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Abstract

The main results of this thesis are two uniform parametrization theorems for
families of bounded real power-subanalytic sets. The first one is a more precise
statement of a recent Cr-parametrization result by Cluckers, Pila and Wilkie.
They have shown that it is possible to construct such a parametrization with
an amount of charts that is polynomial in r. I show that this exponent is
polynomial in the dimension of the set that is being parametrized.

The second result is a uniform mild parametrization result for curves. More
precisely, for any C > 0, a family of bounded power-subanalytic curves has a
uniform C-mild parametrization. This improves a recent result by Binyamini
and Novikov, who have shown that a family of bounded subanalytic curves have
a uniform 2-mild parametrization.

Both results are deduced from a pre-parametrization result by Cluckers, Pila
and Wilkie, when combined with precise results on mild functions. Most notably
are a result on compositions, that can be deduced by translating a similar result
on the composition of Gevrey functions or analytic functions, and a result that a
particular function, that is used in the construction of the mild parametrization,
is suitably mild.

Some knowledge of o-minimality is required to fully understand the proofs and
is included in the thesis. The final chapter consists of a brief summary of the
well known applications in diophantine geometry.
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Samenvatting

De hoofdresultaten van deze thesis zijn twee uniforme parametrisatiestellingen
voor families van begrensde reële power-subanalytische verzamelingen. De
eerste is een meer precieze versie van een recent Cr-parametrisatieresultaat
van Cluckers, Pila en Wilkie. Zij hebben bewezen dat het mogelijk is om een
parametrizatie te construeren bestaande uit een aantal kaarten dat polynomiaal
in r is. Ik toon aan dat de exponent in deze veelterm polynomiaal is in de
dimensie van de verzameling die geparametriseerd wordt.

Het tweede resultaat is een uniform milde parametrisatiestelling voor krommen.
Meer precies heeft een familie van begrensde power-subanalytische krommen een
C-milde parametrisatie voor elke C > 0. Dit verbetert een recent resultaat van
Binyamini en Novikov, namelijk dat een familie van begrensde subanalytische
krommen een uniforme 2-milde parametrisatie heeft.

Beide resultaten worden afgeleid uit een pre-parametrisatiestelling van Cluckers,
Pila en Wilkie via nauwkeurige resultaten over milde functies. Meest
noemenswaardig zijn een resultaat over samenstellingen, dat volgt uit een
gelijkaardig resultaat voor Gevreyfuncties of analytische functies, en de mildheid
van een specifieke functie, die gebruikt wordt in de constructie van de milde
parametrizatie.

Voorkennis van o-minimaliteit is vereist om de bewijzen goed te kunnen begrijpen
en is daarom in de thesis opgenomen. Het laatste hoofdstuk bestaat uit een
kort overzicht van de welbekende toepassingen in diophantische meetkunde.
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Introduction

There are two main results in this thesis. The first is a uniform Cr-
parametrization theorem for bounded power-subanalytic sets, where we cover
a set with finitely many images of Cr-maps that have bounded derivatives.
The second is a uniform mild parametrization theorem for bounded power-
subanalytic curves, where the functions are C∞ and there is a bound on all
derivatives. Precise statements can be found below. I also provide a short
overview of applications of parametrizations in diophantine geometry in the
last chapter.

Main results

Consider a set X ⊂ Rk ×Rn, where the coordinates in Rk should be considered
as parameters, so X is a family of subsets of Rn. Denote T for the projection
of X onto the first k coordinates, i.e., T is the parameter space. For each t ∈ T ,
denote

Xt = {x ∈ Rn | (t, x) ∈ X}.

Suppose the largest dimension among the family members Xt is m, which is of
course at most n. A uniform parametrization of X is a finite set of functions

{φi : T × (0, 1)m → X | i ∈ {1, . . . , N}}

for some N ∈ N, such that for each t ∈ T

N⋃
i=1

Im(φi,t) = Xt,

where φi,t : (0, 1)m → Xt is defined by φi,t(x) = φi(t, x).

If no condition is put on the maps φi, which we call charts, then this is not an
interesting notion. We consider two possible conditions. The first one states

1



2 INTRODUCTION

that all derivatives up to a certain order r ∈ N should be bounded. Therefore,
the charts are of course required to be suitably differentiable. Imposing this
condition on the charts, we obtain the notion of Cr-parametrizations, see
Definition 3.1.3.

Theorem (Main Theorem 1). Suppose X is a power-subanalytic family of
subsets of (0, 1)n of dimension at most m. Then X has a uniform Cr-
parametrization, moreover the amount of charts N is at most crd, where
c is some constant that depends on X and d is polynomial in m.

A precise definition of “power-subanalytic” is given in Section 1.2. Roughly
speaking it says X can be defined in terms of polynomials, analytic functions
on a compact domain and (possibly irrational) power functions. The theorem
is proved in Section 3.3. Actually more is shown, see Theorem 3.3.1, but these
details are not so important. My contribution to Theorem 3.3.1, which is a
result by Cluckers, Pila and Wilkie, is that d is polynomial in m, i.e., this makes
the amount of charts N more explicit. This is the main result of my article
[VH21b] and was the initial goal of my PhD project.

The second main result of this thesis is a uniform parametrization result where
one imposes an upper bound on all order derivatives of φi. More precisely, for
A,B > 0 and C ≥ 0, say that a function f : U ⊂ Rm → R is (A,B,C)-mild
if f is infinitely differentiable on U and for any α ∈ Nm and x ∈ U∣∣∣f (α)(x)

∣∣∣ ≤ (BA|α| |α|!)1+C .

See Section 2.1 for definitions and notations regarding multivariate calculus.
A map f : U → Rn is (A,B,C)-mild if all of its component functions are. A
uniform (A,B,C)-mild parametrization is a uniform parametrization such
that for any i ∈ {1, . . . , N} and t ∈ T , the chart φi,t is (A,B,C)-mild, see also
Definition 3.1.5.

Theorem (Main Theorem 2). Suppose X is a power-subanalytic family of
curves in (0, 1)n. Then for any 0 < C ≤ 1, there exist A and B, depending on
X only, such that X has a uniform (A/C,B,C)-mild parametrization.

The proof of this theorem is given in Section 3.5, see Theorem 3.5.1. The
proof strategy is completely the same as the proof of Main Theorem 1. A key
ingredient is the following result.

Proposition. Let κ ≥ 1 and consider the function f : (0, 1)→ (0, 1) defined
by

f(x) = e1− 1
xκ .

Then f is (6κ, e, 1/κ)-mild.
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This is shown in Section 2.3. It is a new result, in the sense that other results
only obtain C = 1+1/κ, which makes the bounds on the derivatives significantly
larger. Together with the mild parametrization theorem, this is the main content
of my article [VH21a].

The actual introduction

If a set X has a parametrization, one could say that X is a manifold with
a finite atlas. This notion is already quite old and manifolds are of course
still extensively studied. However, in the field of differential geometry one is
interested in the geometry of X, rather independent of (the cardinality of) the
atlas, while we are exactly interested in the latter.

In [Yom87b], Yomdin proved Shub’s entropy conjecture for C∞-maps. That
is, for a smooth compact C∞-manifold M and C∞-map f : M → M , the
logarithm of the spectral radius of f∗ : H∗(M,R)→ H∗(M,R) is a lower bound
for the topological entropy of f (see [BN19, Section 1.3], which also contains
a brief introduction on this subject, based on the exposition in [BLY15]). A
key ingredient in his proof was a parametrization theorem, now often referred
to as the “Yomdin-Gromov Algebraic Lemma”. Yomdin showed this result in
[Yom87a], see also the article [Gro87] of Gromov on the results of Yomdin. In
Section 3.2 this technique is applied to a simple example, following Yomdin’s
exposition in [Yom15].

Yomdin considered in [Yom91] the case of a real analytic function f : M →
M , where M is a compact analytic surface, and proved a result similar to
[Yom87b]. The improvement in the analytic case is an upper bound on the rate
of convergence to zero of the “ε-tail entropy”. He conjectured that it would also
hold in higher dimensions. His result was based on a holomorphic version of
the Algebraic Lemma, see [BN19, Section 1.3].

So, although maybe by coincidence, this first motivation comes from smooth
dynamics. Since I am not familiar with these results, I won’t give many more
details, but we will revisit it shortly later in this introduction. The details here
are mostly taken from [BN19, Section 1.3], which is based on the content of
[BLY15]. The second motivation comes from number theory and was being
developed around the same time. In this case however, as far as I know, it took
a little bit longer before a parametrization result was used.

In [BP89], Pila and Bombieri proved some results on the distribution of rational
points on curves, say y = f(x) for some smooth or analytic function f . Precise
statements can be found in the introduction of Chapter 4. Let me summarize
them here by saying that if f is algebraic, then there is polynomial growth of
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rational points on the curve, and if f is transcendental, it is subpolynomial.
It was already mentioned in their work that their result could be generalized
to higher dimensions (for affine and projective varieties) by “simple slicing
arguments” and Pila did so in [Pil95]. Note that the parametrization was
assumed to be given and was not constructed.

Pila generalized his work with Bombieri to compact subanalytic surfaces in
[Pil04] and [Pil05]. A closer look at these papers shows that a parametrization
result is used, that is deduced from the uniformization theorem from [BM88].
This uniformization theorem states that every closed subanalytic subset X of an
analytic manifold M is the image under a proper real analytic map ψ : N →M ,
where N is an analytic manifold of the same dimension as X.

In [Wil04], Wilkie showed a similar result as in [BP89], using different methods,
for curves that are definable in o-minimal expansions of the real field. See
Chapter 1 for a short introduction to o-minimality. A very fruitful collaboration
between Pila and Wilkie in [PW06] yielded a theorem that holds for a large
class of sets, namely definable in an o-minimal structure, that generalized their
two results. It is now well known as the Pila-Wilkie Counting Theorem, we
discuss it in Section 4.1. Roughly speaking, it states that rational points on the
transcendental part of a definable set grow subpolynomially.

