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ABSTRACT

The ultrasonic attenuation and backscatter coefficients of tissues are relevant acoustic parameters
due to their wide range of clinical applications. In this paper, a linear least-squares method for the
estimation of these coefficients in a homogeneous region of interest based on pulse-echo measurements
is proposed. The method efficiently fits an ultrasound backscattered signal model to the measurements
in both the frequency and depth dimension simultaneously at a low computational cost. It is demon-
strated that the inclusion of depth information has a positive effect particularly on the accuracy of
the estimated attenuation. The sensitivity of the attenuation and backscatter coefficients’ estimates to
several predefined parameters such as the window length, window overlap and usable bandwidth of
the spectrum is also studied. Comparison of the proposed method with a benchmark approach based
on dynamic programming highlights better performance of our method in estimating these coefficients,
both in terms of accuracy and computation time. Further analysis of the computation time as a function
of the predefined parameters indicates our method’s potential to be used in real-time clinical settings.

1. Introduction
Quantitative ultrasound (QUS) methods are primarily

used to measure variables by which one can quantitatively
assess the acoustic properties of tissues [1, 2]. Among these
variables, attenuation and backscatter coefficients draw
much attention specifically because of their wide variety of
clinical applications, whether it be monitoring kidney func-
tioning in the body [3] or guiding prostate biopsies [4]. In
particular, attenuation estimation has been used to differenti-
ate fatty liver from normal liver as well as to diagnose chronic
liver diseases [5, 6, 7]. The attenuation measurements have
also shown diagnostic value in areas including the trabecular
and cortical bone [8, 9], placentas [10], to name a few. An
accurate estimate of the attenuation coefficient also allows
to perform more accurate time gain compensation (TGC) in
ultrasound images [11]. Similarly, backscatter estimation has
proved to be beneficial in classifying masses as benign or
malignant in organs including the eyes [12] and breast [13].

Due to these promising applications of the acoustic attenu-
ation and backscatter coefficient in ultrasonic tissue
characterization, it is important to estimate these parame-
ters accurately. Furthermore, when the estimated attenuation
coefficient is used for TGC, it has to be estimated in real
time [14]. It is then pertinent to develop estimation methods,
especially for the attenuation coefficient, which are computa-
tionally fast.

The problem of quantitative tissue parameters estimation
has already been addressed for a few decades and several
methods have been proposed. Classical spectral shift meth-
ods [15, 16, 17, 18] estimate the attenuation coefficient us-
ing the measurement of the center frequency downshift of a
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Gaussian spectrum. Spectral difference methods [19, 20, 21]
present another fundamental approach to estimate the attenu-
ation coefficient by measuring the log-intensity decay in the
backscattered signals at each frequency. Within this context,
reference phantom methods (RPM) [22] are commonly used
for attenuation and backscatter estimation because of their
capability to correct for system-dependent diffraction effects.
More recently, hybrid techniques have also been proposed
that combine spectral shift and spectral difference methods to
get more accurate attenuation coefficient estimates [23, 24].

Another class of approaches for tissue parameters estima-
tion is based on minimizing the squared error between the
measured spectrum of the backscattered signal and a para-
metric model of the spectrum. One such method for attenu-
ation estimation was proposed in [25], solving a non-linear
least squares problem to obtain local attenuation estimates.
An exhaustive search was performed over a range of possi-
ble attenuation coefficients, making it computationally time
consuming and hence, unsuitable for real-time applications.
Simultaneous estimation of the attenuation and backscatter
coefficients was performed in [26] by means of a reference
phantom of which these coefficients were known. The au-
thors minimized the squared error between the log-spectra
of the model and the measurements, while constraining the
estimates to be in a physical range. This method was shown
to obtain more accurate estimates than obtained by the stan-
dard RPM. Nonetheless, the method focused on computing
only an effective attenuation coefficient for the tissue path till
the depth of interest. As such, the methods in both [25] and
[26], did not exploit the depth information directly. Working
in this direction, some regularized approaches have been de-
veloped recently that aim to enforce piece-wise continuity of
the underlying tissue properties using a suitable regulariza-
tion term in the cost function to be minimized. For instance,
the authors in [27] regularized the attenuation map using
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the isotropic total variation term, obtaining estimates with
high accuracy and precision. However, this method was pro-
posed only for attenuation estimation. Estimation of both
the backscatter and attenuation coefficients with l2 norm
depth-regularization in [28] and later on with l1 norm regu-
larization in [29] was performed using dynamic programming
(DP) to solve the considered regularized least squares based
cost function. While this DP based approach was demon-
strated to perform better than the least squares method in
[26], it might not be feasible for real-time applications due
to the computational lag experienced while evaluating the
cost function at each depth for all the possible values of the
parameters within the user-specified search range.

In this paper, we propose a fast and low-cost linear least-
squares method for attenuation and backscatter estimation
in a homogeneous region of interest (ROI). One of the key
points of the proposed approach lies in fitting the linearized
backscattered signal model in both the frequency and depth
dimension simultaneously, thereby exploiting more informa-
tion from the physical model. More importantly, writing
the linearized model as a matrix equation allows to compute
the coefficients of interest non-iteratively from a single-shot
closed-form expression, making our method useful for real-
time applications.

The rest of the paper is organized as follows. In section
2, starting with the backscatter signal model, we provide
a brief overview of the approaches relevant to the current
study, which is followed by the description of the proposed
method. In section 3, we detail the simulated and experimen-
tal phantom-based data recordings as well as the analysis and
the validation methodology. The results of this analysis are re-
ported in section 4. The influence of window length, window
overlap and usable bandwidth on the parameters estimation is
also analyzed. Computation time sensitivity of the proposed
approach to these parameters is also studied. A discussion is
provided in section 5, and the paper is concluded in section 6.

Note: A conference precursor of this work was published
in [30] for the case of attenuation estimation, validated only
on simulated data. The current paper also includes backscat-
ter estimation, and adds a more extensive analysis on parame-
ter sensitivity, as well as an in-vitro validation. Furthermore,
it is noted that during the write-up of this article, another inde-
pendent work adopting a highly similar approach, referred to
as ALGEBRA, has been published [31]. Our method and AL-
GEBRA were independently developed, yet share the same
core principles and only deviate from each other through
a few subtle differences. Therefore, the current paper can
be viewed as an independent validation and confirmation
of the results in [31] and vice versa. Moreover, we add to
[31] by also providing a sensitivity analysis on some of the
hyperparameters, such as the analysis window length, win-
dow overlap, and bandwidth of the spectral fit. Finally, we
also demonstrate how the method can be used either with or
without a reference phantom, and validate both cases.

