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Abstract The introduction of data-related information technologies in manufac-
turing allows to capture large volumes of data from the sensors monitoring the
production processes and different alarms associated to them. An early prediction
of those alarms can bring several benefits to manufacturing companies such as
predictive maintenance of the equipment, or production optimization. This pa-
per introduces a new system that allows to anticipate the activation of several
alarms and thus, warns the operators in the plants about situations that could
hamper the machines operation or stop the production process. The system fol-
lows a two-stage forecaster-analyzer approach on which first, a Long Short-Term
Memory Recurrent Neural Network based forecaster predicts the future sensor’s
measurements and then, distinct analyzers based on Residual Neural Networks
determine whether the predicted measurements will trigger an alarm or not. The
system supports some features that make it particularly suitable for Smart Man-
ufacturing scenarios: on the one hand, the forecaster is able to predict the future
measurements of different types of time-series data captured by various sensors in
non-stationary environments with dynamically changing processes. On the other
hand, the analyzers are able to detect alarms that can be modeled with simple
rules based on the activation condition, and also more complex alarms on which it
is unknown when the activation condition will be fulfilled. Moreover, the followed
approach for building the system makes it flexible and extensible for other predic-
tive analysis tasks. The system has shown a great performance to predict three
different types of alarms.
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1 Introduction

The introduction of data-driven [46] economy in the manufacturing industry has
promoted the so called fourth industrial revolution or “Industry 4.0”, also referred
to as “Smart Manufacturing”, which is defined in [8] upon two main concepts: the
compilation of manufacturing records of products and the application of artifi-
cial intelligence techniques to analyze those records. Thus, the captured raw data
(time series generated by the continuous operation of the manufacturing process
or equipment to be analyzed) are usually stored in cloud computing infrastruc-
tures [59] for further analysis processes (product quality [11], fault detection [19],
predictive maintenance of equipment [48], etc.).

In these smart manufacturing contexts, equipment maintenance plays an im-
portant role, and directly affects the service life of equipment and its production
efficiency. Therefore, several analysis methods are appearing to address a proactive
maintenance of the equipment; among which many of them manage different types
of alarm systems to control the production process, and warn the operators in the
plant about situations that could hamper the machine operation or incur in stops
in the production process [48]. Overall, those alarm systems play a prominent role
in maintaining plant safety and operation efficiency of modern industrial plants,
by keeping the processes with normal operating ranges [51].

However, sometimes, in those systems the activation of the alarms is so close to
the issue that there is no action-margin for the operators to manage the situation
[25]. But, if the activation of the alarms is predicted early enough, the settings
of the machine could be reconfigured in order to avoid stops in the production
process or hampering the machine [51], [24]. In fact, the design of mechanisms to
generate predictive alarms in order to forecast upcoming critical abnormal events
has been stated as one of the open research problems in alarm systems [51], as
it affects directly to the Overall Equipment Efficiency (OEE = Availability (A)
* Performance (P) * Quality (Q)). For example, in the real context presented
in Section 3, an early prediction of the Plastic Temperature not Reached in the
Die Entry Alarm could lead to avoid bad quality (Q) products, by increasing the
resistors’ temperature, and a Molten Resistor or Broken Thermocouple Cable in
Die Zone 2 Alarm could allow the operators in the plant to perform a proactive
maintenance of the equipment to avoid possible damages in the machine or its
components, by turning on the fans that cool down the resistors (A & P).

Different proposals have attempted to predict alarm activations in industrial
scenarios with different approaches. For example, in [62], records of previous alarm
activations are used to predict the most critical alarms; in [25], different fea-
tures, extracted from measurements made by different detectors installed along
rail tracks, are used to predict different alarms; and in [24], sensors data are used
to predict the future measurements of the sensors and detect if an alarm will be
triggered or not in the predicted values. The system presented in this paper also
uses this last approach. However, the main difference between both works resides
in the alarm detectors; while in [24], a binary classifier has been built based on



A Flexible Alarm Prediction System Following a Forecaster-Analyzer Approach 3

the activation condition of the alarm; the proposal presented in this paper, uses
deep learning models to predict the alarms. In this regard, although binary clas-
sifiers based on the activation condition could be useful for some use cases, they
are limited to predict alarms whose activation condition is based on simple rules
known a priori (e.g., a threshold), while deep learning-based classifiers are able
to predict these kind of alarms, but also more complex alarms whose activation
condition cannot be modeled with simple rules or it still remains unknown.

The main contribution of this paper resides in the development of a flexible
alarm prediction system that is able to predict different types of alarms that can be
produced on a real smart manufacturing scenario. The system follows a two-stage
forecaster-analyzer approach on which first, a forecaster, predicts the future mea-
surements of the time-series data captured by various sensors; and then, distinct
analyzers determine if the predicted measurements will trigger an alarm or not.
Unlike other proposals, it supports some features that make it particularly suitable
for Smart Manufacturing scenarios: on the one hand, the built system is suitable for
multi-sensor time-series data forecasting in non-stationary environments such as
smart manufacturing scenarios with dynamically changing processes. On the other
hand, it is able to detect alarms that can be modeled with simple rules based on
the activation condition, and also more complex alarms (see Section 3.2) on which
it is unknown when the activation condition will be fulfilled, and it has shown
the possibility of dealing with unseen situations that can emerge unexpectedly.
Furthermore, the followed approach to build the system makes it easily extensible
to other predictive analysis tasks, since the predicted measurements of the sensors
could be used for other processes such as anomaly detection, prediction of other
types of alarms, etc.

Concerning the used deep learning techniques for building the system, the
forecaster has been built by using a Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) based model that predicts the next values of the time-series
data captured from 11 different sensors implanted in a real extruder machine,
for three different time horizons (5, 10 and 15 minutes) with an average Root
Mean Squared Error (RMSE) of 0.00852, 0.01215 and 0.01737 (respectively). The
analyzers have been built by using Residual Neural Networks (ResNet) based
classifiers and have shown a great performance to predict three different types of
alarms (with an area under the Relative Operating Characteristic (ROC) curve
value of 0.99937, 0.99270 and 0.97381 respectively). Moreover, authors would like
to notice that even though time series are a very common data type, most of the
available systems cannot inherently accommodate and support the data sizes and
analytics required by smart manufacturing scenarios, where fulfilling the strict
requirements of such scenarios is a challenging goal, involving many interesting
research problems [33].

The paper is structured as follows: Section 2 presents a review of related work;
Section 3 presents the context of the alarm prediction system; Section 4 presents
the built model for predicting multivariate time-series data; Section 5 presents
the built models for detecting alarm activations in the predicted data; Section 6
shows the performance of the system for predicting three different types of alarms,
and finally; Section 7 shows the conclusions of the realized work and some further
research directions.
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2 Related Work

The increasing interest among manufacturers in exploiting the potential of large
volumes of manufacturing data for diverse purposes [7] such as the control of prod-
uct quality, the predictive maintenance of equipment, fault detection, etc., has lead
to the introduction of data-driven artificial intelligence techniques in these scenar-
ios, to conduct different types of analysis over the captured data. For example, in
a similar scenario to the one considered in this paper (the particular context of the
manufacturing based on extrusion processes), in [11], different regression models
are used for predicting the product quality, based on the predicted diameters of
the extruded tubes, in order to optimize their production process.

Moreover, in those smart manufacturing scenarios in which the widespread de-
ployment of sensors and Industrial Internet of Things (IIoT) devices [4] allow to
capture huge volumes of data (which is essential for approaches that use artifi-
cial intelligence techniques [26]), the automatic feature learning and high-volume
modelling capabilities of deep learning, provide advanced analytics tools [50]. This,
together with the increasing popularity of deep learning, has promoted the appli-
cation of deep learning techniques to manufacturing data and many researchers are
advocating for their use to boost data-driven applications in smart manufacturing
scenarios [50].

One of the most interesting applications of deep learning techniques to manu-
facturing data is the predictive maintenance of equipment, since it directly affects
the service life of equipment and its production efficiency [48]. Thus, different
methods are appearing to address a proactive maintenance of the equipment;
for example, in [56], a data-driven bearing performance degradation assessment
method based on Long Short Term Memory (LSTM) Recurrent Neural Networks
(RNNs) is proposed; in [54], an approach for fault prognosis with the degradation
sequence of equipment based on LSTM-RNNs is proposed; and in [29], a LSTM
Encoder-Decoder model is used for multi-sensor prognostics using an unsupervised
health index.

