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PREFACE v

Preface

Onderwerp: doctoreren? Ik herinner me nog levendig het moment waarop ik
een mail kreeg van Goele met de uitnodiging om eens te komen bespreken of
een doctoraat iets voor mij zou zijn. Na overleg met haar en mijn toekomstige
co-promotor Panos bleek dat ze iemand zochten voor een onderzoeksproject in
numerieke optimalisatie, met als toepassingsgebied modelgebaseerde predictieve
controle. Gegeven mijn interesse in numerieke wiskunde heb ik deze kans met
beide handen gegrepen, en aan het eind van de zomervakantie begon ik aan een
vierjarig avontuur.

Hoewel ik Panos en Goele niet goed kende op voorhand, bleek het al snel dat ik
met hen als promotoren met mijn gat in de boter was gevallen. Ze zijn allebei
een krak in hun vak, en ze wisten me daarboven altijd goede raad te geven en
me bij te sturen, zowel in de details als in het grote plaatje. Ik wil hen dan ook
van harte bedanken voor de uitstekende begeleiding die ik heb mogen genieten.
Zonder hen was dit proefschrift niet mogelijk geweest.

I would like to especially express my gratitude to Panos, who became my main
supervisor during the later years of my PhD. His mathematical rigor was often
very useful in grounding my more intuitive thinking. Furthermore, I always
admired how fast he was in making connections with existing work and how
closely involved he was in my research. It is clearly a sign of his passion regarding
the topics, and it is undeniable that some of that has rubbed off on me. For
this, for the demanding but enticing research environment that he provided,
and for his overall good-natured character, I am deeply grateful.

During the latter half of my PhD, I also had the extremely good fortune of
working together with Andreas Themelis, who was a postdoc student under
the wings of Panos at that time. His outstanding theoretical knowledge of
optimization beautifully complemented my more practical skills, and I sincerely
believe our cooperation produced something that was greater than the sum
of its parts. I would like to thank him also for reading the manuscript and
providing extensive and helpful feedback. Outside of research he can only be
described as a very agreeable person, and I think the amount of times we were
laughing together is close to infinity, although I am sure he would argue there
is no such thing. Moreover, just before he left to Japan, I learned that he also
knows a thing or two about table tennis. Luckily, I know a thing or two more.

Daarboven zou ik graag alle leden van de Meco onderzoeksgroep, onder leiding
van Goele en Jan, van harte willen bedanken voor de mooie jaren. Bij mijn
intrede hebben het komische trio van Tim, Maarten en Ruben, de toenmalige
senioren van de groep, en Laurens zich over mij ontfermd. Het begon al goed
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toen ik samen met hen en Goele in het eerste weekend van mijn doctoraat
deelnam aan de Spartacus Run, een parcours van tien kilometer met veel
obstakels, modder, water en zand. Iedere middag aten we ook samen lunch
in de cafetaria en werd ik beetje bij beetje ingewijd in het reilen en zeilen
van de groep. Zo kwamen de (straffe) verhalen van conferenties en van andere
mensen in de groep en het departement al snel naar boven. Daarboven was
er vaak wel één of ander sociaal evenement gepland, zoals een uitstap naar de
Duvel brouwerij, de jaarlijkse barbecue bij Jan, de jaarlijkse Beneluxmeeting,
een avondje bowlen, een exclusief nieuwjaarsdiner, de Meco hike en (in tijden
van corona) de Meco get moving challenge. Zo deed ik gelukkig heel af en toe
toch ook iets aan sport. Bedankt, Goele, Jan, Laurens, Ruben, Maarten, Tim,
Joris, Daniele, Taranjit, Armin, Massimo, Dora, Niels, Erik, Andreas, Bastiaan,
Alejandro, Ajay, Mathias, Dries, David, Wim, András, Tommaso, Bence, Le,
Matteo, Laurane en Wilm.

I am also grateful to have met and interacted with some of the members of
the research group under Panos, namely Pantelis, Puya, Masoud, Mathijs and
Peter. I would like to thank Aleksandra, Peter and David, for the collaborations
on projects that did not appear in this thesis.

Buiten het werk heb ik nog een hele waslijst aan mensen te bedanken voor hun
positieve invloed op de kwaliteit van mijn leven. De prijs voor de eerste plaats
gaat naar mijn lief, Eva. Ze staat mij al gedurende vier jaar bij langs de zijlijn.
Van mijn onderwerp heeft ze misschien geen kaas gegeten, maar ik weet dat ik
op haar kan rekenen en dat ze me steunt in wat ik wil doen. Ik hou dan ook
ontzettend veel van haar. Als je dit leest, nog eens bedankt lieve schat. Graag
vermeld ik ook even haar ouders die ons menigmaal hebben ontvangen voor een
weekje vakantie aan zee. Bedankt, Christine en Johan.

Mijn broer, Raf, zou ik ook ten zeerste willen bedanken. Na ontelbaar veel “ah
ket ja ket’s” heeft hij me een paar jaar geleden er dan toch van overtuigd om
terug tafeltennis te komen spelen. Hiervan heb ik enorm genoten als tijdsverdrijf,
niet alleen door de leuke sport maar ook door zijn aanwezigheid, want we trappen
samen veel lol, en daarvoor ben ik hem enorm dankbaar. Daarbuiten zou ik
graag Klaas en Taranjit willen bedanken als frequente (voormalige) tafeltennis
partners, en David, Margo en Raijko als trainers. Natuurlijk mag ik de leden
van mijn club Sukarti in Tienen niet vergeten. Bedankt, Metin, Aline, Jan,
Patrick, Jonas, Borris, Kevin, Annelies, Nathan, Wouter, Guy en Jakob.

Verder ben ik veel dank verschuldigd aan mijn ouders. Hoewel ik in deze fase van
mijn leven het ouderlijke nestje verlaten heb en eindelijk een beetje volwassen
geworden ben, door onder andere mijn eigen was te doen, weet ik zeker dat ik
niet geraakt zou zijn waar ik nu ben zonder hen. Ze hadden altijd en hebben nog
steeds alleen maar het beste voor met mij, en daarvoor ben ik hen dankbaar.
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Ook bedankt aan hun partners. Snep en Menoubie, als jullie dit lezen, een hele
dikke “Maa besaaisch!” Mama, voor jou een even dikke “Dag de mammie!”

I would also like to express my deep appreciation for Peter Ralston, whose spirit
of investigation and questioning has impacted me in very profound ways. In
the same vein, I am deeply grateful to Immanuel Kant for his earth-shattering
Critique of Pure Reason, which was a great inspiration to me. On an inspirational
note, I would like to thank NF for his rap music.

Tot slot zou ik graag alle leden van mijn jury, professoren Jan Swevers, Stefan
Vandewalle, Johan Suykens, Moritz Diehl en Andreas Themelis, van harte willen
bedanken voor het zorgvuldig lezen en beoordelen van mijn proefschrift.
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Abstract

Automation will undoubtedly grow to become the cornerstone of various in-
dustries, such as manufacturing, automatic transportation, agriculture, and
household appliances. Novel challenging control applications continue to emerge,
leading to increased interest in advanced control methodologies, such as the op-
timization based model predictive control (MPC), since they possess inherent
capability to include complex objectives and constraints in their problem for-
mulation. The integration of MPC in practice has not been without roadblocks,
however. Challenges arise both in modeling complex scenarios and solving the
resulting optimization problems in real-time. This thesis uses penalty and aug-
mented Lagrangian approaches, a class of strategies for constrained optimization,
to make headway in both of these areas.

In a first part, this thesis considers the application of autonomous navigation in
environments with obstacles of general shapes. Previous research in optimization
based autonomous navigation is restricted to circular, rectangular, polygonal
or obstacles of convex shape. In contrast, we consider obstacles of which the
boundaries are defined by smooth functions, allowing for much more generality
in the shapes. Although the resulting constraints are nonsmooth, this thesis
shows how a quadratic penalty method is theoretically sound and extremely
efficient in practice in solving such problems.

In a second part, this thesis constructs a novel quadratic programming (QP)
solver, QPALM, based on the proximal augmented Lagrangian method. The
inner minimization is tailored to QPs by making use of efficient semismooth
Newton directions and optimal step sizes. Research on QP solvers is typically
restricted to convex QPs. In contrast, we also consider the possibility of finding
stationary points of nonconvex QPs, relying only on minor modifications of the
algorithm. QPALM is shown to theoretically exhibit a linear (outer) convergence
rate, even for nonconvex QPs, and demonstrated to possess a unique combination
of robustness and efficiency when compared to state-of-the-art QP solvers.

xv





Korte inhoud

Automatisering zal ongetwijfeld de pijler zijn van verschillende industrieën, zoals
productie, automatisch transport, agricultuur en huishoudtoestellen. Nieuwe
uitdagende toepassingen zorgen voor verhoogde interesse in geavanceerde regel-
technieken zoals modelgebaseerde predictieve controle (MPC), aangezien deze
inherent over de mogelijkheid beschikt om complexe objectieve en beperkingen
in rekening te brengen. De verspreiding van MPC in de praktijk is echter niet
zonder struikelblokken. Zowel in het modelleren van complexe scenario’s als
in het oplossen van de resulterende optimalisatieproblemen in real time zijn
er nog openstaande vragen. Om vooruitgang te boeken in deze twee domeinen
maakt dit proefschrift gebruik van penalisatie en geaugmenteerde Lagrangiaanse
methodes, een klasse van strategieën voor numerieke optimalisatie.

In het eerste deel van dit proefschrift wordt de toepassing van autonome navigatie
in een omgeving met generieke obstakels beschouwd. Voorafgaand onderzoek in
navigatie gebaseerd op optimalisatie is beperkt tot cirkelvormige, rechthoekige,
veelhoekige en convexe obstakels. We beschouwen daarentegen een algemenere
formulatie waarin de grenzen van de obstakels gedefinieerd zijn door gladde
functies. Hoewel de resulterende beperkingen niet glad zijn, toont dit proefschrift
toch hoe een kwadratische penalisatie methode in theorie gefundeerd is en in
de praktijk tot een zeer efficiënte oplossing leidt van zulke problemen.

In het tweede deel van dit proefschrift is het onderwerp QPALM, een nieuwe
solver voor kwadratische programmering (QP) op basis van de proximale geaug-
menteerde Lagrangiaanse methode. De interne minimalisatie is afgestemd op
QPs door gebruik te maken van efficiënte halfgladde Newton richtingen en op-
timale stapgroottes. Onderzoek in QP solvers is typisch beperkt tot convexe
problemen. We beschouwen daarentegen ook de mogelijkheid om stationaire pun-
ten te vinden van niet convexe problemen na enkele geringe aanpassingen aan
het algoritme. Er wordt theoretisch bewezen dat QPALM aan lineaire snelheid
convergeert voor zowel convexe als niet convexe problemen. Daarboven tonen
numerieke simulaties dat QPALM over een unieke combinatie van robuustheid
en efficiëntie beschikt in vergelijking met bestaande QP solvers.
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Chapter 1

Introduction

Model predictive control (MPC) was introduced in the 1980s as a control method
in chemical process plants and oil refineries. The key idea in MPC is to forecast
the system behavior over a certain time horizon and then to optimize this forecast
obtaining a sequence of control inputs by solving an optimal control problem (OCP).
In order to realize a feedback loop and deal with unforeseen disturbances and model-
plant mismatch, only the first control input is applied to the system, after which
measurements are made and a new but similar optimal control problem is solved. The
basic concepts of the MPC scheme, in this case used to track a reference setpoint, are
illustrated in Figure 1.1. MPC has proven to be successful in a variety of environments,
due to its inherent capability to include complex objectives and constraints in its
problem formulation. This gives MPC an enormous edge over classical control methods,
such as PIDs, which only consider the current system state and need heuristics and
fine-tuning to even work in the presence of constraints.

Figure 1.1: Basic MPC scheme.
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The main disadvantage of MPC is the relatively high computational effort, since
during every sample time an optimal control problem needs to be solved. Depending
on the time horizon, the nonlinearity of the system dynamics and the complexity
of the constraints, this might prove to be a challenge. It is in fact an especially
demanding task when applying MPC to fast dynamical systems, since the sampling
time then needs to be small for a satisfactory controller performance. Furthermore,
this optimization is typically carried out on resource-constrained hardware. As such,
solving the OCP in a fast and reliable manner is the topic of a substantial body of
research, see for instance [131, §8].

One avenue of research investigates the construction of the OCP, in particular regarding
the formulation of objective and constraints. For instance, there are two main ways
to incorporate the (discrete time) system dynamics, that is the relation between
successive states and inputs, into the OCP. First, in the multiple shooting formulation,
an equality constraint specifying the relation between the current state and input to
the next state is added for every time sample in the horizon to enforce the system
dynamics explicitly. Second, these relations can be used to eliminate each state as a
function of all the previous inputs and the initial state of the system, resulting in the
single shooting formulation. As such, no equality constraints are necessary to enforce
the system dynamics, but, certainly for a nonlinear system, the expressions for the
objective and remaining constraints become typically much more intricate as a result
of this recursive elimination.

In MPC, the objective designating what one wants to optimize is most often composed
of a sum of stage costs, each penalizing the state and input at the considered sampling
interval or stage. For example, in tracking MPC, the stage cost is typically a quadratic
form in the difference between the state/input and the reference state/input. In
economic MPC, the stage cost is some more general function that measures the
economic progress of the process. Another possibility is for the objective not to be
a function of the states and inputs but of a different quantity. Such is the case, for
instance, in time-optimal MPC, where the horizon time is considered as the objective,
and an equality constraint is listed to specify the required terminal state. In this thesis,
usually tracking MPC is considered.

A common type of constraints that appear in an OCP are simple bounds on the states
and inputs. Bounds on the states represent process requirements, such as for example
demanding the temperature of a reactor to be below a certain threshold. Bounds on
the inputs are usually a result of actuator limitations. Other constraints are typically
problem-specific and may complicate the OCP significantly. In autonomous navigation
for example, the states are required to be outside certain sets which represent obstacles
in the environment. The formulation of such set exclusion (or obstacle avoidance)
constraints is not straightforward, except in certain special cases. For instance, a
circular obstacle can be encoded as one inequality constraint, and convex obstacles
can be dealt with using the separating hyperplane theorem. However, the inclusion of
general obstacle shapes in optimal control problems still represents an open challenge.
The first research objective of this thesis is to provide a methodology for this exact
purpose.
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The second avenue of research on the topic of numerical optimal control looks more
directly into solving OCPs by exploring the application of both existing and new
optimization algorithms. Since sequential optimal control problems are very similar, a
crucial feature of considered algorithms is that they allow for a meaningful initialization
of the decision variables and possibly of some parameters, also known as warm starting
or hot starting. This specification excludes interior-point methods, an otherwise popular
class of optimization algorithms. Instead, typically sequential quadratic programming
(SQP) and recently also first-order methods are used to solve OCPs. Among the latter
ones, proximal algorithms have witnessed a recent increase in popularity, given their
capability of dealing straightforwardly with certain types of constraints, such as simple
bounds on the decision variables. Nevertheless, they lack a systematic way of dealing
directly with general constraints, and require therefore additional methodologies for
this purpose.

In certain cases, the OCP has a distinct structure. In linear MPC, for example, each
optimal control problem is a quadratic program (QP), that is an optimization problem
with a quadratic objective function and linear constraints. Given the prevalence of
QPs also in other fields such as machine learning, portfolio optimization and as
subproblems for sequential quadratic programming, solving QPs has been a key
challenge in optimization literature. Typical state-of-the-art solvers rely either on
interior-point methods, active-set methods or first-order methods. To the best of our
knowledge, the application of another powerful technique for constrained optimization,
the (proximal) augmented Lagrangian method, to QPs has hitherto received little
attention in comparison. The second research objective of this thesis is to work out a
full-fledged QP solver based on the proximal augmented Lagrangian method.

1.1 Contributions and structure of the thesis

As mentioned in the introduction, the contribution of this thesis is twofold, and the
text is correspondingly divided in two parts. Part I, spanning Chapters 2 to 5, considers
the application of MPC to autonomous navigation in the presence of general obstacle
shapes. A methodology involving the quadratic penalty method is worked out to deal
with the resulting mathematical programs with set exclusion constraints (MPSEC).
The division in chapters is as follows:

Chapter 2 - Autonomous Navigation This chapter reviews the literature on
autonomous navigation. After a broad overview, specific attention is placed on the
inclusion of obstacle avoidance constraints in OCPs. In addition, it presents the
mathematical formulation of general obstacle shapes considered in this thesis. Finally,
it presents the OCP that is considered in this part of the thesis. This OCP is inherently
nonconvex due to the obstacle avoidance constraints, and so poses a challenging problem
to optimization algorithms.
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Chapter 3 - Penalty Method for Mathematical Programs with Set Exclusion
Constraints This chapter outlines the quadratic penalty method that is used to
deal with general obstacle avoidance constraints. This method is observed to exhibit
favorable properties for avoiding local minima behind an obstacle, since the first
iteration with a low penalty results in a path that connects the starting and destination
point without caring (too much) about the obstacles. Then, as the penalty parameters
are increased, this path morphs towards the feasible region, resembling a homotopy.
For every value of the penalty parameters, the resulting subproblem consists of
a differentiable objective and simple bounds on the constraints. Therefore, these
subproblems can be efficiently solved by a suitable proximal algorithm, such as the
proximal averaged Newton-type method for optimal control (PANOC) [143], developed
at KU Leuven. Furthermore, on top of the basic optimization algorithm, several
heuristics are implemented to robustify the proposed approach, which is important
since the considered problem is inherently nonconvex and no method is guaranteed to
avoid all local minima.

Chapter 4 - Penalty Method for MPSEC: Convergence results This chapter
presents the convergence results that can be obtained for the proposed optimization
strategy. These results are nontrivial, because obtaining stationarity conditions for the
original problem is problematic, since the obstacle avoidance constraints are inherently
nondifferentiable nor can the normal cone to the feasible set be retrieved. As such,
this chapter instead formulates an equivalent problem with vertical complementarity
constraints, for which different stationarity concepts have been worked out in the
literature. The limit points of the iterates generated by the proposed approach, when
transformed to this equivalent problem, are then shown to satisfy different sets of
stationarity conditions, depending on the assumptions made. Interestingly, the results
presented in this chapter mirror some results obtained in the literature when applying
a quadratic penalty method directly to a problem with complementarity constraints.

Chapter 5 - Penalty Method for MPSEC: Numerical results This chapter
presents numerical simulations which demonstrate the applicability of the proposed
approach. The resulting MPC controller is shown to be capable of steering two nonlinear
vehicle models, a bicycle and a trailer, through a myriad of obstacle configurations.
Moreover, the approach is compared to state-of-the-art interior-point and sequential
quadratic programming methods applied to both the original problem and the one with
complementarity constraints. The results show that our approach is faster, obtains
lower objective values on average, and fails less often to solve the optimization problem
than the other solvers.

Part II, spanning Chapters 6 to 9, considers the development of QPALM, a quadratic
programming solver based on the proximal augmented Lagrangian method (P-ALM).
The inner subproblems are solved using a tailored and highly efficient iterative strategy
based on semismooth Newton directions, which rely on factorization update routines,
and optimal step sizes. The division in chapters is as follows:
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Chapter 6 - Quadratic Programming This chapter presents an overview of the
literature on convex quadratic programming and some of its application domains. As
soon as inequality constraints are introduced, the complexity of solving the QP is
increased markedly. State-of-the-art solvers typically rely on active-set, interior-point
or recently also first-order (proximal) methods. This chapter discusses the main ideas
behind these methods and their advantages and disadvantages. In addition, a brief
summary is given of existing methods for nonconvex quadratic programming.

Chapter 7 - Proximal Augmented Lagrangian Method This chapter presents
the application of a different optimization strategy, the proximal augmented Lagrangian
method, to quadratic programs. It shows the equivalence between this method and
the proximal point algorithm. If the QP is convex, then convergence of P-ALM can
straightforwardly be inferred from convergence results for inexact proximal point
mappings applied to maximally monotone operators. If the QP is nonconvex, however,
convergence is not shown as easily. This chapter extends the convergence results for
inexact proximal point iterations, albeit to the special case of a quadratic program.
Moreover, it shows the minimal modifications that are required to make P-ALM
applicable to nonconvex QPs.

Chapter 8 - The QPALM Algorithm This chapter presents the key components
of the open-source C implementation of QPALM. The inner minimization strategy
consists of semismooth Newton directions and optimal step sizes. To realize an efficient
algorithm, tailored linear algebra is considered, in particular for factorization update
routines and for finding the minimum eigenvalue of a symmetric matrix. Parameter
selection and update rules are often essential to the performance of an algorithm. The
same holds for QPALM, and hence this aspect is investigated thoroughly. Finally, some
additional aspects that make QPALM into a full-fledged solver, such as infeasibility
detection and preconditioning of the problem data, are also discussed in this chapter.

Chapter 9 - QPALM: Numerical results This chapter presents several numerical
benchmarks in which QPALM is compared with state-of-the-art QP solvers. Since
quadratic programming is a popular research field, some collections of QPs have been
compiled, amongst which the Maros-Mezaros set [108] is the most well known. This
set contains 138 convex QPs obtained from various application domains, many of
which are very large-scale and ill conditioned. Another collection is the Cutest [75],
which contains also nonconvex QPs. Furthermore, some structured quadratic programs
from specific application domains, such as linear MPC and portfolio optimization,
are used as benchmark problems. The results show that QPALM strikes a unique
balance between robustness against ill conditioning and efficiency, being able to solve
almost all difficult QPs (within a time limit) while still being very fast at solving easy
QPs. Moreover, it allows for warm starting unlike competitive interior-point methods,
making it a preferable choice for certain applications such as MPC.
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1.2 Preliminary material

1.2.1 Numbers

The set of natural numbers is denoted by N, and we adopt the convention that 0 ∈ N.
The set of real numbers is denoted by R and the set of extended-real numbers by
R := R ∪ {∞}.

Given a, b ∈ R we indicate with (a, b) := {x ∈ R | a < x < b} and [a, b] :=
{x ∈ R | a ≤ x ≤ b}, respectively, the open and closed (possibly extended-real) in-
tervals having a and b as endpoints. The half-open intervals (a, b] and [a, b) are defined
analogously. Occasionally, (a, b, · · · ) may also indicate a collection of numbers (or vec-
tors), but in this case the context will always be explicit enough to avoid confusion.
The set of positive real numbers is indicated as R+ := [0,∞), and that of strictly
positive real numbers as R++ := (0,∞).

The positive and negative parts of r ∈ R are defined as [r]+ := max {0, r} and
[r]− := max {0,−r}, respectively. Notice that [r]+ and [r]− are positive numbers such
that r = [r]+ − [r]−.

1.2.2 Vectors and matrices

We use x ∈ Rn to denote the primal variables of an optimization problem, and y ∈ Rm
to denote the Lagrange multipliers, also known as the dual variables (in convex
optimization). To avoid confusion in the MPC context, where x usually denotes the
system states, we instead use q for this purpose. The common notation for system
inputs u is maintained in this text.

For a vector x ∈ Rn, let xi denote its i-th element. In an MPC setting, the previous
notation will be overloaded but only with the subscript k. As such, qk and uk indicate
the states and inputs at the k-th time interval. The number of time intervals over
which the optimization occurs is known as the control horizon, and is denoted as N .

The element of a matrix A ∈ Rm×n in the i-th row and j-th column is denoted as
Aij ∈ R. For an index i ∈ [1,m], let Ai· denote the i-th row of A. Similarly, for a set of
indices I ⊆ [1,m], let AI· ∈ R|I|×n be the submatrix comprised of all the rows i ∈ I
of A. In the context of constraints within optimization problems, the notation AI
(without a dot) may also be used, since it is clear that we intend to specify a constraint
for each row. Analogously to the row notation, for j ∈ [1, n], and J ⊆ [1, n], let A·j
denote the j-th column of A, and A·J ∈ Rm×|J | the submatrix comprised of the
columns j ∈ J of A. Combined, let AIJ ∈ R|I|×|J | denote the submatrix comprised
of all the rows i ∈ I and all the columns j ∈ J of A. Finally, let us denote the matrix
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AI· ∈ Rm×n as the matrix with the corresponding rows from A and 0 elsewhere, i.e.

AIi· =
{
Ai· if i ∈ I,
0 otherwise,

and similarly AIJ ∈ Rm×n the matrix with elements

AIJij =
{
Aij if i ∈ I and j ∈ J ,
0 otherwise.

The n× n identity matrix is denoted as In. The vector of size n with each element
equal to one is denoted by 1n. Whenever n is clear from context we simply write I and
1. For a vector v ∈ Rn, let diag(v) denote the diagonal matrix with the elements of v
on the diagonal, that is for V = diag(v), Vii = vi, i = 1, . . . , n, and Vij = 0, ∀i 6= j.

With Sym(Rn), Sym+(Rn), and Sym++(Rn), we denote respectively the set of
symmetric, symmetric positive semidefinite, and symmetric positive definite matrices
in Rn×n.

The minimum and maximum eigenvalues of Q ∈ Sym(Rn) are denoted as λmin(Q)
and λmax(Q), respectively. For Q,R ∈ Sym(Rn) we write Q � R to indicate that
Q−R ∈ Sym+(Rn), and similarly Q � R indicates that Q−R ∈ Sym++(Rn). Any
matrix Q ∈ Sym+(Rn) induces the semi-norm ‖ · ‖Q on Rn, where ‖x‖2Q := x>Qx; in
case Q = I, that is, for the Euclidean norm, we omit the subscript and simply write
‖ · ‖. For p ∈ [1,∞], the `p norm on Rn is denoted by ‖ · ‖p, where

‖x‖∞ := max {|xi| | i = 1 . . . n}, and ‖x‖p :=
(∑n

i=1 |xi|
p
)1/p

for p ∈ [1,∞).

The transpose of a matrix A ∈ Rm×n is denoted by A> and the number of its nonzero
elements by |A|.

1.2.3 Statistics

The notation N (µ, σ2) represents the normal distribution with mean µ ∈ R and
standard deviation σ ≥ 0. As such, the standard normal distribution is given as
N (0, 1). Furthermore, let a ∼ N (µ, σ2) denote that the number a ∈ R is randomly
generated from this distribution, or that it is a random variable which follows such a
distribution. Similarly, for vectors v, µ ∈ Rn and a matrix Σ ∈ Sym+(Rn), the notation
v ∼ N (µ,Σ) denotes that the vector v is drawn from or follows the multivariate normal
distribution with mean µ and covariance matrix Σ.

The notation U(a, b) denotes the uniform distribution on the interval [a, b].
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For a random variable r, let E(r) denote the expected value of r, and let Var(r)
denote the variance of r.

1.2.4 Sequences

The notation {ak}k∈K represents a sequence indexed by elements of the set K, and
given a set E we write {ak}k∈K ⊂ E to indicate that ak ∈ E for all indices k ∈ K. We
say that {ak}k∈K ⊂ Rn is summable if

∑
k∈K ‖a

k‖ is finite, and square-summable
if {‖ak‖2}k∈K is summable.

We say that the sequence converges to a point a ∈ Rn

• Q-linearly if there exists ρ ∈ [0, 1) such that ‖ak+1− a‖ ≤ ρ‖ak − a‖ for every
k;

• R-linearly if there exists a sequence {εk}k∈N which is Q-linearly convergent
to 0 and it holds that ‖ak − a‖ ≤ εk;

• superlinearly if either ak = a for some k ∈ N, or ‖ak+1−a‖/‖ak−a‖ → 0 as
k →∞.

1.2.5 Sets

The closure of a set O ⊆ Rn is denoted as O, its interior as intO and its boundary
as ∂O := O \ intO.

A set C is convex if it contains the line segment between any two points in the set,
that is, if ∀x, y ∈ C, θ ∈ [0, 1] : θx+ (1− θ)y ∈ C.

The cardinality of a finite set J , i.e. the amount of (different) elements, is denoted as
|J |. It is always clear from the context whether the number of nonzeros of a matrix
or the cardinality of a set of numbers is intended.

1.2.6 Functions and mappings

Given a function h : Rn → R, its epigraph is the set

epih := {(x, α) ∈ Rn × R | h(x) ≤ α},
while its domain is

domh := {x ∈ Rn | h(x) <∞},
and for α ∈ R its α-level set is

lev≤α h := {x ∈ Rn | h(x) ≤ α}.
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Function h is said to be lower semicontinuous (lsc) if epih is a closed set in Rn+1

(h is also said to be closed); equivalently, h is lsc iff for all x̄ ∈ Rn it holds that

h(x̄) ≤ lim inf
x→x̄

h(x).

All level sets of an lsc function are closed. We say that h is proper if domh 6= ∅, and
that it is level bounded if for all α ∈ R the level set lev≤α h is a bounded subset of
Rn.

Function h is convex if for any x, y ∈ Rn and for θ ∈ [0, 1] it holds that h(θx+ (1−
θy)) ≤ θh(x) + (1− θ)h(y). It is strongly convex if ∃µ ∈ R++ such that h− µ

2 ‖ · ‖
2

is convex, and similarly h is hypoconvex if ∃σ ∈ R++ such that h+ σ
2 ‖ · ‖

2 is convex.

The Fenchel conjugate of a proper closed convex function h : Rn → R is the convex
function h∗ : Rn → R defined as

h∗(y) = sup
x

x>y − h(x). (1.1)

The class of functions h : Rn → R that are k times continuously differentiable is
denoted as Ck(Rn). We write h ∈ C1,1(Rn) to indicate that h ∈ C1(Rn) and that ∇h is
(globally) Lipschitz continuous with modulus Lh, i.e. ∀x, y ∈ Rn : ‖∇h(x)−∇h(y)‖ ≤
Lh‖x− y‖. To simplify the terminology, we will say that such an h is Lh-smooth. For
an Lh-smooth h the following quadratic upper bound exists, see e.g. [17, Prop. A.24],

h(y) ≤ h(x) +∇h(x)>(y − x) + Lh
2 ‖y − x‖

2 ∀x, y ∈ Rn. (1.2)

A function h : Rn → R is coercive if

lim
‖x‖→∞

h(x) =∞.

The identity mapping id : Rn → Rn maps its argument to itself, that is id(x) = x.

The indicator function of a set S ⊆ Rn is the function δS : Rn → R defined as

δS(x) =
{

0 if x ∈ S,
∞ otherwise. (1.3)

If S is nonempty and closed, then δS is proper and lsc.

The projection onto a nonempty closed convex set S ⊆ Rn is defined by ΠS(x) =
argminz∈S ‖z − x‖ or, equivalently, the unique point z ∈ S satisfying the inclusion

x− z ∈ NS(z), (1.4)

where
NS(z) :=

{
v ∈ Rn | v>(z − z′) ≤ 0 ∀z′ ∈ S

}
(1.5)
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is the normal cone of the set S at z. With dist(x, S) := infz∈Rn ‖z − x‖ we indicate
the distance of x from S.

Given a mapping F : Rn ⇒ Rn, we say that a point x is fixed (for F ) if x ∈ F (x),
while x is a zero (of F ) if 0 ∈ F (x). The fixed set (i.e., the set of fixed points) and
the zero set (i.e., the set of zeros) of F are respectively denoted by

fixF := {x ∈ Rn | x ∈ F (x)},
and

zerF := {x ∈ Rn | 0 ∈ F (x)}.

A point-to-set mapping M : Rn ⇒ Rn is monotone if (x − x′)>(ξ − ξ′) ≥ 0 for all
x, x′ ∈ Rn, ξ ∈ M(x) and ξ′ ∈ M(x′). It is maximally monotone if, additionally,
there exists no monotone operatorM′ 6=M such thatM(x) ⊆M′(x) for all x ∈ Rn.
The resolvent of a maximally monotone operatorM is the single-valued (in fact,
Lipschitz-continuous) mapping (id +M)−1, where (id +M)−1(x) is the unique point
x̄ ∈ Rn such that x− x̄ ∈M(x̄). For a linear mapping Σ, ΣM is the operator defined
as ΣM(x) := {Σy | y ∈M(x)}.

Given a proper and lsc function h : Rn → R, we denote by ∂̂h : Rn ⇒ Rn the regular
subdifferential of h, where

v ∈ ∂̂h(x) ⇔ lim inf
x′→x
x′ 6=x

h(x′)− h(x)− v>(x′ − x)
‖x′ − x‖ ≥ 0. (1.6)

The (limiting) subdifferential of h is ∂h : Rn ⇒ Rn, where v ∈ ∂h(x) iff x ∈ domh
and there exists a sequence {xk, vk}k∈N ⊆ gph ∂̂h such that

lim
k→∞

(xk, h(xk), vk) = (x, h(x), v).

Note that if h is proper lsc and convex, then

∂̂h(x) = ∂h(x) =
{
v ∈ Rn | h(x′) ≥ h(x) + v>(x′ − x) ∀x′ ∈ Rn

}
,

Definition 1.1 (Proximal mapping). The proximal mapping of h : Rn → R with
parameter γ > 0 is the set-valued map proxγh : Rn ⇒ domh defined as

proxγh(x) := argmin
w∈Rn

{
h(w) + 1

2γ ‖w − x‖
2}. (1.7)

We say that a function h is prox-bounded if h+ 1
2γ ‖ · ‖

2 is lower bounded for some
γ > 0. The value function of the minimization problem defining the proximal mapping
is the Moreau envelope with parameter γ, denoted hγ : Rn → R, namely

hγ(x) := inf
w∈Rn

{
h(w) + 1

2γ ‖w − x‖
2}. (1.8)



PRELIMINARY MATERIAL 11

We can extend these definitions in case γ is replaced by a matrix Σ ∈ Sym++(Rn).
The proximal mapping of h with (matrix) step size Σ is the set-valued mapping
proxΣ

h : Rn ⇒ Rn given by

proxΣ
h (x) := argmin

w∈Rn

{
h(w) + 1

2‖w − x‖
2
Σ−1
}
, (1.9)

and the corresponding Moreau envelope is hΣ : Rn → R defined as
hΣ(x) := min

w∈Rn

{
h(w) + 1

2‖w − x‖
2
Σ−1
}
.

It follows from the above definition that x̄ ∈ proxΣ
h (x) iff

hΣ(x) = h(x̄) + 1
2‖x− x̄‖

2
Σ−1 ≤ h(x′) + 1

2‖x− x
′‖2Σ−1 ∀x′ ∈ Rn. (1.10)

Moreover, for every x ∈ Rn it holds that

Σ−1(x− x̄) ∈ ∂̂h(x̄), where x̄ ∈ proxΣ
h (x). (1.11)





Part I

Penalty Method for Autonomous Navigation





Chapter 2

Autonomous Navigation

This chapter discusses existing methods for the problem of navigating a vehicle through
an obstructed environment, also known as autonomous navigation, motion planning
or path planning. Typically, a distinction is made between coupled and decoupled
approaches. Coupled approaches compute the optimal trajectory and the control inputs
to steer the vehicle along this path simultaneously, whereas decoupled approaches first
compute a geometric path and use a second component, such as an MPC controller,
to track this path.