The main new ingredient in the work of Pila and Wilkie is a uniform Cr-
parametrization theorem for (bounded) definable sets that holds in any expansion
of the real ordered field. The fact that is it uniform, in contrast to the
parametrization used by Pila in [Pil04, Pil05], makes it possible to prove the
result for sets of any arbitrary dimension, see the discussion below [PW06,
Theorem 1.8].

The construction of this uniform Cr-parametrization theorem uses the
construction by Yomdin and Gromov. Indeed, this construction can be adapted
to this general setting since sets that are definable in an o-minimal structure
share many of the nice geometric properties of semi-algebraic sets. In fact,
semi-algebraic sets are the role model of o-minimal structures on R. The most
basic results in o-minimality are stated in Section 1.3.

However, there is an important benefit when just working with semi-algebraic
sets. Since these sets are defined by polynomial equalities and inequalities, these
sets naturally have a notion of “complexity”. The method developed by Pila
and Bombieri consists of intersecting the set X with algebraic hypersurfaces
of suitable degree, such that all rational points (up to a certain “height”) lie
on at least one of these hypersurfaces. One then considers all the intersections
and can proceed by induction, at least if there is some information about these
intersections. For instance if it is expressed in terms of complexity, as in the
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semi-algebraic case as in [Pil95], or if one can parametrize it again, where the
amount of charts of the parametrization is independent of the intersection, i.e.,
a uniform parametrization (this is explained below [PW06, Theorem 1.8]).

There is a larger class of functions that also have a natural notion of complexity,
playing the role of degree for polynomials, namely Pfaffian functions, see [Kho91].
I will not formally define them here. Shortly stated these are functions whose
derivatives satisfy a polynomial relation in their lower order derivatives. For
instance, the exponential function, for which f ′ − f = 0. By [Spe99], the
structure of Pfaffian sets, say sets defined by Pfaffian functions, is o-minimal.
Pila successfully obtained results for Pfaffian curves, in the same spirit as before,
in [Pil06a, Pil06b, Pil07].

In [Pil06a, Pil07], Pila did not use the Cr-parametrization theorem, but put
the existence of a new type of parametrization, a mild parametrization, as an
assumption. In particular he conjectured that every Pfaffian curve has a mild
parametrization. As far as I know, this conjecture is still open in general. In
fact, the theory of mild parametrizations seems to be more delicate than the
theory of Cr-parametrizations. We will further discuss this in the introduction
of Chapter 3.

Let me point out that the second main result of this thesis poses that this
conjecture is true for power-subanalytic curves by the main result of [VH21a], but
this is still far away from Pfaffian curves. Also, remark that power-subanalytic
curves are not a subset of Pfaffian curves or vice versa.

The advantage of working with functions that have a notion of complexity is
that one can express the amount of charts N of the Cr-parametrization in terms
of this complexity, or at least it is natural to ask this question. This is indeed
the case for the Cr-parametrization theorem by Yomdin and Gromov. Say X is
an m-dimensional semi-algebraic subset of (0, 1)n of complexity β (whatever
complexity exactly is), then N is a constant depending on the complexity only.
In particular, it does not depend on the coefficients of the polynomials that
define X.

It turns out that it is interesting to investigate how this constant depends
on these data. In [BLY15], they also prove the result of Yomdin for analytic
maps in [Yom91], but only using Cr-parametrizations, so not using holomorphic
extensions. They show that if m = 1, then N can be taken polynomially in
r and n [BLY15, Proposition 3.7], and this allows them to recover the result
of Yomdin. In [BN19] it is shown that for semi-algebraic sets X, one can
take N = polyn(m,β)rm, which allows them to deduce the result of Yomdin
for compact analytic manifolds of arbitrary dimension, see [BN19, Theorem
5]. In fact, they show in [BN19] that a subanalytic set has a uniform Cr-
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parametrization, where N = crm for some constant c > 0. If X is semi-algebraic,
one additionally has that c = polyn(m,β).

A similar Cr-parametrization theorem was obtained by Cluckers, Pila and Wilkie
in [CPW20]. Their result is slightly more general, in the sense that it holds for
power-subanalytic sets (see Section 1.2 for a definition of power-subanalytic).
However, the polynomial dependence on r is not as explicit as in the result
in [BN19]. More precisely, their result yields crd charts, for some constants
c, d > 0, but there is no information on the constants c and d, even if one
additionally assumes that X is semi-algebraic. According to [BN19, Section 1.3],
one can not deduce the results in smooth dynamics without this information,
but this was not the goal of [CPW20], where a further refinement of their
Cr-parametrization theorem in this fashion is raised as a question, see [CPW20,
Remark 4.4.3]. Both papers provide further improvements of the earlier work
by Pila, which we will further discuss in Section 4.3.

The first main result of this thesis (partially) answers this question in [CPW20],
by showing that d = m3. This is part of my article [VH21b]. This result is
obtained by carefully checking the methods in [CPW20], combined with results
on mild functions, which we prove in Chapter 2.

About the chapters of the thesis

The thesis is build up as follows. In principle, each chapter can be read mostly
independently. With the exception of Chapter 1, each of them has its own
thorough introduction. The introduction of a chapter is tailored to the subject
there, in the sense that I mostly pretend that it has nothing to do with the
other chapters and, if not, refer for the details to another chapter.

In principle, the basics of calculus, in particular differentiation and analytic
functions, are sufficient to understand most of this thesis. Chapter 1 gives a
brief overview of the field of o-minimality that should be sufficient to understand
the arguments in Chapter 3. It is intended for readers that are not familiar
with the theory. There are no proofs in Chapter 1 and it is kept to a minimum
on purpose. Chapter 2 contains many results on mild functions, in particular
on compositions and substitutions. It is independent of Chapter 1.

The heart of the thesis is Chapter 3 on parametrizations. The main results,
which we have stated above, are proved in this chapter. Although it heavily
relies on the results of the first two chapters, it should be accessible even if
one did not read those. Chapter 4 is a short overview of the applications of
parametrizations in diophantine geometry. It uses parametrization results, but
it is not necessary to have read Chapter 3 in order to understand it.



Chapter 1

O-minimality

This short chapter is intended for readers that are not familiar with the field of
o-minimality. It contains the necessary definitions and results that will be used
in Chapter 3 on parametrizations. In Section 1.1 we start with a short recap of
model theory in order to give a precise definition of semi-algebraic, subanalytic
and power-subanalytic sets in Section 1.2. Finally, we review some important
geometric results of o-minimality in Section 1.3.

O-minimality is a framework that suites Grothendieck’s idea of “Topologie
Modérée” (tame topology). In his famous note “Esquisse d’un programme”
from 1984, he describes this idea as follows [Gro97].

C’est quelques années plus tard que j’étais informé de la théorie de Hironaka
des ensembles qu’il appelle, je crois, “semi-analytiques” (réels), qui satisfont
à certaines des conditions de stabilité essentielles (sans doute même à toutes)
nécessaires au développement d’un contexte utilisable de “topologie modérée”.

Roughly summarizing his idea, one could say that he wanted to find an axiomatic
way to obtain a collection of sets that has geometrical properties similar to
semi-algebraic and semi-analytic sets. Thus, a call to model theorists to develop
such a theory. It turns out that o-minimality is indeed a general framework
that yields tame geometry.

Geometrical properties of o-minimal structures, although not yet called this
way, were first studied by Lou van den Dries in [vdD84], and a series of papers
called Definable sets in ordered structures [PS86, KPS86, PS88]. Many of these
geometric results can be found in [vdD98], which is the standard reference in
the field. It is written in a “geometric” way, avoiding the use of model theory.

7



8 O-MINIMALITY

1.1 Terminology of model theory

This section is based on the first chapter, “Structures and Theories”, of the book
“Model Theory: An introduction” by Marker [Mar02].

The aim of this section is to understand what it means that a set X ⊂ Rn is
definable in a language L. In this way, one can give a very elementary and
precise definition of some o-minimal structures in Section 1.2. Our examples
and motivation merely focus on what we need in this thesis.

Definition 1.1.1 ( [Mar02, Definition 1.1.1] ). A language L consists of the
following data:

1. a set of function symbols F and positive integers nf for each f ∈ F ;

2. a set of relation symbols R and positive integers nR for each R ∈ R;

3. a set of constant symbols C.

The numbers nf are called the arity of the function f and the numbers nR
indicate that R is an nR-ary relation.

Example 1.1.2.

1. L< = {<}, the language of ordered sets, where < is a binary relation.

2. Lr = {+,−, ·, 0, 1}, the language of rings, where +,− and · are binary
functions and 0 and 1 are constant symbols.

3. Lor = {+,−, ·, <, 0, 1} the language of ordered rings.

The idea is that X is definable in a language L if there is a formula for X that
only consists of symbols of that language. Let us first define what a formula is
and then explain how to define sets with it. The building blocks of formulas
are called terms and these are defined as follows.

Definition 1.1.3 ( [Mar02, Definition 1.1.4] ). The set of L-terms is the
smallest set T such that

1. c ∈ T for each c ∈ C;

2. all variable symbols xi ∈ T for i = 1, 2, . . ., and

3. if t1, . . . , tnf ∈ T and f ∈ F , then f(t1, . . . , tnf ) ∈ T .
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For example, ·(x1, x2) and −(x1, 1) are Lr-terms, which we will write more
compactly as x1x2 and x1 − 1 respectively.

Definition 1.1.4 ( [Mar02, Definition 1.1.5] ). We say that φ is an atomic
L-formula if φ is either

1. t1 = t2, where t1 and t2 are L-terms, or

2. R(t1, . . . , tnR), where R ∈ R and t1, . . . , tnR are L-terms.

Finally, the set of L-formulas is the smallest set W containing the atomic
L-formulas such that

1. if φ ∈ W, then ¬φ ∈ W;

2. if φ, ψ ∈ W, then (φ ∧ ψ) and (φ ∨ ψ) are in W, and

3. if φ ∈ W, then ∃xi φ and ∀xi φ are in W.