Besides those methods, different types of alarm-systems [51] have been also
used in order to conduct a predictive maintenance of equipment. These systems
control the production process and warn the operators in the plant about situations
that could hamper the machine operation or incur in stops in the production
process [48]. However, sometimes, in these systems the activation of the alarms is
so close to the issue that there is no action-margin for the operators to perform
a proactive maintenance of the equipment [25]. In such cases, an early prediction
of the alarms’ activation, will grant an extra time for the reconfiguration of the
settings, controlling the production process in order to avoid production stops or
hampering the machine. Therefore, the design of early alarm prediction systems
has been stated as one of the open research problems in alarm systems [51].

Regarding the early prediction of alarms, different works can be found in smart
manufacturing scenarios. For example, in [62], a dynamic alarm prediction algo-
rithm is applied to an industrial case study to predict critical alarms by using
a probabilistic model based on a n-gram model and sequences of previous alarm
activations. In [24], an alarm prediction system has been built by using autore-
gressive Least Squares Support Vector Machines (LS-SVM) models, to predict the
activation of a temperature alarm associated to the bearings of a steel production
machine, and in [25], a customized SVM model has been built for alarm prediction
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in a large-scale railroad network. Finally, in [5], an alarm prediction method based
on word embedding and LSTM neural networks is presented to predict the next
alarm in a process setting. The system presented in this paper follows a forecaster-
analyzer approach that combines LSTM neural networks [17] to forecast the future
measurements of various sensors, with residual neural networks (ResNet [15]) to
analyze (or classify) the alarms in the predicted values.

Regarding the approach used to build the alarm prediction system; in [24], the
captured data by the sensors are forecasted and used to predict alarm activations
following a similar approach to the forecaster-analyzer proposed in this paper.
Nevertheless, there are significant differences between both works: on the one hand,
in [24], an autoregressive LS-SVM model is used to predict a unique sensor’s future
measurements, while in this work, a LSTM-based model has been used to predict
multivariate time series captured by multiple sensors. The use of a multivariate
time series forecaster avoids having a specific model for each sensor, and also
allows to capture interdependencies between different time series and predicting
alarms on which various sensors could be involved (e.g., Incorrect Temperature
Alarm in Section 3.2). On the other hand, in [24], the used analyzer is based on
a rule on which an alarm is predicted if in the forecasted temperature values, the
maximum temperature is reached at least once, while the system proposed in this
paper uses residual neural networks-based classifiers. The use of these classifiers
leads to more general purpose analyzers that are able to detect different alarms,
including alarms which can be detected thanks to a rule based on the activation
condition (e.g., Plastic Temperature not Reached in the Die Entry Alarm) but also
more complex alarms that cannot be detected by this kind of rules (e.g., Molten
Resistor or Broken Thermocouple Cable in Die Zone 2 Alarm).

Concerning the neural networks used to build the alarm prediction system,
it can be seen in the literature, that on the one hand, LSTM recurrent neural
networks have been already successfully used for forecasting time series of sensor
data. For example, in [18], LSTM recurrent neural networks are used for forecasting
time-series data coming from different sensors monitoring environment variables
in a farm-monitoring context, and in [60], LSTM recurrent neural networks are
used for forecasting the time-series data from 33 sensors of a cooling pump in a
power station. On the other hand, neural networks have also been already used
for time series classification purposes. For example, in [53], 44 different time series
databases of different nature are used to compare the performance of 9 time series
classifiers including three deep learning classifiers based on neural networks. Fur-
thermore, [20] extends the benchmark to 85 time series databases including also
multivariate time series databases to compare 9 deep learning classifiers based on
neural networks, on which the ResNet classifier achieves the best performance. In
both benchmarks, the ResNet classifier has been demonstrated to perform well on
classifying time series datasets of different nature, an interesting property for smart
manufacturing scenarios where multiple heterogeneous sensors produce different
types of time series.

Two main aspects distinguish the proposed system from those mentioned be-
fore. Firstly, the use of a LSTM neural networks-based forecaster to predict multi-
variate IIoT devices time-series data in a real smart manufacturing scenario with
dynamically changing processes (the system presented in [5] also uses LSTM neural
networks for alarm prediction; however, that system predicts the activation of the
alarms by using previous alarm activation data instead of the time-series data cap-



6 Kevin Villalobos et al.

tured by the sensors); and secondly, the use of deep learning-based analyzers that
are able to predict those kind of alarms on which the activation condition could
be modeled by a rule (as the system presented in [24] does), but also more com-
plex alarms that cannot be modeled with rules based on the activation condition.
Moreover, it has shown the possibility of adapting the used analyzers to deal with
unseen situations which can emerge unexpectedly. Finally, although the mentioned
deep learning-based models have been independently used in smart manufactur-
ing scenarios, to the best of the authors’ of this paper knowledge, these systems
have not been already combined for predictive maintenance tasks in manufacturing
scenarios.

3 Context of the Alarm Prediction System

This section provides details about the main elements involved in the setting of
the alarm prediction system; in particular, details about the main features of the
captured time series and alarm data, the accomplished tasks for pre-processing
the data, and the followed approach for implementing the system are given.

3.1 Time-Series and Alarm Data

The access to real-world data was facilitated by the collaboration with a Capital
Equipment Manufacturer (CEM) that has installed several sensors in the machines
that it manufactures. Those sensors register time-series data with a continuous
measurement at 1Hz frequency (i.e., one measurement per second) of a variety of
equipment setting parameters and physical magnitudes (temperatures, pressures,
etc.) related to the raw materials, production processes and industrial equipment
from a plastic bottles production plant based on an extrusion process. Associated
to those sensors, the CEM has also defined some alarms that are triggered under
different conditions established over the measurements taken by the sensors. Those
alarms can allow the operators in the plant to conduct a proactive management of
the different controls in the machine for a predictive maintenance of the equipment.
The data from the sensors implanted in an extruder machine of a real production
plant and their associated alarm data (i.e., time series of alarm activation events
registered in a log mode with a register per event) have been captured by using a
REST API provided by the CEM.

Fig. 1 shows the scheme of an extruder machine on which the CEM has im-
planted several sensors, and Table 1 shows the type of captured time series, the
type of sensor and their associated alarms with their activation condition given by
the domain experts from the CEM. The captured data from the 01-12-2018 to the
28-02-2019 have been used to train and test the models, and the captured data
from the 01-03-2019 to the 31-03-2019 have been used to evaluate the models. Fig.
2 shows as an example a four-hour sub-sequence of the Melting Temperature time
series on which an alarm (vertical red line) has been triggered.

High-frequency sensors capturing data during long periods of time, lead to
large-scale raw time-series data that hamper the performance of machine learning
models which usually scale poorly to high dimensional data [27]. Thus, in order
to reduce the dimensionality of the data, the time series have been aggregated by
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Fig. 1 Different Sensors (in red) Implanted on an Extruder Machine

Table 1 Properties of Captured Time-series Data and the Associated Alarms

Time series Sensor type Associated Alarm Activation Condition

Melting
Temperature

Thermal
(°C)

Plastic
temperature not
reached in the die
entry

Melting Temperature <
170 °C

Extruder Temperatures
Zones [1-4] (Extruder)
Zone 5 (Union)
Zone 6 (Filter)
Zones [1-4] (Die)

Thermal
(°C) (×10)

Incorrect
temperature

Temperature > (set-
temperature + error-
margin) or Temperature
< (set-temperature -
error-margin) in any of
the zones

Extruder Temperatures
Zone 2 (Die)

Thermal
(°C)

Molten
resistor or broken
thermocouple
cable in die zone 2

The heat resistor in the
second zone of the die is
molten, or the thermocou-
ple cable is broken

Fig. 2 Sub-sequence of Melting Temperature Time Series on which an Alarm has been Acti-
vated
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Fig. 3 Sub-sequence of Melting Temperature Time Series on which an Alarm has been Acti-
vated (after Pre-processing)

minute, using the Piecewise Aggregate Approximation technique described in [21].
This aggregation also allows to reduce the complexity of the time series forecasting
problem, as it reduces the number of steps to predict, and as can be seen in [24], the
performance of the models for predicting future values decreases as the number of
steps to predict increases. For example, without any aggregation, in order to build
a model that predicts the measurements of the following 5 minutes, the model
would need to predict 300 steps-ahead, while aggregating the data by minute it
will only need to predict 5 steps-ahead.

Furthermore, the measurements of the implanted sensors present some inaccu-
racies (i.e., noise) due to the precision of the sensors which introduces an additional
complexity into the ability of the models to predict the under-laying behaviour of
the time series. Thus, in order to remove the noise that hampers the performance
of the models, data has been filtered by using the Discrete Fourier Transform [2].
Fig. 3 shows the same time series presented in Fig. 2 after aggregating the data
by minute and removing the noise. Missing values and outliers have also been
removed from the raw data.

