optimal tarification for the river tarification problem with revenue ΠRTP utilizes at

most r different tariffs, then for the optimal uniform tarification, ΠUTP ≥ ΠRTP/r.

The proof of this lemma is indeed trivial. To this end, consider an optimal non-uniform tarification

with tariffs τ1 ≤ · · · ≤ τm, and let Di be the total demand on an arc ai with tariff τ i, i ∈ {1, . . . ,m}.

By D =
∑n

k=1
Dk we denote the total demand served by the operator. Then the revenue created by this

solution is the area under the following ‘staircase’ function f : [0,D] → [0,∞[, depicted in Figure 4.

f(x) = τ i for all x with
∑
j<i

Dj ≤ x <
∑
j≤i

Dj , i ∈ {1, . . . ,m}. (1)

Proof (of Lemma 1). Consider any of the rectangles inscribed under the graph of function f(x), with area

Ti := τ i·
∑

j≥i Dj . Then it holds that ΠUTP ≥ Ti for all i ∈ {1, . . . ,m}, since the area of any such rectangle

is a lower bound for the revenue yielded by the optimal uniform tariff ΠUTP. (Notice that this does not

hold for the general tarification problem.) Hence, if only r different tariffs are utilized, we consider the r

(inclusion-)maximal rectangles under function f , say Ti1 , . . . , Tir
, and get r ·ΠUTP ≥

∑r
j=1

Tij
≥ ΠRTP.

⊓⊔

Since r ≤ m, Lemma 1 yields the following theorem. Tightness of the result will be shown below,

using Example 1.

Theorem 2. Uniform tarification is an m–approximation for the river tarification problem.

We next derive an another bound on the quality of uniform tarification policies, developing further

the same geometric argument.
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Fig. 4. Staircase function f(x) with inscribed rectangle.

Theorem 3. Uniform tarification is a (1+ln D)–approximation for the river tarification problem, where

D ≤
∑n

k=1
dk is the total demand that is served by the operator in an optimal solution.

Proof. Indeed, we will even prove a slightly stronger result than claimed in Theorem 3. Consider an

optimal non-uniform tarification, and recall the definition of the corresponding staircase function f in (1),

as well as the inscribed rectangles, with areas Ti = τ i ·
∑

j≥i Dj . Let ℓ be the index of the maximal area

rectangle among all Ti, with area Tℓ. Let xℓ :=
∑

j≥ℓ Dj = Tℓ/τ ℓ. Moreover, denote by τmax the maximal

tariff utilized in that optimal solution. We show

ΠUTP ≥
ΠRTP

1 + ln(Dτmax/Tℓ)
. (2)

Theorem 3 then follows, because Tℓ ≥ τmax by definition of Tℓ. To prove (2), we define the function

g(x) :=
Tℓ

D − x
for x ∈ [0,D) . (3)

We claim that g(x) ≥ f(x) for x ∈ [0,D). To see this, take any x with
∑

j<i Dj ≤ x <
∑

j≤i Dj , then

f(x) = τ i by definition. Now

g(x) =
Tℓ

D − x
≥

Tℓ

D −
∑

j<i Dj
=

Tℓ∑
j≥i Dj

=
Tℓ

Ti/τ i
≥ τ i = f(x) ,

where the first inequality follows by choice of x, and the last follows by choice of ℓ as the index of the

largest rectangle.

Hence, the area under the staircase function, which equals ΠRTP, can be upper bounded in terms of

the area defined by the function g(x), as depicted in Figure 5. To compute this area, we partition it into

three parts, namely the rectangle Tℓ itself, the area under g(x) on the domain x ∈ [0,D − xℓ], as well

as the area to the right of g(x) on the domain τ ∈ [τ ℓ, τmax]. The latter is the integral of the function

D − g−1(τ) = Tℓ/τ on the domain [τ ℓ, τmax]. We thus obtain the following.