An example of an Lr-formula is ∃x2 x2x2 = x1, which asserts that x1 is a square.
However, currently x2x2 is just an Lr-term, it does not mean anything yet. To
this end, we have to give these symbols an interpretation.

Definition 1.1.5 ( [Mar02, Definition 1.1.2] ). An L-structureM is given
by the following data:

1. a nonempty set M , the underlying set ofM;

2. a function fM : Mnf →M for each f ∈ F ;

3. a set RM ⊂MnR for each R ∈ R;

4. an element cM ∈M for each c ∈ C.

To summarize: an L-structureM is a set M where all symbols of L make sense
in some way. Indeed, we did not impose that the interpretations of these symbols
have to satisfy any conditions. So at this point, an Lr-structure is not necessarily
a ring. For example we could define ·M : M ×M → M : (x1, x2) 7→ 1M and
this is perfectly fine.

It is clear that R is naturally an L-structure for any of the languages of Example
1.1.2 and we will assume it is always interpreted in this way. While there is,
formally, a difference between f and fM, when given an L-structure, we will
not distinguish between these two and just write f for fM, and similarly for
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the relation symbols and constant symbols. Considering R naturally as an
Lr-structure, the formula ∃x2 x2x2 = x1 does really mean that x1 is a square.
We will often just say that R is an L-structure and use the same notation for
the underlying set of real numbers R.

Definition 1.1.6. Let L be a language and suppose that R is an L-structure.
A set X ⊂ Rn is L-definable if there exists some L-formula ϕ such that

X = {x ∈ Rn | ϕ(x)},

the set of points that satisfy formula ϕ.

Formally, we should have introduced what it means for a formula to be true in
an L-structure, but I think this definition suffices here. We say that a function
is L-definable if its graph is L-definable and a relation is L-definable if it is as a
set. If the language L is clear from the context, we might just write definable.

Example 1.1.7.

1. {(x1, x2) ∈ R2 | x1 < x2} is L<-definable.

2. {x1 ∈ R | ∃x2 x
2
2 = x1} is Lr-definable. Note that it is the projection of

the Lr-definable set {x ∈ R2 | x1 = x2
2} onto the first coordinate.

3. {x1 ∈ R | ∃x2 (x1 − x2
2) = 1} is Lr-definable. It is the same set as

{x1 ∈ R | x1 ≥ 1}, which is Lor-definable.

4. If X is Lor-definable, then its topological closure X̄ is Lor-definable
[Mar02, Lemma 1.3.3].

Definable sets are closed under elementary geometric operations. For example,
they are closed under intersection, since if X = {x ∈ Rn | ϕ(x)} and Y = {x ∈
Rn | ψ(x)}, then we have that X ∩ Y = {x ∈ Rn | ϕ(x) ∧ ψ(x)}. In example 2
above we have seen a projection. The following proposition gives a geometric
description of definable sets. It is essentially [Mar02, Proposition 1.3.4], but in
the case that R is an L-structure, with the conventions we have made before.

Proposition 1.1.8. Let R be an L-structure. Suppose that Dn is a collection
of subsets of Rn for all n ≥ 1 and D = {Dn | n ≥ 1} is the smallest collection
such that:

1. Rn ∈ Dn;

2. for all n-ary function symbols f of L, the graph of f is in Dn+1;
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3. for all n-ary relation symbols R of L, R ∈ Dn;

4. for all i, j ≤ n, {(x1, . . . , xn) | xi = xj} ∈ Dn;

5. if X ∈ Dn, then R×X ∈ Dn+1;

6. each Dn is closed under complement, union, and intersection;

7. if X ∈ Dn+1 and π : Rn+1 → Rn is the projection map (x1, . . . , xn+1) 7→
(x1, . . . , xn), then π(X) ∈ Dn;

8. if X ∈ Dn+m and b ∈ Rm, then {a ∈ Rn | (a, b) ∈ X} ∈ Dn.

Then X ⊂ Rn is L-definable if and only if X ∈ Dn.

Using this proposition, it is possible to talk about definable sets, without using
the terminology of model theory. For instance, this definition is used in [vdD98],
which is the main source of the results in Section 1.3. Using the above axioms
as a definition might be more down to earth, but in this way it is quite hard to
show that a set is definable. Using model theory, all you need to know is that
one can write some first order formula for the set, which is usually easy to see.
For instance, the last example of Example 1.1.7.

1.2 Important structures

This short section contains the languages and the induced structures on R we
will consider later on. First, we make the following three assumptions on our
language L:

1. + ∈ F and · ∈ F ;

2. R = {<};

3. C = R.

Assumptions (1) and (2) state that we will use “at least” the language of ordered
rings. The third assumption says that any real number may appear in a formula.
In model theoretic terms, we call this “definable with parameters”. Since R and
C are fixed, we will simply define a language by defining its function symbols.
For example, if L is defined by (+, ·), we mean the language Lor of ordered rings.
Formally, it is not the same language as the language of the previous section.
To be precise, if X is Lor-definable in this setting, it means Lor-definable with
parameters, using the definition of Section 1.1.



12 O-MINIMALITY

Definition 1.2.1. A set X ⊂ Rn is semi-algebraic if and only if it is Lor-
definable.

Let us now define the subanalytic language Lan. A restricted analytic
function is a function defined by{

f(x) if x ∈ [0, 1]n,
0 elsewhere,

where f is an analytic function on an open (in this thesis, always in the Euclidean
topology) neighborhood of [0, 1]n. The language Lan is defined by (+, ·,Fan),
where Fan is the set of all restricted analytic functions. At this point, it might
be unclear why we only allow restricted analytic functions. We will explain in
the next section why we avoid entire analytic functions, see also Remark 1.2.4.
We will denote the Lan-structure R by Ran.

Definition 1.2.2. A set X ⊂ Rn is subanalytic if and only if it is Lan-
definable. We may also simply say definable in Ran.

Finally, if one adds to the language Lan a function symbol for each power
function, that are the unary functions defined by{

xr if x ≥ 0,
0 if x < 0,

for some r ∈ R, then we obtain a language which we will denote by LR
an. These

power functions were studied by C. Miller in [Mil94]. Note that if r ∈ Q, these
functions are already Lor-definable, but if r ∈ R \Q, it is not. Moreover, since
they are not analytic at the origin, they are not restricted analytic functions.

Definition 1.2.3. A set X ⊂ Rn is power-subanalytic if and only if it is
LR
an-definable.

Finally, all of these languages can be packed together into a family of languages,
which were studied by D. Miller in [Mil06]. In this article, one considers a set F
of restricted analytic functions, whose germs at the origin are most importantly
closed under compositions and Weierstrass preparation. Given such a set F ,
one can consider its field of exponents K, which consists of all functions of the
form (1 + x)r for r ∈ R that are in F . See [Mil06] for more details. One can
then consider the language LKF defined by +, ·, all functions in F and all power
functions xr for each r ∈ K, defined as above. For the smallest Weierstrass
system, one just recovers the structure of semi-algebraic sets, and for the largest
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choice of F , we obtain LR
an. We shall also use power-subanalytic for the

LKF -definable sets.

If one adds to the language Lor a symbol for the entire exponential function,
one obtains the language Lexp. We will denote the corresponding Lexp-structure
R by Rexp. One may also add the entire exponential function to the subanalytic
language to obtain the Lan,exp. Instead of saying Lexp-definable, we will say
definable in Rexp and similarly definable in Ran,exp.
Remark 1.2.4. It is important to mention that the definitions stated here are
actually results. At first sight, it is not clear that Lor-definable sets are the
same as semi-algebraic sets, where the latter is classically defined. The Tarski-
Seidenberg Theorem on projections of semi-algebraic sets is a key ingredient
of this proof. Similarly, Gabrielov’s theorem of the complement is a key result
for the structure of subanalytic sets, which in fact consists of the globally
subanalytic sets. For example, the graph of the sine function is subanalytic, but
not globally subanalytic.

1.3 Important results

We assume that the language L is at least the language of ordered rings, as
explained in the beginning of Section 1.2. We assume that R is an L-structure
in a natural way. If we say definable in R, it means L-definable in this section.
Via Proposition 1.1.8, the collection of definable sets is equivalent to a collection
of subsets of Rn that are closed under simple geometric operations such as
intersections, unions or projections. We will simply call this a structure.
Definition 1.3.1. A structure is o-minimal if all definable subsets of R1 are
finite unions of intervals and points.

It should now be clear why we cannot allow entire analytic functions in our
language Lan. If L is some language such that the sine function is definable,
the L-structure R is not o-minimal since the set {x ∈ R | sin(πx) = 0} defines
the integers. All structures defined in Section 1.2 are o-minimal. In particular
Rexp, by Wilkie’s Theorem [Wil96], and also Ran,exp [vdDM94].

As we have explained in the introduction, o-minimal structures have a rich and
“tame” geometry. We will now provide some results of o-minimality, which we
took from the basic reference in the field [vdD98]. We start with a theorem
on unary functions in o-minimal structures. It is called the monotonicity
theorem.
Proposition 1.3.2 ( [vdD98, Chapter 3, 1.2] ). Let f : (a, b)→ R be a definable
function on the interval (a, b). Then there are points a1 < . . . < ak in (a, b)
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such that on each subinterval (aj , aj+1), with a0 = a, ak+1 = b, the function is
either constant, or strictly monotone and continuous.

The next result is called the finiteness lemma.
Lemma 1.3.3 ( [vdD98, Chapter 3, 1.7] ). Let A ⊂ R2 be definable and suppose
that for each x ∈ R, the fiber Ax = {y ∈ R | (x, y) ∈ A} is finite. Then there is
N ∈ N such that |Ax| ≤ N for all x ∈ R.