Finally, the pre-processed time-series data have been integrated in a dataset on
which each timestamp is associated to the measurements of all the sensors (i.e., a
dataset with a structure of (timestamps × num_sensors)). This dataset has been
the one used to generate the input data for the models. However, these data do
not meet the specific necessities of the selected deep learning models, and thus,
before building and training the models, first, data have been normalized in the
range [-1, 1], and then, some transformations have been applied in order to meet
the requirements of the models (see sections 4.1 and 5.1 respectively).

3.2 Alarm Types

Three different alarm types have been considered for building the alarm prediction
system (see Table 1). For each alarm an analyzer has been built to determine if
in a given time-series sub-sequence a particular type of alarm will be triggered or
not.
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– Plastic Temperature not Reached in the Die Entry: This alarm is associated to
the thermal sensor implanted in the entry of the die, to measure the melting
temperature of the plastic. This temperature directly affects the viscosity of the
melted plastic that at the same time affects the quality of the final product.
Thus, in order to avoid bad quality products and stops in the production
process, a specific alarm has been defined to ensure the correct temperatures.
This alarm is triggered if the melting temperature is lower than 170°C.

– Incorrect Temperature: This alarm is triggered if in any of the extruder zones
the measured temperature is not correct. The correct temperature is estab-
lished in the production plant and it is bounded between the established values
± an error margin.

– Molten Resistor or Broken Thermocouple Cable in Die Zone 21: This alarm is
triggered if in the second zone of the die, the heat resistor has been molten or
if the thermocouple cable has been broken.

3.3 An Alarm Prediction System Following a Forecaster-Analyzer Approach

As mentioned before, the alarm prediction system follows a two-stage forecaster-
analyzer approach on which first, the future measurements of the sensors are
forecasted; and then, different types of alarms are predicted over the forecasted
data, by using three different analyzers (i.e., classifiers trained to detect interesting
patterns matching alarm activations). Fig. 4 shows an example of this approach by
using the built forecaster for predicting the future values of themelting temperature
time series and an analyzer that tries to detect if the Plastic Temperature not
Reached in the Die Entry Alarm will be activated or not in the predicted values.
In the training phase; first, the forecaster is built and trained by using time-
series sub-sequences to predict the following values of the time series, and then,
an analyzer is built and trained using those sub-sequences to determine if in a
given sub-sequence an alarm will be activated or not. In the deployment phase;
the future measurements of the sensor (time-series sub-sequences) are predicted
by using the built forecaster and introduced into the corresponding analyzer that
determines if an alarm will be triggered or not.

The prediction of those alarms, could allow the operators in the plant to recon-
figure the settings of the machines in a proactive way in order to avoid bad quality
products or hampering the machine. Furthermore, the followed approach is easily
extensible, since the predicted data by the forecaster could also be used to antici-
pate other kind of events by building new analyzers (e.g., abnormal behaviours or
faults in the machine or its components).

Models have been built using Tensorflow [1] and Keras [6] libraries and they
have been deployed using the Google AI Platform [13]. In particular the training
and prediction jobs have been executed on a n1-highcpu-16 2 machine (as master

1 Although this alarm type has been associated to all the resistors or thermocouple cables
from the different zones of the extruder, only the one associated to the second zone of the
die has been considered, because in the selected period of time is the only one that has been
triggered.

2 Machine types in Google Compute Engine: https://cloud.google.com/compute/docs/
machine-types.

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
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Fig. 4 Alarm Prediction System Following a Forecaster-Analyzer Approach

node) with a standard_p100 3 GPU accelerator. Moreover, the Google AI Platform
allows to build and train the models over different clusters of GPU workers, which
can result particularly interesting for smart manufacturing scenarios dealing with
big volumes of data.

4 Industrial Sensors Time-Series Data Forecasting

Time series forecasting is an important research topic in the domain of science and
engineering, in which past observations of the data are collected and analyzed to
develop a model that can predict future observations [22]. Over the years, various
forecasting models have been developed in the literature. In particular, for time
series forecasting, Autoregressive Integrated Moving Average (ARIMA) models
have been widely used, and more recently, Artificial Neural Networks (ANNs) [58].

In the literature, both approaches have been compared in different application
domains with mixed results [58] (in some cases, ANN perform better than classic
time series forecasting models, whereas in other cases, classical time series models
make more accurate predictions or both show a similar behaviour), mainly due to
the complex nature of real-world problems [57]. However, in the particular con-
text of sensor and IIoT devices time-series data forecasting, recent works (such

3 GPU types in Google AI Platform: https://cloud.google.com/ml-engine/docs/
using-gpus.

https://cloud.google.com/ml-engine/docs/using-gpus
https://cloud.google.com/ml-engine/docs/using-gpus
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as [18] and [60]) have shown that the inefficiency of classical time series models
to capture long-term multivariate dependencies of the data coming from multiple
devices of different nature [49], makes ANN-based models more suitable than clas-
sical models. In particular, Deep Neural Networks (DNN) of Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) [49], [39], [52] have been
widely used for time series forecasting tasks.

In order to evaluate the behaviour of different types of models with data coming
from a real manufacturing scenario, in this work, three different types of models
have been built to predict the future measurements of the sensors mentioned in
Table 1, in three different time horizons that are relevant for the considered sce-
nario: a CNN model, a LSTM-RNN model and an ARIMA model. Firstly, in the
following sub-sections, the steps followed to prepare the data for the prediction
models are presented, and then, the built models together with their performance
evaluation.

4.1 Forecasting Data Preparation

As mentioned before, the pre-processed data (see Section 3.1) do not meet the spe-
cific necessities of the selected deep learning models and thus, before data can be
used in those models, they must be prepared according to the input/output spec-
ifications of the models. To prepare the data, a sliding-window approach [35] has
been followed to transform the pre-processed dataset into a dataset composed of
time-series sub-sequences with the measurements of all the sensors (i.e., a dataset
with a structure of (num_sub-sequences × window-length × num_sensors), where
window-length = input_sequence_length + output_sequence_length (see Sections
4.2.2 and 4.2.3)).

Moreover, the deep learning-based time series forecasting models use a time-
series sub-sequence as input, to learn how to predict the future sub-sequences of
measurements with a given time horizon (i.e., output_sequence_length). Thus,
the first input_sequence_length steps (i.e., minutes) will serve as input for the
forecasting models, and the following output_sequence_length steps as output
(the target values to predict). Therefore, the dataset mentioned above has been
split into two datasets, an input dataset with a structure of (num_sub-sequences ×
input_sequence_length × num_sensors), and an output dataset with a structure
of (num_sub-sequences × output_sequence_length × num_sensors).

The selection of the time horizons has been determined by two constraints: on
the one hand, it is known from the R&D director of the CEM providing the real
data that the effects of adjusting some of the settings of the production process
may not be noticed until a few minutes (up to 15 minutes) have elapsed. On the
other hand, the performance of the models for predicting future values decreases as
the number of steps to predict increases (as can be seen in [24]). Therefore, at each
prediction, 5 steps (i.e., 5 minutes) are forecasted and then, those predictions are
used to predict further time horizons (10 and 15 minutes) following the approach
described in [45], that uses the predicted sub-sequence together with the input
data to predict the next sub-sequence.
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4.2 Time Series Forecasting Models

This section presents the built models in order to test their performance in both
univariate and multivariate time series forecasting. For each type of model, a
univariate time series forecaster has been built by using the Melting Temperatures
Sensor Data and a multivariate time series forecaster by using the data of all
the sensors shown in Table 1. The built models have been trained and evaluated
following the rolling strategy described in [43] on which the model predicts the
future measurements of the sensors using the last available measurements. This
strategy has been applied over the prepared training and evaluation datasets. Next
the build models are presented.

4.2.1 ARIMA Model

ARIMA is a linear regression-based forecasting approach that captures temporal
structures in time-series data. The acronym ARIMA stands for Autoregressive4

(AR) Integrated5 (I) Moving Average6 (MA) [43] and captures the key compo-
nents of the model. These three components are specified as parameters when
building an ARIMA(p,d,q) model, where p is the lag order (i.e., the number of lag
observations used in model training); d is the degree of differencing (i.e., the num-
ber of differencing items applied); and q is the order of moving average (i.e., the
size of the moving average window). ARIMA models were initially conceived for
univariate time series forecasting; however, some generalizations of these models
have been developed to allow them involving multiple variables. Such is the case of
Vector Autoregresive (VAR) [28] models that capture the linear inter-dependencies
among multiple time series introduced as variables. In these models, each variable
has a linear function explaining its evolution based on its own lagged values, the
lagged values of the other variables in the model, and an error term. When building
a VAR(p) model, although usually the only required parameter is the lag-order
(p), the model requires all the variables to have the same order of integration;
thus, before building the model the data has been differenced with a degree of one
(d=1 ).