Section 2.1 gives a succinct examination of the main motivation for this research, the
autonomous guided vehicle (AGV). Section 2.2 provides a brief overview of approaches
that focus on the generation of a geometric path only. Section 2.3 focuses instead
on optimization approaches that compute simultaneously the path and the required
control inputs to track this path. The last subsection presents also the formulation
used in this work to deal with general obstacle shapes.

2.1 Introduction

Automated guided vehicles have grown increasingly more popular in modern industry
[156]. Originally invented in the 1950s to automate material flow, the first era of AGVs
did not require a path planning component, but was instead guided over tracks. These
tracks either generated a magnetic field or were of a special color relative to the floor so
that the AGV could drive along them. This implementation may have been sufficient
for very repetitive material transport, but modern applications typically require a more
unfettered approach. For example, driverless cars, fruit-picking robots, lawn mowing
robots, cleaning robots and AGVs in modern e-commerce warehouses all depend upon
the autonomous generation of a collision-free trajectory that is dynamically updated
to account for uncertainty in the vehicle model or the environment. As a consequence,
there is a growing interest in more flexible motion planning techniques.

15
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Key components of an AGV include sensors to obtain information from the environ-
ment, actuators to drive the vehicle and a logical unit that computes the trajectory.
In this research, we abstract from the aspect of the sensors and instead consider the
environment, the obstacle shapes and the position of the vehicle as known information.
Regarding the actuators, we make the assumption that they apply the commanded
input to the vehicle immediately, although in practice they typically rely on fast PIDs
to track this input. Instead, the aspect that is of prime interest here is the path plan-
ning component. The following section looks at one type of approaches that deal with
the generation of a feasible geometric path.

2.2 Decoupled approaches

Given the above developments, finding the shortest path, or at least a feasible path
from a starting to a destination point, has been the subject of extensive research, and
various methods exist, such as graph-search and potential field methods. The reader
is referred to [95, 96] for some textbook overviews on these methods, of which some
material is summarized here. As shown in §3, a simple graph-search method can be
used to complement a coupled approach as a sort of fail-safe. The main disadvantage
of decoupled approaches is that they do not provide the control inputs required to
track the resulting path. As such, not only is a second component needed to compute
these inputs, but also a modicum of optimality is sacrificed, since no control inputs
might exist that can track the path exactly.

2.2.1 Graph-search methods

Graph-search methods try to obtain a global path and rely first and foremost on a
discretization of the space. In case of a two dimensional space, this discretization
often uses uniform squares, illustrated in Figure 2.1. When the midpoint of a square
is inside the free space, it is counted as a node. Conversely, when it is inside an
obstacle, the square is not added. Then, a graph of nodes is constructed by connecting
all horizontally, vertically and diagonally neighboring nodes [95, §6]. This graph is
also known as a road map. Similar ideas to decomposing the space include exact cell
decomposition, which tries to fit trapezoidal shapes on the free space [95, §5].

Some other methods to obtain the vertices of a road map exist. A relatively old idea
is to construct the visibility graph, by connecting the vertices of (polygonal) obstacles
[64]. As such, the obtained path will pass by the corners of obstacles, as shown on
Figure 2.2, which might be infeasible in case of uncertainty or disturbances. A more
recent idea emphasizing safe passage is the use of Voronoi diagrams [147], which try to
obtain nodes with maximal clearance with respect to all the obstacles, as illustrated
in Figure 2.3. Using a Voronoi diagram results in more distance between the vehicle
and the obstacles, which might be useful in the presence of large uncertainty, but the
path will likely be less optimal.
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Figure 2.1: Discretization of the space in squares [23]. The nodes (circles)
indicating free space are connected to all neighboring nodes, with S the starting
and G the goal node, while the colored squares represent obstacles.

Figure 2.2: Visibility graph with initial position qI and destination qG [95, §4.1].

The above methods of discretizing the space belong to the class of combinatorial plan-
ners. A big disadvantage of these is that the number of nodes can grow exponentially
as the space increases, or if the free space is multi-dimensional. Sampling-based plan-
ners instead use probabilistic methods to sample the free space randomly to try to
connect the starting point and the destination. As a result, they might construct a
road map much faster than combinatorial planners, but they are known to encounter
problems in certain situations, such as narrow passages, and they also sacrifice any
kind of optimality. Examples of sampling-based planners include probabilistic road
maps and rapidly exploring random trees [96, §5].

Once the road map is constructed, a search algorithm is employed to find the shortest
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Figure 2.3: Construction of the vertices of a Voronoi diagram [95, §4.2].

path connecting the start and destination, typically the well-known Dijkstra’s algorithm
[45] or one of its variants. Dijkstra’s algorithm keeps track of a priority queue of visited
nodes along with their cost, which is the distance covered from the start to these
nodes. Starting from the starting point as the only node in the queue, the algorithm
iteratively visits all neighboring nodes of the first node in the queue and updates the
minimum distances if necessary. This procedure is repeated until the destination is
the first node in the queue, which means that one has found the shortest path.

A disadvantage of Dijkstra’s algorithm is that it executes an uninformed search.
In other words, no relation between the visited nodes and the destination is taken
into account. As such, the algorithm may visit many nodes which lead away from
the destination instead of towards it during the search. In many cases, additional
information can be incorporated using heuristics to combat this issue. For example, the
popular A* algorithm [81] computes the cost of the nodes as the sum of the distance
covered from the start and the expected (Euclidean) distance to the destination. As a
result, the algorithm tends to first visit nodes that decrease the distance towards the
destination. For a heuristic to be admissible, the actual distance to the destination
should never be overestimated. As such, in a grid-based space as in Figure 2.1, the
Euclidean distance is indeed an admissible heuristic cost. The resulting path found
by A* for Figure 2.1 is drawn in Figure 2.4. Another variant, D* [145], which starts
at the destination and works its way back to the start in a similar manner, has been
invented to deal with partially unknown environments. When a path is discovered to
be blocked, only few cells need to be recomputed in D*, whereas A* would have to
replan from the blocked cell.
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Figure 2.4: Resulting path obtained by applying A* to Figure 2.1 [23].

2.2.2 Potential field methods

Potential field methods [62, 112] consider the problem from a different angle. They
associate an attractive potential field to the goal and repulsive potential fields to
the obstacles. As such, the potential function at a point in space q is given by
U(q) = Uatt(q) + Urep(q), which is illustrated for a 2D space with two rectangular
obstacles in Figure 2.5. The exact formulation of the potential functions is a subject
of much research, and is outside the scope of this short overview.

Figure 2.5: Potential field as a result of attractive and repulsive potentials [23].

The force working on the vehicle as a result of these potentials is given by F (q) =
−∇U(q). At every time instant, this force is used as the reference for a local feedback
control law. Therefore, the required computation time is small, and the potential
field method can be executed at high sampling rates. In essence, it is as though the
potential is minimized iteratively using a gradient descent method. However, local
minima tend to occur in the potential which do not correspond to the goal position,
due to the repulsive potentials of the obstacles. In fact, it is well known that the
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potential field method suffers from such minima, as illustrated in Figure 2.6, and
substantial research efforts have been directed at tackling this crucial issue.

Figure 2.6: Two examples of how local optima can hinder the applicability of
the potential field method [28, §4].

Both graph search methods and potential field methods compute a geometric path (or
direction) to move along, without providing the required control inputs. It is worth
mentioning that in some problems it is possible to take into account the kinematics in
a decoupled approach, see for instance [25, 165]. However, to this end a case-dependent
smoothing functionality to connect waypoints into a feasible path is required. Another
approach with a similar spirit is that of motion primitives [58, 78, 54], which are
essentially (short) maneuvers the vehicle can execute. A graph search method may
then be used to search the space of maneuvers. However, the time complexity of this
method scales exponentially in the number of maneuvers. As a result only very few
maneuvers are typically considered. Given these difficulties and the recent advances in
computing technology and optimization algorithms, the interest in coupled approaches,
which compute both a path and the control inputs simultaneously, has been growing.

2.3 Coupled approaches

In a coupled approach for motion planning systems, an optimal control problem needs
to be solved at every time instant, accounting for geometrical constraints, system
dynamics and limitations. The first subsection outlines the structure of such an OCP.
The remaining subsections discuss techniques to include obstacle avoidance constraints
in the OCP.

2.3.1 Optimal control problem

In the setting of an autonomous motion system in an obstructed environment, the
optimal control problem will typically have the following form:
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minimize
(q,u)∈R(N+1)nq+Nnu

`(q, u) (2.1a)

subject to qk+1 = ϕk(qk, uk), k = 0, . . . , N − 1, (2.1b)

q0 = q̄, (2.1c)

uk ∈ Uk, qk ∈ Qk, k = 0, . . . , N − 1, (2.1d)

qk 6∈ Oi, k = 1, . . . , N, i = 1, . . . , NO. (2.1e)

Here, u and q represent the vector of control inputs and states of the system respectively,
uk and qk the input and state at time instant k, q̄ the initial state (or an estimate
thereof) and ϕk the discrete time system dynamics. N denotes the control horizon,
that is the number of inputs which are computed, and nu and nq the number of
inputs and states the system has. The objective ` depends on the problem setting, as
mentioned in §1. In our application of motion planning, ` is given as the sum of stage
costs and a terminal cost, that is

`(q, u) = `N (qN ) +
N−1∑

k=0

`k(qk, uk), (2.2)

where the stage cost

`k(qk, uk) = (qk − qref)ᵀQk(qk − qref) + (uk − uref)ᵀRk(uk − uref),

and the terminal cost

`N (qN ) = (qN − qref)ᵀQN (qN − qref).

Here, qref and uref are the reference state and input, Qk, QN ∈ Sym+(Rnq ) and
Rk ∈ Sym++(Rnu). With this choice of objective, we will try to minimize the distance
from all states to the destination state, taking into account also a small penalty for the
use of the inputs and therefore striking a balance between a time- and energy-optimal
trajectory.

The constraints (2.1d) represent general input and state constraints, as is common in
MPC [131]. Finally, (2.1e) denotes general obstacle avoidance constraints, specifying
that the states should be outside of certain sets Oi. The number of obstacles is denoted
by NO, and these are considered static. There is no problem in extending the given
formulation to dynamic obstacles, since (2.1e) would then be replaced by qk 6∈ Oik.

OCP (2.1) has both the inputs and the states as decision variables. This formulation
is known as the multiple shooting formulation, or as the simultaneous approach to
optimal control. One can condense this problem by eliminating the states through
recursive substitution of (2.1b), which leaves only the inputs as decision variables and
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the initial state as a parameter. Let for instance q = Φ(u) = (Φ0(u), . . . , ΦN (u)) with
Φ0(u) = q̄ and

qk+1 = Φk+1(u) = ϕk(Φk(u), uk).

Using this notation, (2.1) can alternatively be cast into the single shooting formulation,
or the sequential approach to optimal control:

minimize
u∈RNnu

`(u) (2.3a)

subject to uk ∈ Uk, k = 0, . . . , N − 1, (2.3b)

Φk(u) ∈ Qk, k = 0, . . . , N − 1, (2.3c)

Φk(u) 6∈ Oi, k = 1, . . . , N, i = 1, . . . , NO. (2.3d)

Here, the objective `(u) is obtained by eliminating the states from (2.2), as

`(u) = `N (ΦN (u)) +
N−1∑

k=0

`k(Φk(u), uk). (2.4)

The sequential approach yields a smaller optimization problem than the simultaneous
approach, but may not always be preferable. When the system dynamics ϕk are linear,
for example, this approach typically destroys the sparsity structure of the underlying
matrices. Furthermore, in nonlinear MPC, the recursive evaluation of a nonlinear
function in Φ may compound the “severity” of the nonlinearity. Moreover, it is often
not straightforward to translate the state constraints (2.3c) into input constraints.
Therefore, as a rule of thumb, the sequential approach is preferable if there is no
significant sparsity or the solver cannot exploit it, and when the system is stable,
whereas the simultaneous approach is preferable for unstable nonlinear systems and
for problems with (complicated) state constraints [131, §8.1.3].

In this work, the sequential approach will be used. To simplify the notation and
subsequent analysis of (2.3), we will collect the input constraints (2.3b) as u ∈ U =
U0 × U1 × · · · × UN−1, leave out state constraints, and assume that the mappings Φk
in (2.3d) can somehow be incorporated in the obstacle formulations. Furthermore, we
will denote the decision variable as x ∈ Rn (and replace U by X ), as is common in
optimization literature. This results in the following simplified version of the problem

minimize
x∈Rn

`(x) (2.5a)

subject to x ∈ X , (2.5b)
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x 6∈ Oi, i = 1, . . . , NO. (2.5c)

What remains now is the meaningful inclusion of obstacle avoidance constraints (2.5c),
which is not trivial for general sets. Only specific types of obstacles can be incorporated
straightforwardly. Another approach is to formulate state constraints that describe (a
limited part of) the free space, effectively removing the need for (2.5c). This method
starts from a feasible geometric path, usually computed by a decoupled approach, and
expands polygons (or other shapes) around it to create a feasible tunnel [6, 104, 160].
Obviously, a disadvantage of such an approach is that the considered feasible region
might be very limited. The remainder of this section gives a brief summary of obstacle
avoidance formulations within optimization problems, restricted to 2D spaces for
simplicity.

2.3.2 Simple inequalities

For circular obstacles, an obstacle avoidance constraint can be written down specifying
that the distance between the motion system and the center of the circle is larger
than its radius. If, furthermore, the motion system is circular with radius R, and the
obstacle has a radius of RO and a center point p, the constraint becomes

‖qk − p‖ ≥ R+RO.

This formulation was for instance used in [162], where the authors considered multiple
circular motion systems with collision avoidance amongst each other. Of course,
ellipsoidal obstacles can be considered in a similar manner, with a weighted norm on
the distance computation.

Another example of simple inequality constraints are obstacles with only one boundary,
such as a wall. These constraints might as well have been incorporated in the general
state constraints of (2.1d). A slightly less trivial example, perhaps, is lane keeping of
cars on highroads [155]. There, the obstacles can be translated as simple bounds on
the (lateral) position error with respect to the central lane.

2.3.3 Distance functions

Another commonly used approach is to impose via inequality constraints that the
distance to the (convex) obstacle sets should be positive or larger than a small positive
margin [65]. In fact, circular obstacles as mentioned above are a special case of this
method. The disadvantage of such an approach is that calculating the distance of
a point to a general convex set requires the solution of a minimization problem to
obtain the projection of that point on the set.

A similar idea is to impose that the gauge function of every obstacle set is bounded
below by 1. The gauge function of a set evaluated at a point represents the smallest
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scaling factor applied to the set such that the point is included in the set. This
approach is especially useful when the polar set of each obstacle is easily representable,
such as for polytopic obstacles, where this method translates such constraints into
bilinear inequality constraints [123].

2.3.4 Separating hyperplane theorem

For convex motion systems and convex obstacles, the separating hyperplane theorem
[20, §2.5.1] provides another way of encoding obstacle avoidance constraints. This
theorem states that for two disjoint convex sets C and D, there exist vectors a 6= 0
and b, such that a>x ≤ b,∀x ∈ C and a>x ≥ b, ∀x ∈ D. The hyperplane {x : a>x = b}
is called a separating hyperplane of C and D, since these sets lie on opposing sides
thereof, as illustrated in Figure 2.7.

Figure 2.7: {x : a>x = b} is a separating hyperplane of the sets C and D [20].

Supposing the obstacles and motion system are circular and/or polygonal, it is
relatively straightforward to identify all the extreme points, either the circumference
(given by a center point and radius) or the vertices of the polygon. Therefore, it
suffices to impose the separating hyperplane inequalities for these extreme points of
the obstacle and motion vehicle sets (as a function of qk) in order to establish collision
avoidance of the complete sets at all times. Collision avoidance using the separating
hyperplane theorem for a rectangular motion system and possibly dynamic circular
and rectangular obstacles is illustrated in [110].

2.3.5 General obstacle formulation

To deal with a more general framework for considering obstacles, we will use the
formulation first introduced in [136]. In this work, an obstacle set Oi is given by a set
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of nonlinear inequalities:

Oi = {x ∈ Rn : hij(x) > 0, j = 1, . . . ,mi}. (2.6)

Here, hij : Rn → R are continuously differentiable functions describing obstacles
boundaries. The obstacle boundary is noted as ∂Oi and the closure as Oi = Oi ∪ ∂Oi.
In almost all cases, the boundary is given as the following set:

∂Oi = {x ∈ Rn : hi(x) ≥ 0, hij(x) = 0 for some j}. (2.7)

Remark 2.1. In (2.7), instead of being equal, the boundary may only be a subset,
for instance in the case where one of the boundary functions is artificially set to 0
outside the obstacle. For example, consider O = {x ∈ R : h(x) > 0}, with h(x) ={
x2 if x > 0,
0 otherwise , then ∂O = {0} while the set in (2.7) would be (−∞, 0]. In the

remainder of this text it is assumed that (2.7) holds. Correctness of (2.7) can also be
derived by assuming the Mangasarian-Fromovitz constraint qualification (MFCQ) on
the active gradients ∇hi(x) at boundary points, as shown in the following lemma.

Lemma 2.2. For an obstacle Oi given in (2.6), let Ai(x) = {j : hij(x) = 0}. If ∀x :
hij(x) ≥ 0, j = 1, . . . ,mi, there exists a vector dx such that d>x∇hij(x) > 0, ∀j ∈ Ai(x),
then the obstacle boundary is given by (2.7).

Proof. Let C = {x ∈ Rn : hi(x) ≥ 0, hij(x) = 0 for some j} be the right-hand side
of (2.7). Showing that C = ∂Oi can be done by, for any x̄ ∈ C, demonstrating the
existence of two sequences, {xk1} ⊂ Oi and {xk2} ⊂ Oci , both converging to x̄. It is
straightforward to see that, given the continuity and differentiability of the functions
hij(x), the sequences xk1 = x̄ + 1

k
dx̄ and xk2 = x̄ − 1

k
dx̄, for k large enough, satisfy

exactly these properties.

Remark 2.3. It is well known that the linear independence constraint qualification
(LICQ) implies MFCQ, and so assuming LICQ, which we do in the theory of §4, is
also sufficient to prove Lemma 2.2.

To include an obstacle avoidance constraint of type (2.6) meaningfully in the OCP,
we can replace (2.5c) by the following equality constraint:

ψi(x) :=
mi∏

j=1

[hij(x)]+ = 0, (2.8)

where the notation [ · ]+ = max( · , 0). The obstacle cost function ψi(x) is by definition
strictly positive for x ∈ Oi, and exactly zero for x 6∈ Oi.

Note that each obstacle cost function ψi is differentiable at points strictly inside and
strictly outside the obstacle, but due to the presence of the [ · ]+ operators, it is not
differentiable at points on the obstacle boundary. As shown in Section 3.1, a quadratic
version ψ2

i is differentiable, but the constraint ψ2
i (x) = 0 is similarly problematic
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in that its gradient is zero for any feasible point, which violates every constraint
qualification. How we overcome this theoretical challenge is the topic of §4. But first,
the next chapter will discuss our strategy for solving the OCP with such obstacle
avoidance constraints.

2.4 Summary

This chapter broadly covered the literature on autonomous navigation in an obstructed
environment. The problem consists on the one hand of finding a feasible, and in some
sense optimal, path that goes from start to destination while avoiding obstacles, and
on the other hand of computing the control inputs to steer the vehicle along this path.
Decoupled approaches, such as graph-search and potential field methods, execute
this in two separate steps. As such, they are typically fast, but the vehicle actuation
might not be compatible with the geometric path. Coupled approaches combine the
two problems in one optimization program. It is not trivial, however, to incorporate
obstacles in this formulation, except for some special cases. Finally, a more general
framework was considered in which any obstacle could be included, as long as its
boundary can be defined using smooth functions.



Chapter 3

Penalty Method for Mathematical Programs
with Set Exclusion Constraints

This chapter considers a solution methodology for the OCP with general obstacle
avoidance constraints, introduced in §2 as

minimize
x∈X

`(x) (3.1a)

subject to ψi(x) = 0, i = 1, . . . ,m. (3.1b)

Here, ` ∈ C1,1(Rn), X is a nonempty, closed and convex set, and the obstacle
cost function ψi(x) is given by (2.8). Since the distinct feature of (3.1) is the set
exclusion constraints, we denote this the mathematical program with set exclusion
constraints (MPSEC). The key difficulty in solving this optimization problem is the
nondifferentiable constraints (3.1b). It turns out, however, that a squared variant
ψ2
i (x) = 0 is differentiable, and as such amenable to a penalty formulation. Furthermore,

given the nonconvex nature of the autonomous navigation problem, many local minima
exist due to the presence of the obstacles. To overcome this issue, this chapter proposes
some heuristics to supplement the penalty method in practice.

Section 3.1 presents the quadratic penalty method employed to deal with the obstacle
avoidance constraints (3.1b). This method requires the solution of a series of opti-
mization problems, which are unconstrained aside from the abstract set constraint
x ∈ X . Subproblems of this type can efficiently be solved using a projection based
method. Section 3.2 outlines one suitable method for this purpose which exhibits high
efficiency, namely the proximal averaged Newton-type method for optimal control
(PANOC) [143]. Given the nonconvex nature of the autonomous navigation problem,
many local minima exist due to the presence of the obstacles. Finally, Section 3.3
presents some heuristics developed in this work to complement the MPC algorithm in
practice, such that it can avoid local minima and steer the vehicle safely.

The material in this chapter is based on the publications [82, 83].

27
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3.1 Quadratic Penalty Method

As mentioned in Section 2.3.5, the obstacle cost function ψi(x) is nonsmooth due to
the [ · ]+ operators. The same, however, does not hold for ψ2

i (x), since its gradient is
given by

∇ψ2
i (x) = ∇

(
mi∏

j=1

[hij(x)]2+

)

= 2
mi∑

j=1

∇hij(x)[hij(x)]+
∏

k 6=j
[hik(x)]2+

= 2
mi∑

j=1

∇hij(x) [hij(x)]+
∏

k 6=j
[hik(x)]+

︸ ︷︷ ︸
ψi(x)

hik(x)

= 2ψi(x)
mi∑

j=1

∇hij(x)
∏

k 6=j
hik(x), (3.2)

where the second equality follows from the product rule of differentiation, which can
be used since [ · ]2+ is differentiable, see Lemma A.1 in [50], with ∇([w]2+) = 2[w]+∇w,
and the third from the fact that [w]2+ = w[w]+. Note, however, that this gradient is
again nonsmooth due to the [ · ]+ operators in ψi(x).

3.1.1 The algorithm

Given that the obstacle cost function can be made smooth by squaring it, and that
ψ2
i (x) is, like ψi(x), only nonzero for x ∈ Oi, it seems intuitive to consider a penalty

approach using this function. As such, we will solve a sequence of problems

minimize
x∈X

Lµ(x), (3.3)

where the objective is composed of the original objective function `(x) and a quadratic
penalty on ψi for each obstacle, that is

Lµ(x) = `(x) + µ

2

n∑

i=1

ψ2
i (x). (3.4)

Here, µ is a (positive) penalty parameter that indicates the relative weight given to
avoiding the obstacles. Using a vector of penalty factors, one for each constraint, is
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Algorithm 3.1 Quadratic penalty method for problem (3.3)

Require x0 ∈ Rn, µ1 > 0, εν , ε∗, η∗ ≥ 0, {εν} → ε∗, ω > 1
Provide Solution x∗ to (3.1)
1: for ν = 1, 2, ... do
2: Use inner optimization algorithm to minimize Lµν (x) as in (3.4) with

starting point xν−1 until we find xν ∈ X and associated eν satisfying (3.6).
3: if ‖eν‖∞ ≤ ε∗ and ‖ψ(xν)‖∞ ≤ η∗ then
4: Return x∗ ← xν .
5: µν+1 ← ωµν

typical in practice, but will not be considered in the analysis for the sake of keeping
the presentation simple. A common extension to the quadratic penalty method is
the augmented Lagrangian method, in which the objective of the subproblem is
Lµ(x) +

∑n

i=1 λiψi(x), with λ a running estimate of the Lagrange multipliers of the
problem. Although this method generally has favorable properties with respect to
the quadratic penalty method, it is not applicable here since the last term is again
nonsmooth, and this would severely complicate and limit the techniques applicable for
the subproblem minimization. On the contrary, owing to (3.2), Lµ(x) is continuously
differentiable, with gradient

∇Lµ(x) = ∇`(x) + µ

n∑

i=1

ψi(x)
mi∑

j=1

∇hij(x)
∏

k 6=j
hik(x). (3.5)

Hence, a smooth optimization technique can be used to perform the minimization
in (3.3). Our choice for this inner algorithm will be outlined in Section 3.2. Solving
each problem (3.3) for a fixed value µν is performed approximately, yielding xν ∈ X
as an εν-approximate Karush-Kuhn-Tucker (KKT) point, that is, a feasible point xν
satisfying

∃eν : eν ∈ ∇Lµν (xν) +NX (xν), ‖eν‖∞ ≤ εν . (3.6)

Here, {εν} is a sequence of positive tolerances tending towards some final tolerance ε∗
as ν →∞. The steps of the quadratic penalty method are given in Algorithm 3.1.

Remark 3.1. In Algorithm 3.1, let ψ(x) denote the vector of all obstacle cost
functions, i.e. (ψ1(x), . . . , ψNO (x)), such that ‖ψ(x)‖∞ ≤ η∗ ⇔ ∀i : ψi(xν) ≤ η∗. Note
that, in practice, the algorithm could also converge to a point of local infeasibility,
where (at least) one ψi(x) does not tend to zero.

3.1.2 The parameters

In the penalty method, the penalty factors are raised until the optimization solver
has converged to a solution for which the norm of the obstacle cost function is lower
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than a certain tolerance η∗. Each subproblem (3.3) is a soft-constrained version of
the original problem (3.1). Only for an infinite value of µ are these two problems
equivalent, since the quadratic penalty then corresponds to an indicator function
on the feasible set (outside of obstacles). Therefore, the quadratic penalty method
is usually only exact (η∗ = 0) if the penalty factor is raised to infinity [121]. With
this in mind, a strictly positive tolerance is chosen, such that an infinite penalty
is not required. In our algorithm, this is often on the order of η∗ = 10−2. Virtual
enlargements of the obstacle furthermore complement this formulation, so that the
real obstacles can in fact be completely avoided, even though the constraint tolerance
is strictly positive. Such enlargements also allow the formulation to be used for a
vehicle with a finite width.

In practice, the penalty parameter is also capped from above, say by µ∗ > 0, such
that step 5 is replaced by

5: µν+1 ← min(ωµν , µ∗).

Consequently, the termination criterion in step 3 should change accordingly to
3: If ‖eν‖∞ ≤ ε∗ and (‖ψ(xν)‖∞ ≤ η∗ or µν == µ∗) then

The reason for upper bounding the penalty parameter is twofold. First, high values
of this factor lead to ill conditioning of the subproblem (3.3), which can make it
difficult for the inner solver to terminate quickly [15, §2.1]. Second, as mentioned in
Remark 3.1, the sequence might have a limit point which is locally infeasible. Therefore,
if ‖ψ(xν)‖∞ is still large for µν = µ∗, then the sequence may be converging to such
a point, although the cap µ∗ might also simply be too small. A good choice for the
cap for our problems was µ∗ = 104, but this may well be problem dependent. For the
theoretical results of §4, we require unbounded penalty parameters, as outlined in the
original step 5. In practice, we also specify a maximum amount of iterations (or time),
but again this is left out of Algorithm 3.1, and will be left out of any algorithm in the
remainder of this text, for simplicity.

A penalty update factor ω is used to increase the penalty factor at each outer iteration.
Typically, recommended values of this factor are somewhere in the interval [1.5, 10]
[121, §17.1] or [4, 10] [15, §2.1]. However, there is always a trade-off in choosing this
value: low values make the different optimization problems more similar and thus
easier to warm start, but more problems will have to be solved in order to converge
to a feasible solution. High values in contrast, render the consecutive optimization
problems more difficult, but fewer of them are needed. It is observed that, for our
motion planning problem, the optimization problems do not suffer from a high penalty
update factor, thus ω is here chosen to be 10. In addition, after every update of the
penalty factor, the solver is warm started with the solution from the previous iteration,
as indicated in step 2.
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Figure 3.1: Illustration of the penalty method. The enlarged obstacle is defined
by O = {(x, y) : y > x2 − 1, y < x2/2}.

3.1.3 Practical benefit

Figure 3.1a shows an illustration of Algorithm 3.1 applied to a problem with a
crescent-shaped obstacle. The trajectories ranging from blue to green correspond to
approximate solutions of (3.3) for increasing penalty factors, which determine the
balance between a feasible trajectory and one that is optimal for the least squares
objective `(x), as given in (2.4). The enlarged obstacle can never be completely avoided,
but for high enough penalty factors, the original obstacle can be, as illustrated by the
final two green trajectories. The combination of a virtual enlargement of the obstacle
and finite values for the penalty factors is therefore indeed successful. Figure 3.1a also
demonstrates that successive trajectories are usually similar in shape even though
the penalty factors are updated somewhat aggressively in this work. Therefore, warm
starting aids tremendously in the convergence of the subproblems.

The application of the penalty method may have an additional qualitative benefit
for obstacle avoidance problems, illustrated by the difference between Figure 3.1a
and Figure 3.1b. Assuming some obstacle is blocking the shortest path from start to
destination, the initial trajectory calculated with low penalty factors is very likely to
arrive at the destination while violating obstacle avoidance constraints. Subsequent
iterations with higher and higher penalty factors tend to homotopically push the
trajectory to the edge of the obstacle while remaining connected to the destination.
In contrast, solving the problem only once with a high value for the penalty factors
can impede convergence to a trajectory that reaches the destination since the vehicle
is more likely to get stuck behind an obstacle, as illustrated in Figure 3.1b. Using
the penalty method for autonomous navigation problems of this sort therefore aids in
avoiding the local minimum.

What remains now is to discuss the most computationally expensive step in Algo-
rithm 3.1, namely solving the subproblem in step 2. As mentioned, we can make use
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of the recently introduced proximal averaged Newton-type method for optimal control
(PANOC) [143].

3.2 PANOC

PANOC belongs to a class of proximal algorithms [122]. In essence, these algorithms
use the proximal operator, as defined in Definition 1.1, one way or another. Proximal
algorithms have recently received increased attention, since they are first-order methods
and so do not require expensive matrix computations like in Newton-type methods. As
such, their iterations are typically cheap, but at the price of some robustness against
ill conditioning and potentially requiring a high number of iterations. As first-order
methods, they may require a large amount of iterations to converge, especially for
strict termination tolerances. Furthermore, proximal algorithms are typically only
useful when the proximal mapping is easily computable. The reader is referred to [122]
for an overview of many interesting applications which belong in this category. For
our purpose here, it is important to recognize that the proximal mapping applied to
an indicator function (1.3) of a set is equivalent to the projection operator for that
set. Therefore, given that X is a set on which it is easy to project, as for instance for
simple bound constraints on the control inputs, then proxδX (x) = ΠX (x) is tractable.

3.2.1 Proximal gradient method

One example of a popular proximal algorithm is the proximal gradient method, also
known as forward-backward splitting. This method applies to a problem of type

minimize f(x) + g(x),

where f : Rn → R is an Lf -smooth function, and g : Rn → R a proper and lsc function.
The proximal gradient method starts from an initial point x0 and iteratively computes

xk+1 ∈ Tγ(xk) := proxγg(xk − γ∇f(xk)),

where γ > 0 is a suitable step size. The proximal gradient mapping Tγ consists of a
gradient descent step on f , which is a forward step since it explicitly relies on current
information, and the proximal mapping on g, which is a backward step since it is
implicit as it involves a minimization, hence the names proximal gradient method and
forward-backward splitting. Since problem (3.3) is equivalent to

minimize Lµ(x) + δX (x),
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we can recognize f = Lµ and g = δX , such that the proximal gradient method for this
problem amounts to

xk+1 = Tγ(x) = ΠX (xk − γ∇Lµ(xk)). (3.7)

Here, it is assumed that X is convex, which makes g = δX convex and ΠX have a
unique value, hence the replacement of the ∈ operator by the = operator. Although
extensively employed in practice, the proximal gradient algorithm, being a first-order
method, has Q-linear convergence at best, and the Q-factor approaches one when the
problem is more ill conditioned.

What makes PANOC an innovative proximal algorithm is that it combines proximal
gradient steps with efficient Newton-type steps to improve the convergence rate.

3.2.2 Newton-type acceleration

Finding a stationary point for problem (3.3), since g is convex, is equivalent to finding
a point at which the fixed-point residual Rγ is equal to zero [143], where

Rγ(x) = 1
γ

(x− Tγ(x)), (3.8)

since Rγ(x) = 0 can easily be transformed into (3.6), with eν = 0, by substituting
(3.7) and the definition of the projection operator in (1.4). This motivates addressing
the problem by applying a Newton-type step of the form

xk+1 = xk −HkRγ(xk),

where Hk should capture curvature information. Typically, this is a running approxi-
mation of the (local) inverse Hessian of Rγ(xk). In quasi-Newton methods, for instance,
Hk starts typically from some multiple of the identity and is updated after every
iteration using the secant condition

xk+1 − xk = Hk+1(Rγ(xk+1)−Rγ(xk)). (3.9)

There is still some freedom to choose a matrix Hk+1 satisfying this secant condition,
and different quasi-Newton methods, such as the Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) and symmetric rank-1 (SR1) methods, derive different updates based
on this freedom [121, §6]. What they have in common, however, is that the update
is of low-rank, respectively 2 and 1 for BFGS and SR1. Furthermore, there is a
limited memory variant of BFGS (L-BFGS) which avoids storing Hk, typically a dense
matrix, but instead stores this matrix implicitly by saving a finite number, say m, of
vectors xk+1 − xk and (Rγ(xk+1)− Rγ(xk)) [121, §7.2]. The matrix vector product
Hk+1(Rγ(xk+1)−Rγ(xk)) can then be carried out via a two-loop recursion of inner
products and vector summations, see [121, Algorithm 7.4]. L-BFGS not only has the
advantage of requiring little memory, but it typically also works well in practice since
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Algorithm 3.2 PANOC algorithm for problem (3.3)

Require LLµ > 0, γ ∈ (0, 1
LLµ

), σ ∈ (0, γ2 (1− γ LLµ

2 )), x0 ∈ Rn, τ > 0,
L-BFGS memory mem.