So finiteness for each x actually implies “uniform” finiteness. This lemma and
the previous proposition are essential ingredients to a key result in o-minimality,
namely the cell decomposition theorem. First we have to explain what a cell is.
Definition 1.3.4. A cell in Rn is defined inductively as follows.

1. A cell in R1 is either a point or an open interval, which may be (−∞, a),
(a,+∞) or (−∞,+∞) = R.

2. Let C be a cell in Rn, then we can construct a cell in Rn+1, in any of the
following two ways.

• Graphs of definable continuous functions. Let f : C → R be a
definable continuous function. Then

{(x, y) ∈ C × R | y = f(x)}

is a cell in Rn+1.
• A region bounded by graphs of definable continuous functions. Let f

be either constant −∞ on C or a definable continuous function and
g be either constant +∞ on C or a definable continuous function
such that for all x ∈ C : f(x) < g(x). Then

{(x, y) ∈ C × R | f(x) < y < g(x)}

is a cell in Rn+1.

All of the functions f , or f and g, used to construct the cell are called the walls
of the cell.

There is an obvious way to define the dimension of a cell. For cells in R1, the
points have dimension zero and the intervals have dimension 1. Then, when
inductively constructing the cell, if one uses the first way, the dimension does
not increase, if one uses the second way, the dimension increases by one. In
particular, an n-dimensional cell in Rn is an open connected subset of Rn.

Next, we have to define what a decomposition is. It is a special type of a
partition of Rn using cells.
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Definition 1.3.5. A decomposition of Rn is inductively defined as follows.

1. A decomposition of R1 is a set of the form

{(−∞, a1), (a1, a2), . . . , (ak,+∞), {a1}, . . . , {ak}},

where a1 < . . . < ak are points in R.

2. A decomposition of Rn+1 is a finite partition of Rn+1 into cells C such
that the set of projections π(C) is a decomposition of Rn.

A decomposition partitions a set A ⊂ Rn if each cell of the decomposition is
either contained in A or disjoint from A. Thus, A is a finite union of cells.

The following theorem is the cell decomposition theorem.
Theorem 1.3.6 ( [vdD98, Chapter 3, 2.11] ).

1. Given any definable sets A1, . . . , Ak ⊂ Rn, there is a decomposition of Rn
partitioning each of A1, . . . , Ak.

2. For each definable function f : A→ R, A ⊂ Rn, there is a decomposition
of Rn partitioning A such that the restriction of f to each cell contained
in A is continuous.

This theorem can be used to prove many stronger results. Since this is not the
subject of this thesis, we will not do so here. In Chapter 3, we will frequently
have to perform operations with definable functions and sets to obtain that
some desired conditions are satisfied. For example, if f : U → R is a definable
function, then we may “suppose” that f is continuous, or more generally r-times
continuously differentiable, on (a cell contained in) U . This means that we use
the above theorem, finitely many times, to obtain a partition of U into cells
and then consider the restriction of f to each cell separately. Sometimes this
argument is also invoked by writing “by o-minimality”.
Remark 1.3.7. By work of Le Gal and Rolin [LGR08], it is known that we
cannot expect that U can be decomposed into finitely many cells such that the
restriction of f to these cells is C∞.

Finally, since cells are inductively defined and because every definable set is a
finite union of cells, we often use induction to prove statements in o-minimality.
When partitioning a set, it is likely that some cells are not open, but in that
case they have lower dimension. Thus, when using induction (on the dimension
of the cells), we can ignore these lower dimensional cells. An example of this
strategy is the proof of Theorem 3.3.4, the pre-parametrization theorem, in
Section 3.4.





Chapter 2

Mild functions

With the exception of the results in Section 2.6, all results in this Chapter are
based on the results on mild functions in [VH21a] and [VH21b].

In this chapter we study various properties of a class of differentiable functions,
whose derivatives can be bounded by

(BAnn!)1+C

for some real numbers A,B > 0, C ≥ 0, where n is the order of the derivative.
We call such a function (A,B,C)-mild. In this introduction I will first give a
summary of important results in this section, then I will provide some history
and motivation. Throughout we point out the relevance of this section for other
parts of the thesis.

Section 2.1 includes the notation for multivariate analysis, the precise definition
of an (A,B,C)-mild function and contains examples that will be used later in
this chapter and the thesis. We study properties of these functions in Section
2.2. In particular we derive formulas for the parameters A, B and C for the
addition, multiplication and composition of (A,B,C)-mild functions. In Section
2.3, we prove that a certain function, which is an example given in Section 2.1,
is (A,B,C)-mild for some specific A,B > 0 and C ≥ 0. This function will be
used in Section 2.5.

In Section 2.4, we introduce weakly (A,B,C)-mild functions. As the reader
might guess, these functions are not (A,B,C)-mild. The difference is that in
the case of weakly (A,B,C)-mild functions, there is an additional factor in
the above upper bound that depends on the argument of the function. We
state similar results for the addition and multiplication of weakly (A,B,C)-mild

17
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functions, and show some result on the composition of such a function with an
(A,B,C)-mild function. In general it is not true that the composition of weakly
(A,B,C)-mild functions is weakly (A,B,C)-mild (for some possibly different
A, B and C). In this section we also provide an important class of examples of
weakly (A,B,C)-mild functions, namely monomials.

The key results of this chapter, at least for the thesis, are in Section 2.5. There we
study how the parameters A, B and C behave under three types of substitutions:
linear substitutions, power substitutions and exponential substitutions. Roughly
speaking, a substitution is a composition of a (weakly) (A,B,C)-mild function
with some map, such that the composition has sharper upper bounds on the
derivatives. Using the power and exponential substitution, one can construct
many new examples of (A,B,C)-mild functions. In fact, this is how (A,B,C)-
mild functions will arise later in the thesis. Finally, Section 2.6 contains some
more examples and related notions.

The definition of a mild function was first given by Pila in [Pil06a]. The main
result of this article is a result in number theory, diophantine geometry to
be more precise, and we will discuss this in Chapter 4. The idea is that if
some set X is the image of an (A,B,C)-mild map, one can derive this number
theoretic result. In [Pil06a], there was some specific class of sets X, and it
was conjectured that they satisfy the condition that they are the image of
some (A,B,C)-mild function. If some set X is the finite union of images of
(A,B,C)-mild maps, we say it admits mild parametrization. In [Pil10] (see also
[Pil17]), it is shown that some specific set X admits a mild parametrization by
explicitly constructing it and similar number theoretic results are deduced. The
theory of parametrizations is the content of Chapter 3, which contains the main
results of this thesis, so we will not further discuss it now. It suffices to say
here that admitting a mild parametrization is a strong condition and therefore
it is required to relax it.

For this reason, Cluckers, Pila and Wilkie have introduced in [CPW20] the
definition of an (A,B,C)-mild function up to order r, where r ∈ N ∪ {+∞}.
If r = +∞, this coincides with the definition above, but if r ∈ N, then the
above upper bound on the derivatives of the function should only hold as long
as n ≤ r. Now any function whose derivatives up to order r are all bounded, is
(A,B,C)-mild up to order r, so this condition seems rather weak. However, if
one applies the techniques of [Pil06a] to a set X, the result is significantly more
interesting if X is the image of an (A,B,C)-mild function up to order r, rather
than a function whose derivatives up to order r are just bounded, see Remark
2.5.2.

This section contains all results on (A,B,C)-mild functions (up to order r)
of my articles [VH21b] and [VH21a]. One could say that it is just a bunch
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of formulas on the parameters A, B and C for various operations involving
(A,B,C)-mild functions, but eventually it will be these formulas that make it
possible to deduce the main results of my thesis on parametrizations. The proofs
are, in my opinion, not hard, but are quite technical and might discourage the
reader. The formulas for addition and multiplication are not difficult to verify
and can be considered as a warm up. The harder proofs eventually reduce to
Lemma 2.2.6. This lemma seems like a complicated combinatorial result, but
its proof is actually easily verified.

I believe it is my work to have explicitly computed these formulas, that were
not known before for (A,B,C)-mild functions. Also, I think it is good to have
them grouped together here in this thesis for the first time, as far as I am
aware. However, that does not mean that they are really new. For addition
and multiplication, I would say anyone could come up with this, of course. The
result on compositions can be attributed to Gevrey. In his work [Gev18] from
1918, he proves that a certain class of functions, which he calls “functions of
class α” for some α ≥ 0, are closed under composition if α ≥ 1. His proof
actually contains explicit formulas, basically Lemma 2.2.6, and it turns out
that if α ≥ 1, the function is (A,B, α− 1)-mild. Conversely, an (A,B,C)-mild
function is of class C + 1. It only requires a small effort to translate his formula
to (A,B,C)-mild functions. More on this is in the end of Section 2.6.

My contribution to this field would be that I have further implemented the
formulas in the techniques of [CPW20], which was not always straightforward.
This is the main content of [VH21b]. In Section 2.3, I show that a certain
function is (A,B,C)-mild. This function also appears in [Pil10], but my result
is sharper, due to a trick that makes it possible to use Lemma 2.2.6. This is the
main result of [VH21a] and I would say that it is new, especially the functions
that arise as an application of Proposition 2.5.10.

Finally, for this thesis I have tried to provide more details, both in the proofs
and the statements, than I did in my articles. I hope this significantly increases
the readability of this section. I have also included more examples, some of
them are new, and so are some of the results in Section 2.6.
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2.1 Notation and definitions

We will work with functions f : U → R, where U is open in Rm. For r ∈
N ∪ {+∞} we will write f ∈ Cr(U) to say that f is r times continuously
differentiable on U . For α ∈ Nm, we denote |α| = α1 + . . .+ αm and if |α| ≤ r,
we write f (α) for (

∂|α|

∂xα1
1 · · · ∂x

αm
m

)
f,

the derivative of f with respect to α. For a map f : U → Rn, we define
f (α) =

(
f

(α)
1 , . . . , f

(α)
n

)
. For µ ∈ Rm, we define xµ = xµ1

1 · · ·xµmm . Furthermore

α! = α1! · · ·αm!

and by definition we put 00 = 1.