In this work, an ARIMA(4,1,0) model has been built for univariate time se-
ries forecasting, and a VAR(4) model has been built for multivariate time series
forecasting. The selection of the parameters has been done with a grid search (con-
sidering the following parameter ranges: p=[1-10], d=[1-5], q=[0-10]), using the
auto_arima function and the RollingForecastCV model selection function of the
pmdarima package [44]. For building the models, the approach followed in [43] has
been used, on which the model performs multi-step out-of-sample forecasting with
re-estimation (i.e., each time the model is re-fitted to build the best estimation
model).

4 A model that uses the dependent relationship between an observation and some number
of lagged observations.

5 The differencing of raw observations in order to make the time series stationary.
6 A model that uses the dependency between an observation and a residual error from a

moving average model applied to lagged observations.
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4.2.2 CNN Model

Convolutional Neural Networks (CNN) [23] are a specialized type of neural net-
works for processing data that has a known, grid-like topology (including time-
series data) [39]. These networks, employ a mathematical operation called con-
volution between the input data and a filter or a kernel, usually alternated with
pooling operations to generate a feature map that is finally connected to a fully-
connected neural network that analyzes the features for classification and predic-
tion tasks [61]. The impressive success arisen by CNNs in the domain of computer
vision (powering tasks like image classification, object recognition, etc.) has led
researches and practitioners to apply them in other domains such as time series
classification [61] and time series forecasting [52].

In this work, different CNN-based models with different parameter configura-
tions have been built in order to select the most appropriate one for the considered
scenario. These models are composed by blocks (up to three) of a 1D convolutional
layer and a max-pooling layer (takes the highest value from each area scanned
by the CNN) followed by a flatten layer to reduce the feature maps to a one-
dimensional vector and a fully-connected (dense) layer that interprets the features
extracted by the convolutional part of the model to predict the future measure-
ments of the sensors. For selecting the best parameter configuration, a grid search
has been done by using the GPyOpt library7 [47] considering the parameter values
shown in Table 2. Two constraints have been defined for the grid search: the first
one, to ensure that the number of filters of a convolutional layer (in models with
more than one layer) is the half of the precedent layer’s number of filters; and the
second one, to ensure that the kernel size in the subsequent layer is equal or lower
than the precedent layer.

The built models with the different parameter configurations have been trained
and evaluated five times and the best model, based on the obtained RMSE on the
evaluation dataset, has been selected. Taking into account the results of the param-
eter optimization process, a CNN model has been built for univariate time series
forecasting that uses a single convolutional block with 32 filters with a kernel size
of 2 and the ReLU activation function, and a pool-size of 2 in the pooling layer. For
multivariate time series forecasting, the model that achieved the best performance
was a model with a single convolutional block with 64 filters with a kernel size
of 8 and the ReLU activation function, and a pool-size of 2 in the pooling layer.
The univariate and multivariate time series forecasting models have been trained
using the Adam Optimizer with a learning rate of 0.002 and 0.001 (respectively),
and the mse loss function during 400 and 300 epoch (respectively), with a batch
size of 256 and an input sequence length 100 and 300 steps (respectively).

4.2.3 LSTM Model

Long Short-Term Memory (LSTM) [17] is a special kind of Recurrent Neural Net-
work (RNN) capable of learning order dependence in sequence prediction prob-
lems. LSTM neural networks have the chain like structure composed by a set of

7 A Bayesian Optimization tool for black-box functions that allows tuning automatically
machine learning models’ parameters.

8 A hyphen (-) means that the parameter is not applicable for the model or that has not
been considered.
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Table 2 Deep Learning Models’ Parameters8

Parameter Description CNN LSTM

Blocks of convolutional and max-pooling layers 1, 2, 3 -
Activation function of the convolutional layers ReLU -
N◦ of filters on each convolutional layer 64, 128, 256 -
Kernel size on each convolutional layer 2, 4, 6, 8 -
Pool size on each max-pooling layer 2, 3, 4 -
N◦ of hidden layers - 1, 2, 3
N◦ of units (neurons) on each hidden layer - 64, 128, 256
Input sequence length 100, 200, 300 100, 200, 300
Output sequence length 5 5
Loss function mse mse
Learning rate 0.001, 0.002, 0.005 0.001, 0.002, 0.005
N◦ of training epoch 100, 200, 300, 400 100, 200, 300, 400
Optimizer adam, nadam adam, nadam
Batch size 64, 128, 256 64, 128, 256

cells, typical of RNNs, on which each cell contains a cell state that allows the
information to be kept for a long period of time [55]. In LSTM neural networks
the information added or removed from the cell state is carefully regulated by
structures called gates (composed out of a sigmoid neural network layer and a
point-wise multiplication operation). A LSTM neural network has three of these
gates controlling the cell state: A forget gate and an input gate that control which
part of the information should be removed/reserved in the network; and an out-
put gate that uses the processed information to generate the correct output [32].
LSTM neural networks have been explicitly designed to avoid the long-term de-
pendency problem present in other recurrent neural networks. Their ability to
remember information for longer periods of time allows them to perform well in
diverse time series forecasting tasks for both, one-step-ahead forecasting [18], and
multi-step-ahead forecasting [55].

In this work, different LSTM-based models with different parameter configura-
tions have been built in order to select the most appropriate one for the considered
scenario, following the same approach described in Section 4.2.2. Table 2 shows
the considered parameter values for the optimization process. A constraint has
been defined to ensure that the number of neurons of the subsequent layer (in
models with more than one hidden layer) is the half of a precedent layer’s number
of neurons. Taking into account the results of the parameter optimization process,
a Vanilla LSTM model has been built with a single layer and 128 neurons for
both, univariate and multivariate time series forecasting. Both models have been
trained by using the Adam optimizer with a learning rate of 0.001 and the mse
loss function. Models have been trained during 300 and 400 epochs (respectively)
with a batch size of 128 and an input sequence length of 300 steps.

4.3 Forecasting Models Evaluation

In order to select a suitable time series forecasting model, an instance of each
of the models mentioned above (after selecting the best parameter configuration)
has been built, and its performance has been evaluated. In general, to evaluate
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the performance of that type of models, a metric is often defined in terms of
the forecasting error, which is the difference between the actual (desired) and the
predicted values. Different metrics have been used in the literature to measure
the performance of the predictions (a review of them can be found in [41], to-
gether with their formula). However, each of them presents different advantages
and limitations, and thus, there is not a universally accepted one by the forecasting
academicians and practitioners [58]. Therefore, in this work three different error
metrics have been selected to evaluate the performance of the forecasters: Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE).

Table 3 summarizes the performance results of the different models considered
for forecasting the whole time series for the three different time horizons and over
the two available datasets (train and evaluation). Among all these results, those
related with the evaluation dataset (unseen data for the model) have been con-
sidered in order to select the most suitable forecasting model. The performance
results show that when considering the RMSE metric, the LSTM-based model
outperforms the ARIMA and CNN-based models in both univariate and multi-
variate time series forecasting. When considering MAE and MAPE metrics, on
the one hand, for univariate time series forecasting, ARIMA-based models out-
perform LSTM and CNN-based models. On the other hand, for multivariate time
series forecasting (which is the most relevant case for the considered scenario)
ARIMA and LSTM-based models show a similar performance and both outper-
form CNN-based models. However, for near time horizons, ARIMA-based models
show a better performance, while as the time window to predict increases, their
performance is degraded and LSTM-based models show a better performance.

Table 3 Time Series Forecasting Evaluation Results

Dataset - Steps - ahead
Train Evaluation

Metric Forecaster 5 min 10 min 15 min 5 min 10 min 15 min

U
ni
va
ri
at
e

RMSE
ARIMA 0.00028 0.00281 0.01048 0.01426 0.02399 0.03049
CNN 0.01313 0.02648 0.06689 0.00503 0.01291 0.02346
LSTM 0.00249 0.01132 0.02875 0.00137 0.00577 0.01560

MAE
ARIMA 0.00005 0.00047 0.00167 0.00019 0.00064 0.00165
CNN 0.00402 0.00860 0.01551 0.00196 0.00451 0.00764
LSTM 0.00068 0.00202 0.00403 0.00037 0.00131 0.00291

MAPE
ARIMA 0.02696 0.25799 0.78174 0.02350 0.11597 0.73543
CNN 0.88629 1.94116 3.58219 0.42255 1.33615 1.76896
LSTM 0.36965 0.80791 1.59330 0.07121 0.72974 1.74319

M
ul
ti
va
ri
at
e

RMSE
VAR 0.00017 0.00195 0.00807 0.01444 0.02436 0.03180
CNN 0.02581 0.03723 0.04972 0.01716 0.02119 0.02588
LSTM 0.00757 0.01219 0.02036 0.00852 0.01215 0.01737

MAE
VAR 0.00005 0.00051 0.00203 0.00300 0.00458 0.00628
CNN 0.01297 0.01633 0.01936 0.00882 0.01096 0.01290
LSTM 0.00444 0.00547 0.00683 0.00409 0.00498 0.00582

MAPE
VAR 0.03581 0.27815 1.41278 0.54049 1.36444 2.14099
CNN 4.61300 5.81008 6.53746 1.62916 2.11659 2.43444
LSTM 1.30136 1.74324 2.59245 0.63228 0.87252 1.18475
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In addition to the achieved performance results, regarding the applicability of
the built forecasters in real smart manufacturing scenarios; on the one hand, the
proposed system should be flexible enough to take into account the non-stationary
nature of this environments with dynamically changing industrial processes, that
could hamper the performance of the built forecaster (e.g., changes in the machine
operation mode, changes in the type of product to produce, etc.); on the other
hand, the system should be suitable for making real time predictions in industrial
contexts with big volumes of data produced by multiple sensors of different nature.