ΠRTP ≤ Tℓ +

∫ D−xℓ

0

Tℓ

D − x
dx +

∫ τmax

τ ℓ

Tℓ

τ
dτ

= Tℓ[1 + lnD + ln τmax − ln τ ℓ − lnxℓ]

= Tℓ [1 + ln(Dτmax/Tℓ)] ,

and since Tℓ ≤ ΠUTP, claim (2) follows. ⊓⊔

Notice that claim (2) confirms the following geometric intuition: The closer the staircase function

f(x) is to the straight line x 7→ (τmax/D) ·x, the closer is Tℓ to Dτmax/4, which yields an approximation
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Fig. 5. Illustration for the proof of Theorem 3.

ratio of (1 + ln 4) ≈ 2.4 for uniform tarification. Geometric intuition indeed suggests a ratio of roughly 2,

the additional 0.4 being caused be the difference between the functions g(x) and f(x). In Section 5.3, we

compare the quality of uniform versus non-uniform tarification, based on instances obtained from France

Télécom.

In the case of unit demands of the clients, that is, if dk = 1 for all clients k = 1, . . . , n, we obtain the

following.

Corollary 1. Whenever clients have unit demands, uniform tarification is a (1 + lnn)–approximation

for the river tarification problem.

Finally, let us show tightness of the bounds in Theorems 2 and 3.

Example 1. Given n=m clients and m tariff arcs. Every client is operating her own subnetwork with one

tariff arc, thus the entire network consists of m disjoint subnetworks and each of them contains one client

and one tariff arc. Fix b > 1 and let the demand of client k in subnetwork k be given by dk = bk − bk−1,

k ∈ {1, . . . ,m}. This way, the total demand equals bm−1. Moreover, the maximal revenue for subnetwork

k is limited by a fixed cost arc (sk, tk), with cost uk = b2m−k. Hence, the maximal tariff τmax equals

b2m−1. See Figure 6 for an example with n = m = 4. ⊓⊔

0 0
22 ts

0 0
33 ts

0 0
44 ts

0 0
11 ts

u

u u

u1

2

3

a

aa

a1

2 4

3

4

Fig. 6. The analysis of uniform tarification policies is tight.

In the optimal solution, the tariff for each subnetwork k is set to its maximal value, b2m−k. Each subnet-

work therefore contributes a revenue of b2m − b2m−1, and ΠRTP = m(b2m − b2m−1). The optimal uniform

tarification consists in setting the tariff on all tariff arcs to bm. This way, every unit of demand creates

a profit of bm, yielding a total revenue of b2m − bm. Other (reasonable) uniform tariffs would be values
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b2m−k, k ∈ {1, . . . ,m− 1}. This yields a total revenue of b2m − b2m−k, which is less. Therefore, we obtain

ΠUTP/ΠRTP =
b2m − bm

m(b2m − b2m−1)
≤

b2m

m(b2m − b2m−1)
=

1

m
·

b

b − 1
.

Now, observe that in the optimal solution m different tariffs are utilized. Lemma 1 (Theorem 2, respec-

tively) suggests that uniform tarification provides an m–approximation. Example 1 proves that this is

best possible, since b can be chosen arbitrarily large.

Moreover, Theorem 3 suggests that uniform tarification is a (1+ lnD)–approximation. In Example 1,

we have D = (bm − 1) and thus (1 + lnD) = 1 + ln(bm − 1) ≤ 1 + m ln b. Hence, Theorem 3 yields that

uniform tarification is a O(m)–approximation on this example. The same Example 1 shows that O(m) is

indeed best possible. Summarized, we thus get the following.

Theorem 4. For uniform tarification, the performance bound of Theorem 2 is best possible, and the

performance bound of Theorem 3 is best possible up to a constant factor.