Definition 2.1.1. Let A,B > 0 and C ≥ 0 be real numbers and r ∈ N∪{+∞}.
A function f : U → R is (A,B,C)-mild up to order r if f ∈ Cr(U) and if
for all α ∈ Nm with |α| ≤ r and x ∈ U :∣∣∣f (α)(x)

∣∣∣ ≤ (BA|α||α|!)1+C
.

A map f : U → Rn is (A,B,C)-mild up to order r if all of its component
functions are.

Remark 2.1.2. Suppose that f ∈ C∞(U). It is well known [KP02, Proposition
2.2.10] that f is analytic if and only if for every x ∈ U , there is some A > 0
such that for all α ∈ Nm: ∣∣∣f (α)(x)

∣∣∣ ≤ A|α|+1 |α|!

Therefore, one could say that an (A,B, 0)-mild function up to order +∞ is a
“uniform” analytic function, because there is a constant A that works for every
x ∈ U in that case.

Remark 2.1.3. The upper bounds on the derivatives in this definition are not
completely the same as in my articles [VH21b] and [VH21a]. The difference is
that here, the constants A and B are also raised to the power 1 + C. I decided
to use this definition here since it gives the least messy result in Proposition
2.2.5 if C > 0. The downside is that if f is (A,B,C)-mild up to order r, it is not
automatically (A,B,C ′)-mild up to order r for some C ′ > C since A < A1+C

is false if A < 1. For this reason, when proving results on manipulations with
(A,B,C)-mild functions, we will assume the mildness parameters C are equal.
If not, one can still derive a similar result, carefully checking how to adjust A
and B, or one assumes that A,B ≥ 1 for simplicity.
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Example 2.1.4. All of the following examples are used throughout this thesis.

1. If f is analytic on an open neighborhood of the topological closure Ū
of a bounded set U , then f is (A,B, 0)-mild up to order +∞ for some
A,B > 0. This follows by compactness and [KP02, Proposition 2.2.10].

2. In particular, if a > 0, the function
√
x : (a, b)→ (

√
a,
√
b) is (1/a,

√
b, 0)-

mild up to order +∞. If a = 0, the function is (1,
√
b, 0)-mild up to order

0 (bounded). We will revisit this example in Example 2.4.3.

3. The map (0, 1)m → (0, 1)m given by (x1, . . . , xm) 7→ (xk1 , . . . , xkm), with
k ∈ N, is (k, 1, 0)-mild up to order +∞.

4. Let κ ≥ 1. In Section 2.3 we will show that the map (0, 1)m → (0, 1)m
defined coordinatewise by xi 7→ exp(1− 1/xκi ) is (6κ, e, 1/κ)-mild up to
order +∞.

2.2 Properties of mild functions

In this section we establish formulas for the mildness parameters of the addition,
multiplication and composition of (A,B,C)-mild functions up to order r. Let
us start with the easiest one, addition.

Proposition 2.2.1. Suppose that for i = 1, . . . , ` the function fi : U → R is
(Ai, Bi, C)-mild up to order r. Then their sum is (A, `B,C)-mild up to order r
with A = max(Ai) and B = max(Bi).

Proof. Take α ∈ Nm with |α| ≤ r and x ∈ U . Using linearity of the derivative
and the triangle inequality, we find that∣∣∣(f1 + . . .+ f`)(α)(x)

∣∣∣ ≤ ∣∣∣f (α)
1 (x)

∣∣∣+ . . .+
∣∣∣f (α)
` (x)

∣∣∣ ≤ (`BA|α||α|!)1+C
.

Next, we turn to the product of (A,B,C)-mild functions up to order r. Its
proof relies on a combinatorial result in [CPW20].

Proposition 2.2.2 ([VH21b, Proposition 2.8]). Suppose that for i = 1, . . . , `
the function fi : U → R is (Ai, Bi, C)-mild up to order r. Then their product is
(`A,B`, C)-mild up to order r with A = max(Ai) and B = max(Bi).
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Proof. Take α ∈ Nm with |α| ≤ r and x ∈ U . By the product rule and using
the triangle inequality, we find that

∣∣∣(f1 · · · f`)(α)(x)
∣∣∣ ≤∑C(α1, . . . , α`)

∏̀
i=1

∣∣∣f (αi)
i (x)

∣∣∣ ,
where the sum runs over all α1, . . . , α` ∈ Nm such that α1 + . . .+ α` = α and
C(α1, . . . , α`) is some combinatorial constant (that does not depend on the
functions). It is shown in [CPW20, Section 3.2] that

∑
C(α1, . . . , α`) ≤ `|α| ≤

`|α|(1+C). Finally, by the mildness of the functions f1, . . . , f`, we have that

∏̀
i=1

∣∣∣f (αi)
i (x)

∣∣∣ ≤ ∏̀
i=1

(
BA|αi||αi|!

)1+C
≤
(
B`A|α| |α|!

)1+C
.

Together with the bound on the constants, this yields the proof.

Remark 2.2.3. Suppose for simplicity that f1, . . . , f` are unary functions.
In that case the constants in the proof are the same as the constants in the
expansion of

(x1 + . . .+ x`)|α|.

Evaluating at x1 = . . . = x` = 1 gives that the sum of all these constants is
equal to `|α|.

Finally we will show a result on the composition of mild functions. It is part
of the article [VH21b], although our presentation here will be slightly different.
More precisely, we will not translate (A,B,C)-mild functions up to order r to
Gevrey functions. One then obtains a proof that is equivalent to the proof of
the fact that the composition of real analytic functions is real analytic (see
[KP02, Proposition 1.4.2]). Indeed, remember that, if C = 0, we can think of
(A,B,C)-mild functions up to order +∞ as uniform analytic functions (see
Remark 2.1.2). If C > 0 we will use that the map x 7→ x1+C is convex to reduce
to the case C = 0.

We will require a formula that gives us an expression for an arbitrary derivative
of the composition of two functions. This is known as the Faà di Bruno formula,
which is formula FdB in the proposition below.

Proposition 2.2.4 ([CS96]). Suppose that f : U → R is Cr on U and g : V ⊂
Rp → U is Cr on V . Suppose that α ∈ Np with |α| ≤ r and x ∈ V , then we
have that

(f ◦ g)(α)(x) =
∑

1≤|λ|≤|α|

f (λ)(g(x))
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(g(lj)(x))kj
kj !(lj !)|kj |

, (FdB)
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where ps(α, λ) is the set of all k1, . . . , ks ∈ Nm with |kj | > 0 and l1, . . . , ls ∈ Np
with 0 ≺ l1 ≺ . . . ≺ ls such that

s∑
j=1

kj = λ

and
s∑
j=1
|kj | lj = α.

Finally, lj ≺ lj+1 if |lj | < |lj+1| or, if |lj | = |lj+1|, then lj comes
lexicographically before lj+1.

We now show the result on compositions of (A,B,C)-mild functions up to order
r.
Proposition 2.2.5 ([VH21b, Corollary 2.5.1]). Suppose that f : U → R is
(Af , Bf , C)-mild up to order r and g : V ⊂ Rp → U is (Ag, Bg, C)-mild up to
order r. Then their composition is (A,B,C)-mild up to order r with

A = Ag(mBgAf + 1),

B = mAfBfBg
mAfBg + 1 < Bf .

Proof. Let α ∈ Np with |α| ≤ r and x ∈ U . By the Faà di Bruno formula FdB,
the triangle inequality and the bounds on the derivatives on f and g (by their
mildness) we have that

∣∣∣(f ◦ g)(α)(x)
∣∣∣ ≤ ∑

1≤|λ|≤|α|

(
BfA

|λ|
f |λ|!

)1+C


|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(BgA
|lj |
g |lj |!)|kj |(1+C)

kj !(lj !)|kj |

 . (MLD)

Note that
α!∏s

j=1 kj !(lj !)|kj |

is a positive integer (since it counts how many times some derivative appears).
Using that for all x, y > 0, x1+C + y1+C ≤ (x+ y)1+C ,we have that

∣∣∣(f ◦ g)(α)(x)
∣∣∣ ≤

 ∑
1≤|λ|≤|α|

BfA
|λ|
f |λ|!

|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(BgA
|lj |
g |lj |!)|kj |

kj !(lj !)|kj |

1+C

.
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Then we conclude by using Lemma 2.2.6 below.

Lemma 2.2.6. Let a,A, b and B be strictly positive real numbers, then for all
α ∈ Np we have that

∑
1≤|λ|≤|α|

ba|λ| |λ|!
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(BA|lj | |lj |!)|kj |

kj !(lj !)|kj |

= mabB

maB + 1(A(maB + 1))|α| |α|!,

where the left hand side follows the notation of Proposition 2.2.4.

Proof. Consider the functions f and g given by:

f(x1, . . . , xm) = b

1 +maB − a(x1 + . . .+ xm) ,

gi(x1, . . . , xp) = B

1−A(x1 + . . .+ xp)
(i = 1, . . . ,m).

Note that g(0, . . . , 0) = (B, . . . , B). One verifies that for all λ ∈ Nm:

f (λ)(g(0, . . . , 0)) = ba|λ| |λ|!

and that for all λ ∈ Np:

g(λ)(0, . . . , 0) = (BA|λ| |λ|!, . . . , BA|λ| |λ|!).

Finally, one computes directly, not using the Faà di Bruno formula FdB, that
for all λ ∈ Np:

(f ◦ g)(λ)(0, . . . , 0) = mabB

maB + 1(A(maB + 1))|λ| |λ|!

The result now follows by plugging this data into the Faà di Bruno formula
FdB.