Provide Solution x∗.
1: for k = 0, 1, 2, . . . do
2: x̄k ← ΠX (xk − γ∇Lµ(xk))
3: rk ← xk−x̄k

γ

4: if ‖rk‖∞ < τ then
5: Return x∗ ← x̄k.
6: dk = −Hkrk using L-BFGS
7: xk+1 ← xk − (1− αk)γrk + αkdk, with αk the largest in { 1

2i : i ∈ IN}
such that

ϕγ(xk+1) ≤ ϕγ(xk)− σ‖rk‖2 (3.10)

old curvature information, which is less likely to be relevant for the current (inverse)
Hessian, is erased periodically. Therefore, L-BFGS will be our quasi-Newton method
of choice to accelerate the proximal gradient method.

It is well known, however, that steps of type (3.9) are not guaranteed to converge
for arbitrary starting points, and may in fact diverge if the initial point is not close
to a solution. Therefore, a globalization strategy is necessary. The authors of [151]
propose such a globalization technique based on the forward-backward envelope (FBE)
ϕfb
γ (x) := f(x)− γ

2 ‖∇f(x)‖2 + gγ(x− γ∇f(x)), where gγ is the Moreau-envelope of g
as defined in (1.8). The FBE for problem (3.3) can be worked out as

ϕfb
γ (x) = Lµ(x)− γ

2 ‖∇Lµ(x)‖2 + 1
2γ dist2

X (x− γ∇Lµ(x)).

It can be shown (for γ < L−1
Lµ

) that ϕfb
γ (x) and Lµ(x)+δX (x) have the same minimizers,

and hence minimization techniques can be directly applied to the FBE. In fact,
forward-backward splitting steps are equivalent to scaled gradient descent steps on
the FBE. In order to combine proximal gradient and quasi-Newton steps, PANOC
considers an update that is composed of a convex combination of both, such that a
sufficient decrease is guaranteed on the FBE, ensuring global convergence. The resulting
averaging strategy and other steps of PANOC are summarized in Algorithm 3.2.

In this algorithm, LLµ denotes the Lipschitz constant of the objective function. This
might not be known in practice. In fact, for our quadratic penalty method, this
Lipschitz constant is likely dependent on the value of the penalty parameter, and
so may increase over the successive subproblems. The PANOC algorithm, however,
can also run with an estimate for this constant which is then updated in between
iterations, by adding another step after step 3
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3bis: if Lµ(x̄k) > Lµ(uk)− γ(∇Lµ(xk))>rk + LLµ

2 ‖γr
k‖2 then

γ ← γ
2 , LLµ ← 2LLµ , σ ← σ

2 , go to step 2.

The reliance of PANOC on this Lipschitz estimate is another reason to upper bound
the penalty parameter as done in Section 3.1.2.

Under certain assumptions, the PANOC algorithm can be shown to acquire the same
convergence rate as its quasi-Newton steps, which is superlinear convergence when
the Dennis-Moré condition is satisfied [143, Theorem III.5]. The reason for this is
that close to a solution, the candidate quasi-Newton steps are accepted with αk = 1.
Although L-BFGS does not exhibit this superlinear convergence in theory, for the
aforementioned reasons of requiring less memory and its splendid performance in
practice, this method is chosen as the acceleration in our application of PANOC. For
a more in-depth discussion on the theoretical properties of PANOC, the reader is
referred to [143].

Note that, since X is convex, the termination criterion in step 4 is equivalent to (3.6),
since

ΠX(x− γ∇Lµ(x)) = x̄

⇔ x− γ∇Lµ(x)− x̄ ∈ NX (x̄)

⇔ r = x− x̄
γ
∈ ∇Lµ(x) +NX (x̄),

where the first implication follows from the definition of the projection (1.4), and the
second from the fact that γ is a positive constant and NX is a cone, so 1

γ
NX = NX .

Therefore, we can recognize that the final fixed-point residual is our error vector eν in
the KKT condition, and we should set τ = εν when calling PANOC to satisfy (3.6).

The approach for dealing with optimization problem (3.1) has been outlined. However,
it is a general nonlinear, nonconvex problem, and the obstacles render the solution
space nonconvex. Therefore, local minima often exist near obstacles, similarly to what
happens in the potential field method of Section 2.2.2. The next section introduces
heuristics to circumvent these local minima when needed.

3.3 Heuristics

Figure 3.2a illustrates an obstacle that creates an obvious local minimum, since the
blue square is locally the closest point to the destination in the feasible region. To aid
in the convergence to a feasible trajectory that reaches the destination, two additional
heuristics have been developed for our MPC controller. The first heuristic is a fail-safe
in case Algorithm 3.1 returns an infeasible solution, where the MPC controller will stop
the vehicle (setting all velocities equal to zero) if the state becomes infeasible within
the next three time steps. An infeasible solution may be returned either due to a low
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Figure 3.2: Illustration of the local minimum behind the obstacle, and the hold-
in-place heuristic and choice of intermediate points. The half-disc shaped obstacle
is defined by O = {(x, y) : x2 + y2 > 1, x2 + y2 < 4, x > 0}.

penalty parameter cap, as illustrated in Figure 3.2b, due to convergence to a locally
infeasible point, or due to hitting the maximum amount of iterations. The second
heuristic consists of guiding the vehicle to one or more intermediate destinations
whenever the vehicle remains in place for more than one time instant, due to the first
heuristic or due to converging to a local minimum as in Figure 3.2a, before continuing
on towards the final destination.

The intention behind this last heuristic is to guide the vehicle around the obstacle. A
good intermediate destination is easy to reach from both the point where the vehicle
was previously stuck at and the final destination. It will usually be close to a corner
or edge point of the obstacle. This principle is also illustrated in Figure 3.2, where
appropriate intermediate destinations are located near the black diamonds.

To avoid getting stuck in a local optimum near an obstacle, a suitable set of intermediate
destinations must be available and a relevant choice from this set of points is necessary.
The user may provide such a set, based on knowledge of the obstacle definitions (and
therefore the locations of their corners). This approach, however, is hard to justify
in an automated setup. Instead, in order to generate suitable intermediate points
automatically, variants of Dijkstra’s algorithm can be used to perform a simple graph
search, see Section 2.2.1. This work utilizes the A* search algorithm [81], because of
its simplicity and efficiency. The worst-case complexity of this algorithm in case a
consistent heuristic cost is used, is O(N) [109], with N the number of nodes in the
graph. The heurstic cost used here is the Euclidean distance between a node and the
goal node, which is indeed consistent.

Figure 3.3 shows the division of the space into a grid of square cells, and how the
graph search returns a feasible geometric trajectory from the current point to the
destination. In an unobstructed space, a graph search would find a straight path.
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Figure 3.3: Illustration of the graph search, represented by the magenta diamonds.
At both of the black diamonds the direction changes (first left-right, then up-down),
so these comprise the set of intermediate destinations. The black line denotes the
final trajectory.

Hence, (left-right or up-down) direction changes stem from the presence of an obstacle,
and the points at which they occur are close to the corners of said obstacle. These
points are therefore suitable candidates for intermediate destinations. Each element of
the set of intermediate destinations is successively set as the reference state qref in
(2.2). Since now both the starting state and the reference state should lie somewhere on
the same side of the obstacle, it is much less likely for Algorithm 3.1 to get stuck in a
local minimum. The MPC controller changes the reference state whenever the distance
to the current one is smaller than some tolerance. When the set of intermediate points
is exhausted, the reference state is reset to the original destination. This concludes
the proposed methodology for solving problem (3.1).

3.4 Summary

This chapter considered a solution strategy for the optimization problem with general
obstacles. The core of this approach was the quadratic penalty method, which solves
a sequence of subproblems with a once differentiable objective function. An effective
proximal algorithm, PANOC, which combines proximal gradient and quasi-Newton
steps, was employed to solve these subproblems efficiently. Furthermore, a heuristic
involving a graph search was proposed to circumvent any locally optimal or infeasible
solution the algorithm may encounter during MPC simulations.





Chapter 4

Penalty Method for MPSEC: Convergence
Results

This chapter derives convergence results for Algorithm 3.1. In the literature, conver-
gence of the quadratic penalty method and the augmented Lagrangian method applied
to smooth problems is covered in the monograph of Bertsekas [15]. In [18, Chapter 6]
convergence results are extended to problems with implicit set constraints on the deci-
sion variables. In particular, it is shown that every limit point is a stationary point of
an infeasibility measure, but no conditions guaranteeing feasibility of limit points are
provided.

Even though the quadratic penalty method is fairly simple conceptually and the
textbooks mentioned above have outlined general convergence results, it is not trivial
to derive such results for Algorithm 3.1 applied to problem (3.1). In fact, it is difficult
to list the first-order necessary conditions for stationarity due to the nonsmoothness
of the constraints in (3.1b). Moreover, the nonsmooth formulation using the normal
cone of the constraint set [134, Theorem 6.12] is not usable, as in general the normal
cone, or an outer approximation of this set, cannot be derived from the functions
defining the set exclusion constraints. This is due to the fact that 0 belongs to the
subdifferential of the max-operator (at the boundary), which violates the condition in
[134, Corollary 10.50]. Since the original problem leaves us empty-handed with regards
to stationarity conditions, our only option is to dig for gold elsewhere.

Section 4.1 constructs a mathematical program with vertical complementarity con-
straints (MPCC) which is equivalent to problem (3.1). For this type of program,
different notions of stationarity exist [137]. Section 4.2 lists and slightly extends these
conditions. Finally, Section 4.3 shows that the (transformed) iterates of Algorithm 3.1
satisfy stationarity conditions of the MPCC under certain assumptions.

The material in this chapter is based on the publication [83].

39
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4.1 Vertical complementarity constraints

4.1.1 Introduction

Mathematical programs with vertical complementarity constraints (MPCCs) were
first introduced in [38] and are a special class of optimization problems that often
arise in practice. They extend mathematical programs with regular complementarity
constraints. Such a constraint dictates that at least one of two nonnegative quantities
should be equal to zero at all times. Mathematically, this translates to the constraint
that for f, g : Rn → R

f(x) ≥ 0, g(x) ≥ 0, f(x) · g(x) = 0,

or equivalently
min(f(x), g(x)) = 0.

Multiple complementarity constraints can be succinctly listed in vector format using
the scalar product

F (x) ≥ 0, G(x) ≥ 0, F (x)>G(x) = 0,
with F,G : Rn → Rm.

Although such problems present theoretical difficulties since no solution satisfies the
Mangasarian-Fromovitz constraint qualification (MFCQ), they can nevertheless be
solved fairly reliably by standard nonlinear optimization solvers [98]. KNITRO [24] is an
interior-point solver that uses an `1−penalty for complementarity constraints [99]. SQP
methods with an elastic mode for dealing with infeasible constraints, such as SNOPT
[69], have also been shown to converge locally for problems with complementarity
constraints [7, 8]. Finally, the application of augmented Lagrangian approaches to
problems with complementarity constraints was investigated in [89].

Vertical complementarity constraints simply extend this concept of complementarity
to more than two functions. As such, a set of m vertical complementarity constraints
over (at most) l functions can be written as

min{Fi1(z), . . . , Fil(z)} = 0, i = 1, . . . ,m,

with F : Rn → Rm×l.

By including these constraints in a regular nonlinear program, the mathematical
program with vertical complementarity constraints can be written in the following
form [137]
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minimize
z∈Rnz

f(z),

subject to G(z) ≤ 0,

H(z) = 0,

min{Fi1(z), . . . , Fil(z)} = 0, i = 1, . . . ,m,

(4.1)

where f : Rnz → R, G : Rnz → Rp, H : Rnz → Rq, F : Rnz → Rm×l. Looking at our
original problem (3.1), it is clear that we will additionally need implicit set constraints
z ∈ Z, with Z some closed, convex set. On the other hand, developments outlined
below show that equality constraints are not needed, and so as MPCC we consider
instead the following problem

minimize
z∈Z

f(z),

subject to G(z) ≤ 0,

min{Fi1(z), . . . , Fil(z)} = 0, i = 1, . . . ,m.

(4.2)

4.1.2 The equivalent MPCC

Before introducing an MPCC which is equivalent to (3.1), we first require the concept
of active constraints. In general optimization problems, equality constraints and
inequality constraints that hold as equality at a feasible point are called active, and
inequality constraints that hold strictly at this point are called inactive. Reusing this
terminology, let us introduce the set of active obstacles IO(x) and the set of active
obstacle boundaries Ia(x) as

I
O

(x) = {i : x ∈ Oi}.

Ia(x) = {(i, j) : i ∈ I
O

(x), hij(x) = 0}. (4.3)

For every active obstacle, the state is either inside or on its boundary, and if there is
an active obstacle boundary, then the state is on this (part of the) boundary.

Aside from active constraints, typically the constraint gradients are crucial in the
analysis of constraint qualifications and stationarity conditions. However, ψi(x) is
nonsmooth, and unfortunately so at the interesting part, which is the obstacle boundary.
For now, let us instead construct a smooth version of this obstacle cost function ψi(x),
created by dropping the [ · ]+ operators, and denote this extended obstacle cost function
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as ψ̃i(x), such that

ψ̃i(x) =
mi∏

j=1

hij(x). (4.4)

This function is equal to the obstacle cost function for points in Oi. Its gradient at a
point x on the obstacle boundary is therefore equal to ∇ψ̃i(x) = limx→

Oi

x∇ψi(x). As

such, it serves as a meaningful placeholder for speaking about the constraint gradient
of an active obstacle. The gradient of ψ̃i(x) is given as

∇ψ̃i(x) =
mi∑

j=1

∇hij(x)
∏

k 6=j
hik(x). (4.5)

Recalling (3.5) and using (4.5), ∇Lµ(x) can now be written as

∇Lµ(x) = ∇`(x) + µ

n∑

i=1

ψi(x)∇ψ̃i(x). (4.6)

To arrive at an equivalent (smooth) MPCC reformulation of problem (3.1), slack
variables tij need to be introduced to eliminate the [ · ]+-operators. By letting tij carry
the meaning of tij ≥ [hij(x)]+, i.e. tij ≥ hij(x) and tij ≥ 0, the equivalent MPCC is
given as

minimize
(x,t)∈X×Rnt

`(x), (4.7a)

subject to tij ≥ hij(x), i = 1, . . . ,m, j = 1, . . . ,mi, (4.7b)

min(ti1, . . . , timi) = 0, i = 1, . . . ,m, (4.7c)

with nt =
∑n

i=1 mi. This problem is indeed of type (4.2), with z = (x, t), Z = X ×Rnt ,
and smooth functions f(z) = `(x), Gk(z) = hij(x)− tij , where k = j +

∑i−1
l=1 ml, and

Fij(z) = tij .

Problems (3.1) and (4.7) are equivalent in the sense that they share the same cost
function, which is independent of t, and that feasible points in one problem yield
feasible points in the other. On the one hand, for any (x, t) which is feasible for
(4.7), x is feasible also for (3.1), given the definition of the obstacle cost ψi in (2.8).
On the other hand, for any x which is feasible for (3.1), it is trivial to show that
for tij = [hij(x)]+, the pair (x, t) is also feasible for (4.7). For reasons mentioned in
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Remark 4.2, however, we will use a slightly different formulation for t, namely

tij =

{
hij(x), i ∈ I

O
(x),

0, i 6∈ I
O

(x), j = min argmink{hik(x)},
[hij(x)]+ + ε, i 6∈ I

O
(x), j 6= min argmink{hik(x)},

(4.8)

with ε > 0. Remarks 4.1 and 4.2 regarding this particular choice of the slack variables
for respectively inactive and active obstacles show that the resulting point (x, t) is
also feasible for problem (4.7).

Remark 4.1. For active obstacles, the following reasoning can be made. Since
x is feasible, ψi(x) = 0 ⇔ x 6∈ Oi for all i. For an active obstacle i therefore,
x ∈ Oi \Oi = ∂Oi and recalling (2.7), this means that there is at least one j for which
hij(x) = tij = 0, according to the first case of (4.8).

Remark 4.2. For inactive obstacles, the following reasoning can be made. For an
obstacle i to be inactive, at least one of the boundary functions has to be strictly
negative, that is ∃j : hij(x) < 0. For one such j, the slack variable can be set to
zero to satisfy the constraints in (4.7), as is done in the second case of (4.8). In the
third case of (4.8), that is, for the other boundaries of the inactive obstacle, the slack
variables can be chosen freely as long as they are strictly greater than hij(x) and 0.
This strict inequality, enforced using ε > 0, is necessary to prevent obstacle boundaries
(i, j) : i 6∈ I

O
, hij(x) = 0 from yielding active constraints in problem (4.7).

4.2 MPCC stationarity

This section discusses two sets of stationarity conditions of problem (4.2). For a
more thorough overview, the reader is referred to [137]. The relevant stationarity
conditions for the convergence results of Section 4.3 are reproduced here, with a minor
generalization to account for implicit set constraints, obtained from [134].

The first subsection discusses the definition of the linear independence constraint
qualification (LICQ) for MPCCs (MPCC-LICQ), and two assumptions which can be
shown to imply MPCC-LICQ at a certain point. The second subsection lists the strong
and Clarke stationarity conditions for MPCCs, and their applications to problem (4.2).

4.2.1 Constraint qualifications

Definition 4.3. A feasible point z of problem (4.1) satisfies MPCC-LICQ if all the
active constraint gradients

∇Gr(z), r : Gr(z) = 0

∇Hs(z), s = 1, . . . , q
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∇Fij(z), (i, j) : Fij(z) = 0

are linearly independent [137].

By applying the MPCC-LICQ from [137] to problem (4.2), we obtain the condition
that there exists no vector y = (yG, yF ) 6= 0 that satisfies

−
∑

r:Gr(z)=0

yGr ∇Gr(z)−
∑

(i,j):Fij(z)=0

yFij∇Fij(z) ∈ NZ(z). (4.9)

To translate this condition for problem (4.7), let the index set Ih(z) and It(z) de-
note respectively the active inequality constraints and the active complementarity
components at z = (x, t):

Ih(z) = {(i, j) : hij(x)− tij = 0}, (4.10)

It(z) = {(i, j) : tij = 0}. (4.11)

Furthermore, from [134, Proposition 6.41], we have that NZ(z) = NX (x) × {0}.
Given (4.9), (4.10) and (4.11), the following condition for MPCC-LICQ is obtained
by splitting along x and t. Note that the dependence of the index sets on z is omitted
for the sake of brevity in the mathematical expressions.

Definition 4.4. A feasible point z = (x, t) of problem (4.7) satisfies MPCC-LICQ iff
there exists no vector (yh, yt) 6= 0 satisfying the following conditions





yhij = 0 for (i, j) ∈ Ih \ It,
ytij = 0 for (i, j) ∈ It \ Ih,
−

∑

(i,j)∈Ih∩It

yhij∇hij(x) ∈ NX (x).
(4.12)

Remark 4.5. It is well known that LICQ implies the regular and strict Mangasarian-
Fromovitz constraint qualifications (MCFQ and SMFCQ), [55, Chapter 2]. This also
holds for the constraint qualifications defined for MPCCs, as these are the regular LICQ,
MFCQ and SMFCQ applied to an associated NLP problem, see [137]. Furthermore, it
is not as straightforward to extend MCFQ and SMFCQ in the presence of a normal
cone as it is to extend LICQ. Therefore, only MPCC-LICQ will be used in this work.
However, as shown in [138], this is not a stringent assumption for MPCCs.

In Section 4.3, two assumptions will be used to prove that limit points of the generated
sequences, if they exist, satisfy certain stationarity conditions. These assumptions can
be thought of as mirroring linear independence of the active constraint gradients for
the obstacle formulations. Before we introduce these assumptions and show that they
imply MPCC-LICQ, we need the following result regarding the index set of the active
obstacle boundaries:
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Lemma 4.6. Assume that (x, t) is feasible for (4.7) and t is given by (4.8). Then

Ia(x) = Ih(x, t) ∩ It(x, t).

Proof. This lemma can be proven by showing the set inclusion in both directions. In
this proof the dependence of the index sets on the variables will be omitted. From (4.3)
and the first case of (4.8) it follows that for (i, j) ∈ Ia : hij(x) = tij = 0. Therefore,
we immediately have Ia ⊆ Ih ∩ It.

The other way around, suppose that (i, j) ∈ (Ih ∩ It)\ Ia. From (i, j) ∈ Ih ∩ It we have
that hij(x) = tij = 0. Then, from (i, j) 6∈ Ia and (4.3), it follows that i 6∈ I

O
. However,

this implies that (i, j) does not belong to the first case of (4.8). Neither does it belong
to the second case as hij(x) = 0, cf. Remark 4.2. Therefore (i, j) belongs to the third
case of (4.8), and thus tij = ε > 0. This contradiction disproves the assumption that
(i, j) ∈ (Ih ∩ It), and therefore proves that (Ih ∩ It) ⊆ Ia.

The following two lemmas establish that certain assumptions imply the conditions
(4.12).

Lemma 4.7. Assume that at a point x the following implication holds:

−
∑

i∈I
O

(x)

yi∇ψ̃i(x) ∈ NX (x)⇒ y = 0. (4.13)

If, furthermore, (x, t) is feasible for problem (4.7), with t given by (4.8), then (4.12)
is satisfied at this point.

Proof. Note that 0 ∈ NX (x) by definition (1.5). Therefore, (4.13) implies that the
active obstacle cost gradients are linearly independent and thus not equal to zero. Given
(4.5), this excludes the case where there is more than one active obstacle boundary.
Moreover, because x is feasible, x 6∈ Oi, and thus for i ∈ I

O
(x), x ∈ Oi \ Oi = ∂Oi,

which implies that for each active obstacle, there is at least one active obstacle
boundary. In conclusion, for each active obstacle, there is exactly one active obstacle
boundary. Let ji denote the index of this active boundary, such that hiji(x) = 0. From
(4.5) it then follows that

∇ψ̃i(x) = ∇hiji(x)
∏

k 6=ji

hik(x), (i, ji) ∈ Ia(x). (4.14)

From (4.14) and Lemma 4.6, (4.13) is now equivalent to (4.12).

As mentioned in the proof of Lemma 4.7, equation (4.13) can only be satisfied if for
every active obstacle there is only one active obstacle boundary, and if the gradient
of this boundary function is nonzero at its boundary. Boundary functions with this
latter property must therefore be chosen in order for the algorithm to work provably.
Moreover, as the above assumption does not hold in case of multiple active boundaries
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of the same obstacle, we provide also a second possible assumption that does cover
this case.

Lemma 4.8. If at a feasible point (x, t), with t given by (4.8), it holds that

−
∑

(i,j)∈Ia(x)

yij∇hij(x) ∈ NX (x)⇒ y = 0, (4.15)

then (4.12) is satisfied at this point.

Proof. The proof for this lemma is immediate as, according to Lemma 4.6, (4.15) and
(4.12) are equivalent.

Remark 4.9. The conditions (4.15) and (4.12) are only equivalent because of our
choice of the slack variables (4.8), as this allows the application of Lemma 4.6. Had we
chosen ε = 0 in (4.8), (4.12) would be a set of stricter conditions than (4.15). However,
as these points are neglected by choosing a strictly positive ε, (4.15) and (4.12) can
be considered as equivalent. Note also that if (4.13) holds at a feasible point, then
(4.15) holds at this point because of (4.14).

Figure 4.1 illustrates the gradient of the extended obstacle cost function along the
(upper and left) boundaries of a rectangular obstacle set, and the cornerpoints where
(4.13) is not satisfied, but (4.15) is. Note that assumption (4.15) is sufficient to
guarantee the linear independence condition of Lemma 2.2. The same holds for (4.13)
whenever there is only one active boundary constraint. Therefore, when working under
either of these two assumptions, the obstacle boundary is defined as in (2.7).

4.2.2 Stationarity conditions

The stationarity conditions for problem (4.2) rely on the Lagrangian function L
associated with this problem, given as [137, Eq. (1) with α = 1],

L(z,Γ, λ) = f(z)−
m∑

i=1

l∑

j=1

Fij(z)Γij +
p∑

i=1

Gi(z)λi,

where Γ ∈ Rm×l, λ ∈ Rp are the multipliers corresponding to the complementarity and
inequality constraints, respectively. In the following, two sets of stationarity conditions
are derived, the first of which are the strong stationarity conditions. The strong
stationarity conditions are the KKT-conditions applied to a relaxed NLP (RNLP)
formulation of the MPCC [137]. This RNLP formulation at a feasible point z of
problem (4.2) is the following program

minimize
z′∈Z

f(z′)

subject to G(z′) ≤ 0, (4.16)
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Figure 4.1: The rectangular obstacle is given by O = {(x, y) : x > 0, 2− x > 0,
y > 0, 1− y > 0}. The arrows represent −∇ψ̃(x, y) at several boundary points.
More than one obstacle boundary is active at the corner, hence the gradient
vanishes there such that (4.13) is not satisfied, whereas (4.15) is.

Fij(z′)
{

= 0 if Fij(z) = 0 and Fik(z) > 0 for k 6= j
≥ 0 otherwise.

By applying [134, Corollary 6.15] to problem (4.16), the strong stationarity conditions
are obtained as follows.

Definition 4.10. For a feasible point z of problem (4.2), the strong stationarity
conditions are the following conditions on z and on the multipliers Γ and λ

0 ∈ ∇zL(z,Γ, λ) +NZ(z), (4.17a)

Fij(z)Γij = 0, i = 1, . . . ,m, j = 1, . . . , l, (4.17b)

λi ≥ 0, i = 1, . . . , p, (4.17c)

Gi(z)λi = 0, i = 1, . . . , p, (4.17d)

Γij ≥ 0, if ∃k 6= j : tij = tik = 0. (4.17e)

These conditions are only necessary in the general case when strict complementarity
holds [137], stating that for a point z of problem (4.2), there is for every i only one ji
such that Fiji(z) = 0. From Definition 4.10, with (4.17a) split according to x and t,
we can now derive the strong stationarity conditions for problem (4.7) as the following



48 PENALTY METHOD FOR MPSEC: CONVERGENCE RESULTS

conditions on (x, t) and the unique multipliers (Γ, λ)

0 ∈ ∇`(x) +
n∑

i=1

mi∑

j=1

λij∇hij(x) +NX (x), (4.18a)

λij + Γij = 0, i = 1, . . . ,m, j = 1, . . . ,mi, (4.18b)

tijΓij = 0, i = 1, . . . ,m, j = 1, . . . ,mi, (4.18c)

λij ≥ 0, i = 1, . . . ,m, j = 1, . . . ,mi, (4.18d)

(hij(x)− tij)λij = 0, i = 1, . . . ,m, j = 1, . . . ,mi, (4.18e)

Γij ≥ 0, if ∃k 6= j : tij = tik = 0. (4.18f)

The second set of stationarity conditions used in this thesis are the Clarke stationarity
conditions. In order to obtain their form with an inclusion for the implicit set constraints,
we mimic here the proof for [137, Theorem 2].

Theorem 4.11. If for a local minimizer z of problem (4.2) there is no vector
(yG, yF ) 6= 0 for which (4.9) holds, i.e. MPCC-LICQ is satisfied, then there exist
multipliers Γ and λ such that

0 ∈ ∇zL(z,Γ, λ) +NZ(z), (4.19a)

Fij(z)Γij = 0, i = 1, . . . ,m, j = 1, . . . , l, (4.19b)

λi ≥ 0, i = 1, . . . , p, (4.19c)

Gi(z)λi = 0, i = 1, . . . , p, (4.19d)

ΓijΓik ≥ 0, (j, k) : Fij(z) = Fik(z) = 0. (4.19e)

Proof. By [29, Theorem 1] there exist nonzero multipliers (α, u, λ) such that

α ≥ 0,

λ ≥ 0,

Gi(z)λi = 0, i = 1, . . . , p,

0 ∈ α∇f(z) +
p∑

i=1

λi∇Gi(z) +
m∑

i=1

uivi +NZ(z), (4.20)
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immediately showing (4.19c) - (4.19d). The vectors vi in (4.20) are given by
vi ∈ ∂min(Fi1(z), . . . , Fil(z)) = conv{∇Fij(z)|j : Fij(z) = 0}, cf. [30]. Hence
vi =

∑l

j=1 βij∇Fij(z), with βij ≥ 0, βijFij(z) = 0 and
∑l

j=1 βij = 1. Let Γij = uiβij ,
then (4.19b) is satisfied. Note also that Γij and Γik have the same sign (that of
ui), thus (4.19e) is also satisfied. Finally, for α = 0, (4.20) would contradict (4.9).
Therefore, α > 0 and by scaling to obtain α = 1 in (4.20), (4.19a) is also shown.

The conditions (4.19a) - (4.19e) are the Clarke stationarity conditions. Clearly, they do
not differ from the strong stationarity conditions (4.17a) - (4.17e), aside from (4.17e)
which is now replaced by (4.19e). Hence, the Clarke conditions for problem (4.7) are
the conditions (4.18a) - (4.18e), together with

ΓijΓik ≥ 0, (j, k) : tij = tik = 0. (4.18g)

The Clarke stationarity conditions are necessary if MFCQ holds. Other than their
applicability under distinct constraint qualifications, it is unfortunately not obvious
to qualify the difference between a point satisfying the Clarke versus the strong
stationarity conditions. A toy problem is presented in [137, Example 3] in which the
minimizer satisfies the Clarke but not the strong stationarity conditions.

4.3 Results

This section proves that if the sequence of iterates generated by Algorithm 3.1, with
ε∗, η∗ = 0, has limit points, then such a limit point along with the corresponding slack
variable t from (4.8) satisfies either the strong or the Clarke stationarity conditions of
problem (4.7), depending on the assumptions made. The first part of each proof is
similar to the proof of [15, Proposition 2.3]. The second part derives the remaining
conditions from the definitions of the slack and multiplier variables.

Remark 4.12. If the set X is compact, then the sequence has limit points. This
condition is satisfied for instance in the simulation examples, where lower and upper
bounds are applied to the control input. However, we do not wish to restrict the
theoretical results here to this special case.

Theorem 4.13. Let {xν} be a sequence of iterates generated by Algorithm 3.1, with
ε∗, η∗ = 0. Assume that a subsequence {xν}ν∈K converges to a vector x∗ such that
(4.13) holds at x∗, with the set of slack variables t∗ defined as in (4.8). Then, point
(x∗, t∗) is feasible for (4.7) and unique multipliers can be derived so that (x∗, t∗, λ∗,Γ∗)
satisfies the strong stationarity conditions (4.18a) - (4.18f) of problem (4.7).

Proof. Most of the constraints of problem (4.7) are straightforwardly satisfied in point
(x∗, t∗). Step 2 in Algorithm 3.1 gives us xν ∈ X , and thus because X is closed also
x∗ ∈ X . Moreover, by construction, t∗ij ≥ hij(x∗) is satisfied. The only constraints
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remaining to be shown are the complementarity conditions min(ti1, . . . , timi) = 0,
i = 1, . . . ,m. This corresponds to showing that for each i, ψi(xν)→ 0, cf. Remark 4.1.
Define for all ν

λνi = µνψi(xν). (4.21)
We have from (4.6) that

∇Lµν (xν) = ∇`(xν) +
m∑

i=1

µνψi(xν)∇ψ̃i(xν)

= ∇`(xν) +
m∑

i=1

λνi∇ψ̃i(xν)

= ∇`(xν) +
∑

i∈I
O

(xν)

λνi∇ψ̃i(xν). (4.22)

For the last equality, note that for i 6∈ I
O

(xν), ψi(xν) = 0 and thus λνi = 0. Furthermore,
there exists some ν1 ∈ K, such that for K 3 ν ≥ ν1, xν will be close enough to x∗ and
therefore inactive obstacles at x∗ will also be inactive at xν . Thus, for K 3 ν ≥ ν1,
Ic
O

(x∗) ⊆ Ic
O

(xν), and by applying the complement we obtain IO(xν) ⊆ IO(x∗).
Equation (4.22) for K 3 ν ≥ ν1 then becomes

∇Lµν (xν) = ∇`(xν) +
∑

i∈I
O

(x∗)

λνi∇ψ̃i(xν). (4.23)

Equation (4.23) can be substituted in (3.6) for ν ≥ ν1, yielding:

eν ∈ ∇`(xν) +
∑

i∈I
O

(x∗)

λνi∇ψ̃i(xν) +NX (xν). (4.24)

Since {xν}ν∈K converges, it is a bounded sequence, and so {∇`(xν)}ν∈K is also
bounded. Given that eν is also bounded explicitly by (3.6), this results in boundedness
of

∑

i∈I
O

(x∗)

λνi∇ψ̃i(xν) for ν ∈ K. Indeed, if this sequence were not bounded, then the

terms eν and ∇`(xν) would become negligible in (4.24), which would then in the limit
contradict (4.13). Furthermore, (4.13) also implies that for ν ∈ K large enough, the
gradients ∇ψ̃i(xν), i ∈ I

O
(x∗) are linearly independent, thus we can solve (4.24) for

the active multipliers

λν = [∇ψ̃(xν)>∇ψ̃(xν)]−1∇ψ̃(xν)>(eν −∇`(xν)− wν)),

with wν ∈ NX (xν) satisfying (4.24). As eν → 0, it follows that

{λν}K→λ=−[∇ψ̃(x∗)>∇ψ̃(x∗)]−1∇ψ̃(x∗)>(∇`(x∗)+w∗).

Hence, all λi have to be bounded and consequently, recalling (4.21) and because
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µν → ∞, all ψi(x∗) must be equal to 0. Therefore, the point (x∗, t∗) is feasible for
problem (4.7). Moreover, (4.24) can be written in the limit as

0 ∈ ∇`(x∗) +
∑

i∈I
O

(x∗)

λi∇ψ̃i(x∗) +NX (x∗). (4.25)

As (4.13) holds in x∗, it follows from Lemma 4.7 that the point (x∗, t∗) satisfies
MPCC-LICQ. Furthermore, from (4.14) and (4.8), strict complementarity holds at
this point. Next, we show that the strong stationarity conditions are satisfied in this
point. The multipliers for the reformulated problem can be retrieved as follows:

λ∗ij = λi
∏

k 6=j
[hik(x∗)]+, (4.26)

Γ∗ij = −λ∗ij = −λi
∏

k 6=j
[hik(x∗)]+. (4.27)

Consider from the discussion above that for the inactive obstacles i 6∈ I
O

(x∗), the
multipliers λi = 0. Thus, from the definition of the multipliers (4.26) and (4.27) it
follows that

λ∗ij = Γ∗ij = 0, i 6∈ I
O

(x∗). (4.28)
Furthermore, as shown in the proof of Lemma 4.7, for each active obstacle there
is exactly one active obstacle boundary. Let ji denote the index for which for each
i ∈ IO(x∗), hiji(x∗) = 0. Then, from (4.26), for k 6= ji,

λ∗ik = λ∗iji
[hiji(x∗)]+
[hik(x∗)]+

= 0, (i, k) 6∈ Ia(x∗). (4.29)

Equations (4.14), (4.25), (4.26), (4.28) and (4.29) combined show that (4.18a) is
satisfied at x∗. The remaining strong stationarity conditions follow from the definition
of the multipliers (4.26), (4.27) and the slack variables (4.8). By choice of the multipliers
Γ∗ij in (4.27), (4.18b) is trivially satisfied. Considering (4.28), condition (4.18c) is
trivially satisfied for i 6∈ I

O
(x∗). For i ∈ I

O
(x∗), as t∗ij = hij(x∗) and using (4.27) and

(4.26), condition (4.18c) is transformed to

t∗ijΓ∗ij = −λiψi(x∗), i ∈ I
O

(x∗).