5.3 Numerical Results

As stated previously, whenever the function that describes the total revenue in an optimal non-uniform

solution, i.e. the staircase function defined in (1), is close to a straight line, geometric intuition suggests

a worst-case ratio for uniform tarification of approximately 2. The worst case Example 1 crucially hinges

on a (staircase) function that approximates a hyperbola. Thus, it can be conjectured that the empirical

performance of uniform tarification policies outperforms the theoretical bounds we have found. This is

indeed confirmed in the following numerical experiments, displayed in Table 1. The study is based on

instances obtained from France Télécom.

Table 1. Quality of Uniform Tarification on France Télécom instances.

Instance |N | |A| m n ΠRTP ΠUTP %

RTN1 29 94 7 15 841 624 74%

RTN2 29 98 6 21 4099 3496 85%

RTN3 59 206 10 13 1118 880 79%

RTN4 59 204 10 20 2217 1512 68%

RTN5 49 120 9 21 74948 55968 74%

RTN6 33 116 15 12 28166 20328 72%

These instances represent telecommunication networks for the international interconnections market,

as described in Section 4. We compare the optimal solutions for uniform tariffs ΠUTP and non-uniform

tariffs ΠRTP. The optimal non-uniform solution is calculated using the model and mixed integer pro-

gramming formulation described in Bouhtou et al. [3]. The value of ΠUTP is calculated using the same

formulation, requiring that all tariffs be equal. We do not compare the actual computation times here,

but are only interested in effectiveness of the optimal uniform tarification policies. Table 1 gives a brief

description of each network, stating the number of nodes |N |, arcs |A|, tariff arcs m, and clients n. The

optimal non-uniform and uniform solution values are displayed in the columns ΠRTP and ΠUTP. The

final column is the approximation ratio.

5.4 Polynomially solvable special cases

Several polynomially solvable special cases of the (general) tarification problem are discussed by Labbé

et al. [11] and van Hoesel et al. [14]. Clearly, these results hold for the problem considered in this paper,

too. In addition, we have the following polynomially solvable cases for the river tarification problem.
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Theorem 5. If the number of clients n is bounded from above by a constant, the river tarification problem

is solvable in polynomial time.

Proof. If the number of clients n is bounded from above by a constant, the number of assignments of

clients to tariff arcs is bounded by mn which is a polynomial for fixed n. Consider an assignment of clients

to tariff arcs and let the tariff arc (if any) taken by a client k be denoted by ak. The following linear

program models the revenue maximization problem, given such an assignment of clients to tariff arcs.

max
τ

∑
k∈K

dkτak

s.t. τak
+ ckak

≤ τa + cka, ∀ k ∈ K,∀ a ∈ T,

τa ≥ 0, ∀ a ∈ T.

(4)

Solving mn instances of (4), we can retrieve the optimal solution in polynomial time. ⊓⊔

Finally, for specific cost structures of the network, the river tarification problem is polynomially

solvable, too. To this end, assume that the cost cka for connecting client k to tariff arc a is only composed

of an individual cost per client ck, independent of the tariff arc a, and of a shipment cost ca, independent

of the client k. In other words, we assume that there exist positive integers ck, k ∈ {1, . . . , n}, and ca,

a ∈ T , such that cka = ck + ca for every client k and tariff arc a.

Theorem 6. Assuming the cost structure described above, the river tarification problem is solvable in

polynomial time.

Proof. Consider a feasible solution of the problem and let τa, a ∈ T , be the corresponding tariffs on the

tariff arcs. Without loss of generality, we assume that in that solution client 1 utilizes a tariff arc a1 at

price τ1 and client 2 utilizes a tariff arc a2 at price τ2. Since in any feasible solution client 1 routes her

demand via the shortest path, we have that c1a1
+ τ1 ≤ c2a2

+ τ2. From the cost structure we derive

that c1 + ca1
+ τ1 ≤ c1 + ca2

+ τ2 and therefore ca1
+ τ1 ≤ ca2

+ τ2. Similarly, for client 2 we have that

ca1
+ τ1 ≥ ca2

+ τ2. Hence we obtain that ca1
+ τ1 = ca2

+ τ2, meaning that users 1 and 2 are indifferent

between tariff arcs 1 and 2. Thus we may assume without loss of generality that they both use the same