In this sense, it is worth mentioning that in order to make accurate predic-
tions, the ARIMA models require to be re-estimated with the latest data before
each prediction step. However, although this fact helps the model to make more
accurate predictions (since it is always up to date with the newest data), it re-
stricts the feasibility of its application to real world problems in the context of
Smart Manufacturing, where the latest data is not always available (e.g., due to
stops in the production process), and where constantly re-estimating models for
real time predictions could be computationally expensive. Conversely, LSTM and
CNN-based models are not re-estimated before each prediction step, a property
that could result unfavorable if the environment conditions change. Nevertheless,
these models can be updated with new data due to a specific requirement of cer-
tain circumstances (e.g., one of the raw materials has been changed) or they could
be periodically updated (e.g., daily) to keep the models up to date. Moreover as
it is stated in [32], LSTM neural networks have been explicitly designed to avoid
the long-term dependency problem by remembering information for long periods
of time, an interesting behavior, especially when the model has been trained with
large time series (since they could capture and "remember" different operation
modes of the machine under different circumstances). Thus, taking into account
the results of the performed tests as well as the system applicability in Smart
Manufacturing scenarios, LSTM neural networks have been selected to build the
forecaster of the proposed system.

4.4 LSTM Forecaster Performance Results

A time series forecaster has been built to predict the future measurements of the
sensors, by using the selected LSTM-based model. The built forecaster takes sub-
sequences of the time-series data captured by 11 sensors implanted on an extruder
machine as input (see Table 1), and it predicts a 5-step-ahead sub-sequence for each
sensor as output (i.e., 11 sub-sequences of 5 sensor measurements corresponding
with the following 5 minutes). These predictions will serve as the output for the
first time horizon (5 minutes), and also as the input to predict recursively the next
two time horizons (10 and 15 minutes) (see Section 4.1).

Table 4 shows the performance results of the selected model when predict-
ing the future measurements of each sensor individually. The performance results
are shown with the RMSE, MAE and MAPE metrics. However, in the following,
the RMSE metric is used for presenting the performance results of the selected
forecaster, for being the one corresponding with the loss function used to build
the model (RMSE =

√
MSE). Although there is some variation in the RMSE

obtained when predicting the different sensors’ data, the built forecaster achieves
a great performance with an average RMSE of 0.00852, 0.01215 and 0.01737 (re-
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spectively for each time horizon on the evaluation dataset). Furthermore, if due
to special requirements of the application scenario more precision is required for
a particular sensor, a specific forecaster could be built to predict only the future
measurements of that sensor in a more accurately way. Table 5 shows a comparison
between the performance results of a specific forecaster for the Melting Temper-
ature sensor and the multi-sensor forecaster; and Fig. 5 shows, as an example,
the predicted time series for the Melting Temperature sensor in a sub-sequence
of the evaluation dataset (3600 minutes), when using the multi-sensor forecaster
(in green), and when using the specific forecaster (in red). Although the specific
forecaster is more precise than the multi-sensor forecaster, the difference does not
hamper the ability of the built analyzers to predict the alarms (see Section 6.1).
Moreover, the multi-sensor forecaster allows to predict the data of various sensors
at the same time, instead of building a specific forecaster for each sensor for those
alarms associated to multiple sensors.

Fig. 5 Melting Temperatures Forecasting: Predicted Measurements vs Original Measurements
(Time Horizon 5 Minutes)

4.5 Dealing with Non-stationary Environments

As mentioned in Section 4.3, in non stationary environments with dynamically
changing processes, the data distribution can change over the time, yielding the
phenomenon of concept drift [10]. In these environments, the common approach
of training models in an offline manner using historical data could lead to models
on which the performance decreases as time goes by and environment conditions
change. Therefore, one desirable property of the models is their ability of incor-
porating new data. This ability to adapt to such concept drift can be seen as a
natural extension for incremental learning systems, such as the neural networks-
based models used in this work, which learn predictive models example by example
and thus, they can update the decision model as new examples arrive [10].



18 Kevin Villalobos et al.

Table 4 Forecasting Performance Results of Each Sensor for the Evaluation Dataset

Steps - ahead
Sensor Metric 5 min 10 min 15 min

Melting Temperatures
RMSE 0.00564 0.01011 0.01556
MAE 0.00412 0.00578 0.00617
MAPE 0.56375 0.99342 2.40473

Extruder Temperature Zone 1
RMSE 0.01766 0.01819 0.02145
MAE 0.00547 0.00579 0.00724
MAPE 0.68267 0.72025 0.89809

Extruder Temperature Zone 2
RMSE 0.00955 0.01367 0.01809
MAE 0.00221 0.00312 0.00456
MAPE 0.40620 0.56167 0.84430

Extruder Temperature Zone 3
RMSE 0.01456 0.01866 0.02426
MAE 0.00583 0.00665 0.00870
MAPE 1.00995 1.12361 1.51917

Extruder Temperature Zone 4
RMSE 0.00831 0.01185 0.01788
MAE 0.00213 0.00282 0.00415
MAPE 0.40764 0.53567 0.72905

Extruder Temperature Zone 5 (Union)
RMSE 0.00550 0.00968 0.01525
MAE 0.00388 0.00516 0.00552
MAPE 0.49775 0.67376 0.81368

Extruder Temperature Zone 6 (Filter)
RMSE 0.00520 0.00950 0.01573
MAE 0.00230 0.00262 0.00333
MAPE 0.32786 0.41065 0.70757

Extruder Temperature Zone 1 (Die)
RMSE 0.00470 0.00844 0.01453
MAE 0.00265 0.00296 0.00342
MAPE 0.35323 0.49375 0.66072

Extruder Temperature Zone 2 (Die)
RMSE 0.00569 0.00967 0.01458
MAE 0.00369 0.00505 0.00549
MAPE 0.48412 0.67080 0.76792

Extruder Temperature Zone 3 (Die)
RMSE 0.00453 0.00831 0.01447
MAE 0.00246 0.00308 0.00342
MAPE 0.91350 1.85027 2.00073

Extruder Temperature Zone 4 (Die)
RMSE 0.01238 0.01559 0.01931
MAE 0.01028 0.01178 0.01204
MAPE 1.30838 1.56381 1.68630

Average
RMSE 0.00852 0.01215 0.01737
MAE 0.00409 0.00498 0.00582
MAPE 0.63228 0.87252 1.18475

Table 5 Multi-Sensor vs Specific Forecaster Prediction Error for Melting Temperatures (Eval-
uation Data)

Steps - ahead
Forecaster Metric 5 min 10 min 15 min

Multi-sensor
RMSE 0.00564 0.01011 0.01556
MAE 0.00412 0.00578 0.00617
MAPE 0.56375 0.99342 2.40473

Melting Temperatures
RMSE 0.00137 0.00577 0.01560
MAE 0.00037 0.00131 0.00291
MAPE 0.07121 0.72974 1.74319
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Two main approaches are used to adapt a decision model in order to address
the concept drift [9]: blind approaches that update the decision model periodically
without verifying if changes really occurred; and informed approaches that mod-
ify the decision model when changes are detected. In this last approach, several
methods have been proposed to detect the concept drift (such as the Page-Hinkley
method or the ADaptive sliding WINdow (ADWIN)), a survey of them can be
found in [10]. Most of those methods detect when the concept drift occurs and
then the models can be updated independently. Another interesting approach is
the one proposed in [37], where the model is slightly updated when new data is
available using an anomaly-score computed between the predicted values and the
original ones. This anomaly score ensures that a high anomalous score, during large
periods of time, due to concept drift, leads to continuous changes in the network
parameters, whereas short term anomalies or outliers producing a high anomaly
score do not produce significant updates in the network parameters. However, as
stated in Section 4.3, updating the model every time new data is available in smart
manufacturing scenarios could be computationally inefficient, and although there
exist some research works in Online Deep Learning Neural Networks that learns
on the fly [36], using a traditional neural network-based model (like the ones used
in this work) to change the model itself (every time new data is available) could
leverage dangerous consequences (performance degradation) in long term. Thus
reaching a trade-off between both approaches could be more interesting.