One can summarize this section as follows. For a fixed C ≥ 0, the set consisting
of all functions f such that f is (A,B,C)-mild up to order r for some A,B > 0,
is a ring that is closed under composition.
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2.3 A particular mild function

The goal of this section is to prove the claim made in Example 2.1.4 on the
mildness of the map (0, 1)m → (0, 1)m given coordinatewise by

xi 7→ e1−1/xκi

for some κ ≥ 1. Note that exp(1 − 1/xκi ) is order preserving and a bijection
on (0, 1). Since all coordinate functions are the same function (0, 1)→ (0, 1),
we may assume that m = 1. Below, we will more generally assume that κ > 0.
The cases κ < 1 and κ ≥ 1 have the same proof method, but a slightly different
result. In the proof of Proposition 2.5.10 in Section 2.5, which generalizes this
result, we will reduce to the proof here.

The rest of this section follows the proof of [VH21a, Proposition 3.4]. We
consider the function exp(1− 1/xκ) as the composition of the functions f and g
given by f(x) = exp(x) and g(x) = 1− 1/xκ. For all ν ∈ N \ {0} we have that∣∣∣g(ν)(x)

∣∣∣ ≤ x−(κ+ν)κ(κ+ 1) · · · (κ+ ν − 1).

To simplify notation, set c(ν, κ) = κ(κ + 1) · · · (κ + ν − 1). Using the Faà di
Bruno formula FdB and the triangle inequality, we obtain for all α ∈ N \ {0}
that ∣∣∣(f ◦ g)(α)(x)

∣∣∣ ≤ ∑
1≤λ≤α

e1−1/xκ
α∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(x−(κ+lj)c(lj , κ))kj
kj !(lj !)kj

.

By the relations between α, λ, kj and lj , the right hand side of this inequality
is equal to

∑
1≤λ≤α

x−(λκ+α)e1−1/xκ
α∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

c(lj , κ)kj
kj !(lj !)kj

,

which we will rewrite as

ex−αe−1/(2xκ)
∑

1≤λ≤α
x−λκe−1/(2xκ)

α∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

c(lj , κ)kj
kj !(lj !)kj

. (2.1)

Next, it is routine to check that

max
x∈(0,1)

x−αe−1/(2xκ) =
(

2α
eκ

)α/κ
≤
(

2
κ

)α/κ
(α!)1/κ
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and

max
x∈(0,1)

x−λκe−1/(2xκ) =
(

2λκ
eκ

)(λκ)/κ
≤ 2λλ!,

where the last inequality follows from Stirling’s formula. Finally, we need the
following estimate on the constants c(lj , κ), which is not so hard to find.

clj ,κ ≤

{
κlj lj ! if κ ≥ 1,
lj ! if κ < 1.

Let us suppose κ ≥ 1. Plugging in these bounds into 2.1 gives us that

∣∣∣(f ◦ g)(α)(x)
∣∣∣ ≤ e( 2

κ

)α/κ
(α!)1/κ

∑
1≤λ≤α

2λλ!
α∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(κlj lj !)kj
kj !(lj !)kj

.

By Lemma 2.2.6, we can compute the sum and find the following upper bound:

∣∣∣(f ◦ g)(α)(x)
∣∣∣ ≤ e( 2

κ

)α/κ
(α!)1/κ 2

3(3κ)αα!.

Since we have assumed that κ ≥ 1, one has that (2/κ)1/κ ≤ 2. Therefore, we
can conclude that ∣∣∣(f ◦ g)(α)(x)

∣∣∣ ≤ (e(6κ)αα!)1+1/κ

and thus, it follows that f ◦ g is (6κ, e, 1/κ)-mild up to order +∞. Now, if
κ < 1, one has to use the other upper bound on the constants c(lj , κ) and there
is no suitable upper bound for (2/κ)1/κ, which becomes very large if κ is small.
In this case, one finds the upper bound

∣∣∣(f ◦ g)(α)(x)
∣∣∣ ≤ (e3α( 2

κ

)α/κ
α!
)1+1/κ

and concludes that the function is (3(2/κ)1/κ, e, 1/κ)-mild up to order +∞.

2.4 Weakly mild functions

In this section U is an open subset of (0, 1)m for the following two reasons. Firstly,
in the definition of a weakly mild function, we want to use negative powers
of variables, therefore we have to make sure they cannot be zero. Secondly,
in Section 2.5 we will modify their domain with functions that are bijections
(0, 1)m → (0, 1)m, for example the map we studied in the previous section.
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Definition 2.4.1. Let A,B > 0 and C ≥ 0 be real numbers and r ∈ N∪{+∞}.
A function f : U → R is weakly (A,B,C)-mild up to order r if f ∈ Cr(U)
and if for all α ∈ Nm with |α| ≤ r and x ∈ U :∣∣∣f (α)(x)

∣∣∣ ≤ x−α (BA|α||α|!)1+C
.

A map f : U → Rn is weakly (A,B,C)-mild up to order r if all of its component
functions are.

An example of a class of functions that are weakly (A,B,C)-mild up to order
+∞ is given by the following lemma.

Lemma 2.4.2 ([VH21b, Lemma 3.2]). Let b : U → R be given by b(x) = xµ for
some µ ∈ Rm and suppose that b is bounded. Then b is weakly (A,B, 0)-mild
up to order +∞ with A = max(|µ1| , . . . , |µm| , 1) and B = supU b(x).

Proof. Clearly we have that

b(α)(x) = c(α, µ)x−αb(x)

for some constant c(α, µ) that depends on α and µ, because of the form of the
function b. Let B = supU b(x), then we have that∣∣∣b(α)(x)

∣∣∣ ≤ x−αB |c(α, µ)| .

It remains to bound |c(α, µ)|. Let A = max(|µ1| , . . . , |µm| , 1), then one
computes that

|c(α, µ)| ≤ A(A+ 1) · · · (A+ |α| − 1) ≤ A|α| |α|!

Example 2.4.3. This lemma tells us that the function
√
x : (0, 1)→ (0, 1) is

weakly (1, 1, 0)-mild up to order +∞, which is more accurate than the poor
conclusion we had to make on its mildness in Example 2.1.4. Another example,
that does not fit into this class of functions, is the function x ln(x) on (0, 1)
because we have that |ln(x)| < 1/x on (0, 1). It is also weakly (1, 1, 0)-mild up
to order +∞.

For completeness, let us give the following result. The proof is completely
analogous to the results on addition and multiplication of (A,B,C)-mild
functions up to order r in propositions 2.2.1 and 2.2.2.
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Proposition 2.4.4. Suppose that for i = 1, . . . , ` the function fi : U → R is
weakly (Ai, Bi, C)-mild up to order r. Let A = max(Ai) and B = max(Bi).

1. Their sum is weakly (A, `B,C)-mild up to order r.

2. Their product is weakly (`A,B`, C)-mild up to order r.

Thus we can conclude that, for a fixed C ≥ 0, the set consisting of all functions
f such that f is weakly (A,B,C)-mild up to order r for some A,B > 0, is a ring.
Obviously, it contains the (A,B,C)-mild functions up to order r as a subring.
However, it is not closed under compositions. Indeed, the composition of weakly
(A,B,C)-mild functions up to order r is not (necessarily) weakly (A,B,C)-mild
up to order r (for some possibly different A and B). However, one type of
compositions can be made. The notation of the following proposition follows
the notation of propositions 2.2.4 and 2.2.5.

Proposition 2.4.5 ([VH21b, Proposition 2.7]). Suppose that f : U → R is
(Af , Bf , C)-mild up to order r and that g : V → U is weakly (Ag, Bg, C)-mild
up to order r. Then their composition is weakly (A,B,C)-mild up to order r
with

A = Ag(mBgAf + 1),

B = mBfBg

mBg +A−1
f

< Bf .

Proof. The only modification that has to be made to the proof of Proposition
2.2.5 is that inequality MLD now additionally has negative powers of x coming
from upper bounds on the derivatives of g. More precisely, in this case we have
that∣∣∣(f ◦ g)(α)(x)

∣∣∣
≤

∑
1≤|λ|≤r

(
BfA

|λ|
f |λ|!

)1+C |α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

x−|kj |lj (BgA
|lj |
g |lj |!)|kj |(1+C)

kj !(lj !)|kj |

≤ x−α
∑

1≤|λ|≤r

(
BfA

|λ|
f |λ|!

)1+C |α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(BgA
|lj |
g |lj |!)|kj |(1+C)

kj !(lj !)|kj |
,

since
∑s
j=1 |kj | lj = α. Thus, up to the factor x−α, we obtain the same upper

bound as in the right hand side of inequality MLD in Proposition 2.2.5. The
proof now continues by bounding the sum in the same way.
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2.5 Substitutions

The subject of this section is the following. Given some function f : U → R
which is (weakly) (A,B,C)-mild function up to order r, we want to compose it
with some bijection P : V → U such that the upper bounds on the derivatives
of f ◦ P are even better. So we replace the variables of f by some functions
in these variables and this should improve f from this point of view. For this
reason, this technique is often referred to as a substitution.

Linear substitutions

The first kind of substitution, a linear substitution, improves the bounds on the
derivatives of (A,B,C)-mild functions up to order r.

Lemma 2.5.1 ([VH21b, Lemma 2.1]). Suppose f : U → R is (A,B,C)-mild
up to order r ∈ N. Let P` : Rm → Rm be the map given coordinatewise by

xi 7→
1

(Ar)1+C xi.

Then for all α ∈ Nm with |α| ≤ r and x ∈ P−1
` (U):

∣∣(f ◦ P`)(α)(x)
∣∣ ≤ B1+C .

Proof. Let α ∈ Nm with |α| ≤ r and x ∈ P−1
` (U). By the chain rule, we have

that

(f ◦ P`)(α)(x) =
(

1
(Ar)1+C

)|α|
f (α)(P`(x)).

Since P`(x) ∈ U , f is (A,B,C)-mild up to order r on U and |α| ≤ r, we have
that ∣∣∣f (α)(P`(x))

∣∣∣ ≤ (BA|α| |α|!)1+C .