2. Least Squares Attenuation & Backscatter
Estimation

2.1. Signal Model
Consider the propagation of an acoustic wave within an

isotropic and a homogeneous medium, generated by means
of an acoustic transducer. Using the Born approximation of
weak scattering, the magnitude spectrum of the backscattered
signal, |S(f, z)|, where f and z denote frequency and depth,
respectively, can be expressed as [26]

|S(f, z)| = |P (f )|D(f, z)A(f, z)B(f ), (1)

where |P (f )| represents a combined effect of the electrical
excitation and the transducer effects, D(f, z) denotes the
diffraction effects, A(f, z) represents the cumulative atten-
uation of the sample, and B(f ) represents the backscatter
coefficient (BSC).

In order to obtain the spectrum P (f ), a pulse-echo reflec-
tor measurement can be performed and the resulting (mea-
sured) spectrum is denoted by P̃ (f ). The shape of the spec-
trum P̃ (f ) is assumed to be known up to an unknown posi-
tive scaling factor G′, referred to here as the gain calibration
factor, which accounts for the uncertainty in how much en-
ergy is actually transmitted into the medium. This implies
P (f ) = G′P̃ (f ) in equation (1). Further, the attenuation of
the sample, A(f, z) can be expressed as an exponentially de-
caying function. For most soft tissues, we can assume a linear
frequency dependence of the attenuation [37], resulting in
A(f, z) = exp(−2�fz), where � is the attenuation coefficient
to be estimated. Finally, the backscatter coefficient is given
by B(f ) = B0 f�, where B0 is a constant for a homogeneous
medium and f� is the frequency-dependent backscatter term
with � taking a non-negative value [38]. The constant term
B0 can be integrated into the gain calibration factor resulting
in the following measurement model1:

|S(f, z)| = G |P̃ (f )|D(f, z) exp (−2�fz) f�, (2)

where G = G′ B0.

2.2. Related prior art
It can be observed from equation (2) that the attenuation

term has a depth-dependence. Existingmethods like [25] deal
with the local attenuation estimation at each depth within the
probed region. To be more precise, the attenuation estimation
for a homogeneous medium was performed in [25] using a
non-linear least squares (NLS) framework where an optimum
attenuation coefficient was computed at each depth by min-
imizing the squared error between the model (ignoring the
diffraction effects and the backscatter coefficient in (2)) and
the spectrum of the recorded backscattered signal at that par-
ticular depth. For the estimation, a sliding window technique
was used, dividing the z axis intoM overlapping windows

1While we work with the magnitude spectrum of the backscattered
signal, it is straightforward to relate the parameters of interest in this model
with those in the backscattered power spectrum model (represented here by
(⋅)′) [26]. In the latter case, we will have A′(f, z) = exp(−4�fz), �′ = 2�
and B′

0 = B
2
0 .
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as shown in the top plot of fig.1. For every jth window, with
j = 1…M , zj was chosen as the mid-point and the esti-
mate, �̂j of �j at depth zj was obtained by an exhaustive
search within a range of 0 to 2 dB/cm/MHz. Note that this
introduces a trade-off between the accuracy and computation
time, where a coarser gridding of the range results in faster
searches yet with larger discretization errors on �. The final
estimate of � was obtained by averaging the local estimates
�̂j over allM windows, i.e.

�̄ =

∑L
j=1 �̂j
M

. (3)

Since all �̂j’s were estimated locally (for each zj separately),
the depth dependency of the model (2) is not exploited to
‘couple’ the different �̂j’s.

The approach in [26] dealt with the problem in the log-
transformed domain to obtain a linear model. Here, we de-
scribe this method briefly, which was based on RPM, as our
method re-uses some of its ingredients. Basically, it involves
taking the ratio of the power spectrum of the backscattered
signals from the sample of interest to that from the same
depth of a reference phantom of which the attenuation coef-
ficient �r and the backscatter coefficient - its constant term
(B0)r and the exponent �r of the frequency-dependent term
are known. Using the same transducer and imaging settings
for the reference phantom and the actual sample under test,
the ratio in terms of the magnitude spectrum can be deduced
from equation (2) as

|Ss(f, z)|
|Sr(f, z)|

=
(B0)s
(B0)r

exp
{

−2(�s − �r)fz
}

f�s−�r , (4)

where the subscripts s and r refer to the sample and reference
phantom, respectively. The diffraction effects D(f, z) get
cancelled out in this ratio under the assumption that both
media have the same diffraction characteristics, whereas the
term P̃ (f ) vanishes due to the same transducer settings in the
two cases. Furthermore, this also implicitly assumes that the
gain G′ is the same for the target medium and the reference
phantom.

Equation (4) can be linearized in terms of the parameters
of interest by applying a logarithmic transform on both sides
of the equation. Doing so, we obtain:

Q̄(f, z) = log
|Ss(f, z)|
|Sr(f, z)|

= log B̄0−2�̄fz+ �̄ log f, (5)

where log denotes the natural logarithm and

B̄0 = (B0)s∕(B0)r, (6)
�̄ = �s − �r, (7)
�̄ = �s − �r. (8)

The linear equation (5) is typically used to estimate the un-
known coefficients of interest. Once these values are obtained,
it is straightforward to retrieve the corresponding coefficients
for the sample using equations (6)-(8) as the values for the
reference phantom are already known.

Figure 1: Top: Sliding window analysis for obtaining the magni-
tude spectrum from time windows at two consecutive locations
z1 (red) and z2 (green), from the backscattered signal in time
domain. Bottom: The blue lines below the peak of each spec-
trum represent the usable frequency range that is taken into
consideration for parameter estimation.

In order to simultaneously estimate the attenuation and
backscatter coefficients from (5), the authors in [26] con-
sidered a constrained linear least squares approach, which
could be solved iteratively using off-the-shelf least squares
solvers. Concerning the attenuation coefficient, an effective
estimate was obtained at each considered depth by fitting the
model over the entire frequency band of the backscattered
signal spectrum, and the dependencies in the model across
the z-axis were not exploited.

2.3. Aim of the paper
Our aim here is to fully exploit the depth information in

the backscattered signal model and propose a fast, global at-
tenuation and backscatter coefficient estimation methodology.
The proposed strategy assumes the target coefficients to be
constant in a ROI. It solves a linear least squares problem in
which a single attenuation and backscatter coefficient are fit
over all the depths and frequencies simultaneously within the
homogeneous ROI, rather than averaging the local estimates
across the depth axis as in (3).