In this work, a combination of both approaches is proposed to test the ability
of the model to adapt to non-stationary environments. First, an anomaly-score
has been used to detect when the model performance starts to degrade due to
concept drift. For that, the RMSE between the predicted values and the real
measurements is computed for every prediction made by the model as anomaly-
score. If the mean of the obtained anomaly-score in a fixed period of time (i.e.,
the last hours) is higher than the obtained RMSE by the model when evaluated
over a large period of normal operation mode (e.g., the evaluation dataset) plus
an error margin, the model could be updated using a width enough period of time
of the latest available data (e.g., the last day).

Fig. 6 shows a comparison between the performance of the model to predict
sensors’ measurements after two different types of concept drift occurs (sudden
concept drift in Fig. 6-I, and incremental concept drift in Fig. 6-II) and its per-
formance after updating it with the latest available data (Fig. 6-III and Fig. 6-IV
respectively). Moreover, the figure also shows a comparison between the obtained
anomaly-scores when predicting the sensors’ measurements, before and after up-
dating the model, for each type of concept drift (sudden concept drift in Fig. 6-V
and incremental concept drift in Fig. 6-VI). It can be observed that at first, in
both cases, the model performs well and its performance starts to degrade when
the concept drift has occurred. However, once the concept drift has been detected
and the model has been updated (the period compressed between the vertical gray
dashed-lines), the performance of the model improves, whereas when the model
has not been updated, it remains degraded.
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Fig. 6 Time series Forecasting with Different Types of Concept Drift and Obtained Anomaly-
score

5 Predictive Analysis of Industrial Sensor Time-Series Data

Smart Manufacturing leverages the tremendous advances in Big Data analytics
to improve existing analysis capabilities and provide new ones, such as predictive
analytics that analyze current and historical data to make predictions about future
unknown events [31]. In this regard, the built forecaster allows to obtain future
values of the sensors for a data-driven predictive analysis [30], by using models
(i.e., analyzers) capable to detect events in the forecasted data. In this work, in
particular, three different analyzers have been built for predicting three different
types of alarms (see Section 3.2). Each analyzer is composed by a classifier that
determines whether in a given time-series sub-sequence, an alarm will be triggered
or not. More precisely, the analyzers are trained to detect negative and positive
classes (regarding the activations of the alarms) in a binary classification problem.
Thus, each analyzer is specifically used to detect a concrete type of alarm, which
seems reasonable for the most critical alarms since specialized classifiers usually
outperform general purpose ones.

However, these are not the unique alarms that can be produced in the consid-
ered scenario, and building a specific analyzer for each alarm that can be triggered
could result tedious. Moreover, considering that all the possible situations which
could occur in non-stationary environments (such as Smart Manufacturing scenar-
ios with dynamically changing industrial processes), are included in the training
and testing datasets is too optimistic and could leverage to wrong predictions when
dealing with unexpected circumstances. Taking into account that situation, the
proposed system should be able to detect the alarms for which it has been trained,
but also capable to deal properly with new conditions unseen when building it.
Next sections show, first, the followed steps to prepare the data for the analyzers;
then, the different analyzers built together with their performance evaluation, and
finally, how the proposed system deals with new situations not considered a priori
when building it.



A Flexible Alarm Prediction System Following a Forecaster-Analyzer Approach 21

5.1 Analyzers Data Preparation

For the classification data, the sliding window approach has been used to ob-
tain different sub-sequences of the time series with a window-length of 100 (100
steps). In each sub-sequence, if an alarm has been triggered, the sub-sequence
has been labelled as True and as False otherwise. This approach transforms the
pre-processed dataset (see Section 3.1) into a dataset composed of time-series sub-
sequences with measurements of each sensor and the sub-sequence label (i.e., a
dataset with a structure of (num_sub-sequences × window-length × (num_sensors
+ label)). The sub-sequences of sensors measurements serve as input for the model
(num_sub-sequences × window-length × num_sensors)), whereas the label (one-
hot encoded), serves as output for the model. Notice that while the number of
steps predicted by the forecaster is between 5 and 15, a longer sub-sequence has
been selected for the analyzers (100 steps), due to the requirements of the models.
In order to make accurate predictions of the alarms, not only are necessary the
last measurements of the sensors, but also historic information about the data.
Thus, in the deployment phase, the predicted values by the forecaster for each
time horizon are appended to the last observations of the data (e.g., for the time
horizon of 5 minutes, the 5 predicted values by the forecaster are appended to the
last 95 observations obtained by the sensor).

5.2 Analyzers

Three different analyzers have been built for predicting three different types of
alarms (see Section 3.2). Each analyzer is composed by a classifier that determines
if in a given time-series sub-sequence, an alarm will be triggered or not. When
building the analyzers, for simple alarms, such as the first two types of alarms
presented in this work (Plastic Temperature not Reached in the Die Entry Alarm
and Incorrect Temperature Alarm), a rule-based classifier based on the alarm ac-
tivation condition (described in Table 1) could be used to predict correctly all the
alarms. However, for more complex alarms, like the third alarm presented in this
work (Molten Resistor or Broken Thermocouple Cable in Die Zone 2 Alarm), for
which it is unknown when the activation condition will be fulfilled and therefore,
cannot be modeled with rules, an automatic learning-based approach (such as neu-
ral networks-based approaches) is necessary. In this work, three Residual Neural
Networks-based classifiers have been built, one to predict this last type of alarms,
and another two to predict the first two types of alarms (in order to test also the
performance of these classifiers when predicting simple alarms).

Different neural networks-based classifiers have been widely used for different
time series classification tasks. The selection of the most suitable classifier depends
on the type of time-series data and the classification task itself. In order to select
an appropriate classifier for an scenario with different types of time series, coming
from multiple sensors of heterogeneous nature, and for different purposes (detect
different types of alarms), the benchmarks presented in [53] and [20] have been
considered. Those benchmarks test up to nine distinct classifiers based on neural
networks over 44 and 85 time-series databases (respectively) of different nature.
In the benchmark presented in [53] the classifier based on Fully Convolutional
Networks (FCN classifier in [53]) achieves the best performance for classifying the
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time series databases in the benchmark, followed by the Residual Networks [15]
based classifier (ResNet classifier in [53]). Nevertheless, in the benchmark pre-
sented in [20] with an extended dataset, that includes a larger number of time
series databases, the ResNet classifier achieves the best performance. For that rea-
son the selected classifier for building the analyzers, has been the ResNet classifier
proposed in [20]. Moreover, in those benchmarks, this classifier has been demon-
strated to perform well on diverse time series datasets of different nature, an inter-
esting property for Smart Manufacturing scenarios where multiple heterogeneous
sensors produce different types of time series.

The architecture of the ResNet classifier is composed by three residual blocks,
followed by a global average pooling layer and a fully-connected layer with the
softmax activation function. Each residual block is composed of three convolutions
whose output is added to the residual block’s input and then fed to the next layer.
The number of filters for all convolutions in each block is fixed to 64, 128 and
128 respectively, with the ReLU activation function that is preceded by a batch
normalization operation. In each residual block, the filter’s length is set to 8, 5 and
3 respectively for the first, second and third convolution (see [20] for the concrete
implementation).

In order to test the suitability of the ResNet classifier when it comes to alarm
prediction, for each analyzer 5 different classifiers have been built by using different
partitions of the training dataset (5-fold cross-validation). Each classifier has been
trained with a batch size of 64 samples and during 400 epochs. The selected classi-
fier has been the best one based on the loss function (binary cross-entropy) using
the Adam optimizer with a learning rate of 0.001. To overcome the class imbal-
ance, characteristic of alarm prediction and fault diagnosis scenarios, a balanced
class weighting has been used during the training of the models. Then, the built
analyzers are presented, and Section 5.3 shows their performance on predicting
the three different types of alarms.

5.2.1 Melting Temperatures Analyzer

The first analyzer has been built to predict the activation of the Plastic Tempera-
ture not Reached in the Die Entry alarm using the predicted measurements of the
sensor that measures the plastics’ melting temperature. This one is the simplest
alarm to predict, since it can be modeled with a rule based on the activation con-
dition which states that when the melting temperature is lower than 170 °C, the
alarm is activated. In this case, it seems that the model manages to learn [16] the
activation condition of the alarm which can be reflected on the high performance
achieved when predicting the alarms (an AUC-ROC value greater than 0.98%).