As shown above, ψi(x∗) = 0 for all i, thus condition (4.18c) is satisfied. By construction
of the multipliers λ∗ij in (4.26) and given λi is positive due to (4.21), condition (4.18d)
is also satisfied. Condition (4.18e) is trivially satisfied for i 6∈ I

O
(x∗) because of (4.28).

For i ∈ IO(x∗), t∗ij = hij(x∗) and (4.18e) is thus also trivially satisfied for this case.
Finally, condition (4.18f) does not apply in this case as strict complementarity holds
because of (4.14) and definition (4.8).

Limit points where more than one boundary of the same obstacle is active are excluded
by the assumption used in Theorem 4.13. Such a limit point, however, can still be shown
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to satisfy the Clarke conditions (4.18a) - (4.18e) and (4.18g) under the assumption that
this point is feasible and (4.15) holds. Note that in this case strict complementarity
does not (necessarily) hold, as multiple active obstacle boundaries translate into
multiple indices j for which tij = 0, according to the first case of (4.8).

Theorem 4.14. Let {xν} be a sequence of iterates generated by Algorithm 3.1, with
ε∗, η∗ = 0. Assume that a subsequence {xν}ν∈K converges to a vector x∗ feasible for
problem (3.1), such that (4.15) holds at x∗. Define the set of slack variables t∗ as in
(4.8). Then, point (x∗, t∗) satisfies the Clarke stationarity conditions, (4.18a) - (4.18e)
and (4.18g) of problem (4.7).

Proof. Given the point x∗ is feasible for problem (3.1), it follows that ∀i : ψi(x∗) = 0,
which implies feasibility of (x∗, t∗) for problem (4.7), cf. Remark 4.1, and also that for
every i, there is at least one index j for which [hij(x∗)]+ = 0. Define for all ν:

λνi = µνψi(xν),

λνij = λνi
∏

l 6=j
[hil(xν)]+.

Along the same reasoning as in the proof of Theorem 4.13, there exists some ν1 ∈ K,
such that for K 3 ν ≥ ν1, IO(xν) ⊆ IO(x∗). The multipliers belonging to inactive
obstacles will then be equal to zero for K 3 ν ≥ ν1. Furthermore, in the limit, the
multipliers for the inactive obstacle boundaries will become negligible against the
multipliers for the active ones. Let j denote an index for which [hij(x∗)]+ = 0, and l
an index for which [hil(x∗)]+ > 0. Then

lim
ν→
K
∞

λνil
λνij

= lim
ν→
K
∞

[hij(xν)]+
[hil(xν)]+

= 0. (4.30)

The assumption (4.15) implies that the gradients ∇hij(x∗), (i, j) ∈ Ia(x∗) are linearly
independent and thus different from the zero vector. Then, as a result of (4.30), terms
in (4.24) with (i, j) 6∈ Ia(x∗) will become negligible for large ν ∈ K. Thus, (4.24)
reduces in this case to

eν ∈ ∇`(xν) +
∑

(i,j)∈Ia(x∗)

λνij∇hij(xν) +NX (xν).

Since eν → 0, it follows that we can solve for the active multipliers and take the limit

{λν}K → λ = −[∇h(x∗)>∇h(x∗)]−1∇h(x∗)>(∇`(x∗) + w∗).

Thus the active multipliers are bounded. As a result, (4.30) shows that the inactive
multipliers will be zero. By defining the optimal multipliers using (4.26) - (4.27), the
remainder of the proof is analogous to the proof of Theorem 4.13, with Ia(x∗) replacing
I
O

(x∗) and of course with the exception of showing condition (4.18g). This condition
is however readily shown by recognizing that all multipliers Γ∗ij are nonpositive, so
the product of two of them will always be nonnegative.
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Remark 4.15. The result here mirrors the second special case of Theorem 3.2 in
[89]. The authors consider an augmented Lagrangian method applied to the problem
with complementarity constraints, and find that the assumption of the accumulation
point being feasible and MPCC-LICQ holding, for unbounded penalty parameters,
results in this point satisfying the Clarke stationarity conditions.

4.4 Summary

This chapter presented convergence results for the quadratic penalty method applied
to problem (3.1). Given the presence of nonsmooth constraints and the resulting
elusiveness of stationarity conditions for such a problem, the analysis constructed
instead an equivalent mathematical program with vertical complementarity constraints.
For the latter, the literature provides us with constraint qualifications and stationarity
conditions, which were extended here to include abstract set constraints. The quadratic
penalty method was then shown to produce iterates the limit points of which, if they
exist, satisfy one of two stationarity conditions of the MPCC, depending on the
assumptions made regarding the constraint gradients.





Chapter 5

Penalty Method for MPSEC: Numerical results

This chapter discusses numerical results for Algorithm 3.1 applied to a number of
obstacle configurations. Two different nonlinear kinematic models are considered, a
vehicle with a trailer and a bicycle model. Our method is shown to be versatile in
finding trajectories from the start to the destination, especially so using the additional
heuristics from Section 3.3. The numerical performance of Algorithm 3.1 is additionally
compared against several state-of-the-art NLP solvers, IPOPT [161], SNOPT [69] and
KNITRO [24].

Section 5.1 derives the optimal control problem formulations that are considered in
this work. For this purpose, the continuous-time vehicle dynamics of the two models
are discretized, and different formulations regarding single shooting, multiple shooting,
and the problem with complementarity constraints are derived. Section 5.2 presents the
numerical simulation results, including a number of obstacle configuration examples
and a performance comparison with state-of-the-art NLP solvers.

The material in this chapter is based on the publications [82, 83].

5.1 Optimal control problem

Let us recall the optimal control problem in multiple shooting form (2.1) (disregarding
additional state constraints)

minimize
(q,u)∈R(N+1)nq+Nnu

`(q, u) (5.1a)

subject to qk+1 = ϕk(qk, uk), k = 0, . . . , N − 1, (5.1b)

55
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q0 = q̄, (5.1c)

uk ∈ Uk, k = 0, . . . , N − 1, (5.1d)

qk 6∈ Oj , k = 1, . . . , N, j = 1, . . . , NO. (5.1e)

The objective is given as a quadratic penalty with respect to the reference state qref
and input uref, see (2.2). The input constraints are simple box constraints, representing
an upper and a lower limit on the actuation, Uk = [umin, umax]. What remains now is
to discuss the dynamics (5.1b) and the obstacle avoidance constraints (5.1e).

5.1.1 Vehicle dynamics

This work considers MPC control for two types of vehicles: a kinematic bicycle model
[129, p. 26] and a vehicle with a trailer, illustrated in Figure 5.1. Usually, we use the
simplest model for the bicycle where slip of the wheels is neglected, which is defined by
three states q(t) = (qx(t), qy(t), θ(t)), the horizontal and vertical position of the center
and its heading angle. It accepts two control inputs, u(t) = (v(t), δ(t)), the velocity
and the steering angle of the front wheel(s). The continuous kinematics relating u(t)
to q̇(t) are given by

q̇x = v · cos(θ)

q̇y = v · sin(θ)

θ̇ = v

L
tan(δ).

Here, L = 0.5m is the distance between the centers of mass of the wheels of the bicycle.
For one scenario below, which was presented in a later paper, the bicycle is instead
modeled as a system with 4 states, q(t) = (qx(t), qy(t), v(t), θ(t)), a horizontal position,
a vertical position, a velocity and a heading angle. This extended version of the bicycle
accepts two control inputs, u(t) = (a(t), δ(t)), the acceleration and the steering angle
of the front wheel(s). The continuous kinematics relating u(t) to q̇(t) are given by

q̇x = v · cos(θ + β)

q̇y = v · sin(θ + β)

θ̇ = v

lr
sin(β)

v̇ = a,

where the slip angle β = tan−1( lr
lr+lf

tan(δ)), and lr = 1.17m and lf = 1.77m are the
distances from the center of mass to the rear and front wheel respectively.
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(a) Simple and extended bicycle model. (b) Trailer model.

Figure 5.1: Vehicle models used in the simulations.

The trailer is modeled as a system with 3 states, q(t) = (qx(t), qy(t), θ(t)), a horizontal
position, a vertical position and a heading angle. It is controlled via two control inputs,
u(t) = (vx(t), vy(t)), the horizontal and vertical velocity of the towing vehicle. The
continuous kinematics relating u(t) to q̇(t) are given by

q̇x = vx + Lsin(θ) · θ̇

q̇y = vy − Lcos(θ) · θ̇

θ̇ = 1
L

(vycos(θ)− vxsin(θ)),

with L = 0.5m the distance between the trailer’s center of mass and the fulcrum
connecting to the towing vehicle.

In the above models, the continuous kinematics are described by a relationship
between the derivative of the state with respect to time and the input and state of the
vehicle. Let f : Rnu+nq → Rnq denote this relationship, such that q̇(t) = f(u, q). The
kinematics of both models are then discretized using an explicit fourth-order Runge
Kutta method, chosen for its favorable tradeoff between accuracy and efficiency. As
such, the equality of (5.1b) becomes

qk+1 = ϕk(qk, uk) = qk + 1
6(k1 + k2 + k3 + k4)

where 



k1 = hf(uk, qk),
k2 = hf(uk, qk + k1

2 ),
k3 = hf(uk, qk + k2

2 ),
k4 = hf(uk, qk + k3),

with h = T
N

the sampling time.
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5.1.2 OCP formulations

With the dynamics given by the previous subsection, the only remaining constraints to
be clarified are the obstacle avoidance constraints (5.1e). Given the obstacle formulation
of Section 2.3.5, the OCP in multiple shooting formulation can be written as

minimize
(q,u)∈R(N+1)nq+Nnu

`(q, u) (5.2a)

subject to qk+1 = ϕk(qk, uk), k = 0, . . . , N − 1, (5.2b)

q0 = q̄, (5.2c)

uk ∈ Uk, k = 0, . . . , N − 1, (5.2d)

ψi(qk) = 0, k = 1, . . . , N, i = 1, . . . , NO. (5.2e)

Substituting the dynamics as done in Section 2.3.1, the equivalent single shooting
formulation, with `(u)← `(Φ(u), u), is obtained as

minimize
u∈U

`(u) (5.3a)

subject to ψi(Φk(u)) = 0, i = 1, . . . , NO, k = 1, . . . , N. (5.3b)

This problem can readily be recognized as one of type (3.1), after renaming u to
x, and reshuffling the obstacle cost functions in (5.3b) as ψi(·) ← ψi(Φk(·)), with
i← N(i− 1) + k and m← N ·NO. Since the Φk are smooth functions, the chain rule
can be applied when computing derivatives. As such, we can use Algorithm 3.1 for this
problem and the convergence results in Theorems 4.13 and 4.14 readily apply, given
the appropriate assumptions, now on ψi(Φk(·)), hold. However, the other solvers are
not straightforwardly able to deal with this problem, due to the nonsmooth constraints.
Therefore, also a smooth variant with each obstacle cost function squared is considered,

minimize
u∈U

`(u) (5.4a)

subject to ψ2
i (Φk(u)) = 0, i = 1, . . . , NO, k = 1, . . . , N. (5.4b)

This problem still poses theoretical difficulties, since according to (3.2) the gradient of
ψ2
j will be zero at the boundary. Hence constraint qualifications are again a problem.

Nevertheless, (5.4) can at least be provided to the NLP solvers. These solvers rely on
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interior-point or sequential quadratic programming methods, and so have their unique
ways of dealing with constraints. Unlike Algorithm 3.1, these solvers do not require
the problem to be in the single shooting formulation. They can therefore also solve
the multiple shooting formulation in the comparison

minimize
(q,u)∈R(N+1)nq×U

`(q, u) (5.5a)

subject to qk+1 = ϕk(qk, uk), k = 0, . . . , N − 1, (5.5b)

q0 = q̄, (5.5c)

ψ2
i (qk) = 0, i = 1, . . . , NO, k = 1, . . . , N. (5.5d)

Finally, to exhaust all options, also the equivalent problem with complementarity
constraints is considered

minimize
(u,q,t)∈U×R(N+1)nq+nt

`(q,u), (5.6a)

subject to qk+1=ϕk(qk,uk), k=0,...,N−1, (5.6b)

q0= q̄, (5.6c)

tijk≥hij(qk), i=1,...,NO, j=1,...,mi, k=1,...,N (5.6d)

min(ti1,···,timi)k=0, i=1,...,NO, k=1,...,N. (5.6e)

As mentioned in Section 4.1.1, the complementarity constraints have an NLP version.
In this case, (5.6e) would be transformed into tijk ≥ 0 and

∑NO
i=1
∑N

k=1
∏mi
j=1 tijk = 0.

The latter equality constraint can also be replaced by
∑NO

i=1
∑N

k=1
∏mi
j=1 tijk ≤ 0,

since all the slack variables are constrained to be positive. The inequality formulation
seems to work slightly better in practice, so it is adopted here. The problem with
complementarity constraints, therefore, in multiple shooting formulation is the following

minimize
(u,q,t)∈U×R(N+1)nq+nt

`(q,u), (5.7a)

subject to qk+1=ϕk(qk,uk), k=0,...,N−1, (5.7b)

q0= q̄, (5.7c)
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tijk≥hij(qk), i=1,...,NO, j=1,...,mi, k=1,...,N (5.7d)

tijk≥0, i=1,...,NO, j=1,...,mi, k=1,...,N (5.7e)

NO∑

i=1

N∑

k=1

mi∏

j=1

tijk≤0. (5.7f)

In the single shooting formulation, this becomes

minimize
(u,t)∈U×Rnt

`(u), (5.8a)

subject to tijk≥hij(Φk(u)), i=1,...,NO, j=1,...,mi, k=1,...,N (5.8b)

tijk≥0 i=1,...,NO, j=1,...,mi, k=1,...,N (5.8c)

NO∑

i=1

N∑

k=1

mi∏

j=1

tijk≤0. (5.8d)

Problems (5.7) and (5.8) can immediately be fed into an NLP solver. Furthermore,
KNITRO [24] has an additional feature to deal with complementarity constraints. How-
ever, this feature only accepts two lists of variables which are complementary to each
other. Therefore, the complementarity constraints (5.6e) need to be reformed for any
obstacle with more than two boundaries (and associated slack variables). A comple-
mentarity constraint with m > 2 decision variable components, min(t1, . . . , tm) = 0,
can be transformed through the introduction of additional slack variables into com-
plementarity constraints with two components and (linear) equality constraints. For
instance, for three complementarity components we require three additional slack
variables (z1, z2, z3) and end up with two complementarity and equality constraints:

min(t1, t2, t3) = 0⇔
{

min(t1, z1) = 0
z1 = min(t2, t3)

⇔
{

min(t1, z1) = 0
min(t2 − z1, t3 − z1) = 0

⇔





min(t1, z1) = 0
min(z2, z3) = 0
z2 = t2 − z1
z3 = t3 − z1.
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Clearly, the first step in this procedure introduces a slack z1 and sets it equal to
min(t2, . . . , tm). As such, the result is a constraint with two components, and one with
m− 1. The procedure is therefore recursive, requiring m− 2 slacks to be introduced
to bring the number of complementarity components down to 2, and m− 1 slacks to
transform these components again into decision variables. In total, therefore, 2m− 3
additional slack variables are required, and we end up with m− 1 complementarity
constraints with two components and linear equality constraints. Thus, the constraints
of (5.6e) require a total of N

∑
i:mi>2(2mi−3) additional slack variables. For obstacles

with a high number of obstacle boundaries, therefore, this procedure will inevitably
increase the number of decision variables significantly.

5.2 Simulation results

This section shows how an implementation of the proposed method in C, with an
interface to MATLAB for the problem generation, is versatile in modeling complex
obstacle shapes and efficiently calculating trajectories for the bicycle and trailer
models. The first subsection provides a selection of obstacle configurations which are
successfully avoided by the MPC controller. The second subsection provides a runtime
comparison between Algorithm 3.1 and IPOPT, SNOPT and KNITRO applied to the
OCP formulations of Section 5.1.2. All simulations were performed on a notebook with
Intel(R) Core(TM) i7- 7600U CPU @ 2.80GHz x 2 processor and 16 GB of memory.
For all simulations, the automatic differentiation (AD) package CasADi [4] was used
to efficiently evaluate the objective and constraint functions and gradients.

5.2.1 Obstacle configurations

The legend of the figures in this section is always the same: the obstacles are given
in red lines, their enlargements in red dashed lines (sometimes not visible because of
scaling), the green cross represents the destination, the green squares denote different
starting points, and the resulting trajectories are drawn in black. The optimal control
problems are solved with a horizon length N = 50, and sampling time variably chosen
such that the vehicle should be able to reach the destination given the actuator limits.
The inputs of the bicycle are constrained by box constraints −0.1m/s ≤ v ≤ 4m/s
and −π3 ≤ δf ≤ π

3 , and those of the trailer by −4m/s ≤ vx, vy ≤ 4m/s, at every
time instant. It is usually difficult for a first order method, such as PANOC, to find
a solution for a strict tolerance, say 10−6. Therefore, the tolerance ε∗ is set to 10−3.
We observed in simulations that the closed-loop performance is not impacted by
this choice, and that a stricter tolerance would be unnecessary. For the obstacle cost
function, we set a tolerance η∗ = 10−2.

Figure 5.2 displays two polygonal obstacle configurations which are avoided by the
bicycle. The sampling time for both of these examples is ts = 50ms. The MATLAB
interface allows the user to specify the vertices of a polygonal obstacle and computes
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the boundary functions automatically using vert2con.1 A polygonal obstacle is written
as O = {Aq < b}, and to avoid the effects of ill conditioning, the rows of A are
normalized so that they have unit norm.
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(a) Polygonal obstacles.
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(b) Pentagon obstacle.

Figure 5.2: The MPC controller steers the kinematic bicycle through two envi-
ronments with polygonal obstacles.

Figure 5.3 presents two configurations with circular and rectangular obstacles. The
bicycle overcomes the arrangement of Figure 5.3a, with a sampling time ts = 30ms,
and the vehicle with trailer is applied to the situation in Figure 5.3b with ts = 200ms.
Circular and rectangular obstacles are fairly straightforward to incorporate in our
obstacle formulation. They are given respectively by O = {(qx−cx)2 +(qy−cy)2 < r2},
with (cx, cy) the coordinates of the center and r the radius of the circle, and by
O = {lx < qx < ux, ly < qy < uy}.

Figure 5.4 provides instead some novelty in the form of obstacle with nonlinear
boundary functions. As far as we know, it is impossible for any of the other approaches
discussed in Section 2.3 to straightforwardly incorporate these obstacles, given their
nonlinearity and furthermore their nonconvexity. The obstacles in Figure 5.4a are
given by O1 = {(qx, qy) : 0 < qx < 5,−2 < qy < 2 + 3

2sin( 2π
5 qx)} and O2 = {(qx, qy) :

0 < qx < 5, 4 + 3
2sin( 2π

5 qx) < qy < 8}, and are avoided by the extended bicycle with
ts = 50ms. The (enlarged) obstacle of Figure 5.4b is given by O = {(qx, qy) : qy >
q2
x − 1, qy < q2x

2 } and is avoided by the trailer vehicle with ts = 30ms.

Figure 5.5 finally illustrates two obstacle configurations for which the graph search
heuristic of Section 3.3 proved necessary to find a trajectory that reached the desti-
nation. These arrangements were overcome by the vehicle with trailer, both with a
sampling time of ts = 30ms. As in Figure 3.3, the magenta diamonds represent the
solution of the graph search and the black diamonds are the intermediate destina-
tions visited successfully by the MPC controlled trailer. The grids are of size 15 by 15,
(manually) centered around the obstacle, and scaled such that the outer layer consists

1https://nl.mathworks.com/matlabcentral/fileexchange/
7895-vert2con-vertices-to-constraints

https://nl.mathworks.com/matlabcentral/fileexchange/7895-vert2con-vertices-to-constraints
https://nl.mathworks.com/matlabcentral/fileexchange/7895-vert2con-vertices-to-constraints
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(a) Circular and rectangular obstacles.
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(b) Rectangular obstacles.

Figure 5.3: The MPC controller steers the kinematic bicycle (left) and the trailer
(right) through an environment with rectangular and circular obstacles.
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(a) S-shaped corridor.
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(b) Crescent-shaped obstacle.

Figure 5.4: The MPC controller steers the kinematic bicycle (left) and the trailer
(right) through an obstructed environment. The obstacles in these examples each
include one or more nonlinear boundary functions.

completely of free cells. Moreover, the starting and destination points are checked
to be inside the grid. In this way, the graph search should always be able to find a
solution, as confirmed in the figures.

5.2.2 Performance comparison

Table 5.1 shows a comparison in terms of runtime and objective value of the proposed
method with solvers that address the equivalent problem with complementarity
constraints, for 50 instances of the OCP, each with a random initial state. The horizon
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(a) Cross-shaped obstacle.
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(b) Rack-shaped obstacle.

Figure 5.5: The MPC controller steers the trailer through two environments
with clear local minima, for which the heuristic from Section 3.3 proves effective.

length was restricted to 30 for this example. The parameters used in Algorithm 3.1
were: x0 = u0 = 0, µ1 = 100, µ∗ = 106, ω = 10, ε0 = 1, εν+1 = 10−1εν , ε∗ = 10−3 and
η∗ = 10−2. Aside from our method relying on PANOC, the solvers were tested for
both a single-shooting (SS) and a multiple-shooting (MS) formulation. In the case of
SNOPT and IPOPT, the problems solved are (5.7) with MS and (5.8) with SS. For
KNITRO, these problems are reformulated to only contain a list of complementary
variables, as outlined in Section 5.1.2.

Fail percentage indicates the frequency of not converging to an approximate local
minimum, either not converging at all or converging to a point of local infeasibility. In
those cases, the heuristics of Section 3.3 can be applied, but they are not included in
the current simulations. The solvers are compared in terms of runtime and objective
function value. No time was measured during problem construction, and only the
reported runtimes by the solvers are presented. The performance in terms of objective
values for each solver si is reported as the relative difference between the objective
value of the optimal input sequence for that solver u∗,si , and the best solution found
by all solvers for each instance, i.e. `(u

∗,si )−`∗
`∗ , with `∗ = mins∈S{`(u∗,s)}, with S the

set of all solvers. This measure indicates the quality of the solution, which is interesting
as problems with set exclusion constraints are highly nonconvex and therefore many
local minima exist. Typically, because of the large terminal cost, trajectories where the
vehicle remains in place behind an obstacle are local minima with a higher objective
value than trajectories that find their way to the destination. Hence, the proposed
method, which exhibits the lowest average and maximum differences, is shown to be
effective at finding meaningful local minima for these types of path planning problems.

Furthermore, Table 5.1 indicates that the proposed method outperforms the other
methods in terms of success percentage and in terms of runtime. The problem with
complementarity constraints is also inherently much larger as it contains more decision
variables and constraints. Especially for the formulation used by KNITRO, a lot of
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additional slack variables and constraints are introduced, as it requires two index lists
denoting which variables are complementary to each other. The runtime discrepancies
are (at least partially) due to the solvers working on different constraints.

Table 5.1: Performance comparison for the MPC controlled bicycle of Fig-
ure 5.4a, with solvers other than Algorithm 3.1 working on the problem(s) with
complementarity constraints.

Solver Runtime (s) `(u∗,si )−`∗
`∗ Fail (%)Avg Max Avg Max

Algorithm 3.1 (SS) 0.017 0.115 0.19 1.12 8
IPOPT (SS) 1.731 7.776 0.25 1.24 14
IPOPT (MS) 1.604 4.448 0.38 8.55 16
SNOPT (SS) 9.320 4.335 0.29 2.02 16
SNOPT (MS) 1.153 3.054 0.42 1.43 78
KNITRO (SS) 4.391 13.73 0.64 10.9 38
KNITRO (MS) 14.13 19.78 0.60 1.42 74

It is, therefore, also interesting to consider another comparison between our method
and SNOPT, IPOPT and KNITRO applied to the original problem with obstacle
avoidance as equality constraints ψ2

i (x) = 0, see problems (5.4) and (5.5). This squared
version of the equality constraint is differentiable, but will not satisfy LICQ. The
example considered here is that of Figure 5.4b, with a horizon length of 50 and sampling
time of 30ms. The runtime, objective and fail percentage results are presented in
Table 5.2. KNITRO is not applied to the single shooting formulation here as the
generated files were too large to compile. The proposed method again outperforms or
is at least competitive against other state-of-the-art solvers for this problem.

Table 5.2: Performance comparison for the MPC controlled trailer of Figure 5.4b,
with solvers other than Algorithm 3.1 working on problems (5.4) and (5.5).

Solver Runtime (s) `(u∗,si )−`∗
`∗ Fail (%)Avg Max Avg Max

Algorithm 3.1 (SS) 0.067 0.447 0.30 1.87 0
IPOPT (SS) 0.776 2.821 0.45 3.45 0
IPOPT (MS) 1.183 2.659 0.58 3.93 2
SNOPT (SS) 0.098 0.608 0.37 2.38 2
SNOPT (MS) 0.366 3.462 0.82 3.86 8
KNITRO (MS) 4.398 11.42 0.47 4.26 14

Finally, Figure 5.6 shows the runtime for Algorithm 3.1, IPOPT and SNOPT run
on the single-shooting formulation of (5.4). The figure clearly demonstrates that
Algorithm 3.1 benefits from warm starting the next OCP using the (shifted) solution
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Figure 5.6: Runtime comparison in an MPC simulation of Figure 5.4b.

of the previous one. This is an essential aspect of a solver to be used in MPC, since
subsequent OCPs are often very similar. It is well known that interior-point methods,
the class to which IPOPT belongs, typically do not benefit much from a good initial
guess. This is also confirmed in Figure 5.6. SNOPT, an SQP method, instead does
benefit from warm starting, as expected. Note that around time instance 20, the
vehicle had passed by the obstacle and so the subsequent OCPs were comparatively
easier, hence the drop in runtime of IPOPT after that instant.

5.3 Summary

This chapter presented numerical simulation results for Algorithm 3.1 applied to
various obstacle configurations. MPC control was applied to two different nonlinear
kinematic models, a vehicle with a trailer and a simplified bicycle model. The versatility
of our method when it comes to finding trajectories from the start to the destination
was clearly established, especially when using the additional heuristics from Section 3.3.
Furthermore, Algorithm 3.1 was shown to outperform several state-of-the-art NLP
solvers, IPOPT, SNOPT and KNITRO, in both runtime and quality of the solution,
when applied to this type of problem with obstacle constraints. Moreover, an MPC
simulation illustrated that our approach benefits from warm starting, a crucial aspect
of any numerical solver to be used in MPC.
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Chapter 6

Quadratic Programming

This chapter discusses quadratic programs (QPs), which are optimization problems of
the following form

minimize
x∈Rn

1
2x
>Qx+ q>x (6.1a)

subject to ` ≤ Ax ≤ u, (6.1b)

where Q ∈ Sym(Rn), q ∈ Rn, A ∈ Rm×n, and `i, ui ∈ R ∪ {−∞}, i = 1, . . . ,m.
Even though only inequality constraints are listed, it is trivial to include equality
constraints in the above formulation by setting some `i = ui. Optimization methods
for quadratic programming are almost always focused on convex QPs, in which Q
is positive semidefinite. Efficiently and reliably solving QPs is a key challenge in
optimization [121, §16].

Section 6.1 covers some application domains in which (convex) QPs arise, such as
finance and linear MPC. Moreover, it describes a popular nonlinear programming
technique, sequential quadratic programming, which as the name implies, relies on
the solution of many subsequent QPs. Section 6.2 provides a brief overview of the
optimization techniques for solving QPs in the literature. Existing methods fall typically
under the categories of active-set methods, interior-point methods, or proximal methods.
Section 6.3 discusses briefly the difficulty in extending these methods to nonconvex
QPs.

6.1 Application domains

Quadratic programs arise in a wide variety of applications. For example, in the
domain of machine learning, support vector machines (SVM) [37], the least absolute
shrinkage and selection operator (Lasso) [153] and Huber fitting [87, 106] all require

69
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the solution of or can be formulated as a convex QP. This section discusses two other
domains where QPs emerge, which are used in the benchmarks of Section 9.2. The
first is the domain of finance, in which optimizing a portfolio of investments, given an
expected return and accompanying risks can be formulated as a QP. The second is
control engineering, in which both linear MPC and moving horizon estimation require
the solution of (successive) QPs. Finally, the key idea behind a popular nonlinear
programming technique, sequential quadratic programming, is also briefly explained.

6.1.1 Finance

One of the most well-known (optimization) problems in finance is that of portfolio
selection [36, §6]. Say an investor wishes to invest his funds in a series of n potential
assets. Let ri denote the return for the i-th asset. Of course, in practice, these returns
are unknown. It is often assumed that these are randomly distributed along a normal
distribution, with expected values µi = E[ri] and variance σ2

i = E[(ri−µi)2]. Moreover,
the returns of many assets are in general not independent. As such, we can define
correlations between pairs of returns as ρij = 1

σiσj
E[(ri − µi)(rj − µj)]. Let xi denote

the fraction of the investor’s funds to be allocated in asset i. Then, the (normalized)
return value is given as R =

∑n

i=1 xiri. By using some simple statistical calculations,
one obtains the mean and variance of R as E[R] = x>µ,Var[R] = x>Σx, where Σ is
the covariance matrix, with entries Σii = ρijσiσj .

Ideally, the investor would want to maximize the expected return and minimize the
risk. In the model introduced by Markowitz [107], also known as the Markowitz mean-
variance model, both of these measures are combined in an optimization problem,
with the risk weighted by a risk-aversion coefficient κ. The ensuing quadratic program,
assuming short selling is not allowed, is then

minimize
x∈Rn

κx>Σx− µ>x

subject to x ≥ 0

n∑

i=1

xi = 1.

Investors who are very risk-averse, can solve this problem with a high value of κ,
whereas investors who wish to make a higher return at the cost of a higher risk would
use a low value. Alternatively, this problem can be reformulated to minimize the risk
given a wanted return, say µ̄

minimize
x∈Rn

x>Σx

subject to x ≥ 0
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n∑

i=1

xi = 1,

µ>x ≥ µ̄,

or, to maximize the return given a certain tolerated risk level, σ̄

minimize
x∈Rn

− µ>x

subject to x ≥ 0

n∑

i=1

xi = 1,

x>Σx ≤ σ̄2.

Notice however that this last program is no longer a QP according to our definition,
since it also contains a quadratic constraint. Quadratically constrained QPs (QCQPs)
are generally much harder to solve than regular QPs, and will not be treated in this
work.

6.1.2 Control engineering

Model predictive control is a control technique that is becoming more and more
popular, given its inherent capability to optimize a control strategy over a time
horizon while taking into account constraints [131]. In linear MPC, the resulting
optimization problems are quadratic programs. Consider a (discrete) linear system,
with states q, inputs u and outputs y, which is governed by the state-space equations

qk+1 = Aqk +Buk,

yk = Cqk +Duk,

with (A,B,C,D) the (discrete) state-space matrices of appropriate size. Let nq, nu
and ny denote the number of states, inputs and outputs respectively. Furthermore, let
us assume the goal of the MPC controller is to track a reference state and input over
a control horizon N . The resulting OCP is then given as

minimize
z∈R(N+1)nq+Nnu

‖qN − qref‖2P +
N−1∑

k=0

‖qk − qref‖2Q + ‖uk − uref‖2R

subject to qk+1 = Aqk +Buk, k = 0, . . . , N − 1,

uk ∈ U , k = 0, . . . , N − 1,
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qk ∈ Q, k = 0, . . . , N − 1,

qN ∈ QN ,

q0 = x̄.

Here, the notation ‖v‖2M = v>Mv is used. The vector z is the stacking of all the
states and inputs, that is z = (q0, u0, q1, . . . , uN−1, qN ). Q ∈ Sym+(Rnx) and R ∈
Sym++(Rnu) represent the stage cost matrices for the states and inputs respectively,
while P ∈ Sym+(Rnx) represents a terminal penalty. Moreover, the sets U , Q and QN
describe constraints on the control inputs, states and terminal state respectively. In
order for the above OCP to be a quadratic program, these sets should be polyhedral
sets. Finally, q̄ denotes the initial state, which is estimated or measured directly.

State estimation is another important aspect of control engineering. A very popular
approach is Kalman filtering [90], also known as least squares estimation. An in-depth
discussion on state estimation techniques is out of the scope of this thesis. However,
a method that is gaining popularity nowadays is moving horizon estimation (MHE).
MHE is becoming more popular since it uses the previous N measurements to make
accurate estimates, and can be combined seamlessly with an MPC approach to control
the system. In the simplest form, let us imagine that the state evolves autonomously.
Furthermore, assume we have measurements on all the past outputs, and we denote
these measurements ŷk. No physical system nor sensor is free of noise, however. Hence,
letting wk and vk denote respectively the process noise and the measurement noise at
the k-th step, then the state space system equation becomes qk+1 = Aqk +wk and the
(measured) output equation ŷk = Cqk + vk. MHE computes estimates of the previous
N states, given we are now at time T ≥ N , by solving the following optimization
problem

minimize
z∈RNnq

T−1∑

k=T−N
‖qk+1 −Aqk‖Q−1 +

T∑

k=T−N
‖ŷk − Cqk‖R−1 ,

where z = (qT−N , . . . , qT ), and Q and R represent process and measurement distur-
bance covariances, i.e. we assume that wk ∼ N (0, Q) and vk ∼ N (0, R) respectively.
For the sake of brevity, the problem for T < N is not considered. Moreover, the MHE
problem can of course also be considered in the presence of constraints [130]. As long
as these are linear, the MHE problem remains a quadratic program.