Our approach allows for a fast non-iterative solution, as
described in detail in the following section.
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2.4. Proposed approach
The proposed linear least squares (LLS) method for the

joint estimation of the attenuation and backscatter coeffi-
cients is related to the RPM, aiming to solve equations of the
form (5). However, the requirement of a reference phantom
in this context usually makes it difficult for use in clinical ap-
plications. In the current paper, we thus present a generalized
technique that can work both in the absence and presence of
a reference phantom.

While working in the absence of a reference phantom, we
ignore the effects of diffraction, thereby setting D(f, z) = 1
in the signal model (2). This assumption is valid when one
considers regions very distal to the probe, in which case
ultrasound waves essentially become locally plane waves and
diffraction effects can thus be neglected. These effects are
also negligible when the parameter estimation is considered
in the regions around the focal point of linear or phased array
transducers of finite dimensions, which are commonly used
in clinical applications.

In the current settings, applying a log transform to (2)
results in

log |S(f, z)| = log |GP̃ (f )| − 2�fz + � log f, (9)

whose direct correspondence with (5) can also be observed.
In equation (9), while P̃ (f ) can be obtained by a pulse-echo
reflector measurement,G (=G′B0) still needs to be estimated.
In [25], where the backscatter and the diffraction terms were
ignored in the signal model (2), the authors explicitly esti-
mated G′ at z = 0 by dividing the energy in the measured
spectrum, S̃(f, z) with the energy in the pulse-echo reflected
spectrum, i.e.

∑

i |S̃(fi, 0)|2∕
∑

i |P̃ (fi)|2, where i = 1…N
for N frequency points. However, this strategy would not
work in our case owing to the presence of the frequency de-
pendent backscatter term in the model. Therefore, in addition
to estimating � and �, we propose to perform implicit calibra-
tion, by includingG as an unknown variable in the estimation
problem. Note that as mentioned earlier, the coefficient G is
a combination of the gain calibration factor G′ and the con-
stant backscatter term B0. As such, B0 cannot be estimated
separately anymore as G′ is not known in practice. In fact,
this would also be the case even if a reference phantom would
be available with the factor G′ not being the same for the
sample and the reference medium, in which case it would not
get cancelled out in the power spectrum ratio.

Let Q(f, z) = log |S(f, z)| − log |P̃ (f )| in equation (9).
We then have

Q(f, z) = logG − 2�fz + � log f. (10)

By stacking Q(f, z) into a column vector q, for all discrete
values of frequencies fi and depths zj , and making a similar
rearrangement on the right hand side of equation (10), a linear
system of equations is obtained, written in vector format as

q = AΘ. (11)

Here,

q = [Q(f1, z1)⋯Q(f1, zM ), Q(f2, z1)⋯Q(f2, zM ),

⋯ , Q(fN , z1)⋯Q(fN , zM )]T , (12)

where [⋅]T denotes the transpose operation and for every i ∈
(1,… , N) and j ∈ (1,… ,M), Q(fi, zj) = log |S(fi, zj)| −
log |P̃ (fi)|. Further, in equation (11),

A = [1MN×1 a (log f )⊗ 1M×1], (13)

where for any x ∈ ℝ, 1x×1 is a ones vector of size x,

a =
[

−2f1z1,… ,−2f1zM ,… ,−2fNz1,… ,−2fNzM
]T ,

f = [f1,… , fN ]T , log is an element-wise logarithm and
⊗ denotes the Kronecker product. Θ = [logG � �]T in
equation (11) represents the vector of sought parameters.

Now, replacing S(f, z) in Q(f, z) with the measured
spectrum S̃(f, z) yields q̃, and the equality in equation (11)
is not exact anymore. In this case, we propose to solve the
system of linear equations in (11) in a weighted least squared
error sense, resulting in the following optimization problem

�̂ = argmin
Θ

MN
∑

n=1
wn(q̃ − A�)2n,

= argmin
Θ

‖W1∕2 (q̃ − A�)‖22, (14)

where the notation (.)n denotes the ntℎ element of its argument
vector and ‖ ⋅ ‖2 denotes the l2-norm. W is a diagonal
matrix with diagonal elements being the weights, diag(W) =
(w1,… , wMN ). Its role is to provide different weights to the
measurement points, e.g., to downweight measurements with
a strong noise component. However, studying the choice of
weights is out of scope of the current manuscript, wherein
we consider a uniform weighting scheme and take the weight
matrix to be an identity matrix, i.e. W = IMN (weighting all
the frequency-depth points equally). This reduces to

�̂ = argmin
Θ

‖q̃ − A�‖22. (15)

This is a linear least squares problem, which can be solved
using standard linear algebra techniques. Its optimum value
can be expressed as a closed form solution [33], written as

�̂ =
(

ATA
)−1 AT q̃. (16)

It is noted that problem (15) and its solution (16) effectively
combine all the measurements at all the depth and frequency
points (f and z) jointly in a single estimation problem. This is
a very different approach compared to estimating � for each z
independently and then averaging the results as in (3). When
using all themeasurements in a single estimation problem, the
relationships between f and z in the backscatter model (2)
can be exploited by the estimator. In Section 4, we will
demonstrate that this approach leads to better estimates.

When working with a reference phantom, the aforemen-
tioned methodology would still hold. In this case, the target
vector corresponds to Θ = [log B̄0 �̄ �̄]T , from which the
parameters of the target tissue can be retrieved by plugging
in known values of the respective parameters of the reference
phantom in equations (6)-(8).
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2.5. Computational complexity of LLS
Computationally speaking, the 3×MN matrix (ATA)−1AT

in the closed form solution in equation (16) can be pre-computed
asA is independent of the measured data. This means that for
LLS, the tissue parameters can be computed very efficiently
in a single shot, only requiring 3(MN − 1) additions and
3MN multiplications.

3. Methods & Implementation details
3.1. Data Generation

The validation of the proposed method was conducted
with simulated (synthetic) data as well as data obtained from
tissue-mimicking phantoms, both without and with reference
phantom measurements.