tariff arc. Proceeding iteratively this way, we may assume that all clients use the same tariff arc. For every

choice of the utilized tariff arc we can now find the maximum revenue associated with this arc (assuming

that the other tariff arcs are so expensive that no client can afford their utilization), using binary search

on the tariff for that tariff arc. Choosing the arc that provides the highest total revenue we obtain the

optimal solution for the problem. ⊓⊔

6 All-service river tarification problem

In this section, we consider the following variation of the river tarification problem. The operator must set

tariffs in order to capture the demand of all clients, that is, tariffs must be such that no client k is forced

to use the arc (sk, tk). We refer to this problem as the all-service river tarification problem. NP-hardness

of this problem follows by our previous reduction presented in Section 5.

It follows from trivial examples that the maximal revenue for the all-service problem can be an

arbitrary factor away from the maximal revenue without the all-service constraint. Hence, we have an

arbitrarily high ‘cost of regulation’. In addition, we can show that the maximal revenue for the all-service

problem cannot be approximated within any reasonable bound.

Theorem 7. For any ε > 0, the existence of a polynomial time approximation algorithm for the all-

service river tarification problem with with n clients and m tariff arcs with worst case ratio O(m1−ε) or

O(n1/2−ε) implies ZPP = NP.
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Proof. The proof uses an approximation preserving reduction from Independent Set [6] to the all-

service RTP. So assume we are given a graph G = (V,E), and the problem is to find a maximum

cardinality subset V ′ ⊆ V of vertices such that no two vertices in V ′ are connected by an edge. The

transformation works as follows. For every vertex v ∈ V we introduce a client with origin-destination pair

{sv, tv} and demand dv = |E|, and a corresponding tariff arc av. We connect the source sv to the tail of

the tariff arc av, and the head of av to the destination tv, using zero cost fixed cost arcs. Moreover, there

is a fixed cost arc (sv, tv) with cost (|V | + 1) for all vertices v ∈ V . For every edge e ∈ E we introduce

a client with origin-destination pair {se, te} and unit demand. The upper bound on the cost of routing

this demand is given by the fixed cost arc (se, te) with cost 1. For all edges e ∈ E and all vertices v ∈ V

with v ∈ e, we furthermore introduce fixed cost arcs (se, tail(av)) and (head(av), te), with zero cost. This

transformation results in an instance of the all-service RTP with |V | tariff arcs, and |V | + |E| clients.

Figure 7 gives an example of such a transformation for a graph G = (V,E) with 3 nodes and 2 edges.

We claim that G has an independent set of cardinality at least k if and only if there exists a tariff

policy for the all-service RTP with a total revenue of |V ||E|(k + 1) + |E|.

First, assume that G has an independent set V ′ of cardinality k. For all v ∈ V ′, set the tariff on the

corresponding tariff arc av to |V | + 1, and all other tariffs to 1. By the definition of an independent set,

for any edge e = (v, u) ∈ E at least one of the vertices, v or u, is not in V ′. Therefore, the tariff of at least

one of the tariff arcs, av or au is 1. All clients corresponding to an edge e can thus be served, using one of

the tariff arcs av or au. The clients (sv, tv) corresponding to the vertices v ∈ V are also served, since the

upper bound of |V | + 1 is not exceeded with the so-defined tariffs. Hence, all demands are served. The

revenue consists of |E| from all clients corresponding to the edges E of G, |E|(|V | + 1)k from the clients

corresponding to the independent set V ′, and |E|(|V |−k) from the clients corresponding to V \V ′. That

yields a total revenue of |E||V |(k + 1) + |E|.

1

2

3

ba

(a) Indep. Set.

a2 a3a1
|V|+1 |V|+1 |V|+11 1

t t t t t

sbs1

1 a 2 b 3

s2sa s3

(b) All-service RTP.

Fig. 7. Reduction of Independent Set to all-service RTP.