6.1.3 Sequential quadratic programming

A popular method for nonlinear programming is sequential quadratic programming
(SQP), which as the name implies, solves a sequence of QPs. The key idea is that
these QPs are local approximations to the nonlinear program, in exactly the same
way Newton’s method operates in unconstrained optimization [113]. Given a nonlinear
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program

minimize
x∈Rn

f(x)

subject to c(x) = 0,

g(x) ≤ 0,

the Lagrangian function is given as

L(x, λ, µ) = f(x) + λc(x) + µc(x),

with λ and µ the multipliers for the equality and inequality constraints respectively.
Let Jh(x) = (∇h1(x), . . . ,∇hm(x))> denote the Jacobian of a mapping h : Rn → Rm.
At the k-th iteration, using a quadratic approximation of the Lagrangian for the
objective and linear approximations of the constraints around the current iterate xk,
SQP methods will typically construct a quadratic program of the form

minimize
x∈Rn

∇f(xk)>(x− xk) + 1
2 (x− xk)>Hk(x− xk)

subject to c(xk) + Jc(xk)(x− xk) = 0,

g(xk) + Jg(xk)(x− xk) ≤ 0.

Note that in the objective function, ∇f appeared instead of ∇xL. The program with
the latter gradient would be entirely equivalent to the one presented, aside from the
interpretation of the multipliers. For the matrix Hk, either the exact Hessian of the
Lagrangian ∇2

xxL or a (current) approximation of it can be used. On the one hand,
the exact Hessian is often expensive to compute and may be indefinite. Therefore,
it is typically only chosen when it is efficiently computable and in the context of
trust-region methods which prevent the QP from being unbounded. Approximations,
on the other hand, can be cheaply made and kept positive definite, such that the
resulting QPs are convex, but have the disadvantage of losing some of the second-order
information.

In SQP methods, just applying the basic step resulting from the QP subproblem may
not lead to a converging algorithm. Instead, a globalization strategy needs to be added
in order to ensure convergence. The main approaches for this purpose are linesearch
methods which accept steps if they provide a decrease of the merit function, and trust-
region methods which add a trust-region constraint such as ‖x− xk‖∞ ≤ ∆k to the
above QP and in which the step is accepted when the quadratic model and nonlinear
program correspond sufficiently. The reader is referred to [70] for a detailed overview of
the many variants and techniques used in sequential quadratic programming. Popular
SQP solvers include SNOPT [69], filterSQP [57] and acados [159].
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6.2 Optimization methods

Given the emergence of quadratic programs in many interesting application domains,
a substantial amount of research has naturally been devoted to the development of
efficient and robust methods for solving them. Robustness is here, and in the remainder
of this thesis, understood as a measure for how unaffected the solver is with respect to
ill conditioning in the problem data. What makes a QP fundamentally difficult is the
presence of inequality constraints, since the KKT conditions of an equality constrained
quadratic program (ECQP) boil down to a set of linear equations. Specifically, given
the ECQP

minimize
x∈Rn

1
2x
>Qx+ q>x

subject to Ax = b,

the KKT conditions on the primal and dual solution pair (x∗, y∗) are given as
[
Q A>

A 0

][
x∗

y∗

]
=
[
−q
b

]
. (6.2)

Hence, solving such an ECQP amounts to solving a linear system, which can be
considered a done deal with current numerical linear algebra techniques. Assuming
the equality constraints are linearly independent, possibly after removing redundant
constraints, either the above system is solved using direct methods or, typically in the
case of very large problems, using a conjugate gradient method [73]. Therefore, the
main challenge lies in solving the more general QP with inequality constraints. To deal
with these inequality constraints, several approaches have been invented, which are
discussed in the remainder of this section. For simplicity in the following discussion,
let us denote the inequality constrained QP as

minimize
x∈Rn

1
2x
>Qx+ q>x (6.3a)

subject to AEx = bE , (6.3b)

AIx ≤ bI . (6.3c)

Here E and I denote the index set of equalities and inequalities respectively. The
KKT conditions of problem (6.3) on a primal-dual solution pair (x∗, y∗) are given as

Qx∗ + q +A>E y
∗
E +A>I y

∗
I = 0, (6.4a)

AEx
∗ = bE , (6.4b)



OPTIMIZATION METHODS 75

AIx
∗ ≤ bI , (6.4c)

y∗ ≥ 0, (6.4d)

y∗i (Ax∗ − b)i = 0, ∀i ∈ I. (6.4e)

Condition (6.4e) is known as the complementarity condition. It dictates that for each
i ∈ I either the inequality constraint is satisfied as equality, i.e. (Ax∗ − b)i = 0, or the
corresponding multiplier is zero, or both. In the first case, the inequality is considered
to be active. Vice-versa, for an inactive inequality i, it holds that (Ax∗− b)i < 0. Such
constraints do not influence the solution. Equality constraints are always active, since
they have to be satisfied as equality by definition. Let A(x) = {i|(Ax−b)i = 0} denote
the set of active constraints at x. It is clear that if we somehow knew A(x∗), problem
(6.3) can be solved by solving the corresponding ECQP. This is the key idea behind
one of the state-of-the-art methods, namely that of the accordingly named active-set
methods. Although active-set methods may belong to primal, dual or primal-dual
types, the following discussion is restricted to primal active-set methods.

6.2.1 Active-set methods

Active-set methods intend to find the set of active constraints at the solution. For this
purpose, they keep track of a working set, i.e. a running estimate of the final active set.
Assuming the initial point x0 is feasible, the remaining iterates will retain feasibility.
A common strategy to determine an initial feasible point is to first solve a feasibility
linear program, which, given a user-supplied initial point x̄, is given by

minimize
(x,z)∈Rn+nz

nz∑

j=1

zj

subject to AEx+ γEzE = bE ,

AIx+ γIzI ≤ bI ,

z ≥ 0,

where nz = |E|+ |I| is the total number of constraints, and γi = − sgn((Ax̄− b)i) for
i ∈ E , and γi = −1 for i ∈ I. It is easy to verify that (x̄, z̄), with z̄i = |(Ax̄− b)i|, i ∈ E
and z̄i = max(0, (b − Ax̄)i), i ∈ I, is a feasible point for the above linear program.
Moreover, if x̄ is feasible for the original problem, then (x̄, 0) can be shown to be
optimal for the feasibility problem. Therefore, the resulting vector from solving this
problem, denoted by x0, can be thought of as a sort of minimal perturbation to x̄
which is feasible for the original QP. Given x0, the initial working set can be chosen
as a linearly independent subset of the active constraints at x0.
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From then on, the (primal) active-set method will iteratively update the trial point
xk and the working set Wk by solving first the ECQP

minimize
x∈Rn

1
2x
>Qx+ q>x (6.5a)

subject to (Ax)i = bi, ∀i ∈ Wk, (6.5b)

to obtain x̂k and derive from it the trial step pk = x̂k − xk. In addition, we obtain
ŷki , i ∈ Wk from the solution and set the remaining ŷki = 0, i 6∈ Wk.

Now, if pk = 0 and ŷki ≥ 0, i ∈ Wk, it can be shown that the KKT conditions (6.4)
are satisfied at x̂k, ŷk and the solver terminates. If pk = 0 but some ŷki < 0, i ∈ Wk,
then the trial point can be further improved by dropping some combination of these
constraints from the working set. Since it is uncertain which combination needs to
be dropped, active-set methods typically drop only one constraint, and usually the
one with the smallest multiplier. Hence, xk+1 ← xk and W k+1 ←W k \ {j} for some
j ∈ argmin ŷki in this scenario.

On the other hand, if pk 6= 0, then the question becomes one of determining the step
size to be taken in this direction. If xk + pk is feasible for all constraints, then this
full step is taken, xk+1 ← xk + pk. Otherwise, one needs to determine the blocking
constraints, i.e. those which are infeasible at xk + pk. Since xk is feasible with respect
to all constraints, the only possibility for a blocking constraint i is to have (Apk)i > 0.
To determine the step size αk, which we want to have as close as possible to 1, the
following equation needs to be solved

αk = min
(

1, min
(Apk)i>0

bi − (Axk)i
(Apk)i

)
.

This equation can also be used to determine whether there were blocking constraints in
the first place. After all, if αk = 1 no constraint blocked the full step. However, if αk < 1,
then the constraint j which achieves the minimum in the above equation is identified,
upon which the trial point and working set are updated using xk+1 = xk + αkpk and
Wk+1 =Wk ∪ {j}.

From this discussion, it is clear the the working set changes only by one element per
iteration. Some active-set methods may drop and add one constraint in the same
iteration but, evidently, the successive ECQPs (6.5) are very similar. This fact can
be exploited to avoid having to solve the linear system (6.2) from scratch every
time. For example, if the linear system is solved using a null-space method, which
requires the computation of the null-space of AWk via a QR factorization [13, §6],
then this factorization may be updated efficiently when one row is added or deleted,
see [67, 39, 80].

An advantage of active-set methods is that they can easily make use of an initial guess,
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also known as a warm start, both for the initial point and possibly for the initial
working set. This aspect is very useful when solving a series of related QPs, such as
in SQP or in MPC. The biggest drawback of active-set methods, however, is that a
large number of iterations can be required to converge to the right working set, as the
number of possible working sets grows exponentially with the number of constraints.
Popular active-set based QP solvers include the open-source solver qpOASES [53], the
QPA module in the open-source software GALAHAD [74], and QPNNLS [12], the
latter being tailored for embedded MPC applications.

6.2.2 Interior-point methods

The key idea in interior-point methods is to try and solve the KKT conditions (6.4)
more directly, albeit iteratively and with a perturbation [164]. For this reason, let us
first denote a vector of slack variables R|I| 3 s = bI − AIx, with which the KKT
conditions can be reformulated as

Qx∗ + q +A>E y
∗
E +A>I y

∗
I = 0, (6.6a)

AEx
∗ = bE , (6.6b)

AIx
∗ + s∗ = bI , (6.6c)

s∗, y∗ ≥ 0, (6.6d)

y∗i s
∗
i = 0, ∀i ∈ I. (6.6e)

Moreover, let µ = s>y
|I| denote the complementarity measure, which quantifies how

closely (6.6e) is satisfied. Then, the perturbed KKT conditions in (x, s, t, τµ) are given
by



Qx+ q +A>y
AIx+ s− bI
SY 1− τµ1
AEx− bE


 = 0, (6.7)

where S = diag(s), Y = diag(yI), and τ ∈ [0, 1] is a parameter varied over the
iterations. The solutions of (6.7) for positive values of τ and µ define the so-called
central path, a trajectory which leads to the solution of the QP as τµ tends to zero.
For a given value of (x, s, y), a Newton step on the system (6.7) can be computed by
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solving 

Q 0 A>I A>E
AI I 0 0
0 Y S 0
AE 0 0 0







∆x
∆s

∆yI
∆yE


 =



−(Qx+ q +A>y)
−(AIx+ s− bI)
−(SY 1− τµ1)

bE


. (6.8)

Using the third equation of (6.8), ∆s can be eliminated and substituted into the
second equation, leading to the equivalent system

[
Q A>I A>E
AI −Y −1S 0
AE 0 0

][∆x
∆yI
∆yE

]
=

[ −(Qx+ q +A>y)
−(AIx+ s− bI − s+ τµY −11)

bE

]
.

This symmetric indefinite system, assuming AE is full rank, can be solved by using
standard methods, either direct or iterative [13]. After obtaining the step direction, a
suitable step size needs to be determined. Typically, a distinction is made between
primal and dual steps, such that (xk+1, sk+1) = (xk, sk) + αkp(∆x,∆s) and yk+1 =
yk + αkd∆y. Obtaining suitable step sizes is a crucial aspect that influences the
convergence of the methods, and relies typically on a filter or a linesearch on a merit
function. A comprehensive overview is given in [161]. The centering parameter τ is
typically updated using a heuristic, such as τ = µaff

µ
, with µaff obtained from an affine

scaling step, which solves (6.8) for τ = 0.

Interior point methods usually require fewer but more expensive iterations than
active-set methods. Their iterations involve the solution of a fresh linear system at
every iteration. Interior-point methods are generally efficient, but suffer from not
having warm starting capabilities. Examples of state-of-the-art QP solvers using an
interior-point method are the commercial solvers Gurobi [79] and MOSEK [114],
the closed-source solver BPMPD [111] and the open-source solvers OOQP [63] and
HPIPM [60], the last one being tailored to small-to-medium dense and OCP-structured
problems. Moreover, general nonlinear interior-point methods, such as IPOPT [161]
and KNITRO [24], also work relatively well for convex and nonconvex QPs. Finally,
[59] uses an interior-point method after adding a proximal-point type regularization
on the primal and dual problems. This regularization is similar to the one used in the
proximal augmented Lagrangian method (P-ALM), as we will see in §7, and provides
an advantage in solving the linear systems, since for instance rank-deficient constraint
Jacobians no longer pose an issue.

6.2.3 Proximal methods

Recently, proximal algorithms, also known as operator splitting methods [122], have
experienced a resurgence in popularity. Relying only on first-order information of the
problems, such methods have as their advantage operational simplicity and cheap iter-
ations, but they may exhibit slow asymptotic convergence for poorly scaled problems.
Many of the algorithms, however, may be accelerated by Nesterov-type [119],[120, §2.2]
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methods [71, 126, 101], or by Newton-type methods [142, 152]. Moreover, proximal
algorithms are only interesting when the involved proximal steps are computationally
tractable. Fortunately, this is very often the case, as demonstrated in the many exam-
ples in [122]. The proximal operator and the proximal point algorithm (PPA) [133]
with its relation to P-ALM are discussed in Section 7.1. This subsection provides in-
stead a brief overview on the most common proximal algorithms that can be applied
to QPs. Moreover, these algorithms are only outlined qualitatively, since there is no
central method.

One of the simplest proximal algorithms is the proximal gradient method, also known
as forward-backward splitting (FBS), which interleaves a gradient descent step and
a proximal step, as mentioned in Section 3.2.1. Typically, the proximal part applies
to the indicator of a constraints set, in which case the step becomes a projection on
that set. The proximal gradient method is then also known as the projected gradient
method. Such a method is for instance interesting for a box constrained QP

minimize
x∈Rn

1
2x
>Qx+ q>x

subject to ` ≤ x ≤ u.

The proximal gradient method may be accelerated using a Nesterov-type scheme [101].
A more sophisticated variant also exists, known as the gradient projection method
[33]. This method looks along the piecewise-linear path obtained by projecting the
steepest descent step on the box to find an (approximately) optimal point along this
path every iteration, instead of just the end-point as in the normal projected gradient
method. The gradient projection method applied to the dual QP has known some
success in MPC applications [9], and can be further accelerated with a Nesterov-type
method [124].

The application of the proximal gradient method to the dual problem leads to another
proximal algorithm, known as the alternating minimization algorithm (AMA), first
introduced in [154]. AMA is useful for problems with a separable structure, such as those
arising in distributed MPC. Like the proximal gradient method, there exist accelerated
versions of AMA, based on Nesterov-type acceleration [71], or on a combination with
Newton-type methods [142].

Another popular proximal algorithm was first introduced in [48] to solve heat differential
equations and is known as Douglas-Rachford splitting (DRS), which can be shown
to be equivalent to the alternating direction method of multipliers (ADMM). Like
AMA, ADMM is also suited for composite optimization problems, such as those
arising in distributed MPC [52, 157]. ADMM-type schemes can also be accelerated
using Nesterov-type [71, 126] or Newton-type methods [152]. Recently, a full-fledged
(convex) QP solver based on ADMM was proposed in [144], the operator-splitting QP
(OSQP) solver. It partially overcomes the weakness of first order methods against
ill conditioning by means of a tailored offline scaling and a small amount of online
parameter adjustments, although a more thorough benchmarking, see §9, confirms the
known limitations of proximal algorithms. Indeed, since the parameters are typically
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set before the execution, with only minor online adjustments, the operator splitting
iterations remain simple and computationally cheap, but mostly fail to take into account
curvature information about the problem that can greatly speed up convergence.

6.3 Nonconvex QPs

Nonconvex QPs arise in several application domains, such as in a reformulation of
mixed integer quadratic programs, in the solution of partial differential equations
and in VLSI chip design [163]. Furthermore, a (potentially) indefinite QP has to be
solved at every iteration of a sequential quadratic programming method applied to a
nonconvex optimization problem if the exact Hessian of the Lagrangian is used, as
mentioned in Section 6.1.3.

It is generally difficult to extend the aforementioned methods to be able to find
stationary points of nonconvex QPs, without additional assumptions. Augmented
Lagrangian based algorithms and ADMM, for example, would require surjectivity
of the constraint matrix A [100, 19, 21, 150]. Some proposals have been made for
interior-point methods to solve nonconvex QPs [167, 1] and for active-set methods
[68, 56, 77], but these methods were either not available or found to often exhibit
numerical issues in our benchmarks. Finally, global optimization of nonconvex QPs
has been the topic of a large amount of research, see for example [139, 22, 26], but
this is a separate issue and will not be discussed further here, since finding the global
optimum of a nonconvex QP is an NP-hard problem [118] and we are satisfied with
finding just a stationary point.

One method that has not been discussed until now is the proximal augmented La-
grangian method. In the next chapter, a detailed overview of this method will be
given, alongside a convergence proof when applied to nonconvex QPs, albeit after a
slight modification, without any surjectivity assumptions.

6.4 Summary

This chapter discussed the prevalence of quadratic programs in various application
domains. Well-known examples are support vector machines, lasso and Huber-fitting
in machine learning, portfolio optimization in finance and linear MPC and MHE in
control engineering. Quadratic programming solvers have therefore been the topic of
decades of development. State-of-the-art algorithms for inequality constrained QPs
rely typically on active-set methods, interior-point methods or proximal algorithms.
However, it is generally difficult to extend these methods for nonconvex QPs, and
little focus has been put on them. In contrast, the proximal augmented Lagrangian
method, which will be discussed in the next chapter, may naturally deal with such
nonconvexity.



Chapter 7

Proximal Augmented Lagrangian Method

This chapter discusses the application of the augmented Lagrangian method (ALM),
first introduced by Hestenes [86] and Powell [128], and in particular proximal ALM,
originally known as the proximal method of multipliers [132], to quadratic programs.
The augmented Lagrangian method is described in detail in [15], and has been applied
in nonlinear optimization codes, such as MINOS [116, 117, 115], LANCELOT [34],
PENNON [92], ALGENCAN [5] and GRAMPC [49], the last one being tailored to
embedded MPC applications. However, research on the application of ALM to QPs
is rather limited compared to the other state-of-the-art methods of Section 6.2. The
authors of [66] presented an ALM solver for QPs, which solves the inner minimization
problems using a combination of active-set and gradient projection methods, although
this research was not peer-reviewed and seems to be discontinued. FBstab [102] was
developed independently and around the same time as QPALM, relying also on P-
ALM, but restricted to convex QPs. Our inner minimization routine, presented in
§8, differs from FBstab, however. The latter focuses particularly on small dense and
OCP-structured problems, considers penalty parameter values instead of vectors, and
uses a backtracking linesearch.

This chapter considers the application of P-ALM to quadratic programs, and establishes
its theoretical ground in the form of convergence proofs. Section 7.1 outlines the basic
P-ALM iteration and its origin, the proximal point algorithm (PPA). It is shown how
P-ALM and PPA applied to the KKT operator are equivalent, given that the KKT
operator is monotone. Section 7.2 shows the theoretical convergence of the PPA applied
to the KKT conditions of a convex QP, drawing heavily from existing literature on
monotone operator theory. Section 7.3 looks into application of P-ALM to nonconvex
QPs, where despite retaining its equivalence to PPA applied to the (hypomonotone)
KKT conditions, convergence is not readily obtained. Small modifications need to be
made to the basic P-ALM iteration to make it instead equivalent to inexact proximal
point iterations applied to the extended cost function. A convergence proof for the
proposed algorithm is also given at the end of this section.

The material in this chapter is based on the publications [84, 85].

81
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7.1 Proximal Method of Multipliers

This section discusses the proximal ALM iteration and the proximal point algorithm.
Both of these require the solution of a sequence of (perturbed) optimization problems.
For now, inexactness is left out of the discussion for simplicity, but it is treated in the
convergence proofs of Sections 7.2 and 7.3.

7.1.1 Proximal ALM

To outline the proximal augmented Lagrangian method, first a reformulation of the
QP in (6.1) is needed, given by introducing slack variables z = Ax as

minimize
(x,z)∈Rn+m

1
2x
>Qx+ q>x (7.1a)

subject to Ax = z, (7.1b)

` ≤ z ≤ u. (7.1c)

Obviously, problem (7.1) is equal to (6.1) after eliminating the slack variable z, and
so the two problems are equivalent. Problem (7.1) has the (theoretical) advantage,
however, of having no inequality constraints aside from bounds on the variables.
Furthermore, let the set C = [`, u] denote the set of bounds, and the functions

f(x) := 1
2x
>Qx+ q>x, (7.2a)

g(z) := δC(z) =
{

0 if z ∈ C,
∞ otherwise, (7.2b)

denote the objective function and the constraint function on z. Then, (7.1) is equivalent
to

minimize
(x,z)∈Rn+m

f(x) + g(z) (7.3a)

subject to Ax = z. (7.3b)

The Lagrangian function of (7.3) with respect to the equality constraints (7.3b) is
given by

L(x, z, y) := f(x) + g(z) + y>(Ax− z), (7.4)
with y the corresponding Lagrange multiplier. The augmented Lagrangian is obtained
by augmenting this regular Lagrangian with an additional (quadratic) penalty on the
constraint violation. Given a positive definite (diagonal) matrix of penalty parameters
Σy, the augmented Lagrangian function is thus given as

LΣy(x, z, y) := f(x) + g(z) + y>(Ax− z) + 1
2‖Ax− z‖

2
Σy . (7.5)
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The proximal augmented Lagrangian, furthermore, adds a proximal penalty on the
distance between the new x iterate and the regularization point x̂. In regular P-
ALM, x̂k = xk, but a distinction is made here already since it will be necessary once
modifications for P-ALM are discussed in the nonconvex case. Given a positive definite
(diagonal) matrix of proximal penalty parameters Σx and a regularization point x̂, the
proximal augmented Lagrangian function is given as

Lx̂,Σx,Σy(x, z, y) = f(x) + g(z) + y>(Ax− z) + 1
2‖Ax− z‖

2
Σy + 1

2‖x− x̂‖
2
Σ−1
x
. (7.6)

P-ALM iteratively updates (x, z) by minimizing the proximal augmented Lagrangian
function and (typically) using a first-order update for y as follows





(xk+1, zk+1) = argminx,z Lx̂k,Σx,k,Σy,k
(x, z, yk)

yk+1 = yk + Σy,k
(
Axk+1 − zk+1)

x̂k+1 = xk+1.

(7.7)

Apparently, by first minimizing (7.6) with respect to z, zk+1 is given by

zk+1 = argmin
z

Lx̂k,Σx,k,Σy,k
(x, z, yk)

= argmin
z

g(z) + y>(Ax− z) + 1
2‖Ax− z‖

2
Σy,k

= argmin
z

g(z) + 1
2‖Ax+ Σ−1

y,ky
k − z‖2Σy,k

= prox
Σ−1
y,k

g (Ax+ Σ−1
y,ky

k) = ΠC(Ax+ Σ−1
y,ky

k), (7.8)

with the notation prox
Σ−1
y,k

g as defined in (1.9). Note that in the above derivation,
terms independent of z, such as f(x), 1

2‖x− x̂‖
2
Σ−1
x

and −Σ−1
y,k‖y

k‖2 have been dropped
since they do not influence the minimizer. Moreover, the last equality follows from the
fact that Σy,k is diagonal and the set C is separable, implying that the projection on
C with respect to the Euclidean norm and that induced by Σy,k coincide. Let Zk(x)
denote the right-hand side of (7.8), i.e.

Zk(x) = ΠC(Ax+ Σ−1
y,ky

k), (7.9)

which is a Lipschitz-continuous mapping. Then, it is possible to work out the mini-
mization with respect to x as

xk+1 = argmin
x

Lx̂k,Σx,k,Σy,k
(x, Zk(x), yk)

= argmin
x

f(x) + 1
2‖x− x̂

k‖2Σ−1
x,k

+ 1
2‖Ax+ Σ−1

y,ky
k − Zk(x)‖2Σy,k

= argmin
x

f(x) + 1
2‖x− x̂

k‖2Σ−1
x,k

+ 1
2 dist2

Σy,k (Ax+ Σ−1
y,ky

k, C), (7.10)
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where distΣy,k (z, C) is the distance from z to C induced by the norm in Σy,k.

Let ϕ̂k(x) denote the objective function in the last minimization problem, i.e.

ϕ̂k(x) := f(x) + 1
2 dist2

Σy,k (Ax+ Σ−1
y,ky

k, C) + 1
2‖x− x̂

k‖2Σ−1
x,k
. (7.11)

This function is (Lipschitz) differentiable and, through an appropriate choice of Σx,k
as discussed later, strongly convex with gradient

∇ϕ̂k(x) = ∇f(x) +A>
(
yk + Σy,k(Ax− Zk(x))

)
+ Σ−1

x,k(x− x̂k). (7.12)

For convenience of notation, let us also denote a version ϕk(x) which is equal to ϕ̂k(x)
with the exception that x̂k is replaced by xk, namely

ϕk(x) := f(x) + 1
2 dist2

Σy,k (Ax+ Σ−1
y,ky

k, C) + 1
2‖x− x

k‖2Σ−1
x,k
. (7.13)

By combining (7.7), (7.8), (7.10) and (7.11), it is clear that the P-ALM iteration
amounts to the update





xk+1 = argminx∈Rn ϕ̂k(x)
zk+1 = ΠC(Axk+1 + Σ−1

y,ky
k)

yk+1 = yk + Σy,k
(
Axk+1 − zk+1)

x̂k+1 = xk+1.

(7.14)

Regular ALM replaces the proximal augmented Lagrangian in (7.7) with the augmented
Lagrangian function in (7.5). Although the two methods differ only in the addition
of the proximal penalty term, P-ALM has some theoretical advantages with respect
to plain ALM, at seemingly no additional cost [132]. In particular, when considering
nonconvex problems, the proximal penalty can be used to guarantee the strong
convexity of the subproblems, and as a result the existence and uniqueness of their
solutions, as illustrated in Remark 7.1.

Remark 7.1 (Proximal ALM vs plain ALM). A major advantage of proximal ALM
over plain ALM when applied to a nonconvex QP is that by suitably selecting the
proximal weights each subproblem is guaranteed to have solutions. An illustrative
example showing how ALM may not be applicable is given by the nonconvex QP

minimize
x∈R2

x1x2

subject to x1 = 0,

which is clearly lower bounded and with minimizers given by
{
x ∈ R2 | x1 = 0

}
. For

a fixed penalty β > 0 and a Lagrangian multiplier y ∈ R, the x-minimization step
prescribed by ALM is

x+
ALM ∈ argmin

w∈R2

{
w1w2 + y>w1 + β

2 ‖w1‖2
}

= ∅,
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owing to lower unboundedness of the augmented Lagrangian (take, e.g., wk = (1,−k)
for k →∞). The problem is readily solved by proximal ALM, as long as the proximal
weight Σx ∈ Sym++(R2) satisfies Σx ≺ I (the 2 × 2-identity matrix). In fact, the
P-ALM update step results in

x+
P-ALM ∈ argmin

w∈R2

{
w1w2 + yw1 + β

2 ‖w1‖2 + 1
2‖w − x‖

2
Σ−1
x

}

=
{[

Σ−1
x +

(
β 1
1

)]−1(
Σ−1

x x−
(
y
0

))}
,

which is well defined regardless of what the Lagrange multiplier y and the penalty β
are.

The choice and update strategy of the penalty weights Σy,k,Σx,k and the tolerances for
the subproblem minimization are crucial for the efficiency of the method in practice.
For the theory however, we only need some simple conditions on these parameters,
as outlined in Sections 7.2 and 7.3. The practical choices for these parameters are
discussed §8. In the next section, the origin of P-ALM, namely the proximal point
algorithm, is investigated, since this will allow us to derive convergence in the convex
case straightforwardly.

7.1.2 Proximal point algorithm

One rather general algorithm that can be applied to optimization problems is the
proximal point algorithm (PPA) [133]. The PPA generally considers the problem of
finding 0 ∈ T (x), and consists of applying a sequence of resolvent operations on T ,
that is

xk+1 ∈ (id + Σx,kT )−1(xk). (7.15)

The key ingredient of the proximal point algorithm is the proximal operator. As
defined in Definition 1.1, the proximal operator applied to a function h and for a step
size γ > 0 is the set-valued mapping

proxγh(x) = argmin
w∈Rn

{
h(w) + 1

2γ ‖w − x‖
2}.

If γ can be and is chosen such that h+ 1
2γ ‖ · ‖

2 is strongly convex, then the minimizer
above is unique and proxγh(x) would therefore be single-valued. An important property
of the proximal operator when h is convex is the (extended) Moreau decomposition
[11, Thm. 14.3(ii)], which states that

x = proxγh(x) + γ proxγ−1h∗(x/γ). (7.16)

Here, h∗ is the conjugate function of h, as defined in (1.1).
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Recall from (1.9) that the definition of the proximal operator can be extended for a
matrix Σ ∈ Sym++(Rn) of “step sizes”,

proxΣ
h (x) = argmin

w∈Rn

{
h(w) + 1

2‖w − x‖
2
Σ−1
}
. (7.17)

Typically, we will only consider a diagonal matrix for Σ, in which case each diagonal
element represents the step size in the corresponding component of x. Assuming
the objective in (7.17) is convex, the minimization in (7.17) leads to the following
optimality condition on proxΣ

h (x),

x̂ = proxΣ
h (x) ⇔ 0 ∈ ∂h(x̂) + Σ−1(x̂− x). (7.18)

Depending on the definition of T in (7.15), different algorithms may be derived from
the PPA. The most intuitive and straightforward application of the PPA is to a primal
optimality condition, and the result is then known as the proximal minimization
algorithm.

Primal PPA

Given a minimization problem

minimize
x∈Rn

ϕ(x), (7.19)

the proximal minimization algorithm is obtained by setting T = ∂ϕ in the PPA. Notice
that (7.3) may be formulated equivalently as a problem of type (7.19), by setting

ϕ(x) := f(x) + g(Ax). (7.20)

Assuming that Σx,k is chosen such that ϕ+ 1
2‖ · ‖

2
Σ−1
x,k

is convex, it is possible to work
out (7.15) for this case as follows

xk+1 = (id + Σx,k∂ϕ)−1(xk)

⇒ xk+1 + Σx,k∂ϕ(xk+1) 3 xk

⇒ ∂ϕ(xk+1) + Σ−1
x,k(xk+1 − xk) 3 0

⇒ xk+1 = proxΣx,k
ϕ (xk), (7.21)

where the last implication follows from (7.18). Therefore, it is clear that primal PPA
iteratively applies the proximal operator to ϕ. The resulting minimization (7.21) can
be seen as a trade-off between minimizing the original function ϕ and remaining close
to xk. The smaller the diagonal elements of Σx,k, the more emphasis is placed on
staying close to xk. Vice-versa, the larger these elements, the more emphasis is placed
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on minimizing ϕ. Clearly, it is typically advisable to choose higher values for Σx,k,
since the original goal is to minimize ϕ. Yet, these elements can not be chosen too
high, lest the favorable regularization properties such as strong convexity are lost. An
effective choice for Σx,k will be discussed in §8.

The second application of the PPA is to the dual problem of (7.19), which is similar
to the derivation of the proximal minimization algorithm. It can be shown that PPA
applied to the dual problem, at least in the convex setting, yields the same iterations
as the augmented Lagrangian method [132]. More interestingly for us, is the third
application of PPA, which considers T to be the KKT operator of problem (7.3),
resulting in primal-dual PPA.

Primal-dual PPA

The KKT-operator of the QP can be derived from the stationarity condition 0 ∈
∂L(x, z, y), which given (7.4) can be worked out to give primal-dual conditions on
(x, y) by eliminating the slack variable z and using a property of the conjugate function,
y ∈ ∂g(Ax)⇔ Ax ∈ ∂g∗(y), resulting in

0 ∈ ∂L(x, z, y) =

(∇f(x) +A>y
∂g(z)− y
Ax− z

)

⇒ 0 ∈M(x, y) =
(
∇f(x) +A>y

−Ax+ ∂g∗(y)

)
.

The KKT-operatorM(x, y) is maximally monotone if the given QP is convex. PPA
applied to the KKT-operator of a convex QP therefore leads to primal-dual updates
of the form

(xk+1, yk+1) = (id + ΣkM)−1(xk, yk), (7.22)

with Σk =
[

Σx,k 0
0 Σy,k

]
a positive-definite diagonal matrix for all k. Equation (7.22)

can be worked out as follows

0 = Σ−1
x,k(xk+1 − xk) +∇f(xk+1) +A>yk+1, (7.23a)

0 ∈ yk+1 − yk + Σy,k(∂g∗(yk+1)−Axk+1). (7.23b)

Recognizing a condition of type (7.18) in (7.23b), the latter is equivalent to

yk+1 = proxΣy,kg∗(y
k + Σy,kAx

k+1)

= yk + Σy,kAx
k+1 − Σy,k proxΣ−1

y,kg
(Axk+1 + Σ−1

y,ky
k)
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= Σy,k
(
Axk+1 + Σ−1

y,ky
k − ΠC(Axk+1 + Σ−1

y,ky
k)
)

= yk + Σy,k(Axk+1 − zk+1),

where the second equality follows from the Moreau decomposition (7.16), the third
one from the fact that Σy,k is diagonal and the set C is separable, implying that the
projection on C with respect to the Euclidean norm and that induced by Σy,k coincide,
and the last one by introducing the auxiliary variable zk+1 = ΠC(Axk+1 + Σ−1

y,ky
k) =

Zk(xk+1), as defined in (7.9). Notice that A>yk+1 is the gradient of 1
2 dist2

Σy,k(A · +
Σ−1

y,ky
k, C) at xk+1. Therefore, the right-hand side of (7.23a) is equal to the gradient

of ϕk(x), defined in (7.13), such that xk+1 = argminx ϕk(x). As such, a resolvent
step (7.22) amounts to




xk+1 = argminx ϕk(x)
zk+1 = ΠC(Axk+1 + Σ−1

y,ky
k)

yk+1 = yk + Σy,k
(
Axk+1 − zk+1).

(7.24)

Clearly, comparing (7.14) and (7.24), it is shown that P-ALM and primal-dual PPA
are equivalent, at least for convex QPs. In the next section, it is shown that, even
with inexactness, iterations of type (7.22) applied to a convex QP converge to a
KKT-optimal pair.

7.2 Convex QP

This section derives convergence guarantees in the convex case for the resolvent
iterations (7.22) with errors, following the original analysis in [132]. That analysis
is here generalized to account for scaling matrices (as opposed to scalars) and by
including the possibility of having different Lagrangian and proximal weights.

Let V? := zerM be the set of primal-dual solutions. SinceM is maximally monotone,
as first observed in [132] one can find KKT-optimal primal-dual pairs by recursively
applying the resolvent of ckM, where {ck}k∈N is an increasing sequence of strictly
positive scalars, which is recognized as primal-dual PPA [132]. We now show that
these scalars can in fact be replaced by positive definite matrices.