3.1.1. Synthetic Data
A medium with a depth of 40 mm was considered, con-

sisting of a one-dimensional distribution of point scatterers
positioned randomly using a uniform distribution across the
full depth. The scatterers were assumed to be positioned in
the far-field of a flat unfocused single element transducer. A
scatterer density of approximately 50 scatterers per mm was
simulated, following the Rayleigh scattering condition (i.e.
> 8 scatterers/resolution cell [34]). The backscattered signal
from each of the scatterers was coherently summed in the
time domain to obtain a single RF line, which can be written
by using the model (1) and (2) as

r(t) =
Nsc
∑

i=1
−1

[

P (f ) e−2�fzi B0f� e−j2�fΔti
]

, (17)

where Nsc is the total number of point scatterers, −1{x}
represents the inverse Fourier transform of x, zi is the position
of the ith scatterer, Δti =

2zi
c is the time delay corresponding

to the position of the ith scatterer, and c is the speed of sound
whose value was taken as 1500 ms−1. It is to be noted that an
arbitrary choice of sound speed does not affect the estimation
performance. The spectrum P (f ) in (17) is simulated as a
Gaussian spectrum of a transmit pulse with 2.25 MHz centre
frequency, fractional bandwidth of 70%, and a pulse length
of 2.46 mm (1.64 �s). Further, the backscattered signal was
simulated for three values of the attenuation coefficients, 0.5,
1.5 and 2 dB/cm/MHz, and for each of these values, � = 0.5
and 2 was considered. The aforementioned values of � and �
are within realistic ranges [13] and were chosen to mimick the
cases spanning from low to high values of these coefficients.
In all the cases, B0 was set to be 10−4(cm-sr)−1, which is
practically observed, for instance, for a healthy liver [35].
Additive white Gaussian noise was added to the time-domain
backscattered signal, with a signal-to-noise ratio (SNR) of
24 dB.

A total of 500 RF lines were generated with randomly
varying position of the scatterers in the medium, from which,
NRF RF lines were chosen for obtaining S̃(fi, zj) by averag-
ing the magnitudes of the spectrum obtained from individual
RF lines. For each value ofNRF , the selection ofNRF RF

Table 1
The phantoms used in the experiment and their acoustic prop-
erties.

� enumeration density speed of sound
(dB/cm/MHz) (kg/m3) (m/s)

0.39 1, 2 1276 1587
0.61 3, 4 1086 1546
0.63 5 1000 1552
0.63 6 1198 1596
0.71 7 1305 1518
0.84 8, 9 1100 1520

lines from the total 500 lines was repeatedNrep = 10 times
to measure the variance of the estimates for a given NRF .
Further, the choice in each repetition was unique, so that the
observation sequences remain independent.

3.1.2. In-vitro (phantom) experiments
For these experiments, the data used was taken from a

previously performed study in [25], specifying all the experi-
mental set-up and data collection details. In essence, tissue
mimicking phantoms with different attenuation characteris-
tics were prepared by mixing gelatin, agarose and poly vinyl
alcohol (PVA) based gels with different concentrations of
graphite powder in order to modify the attenuation character-
istics of the materials and to achieve sufficient scattering. The
base material of phantoms enumerated as 1, 2 and 6 as per Ta-
ble 1 was PVA, and that of phantoms 3, 4, 5, and 7 was gelatin,
and of phantoms 8 and 9 was agarose. The true value of the
attenuation coefficient, varying over a range as presented in
Table 1, was obtained using the through-transmission substi-
tution method. It compares signal amplitudes in a medium
of known attenuation, with the amplitudes obtained during
the propagation through the sample. Flat unfocused single
element 0.5” transducers with 65% fractional bandwidth and
10 MHz center frequency (V311-SU, Panametrics NDT, Inc.,
Waltham, MA) were used for the through-transmission exper-
iment. Successive sinusoidal bursts, produced by a waveform
generator (AWG NI PXI 5412, National Instruments Corpo-
ration, Austin, TX) and PC-controlled by LabVIEW, were
sent in the form of a discrete frequency sweep (from 0.5 till
20 MHz with 250 kHz step), such that, at each frequency, the
waveform consisted of 120 cycles. This signal was amplified
(150A100B Amplifier Research, Souderton, PA) and sent to
the emitting transducer. 64 transmitted signals, recorded at
the receiving transducer, were digitized by means of a data ac-
quisition card (DAQ PXI NI 5122, 14 bit, 100 MHz sampling
rate, National Instruments Corporation, Austin, TX), and the
averaged signal was stored on the PC. All measurements were
performed at room temperature (22◦C). The average speed of
sound through these phantoms was 1552.4 ms−1 with a stan-
dard deviation of 30.94 ms−1 as determined experimentally.

The backscattered signals were recorded in pulse-echo
mode where a single transducer was operated as emitter as
well as receiver. Three different types of transducers were
used for the backscatter measurements. All transducers were
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flat unfocused single-element, 0.500 (13 mm) transducers: a
V306-SU with a 2.25 MHz center frequency and 60% band-
width, an A306-SU with 2.25 MHz center frequency and 50%
bandwidth and a V309-SU with 5 MHz center frequency and
65% bandwidth (Panametrics NDT, Inc., Waltham, MA). In
order to avoid near-field diffraction effects and to satisfy the
plane-wave assumption, the phantoms were placed in a water
tank in the far-field of the emitting/receiving transducer. The
far-field distance for the transducers was calculated as:

zfar−f ield =
a2

4�
(18)

where a is the transducer diameter (in this case 13 mm) and
� is the wavelength. Thus, using a speed of sound in distilled
water at room temperature (1483 m/s), the far-field distance
was calculated to be 70 mm for a 2.25 MHz transducer and
140 mm for a 5 MHz transducer. For each phantom, as many
as 10 RF lines (or observation sequences) were acquired, by
small displacements of the transducer in a plane parallel to
the surface of the phantom in steps of 2 mm.

3.1.3. In-vitro (phantom) experiments along-with
reference phantom

For the experiments with a reference phantom, the prop-
erties of the considered phantoms are presented in Table 2.
Here, the backscatter coefficient values are provided in terms
of the power spectrum model of the backscattered signal [31].
A detailed description of the phantom composition and the
experimental set-up can be found in [26], [31], [36].

In brief, for phantom A, water-based agarose-propylene
glycol mixed with filtered milk was used for the sample phan-
tom, and agarose-based gel with graphite powder for the
reference phantom. Similarly, for phantoms B and C, a mix-
ture of water-based gelatin and ultrafiltered milk was used.
Phantoms B and C were multi-layered phantoms and for these
phantoms, the first layer of PhantomCwas used as a reference.
In all these phantoms, scattering was produced using 5-43 �m
diameter thick solid glass-beads. Single-element transducers
were used to obtain the ground truth values for the phantoms
using the narrowband substitution method (for attenuation)
and broad-band pulse-echo technique (for backscatter).