Conversely, assume that there exists a set of tariffs that captures all demands, such that the revenue is

|E||V |(k+1)+ |E|. We will show that this implies that the graph G has an independent set of cardinality

at least k. Since all demands are captured at this tarification strategy, for any edge e = (v, u) ∈ E, the

tariff on at least one of the arcs, av or au, is 1. Consider the set of vertices V ′ := {v ∈ V : tav
> 1}. By

definition, no pair of nodes v, u ∈ V ′ is connected by an edge. Hence, V ′ is an independent set in G. Let

k′ := |V ′|. The revenue is equal to |E| + |E|(|V | − k′) + |E|(|V | + 1)k′ = |E||V |(k′ + 1) + |E|, which by

assumption is at least as large as |E||V |(k + 1) + |E|. This implies that k′ ≥ k and thus that V ′ is an

independent set in G of cardinality k′ ≥ k.
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Now, let us assume that we have an α-approximation algorithm A for the all-service RTP, with

α ≥ 1. Consider any instance G = (V,E) of Independent Set, and the all-service RTP resulting from

the above reduction. We can assume that both the optimal solution and the solution produced by A only

utilize tariff values 1 or |V |+ 1, because any tariff greater than 1 and not equal to |V |+ 1 can be turned

into |V |+1 with a revenue gain. So ΠRTP = |E||V |(k+1)+ |E| for some k, and ΠA = |E||V |(k′+1)+ |E|

for some k′. The first part of the proof yields that the maximal independent set of G has size k, and

algorithm A can be used to find an independent set of size at least k′. Moreover,

1

α
≤

|E||V |(k′ + 1) + |E|

|E||V |(k + 1) + |E|
=

1 + 1

|V | + k′

1 + 1

|V | + k
≤

2 + k′

1 + k
,

hence k′ ≥ (k+1)/α−2. In other words, we have an O(α)–approximation algorithm for the Independent

Set problem.

It follows from H̊astad [9] that the Independent Set problem cannot have a polynomial time ap-

proximation algorithm with worst case guarantee O(|V |1/2−ε) unless P = NP, and that it cannot have a

polynomial time approximation algorithm with worst case guarantee O(|V |1−ε) unless ZPP = NP. Since

the number of tariff arcs m in our transformation equals |V |, the first claim of the theorem follows. Since

the number of clients n in our transformation equals |V | + |E| ∈ O(|V |2), the second claim follows. ⊓⊔

Notice that this inapproximability result shows that we cannot even expect a performance guarantee

logarithmic in the total demand D, like the one we obtained before. On the positive side, however, we

can show the following.

Theorem 8. There exists an n-approximation algorithm for the all-service river tarification problem.

Proof. In an optimal solution, at least one client contributes to the total revenue at least ΠRTP/n, and

this contribution is achieved by utilizing a specific tariff arc at a certain tariff. The proof now works by

enumeration over all m·n possibilities for a client using a specific arc. So assume that a tariff arc b and

a client k are fixed. We claim that we can compute the maximum tariff τ b on arc b, together with tariffs

on all the other arcs, such that client k indeed utilizes arc b, and all other clients are served. Taking

the maximum over all m·n possibilities for a client using a specific arc, the revenue of this solution is

obviously at least ΠRTP/n.

The computation of this maximum tariff τ b on arc b, together with tariffs on all the other arcs, such

that client k indeed utilized arc b, and all other clients are served, can be achieved by binary search over

the possible tariffs τ on arc b. Denote by cka the fixed cost for client k when utilizing arc a, and recall

that uk denotes the maximum total (per unit) cost affordable for client k. Given that client k utilizes arc

b, the maximum tariff on arc b is uk − ckb, which determines the interval for the binary search. Given

some tariff τ on arc b, in order to make sure that client k utilizes arc b, we just define the tariffs on all

other tariff arcs a as τa = τ + ckb − cka. It is straightforward to verify if this yields a feasible solution

with all clients served or not. ⊓⊔
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