Since |α| ≤ r, we have that |α|! ≤ r|α|, thus:∣∣∣(f ◦ P`)(α)(x)
∣∣∣ ≤ ( 1

(Ar)1+C

)|α|
(BA|α| |α|!)1+C ≤ B1+C .

Remark 2.5.2.

1. Of course, if a function is (A,B,C)-mild up to order +∞, it is also
(A,B,C)-mild up to order r for all r ∈ N. In that way, one can apply the
lemma to that function.
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2. Clearly, if f : U → R is a function such that all derivatives up to order
r < +∞ are bounded by some formula, one can find some constant L > 0,
define P` coordinatewise by xi 7→ Lxi and also find such a result. The
point here is that we have an explicit formula for L in this lemma that is
related to the mildness parameters A,B and C in a convenient way. This
lemma will allow us to count the number of charts of a parametrization
in Chapter 3, see Lemma 3.1.7.

Power substitutions

For weakly (A,B,C)-mild functions up to order r satisfying a condition on their
first order derivatives, power substitutions transform them into an (A′, B′, C)-
mild function up to some finite order for some A′, B′ > 0 for which we will
derive a formula, using the results of Section 2.2. In fact, this property could be
regarded as the motivation for the definition of weakly (A,B,C)-mild functions
up to order r (see Lemma 3.2.3 in Chapter 3). It also gives us a way to construct
more examples of (A,B,C)-mild functions up to order r ∈ N. Remember that
for weakly (A,B,C)-mild functions up to order r, we suppose that their domain
U is an open subset of (0, 1)m.

Proposition 2.5.3 ([VH21b, Proposition 2.6]). Suppose that for all β ∈ Nm
with |β| ≤ 1, the function f (β) : U → R is weakly (A,B,C)-mild up to order
r ∈ N. Let N ∈ Nm such that for all i ∈ {1, . . . ,m}, r ≤ Ni and Pr : (0, 1)m →
(0, 1)m be the map given coordinatewise by

xi 7→ xNii .

Then f ◦ Pr is (M(mA+ 1),max(B,B/A), C)-mild up to order r on P−1
r (U),

where M = maxiNi.

Proof. Of course, we start with the Faà di Bruno formula FdB and apply the
triangle inequality to obtain that for all α ∈ Nm with |α| ≤ r and x ∈ P−1

r : (U):

∣∣∣(f ◦ Pr)(α)(x)
∣∣∣ ≤ ∑

1≤|λ|≤|α|

∣∣∣f (λ)(Pr(x))
∣∣∣


|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

∣∣∣∣(P (lj)
r (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

 . (2.2)
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Now fix a term of the sum in this upper bound, i.e., fix some λ ∈ Nm, s ∈
{1, . . . , |α|} and k1, . . . , ks,l1, . . . , ls ∈ ps(α, λ). We now focus on

∣∣∣f (λ)(Pr(x))
∣∣∣α!

s∏
j=1

∣∣∣∣(P (lj)
r (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

. (2.3)

Let k ∈ {1, . . . ,m} be such that xk = min{xi | λi 6= 0} and let λ′ ∈ Nm be such
that f (λ) = (∂f/∂xk)(λ′). We will now use that for all β ∈ Nm with |β| ≤ 1,
the function f (β) is weakly (A,B,C)-mild up to order r. Since Pr(x) ∈ U , we
have that∣∣∣f (λ)(Pr(x))

∣∣∣ =

∣∣∣∣∣
(

∂

∂xk
f

)(λ′)
(Pr(x))

∣∣∣∣∣ ≤ x−Nλ′(BA|λ′| |λ′|!)1+C ,

where Nλ′ = (Niλ′i)i. Note that x−Nλ′ is the only factor in this upper bound
that depends on k. This dependance will vanish later on. Using this upper
bound, we can bound 2.3 by:

x−Nλ
′
(BA|λ

′| |λ′|!)1+Cα!
s∏
j=1

∣∣∣∣(P (lj)
r (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

. (2.4)

Recall that M = maxiNi. Let i ∈ {1, . . . ,m} be arbitrary. We will find an
upper bound on the contribution of xi to 2.4. Since (Pr)i(x) = xNii , we have
that ∣∣∣(Pr)(lj)

i (x)
∣∣∣ ≤M |lj |xNi−lj,ii ≤ xNi−lj,ii (M |lj | |lj |!)1+C .

From this, using the relations that α, λ, k1, . . . , ks and l1, . . . , ls satisfy, we
deduce that

x
−Niλ′i
i

s∏
j=1

∣∣∣((Pr)(lj)
i (x))kj,i

∣∣∣
≤ x−Niλ

′
i

i

s∏
j=1

(
x
Ni−lj,i
i (M |lj | |lj |!)1+C

)kj,i

≤ x−Niλ
′
i

i x
λiNi−

∑s

j=1
kj,ilj,i

i

s∏
j=1

(
(M |lj | |lj !|)1+C

)kj,i
.

If i 6= k, then

x
−Niλ′i
i x

λiNi−
∑s

j=1
kj,ilj,i

i = x
Ni(λi−λ′i)−

∑s

j=1
kj,ilj,i

i = x
−
∑s

j=1
kj,ilj,i

i .
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If λi 6= 0, then we have that xk ≤ xi and thus we can further bound this as
follows:

x
−
∑s

j=1
kj,ilj,i

i ≤ x
−
∑s

j=1
kj,ilj,i

k ≤ x−αik ,

where we have used that
∑s
j=1 |kj | lj = α and that x ∈ P−1

r (U) ⊂ (0, 1)m.
Now if λi = 0, we have that kj,i = 0 for j = 1, . . . , s, since

∑s
j=1 kj = λ, and

therefore we may use the same upper bound.

If i = k, then

x
−Niλ′i
i xλiNi−αii = x

Nk(λk−λ′k)−αk
k ≤ xNk−αkk .

We can now further bound 2.4, additionally using that |α| ≤ r ≤ Nk:

x−Nλ
′
(BA|λ

′| |λ′|!)1+Cα!
s∏
j=1

∣∣∣∣(P (lj)
r (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

≤ xNk−|α|k (BA|λ
′| |λ′|!)1+Cα!

s∏
j=1

(
M |lj | |lj |!

)(1+C)|kj |

kj !(lj !)|kj |

≤ (BA|λ
′| |λ′|!)1+Cα!

s∏
j=1

(
M |lj | |lj |!

)(1+C)|kj |

kj !(lj !)|kj |

≤
(
B

A
A|λ| |λ|!

)1+C
α!

s∏
j=1

(
M |lj | |lj |!

)(1+C)|kj |

kj !(lj !)|kj |
.

This upper bound no longer depends on x (and thus neither on k).

Finally, putting everything together, we can now further bound 2.2 and obtain
that

∣∣∣(f ◦ Pr)(α)(x)
∣∣∣ ≤ ∑

1≤|λ|≤|α|

(
B

A
A|λ| |λ|!

)1+C


|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(
M |lj | |lj |!

)(1+C)|kj |

kj !(lj !)|kj |

 .

The right hand side of this inequality is exactly of the form of the right hand
side in inequality MLD. Hence, the proof continues as the proof of Proposition
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2.2.5 and we can conclude that f ◦ Pr is (M(mA+ 1),max(B,B/A), C)-mild
up to order r.

Remark that one has to take max(B,B/A) since if A ≥ 1 the best upper bound
for |(f ◦ Pr)(x)| remains B, of course.

Remark 2.5.4.

1. If f is weakly (A,B,C)-mild up to order +∞, it is also weakly (A,B,C)-
mild up to order r for all r ∈ N. Thus we can apply this proposition to
these functions. Also, if k ≤ r and Pr is defined by some m-tuple N with
k ≤ Ni, then the composition will be (M(mA+ 1),max(B,B/A), C)-mild
up to order k, where M is again the maximum over all Ni.

2. Unless stated otherwise, we will assume that Pr is the map defined as
above, with N = (r, . . . , r) ∈ Nm.

3. One can relax the condition on f (β) for |β| = 1 and also obtain a slightly
cleaner result, namely that the composition is (M(mA+ 1), B,C)-mild
up to order r, if one asks instead that∣∣∣∣(f (β)

)(λ)
(x)
∣∣∣∣ ≤ (BA|λ|+1(|λ|+ 1)!)1+C 1

xλ

for all β ∈ Nm with |β| = 1. In that case, we don’t have to do the
additional step

(BA|λ
′| |λ′|!)1+C ≤

(
B

A
A|λ| |λ|!

)1+C

in the end of the proof. Using this trick, the result on the mildness
parameters A, B and C is the same as in Proposition 2.2.5, i.e., completely
agrees with the formula for composition.

Example 2.5.5. Let U = {(x, y) ∈ (0, 1)2 | x < y} and let f : U → R be given
by f(x, y) = x2y−1. One verifies that

sup
|β|≤1

(x,y)∈U

∣∣∣f (β)(x)
∣∣∣ ≤ 2.

By Lemma 2.4.2, we can conclude that for all β ∈ N2 with |β| ≤ 1, the function
f (β) is weakly (2, 2, 0)-mild up to order +∞. Let r ∈ N. By Proposition 2.5.3
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the composition f ◦ Pr is (6r, 2, 0)-mild up to order r on P−1
r (U). Note that

(f ◦ Pr)(x, y) = x2ry−r and that P−1
r (U) = U , so one can check directly that

f ◦ Pr is (2r, 1, 0)-mild up to order r.

Clearly, in the case of monomials, it is not necessary to use the Faà di Bruno
formula to compute an upper bound on the composition with Pr. By avoiding
this, one can obtain a sharper and more precise result on the mildness parameters
A and B, similar to the result in Lemma 2.4.2. The next proposition is a slightly
simpler version of [VH21b, Proposition 3.4].