In each case, 10 uncorrelated RF data frames were ac-
quired using a 9L4 linear array transducer on a Siemens Acu-
son S3000 (Issaquah, WA) with 6.6MHz center frequency for
phantom A, and a 18L6 linear array transducer on a Siemens
Acuson S2000 scanner with 8.9 MHz center frequency for
phantom B and C.

3.2. Data Processing
To test the performance of our method on the RF data,

MATLAB was used. In order to compute the magnitude
spectrum, the time-domain RF signal was divided into over-
lapping segments, as shown in the top plot of fig. 1. The
magnitude spectrum of the signal within each window was
computed after multiplying it with a Hanning window, to
minimize spectral leakage. Moreover, in each jth sliding
window, the obtained magnitude spectra for the considered

Table 2
Acoustic properties of the sample and reference phantoms used
in the reference phantom measurement experiments. Only the
RF data from the first layer was used for multi-layered phantoms
B and C.
Label Phantom � B′

0(= B
2
0) �′

(dB/cm/MHz) (cm-sr-MHz�
′
)−1 (= 2�)

A Sample 0.654 1.02e-06 4.16
Reference 0.670 8.79e-06 3.14

B Sample 0.554 4.82e-07 3.80
Reference 0.510 1.60e-06 3.52

C Sample 0.510 1.60e-06 3.52
Reference 0.510 1.60e-06 3.52

NRF RF lines2 were then averaged to be finally used as the
measured spectra S̃(f, zj) for the window centered around
the depth point zj . Further, this spectrum was evaluated only
over a usable frequency band as shown using the blue line in
the bottom plot of fig. 1. Using this data, the performance of
the proposed approach was assessed for various choices of
the window length, window overlap, and usable bandwidth
using analysis and validation studies, as described below.

3.3. Benchmark method for comparison
As a benchmark, we consider the dynamic programming

(DP) based methodology that has been proposed in [28]. In
this work, the authors exploited the depth-continuity of the
tissue parameters in a regularized cost function. l2 and later,
l1 regularization [29] was considered to enforce this continu-
ity of the parameters of interest across the depth axis, where
the latter was shown to exhibit superior performance. The
resultant cost function was solved iteratively using DP and
the method was shown to provide better estimates than those
obtained by the least squares method in [26]. More impor-
tantly, the adopted DP method benefitted from optimizing the
parameters at different depths together, rather than treating
each depth independently as done in [25]-[26].

To compare the DP method with our approach on the
considered data sets, the implementation details for the DP
method are as follows. First, while in the original paper, the
authors considered a RPM based model (such as in equa-
tion (5)), here when working in the absence of a reference
phantom, the model was adapted as done in our approach
in equation (10). Second, the regularized cost function con-
sisted of a data fidelity term and an l1 regularization term for
each of the three parameters of interest, associated with their
regularization weights. We set the regularization weights to
108, which were found to give the best estimates on the con-
sidered data sets3. Finally, DP requires specifying the search
ranges for each of the parameters to be estimated (thereby in-

2For phantom data using reference phantom measurements, around 40
RF lines were considered in each RF data frame.

3For the considered homogeneous medium settings, large value of this
regularization parameter ensures that the parameters of interest (� and �) do
not vary much across the depth axis. This implies that a strong smoothness
regularization is beneficial to obtain good estimates.
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Table 3
Tabulation of factors that influence the attenuation and
backscatter estimates, which are used in the ANOVA for com-
parison of means.

Variable Value Description

NRF 10, 50 Number of RF lines

ME
LLS Proposed LLS method
DP Dynamic Programming

method

�true 0.5, 2 Low and high values of
the attenuation coefficient in
dB/cm/MHz

�true 0.5, 2 Low and high values of the fre-
quency dependent backscatter
term

troducing a trade-off between prior knowledge and estimation
accuracy). We used the following ranges- (i) for � estimation
with true � value �true: �true − 0.3 ≤ � ≤ �true + 0.3, (ii)
for � estimation with true � value �true: �true − 0.3 ≤ � ≤
�true + 0.3 (for phantom data without considering a refer-
ence phantom, �true was unknown and � was varied between
its physical range of 0 and 2) and (iii) for G estimation: it
was swept between one lower and one higher order of mag-
nitude than its expected magnitude, as obtained by explicit
calibration4 [25].

3.4. Statistical Analysis
A statistical analysis using analysis of variance (ANOVA)

test was performed, which is commonly used to analyze if
there exists any statistically significant differences between
the means of more than two independent groups. In the
current context, we used four-way ANOVA, where the con-
tinuous dependent variables were the relative error of the
attenuation and backscatter estimates, influenced predomi-
nantly by four categorical independent variables: the number
of RF lines used (NRF )5, the method of estimation (ME),
the true value of � (�true) and � (�true). These variables and
their respective values are presented in Table 3.

In order to obtain the p-values for the four variables, the
function anovan in MATLAB was used. For the posthoc
analysis, if appropriate, to primarily identify the influence
of ME, �true and �true on the relative error, the function
multcompare was used.

3.5. Sensitivity to parameter settings
A parameter sensitivity study was performed to analyze

the effect of three parameters, namely the sliding window
length, the window overlap and the usable bandwidth on the
accuracy of the estimates of the sought coefficients.

4For phantom data using reference phantom measurements, �true =
(�s − �r)true, �true = (�s − �r)true and G corresponds to ((B0)s∕(B0)r)true.

5In general,NRF can take any number of possible values. Here, for the
sake of statistical analysis, we make it a categorical variable by considering
NRF to be either 10 or 50.

3.5.1. Influence of window length
As the window length increases, the number of samples

used to compute the spectrum S̃(f, z) increases, which in-
creases the spectral resolution. However, according to the
Heisenberg-Gabor uncertainty principle in time-frequency
analysis, this reduces the spatial resolution as it becomesmore
ambiguous at which depth the spectrum is actually analyzed,
thereby creating inaccuracies in the depth-related attenuation
model. Hence, there exists a trade-off in the choice of the
window length. The optimal window length can be found
empirically by plotting the relative estimation errors, both for
�: |�true − �̂|∕�true and �: |�true − �̂|∕�true, as a function
of the window length, using the simulated data for different
values of �true and �true.

3.5.2. Influence of window overlap
For a fixed window length, the larger the overlap between

successive windows, the more z-observations can be used in
the least squares estimation. This may increase accuracy, yet
with a larger computational cost.