Theorem 7.2. Suppose that (6.1) has a solution. Starting from (x0, y0) ∈ Rn × Rm,
let {xk, yk}k∈N be recursively defined as

(xk+1, yk+1) = (id + ΣkM)−1(xk, yk) + ek (7.25)

for a summable sequence {ek}k∈N, and where Σk :=
(Σx,k

Σy,k

)
for some Σx,k ∈

Sym++(Rn) and Σy,k ∈ Sym++(Rm). If Σk � Σk+1 � Σ∞ ∈ Sym++(Rn×Rm) holds
for all k, then {xk, yk}k∈N converges to a KKT-optimal pair for (6.1).
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Proof. We start by observing that for all k it holds that zer(ΣkM) = zer(M) = V?
and that ΣkM is maximally monotone with respect to the scalar product induced by
Σ−1
k . The resolvent (id + ΣkM)−1 is thus firmly nonexpansive in that metric (see [11,

Prop. 23.8 and Def. 4.1]): that is, denoting vk := (xk, yk) and ṽk+1 := vk+1 − ek =
(id + ΣkM)−1(vk),

‖ṽk+1 − v?‖2Σ−1
k

≤ ‖vk − v?‖2Σ−1
k

− ‖ṽk+1 − vk‖2Σ−1
k

(7.26)

holds for every v? ∈ V?. Therefore, since ‖vk+1 − v?‖Σ−1
k+1
≤ ‖vk+1 − v?‖Σ−1

k
≤

‖ṽk+1 − v?‖Σ−1
k

+ ‖ek‖Σ−1
k
≤ ‖vk − v?‖Σ−1

k
+ ‖ek‖Σ−1

k
(where the first inequality owes

to the fact that Σ−1
k+1 � Σ−1

k ), it follows from [32, Thm. 3.3] that the proof reduces to
showing that any limit point of {vk}k∈N belongs to V?.

From [32, Prop. 3.2(i)] it follows that the sequence is bounded and that vk+1− vk → 0
as k → ∞. Suppose that a subsequence {vkj}j∈N converges to v; then, so do vkj+1

and ṽkj+1 = vkj+1 − ekj = (id + ΣkjM)−1vkj . We have

Σ−1
kj

(vkj − ṽkj+1) ∈M(ṽkj+1),

since {Σ−1
k }k∈N is upper bounded, the left-hand side converges to 0, and from outer

semicontinuity of M [134, Ex. 12.8(b)] it then follows that 0 ∈ M(v), proving the
claim.

The above result was not found in literature, but is arguably only a very minor
extension to the analysis of [132]. Monotone operator theory is now a relatively well
established and mature theory. However, literature on nonmonotone operators is much
sparser. The next section considers the nonconvex QP, for which the KKT-operator is
no longer monotone.

7.3 Nonconvex QP

P-ALM when applied to convex problems has been shown in Section 7.1 to be equivalent
to resolvent iterations on the monotone operator encoding the KKT optimality
conditions. While this interpretation is still valid for (6.1) when Q ∈ Sym(Rn) is no
longer a positive semidefinite matrix, the resulting KKT system lacks the monotonicity
requirement that is needed for guaranteeing convergence of the iterates along the
lines of Theorem 7.2. Nonmonotone operators have not been covered anywhere near
as extensively as monotone operators in the literature. In fact,M is hypomonotone,
meaning that it can be made monotone by adding a suitably large multiple of the
identity mapping. However, the same cannot be said about its inverseM−1, which
means thatM is not cohypomonotone. As far as we know, only convergence of the
PPA applied to cohypomonotone operators has been proven [88, 31] and no result
for hypomonotone operators is readily available. For this reason, in this section we
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will instead try to relate a modified version of P-ALM to the inexact primal PPA,
outlined in Section 7.1.2. As noted before in (7.21), this last algorithm, when allowing
for inexactness, boils down to

x̂k+1 ≈ proxΣx,k
ϕ (x̂k) := argmin

x∈Rn

{
ϕ(x) + 1

2‖x− x̂
k‖2Σ−1

x,k

}
, (7.27)

where ϕ(x) was defined in (7.20). Updates of (7.27) will be shown to converge to
KKT-optimal points of (6.1). However, the choice of the primal penalty parameters
Σx,k is now crucial. For simplicity, we will assume ∀k : Σx,k = Σx, although the analysis
may be extended for a sequence of increasing and bounded penalties. Similarly to
what is suggested in [14], by selecting a suitably small weight Σx ∈ Sym++(Rn), the
objective function of the minimization subproblem defining proxΣx

ϕ (x̂k) in (7.27) can
be made strongly convex. In fact, this is achieved by setting ∀i : (Σx)ii < 1

|λmin(Q)| ,
where λmin(Q) is the minimum eigenvalue of Q. Of course, when this eigenvalue is
larger than zero, the problem is already strongly convex, and so no restrictions are
necessary on Σx. How to efficiently find the minimum eigenvalue of a symmetric matrix
is discussed later on in Section 8.2.2.

The proximal point iterations of (7.27), after introducing slack variables z, amount to
solving a nonsmooth composite minimization problem of the form

minimize
(x,z)∈Rn+m

1
2x
>Qx+ δC(z) + 1

2‖x− x̂
k‖2Σ−1

x
(7.28a)

subject to Ax− z = 0, (7.28b)

which itself requires an iterative procedure. Although differing from the original
problem (7.3) only by a quadratic term, nevertheless this subproblem has the major
advantage of being (strongly) convex and thus amenable to be addressed by means of
convex optimization algorithms such as the ALM. The augmented Lagrangian function
of problem (7.28) is exactly the proximal augmented Lagrangian of (7.3), since
the objective (7.28a) already contains the relevant proximal penalty term. Therefore,
starting from a vector yk ∈ Rm and for a given dual weight matrix Σy,k ∈ Sym++(Rm),
one iteration of ALM applied to (7.28) produces a triplet (xk+1, zk+1, yk+1) according
to the following update rule:

{
(xk+1, zk+1) = argminx,z Lx̂k,Σx,Σy,k

(x, z, yk)
yk+1 = yk + Σy,k(Axk+1 − zk+1).

(7.29)

Obviously, this iteration is entirely equivalent to the P-ALM iteration proposed in
(7.7), except the x̂ update. As a result, the same reasoning can be followed as the one
to derive (7.14), such that (7.29) can be written as




xk+1 = argminx∈Rn ϕ̂k(x)
zk+1 = ΠC(Axk+1 + Σ−1

y,ky
k)

yk+1 = yk + Σy,k
(
Axk+1 − zk+1),

(7.30)
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with ϕ̂k(x) defined in (7.11). The update on x̂ in this case is only carried out whenever
xk+1, zk+1 is deemed sufficiently optimal for the subproblem (7.28). The resulting
algorithm is outlined in Algorithm 7.1. It is clear that xk+1 already satisfies the dual
optimality condition from step 2 up to a tolerance, i.e. ‖∇ϕ̂k(xk+1)‖ ≤ δk, so what
remains is to check the primal optimality condition ‖Axk+1 − zk+1‖Σy,k ≤ εk, as is
done in step 5. In this manner, inexact proximal point iterations applied to the original
problem may be viewed as modified P-ALM iterations, where the modification lies
solely in the x̂-update strategy.

Algorithm 7.1 Modified P-ALM for nonconvex QPs
Require (x̂0,y0)∈Rn+m; δ0,ε0>0; ρ∈(0,1); Σy,0�Σy,min∈Sym++(Rm)

Σx ∈ Sym++(Rn) such that f + 1
2‖ · ‖

2
Σ−1

x
is strongly convex

1: for k = 0, 1, . . . do
2: Find xk+1 such that ‖∇ϕ̂k(xk+1)‖ ≤ δk
3: zk+1 = ΠC

(
Axk+1 + Σ−1

y,ky
k
)

4: yk+1 = yk + Σy,k(Axk+1 − zk+1)
5: if ‖Axk+1 − zk+1‖Σy,k ≤ εk then . [Quit ALM inner loop]
6: Update x̂k+1 = xk+1 and choose Σy,k+1 � Σy,min and εk+1 ≤ ρεk
7: else
8: Set x̂k+1 = x̂k and εk+1 = εk, and choose Σy,k+1 � Σy,k

9: Choose δk+1 ≤ ρδk

Some recent papers [93, 103] developed and analyzed the iteration complexity of a
closely related three-layer algorithm, not specifically for QPs, which involves solving a
series of quadratically penalized subproblems using inexact proximal point iterations,
which are in turn computed using an accelerated composite gradient method. This
algorithm also deals with nonconvexity in the objective through the proximal penalty,
but is quite different from ours in that it uses a pure quadratic penalty instead of ALM
and therefore requires the penalty parameters to go to infinity and is prone to exhibit
a slower convergence rate [15, §2.2.5]. The next section discusses the convergence of
inexact proximal point iterations in a nonconvex setting.

7.3.1 Convergence of inexact PP

We now summarize a key result that was shown in [146, §4.1] in the more general
setting of proximal gradient iterations. Given that [146] has not yet been peer-reviewed
and also for the sake of self-containedness, we provide a proof tailored to our simplified
setting here. The following theorem considers the convergence of inexact proximal
point iterations applied to a problem of type (7.19), not restricted to (nonconvex)
quadratic programs.

Theorem 7.3 (Inexact nonconvex PP [146, §4.1]). Let ϕ : Rn → R be a proper, lsc
and lower bounded function. Starting from x0 ∈ Rn and given a sequence {ek}k∈N ⊂ Rn
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such that
∑

k∈N ‖e
k‖ <∞, consider the inexact PP iterations

xk+1 ∈ proxΣx
ϕ (xk + ek) (7.31)

for some Σx ∈ Sym++(Rn). Then, the following hold:

(i) the real-valued sequence {ϕ(xk+1)}k∈N converges to a finite value;
(ii) the sequence {‖xk+1−xk‖2}k∈N has finite sum, and in particular mini≤k ‖xi+1−

xi‖ ≤ o(1/
√
k);

(iii) ϕ is constant and equals the limit of {ϕ(xk+1)}k∈N on the set of cluster points
of {xk}k∈N, which is made of stationary points for ϕ;

(iv) if ϕ is coercive, then {xk}k∈N is bounded.

Proof. The proximal inequality (1.10) with x̄ = xk+1 and x′ = xk + ek, yields

ϕ(xk+1) + 1
2‖x

k+1 − xk − ek‖2Σ−1
x
≤ ϕ(xk) + 1

2‖e
k‖2Σ−1

x
. (7.32)

Then, it is possible to bound

ϕ(xk+1) + 1
4‖x

k+1 − xk‖2Σ−1
x
≤ ϕ(xk+1) + 1

2‖x
k+1 − xk − ek‖2Σ−1

x
+ 1

2‖e
k‖2Σ−1

x

≤ ϕ(xk) + ‖ek‖2Σ−1
x
, (7.33)

where the first inequality follows from the (squared) triangle inequality and the second
from (7.32). After bringing ϕ(xk+1) to the right-hand side and telescoping (7.33) from
k1 to k2 ≥ k1, we obtain the following bound

1
4

k2∑

k=k1

‖xk+1 − xk‖2Σ−1
x
≤ ϕ(xk1)− ϕ(xk2+1) +

k2∑

k=k1

‖ek‖2Σ−1
x
. (7.34)

≤ ϕ(xk1)− inf ϕ+ c,

where c =
∑∞

k=0 ‖e
k‖2Σ−1

x
< ∞. Moreover, since ϕ is proper, ϕ(xk1) (for k1 ≥ 1) is

finite, such that the right-hand side of (7.34) is finite for any k2 ≥ k1, proving assertion
7.3(ii). Rearranging (7.34) to

ϕ(xk2+1) ≤ ϕ(xk1)− 1
4

k2∑

k=k1

‖xk+1 − xk‖2Σ−1
x

+
k2∑

k=k1

‖ek‖2Σ−1
x
, (7.35)

it is clear that also ϕ(xk2+1) is bounded by a finite quantity, such that the coerciveness
of ϕ immediately implies the boundedness of xk2+1, proving assertion 7.3(iv). Similarly
rearranging (7.33) to bound ϕ(xk+1), assertion 7.3(i) follows by invoking [127, Lem.
2.2.2]. Next, let {xk}k∈K be a subsequence converging to a point x?; then, it also
holds that {xk+1}k∈K converges to x? owing to assertion 7.3(ii). From the proximal



NONCONVEX QP 93

inequality (1.10) with x̄ = xk+1 and x′ = x?, we have

ϕ(xk+1) + 1
2‖x

k+1 − xk − ek‖2Σ−1
x
≤ ϕ(x?) + 1

2‖x
? − xk − ek‖2Σ−1

x
,

so that passing to the limit for K 3 k →∞, we get that limsupk∈K ϕ(xk+1) ≤ ϕ(x?).
In fact, equality holds since ϕ is lsc. Hence from assertion 7.3(i) we conclude that
ϕ(xk+1)→ ϕ(x?) as k →∞, and in turn from the arbitrarity of x? it follows that ϕ is
constantly equal to this limit on the whole set of cluster points. To conclude the proof
of assertion 7.3(iii), observe that the inclusion Σ−1

x (xk + ek − xk+1) ∈ ∂̂ϕ(xk+1), cf.
(1.11) with x̄ = xk+1, implies that

dist
(
0, ∂ϕ(xk+1)

)
≤ dist

(
0, ∂̂ϕ(xk+1)

)

≤ ‖Σ−1
x ‖
(
‖xk − xk+1‖+ ‖ek‖

)
, (7.36)

and with limiting arguments (recall that limk∈K ϕ(xk) = ϕ(limk∈K x
k)) the claimed

stationarity of the cluster points is obtained.

Note that with trivial modifications of the proof the arguments also apply to time-
varying proximal weights Σx,k, k ∈ N, as long as there exist Σx,min,Σx,max ∈
Sym++(Rn) such that Σx,min � Σx,k � Σx,max holds for all k. Theorem 7.3(iv) in-
dicates that coerciveness of the cost function is a sufficient condition for inferring
boundedness of the iterates. In (6.1), however, the cost function ϕ may fail to be co-
ercive even if lower bounded on the feasible set {x | Ax ∈ C}. This happens when
there is a feasible direction for which the objective is constant, i.e., when for some
x, d ∈ Rn with d 6= 0 it holds that limτ→∞ δC(A(x+ τd)) = 0, Qd = 0 and q>d = 0.
Nevertheless, it has been shown in [105] that (exact) proximal point iterations on a
lower bounded nonconvex quadratic program remain bounded and, in fact, converge
to a stationary point.

The next section proves that this remains true even for inexact proximal point
iterations, provided that the inexactness vanishes at linear rate. Thereafter, this linear
convergence rate is carried over to Algorithm 7.1 by showing how the inexactness used
there is related to that in proximal point iterations.

7.3.2 Linear convergence for QPs

Before showing the linear convergence rate for inexact proximal point iterations in
Theorem 7.6, we present a simple technical lemma regarding the Lipschitz constant of
a function on every level set, that will be needed in the proof.

Lemma 7.4. Let h be a lower bounded and Lh-smooth function. Then, for every
α > 0 it holds that

liplev≤inf h+α h
h ≤ 1+

√
2

2
√

2αLh.
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Proof. Without loss of generality we may assume that inf h = 0. Let α > 0 be fixed,
and consider x, y ∈ lev≤α h with x 6= y. From the quadratic upper bound of Lipschitz
differentiable functions (1.2) and the fact that 0 ≤ h(x), h(y) ≤ α, we have that

|h(y)− h(x)|
‖y − x‖ ≤ min

{
α

‖y−x‖ , ‖∇h(x)‖+ Lh
2 ‖y − x‖

}
(7.37)

≤ min
{

α
‖y−x‖ ,

√
2αLh + Lh

2 ‖y − x‖
}
,

where the last inequality follows from the fact that

α ≥ h(x)− h(x− 1
Lh
∇h(x)) ≥ 1

2Lh
‖∇h(x)‖2,

where the last inequality again uses the quadratic lower bound of (1.2). By solving a
second-order equation in ‖y − x‖, we see that

min
{

α
‖y−x‖ ,

√
2αLh + Lh

2 ‖y − x‖
}

=

{
α

‖y−x‖ if ‖y − x‖ ≥ (2−
√

2)
√

α
Lh

,
√

2αLh + Lh
2 ‖y − x‖ otherwise,

≤ α

2−
√

2

√
Lh
α

= 1+
√

2
2
√

2αLh,

resulting in the claimed bound.

Remark 7.5. By discarding the term α
‖y−x‖ in (7.37) and letting (y, x)→ (x̄, x̄) with

x 6= y, one obtains that the pointwise Lipschitz constant of a lower bounded and
Lh-smooth function h can be estimated as liph(x̄) ≤

√
2(h(x̄)− inf h)Lh. Therefore,

if h is also (quasi-)convex, Lemma 7.4 can be tightened to liplev≤inf h+α h
h ≤
√

2αLh,
owing to convexity of the sublevel set together with [134, Thm. 9.2].

The following proof hinges on the (exact) proximal gradient error bound analysis of
[105] and on the close relation existing among proximal point and proximal gradient
iterations for this kind of problems.

Theorem 7.6 (Linear convergence of inexact PP on nonconvex quadratic programs).
Let ϕ = f + δΩ, where Ω ⊆ Rn is a nonempty polyhedral set and f : Rn → R is
a (possibly nonconvex) quadratic function which is lower bounded on Ω. Starting
from x0 ∈ Rn and given a sequence {ek}k∈N ⊂ Rn such that ‖ek‖ ∈ O(ρk) for some
ρ ∈ (0, 1), consider the inexact PP iterations (7.31) for some Σx ∈ Sym++(Rn). Then,
the sequence {xk}k∈N converges at R-linear rate to a stationary point of ϕ.

Proof. Let xk? be a projection of xk onto the set zer ∂ϕ of stationary points for ϕ.
Such a point exists for every k owing to nonemptiness and closedness of zer ∂ϕ, the
former condition holding by assumption and the latter holding because of closedness of
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gph ∂ϕ, cf. [134, Prop. 8.7 and Thm. 5.7(a)]. From [105, Eq.s (2.1) and (A.3)], which
can be invoked owing to [105, Thm. 2.1(b)], it follows that there exists τ > 0 such
that

ϕ(xk?) = ϕ? and dist(xk, zer ∂ϕ) ≤ τ‖xk −ΠΣx
Ω (xk − Σx∇f(xk))‖Σ−1

x
(7.38)

hold for k large enough, where ΠΣx
Ω = proxΣx

δΩ
is the projection with respect to the

distance ‖·‖Σ−1
x

. Let Lf and LϕΣx be Lipschitz constants for∇f and∇ϕΣx , respectively.
Note that stationarity of xk? implies that ϕ(xk?) = ϕΣx(xk?) and ∇ϕΣx(xk?) = 0. We
have

ϕΣx(xk)−ϕ? = ϕΣx(xk)−ϕΣx(xk?)≤
L
ϕΣx
2 ‖xk − xk?‖2 =

L
ϕΣx
2 dist(xk,zer∂ϕ)2

(7.38)
≤

L
ϕΣx τ

2

2 ‖xk −ΠΣx
Ω (xk −Σx∇f(xk))‖2Σ−1

x
. (7.39)

Next, observe that

xk+1 = proxΣx
ϕ (xk + ek) ⇔ Σ−1

x (xk + ek − xk+1) ∈
∂ϕ(xk+1)

∇f(xk+1) + ∂ δΩ(xk+1)

⇔ Σ−1
x (xk + ek −Σx∇f(xk+1)− xk+1) ∈ ∂ δΩ(xk+1)

⇔ xk+1 = proxΣx
δΩ

[xk + ek −Σx∇f(xk+1)]

⇔ xk+1 = ΠΣx
Ω [xk + ek −Σx∇f(xk+1)]. (7.40)

Denoting c := LϕΣx τ
2, we obtain through (7.39) and the squared triangle inequality

that

ϕΣx(xk)−ϕ?≤ c‖xk−xk+1‖2Σ−1
x

+ c
∥∥

xk+1

ΠΣx
Ω [xk+ek−Σx∇f(xk+1)]−ΠΣx

Ω [xk−Σx∇f(xk)]
∥∥2

Σ−1
x
,

which, using 1-Lipschitz continuity of ΠΣx in the norm ‖ ·‖Σ−1
x

,

≤ c‖xk−xk+1‖2Σ−1
x

+c
∥∥xk+ek−Σx∇f(xk+1)−xk+Σx∇f(xk)

∥∥2
Σ−1
x

≤ c‖xk−xk+1‖2Σ−1
x

+2c‖ek‖2Σ−1
x

+2c
∥∥∇f(xk)−∇f(xk+1)

∥∥2
Σx

≤ (c+2cL2
f‖Σx‖)‖xk−xk+1‖2Σ−1

x
+2c‖ek‖2Σ−1

x

≤ c1‖xk−xk+1‖2Σ−1
x

+ c2ρ
2k (7.41)

for some constants c1, c2 > 0. Observe that

ϕΣx(xk+1) ≤ ϕ(xk+1) = ϕΣx(xk + ek)− 1
2‖x

k+1 − xk − ek‖2Σ−1
x
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≤ ϕΣx(xk) + L‖ek‖ − 1
4‖x

k+1 − xk‖2Σ−1
x

+ 1
2‖e

k‖2Σ−1
x

≤ ϕΣx(xk)− 1
4‖x

k+1 − xk‖2Σ−1
x

+ c3ρ
k (7.42)

for some constant c3 > 0, where in the second inequality L denotes a Lipschitz
constant of the smooth function ϕΣx on a sublevel set that contains all iterates;
the existence of such an L is guaranteed by Theorem 7.3(i) and Lemma 7.4, since
−∞ < inf ϕ ≤ ϕΣx ≤ ϕ. Therefore,

(
ϕΣx(xk)− ϕ?

)
−
(
ϕΣx(xk+1)− ϕ?

)(7.42)
≥ 1

4‖x
k+1 − xk‖2Σ−1

x
− c3ρk

(7.41)
≥ 1

4c1

(
ϕΣx(xk)− ϕ?

)
− c4ρk

holds for some constant c4 > 0. By possibly enlarging c1 we may assume without loss
of generality that ρ ≥ 1− 1/4c1, so that

(
ϕΣx(xk+1)− ϕ?

)
≤ ρ
(
ϕΣx(xk)− ϕ?

)
+ c4ρ

k

≤ ρk+1(ϕΣx(x0)− ϕ?
)

+ c4

k∑

j=0

ρk−jρj

=
(
ρ(ϕΣx(x0)− ϕ?) + c4(k + 1)

)
ρk ≤ c5(√ρ)k, (7.43)

where c5 is any such that
(
ρ(ϕΣx(x0) − ϕ?) + c4(k + 1)

)
(√ρ)k ≤ c5 holds for every

k ∈ N. Next, denoting ϕk := ϕΣx(xk) + c3
1−ρρ

k observe that

ϕk+1 ≤ ϕk − 1
4‖x

k+1 − xk‖2Σ−1
x

(7.44)

as it follows from (7.42), and that ϕ? < ϕk → ϕ? as k → ∞. In fact, (7.43) implies
that

0 ≤ ϕk − ϕ? ≤ c6ρk/2 (7.45)
holds for some c6 > 0 and all k ∈ N. Therefore,

∑

j≥k
‖xj+1 − xj‖Σ−1

x

(7.44)
≤ 2

∑

j≥k

√
ϕj − ϕj+1

(7.45)
≤ 2

∑

j≥k

√
ϕj − ϕ?

≤ 2c1/26

∑

j≥k
ρ(j−1)/4 ≤ c7ρk/4

for some constant c7 > 0. In particular, the sequence {xk}k∈N has finite length and
thus converges to a point x?, which is stationary for ϕ owing to Theorem 7.3(iii). In
turn, the claimed R-linear convergence follows from the inequality ‖xk − x?‖Σ−1

x
≤∑

j≥k ‖x
j+1 − xj‖Σ−1

x
.
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The following theorem relates the inexactness in steps 2 and 5 of Algorithm 7.1 to the
inexactness in the proximal point iterations of (7.31), such that the prior convergence
claims immediately apply to Algorithm 7.1.

Theorem 7.7. Suppose that problem (7.3) is lower bounded, and consider the iterates
generated by Algorithm 7.1 with f(x) = 1

2x
>Qx + q>x and g(z) = δC(z). Then, the

following hold:

(i) The triplet (xk+1, yk+1, zk+1) produced at the k-th iteration satisfies

‖∇f(xk+1) +A>yk+1‖ ≤ δk + ‖Σ−1
x (xk+1 − x̂k)‖ and yk+1 ∈ ∂g(zk+1).

(ii) The condition at step 5 is satisfied infinitely often, and ‖x̂k+1 − x̂k‖ → 0 as
k →∞. In particular, for any primal-dual tolerances εp, εd > 0, the termination
criteria

‖∇f(xk+1) +A>yk+1‖ ≤ εd yk+1 ∈ ∂g(zk+1) ‖Axk+1 − zk+1‖ ≤ εp

are satisfied in a finite number of iterations.
(iii) The sequence {x̂k}k∈N converges to a stationary point of problem (6.1); in fact,

denoting {ki}i∈N as the (infinite) set of those indices at which the condition at
step 5 is satisfied, the sequence {xki+1}i∈N converges at R-linear rate.

Proof. The definition of zk+1 at step 3 and (7.8), together with the characterization
of proxΣ−1

y,k
g yield

∂g(zk+1) 3 ∇gΣ−1
y,k (Axk+1 + Σ−1

y,ky
k) = Σy,k

(
Axk+1 + Σ−1

y,ky
k − zk+1) = yk+1.

By expanding the gradient appearing in the norm at step 2 via (7.12), we thus have

δk ≥ ‖∇f(xk+1) +A>yk+1 + Σx(xk+1 − x̂k)‖, (7.46)

and assertion 7.7(i) follows from the triangular inequality. Next, observe that whenever
the condition at step 5 is not satisfied the variable x̂k+1 is not updated (cf. step 8),
and thus steps 2–4 amount to ALM iterations applied to the strongly convex problem

minimize
(x,z)∈Rn+m

f(x) + 1
2‖x− x̂

k‖2Σ−1
x

+ g(z)

subject to Ax = z

with a summable inexactness in the computation of the x-minimization step. The
existence of dual solutions entailed by the strong duality of convex QPs guarantees
through [132, Thm. 4 and §6] that the feasibility residual vanishes, hence that eventually
step 5 holds.

Let dk := ∇f(xk+1) +A>yk+1 + Σx(xk+1 − x̂k) be the gradient appearing in the norm
at step 2 and let ek := Axk+1 − zk+1. Let {ki}i∈N be the (infinite) set of all indices at
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which the condition at step 5 is satisfied, so that x̂ki+1 = xki+1 and ‖eki‖ ≤ εki ≤ ρiε0.
Then, for every i ∈ N





0 = ∇f(xki+1) + Σ−1
x
(
xki+1 − (xki−1+1 + Σxd

ki)
)

+A>yki+1

0 ∈ ∂g(zki+1)− yki+1

0 = Axki+1 − zki+1 − eki .

In particular, (xki+1, zki+1, yki+1) is a primal-dual solution of

minimize
(x,z)∈Rn+m

f(x) + g(z) + 1
2‖x− (xki−1+1 + Σxd

ki)‖2Σ−1
x

subject to Ax− z = eki .

Therefore, denoting X : domX ⊆ Rn × Rm → Rn as the operator

X (u, v) = argmin
x∈Rn

{
1
2x
>Qx+ q>x+ 1

2‖x− u‖
2
Σ−1
x
| Ax− v ∈ C

}
,

we have that xki+1 = X (x̂ki−1+1+Σxd
ki , eki). Notice further that X (u, 0) = proxΣx

ϕ (u)
for the QP function ϕ(x) = 1

2x
>Qx+ q>x+ δC(Ax). As shown in [125, Thm. 1], X is

a polyhedral mapping, and as it is at most single valued (owing to strong convexity of
the QP) we deduce from [47, Cor. 3D.5] that it is globally Lipschitz continuous on its
(polyhedral) domain with constant, say, L. Therefore,

‖xki+1 − proxΣx
ϕ (xki−1+1)‖2 = ‖X (xki−1+1 + Σxd

ki , eki)−X (x̂ki−1+1, 0)‖2

≤ L2(‖Σxd
ki‖2 + ‖eki‖2

)

≤ L2‖Σx‖2δ2
ki + L2‖Σy,min‖−1ε2

ki

≤ cρi

for some constant c > 0 that only depends on the problem and on the algorithm
initialization. Denoting ξi := xki+1 as the i-th “outer” iterate, this shows that {ξi}i∈N
is generated by an inexact proximal point algorithm on function ϕ with error ‖ei‖ ≤
O(ρi), namely,

ξi+1 = proxΣx
ϕ (ξi + ei).

In particular, all the assertions follow from Theorems 7.3 and 7.6.

7.4 Summary

This chapter discussed the theoretical background of the (inexact) proximal augmented
Lagrangian method and its origin, the proximal point algorithm. A distinction was
made in the application to either convex or nonconvex QPs. For the former, the
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equivalence between P-ALM and PPA applied to the KKT-operator, along with some
monotone operator theory, sufficed to prove the convergence of P-ALM. For the latter,
however, although the equivalence still holds, no result was readily available for the
hypomonotone KKT-operator. Instead, existing error analyses were used and tailored
to the QP setting in order to derive convergence for the slightly modified version of
P-ALM that was proposed. The next chapter will focus on the innards of Algorithm 7.1,
in particular the minimization strategy used in step 2, parameter settings and updates,
and additional features to robustify the method, such as preconditioning of the problem
data and infeasibility detection.





Chapter 8

The QPALM Algorithm

The previous chapter outlined the overall strategy employed by QPALM, the proximal
augmented Lagrangian method, or a slightly modified version for nonconvex QPs. This
chapter inspects instead the inner minimization procedure to solve the subproblems.
In order to create an effective QP solver, this minimization strategy is constructed to
exploit the features of the QP. For example, when using a semismooth Newton method
to compute step directions, the linear system does not need to be factorized from
scratch every time. Since this linear system changes only slightly between iterations,
the factorization may instead be updated using dedicated factorization update routines.
Another example is the linesearch. Rather than a typical backtracking linesearch which
is common in nonlinear optimization, it is here possible to compute the optimal step
size efficiently, since the merit function is a convex piecewise quadratic function. Aside
from the inner minimization procedure, key features of a full-fledged solver, such as
parameter settings, preconditioning of the problem data, and infeasibility detection
are also discussed.

Section 8.1 outlines the inner minimization procedure, consisting of the semismooth
Newton direction and exact linesearch. Section 8.2 presents the factorization and up-
date routines to efficiently compute the Newton direction, which were implemented in
a C package, LADEL. It mentions also the computation of the minimum eigenvalue
of the Hessian matrix, which is performed using the locally optimal block precondi-
tioned conjugate gradient (LOBPCG) method, introduced by Knyazev [91]. Section 8.3
examines effective parameter selection and update routines, as well as a useful pre-
conditioning strategy to minimize the effect of ill conditioning in the problem data.
Furthermore, it considers the termination criteria, both for stationary points and infea-
sibility criteria. Finally, Section 8.4 mixes all the aforementioned ingredients together,
presenting the full QPALM algorithm, as well as its default parameter values.

The material in this chapter is based on the publications [84, 85].

101
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8.1 Subproblem minimization

This section describes our approach to the inner minimization in step 2, which is clearly
the most computationally expensive step of Algorithm 7.1. QPALM uses an iterative
method to solve this convex unconstrained optimization problem, argminx ϕ̂k(x),
computing a semismooth Newton direction and the optimal step size at every iteration.

8.1.1 Semismooth Newton method

Recall the function to be minimized, ϕ̂k(x) and its gradient from (7.11) and (7.12)
respectively,

ϕ̂k(x) := f(x) + 1
2 dist2

Σy,k (Ax+ Σ−1
y,ky

k, C) + 1
2‖x− x̂

k‖2Σ−1
x,k
,

∇ϕ̂k(x) = ∇f(x) +A>
(
yk + Σy,k(Ax− Zk(x))

)
+ Σ−1

x,k(x− xk),

with Zk(x) from (7.9), which can also be written as

Zk(x) = ΠC(Ax+ Σ−1
y,ky

k)

= Ax+Σ−1
y,ky

k+[`−Ax−Σ−1
y,ky

k]+−[Ax+Σ−1
y,ky

k−u]+. (8.1)

Note that ∇ϕ̂k also appears in (7.46), with trial point ỹk+1 = yk + Σy,k(Ax− Zk(x)).
Furthermore, because of the projection operator in Zk, this gradient is not continuously
differentiable. However, we can use the generalized Jacobian [51, §7.1] of ΠC at
Ax+ Σ−1

y,ky
k, one element of which is the diagonal matrix Pk(x) with entries

(Pk(x))ii =
{

1 if `i < (Ax+ Σ−1
y,ky

k)i < ui,
0 otherwise,

see e.g., [148, §6.2.d]. Therefore, one element of the generalized Hessian of ϕk is

Hk(x) = Q+A>Σy,k(I − Pk(x))A+ Σ−1
x .

Denoting the set of active constraints as

Jk(x) :=
{
i | (Ax+ Σ−1

y,ky
k)i /∈ (`i, ui)

}
, (8.2)

one has that (I−Pk(x))ii is equal to 1 if i ∈ Jk(x) and 0 otherwise. In the remainder of
the text, whenever Jk(x) is used to indicate a submatrix (in subscript), its dependency
on k and x will be omitted for the sake of brevity of notation. Hk(x) can now be
written as

Hk(x) = Q+A>J·(Σy,k)JJAJ· + Σ−1
x . (8.3)
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The semismooth Newton direction d at x satisfies

Hk(x)d = −∇ϕk(x). (8.4)

Denoting λ := (Σy,k)JJAJ·d, the computation of d is equivalent to solving the
following extended linear system

Kk(x)
[
d
λ

]
=
[
Q+ Σ−1

x A>J·
AJ· −(Σy,k)−1

JJ

][
d
λ

]
=
[
−∇ϕk(x)

0

]
. (8.5)

Finding the solution of either linear system (8.4) or (8.5) in an efficient manner is
discussed in further detail in Section 8.2.1.