5.2.2 Incorrect Temperatures Analyzer

A second analyzer has been built to predict the Incorrect Temperature alarm.
The prediction of this alarm is more complicated than the first one, because this
alarm is triggered if in any of the extruder zones measuring the temperature of
the plastic, the measured temperature is higher or lower than the established one,
plus or minus an error margin (respectively). Nevertheless, the prediction of this
alarm could be also modeled with a more complex rule that checks the activation
condition for every temperature zone in the extruder. In this case, the analyzer
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also shows a good performance predicting the alarms, so that it seems to have
learnt the under-laying condition of the activation of the alarm (an AUC-ROC
value greater than 0.98%).

5.2.3 Die Zone 2 Analyzer

A third analyzer has been built to predict the Molten Resistor or Broken Ther-
mocouple Cable in Die Zone 2 alarm. The prediction of this alarm is even more
complicated than the previous one, because although there is an activation con-
dition described by the domain experts (see Table 1), it is unknown when the
activation condition will be fulfilled and trigger the alarm, and thus, the detection
of this alarm cannot be modeled using rules. Therefore, in this work a residual
neural networks-based classifier has been used to build an analyzer that attempts
to learn the underlying pattern of the sub-sequences on which the alarm has been
triggered, so that if it sees a similar pattern in the predicted measurements, it will
anticipate the activation of the alarm and the operators could stop the machine
in a safe way or turn on the fans that cold down the resistor. This case reinforces
the utility of using a more sophisticated classifier for predicting confidently the
activation of this kind of alarms that cannot be modeled with simple rules (an
AUC-ROC value greater than 0.93%).

5.3 Analyzers Performance Results

As mentioned in the previous section, for building the analyzers, Residual Neural
Networks (ResNet) based classifiers have been used. In order to test the suitability
of these classifiers for predicting the alarms, a 5-fold cross-validation process has
been followed, on which the initial training dataset has been split into five new
partitions of the data into train-test datasets. For each partition of the data, five
classifiers have been trained in order to test their performance for predicting the
different types of alarms (totaling 25 classifiers for each analyzer). The perfor-
mance of each classifier, in order to discriminate normal operation sub-sequences
from sub-sequences on which an alarm has been activated, has been evaluated by
using the area under the Relative Operating Characteristic (ROC) curve (AUC-
ROC) metric, a performance measurement for classification problems at various
thresholds settings. This metric represents a degree or a measure of separability
between the classes by telling how accurate is the model distinguishing between
classes (the higher is the AUC-ROC, the better is the model at predicting normal
sub-sequences as normal sub-sequences and sub-sequences with alarm activations
as sub-sequences with alarm activations). Table 6 summarizes the AUC-ROC value
obtained by each analyzer when predicting the alarms on the cross-validation pro-
cess (see the average of the AUC-ROC value for all the built classifiers on the
Cross-Validation column).

Once tested the suitability of the classifiers for predicting the alarms with
the cross-validation process, five new classifiers have been built for each analyzer
by using all the training dataset. These classifiers have been evaluated using the
evaluation dataset, and the average AUC-ROC of the five classifiers has been
used to evaluate the performance of each analyzer (see the performance on the
Validation column from Table 6). As Table 6 reflects, the more complicated is the
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prediction of an alarm, the lower is the performance of the analyzer. The first
two analyzers manage to learn to discriminate normal operation sub-sequences
from sub-sequences on which an alarm has been activated, and thus, they predict
correctly almost all the samples. The third analyzer is the one that shows more
difficulties to learn to difference between both types of sub-sequences. Nevertheless,
it shows a great performance considering the difficulty of the type of alarm to
predict.

Finally, among those classifiers, the one with the highest AUC-ROC (for each
analyzer) has been the selected one for predicting the alarms in the system. Fig.
7 plots the ROC curve, showing the True Positive Rate (TPR) against the False
Positive Rate (FPR) of the selected classifier for each analyzer, for the evaluation
dataset (see also Table 8 in Section 6).

Table 6 Time Series Analyzers Evaluation Results

Cross-Validation Validation
Analyzer TRAIN TEST TRAIN EVAL

Melting Temperatures 0.9978 0.9848 0.9998 0.9992
Incorrect Temperatures 0.9980 0.9817 1 0.9904
Die Zone 2 0.9849 0.9530 0.9464 0.9375

Fig. 7 Area Under ROC Curve for each Analyzer for the Evaluation Dataset
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5.4 Dealing with Unknown Situations in Smart Manufacturing Scenarios

In the same way as traditional recognition and classification algorithms, the deep
learning-based classifiers used in previous sections usually work under a common
closed set (or static environment), where the training and testing data are drawn
from the same label and feature spaces. However, this assumption is rather restric-
tive, given that in real-world recognition/classification tasks it is usually hard to
collect training samples representing all the possible situations. Therefore, a more
realistic scenario is usually open and non-stationary, due to the fact that unseen
situations can emerge unexpectedly (as occurs in smart manufacturing scenarios
with dynamically changing processes), which could drastically weaken the robust-
ness of these traditional methods [12]. Taking into account this aspect, in recent
years, several approaches have appeared to deal with these situations including
among others zero/one-shot learning and open set recognition. A categorization
of them can be found in [12], where the authors put particular interest in open set
recognition for being able to deal with unknown situations, like those mentioned
before.

Open set recognition [38] describes such a scenario where new classes (unseen
during the training) could appear in the testing and requires the classifiers not only
to classify the known classes accurately, but also, to deal effectively with unknown
classes [12]. Therefore, in open set recognition problems, classifiers usually consider
a reject option that allows them to refuse to recognize an input sample due to
its low confidence, avoiding to classify unknown samples as other classes. For
example, in the context of this work, the analyzers manage to detect confidently
the alarms for which they have been trained on, however, if the raw materials in the
production process change requiring a higher/lower temperature to be melted, the
Melting Temperatures Analyzer could detect an incorrect temperature in the new
samples collected and trigger an alarm continuously. Detecting these situations
would allow to update the models so that they can deal with the new situations
while also avoiding incorrect classifications.

Open set recognition is a recent research topic to which researchers are devot-
ing many efforts and therefore, some open set recognition algorithms have been
developed to extend both traditional machine learning methods and deep neural
networks-based models (a review of them can be found in [12]). Regarding the
deep neural networks-based models considered in this work, although they were
not initially conceived for open set recognition problems, some works have already
attempted to extend this models for open set recognition tasks [14], [3]. One of
the most popular one is the method proposed in [3] where a new model layer,
OpenMax, is introduced to estimate the probability of an input sample being from
an unknown class.

OpenMax has already been used by other authors in the domain of com-
puter vision [3] and natural language processing [42] for image and text classi-
fication/recognition tasks (respectively). However, to the best of the authors’ of
this paper knowledge it has not been already used in the context of industrial
time-series data classification. In this work, a first attempt has been done to adapt
a neural network for open set time series classification purposes by changing the
softmax activation layer of the used ResNet classifiers to use the openmax layer as
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proposed in [3]9. However, it is worth mentioning that open set recognition is an
open research topic that still faces serious challenges on which there is a lack of
well known frameworks and algorithms [12]. Therefore, although a proof of con-
cept has been conducted to test the potential of open set recognition methods for
detecting alarms, further research is out of the scope of this work.

Fig. 8 Example of Open set Recognition with Different Time Series

As a proof of concept, the softmax activation layer of the Melting Temperatures
Analyzer has been changed to use the openmax activation layer. The performance
of the classifier with both activation layers has been tested with sub-sequences of
three different time series to predict whether an alarm will be activated or not
in those sub-sequences. Concretely, the Melting Temperatures time series (those
with which the classifier has been trained to detect the Melting Temperature not
Reached in the Die Entry Alarm activations); the Die Zone 4 Temperature time
series (which is a highly correlated time series to the Melting Temperatures time
series since the sensors measuring the temperatures are placed close to each other
in the extruder machine); and the Melting Pressure time series (which has been

9 Code and data for the research paper "Towards Open Set Deep Networks" [3] https:
//github.com/abhijitbendale/OSDN and an example of its implementation with Keras https:
//github.com/aadeshnpn/OSDN.

https://github.com/abhijitbendale/OSDN
https://github.com/abhijitbendale/OSDN
https://github.com/aadeshnpn/OSDN
https://github.com/aadeshnpn/OSDN
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captured by a different nature sensor) have been considered for the test. Fig. 8
shows a segment of the considered time series and two example sub-sequences: a
normal operation mode sub-sequence (s1 ) and a sub-sequence on which an alarm
has been activated (s2 ).