3.5.3. Influence of usable bandwidth
The term usable bandwidth refers to the frequency range

of the spectrum that is above the noise floor and over which
the model is fitted. If the usable bandwidth is too small, the
number of samples used for estimating � and � is too small
resulting in a poor estimation performance. If the usable
bandwidth is too large, the accuracy of the estimates might
decrease since large values of the bandwidth might capture
the noise-dominated parts of the spectrum.

3.6. Effect of Depth Information
To emphasize the importance of considering the full

depth information in the model, we performed tests for the
coefficients estimation by applying LLS with and without
full depth inclusion. The former corresponds to the proposed
approach in this paper, whereas the latter corresponds to ob-
taining an estimate for each sliding window separately using
LLS, followed by averaging all such estimates over the whole
depth as in (3).

3.7. Computation time analysis
The computation time of the proposed LLS method is

a crucial factor for its real-time implementation in clinical
settings. An empirical study was performed to analyze the
influence of the various parameters on the time taken by LLS
to provide the coefficients’ estimates. For each parameter
setting, the computation time was measured for 10 repeated
attenuation and backscatter computations in MATLAB, after
which the average time and standard deviations were com-
puted over these 10 trials.

4. Results
4.1. Proposed technique vs DP

In fig. 2, the relative errors of the � and � estimates using
LLS and DP, based on the simulated data, are plotted as a
function of the number of RF lines (NRF ), for two cases with
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Figure 2: The relative error of the � and � estimates using LLS and DP is plotted, for cases with (�true, �true) = (1.5,0.5) in the
first row and (�true, �true) = (1.5,2) in the second row, as a function of the number of RF lines NRF , used to make an observation
sequence. For each NRF value, the mean relative error is plotted, in which the error bars show the standard deviation of the errors
when the experiment is repeated Nrep = 10 times. In all the cases, the window length chosen (4.92 mm) is twice the pulse-length
of the transmitted pulse, the window overlap is 90% and the usable bandwidth (1.57 MHz) is equal to the bandwidth of the
transmitted pulse.
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Figure 3: Box plots representing (a) � and (b) � estimates over all values of NRF , obtained by LLS and DP. (a) shows the box
plots for estimated � for the cases with �true = 0.5, 1.5 and 2, with �true = 2. Similarly, (b) depicts the box plots for estimated �
for the cases with �true = 0.5 and 2, with �true = 1.5. Outliers (defined by the MATLAB ‘boxplot’ function) are indicated as red
+’s.

different �true and �true values (for space considerations, all
other cases are provided in the supplementary material). The
estimates were obtained by using a sliding window technique
with the optimal settings of the window length, window over-
lap and usable bandwidth, as observed from the parameter

sensitivity analysis (section 4.3). From the figure, it can be
seen that LLS provides estimates with lower relative esti-
mation error than DP. Another point of appreciation is that
for LLS, the variance is comparatively low and the trend is
more or less flat forNRF > 10. As mentioned earlier, in the
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Table 4
Tabulation of p-values and mean errors as obtained by posthoc
analysis on relative error of � estimates with respect to different
categorical variables.

Variable Value Mean relative error p-value
ME LLS 0.032 ± 0.063 0.0003

DP 0.494 ± 0.063
�true 0.5 0.428 ± 0.063 0.0035

2 0.098 ± 0.063
�true 0.5 0.262 ± 0.063 0.9856

2 0.264 ± 0.063

Table 5
Tabulation of p-values and mean errors as obtained by posthoc
analysis on relative error of � estimates with respect to different
categorical variables.

Variable Value Mean relative error p-value
ME LLS 0.176 ± 0.042 0.0024

DP 0.407 ± 0.042
�true 0.5 0.225 ± 0.042 0.0464

2 0.358 ± 0.042
�true 0.5 0.463 ± 0.042 0.0001

2 0.120 ± 0.042

absence of a reference phantom, the constant term B0 can
not be found as the estimated factor G will also be influenced
by the (unknown) gain calibration factor G′. As such, all the
results in the absence of a reference phantom are shown only
for � and � estimates.

For further comparison between the two approaches, the
estimated values are shown as a box plot in fig. 3, considering
all values of NRF and 10 repeated runs for each NRF , for
different values of �true and �true. The figure depicts a lower
spread in the estimated values in each case over all considered
runs for LLS than that obtained for DP. Additionally, for LLS,
the overall trend is that the median of the box plot is closer
to the true value of the coefficient under investigation, which
suggests that LLS leads to more accurate estimates.

4.2. Statistical Analysis
The influence of the variables listed in Table 3 on the

relative error of the coefficients estimates was statistically an-
alyzed using the ANOVA test. On the one hand, the obtained
p-values forNRF were greater than the level of significance
of 5% for both � and � relative errors, indicating no signifi-
cant difference in the mean errors with respect toNRF . On
the other hand, the p-values for the rest of the categorical
variables were observed to be below the level of significance
and these cases were thus further analyzed using a posthoc
analysis. Its results are reported in Table 4 and 5 for � and
�, respectively. Several observations can be made from the
presented values. First, the mean error is smaller for LLS
than DP for both � and � estimates. Second, the accuracy of
the � estimate depends on the �true value. Lastly, the �true
value affects the accuracy of the � estimation.

4.3. Sensitivity to parameter settings
The results are shown for the case (�true, �true) = (1.5, 2)

in fig. 4 (all the other cases are provided in the supplementary
material).

First, it can be observed from fig. 4(a) that DP is more
sensitive to the choice of the window length than the LLS
method. From these plots (as well as the other cases in the
supplementary material), it is found that a window size of
twice the pulse length (4.92 mm in this case) is a good choice
in general, leading to the lowest errors. Second, in fig. 4(b),
the relative error of the estimates does not vary much by
varying window overlap from 0% to 90%. Finally, in fig. 4(c),
the usable bandwidth was varied from a very small value (∼
0.2MHz) to around 2.25MHz, whichwould be the bandwidth
of the transmitted pulse if the transducer’s relative bandwidth
was taken to be 100%. In these plots, the relative error reduces
around 1.57 MHz, which also corresponds to the bandwidth
of the considered transmitted pulse (in units of dB, it is 6 dB
below the peak of the spectrum).