8.1.2 Exact linesearch

Once a suitable direction d has been found, a step size τ needs to be computed. This
is typically done via a linesearch on a suitable merit function. QPALM can compute
the optimal step size when using the piecewise quadratic function ψ(τ) = ϕk(x+ τd)
as the merit function. Therefore, using the notation 〈a, b〉 = a>b to denote the scalar
product between two vectors a and b, finding the optimal step size is equivalent to
finding a zero of

ψ′(τ) = 〈∇ϕk(x+ τd), d〉

= 〈d,∇f(x+τd)+Σ−1
x (x+τd−x̂k)〉+ 〈Ad, yk+Σy,k

(
A(x+τd)−Zk(x+τd)

)
〉

= τ〈d, (Q+ Σ−1
x )d〉+ 〈d,Qx+ Σ−1

x (x− x̂k) + q〉

+ 〈Σy,kAd,
[
Ax+Σ−1

y,ky
k−u+τAd

]
+〉 − 〈Σy,kAd,

[
`−Ax−Σ−1

y,ky
k−τAd

]
+〉

= ητ + β + 〈δ, [δτ − α]+〉, (8.6)

where 



R 3 η := 〈d, (Q+ Σ−1
x )d〉,

R 3 β := 〈d,Qx+ Σ−1
x (x− x̂k) + q〉,

R2m 3 δ :=
[
−Σ1/2

y,kAd Σ1/2
y,kAd

]
,

R2m 3 α := Σ−1/2
y,k

[
yk + Σy,k(Ax− `) Σy,k(u−Ax)− yk

]
.

(8.7)

Here, the notation
[
a b

]
is used to denote the vertical stacking of two vectors a

and b. Note that ψ′ is a monotonically increasing piecewise affine function. The root
of this function can be found by sorting all the breakpoints, and starting from the
origin going through these points ti until ψ′(ti) > 0. The optimal step size is then in
between this and the previous breakpoint and can easily be retrieved by means of
interpolation. This procedure is outlined in Algorithm 8.1.
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Algorithm 8.1 Exact linesearch
Require x, d ∈ Rn, diagonal Σ ∈ Sym++(Rn)
Provide optimal stepsize τ? ∈ R
1: Let ψ′ : R→ R, α, β ∈ R and δ, η ∈ R2m be as in (8.6) and (8.7)
2: Define the set of breakpoints of ψ′

T =
{
αi
δi
| i = 1, . . . , 2m, δi 6= 0

}

3: Sort T = {t1, t2, . . .} such that ti < ti+1 for all i
4: Let ti ∈ T be the smallest such that ψ′(ti) ≥ 0
5: return τ? = ti−1 − ti−ti−1

ψ′(ti)−ψ′(ti−1)ψ
′(ti−1) (if i = 1 then ti−1 = 0)

The following section discusses the linear algebra ingredients needed in order to
efficiently compute solutions to the linear systems in (8.4) or (8.5). Moreover it
outlines an efficient algorithm to compute the minimum eigenvalue of Q, which is
necessary to set the proximal penalty parameter in the nonconvex case.

8.2 Linear algebra code

The QPALM algorithm is fully implemented in open-source C code,2 licensed under
the GNU Lesser General Public License version 3 (LGPL v3). The code is standalone,
aside from a dependency on LAPACK [3] for computing the minimum eigenvalue.
QPALM also provides interfaces to MATLAB, Python and Julia.

This section further discusses the relevant linear algebra used in QPALM, which is
implemented in a standalone C package LADEL,3 also licensed under LGPL v3, and
the routine that is used to compute the minimum eigenvalue of a symmetric matrix.

8.2.1 Solving linear systems

The most computationally expensive step in one iteration of QPALM is solving the
semismooth Newton system (8.4) or (8.5). The matrix Kk(x) in (8.5), without penalty
parameters, is readily recognized as the system of equations that represent the first-
order necessary conditions of equality-constrained QPs [121, §16.1], as also given in
(6.2), and is therefore dubbed the Karush-Kuhn-Tucker (KKT) matrix. The matrix
Hk(x) is the Schur complement of Kk(x) with respect to the −(Σy,k)−1

JJ block, and
is therefore dubbed the Schur matrix. Solving either of the two systems results in a
direction along which we can update the primal iterate x. The reader is referred to
[13] for a broad overview of solution methods for such systems, including direct and

2https://github.com/Benny44/QPALM_vLADEL
3https://github.com/Benny44/LADEL

https://github.com/Benny44/QPALM_vLADEL
https://github.com/Benny44/LADEL
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iterative methods. In the case of QPALM, the matrix Kk(x) or Hk(x) is decomposed as
the product of a unit lower diagonal matrix L, a diagonal matrix D and the transpose
of L. This is more commonly known as an LDL> factorization. The factorization and
updates are slightly different for Kk(x) and Hk(x), so these cases will be discussed
separately.

KKT system

It is not guaranteed that an LDL> factorization, with D diagonal, can be found for
every matrix. However, because Σy,k and Q+ Σ−1

x are symmetric positive definite by
construction, Kk(x) can readily be recognized as a symmetric quasidefinite matrix,
which is strongly factorizable [158, Theorem 2.1]. A symmetric matrix K is strongly
factorizable if for any symmetric permutation P , there exists a unit lower diagonal
matrix L and a diagonal matrix D such that PKP> = LDL>. In other words, it
should always be possible to find an LDL> factorization of Kk(x) with D diagonal.
For this purpose, LADEL has implemented a simple uplooking Cholesky method with
separation of the diagonal elements, see [40].

A crucial step in maintaining sparsity during the factorization is to find an effective
permutation. Moreover, permutations are sometimes used to prevent ill condition-
ing. However, finding the optimal permutation is an NP-hard problem [166]. Various
heuristics have been developed, an overview of which can be found in [41, §7.7]. LADEL
uses the open-source (BSD-3 licensed) implementation4 of the approximate minimum
degree (AMD) ordering algorithm discussed in [2], which promotes sparsity but does
not take into account ill conditioning. Nevertheless, no significant numerical issues
have been encountered for ill-conditioned QPs, in part due to a careful tuning of the
penalty parameters and preconditioning of the problem data, outlined in Section 8.3.

In QPALM, a fill-reducing ordering of the full KKT system, i.e. with J = {1, . . . ,m},
is computed using AMD once before the first factorization and is used during the
remainder of the solve routine. Hence, this permutation minimizes the fill-in of the
worst case, that is with all constraints active. In fact, when solving the KKT system,
we will not consider Kk(x) directly, but rather an augmented version

K̃k(x) =
[
Q+ Σ−1

x (AJ·)>
AJ· −(Σy,k)−1

]
.

Note that, as mentioned in (1.2.2), AJ is the m× n matrix, with AJj· = Aj· if j ∈ J
and zero otherwise. The size of K̃k(x) is therefore always (m+ n)× (m+ n), but due
to (1.2.2) all the inactive constraints give rise to rows and columns that are 0 apart
from the diagonal element. Combined with (8.5), it immediately follows that λj = 0
for j 6∈ Jk(x).

4https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/master/AMD

https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/master/AMD
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Algorithm 8.2 Row addition ([44], with modifications in step 4 and step 5)

Require LDL> factors L and D of C ∈ Sym(Rn) with Cβ· = C·β = 0
except for Cββ = ε. Let α = 1 : β − 1 and γ = β + 1 : n, then

LDL>=
[
Lαα

0 1
Lγα 0 Lγγ

][
Dαα

dββ
Dγγ

][
L>αα L>γα

1 0
L>γγ

]
=
[
Cαα 0 C>γα

0 ε 0
Cγα 0 Cγγ

]
.

Provide updated LDL> factors L̄ and D̄ of C̄ which is C except with the
β-th row and column replaced by c̄>·β and c̄·β respectively, i.e.

L̄D̄L̄>=


Lαα
l̄>αβ 1
Lγα l̄γβ L̄γγ



[Dαα

d̄ββ
D̄γγ

]

L>αα l̄αβ L>γα

1 l̄>γβ
L̄>γγ


 =

[
Cαα c̄αβ C>γα
c̄>αβ c̄ββ c̄>γβ
Cγα c̄γβ Cγγ

]
.

1: Solve the lower triangular system LααDαα l̄αβ = c̄αβ to find l̄αβ .
2: d̄ββ = c̄ββ − l̄>αβDαα l̄αβ .
3: l̄γβ = d̄−1

ββ (c̄γβ − LγαDαα l̄αβ).

4: w = l̄γβ

√
|d̄ββ |

5: Perform the rank-1 update or downdate L̄γγD̄γγL̄
>
γγ = LγγDγγL

>
γγ −

sgn(dββ)ww>.

Before the condition of step 2 is satisfied, several Newton steps may be required.
However, during these iterations k remains constant, and so does Σy,k. Therefore, the
only manner in which K̃k(x) changes is as a result of the change in active constraints
when x is updated. Instead of refactorizing the matrix K̃k(x), we can instead use
sparse factorization update routines to update the existing factorization matrices L
and D. In particular, LADEL has implemented the row addition and row deletion
algorithms of [44], with minor modifications to allow for negative diagonal elements
(indefinite systems), as outlined in Algorithm 8.2 and Algorithm 8.3, hence the name
LDL with Add and DELete update routines (LADEL).

Schur system

The Schur matrix Hk(x) is symmetric positive definite, since it is the sum of a positive
definite matrix (Q+ Σ−1

x ) and a positive semidefinite matrix. Therefore, a Cholesky
factorization of Hk(x) exists. Furhtermore, when k remains constant and x changes to
x+, the difference between Hk(x+) and Hk(x) is given by

Hk(x+)−Hk(x) = A>Je·(Σy,k)JeJeAJe· −A>J l·(Σy,k)J lJ lAJ l·,

where J e = Jk(x+) \ Jk(x) and J l = Jk(x) \ Jk(x+) are the sets of constraints
respectively entering and leaving the active set. Therefore, two low rank Cholesky
factorization updates can be performed [42, 43]. LADEL has implemented the one-rank



LINEAR ALGEBRA CODE 107

Algorithm 8.3 Row deletion ([44], with modifications in step 4 and step 5)

Require LDL> factors L and D of C ∈ Sym(Rn). Let α = 1 : β − 1 and
γ = β + 1 : n, then

LDL>=
[
Lαα
l>αβ 1
Lγα lγβ Lγγ

][
Dαα

dββ
Dγγ

]

L>αα lαβ L>γα

1 l>γβ
L>γγ


 =

[
Cαα cαβ C>γα
c>αβ cββ c>γβ
Cγα cγβ Cγγ

]
.

Provide updated LDL> factors L̄ and D̄ of C̄ which is equal to C except
with the β-th row and column deleted and the diagonal element
cββ replaced by ε, i.e.

L̄D̄L̄>=
[
Lαα

0 1
Lγα 0 L̄γγ

][Dαα

d̄ββ
D̄γγ

][
L>αα L>γα

1 0
L̄>γγ

]
=
[
Cαα 0 C>γα

0 ε 0
Cγα 0 Cγγ

]
.

1: l̄αβ = 0.
2: d̄ββ = ε.
3: l̄γβ = 0.
4: w = lγβ

√
|dββ |

5: Perform the rank-1 update or downdate L̄γγD̄γγL̄
>
γγ = LγγDγγL

>
γγ +

sgn(dββ)ww>.

update routines in [42], which are slightly less efficient than the multiple-rank routines
outlined in [43], implemented in CHOLMOD [27].

Choosing a system

LetH andK denote the “full” Schur and KKTmatrices, that is with J = {1, . . . ,m}. In
QPALM, it is automatically determined which of these systems to factorize, depending
on an estimate of the floating point operations required for each. The work required
to compute an LDL> factorization is

∑
|L·i|2. However, we do not have access to the

column counts of the factors before the symbolic factorization. Therefore, a rough
estimate of the column counts of the factor is computed using the column counts
of the matrices themselves. Moreover, an average column count for each matrix is
considered rather than counting the nonzeros in each individual column. As such,
QPALM uses the following quantity to determine the choice of linear system:

n+m∑

i=1

|LK·i |2

n∑

i=1

|LH·i |2
≈

n+m∑

i=1

|K·i|2

n∑

i=1

|H·i|2
≈

n+m∑

i=1

(
|K|

n+m

)2

n∑

i=1

(
|H|
n

)2 = n

n+m

|K|2

|H|2 ≈
n

n+m

|K|2

|H̃|2
,
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with LK and LH the lower diagonal factors of the corresponding matrix. Computing
|H| exactly requires the same order of work as computing H itself. Depending on the
sparsity pattern of Q and A, H can be much denser than K. Hence, we do not want
to compute H before choosing between the two systems. Instead, |H| can be further
(over)estimated by |H̃|, which is determined by considering separate contributions
from Q + Σ−1

x and from A>Σy,kA to the nonzero pattern. Note that a row in A
with |Ai·| nonzero elements contributes a block in A>A with |Ai·|2 elements. After
discounting the diagonal elements, which are already present in Σ−1

x , this amount
becomes |Ai·|2 − |Ai·|. The overlap of different elements from different rows of A,
however, cannot be accounted for (cheaply). Therefore, in our estimate we deduct
the minimum (possible) amount of overlap of each block with the biggest block. Let
ı̂ denote the row of A with the most nonzero elements, and Â = |Aı̂·| = maxi(|Ai·|)
this column count. Then, the overlap, again discounting diagonal elements, is given as
[Â+ |Ai·| − n]2+ − [Â+ |Ai·| − n]+, and so our estimate for |H| is

|H̃| = |Q+ Σ−1
x |+ Â2 − Â+

∑

i 6=ı̂
|Ai·|2 − |Ai·| − [Â+ |Ai·| − n]2+ + [Â+ |Ai·| − n]+.

Finally, Figure 8.1 compares the runtimes of QPALM solving either the KKT or
the Schur system applied to the Maros Meszaros test set. Note that the runtime of
QPALM using the KKT system can still be much lower than that using the Schur
system for an estimated nonzero ratio of 1. This is why a heuristic threshold value
of 2, indicated by the red dashed line, is chosen for this ratio such that QPALM by
default solves the KKT system for values less than 2 and the Schur system for values
higher than 2. The user also has the option to specify beforehand which system to
solve.

8.2.2 Computing the minimum eigenvalue

Finding the solution of a large symmetric eigenvalue problem has been the topic of
a substantial body of research, and many methods exist. They are typically divided
into two categories: direct methods, which find all eigenvalues, and iterative methods,
which find some (or all) eigenvalues. The reader is referred to [72, §8] for a detailed
overview of (the origin) of these methods. In our case, since we only need the minimum
eigenvalue of Q, iterative methods seem more promising. Of these, the locally optimal
block preconditioned conjugate gradient (LOBPCG) method, developed by Knyazev
[91], demonstrated the best performance regarding robustness and speed of convergence
in our tests. A dedicated implementation of LO(B)PCG to find only the minimum
eigenvalue and its corresponding eigenvector was added in QPALM. This method
iteratively minimizes the Rayleigh quotient x

>Qx
x>x in a Krylov subspace spanned by three

vectors: the current eigenvector estimate xk, the current residual wk = Qxk − λkxk,
and a conjugate gradient direction pk. The details (of the implementation in QPALM)
can be found in Algorithm 8.4. The computational cost of this algorithm per iteration
is essentially a matrix-vector product and solving a 3-by-3 generalized eigenvalue
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Figure 8.1: Runtime comparison of KKT and Schur complement methods when
applying QPALM to the Maros Meszaros test set.

system. The latter is performed by the relevant routine in LAPACK [3]. Note that
Algorithm 8.4 is very similar to [91, Algorithm 4.1], aside from some scaling.

8.3 Parameter selection

The technicalities can make or break the practical performance of an algorithm. This
section discusses aspects that make QPALM more robust, such as preconditioning
of the problem data, and the most important parameter settings. Some of these
parameters and parameter update criteria have been tuned manually and some are
computed automatically based on the problem data or current iterates. The last
subsection also lays out in detail the termination criteria employed by QPALM.



110 THE QPALM ALGORITHM

Algorithm 8.4 LO(B)PCG

Require x0 ∈ Rn, ε > 0 and Q ∈ Sym(Rn).
Provide Lower bound on λ∗ = λmin(Q) and estimate of the corresponding

eigenvector x∗ of Q.
1: Initialize λ0 = (x0)>Ax0, and w0 = Qx0 − λ0x0, and let S = [x0, w0].
2: Solve the eigenvalue system S>QSy = µSy to find (µ, y), set λ1 = min(µ)

and let ỹ denote the corresponding eigenvector.
3: x1 = ỹ1x

0 + ỹ2w
0.

4: p1 = ỹ2w
0.

5: for k = 1, 2, . . . do
6: wk = Qxk − λkxk.
7: if ‖wk‖2 ≤ ε then
8: Return λ∗ = λk − ‖wk‖2 and x∗ = xk.
9: Let S = [xk, wk, pk].
10: Solve the eigenvalue system S>QSy = µSy to find (µ, y), set λk =

min(µ) and let ỹ denote the corresponding eigenvector.
11: xk+1 = ỹ1x

k + ỹ2w
k + ỹ3p

k.
12: pk+1 = ỹ2w

k + ỹ3p
k.

8.3.1 Factorization updates

As mentioned in Section 8.2.1, in between Newton iterations the factorization can
be updated instead of being recomputed from scratch. However, in practice, the
factorization update routines will only be more efficient if the number of constraints
entering and leaving the active set is relatively low. Hence, when the active set changes
significantly, it is more efficient to recompute the factorization instead. After some
experimental tuning, the following rule of thumb to do an update was found

|J e|+|J l| ≤ min(max_rank_update, max_rank_update_fraction · (n+m)), (8.8)

with max_rank_update = 160 and max_rank_update_fraction = 0.1 respectively an
absolute and a relative limit on the number of changing active constraints. Both of
these parameters can also be set by the user.

8.3.2 Preconditioning

Most optimization solvers will perform a scaling of the problem in order to prevent
too much ill conditioning. A standard idea in nonlinear optimization is to evaluate the
objective and constraints and/or the norm of their gradients at a representative point
and scale them respectively with their inverse, see for example [18, §12.5]. However, the
quality of this scaling depends on the degree to which the initial point is representative
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Algorithm 8.5 Ruiz equilibration[135]

Require A ∈ Rm×n.
Provide D ∈ Rn, E ∈ Rm and Ā = EAD .
1: Initialize Ā = A,D = In, E = Im.
2: for k = 1, . . . , scaling do
3: for i = 1, . . . ,m do
4: Ēii =

√
‖Âi·‖∞

5: for j = 1, . . . , n do
6: D̄jj =

√
‖Ā·j‖∞

7: Ā = Ē−1ĀD̄−1

8: D = DD̄−1

9: E = EĒ−1

for the iterates, and by extension the solution. Furthermore, since we are dealing
with a QP, the constraints and objective are all determined by matrices. Therefore, it
makes sense to equilibrate these matrices directly, as is done in OSQP for example
[144, §5.1]. OSQP applies a modified Ruiz equilibration [135] to the KKT matrix. This
equilibration routine iteratively scales the rows and columns in order to make their
infinity norms go to 1. OSQP adds an additional step that scales the objective to take
into account also the linear part q. We have found in our benchmarks, however, that
instead of this scaling it is better to apply Ruiz equilibration to the constraints only,
and to scale the objective by a single constant. Why exactly this is the better strategy
is unknown to us, but we suspect that the constraints are more sensitive to the scaling,
so it might be better to deal with them separately.

In QPALM, the Ruiz equilibration outlined in Algorithm 8.5 is applied to the constraint
matrix A, yielding Ā = EAD. The setting scaling denotes the number of scaling
iterations which can be set by the user and defaults to 10. The objective is furthermore
scaled by c = max(1.0, ‖D(Qx0 +q)‖∞)−1. In conclusion, we arrive at a scaled version
of (6.1)

minimize
x̄∈Rn

1
2 x̄
>Q̄x̄+ q̄>̄x

subject to Āx̄ ∈ C̄,

with x̄ = D−1x, Q̄ = cDQD, q̄ = cDq, Ā = EAD, C̄ =
{
z ∈ Rm | ¯̀≤ z ≤ ū

}
, ¯̀= E`

and ū = Eu. The Lagrange multipliers in this problem are ȳ = cE−1y. This is the
problem that is actually solved in QPALM, although the termination criteria are
unscaled, i.e. they apply to the original problem (6.1), see Section 8.3.4.
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8.3.3 Penalty parameters

The choice of the penalty parameters, and the rules used to update them have been
found to be a decisive factor in the performance of QPALM. This section discusses both
the traditional penalty parameters arising in the augmented Lagrangian formulation
Σy, and the proximal penalty parameters Σx.

Dual penalty parameters

The dual penalty parameters Σy play an integral role in slowly but surely enforcing
feasibility over the iterations. Because the inner subproblems solved by QPALM are
strongly convex, there is no theoretical requirement on the penalty parameters, other
than the obvious one of them being positive. However, experience with augmented
Lagrangian methods suggests that high values can inhibit convergence initially, as
they then introduce ill conditioning in the problem, whereas high values near a
solution are very useful to enforce feasibility. As such, these penalty parameters are
typically increased during the solve routine depending on the constraint violations
of the current iterate. A standard rule is to (only) increase the parameters when
the respective constraint violations have not decreased sufficiently, see [121, §17.4].
Furthermore, an added rule in QPALM that is observed to work well is to increase the
penalties proportional to their corresponding constraint violation. Hence, we employ
the following strategy to find Σy,k+1 in steps 6 and 8 (based on scaled quantities).

(Σy,k+1)ii
(Σy,k)ii

=

{
1.0 if i ∈ Dk,
min

[
σmax

(Σy,k)ii
,max

(
∆ |(Āx̄k+1−z̄k+1)i|
‖Āx̄k+1−z̄k+1‖∞ , 1.0

)]
otherwise, (8.9)

with Dk = {i : |(Āx̄k+1 − z̄k+1)i| < θ|(Āx̄k − z̄k)i|}, the set of indices for which the
constraint violation decreased sufficiently. The usage of this rule, in particular letting
the factor depend on the constraint violation itself, has been a crucial step in making
the performance of QPALM more robust. The default parameters here are θ = 0.25,
∆ = 100, and σmax = 109 and can all be set by the user. Note that in case only a
few penalties are modified, the factorization of either K̃ or H may be updated using
low-rank update routines. In practice, we set the limit on the amount of changing
penalties a bit lower than in (8.8) as we expect an additional update to be required
for the change in active constraints.

As with regards to an initial choice of penalty parameters, the formula proposed in
[18, §12.4] was found to be effective after some tweaking of the parameters inside. As
such, the following rule is used in QPALM to determine initial values of the penalties

(Σy,0)ii=max
[

10−4,min
(
σinit

max(1.0,| 12 (x̄0)>Q̄x̄0+q̄>̄x0|)
max(1.0, 1

2‖Āx̄0−ΠC̄(Āx̄0)‖2)
,104

)]
, (8.10)

with σinit a parameter with a default value of 20 and which can also be set by the user.
Setting the initial penalty parameters to a high value can be very beneficial when
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provided with a good (feasible) initial guess, as therefore feasibility will not be lost.
A deeper investigation into this and warm starting QPALM in general is a topic for
future work.

Primal penalty parameters

The primal, or proximal, penalty parameters Σx serve to regularize the QP around the
“current” point x̂k. An appropriate choice makes it so the subproblems are strongly
convex, as discussed before. In many problems, the user knows whether the QP
will be convex or not. Therefore, QPALM allows the user to indicate which case is
dealt with. If the user indicates the problem is (or might be) nonconvex, i.e. that
Q is not necessarily positive semidefinite, QPALM uses Algorithm 8.4 to obtain a
tight lower bound λ∗ on the minimum eigenvalue. If this value is negative, we set
∀i : Σx,ii = 1

|λ∗−10−6| . Otherwise, or in case the user indicates the problem is convex,
the default for Σx,ii = 107, a reasonably low value to not interfere with the convergence
speed while guaranteeing that Hk(x) or K̃k(x) is positive definite or quasidefinite
respectively. Furthermore, in the convex case, if the convergence is slow but the
primal termination criterion (8.11b) is already satisfied, Σx,ii may be increased even
further to 1012 depending on an estimate of the (machine accuracy) errors that would
be accumulated in Hk(x). Finally, QPALM also allows the selection of an initial
(Σx,0)ii = γinit, and an update rule (Σx,k+1)ii = min(γupd(Σx,k+1)ii, γmax), but this
has not proven particularly beneficial in practice. Not only does it not seem to speed
up convergence on average, but every change in Σx also forces QPALM to refactorize
the system.

8.3.4 Termination

This section discusses the termination criteria used in QPALM. In addition to the
conditions for a stationary point, QPALM may also check certain criteria to determine
whether the problem is primal or dual infeasible.

Stationarity

Termination is based on the unscaled residuals, that is the residuals pertaining to
the original problem (6.1). In QPALM, a twofold, absolute and relative, tolerance is
used for both the primal and dual residual. As such, the solver is terminated if on an
approximate stationary primal-dual pair (x̄, ȳ), with associated z̄k = ΠC(Āx̄+ Σ−1

y,kȳ)

1
c
‖D−1(Q̄x̄+ q̄ + Ā>ȳ)‖∞ ≤ εa + εr

c
‖
[
D−1Q̄x̄ D−1q̄ D−1Ā>ȳ

]
‖∞ (8.11a)

‖E−1(Āx̄− z̄k)‖∞ ≤ εa + εr‖
[
E−1Āx̄ E−1z̄k

]
‖∞. (8.11b)
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Here, the notation R2n 3 z =
[
x y
]
is again used to indicate the concatenation of two

column vectors x, y ∈ Rn. The tolerances εa and εr are by default 10−4 and can be
chosen by the user. In the simulations of §9, these tolerances were always set to 10−6.

To determine termination of the subproblem in step 2 of Algorithm 7.1, following
(7.46), the termination criterion

1
c
‖D−1(Q̄x̄+ q̄ + Σ−1

x (x̄− ˆ̄xk) + Ā>ȳ)‖∞ ≤ δa,k+

δr,k
c
‖
[
D−1Q̄x̄ D−1q̄ D−1Ā>ȳ

]
‖∞

(8.12)

is used. Here, the absolute and relative intermediate tolerances δa,k and δr,k start out
from δa,0 and δr,0, which can be set by the user and default to 100. In step 9 they are
updated using the following rule

δa,k+1 = max(ρδa,k+1, εa),

δr,k+1 = max(ρδr,k+1, εr),

with ρ being the tolerance update factor, which can be set by the user and defaults to
10−1. Note that, in theory, these intermediate tolerances should not be lower bounded
but instead go to zero. In practice, this is however not possible due to machine accuracy
errors. Furthermore, we have not perceived any inhibition on the convergence as a
result of this lower bound. This makes sense as the inner subproblems are solved up
to machine accuracy by the semismooth Newton method as soon as the correct active
set is identified.

Infeasibility detection

Detecting infeasibility of a (convex) QP from the primal and dual iterates has been
discussed in the literature [10]. The relevant criteria have also been implemented in
QPALM, with a minor modification of the dual infeasibility criterion for a nonconvex
QP. As such, it is determined that a problem is (approximately) primal infeasible if
for a δȳ 6= 0 the following two conditions hold

‖D−1Ā>δȳ‖∞ ≤ εpinf‖Eδȳ‖∞, (8.13a)

ū>[δȳ]+ − l̄>[−δȳ]+ ≤ −εpinf‖Eδȳ‖∞, (8.13b)

with the certificate of primal infeasibility being 1
c
Eδȳ.

The problem is determined to be (approximately) dual infeasible if for a δx̄ 6= 0

(E−1Āδx̄)i




∈ [−εdinf , εdinf ]‖Dδx̄‖∞ if ūi, ¯̀

i ∈ R,
≥ −εdinf‖Dδx̄‖∞ if ūi = +∞,
≤ εdinf‖Dδx̄‖∞ if ¯̀

i = −∞,
(8.14a)
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holds for all i ∈ [1,m] ∩ N, and either
{
‖D−1Q̄δx̄‖∞ ≤ cεdinf‖Dδx̄‖∞, (8.14b)

q̄>δx̄ ≤ −cεdinf‖Dδx̄‖∞ (8.14c)
or

(δx̄)>Q̄δx̄ ≤ −cε2
dinf‖δx̄‖2 (8.14d)

hold. Equations (8.14b) and (8.14c) express the original dual infeasibility for convex
QPs, that is the conditions that δx̄ is a direction of zero curvature and negative slope,
whereas (8.14d) is added in the nonconvex case to determine whether the obtained
δx̄ is a direction of negative curvature. In the second case, the objective would go to
−∞ quadratically along δx̄, and in the first case only linearly. Therefore, the square
of the tolerance, assumed to be smaller than one, is used in (8.14d), so as to allow for
earlier detection of this case. Note that minus signs were added in equations (8.13b)
and (8.14c) in comparison to [10]. The reason for this is that the interpretation of our
tolerance is different. In essence, [10] may declare some problems infeasible even though
they are feasible. Our version prevents such false positives at the cost of requiring
sufficient infeasibility and possibly a slower detection. We prefer this, however, over
incorrectly terminating a problem, as many interesting problems in practice may be
close to infeasible. When the tolerances are very close to zero, of course both versions
converge to the same criterion. The tolerances εpinf and εdinf can be set by the user
and have a default value of 10−5.

8.4 The full QPALM algorithm

Algorithm 8.6 synopsizes all steps and details that make up the QPALM algorithm.
Herein we set εa,0 = δa,0, εr,0 = δr,0. For brevity, the details on factorizations and
updates necessary for step 22, which have been discussed prior in Section 8.2.1, have
been omitted here.

It is interesting to note that QPALM algorithm presented here differs from its an-
tecedent convex counterpart [84] only by the addition of the lines marked with a star
“?”, namely for the setting of Σx and the inner termination criteria. In the convex case,
the starred lines are ignored and step 7 and step 28 will always activate. It is clear
that the routines in QPALM require minimal changes when extended to nonconvex
QPs. Furthermore, in numerical experience with nonconvex QPs the criterion of step
27 seemed to be satisfied most of the time. Therefore, aside from the computation of
a lower bound of the minimum eigenvalue of Q, QPALM behaves in a very similar
manner for convex and for nonconvex QPs. Nevertheless, in practice convergence can
be quite a bit slower due to the (necessary) heavy regularization induced by Σx if Q
has a negative eigenvalue with a relatively large magnitude.

Table 8.1 lists the main user settable parameters used in QPALM alongside their
default values.
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Name Default Description
εa 10−4 Absolute tolerance on termination criteria
εr 10−4 Relative tolerance on termination criteria
δa,0 100 Starting value of the absolute intermediate tolerance
δr,0 100 Starting value of the relative intermediate tolerance
ρ 10−1 Update factor for the intermediate tolerances
σinit 20 Used in the starting penalty parameters (cf. (8.10))
σmax 109 Cap on the penalty parameters
∆ 100 Factor used in updating the penalties (cf. (8.9))
θ 0.25 Used in penalty update criterion (cf. (8.9))
γinit 107 Initial proximal penalties (convex)
γupd 10 Update factor for the proximal penalties (convex)
γmax 107 Cap on the proximal penalties (convex)
scaling 10 Number of Ruiz scaling iterations applied to A

Table 8.1: Main parameters used in QPALM and their default values.

8.5 Summary

This chapter presented the innards of the QPALM algorithm. The subproblem mini-
mization was tackled using semismooth Newton directions and optimal step sizes. For
the former, efficient LDL> factorization and update routines were worked out and
implemented in LADEL, a C package. For the latter, it sufficed to find the root of a
piecewise affine function, which could be done by looping over the breakpoints and
interpolating once a zero-crossing has been detected. To optimize the performance of
QPALM, a careful investigation was made regarding parameter settings and update
routines. The penalty parameters are updated proportionally to the constraint viola-
tion, and the proximal penalty parameter was set based on the minimum eigenvalue
of Q if it is smaller than 0, and to a small value otherwise. To find this eigenvalue,
a simplified version of the LOBPCG method was presented. Furthermore, a tailored
preconditioning of the problem data, with a focus on the constraint matrix, was used
to prevent ill conditioning. Finally, the termination criteria for approximate stationar-
ity points as well as for the detection of primal and dual infeasibility were laid out.
The complete QPALM algorithm is summarized in Algorithm 8.6. The next chap-
ter is dedicated to the performance comparison of QPALM with state-of-the-art QP
methods.
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Algorithm 8.6 QPALM for the nonconvex problem (6.1)

Require Problem data: Q ∈ Sym(Rn); q ∈ Rn; A ∈ Rm×n; `, u ∈ Rm;
εa, εr, δa,0, δr,0, εpinf , εdinf , εa,0, εr,0,σinit, σmax, γ > 0; ρ, θ ∈ (0, 1);
(x0, y0) ∈ Rn × Rm; ∆ > 1; scaling ∈ N

1: Use Algorithm 8.5 to find D, E, and c = max(1.0, ‖D(Qx0+q)‖∞)−1.
Convert the data using the scaling factors: x̄0 = D−1x0, ȳ0 = cE−1y0,
Q̄ = cDQD, q̄ = cDq, Ā = EAD, ¯̀= E` and ū = Eu.

2: Initialize ˆ̄x0 = x̄0, Σy,0 from (8.10) and δx̄ = 0.
3:? Compute λ∗ using Algorithm 8.4.
4:? if λ∗ < 0 then
5:? Σx,ii = 1

|λ∗−10−6| , i = 1, . . . , n
6:? else
7: Σx,ii = γ, i = 1, . . . , n
8: for k = 0, 1, . . . do
9: Set x̄k,0 = x̄k.
10: for ν = 0, 1, . . . do
11: z̄k,ν = ΠC̄(Āx̄k,ν + Σ−1

y,kȳ
k).

12: δȳ = Σy,k(Āx̄k,ν − z̄k,ν)
13: if (8.11) is satisfied at (x̄k,ν , ȳk + δȳ) then
14: return (x̄k,ν , ȳk + δȳ)
15: else if (8.13) is satisfied at δȳ then
16: return c−1Eδȳ as the certificate of primal infeasibility.
17: else if (8.14) is satisfied at δx̄ then
18: return Dδx̄ as the certificate of dual infeasibility.
19: else if (8.12) is satisfied at (x̄k,ν , ȳk + δȳ) then
20: break
21: else
22: Find d by solving either (8.4) or (8.5).
23: Find τ using Algorithm 8.1.
24: δx̄ = τd.
25: x̄k,ν+1 = x̄k,ν + δx̄.
26: Set x̄k+1 = x̄k,ν , z̄k+1 = z̄k,ν and ȳk+1 = ȳk + δȳ.
27:? if ‖E−1(Āx̄k+1−z̄k+1)‖∞ ≤ εa,k + εr,k‖E−1

[
Āx̄k+1 z̄k+1]‖∞ then

28: Update ˆ̄xk+1 = x̄k+1

29:? εa,k+1 = max(ρεa,k, εa) and εr,k+1 = max(ρεr,k, εr).
30:? else
31:? Set ˆ̄xk+1 = ˆ̄xk, εa,k+1 = εa,k and εr,k+1 = εr,k
32: Update Σy,k+1 according to (8.9).
33: δa,k+1 = max(ρδa,k, εa) and δr,k+1 = max(ρδr,k, εr)





Chapter 9

QPALM: Numerical results

In this chapter, the performance of QPALM is benchmarked against other state-of-
the-art solvers. For convex QPs, we chose the interior-point solver Gurobi [79], the
active-set solver qpOASES [53], and the operator splitting based solver OSQP [144].
In addition, for MPC problems, the interior-point solver HPIPM [60] was included.
There are many other solvers available, but the aforementioned ones provide a good
sample of the main methods used for convex QPs. For nonconvex QPs, however, no
state-of-the-art open-source (local) optimization solver exists to our knowledge. Some
indefinite QP algorithms have been proposed, such as in [1]. However, their solver was
found to run into numerical issues very often. Hence, we did not compare against a QP
solver specifically, but rather against a state-of-the-art nonlinear optimization solver,
IPOPT [161], when dealing with nonconvex QPs. All simulations were performed on a
notebook with Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz x 2 processor and 16 GB
of memory. The problems are solved to medium-high accuracy, with the termination
tolerances εa, εr set to 10−6 for QPALM. In other solvers, the corresponding termination
tolerances were similarly set to 10−6. Furthermore, for all solvers and all problems, the
maximum number of iterations was set to infinity, and a time limit of 3600 seconds
was specified.