The predictions made by the classifier with each activation layer for those
sub-sequences are shown in Table 7. It can be noticed that both layers classify
properly the sub-sequences of the Melting Temperatures time series, predicting
that an alarm will be triggered in the sub-sequence s2 and the contrary case
for the sub-sequence s1. The same predictions are obtained for the Die Zone 4
Temperatures time series which seems reasonable since the sensor capturing these
series is close to the sensor measuring the melting temperatures and therefore, both
time series are really similar and highly correlated. Finally, when dealing with a
different nature time series, the softmax layer predicts that a Plastic Temperature
not Reached in the Die Entry Alarm will be triggered in both sub-sequences which
is not correct since it is unknown whether in those sub-sequences an alarm would
be activated or not. In this case, the openmax layer is able to reject to classify the
sample sub-sequence and thus, it predicts it as unknown.

Table 7 Open set Recognition Example Results

Activation Layer
Softmax Openmax

Time Series Label Class Probability Predicted Class Probability Predicted

Melting
No-Alarm

No-Alarm 9.9994e-01
No-Alarm

No-Alarm 9.4576e-01
No-AlarmTemperatures Alarm 5.0694e-05 Alarm 9.3959e-04

S1 Unknown - Unknown 5.3294e-02
Die Zone 4

-
No-Alarm 9.9985e-01

No-Alarm
No-Alarm 0.9285

No-AlarmTemperatures Alarm 1.4477e-04 Alarm 0.00189
S1 Unknown - Unknown 0.06953
Melting

-
No-Alarm 1.0282e-20

Alarm
No-Alarm 3.3574e-13

UnknownPressure Alarm ≈ 1.000e+00 Alarm 2.7945e-01
S1 Unknown - Unknown 7.2054e-01
Melting

Alarm
No-Alarm 0.0065

Alarm
No-Alarm 0.0230

AlarmTemperatures Alarm 0.9934 Alarm 0.5123
S2 Unknown - Unknown 0.4646
Die Zone 4

-
No-Alarm 0.0032

Alarm
No-Alarm 0.0144

AlarmTemperatures Alarm 0.9967 Alarm 0.5249
S2 Unknown - Unknown 0.4606
Melting

-
No-Alarm 2.3415e-09

Alarm
No-Alarm 2.1567e-06

UnknownPressure Alarm ≈ 1.000e+00 Alarm 4.9905e-01
S2 Unknown - Unknown 5.0094e-01

6 Alarm Prediction System Performance Evaluation

This section shows first, the performance of the proposed alarm prediction system
as a whole, to predict the three different types of alarms by using the built analyzers
over the forecasted measurements by the built forecaster; and then, an example of
the prediction of an alarm on a real use case.

6.1 System performance

With the objective of testing a real use case in a real scenario, the evaluation
dataset (unseen data for the built models) has been used to evaluate the system
performance. First, the measurements of each sensor in the evaluation dataset
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have been predicted by using the built forecaster. Iteratively, each sub-sequence
of 5 measurements in the evaluation dataset (10 and 15 respectively for the time
horizons of 10 and 15 minutes) has been replaced with the predicted values by
the forecaster for the previous 300 observations. Then, the predicted values have
been transformed by using the same approach described in Section 5.1 for the
classification data (the sub-sequences of predicted values have been labelled with
the corresponding true labels from the evaluation dataset). Finally, those values
have been used to evaluate the analyzers.

The performance of the analyzers, to discriminate normal operation sub-sequences
from sub-sequences on which an alarm has been activated, has been evaluated by
using the area under Relative Operating Characteristic (ROC) curve (AUC-ROC)
metric. Table 8 summarizes the AUC-ROC value obtained by each analyzer when
predicting the alarms on the forecasted values for each time horizon for the evalu-
ation dataset compared to the AUC-ROC value obtained when predicting alarms
over the original evaluation dataset.

Table 8 Time Series Analyzers Evaluation Results over the Forecasted Data (AUC ROC)

Raw Data Forecasted (steps-ahead)
Analyzer EVAL 5 10 15

Melting Temperatures 0.99937 0.99937 0.99937 0.99812
Incorrect Temperatures 0.99270 0.99270 0.99270 0.99270
Die Zone 2 0.97381 0.97381 0.97381 0.97381

6.2 Alarm Prediction Example

Fig. 9 shows the materialization of the proposed system in a real use case. In the
figure, it can be seen on the one hand, a 3D model of an extruder machine on
which an alarm activation has been predicted with a time horizon of 15 minutes.
Taking into account that the alarm has been predicted 15 minutes ahead (the less
critical time horizon), the extruder zones corresponding to the sensors associated
to that alarm are colored in yellow, indicating that something could be wrong (see
the warning icon and the extruder part highlighted in yellow). Furthermore, in the
chart displayed under the extruder it can be seen in black the last measurements
of the extruder (real measurements), whereas in red, orange and yellow the pre-
dicted measurements of the extruder with a time horizon of 5, 10 and 15 minutes
respectively (the vertical red line indicates the activation of the real alarm).

7 Conclusions and Future Work

This paper presents an alarm prediction system that applies deep learning tech-
niques to predict the activation of diverse types of alarms that could serve for
different purposes such as the predictive maintenance of the equipment or produc-
tion and product quality optimization. The system follows a two-stage forecaster-
analyzer approach on which first a LSTM-RNN based forecaster predicts the future
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Fig. 9 Example of an Alarm Prediction using the Proposed System

measurements of the sensors and then, distinct analyzers based on Residual Neural
Networks determine whether the predicted measurements will trigger an alarm or
not. It has been tested with real time-series data coming from a real production
plant, on which it has shown a great performance to predict diverse types of alarms
in three different time horizons (5, 10 and 15 minutes).

Regarding the forecaster, different models, including classical time series fore-
casting models and ANN-based models, have been tested and compared for the
selection of an adequate forecasting model. Based on the obtained results, a time
series forecaster has been built to predict the future measurements of 11 differ-
ent sensors implanted in an extruder machine by using LSTM neural networks.
The built forecaster achieves a great performance when predicting the future mea-
surements of the multiple sensors with an average RMSE of 0.00852, 0.01215 and
0.01737 (respectively for each time horizon). Moreover, the suitability of the built
model for smart manufacturing scenarios with dynamically changing processes,
and its ability to adapt to non-stationary environments on which concept drift
could occur has also been tested, under the perspective of system applicability in
smart manufacturing scenarios.

With respect to the analyzers, three different analyzers have been built using
residual neural networks to detect if in a time-series sub-sequence an alarm will
be triggered or not. The residual neural networks used, learn, example by exam-
ple, which kind of time series patterns are associated with the alarms activations,
so that when a new pattern matching those ones is seen, the alarm activation is
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predicted. Each analyzer has been specialized in the detection of a particular type
of alarm. The built analyzers have shown a great performance in predicting the
three different types of alarms with an AUC-ROC value of 0.99937, 0.99270 and
0.97381 respectively. Thus, the built analyzers have demonstrated that residual
neural networks are able to detect efficiently, not only alarms that can be mod-
eled with simple rules based on the activation condition, but also more complex
alarms on which it is unknown when the activation condition will be fulfilled, and
thus, cannot be modeled by rules. That behaviour reinforces the interest of using
pattern matching-based analyzers. Moreover, as shown in this work, the ability of
these models to deal also with unknown situations not seen before could be really
interesting in Smart Manufacturing scenarios. Further research in this line would
involve not only detecting unknown situations, but also detecting new types of
alarms for those cases (i.e., novelty discovery [34]).

Concerning the followed two-stage approach, it requires building and training
two different models instead of using a single model to predict the alarms in a
straightforward way. However, using different models for forecasting the future
measurements of the sensors and for detecting alarms in the predicted measure-
ments gives the system more modularity and makes it more flexible to changes and
extensible to different predictive analysis tasks, since the predicted measurements
of the sensors could be used for other analysis processes. Therefore, further research
would involve building more analyzers for different purposes, such as anomaly de-
tection, and also, in order to predict more types of alarms, such as alarms that
are triggered with a really low frequency (by using different techniques, such as
Generative Adversial Networks [40], to generate synthetic time series on which an
alarm has been activated for training the models).

Finally, from what it comes to its real applicability, the system supports some
features that make it particularly suitable for Smart Manufacturing scenarios: on
the one hand, the forecaster is able to predict the future measurements of different
types of time-series data captured by various sensors in non-stationary environ-
ments. On the other hand, the analyzers are able to detect alarms that can be
modeled with simple rules based on the activation condition, and also more com-
plex alarms on which it is unknown when the activation condition will be fulfilled.
In these regard, recent research works are advocating for online stream analyt-
ics [36] and novelty discovery in data streams [9], which could be particularly
interesting for such scenarios with dynamically changing processes and thus, fur-
ther research would involve the adoption of some of these technologies into the
system.
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