4.4. Effect of Depth Information
Fig. 5 shows the relative errors of � and � estimates

obtained using LLS with the cases when the full depth in-
formation was accounted for in the model (‘LLS’ labelled
case in the plots) and when the estimates were instead ob-
tained by averaging the local estimates across the depth axis
(‘avgd. LLS’ labelled case in the plots) as in (3). The shown
cases are with (�true, �true) = (1.5, 0.5) in the top row and
(�true, �true) = (1.5, 2) in the bottom row (since all the cases
show a similar trend, only two such cases are shown here).
The values of the window length, window overlap and usable
bandwidth were optimized to get the least relative error for
the parameters estimated in the avgd. LLS case. Even by
doing so, these plots demonstrate the superior performance
of the proposed model, which combines frequency and depth
information, in reducing the relative estimation error. More-
over, this difference in relative error is more pronounced for
� estimation, which has a depth dependency in the modelled
spectrum, than for � estimation.

4.5. Computation time analysis
One of the main advantages of our method is its low

computational cost. In terms of MATLAB computation time,
while LLS executed each case in the order of seconds, DP
took time in the order of several hours (note that this depends
largely on the resolution of the search grid for each sought
parameter. A finer search grid could provide more accurate
estimates, but at the cost of even higher computation time).

Further, three key parameters were found to be largely
influencing the LLS computation time: the number of RF
lines, the window overlap and the window length. The influ-
ence ofNRF and the window overlap on the time is depicted
in fig. 6 for LLS implementation in MATLAB R2020a for
the case with (�true, �true) = (1.5, 2) (other cases also show a
similar trend), setting window length to twice the transmitted
pulse-length. It can be seen that the time taken by LLS for co-
efficients estimation (with matrix (ATA)−1AT pre-computed,
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Figure 4: The relative errors of the � and � estimates, where NRF = 50 and (�true, �true) = (1.5,2), using LLS and DP are plotted
against: (a) window length, (b) window overlap and (c) usable bandwidth. In each case, the mean relative error is plotted, in
which the error bars show the standard deviation of the errors when the experiment is repeated Nrep = 10 times. For (a), the
window overlap is 90% and the usable bandwidth (1.57 MHz) is equal to the bandwidth of the transmitted pulse. For (b), the
window length chosen (4.92 mm) is twice the pulse-length of the transmitted pulse and the usable bandwidth (1.57 MHz) is
equal to the bandwidth of the transmitted pulse. For (c), the window length chosen (4.92 mm) is twice the pulse-length of the
transmitted pulse and the window overlap is 90%.

see section 2.5) is reduced by ∼75-80% by changing NRF
from 50 to 10 and window overlap from 90% to 50%, with-
out worsening the estimation accuracy (fig. 2 and fig. 4(b),
respectively).

Concerning the window length, any reduction in the LLS
computation time by increasing the window length came at
the cost of increased coefficient estimation error. This is in ac-
cordance with earlier observations that the LLS performance
is more sensitive to the choice of the window length than
of other parameters. Moreover, for the already low compu-
tation time point, i.e.,NRF = 10 and 50% window overlap,
increasing the window length was not observed to give an
appreciable time reduction. Therefore, it was kept fixed to
twice the transmitted pulse-length to maintain the estimates
high accuracy.

4.6. Attenuation Estimates with in-vitro (sample
phantom) data

In fig. 7, the relative error for the attenuation estimates
from phantom data is shown by means of a bar diagram. It
can be observed that the overall accuracy of our method is
better than the DP method. More precisely, the relative error
of the estimates, averaged over all the phantoms, was 16%
for LLS, compared to 51% for DP.

The overall trend for the LLS estimates can be seen nearly
in line with the statistical analysis on the simulated data,

showing a decrease in the relative error as the �true value
increases from phantom 1 to 8, where phantom 9 could be
viewed as an outlier. It is to be noted that the ground-truth
values for � in the phantoms were not known. Consequently,
the relative errors on the � estimation could not be computed
and only the results for � estimation are shown.

4.7. Attenuation & Backscatter Estimates with
in-vitro (sample & reference phantoms) data

The bar diagram in fig. 8 presents the relative error for
the attenuation estimates from the phantom data using refer-
ence phantom measurements. These plots depict the higher
accuracy achieved by our method than the DP method for
the attenuation coefficient estimation. In particular, the rela-
tive error of the attenuation estimates, averaged over all the
phantoms, was 5% for LLS, compared to 10% for DP. The
estimates of the backscatter coefficient computed over the
transducer’s bandwidth are shown in fig. 9. It can be observed
that while LLS outperforms DP for phantom A, both methods
perform reasonably well in the estimation of the backscatter
coefficient spectrum for the other two phantoms.

Finally, it can be noticed that the �true values for the three
phantoms are comparable and predicting any difference in
their relative errors based on the statistical analysis might not
be suitable here.
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Figure 5: The relative error of the � and � estimates using LLS is plotted, for cases with (�true, �true) = (1.5,0.5) in the first row
and (�true, �true) = (1.5,2) in the second row, against the number of RF lines, NRF . For each NRF value, the mean relative error is
plotted, in which the error bars show the standard deviation of the errors when the experiment is repeated Nrep = 10 times. The
plots avgd. LLS show the relative error of the estimates obtained by averaging the estimates from each depth (window) as in (3).
The plots LLS show the relative error of the estimates obtained by including the depth information in the estimation framework,
providing a global estimate, as proposed in this manuscript. In all the cases, the window length chosen is 6 mm, the window
overlap is 75% and the usable bandwidth is 2.4 MHz.

5. Discussion
We have presented a new approach for fast and accurate

estimation of ultrasound attenuation and backscatter coeffi-
cients. In general, one of the key differences between our
approach and the existing least squares based methods in
the literature relates to the solver we have proposed here. In
our case, the heaviest calculations to be performed by the
solver are independent of the data, such that they can be pre-
computed offline, which makes the method very useful for
real-time applications. This single-shot non-iterative estima-
tor is in contrast with other techniques that employ iterative
solvers [26], or suffer from high computation cost [28]. Addi-
tionally, our method combines both the frequency and depth
dimension in a single estimation problem, providing a global
estimator for all the depths combined in contrast to the aver-
aging of independent local estimators in other approaches.