Section 9.1 discusses some preliminary material on common statistics used to compare
performances on large data sets, such as the shifted geometric means and performance
profiles. Section 9.2 benchmarks QPALM’s performance on convex QPs. Both a popular
and comprehensive test set, the Maros-Meszaros collection [108], as well as two specific
application examples, portfolio optimization and linear MPC, are considered in this
section. Finally, Section 9.3 presents a comparison between QPALM and IPOPT on
the nonconvex QPs of the Cutest test set [75].

The material in this chapter is based on the publication [85].
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9.1 Comparing runtimes

Comparing the performance of solvers on a benchmark test set is not straightforward,
and the exact statistics used may influence the resulting conclusions greatly. In this
work, runtimes of different solvers on a set of QPs are compared using two measures,
the shifted geometric means (sgm) and the performance profiles. When dealing with
specific problem classes, such as in Section 9.2.2 and Section 9.2.3, we will not use
these statistics but instead make a simple plot of the runtime of the various solvers as
a function of the problem dimension.

9.1.1 Shifted geometric means

Let ts,p denote the time required for solver s to solve problem p. Then the shifted
geometric means t̄s of the runtimes for solver s on problem set P is defined as

t̄s = |P|

√∏

p∈P

(ts,p + ζ)− ζ = e
1

|P|

∑
p∈P

ln (ts,p+ζ) − ζ,

where the second formulation is used in practice to prevent overflow when computing
the product. In this paper, runtimes are expressed in seconds, and a shift of ζ = 1
is used. Also note that we adopt the convention that when a solver s fails to solve a
problem p (within the time limit), the corresponding ts,p is set to the time limit for
the computation of the sgm.

9.1.2 Performance profile

To compare the runtime performance in more detail, also performance profiles [46]
are used. Such a performance profile plots the fraction of problems solved within a
runtime of f times the runtime of the fastest solver for that problem. Let S be the set
of solvers tested, then

rs,p = ts,p

mins̄∈S ts̄,p
,

denotes the performance ratio of solver s with respect to problem p. By convention
rs,p is set to∞ when s fails to solve p (within the time limit). The fraction of problems
qs(f) solved by s to within a multiple f of the best runtime, is then given as

qs(f) = 1
|P|

∑

P3p:rs,p≤f
1.

Performance profiles have been found to misrepresent the performance when more
than two solvers were compared at the same time [76]. As such, we will construct only
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the performance profile of each other solver and QPALM, and abstain from comparing
the other solvers amongst each other.

In the next section, these tools are used to benchmark the performance of QPALM
against state-of-the-art convex QP solvers on the Maros-Meszaros test set, alongside
other benchmarks for specific application examples.

9.2 Convex QPs

As mentioned in Section 6.2, convex quadratic programming solvers typically rely on
active-set, interior-point or proximal methods, and many solvers exist. In this section,
QPALM is compared against one representative from each branch, in particular the
interior-point solver Gurobi [79], the active-set solver qpOASES [53] and the operator
splitting based solver OSQP [144]. First and foremost, all solvers are compared on
the Maros-Meszaros benchmark test set [108], a well-known collection of convex QPs
drawn from a broad range of application domains. However, qpOASES is excluded
in this comparison as it tends to fail on larger problems which are ubiquitous in this
set. Thereafter, the performance of all solvers is also compared for some structured
quadratic problems arising from two specific application domains, portfolio optimiza-
tion and MPC. For this last problem, the performance is compared also to HPIPM
[60], an interior-point solver tailored to small-to-medium dense and OCP-structured
problems. This solver was run in its balanced mode, since the speed mode version
often did not converge.

9.2.1 Maros Meszaros

The Maros-Meszaros test set contains 138 convex quadratic programs, and is often
used to benchmark convex QP solvers. Table 9.1 lists the shifted geometric mean of
the runtime and failure rate of QPALM, OSQP and Gurobi applied to this set. The
Maros-Meszaros set includes many large-scale and ill conditioned QPs, and the fact
that QPALM succeeds in solving all of them within one hour is a clear indication that
it is very robust with respect to ill conditioning of the problem data. In runtime it is
also faster on average than the other solvers. However, Gurobi is faster more often, as
is shown in the performance profiles in Figure 9.1. The high shifted geometric mean
runtime of Gurobi is mostly due to its relatively high failure rate. OSQP also has a
high failure rate, and is also slower than QPALM, both on average and in frequency.
As a first-order method, in spite of employing a similar preconditioning routine to
ours, it seems to still exhibit a lack of robustness with respect to ill conditioning and
to somewhat stricter tolerance requirements.
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QPALM OSQP Gurobi
Runtime (sgm) 0.8189 7.1098 1.2018
Failure rate [%] 0.0000 9.4203 7.9710

Table 9.1: Shifted geometric mean runtime and failure rate for QPALM, OSQP
and Gurobi on the Maros Meszaros problem set.
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Figure 9.1: Performance profiles comparing QPALM with OSQP and Gurobi
respectively on the Maros Meszaros problem set.

9.2.2 Portfolio

As mentioned in Section 6.1.1, the goal in portfolio optimization is to select a portfolio
of assets to invest in to maximize profit taking into account risk levels. Given a vector
x denoting the (relative) investment in each asset, the resulting quadratic program is
the following

minimize
x∈Rn

κx>Σx− µ>x

subject to x ≥ 0,

n∑

i=1

xi = 1,

with µ ∈ Rn a vector of expected returns, Σ ∈ Sym(Rn) a covariance matrix rep-
resenting the risk and κ > 0 a parameter to adjust the aversion to risk. Typically,
Σ = FF>+D, with F ∈ Rn×r a low rank matrix and D ∈ Rn×n a diagonal matrix.
In order not to form the matrix Σ, the following reformulated problem can be solved
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instead in (x, y)

minimize
(x,y)∈Rn+r

[
x
y

]>[
D

Ir

][
x
y

]
− κ−1µ>x

subject to x ≥ 0,

n∑

i=1

xi = 1,

y = F>x.

We solved this problem for values of n ranging from 100 to 1000, with r = d n10e. We
choose the elements of µ uniformly on [0, 1], the diagonal elements Dii uniformly on
the interval [0,

√
r], and the matrix F has 50% nonzeros drawn from N (0, 1). For

each value of n, we solve the problem for five values of κ, (10−2, 10−1, 1, 101, 102),
and compute the arithmetic mean of the runtimes. The runtimes of QPALM, OSQP,
Gurobi and qpOASES solving these problems as such for different values of n are
shown in Figure 9.2. The structure of the portfolio optimization problem is quite
specific: the Hessian of the objective is diagonal, and the only inequality constraints
are bound constraints. It is clear from the figure that Gurobi exhibits the lowest
runtimes for this type of problem, followed closely by QPALM and OSQP. The latter
performs well especially for the small problems and has some robustness issues for
larger ones. It seems that qpOASES exhibits quite a high runtime when compared to
the other solvers.

9.2.3 MPC

As explained in Section 6.1.2, model predictive control is a strategy wherein one solves
an optimal control problem (OCP) at every sample time to determine the optimal
control inputs that need to be applied to a system. The OCP considers a control
horizon N , that is, it computes a series of N inputs, of which only the first is applied
to the system. Given a discrete linear system with nq states q and nu inputs u, and
its corresponding system dynamics in state-space form, qk+1 = Aqk +Buk, the OCP
considered here is one where we control the system from an initial state q̄ to the
reference state, for simplicity assumed to be at the origin, which can be formulated as

minimize
z∈R(N+1)nq+Nnu

q>NQNqN +
N−1∑

k=0

q>k Q qk + u>k Ruk

subject to q0 = q̄,

qk+1 = Aqk +Buk, k = 0, . . . , N − 1,
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Figure 9.2: Runtimes of QPALM, OSQP, qpOASES and Gurobi when solving
portfolio optimization problems of varying sizes.

qk ∈ Q, k = 0, . . . , N − 1,

qN ∈ QN ,

uk ∈ U , k = 0, . . . , N − 1.

Here, the decision variable is the collection of N + 1 state samples and N input
samples, z = (q0, u0, q1, . . . , uN−1, qN ). The stage and terminal state cost matrices are
positive definite matrices, Q,QN ∈ Sym++(Rnq ) and R ∈ Sym++(Rnu). Q, QN and
U represent polyhedral constraints on the states, terminal state and inputs respectively.
In our example, these are taken as box constraints Q = [−qb, qb] and U = [−ub, ub]
and the terminal constraint is determined as the maximal control invariant set [94]
of the system. Furthermore, the terminal cost is computed from the discrete-time
algebraic Riccati equations.

We solved this problem for a system with 10 states and 5 inputs for different values
of the time horizon. The state cost matrix is set as Q = MM>, with M ∈ Rnq×nq
consisting of 50% nonzeros drawn from the normal distribution N (0, 5). The input
cost matrix is chosen to be a small diagonal matrix with Rii = 0.01. The system
considered is slightly unstable, with the elements of A drawn from N (0, 2) and those
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Figure 9.3: Runtimes of QPALM, OSQP, qpOASES, Gurobi and HPIPM when
solving OCPs for varying time horizons.

of B from N (0, 1). The state and input limits qb and ub are drawn from N (10, 2).
Finally, the initial state is chosen such that it is possible but difficult to satisfy all the
constraints, in order to represent a challenging MPC problem. The resulting runtimes
of solving one such OCP for varying time horizons are shown in Figure 9.3. HPIPM
performs best, as expected from a tailored solver, followed by Gurobi and QPALM.
OSQP and qpOASES both have issues with robustness given the challenging nature
of the problem, although the latter also exhibits fast convergence in some cases.

An important aspect to consider when choosing a QP solver for MPC is the degree to
which it can work with an initial guess. This is of great import due to the fact that
subsequent OCPs are very similar. The solution of the previous OCP can therefore be
shifted by one sample time and supplied as an initial guess. This procedure is also
called warm starting. Figure 9.4 shows the result of warm starting subsequent OCPs
in this manner. Here, we solved 30 subsequent OCPs for a fixed time horizon of 30,
corresponding to 460 primal variables. Furthermore, a small disturbance, drawn from
the normal distribution N (0, 0.01), is applied when computing the next initial state.
It is clear that qpOASES, QPALM and OSQP all benefit greatly from this warm
starting. However, Gurobi, as is typical of an interior-point method, does not have
this advantage. For this reason, interior-point methods are typically not considered as
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Figure 9.4: Runtimes of QPALM, OSQP, qpOASES, Gurobi and HPIPM when
solving sequential OCPs in an MPC setting, with N = 30.

solvers for MPC problems. HPIPM, however, has incredibly low runtimes regardless,
and so may be an excellent choice for optimal control problems.

9.3 Nonconvex QPs

As mentioned in Section 6.3, nonconvex QPs arise in several application domains,
such as in mixed integer quadratic programs, partial differential equations and VLSI
chip design [163]. Successive (potentially) indefinite QPs have to be solved in an
SQP method applied to a nonconvex optimization problem if the exact Hessian of
the Lagrangian is used. To have a broad range of sample QPs, this work considers
the set of nonconvex QPs included in the Cutest test framework [75], since these
problems span various application domains and also include many ill conditioned
and/or large-scale problems that may be used to validate the robustness of the solvers.

Table 9.2 lists for each of those QPs the number of primal variables n and the number
of constraints m, excluding bound constraints. In addition, it lists a comparison of
the runtime and final objective value for both QPALM and IPOPT. Given that both
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solvers only produce an (approximate) stationary point, and not necessarily the same,
these results have been further analyzed to produce Table 9.3. Here, the problems
have been divided according to whether both solvers converged to the same point or
not, the criterion of which was set to a relative error on the primal solutions of 10−6.

On the one hand, the runtimes of the problems where the same solution was found have
been listed as shifted geometric means. It is clear that QPALM was on average a bit
faster for these problems. These runtimes were further compared in the performance
profile of Figure 9.5. This shows that QPALM was not only faster on average, but
also more often the fastest of the two solvers. On the other hand, for the problems
with different solutions, the objective value of the solution was compared and the
number of times either QPALM or IPOPT had the lowest objective was counted. The
resulting tally of 45 against 40 in favour of QPALM suggests there is no clear winner
in this case. This was to be expected as both solvers report on the first stationary
point obtained, and neither uses globalization or restarting procedures to obtain a
better one.

Finally, also the failure rate was reported. It is clear that QPALM outperforms
IPOPT by a small margin. Furthermore, the six problems that QPALM failed to
solve within the time limit, that is NCVXQP{1-3,7-9}, IPOPT also failed to solve
in time. IPOPT reported two of the problems, A2NNDNIL and A5NNDNIL, as
primal infeasible, whereas for these problems QPALM found a point satisfying the
approximate stationary conditions. In fact, the problems are primal infeasible, and
QPALM also reports this once slightly stricter termination tolerances are enforced.
The difference in result stems from a slightly different interpretation of the termination
criteria and corresponding tolerances. For these reasons, both solvers are considered
to have succeeded for these two cases.

Runtime Objective
Problem n m QPALM IPOPT QPALM IPOPT
A0ENDNDL 45006 15002 1.14e+01 1.75e+00 -3.87e-05 1.84e-04
A0ENINDL 45006 15002 9.63e+00 1.58e+00 -1.63e-04 1.84e-04
A0ENSNDL 45006 15002 5.56e+00 2.54e+01 -2.55e-07 1.48e-04
A0ESDNDL 45006 15002 1.14e+01 1.57e+00 -7.29e-05 1.84e-04
A0ESINDL 45006 15002 1.05e+01 1.63e+00 -7.08e-07 1.84e-04
A0ESSNDL 45006 15002 4.67e+00 2.54e+01 -5.82e-06 1.48e-04
A0NNDNDL 60012 20004 2.09e+02 4.65e+00 -3.17e-05 1.84e-04
A0NNDNIL 60012 20004 1.95e+03 2.38e+01 7.08e-01 1.98e-04
A0NNDNSL 60012 20004 6.73e+01 1.81e+01 5.35e-04 1.68e-04
A0NNSNSL 60012 20004 1.86e+01 2.96e+01 -1.25e-04 1.54e-04
A0NSDSDL 60012 20004 3.22e+01 4.12e+00 -1.89e-05 1.84e-04
A0NSDSDS 6012 2004 1.50e+00 9.12e-01 2.35e-06 4.91e-04
A0NSDSIL 60012 20004 1.00e+03 2.52e+01 6.47e-05 1.97e-04
A0NSDSSL 60012 20004 3.21e+01 1.23e+01 -2.86e-06 1.67e-04
A0NSSSSL 60012 20004 1.82e+01 2.70e+01 -6.44e-05 1.49e-04
A2ENDNDL 45006 15002 2.77e+01 2.32e+00 9.96e-07 9.88e-04
A2ENINDL 45006 15002 2.65e+01 2.38e+00 8.50e-07 9.73e-04
A2ENSNDL 45006 15002 4.98e+00 4.29e+01 1.91e-06 2.10e-02
A2ESDNDL 45006 15002 2.86e+01 2.29e+00 8.47e-07 9.88e-04
A2ESINDL 45006 15002 2.58e+01 2.28e+00 2.45e-07 9.73e-04
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A2ESSNDL 45006 15002 4.78e+00 4.33e+01 1.02e-06 2.10e-02
A2NNDNDL 60012 20004 1.52e+03 6.34e+00 3.46e-04 3.03e-04
A2NNDNIL 60012 20004 3.51e+01 PI 6.45e+01 /
A2NNDNSL 60012 20004 3.81e+02 5.38e+01 -5.54e-06 2.02e-04
A2NNSNSL 60012 20004 3.17e+01 5.16e+01 1.99e-05 2.01e-02
A2NSDSDL 60012 20004 6.19e+01 5.14e+00 3.57e-06 7.76e-04
A2NSDSIL 60012 20004 4.08e+01 3.76e+01 1.07e+01 1.57e+00
A2NSDSSL 60012 20004 5.23e+01 1.85e+01 -5.97e-07 2.51e-02
A2NSSSSL 60012 20004 3.41e+01 3.04e+01 -5.79e-06 4.70e-04
A5ENDNDL 45006 15002 6.85e+01 2.29e+00 8.14e-07 2.19e-03
A5ENINDL 45006 15002 7.33e+01 2.33e+00 -5.88e-07 2.25e-03
A5ENSNDL 45006 15002 6.62e+00 4.97e+01 1.74e-05 5.12e-02
A5ESDNDL 45006 15002 6.94e+01 3.23e+00 1.10e-06 2.19e-03
A5ESINDL 45006 15002 6.97e+01 2.70e+00 5.33e-07 2.25e-03
A5ESSNDL 45006 15002 8.21e+00 4.95e+01 3.30e-05 5.12e-02
A5NNDNDL 60012 20004 2.56e+03 8.07e+00 5.10e-04 1.86e-03
A5NNDNIL 60012 20004 3.50e+01 PI 1.02e+02 /
A5NNDNSL 60012 20004 2.43e+02 2.08e+01 3.32e-06 7.44e-02
A5NNSNSL 60012 20004 3.47e+01 1.53e+02 5.11e-06 2.47e-02
A5NSDSDL 60012 20004 9.59e+01 4.84e+00 3.53e-06 1.86e-03
A5NSDSDM 6012 2004 1.58e+00 8.17e-01 5.28e-07 4.91e-04
A5NSDSIL 60012 20004 3.43e+01 1.18e+02 8.43e+00 1.27e+00
A5NSDSSL 60012 20004 4.85e+01 1.84e+01 3.69e-05 1.00e-02
A5NSSNSM 6012 2004 1.56e+00 8.29e-01 1.30e-06 4.91e-04
A5NSSSSL 60012 20004 3.34e+01 1.11e+02 -3.29e-06 1.73e-02
BIGGSC4 4 7 3.52e-04 5.67e-02 -2.45e+01 -2.45e+01
BLOCKQP1 10010 5001 1.72e-01 1.22e+01 -4.99e+03 -4.99e+03
BLOCKQP2 10010 5001 1.55e-01 1.88e+00 -4.99e+03 -4.99e+03
BLOCKQP3 10010 5001 2.55e+02 3.60e+02 -2.49e+03 -2.49e+03
BLOCKQP4 10010 5001 4.09e-01 1.55e+00 -2.50e+03 -2.50e+03
BLOCKQP5 10010 5001 1.73e+02 3.48e+02 -2.49e+03 -2.49e+03
BLOWEYA 4002 2002 1.96e+00 3.37e+03 -8.01e-04 -2.28e-02
BLOWEYB 4002 2002 5.03e-02 3.04e+03 -3.74e-05 -1.52e-02
BLOWEYC 4002 2002 7.44e-01 F -2.92e-03 /
CLEUVEN3 1200 2973 6.69e+00 3.14e+01 3.76e+05 2.86e+05
CLEUVEN4 1200 2973 6.59e+02 6.57e+01 5.37e+06 2.86e+05
CLEUVEN5 1200 2973 6.54e+00 3.13e+01 3.76e+05 2.86e+05
CLEUVEN6 1200 3091 6.05e+00 2.86e+01 2.21e+07 2.21e+07
FERRISDC 2200 210 2.43e+00 3.06e+00 -1.02e-10 -2.13e-04
GOULDQP1 32 17 3.44e-03 7.34e-02 -3.49e+03 -3.49e+03
HATFLDH 4 7 1.30e-04 5.08e-02 -2.45e+01 -2.45e+01
HS44 4 6 1.69e-04 3.49e-02 -1.50e+01 -1.30e+01
HS44NEW 4 6 1.22e-04 3.34e-02 -1.50e+01 -1.30e+01
LEUVEN2 1530 2329 3.16e+00 2.05e+00 -1.41e+07 -1.41e+07
LEUVEN3 1200 2973 1.16e+03 3.20e+02 -1.38e+09 -1.99e+09
LEUVEN4 1200 2973 1.75e+01 6.17e+02 -4.78e+08 -1.83e+09
LEUVEN5 1200 2973 1.20e+03 3.16e+02 -1.38e+09 -1.99e+09
LEUVEN6 1200 3091 2.75e+03 1.21e+02 -1.17e+09 -1.19e+09
LEUVEN7 360 946 8.95e-02 4.19e-01 6.95e+02 6.95e+02
LINCONT 1257 419 PI PI / /
MPC1 2550 3833 3.73e+00 5.74e+00 -2.33e+07 -2.33e+07
MPC10 1530 2351 5.01e+00 7.78e-01 -1.50e+07 -1.50e+07
MPC11 1530 2351 4.47e+00 8.80e-01 -1.50e+07 -1.50e+07
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MPC12 1530 2351 4.31e+00 7.96e-01 -1.50e+07 -1.50e+07
MPC13 1530 2351 3.53e+00 8.09e-01 -1.50e+07 -1.50e+07
MPC14 1530 2351 3.79e+00 7.94e-01 -1.50e+07 -1.50e+07
MPC15 1530 2351 3.62e+00 8.35e-01 -1.50e+07 -1.50e+07
MPC16 1530 2351 3.26e+00 7.86e-01 -1.50e+07 -1.50e+07
MPC2 1530 2351 3.99e+00 7.26e-01 -1.50e+07 -1.50e+07
MPC3 1530 2351 3.06e+00 7.99e-01 -1.50e+07 -1.50e+07
MPC4 1530 2351 4.72e+00 6.56e-01 -1.50e+07 -1.50e+07
MPC5 1530 2351 4.72e+00 6.54e-01 -1.50e+07 -1.50e+07
MPC6 1530 2351 4.45e+00 7.59e-01 -1.50e+07 -1.50e+07
MPC7 1530 2351 4.45e+00 8.10e-01 -1.50e+07 -1.50e+07
MPC8 1530 2351 5.40e+00 7.78e-01 -1.50e+07 -1.50e+07
MPC9 1530 2351 5.11e+00 7.70e-01 -1.50e+07 -1.50e+07
NASH 72 24 PI PI / /
NCVXQP1 10000 5000 F F / /
NCVXQP2 10000 5000 F F / /
NCVXQP3 10000 5000 F F / /
NCVXQP4 10000 2500 1.08e+03 3.11e+03 -9.38e+09 -9.38e+09
NCVXQP5 10000 2500 1.38e+03 3.49e+03 -6.63e+09 -6.63e+09
NCVXQP6 10000 2500 2.20e+03 F -3.40e+09 /
NCVXQP7 10000 7500 F F / /
NCVXQP8 10000 7500 F F / /
NCVXQP9 10000 7500 F F / /
PORTSNQP 100000 2 3.66e+02 1.28e+00 -1.56e+00 -1.00e+00
QPNBAND 50000 25000 5.18e+00 F -2.50e+05 /
QPNBLEND 83 74 5.60e-03 4.20e-02 -9.14e-03 -9.13e-03
QPNBOEI1 384 351 2.54e-01 1.36e+00 6.78e+06 6.75e+06
QPNBOEI2 143 166 3.16e-02 7.76e-01 1.37e+06 1.37e+06
QPNSTAIR 467 356 7.57e-02 9.30e-01 5.15e+06 5.15e+06
SOSQP1 5000 2501 4.61e-02 1.35e-01 4.24e-07 -1.03e-10
SOSQP2 5000 2501 1.48e-01 1.41e-01 -1.25e+03 -1.25e+03
STATIC3 434 96 DI DI / /
STNQP1 8193 4095 1.66e+01 1.07e+03 -3.12e+05 -3.12e+05
STNQP2 8193 4095 3.07e+01 8.94e+00 -5.75e+05 -5.75e+05
Table 9.2: Runtime and final objective value comparison for QPALM and IPOPT
applied to the nonconvex QPs of the Cutest test set. Failure codes: PI = primal
infeasible, DI = dual infeasible and F = time limit exceeded (or numerical issues).

QPALM IPOPT
Runtime (sgm) 4.0045 8.2645
Optimal 45 40
Failure rate [%] 5.6075 8.4112

Table 9.3: Statistics of QPALM and IPOPT applied to the nonconvex QPs of
the Cutest test set. The runtime reported is the mean over the 11 problems which
converged to the same stationary point, whereas optimal denotes the number of
times the solver found the stationary point with the lowest objective in problems
where different stationary points were found.
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Figure 9.5: Performance profile for QPALM and IPOPT on the nonconvex QPs
of the Cutest test set where both converged to the same approximate stationary
point.

9.4 Summary

This chapter presented numerical simulations in which the performance of QPALM,
implemented in open-source C code, was compared against state-of-the-art QP solvers.
Our solver was shown to strike a unique balance between robustness when faced
with hard problems, such as those in the Maros-Meszaros and Cutest test sets, and
efficiency when faced with easy problems, such as portfolio optimization. Given a
time limit of one hour, QPALM found an approximate stationary point or correctly
identified infeasibility for 94.39% of the nonconvex QPs in the Cutest test set, whereas
IPOPT did this only for 91.95% of them. Moreover, QPALM was able to solve all of
the convex QPs in the Maros-Meszaros set, whereas Gurobi and OSQP exhibited a fail
rate of 7.97% and 9.42% respectively. These results are significant in demonstrating
QPALM’s robustness since the Cutest and Maros-Meszaros test sets contain some
very large-scale and ill conditioned QPs. Furthermore, QPALM was shown to benefit
from warm starting, unlike interior-point methods.



Conclusions and Future Research

Conclusions

In this thesis, we considered some interesting applications of penalty and augmented
Lagrangian methods to the optimal control problems arising in model predictive
control. The main contribution of this work was twofold:

• A quadratic penalty method was introduced that could handle general obstacle
avoidance constraints. These obstacles are described by smooth, nonlinear
boundary functions. On the theoretical side, the stationarity conditions of the
resulting nonlinear program proved elusive. Therefore, an equivalent problem
with vertical complementarity constraints was derived, and the limit points of
the proposed approach, after transformation, were shown to satisfy stationarity
conditions of this latter problem. On the practical side, the method was extended
by some simple heuristics, the main one involving a graph search to circumvent
local minima, which arise inevitably in these kinds of problems. It was then
validated in numerical simulations of autonomous navigation of two kinematic
vehicle models in various obstacle scenarios. The proposed approach was shown
to be more robust and runtime efficient than other state-of-the-art solvers
applied to either the original problem or the problem with complementarity
constraints.

• A novel quadratic programming solver, QPALM, was worked out based on the
proximal augmented Lagrangian method. The novelty here lied in its extension
also to nonconvex QPs, which are passed over by typical QP solvers. For convex
QPs, inexact P-ALM iterations with different penalty parameters were shown, by
relying on monotone operator theory, to converge to limit points satisfying the
KKT conditions. For nonconvex QPs, the method was interpreted differently,
relating rather to proximal point iterations on the extended cost function.
The necessary modifications were shown to be minor, pertaining only to the
primal penalties and the update of the regularization point, after which a linear
convergence rate (of the outer iterates) to stationary points was proven. The
inner minimization routine consisted of semismooth Newton steps and optimal
step sizes, both of which can be implemented efficiently for QPs. QPALM was
implemented in open source C code, and demonstrated in numerical simulations
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to be very robust against ill conditioned problem data, as well as competitively
efficient in runtime when compared against state-of-the-art QP solvers. Moreover,
it is receptive to warm starting, and may therefore be a favorable choice in
difficult linear MPC problems.

Both algorithms were shown to be founded on solid theoretical ground and to reach
notable heights in numerical simulations. Both are also available to users for their own
research projects. The penalty method was implemented independently from our work
in the open-source solver optimization engine [140].5 QPALM has been implemented
in house in open-source C code.6 These algorithms are of course not the end all be
all, and multiple avenues for future research are still open. Such is the nature of most
research. Much like the generation of a Koch curve, whenever one frontier is explored,
multiple new segments tend to take its place.

Avenues for Future Research

This thesis constructed two algorithms based on penalty and augmented Lagrangian
methods that are useful in MPC. Although both algorithms have been extensively
studied in theory and in numerical simulations, one shortcoming of the thesis might
be a lack of experimental validation. While this was perhaps not necessarily as crucial
a component to the development of both algorithms as the theoretical and simulation
aspects, it would have nevertheless allowed also for more pragmatic considerations
and lead to a more significant end result for the purposes of embedded MPC. Here,
merely a side note is made that this extension to embedded applications should, at
least conceptually, have been relatively easy since most of the provided code is in C.
However, conclusions with regard to the applicability of the algorithms on experimental
setups should only be made after corresponding results have been achieved. As they
say, the proof of the pudding is in the eating. Therefore, experimental validation of
the proposed algorithms, and of their extensions as discussed below, is left to the
next generation of researchers. Aside from this experimental direction, several avenues
regarding the development itself may be considered for further research, some of which
are currently already being actualized.

Penalty method for autonomous navigation

Extension for additional constraints Problem (3.1) may be extended to account
for additional equality and inequality constraints. A priori, no particular challenges
are foreseen for the corresponding extension of the theoretical results of §4, after
appropriate modifications of the assumptions in Lemmas 4.7 and 4.8. In practice,
however the approach of §3 needs to be extended, since the inner solver, PANOC,

5https://github.com/alphaville/optimization-engine
6https://github.com/Benny44/QPALM_vLADEL/

https://github.com/alphaville/optimization-engine
https://github.com/Benny44/QPALM_vLADEL/
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can not inherently deal with additional constraints. The authors of [140] present
optimization engine to do exactly that, by relying on an augmented Lagrangian
framework for general constraints and on quadratic penalties for obstacle avoidance
constraints similar to ours, with PANOC as the inner solver. The theory for the
combination of the quadratic penalty and an overarching augmented Lagrangian
framework, however, has not yet been presented. Their solver is written in Rust. In
addition, Pieter Pas, a master thesis student, is currently working in parallel on a
C++ implementation of the augmented Lagrangian method with PANOC as the inner
solver.

Heuristic development The graph-search heuristic presented in Section 3.3 is
effective in the presented simulations, but still somewhat unsophisticated. For example,
the current cell decomposition only takes into account the distance between the current
state and the goal position, but not the size of the obstacles. In the simulations, the grid
was fixed manually, since position and size of the obstacles were assumed to be known
a priori. If this is not the case, it may be possible that large obstacles prevent A* from
finding any feasible path on the generated grid. Adaptive grid generation strategies
may therefore be considered to robustify this approach. In addition, approximate
dynamic programming [16, §6] techniques may be considered to compartmentalize the
space around the obstacle and avoid the curse of dimensionality while still resulting in
approximate intermediate destinations.

QPALM

Equality constraints In our consideration of a QP (6.1), no distinction was made
for equality constraints. These were simply treated as inequality constraints with equal
lower and upper bounds. However, it may be useful to consider them separately. In
OSQP, for example, the penalty parameters corresponding to equality constraints are
set to a higher value, reasoning that these constraints will always be active and so
may be (more) enforced from the beginning [144, §5.2]. Aside from this approach, it is
probably worthwhile to consider them separately, not including them in the augmented
Lagrangian, but instead solving every time equality constrained subproblems of the
form

minimize
x∈Rn

ϕ̂k(x)

subject to AEx = bE .

The (semismooth) Newton direction of Section 8.1.1 is easily amenable for this equality
constrainted problem, although the resulting KKT matrix is no longer quasidefinite.
Therefore, modifications need to be made to the LDL> scheme. Kemal Mahmuljin, a
master thesis student, is currently working on extending QPALM for explicit equality
constraints as described here.
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Exploiting OCP structure In QPALM, sparse linear algebra factorization and
update routines are used. As such, the sparsity present in structured optimization
problems can typically be successfully exploited. However, in some scenarios, such as
in optimal control problems, the sparsity structure is of such a type that specialized
routines may be used to solve the emerging linear systems in a more efficient manner.
In particular, for the systems arising in OCPs, a backward Riccati recursion technique
was introduced in [141]. This method has been used in the interior-point methods
HPMPC [61] and its successor HPIPM [60], as well as in the P-ALM based solver
FBstab [102]. Therefore, it makes sense to incorporate it also in QPALM as an option
for when the QP originated from linear MPC.

Second-order cone constraints As a more fundamental augmentation of the range
of applicability of QPALM, also second-order cone (SOC) constraints, of the form

‖Ax− b‖2 ≤ c>x+ d,

may be considered. With such an addition, (6.1) would of course no longer be a
QP. A special case of an SOC constraint is one where c = 0, such that it may be
reformulated as a quadratic constraint, after squaring both sides. In this case, (6.1) is
then a quadratically constrained quadratic program (QCQP), a variant of QPs which
is considered to be much harder than linearly constrained QPs. A possible approach
to quadratic constraints in QPALM is to consider a linearization at every iteration,
much like SQP methods. This methods seems appealing, at least if there are few such
quadratic constraints, since it can be incorporated efficiently using the factorization
update routines discussed in Section 8.2.1. After all, the old linearization may be
considered as leaving the active set, while the new one as entering it. The extension of
QPALM to QCQPs and possibly further to SOCPs needs to be further investigated in
practice.

Sequential quadratic programming Briefly introduced in Section 6.1.3 and known
as one of the standard techniques for nonlinear programming, sequential quadratic
programming (SQP) solves, as the name implies, a sequence of quadratic programs
obtained by approximating the original problem. The main component, therefore, is
the underlying QP solver, and QPALM may be a prime candidate for this purpose for
three reasons. First, nonconvex QPs may arise when exact second-order information,
which is readily available from an AD package such as CasADi [4], is utilized. Second,
the QPALM algorithm can be warm started in between SQP iterations, resulting in
reduced runtimes on subsequent QPs. Third, also the eigenvalue computation routine
LOBPCG of Algorithm 8.4 is amenable to warm starting, effectively removing much
of the time spent on computing this eigenvalue while retaining a strict bound in every
QP. Currently, a trust-region SQP solver based on QPALM is under development by
David Kiessling, a fellow PhD researcher, and myself.
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