For validation, we compared our method with the DP
method in [28], which benefits from using a regularization
term to enforce piece-wise continuity of the parameters of
interest across the depth axis. As indicated by the performed
studies, our method provided more accurate estimates than
DP. While DP intrinsically smoothens the local estimates
at different depths (thereby coupling them to each other),
our approach is designed to obtain a single parameter esti-

mation for all depths exploiting the dependency of z in the
model, which conceptually is a very different approach. It
might be one of the reasons why more accurate estimation
results are obtained by our approach on the considered data
sets. Furthermore, an important distinction is a much higher
computational cost of DP, making it unsuited for real-time
processing. Another point worth highlighting here is that
DP requires a search range to be specified for each of the
sought parameter. This range is typically considered to be
within some vicinity of the expected true value. However,
this dependency on search range has several drawbacks. If
the parameter’s true value is not known precisely, a very wide
search range would have to be explored. Additionally, for
higher accuracy, a fine gridding of the search space would
need to be considered. Either of these scenarios would make
this approach computationally very expensive. Contrary to
this, our method does not rely on any such prior information
in the form of a pre-defined search range and provides the es-
timates much faster with a computational complexity of only
3MN multiplications/additions for a grid withN frequency
points andM depth-points.

For statistical analysis, the ANOVA test was performed
on the relative errors of the estimated coefficients, which val-
idated the previous observation of the proposed LLS method
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Figure 7: Bar diagram of the relative errors of attenuation
coefficient estimates for each of the nine tissue-mimicking
phantoms, using LLS and DP.

outperforming the DP method. Further analysis showed that
the estimation accuracy of the methods depends on the true
values of the coefficients. Higher values of the �true provided
(relatively) more accurate � estimates when compared to the
lower values (see Table 4). One possible reason is that at
higher values of attenuation coefficient, the effect of the at-
tenuation on the spectrum is more pronounced. Similarly,
higher �true led to better estimation of �, which could again
be due to its more notable influence on the spectrum than
when its true value is lower. Further, no appreciable effect of
�true value was seen on the � estimation and vice versa.

The sensitivity of � and � estimates was also studied
with respect to the parameters used in the formation of the
spectra: the window length, the window overlap and the
usable bandwidth. The results suggested that a window length

of twice the transmitted pulse-length is a good choice in
general. LLS was also seen to be less sensitive to the window
length than DP, indicating the reliability of the LLS method
over a wide range of parameter settings. Keeping the window
length fixed, the analysis on the window overlap indicated that
the estimation accuracy is fairly robust to the choice of this
parameter. Further analysis on the usable bandwidth showed
that an optimum value could be set close to the bandwidth
of the transmitted pulse. In fact, in all the cases and for all
parameter settings, the estimation error of LLS remained
always lower than or on par with the estimation errors of the
DP method.

Another analysis pertained to the inclusion of depth in-
formation in the model. Since the proposed LLS framework
directly captures the attenuation effects as a function of depth
and frequency jointly, the estimates were more accurate than
the estimates obtained by locally averaging the coefficient
estimates at each depth, as shown in fig. 5.

The analysis performed on the LLS computation time
indicated that a time reduction can be achieved while keeping
the same estimation accuracy by considering smaller values
ofNRF and the window overlap. This is expected as these
parameters influence the number of spectra (Fast Fourier
Transforms) to be computed, which is the computational bot-
tleneck of LLS. While keeping the window length fixed to
twice the transmitted pulse-length, 10 RF lines with 50%
window overlap were seen to be achieving computation time
of the order of 10−2 seconds. Varying the window length
for these settings did not exhibit any further reduction in
time. It is noted that the computation time heavily depends
on the hardware and software that is used, such that its val-
ues (as depicted in Fig. 6) should not be interpreted in the
absolute sense. They merely give an impression of the time
it takes to compute this on a personal computer in MAT-
LAB. Faster times are achievable with dedicated hardware
and with hardware-software co-development strategies. This
highlights the possibility of integrating LLS into ultrasound
systems for real-time coefficient estimation.

The coefficients estimation results on the simulated data
were verified with the phantom data both with and without
reference phantom measurements. As evident from figs. 7-8,
LLS performed better than DP, providing attenuation esti-
mates with lower relative error. The two methods are also
shown to provide backscatter coefficient estimates in agree-
ment with the respective true values in fig. 9.

Looking ahead to apply our method in clinical settings, a
few things are highlighted here. First, since the estimation
errors obtained by LLS exhibited low error variance for each
NRF and an almost flat trend for NRF > 10 (see fig. 2), it
indicates the potential of LLS to provide accurate estimates
even from data acquired using only few RF lines. This could
be particularly beneficial in clinical settings as for few RF
lines, only a small lateral size of the ROI would need to
be probed. Moreover, such a lateral size would also result
into achieving higher spatial resolution when building QUS
parametric images.

Second, the proposed strategy could be generalized to
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Figure 8: Bar diagram of the mean relative errors of attenuation
coefficient estimates for each of the three tissue-mimicking
phantoms with the respective reference phantom measurements,
using LLS and DP. The error bars show the standard deviation
of the relative errors obtained for 10 RF data frames.

incorporate weights in our model (see equation (14)). The
purpose of the resultant weighted linear least squares prob-
lem would be to account for the noise usually present in
realistic scenarios, which could help in better estimations of
the parameters of interest. Typically, the weights are cho-
sen by taking the reciprocal of the noise variance at each
measurement point. Alternatively, in the current context, the
weights could be specified for each depth point, covering all
the frequency points or vice versa, as per the error variance
at these points. The choice of the weights should, however,
be studied.

Finally, an ultimate testing of the proposed methodology
needs to be performed in-vivo. In this context, when a homo-
geneous ROI is of clinical interest [39], the proposed LLS
method could be directly applied for the coefficient estima-
tion. However, when the heterogeneity of the underlying
tissue needs to be captured by building its attenuation and
backscatter coefficient maps, a generalization of our method
towards a heterogeneous, i.e. multi-layered, tissue model
would be required. While this is beyond the scope of the
current paper, we note that a first step towards such an exten-
sion was presented in [30]. This will be further developed in
future work.

6. Conclusion
A fast linear least squares (LLS) estimation of the atten-

uation and backscatter coefficient has been proposed in this
paper. The proposed approach exploits frequency and depth
information jointly to provide accurate estimates at a low com-
putational effort, making it applicable in real-time imaging
settings. Comparison with a state-of-the-art DP method on
simulated and phantom data has shown that our approach out-
performs DP both in accuracy and computational efficiency.
The estimates obtained using the LLS method are shown to
exhibit less variability with respect to the window length and
the overlap between the consecutive windows. It also has

a lower relative estimation error for the considered usable
bandwidth range.

Supplementary material
See online supplementary material for figures showing

the relative error of coefficient estimation plots for all the
considered cases of �true and �true values, supplementing
figs. 2 and 4.
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