Proposition 2.5.6. Let b : U → R be given by b(x) = xµ for some µ ∈ Rm
and suppose that there exists some B > 0 such that for all x ∈ U : |b(x)| ≤ B
and ∣∣∣∣ 1

µi

(
∂b

∂xi

)
(x)
∣∣∣∣ ≤ B

for all i ∈ {1, . . . ,m} such that µi 6= 0. Let Pr and M be defined as in
Proposition 2.5.3. Then b ◦ Pr : P−1

r (U)→ R is (AM,B, 0)-mild up to order r,
where A = max(|µ1| , . . . , |µm| , 1).

Note that the condition on the first order derivatives of b is equivalent to saying
that they are bounded.

Proof. Let α ∈ Nm with |α| ≤ r and x ∈ P−1
r (U). Since b ◦ Pr is also a

monomial, we have that

(b ◦ Pr)(α)(x) = c(α,Nµ)x−α(b ◦ Pr)(x)

as in Lemma 2.4.2, where Nµ = (Niµi)i. Following the proof strategy of
Proposition 2.5.3, for some suitable k ∈ {1, . . . ,m}, we have that

∣∣x−α(b ◦ Pr)(x)
∣∣ ≤ ∣∣∣x−Nkk (b ◦ Pr)(x)

∣∣∣ =
∣∣∣∣ 1
µk

(
∂

∂xk
b

)
(Pr(x))

∣∣∣∣ .
From the proof of Lemma 2.4.2, we see that |c(α,Nµ)| ≤ (AM)|α| |α|!

The exponential substitution

The exponential substitution has a similar property as the power substitution,
namely if f is weakly (A,B,C)-mild up to order +∞ and satisfies the same
additional condition on its first order derivatives, then the composition will be
(A′, B′, C ′)-mild up to order +∞ for some A′, B′ > 0 and C ′ > 0. The map we
will use, is the map of Section 2.3.
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Proposition 2.5.7 ([VH21a, Proposition 4.3]). Suppose that for all β ∈ Nm
with |β| ≤ 1, the function f (β) : U → R is weakly (A,B,C)-mild up to order
r ≤ +∞. Let κ > 0 and P∞ : (0, 1)m → (0, 1)m be the map given coordinatewise
by

xi 7→ e1−1/xκi .

Then f ◦ P∞ is (Ã, B̃, 1 + C + 1/κ)-mild up to order r on P−1
∞ (U), where

Ã =
{

8κ(mA+ 1) if κ ≥ 1,
2(1 + 1/κ)1+1/κ(mA+ 1) if κ < 1,

and B̃ = max(eB/A,B, 1).

Proof. The proof follows the same strategy as the proof of Proposition 2.5.3.
Let us suppose κ ≥ 1 for the bounds on the derivatives of P∞, the other case is
completely analogous.

Let α ∈ Nm with |α| ≤ r and x ∈ P−1
∞ (U). To bound

∣∣(f ◦ P∞)(α)(x)
∣∣, we

use the Faà di Bruno formula FdB and apply the triangle inequality. Next,
we consider a fixed term of this sum, thus we fix λ ∈ Nm, s ∈ {1, . . . , |α|} and
k1, . . . , ks, l1, . . . , ls ∈ ps(α, λ) and will found an upper bound for

∣∣∣f (λ)(P∞(x))
∣∣∣α!

s∏
j=1

∣∣∣∣(P (lj)
∞ (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

.

Let k ∈ {1, . . . ,m} be such that xk = min{xi | λi 6= 0} and let λ′ ∈ Nm be such
that f (λ) = ((∂/∂xk)(f))(λ′). Then we have that

∣∣∣f (λ)(P∞(x))
∣∣∣ =

∣∣∣∣∣
(

∂

∂xk
f

)(λ′)
(P∞(x))

∣∣∣∣∣ ≤ (P∞(x))−λ
′
(
B

A
A|λ| |λ|!

)1+C
.

For the derivatives of P∞, we use the upper bound on the coordinate functions
from Expression 2.1 in Section 2.3. In this way, we obtain that:

∣∣∣(P∞)(lj)
i (x)

∣∣∣ ≤ x−(κ+1)lj,i
i e1−1/xκi

∑
1≤λ̃≤lj,i

lj,i∑
s̃=1

∑
ps̃(lj,i,λ̃)

lj,i!
s̃∏
j̃=1

c(l̃j̃ , κ)k̃j̃

k̃j̃ !(l̃j̃ !)k̃j̃
(exp)

≤ x−(κ+1)lj,i
i (P∞)i(x)(2κ)|lj | |lj |!,

where we have used that κ ≥ 1 to bound the constants c(l̃j̃ , κ). Putting these
two bounds together, using the relations between λ, k1, . . . , ks and l1, . . . , ls,
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and by our choice of k, we find that

∣∣∣f (λ)(P∞(x))
∣∣∣α!

s∏
j=1

∣∣∣∣(P (lj)
∞ (x)

)kj ∣∣∣∣
kj !(lj !)|kj |

≤ x−(κ+1)|α|
k (P∞)k(x)

(
B

A
A|λ| |λ|!

)1+C
α!

s∏
j=1

((2κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |

≤ x−(κ+1)|α|
k (P∞)k(x)

(
B

A
A|λ| |λ|!

)1+C
α!

s∏
j=1

((2κ)|lj | |lj |!)|kj |(1+C)

kj !(lj !)|kj |
.

The factor x−(κ+1)|α|
k (P∞)k(x) no longer depends on λ and thus can be factored

out. More precisely, we have that

∣∣∣(f ◦ P∞)(α)(x)
∣∣∣ ≤ x−(κ+1)|α|

k (P∞)k(x)


∑

1≤|λ|≤|α|

(
B

A
A|λ| |λ|!

)1+C |α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

((2κ)|lj | |lj |!)|kj |(1+C)

kj !(lj !)|kj |

 .

Finally, as in Section 2.3, one checks that

x
−(κ+1)|α|
k (P∞)k(x) ≤ e

(
(κ+ 1) |α|

eκ

)(κ+1)|α|/κ

≤ e
(
κ+ 1
κ

)(κ+1)|α|/κ
(|α|!)1+1/κ.

Since we supposed κ ≥ 1, it is true that ((κ+ 1)/κ)(κ+1)/κ ≤ 4. As in the proof
of Proposition 2.2.5, using Lemma 2.2.6, one can bound the sum by(

B

A
(2κ(mA+ 1))|α| |α|!

)1+C
.

Thus we conclude that∣∣∣(f ◦ P∞)(α)(x)
∣∣∣ ≤ (B̃(8κ(mA+ 1))|α| |α|!

)2+C+1/κ
.
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Remark 2.5.8. The mildness parameter C of the composition f ◦ P∞ in this
result is too large, it would be better to obtain C + 1/κ instead. We will obtain
this in a particular case in Proposition 2.5.10. This problem is caused by the
upper bound in Inequality exp, which deviates from the proof strategy in Section
2.3 to show that P∞ has C = 1/κ. More precisely, in Formula 2.1 in Section 2.3,
we have only factored out a factor that can be bounded by (|α|!)1/κ, while here
we have factored out a factor that can only be bounded by (|α|!)1+1/κ. It is
necessary to factor out P∞(x)i in order to cancel the negative powers of P∞(x)
coming from upper bounds on the weakly (A,B,C)-mild function f . But then
one can not use the full strength of Lemma 2.2.6 in Inequality exp, since there
is no λ̃! left in the summation.

Example 2.5.9. Let U = {(x, y) ∈ (0, 1)2 | x < y} and let f : U → R be
given by f(x, y) = x4y−1 ln(x). One can check that for all β ∈ N2 with |β| ≤ 1
the function f is weakly (5, 1, 0)-mild up to order +∞. By Proposition 2.5.7
for κ ≥ 1, we have that f ◦ P∞ is (88κ, 1, 1 + 1/κ)-mild up to order +∞ on
P−1
∞ (U) = U . Note that

(f ◦ P∞)(x, y) = e3−4/xκ+1/yκ(1− 1/xκ).

We will improve the mildness parameter C = 1 + 1/κ to 1/κ in Section 2.6.

Finally, we show the stronger result that we have mentioned in Remark 2.5.8
above. The proof generalizes the method of Section 2.3.

Proposition 2.5.10 ([VH21a, Proposition 4.5]). Let b : U → R be given
by b(x) = xµ for some µ ∈ Rm and P∞ : (0, 1)m → (0, 1)m be the map of
Proposition 2.5.7. Suppose that for all β ∈ Nm with |β| ≤ 1 the function b(β) is
bounded. Then b ◦ P∞ is (A,B, 1/κ)-mild up to order +∞ on P−1

∞ (U), where

A =
{

2κ(2mM + 1) if κ ≥ 1,
(2/κ)1/κ(2mM + 1) if κ < 1,

with M = max(|µ1| , . . . , |µm|) + 1 and B = NeM with

N = max
i

(sup
x∈U
|b(x)| , sup

x∈U
|(1/µi)(∂b/∂xi)(x)| , 1).

Proof. To start, note that b ◦ P∞ is given by:

(b ◦ P∞)(x) = e
∑m

i=1
µi(1−1/xκi ).

We consider this as the composition of the functions f and g, where

f(x) = ex1+...+xm ,
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and
g(x) = (µ1(1− 1/xκ1 ), . . . , µm(1− 1/xκm)) .

For the computations below, we may suppose that µ1, . . . , µm are non-zero. Let
i ∈ {1, . . . ,m} and ν ∈ Nm with |ν| ≥ 1. We have that∣∣∣g(ν)

i (x)
∣∣∣ ≤ κ(κ+ 1) · · · (κ+ |ν| − 1)µix−(κ+νi)

i ≤ c(ν, κ)Mx
−(κ+νi)
i ,

where c(ν, κ) = κ(κ+ 1) · · · (κ+ |ν| − 1) as in Section 2.3. Now let α ∈ Nm with
|α| ≥ 1 and x ∈ (P∞)−1(U). As before, we use the Faà di Bruno formula FdB
and the triangle inequality together with this bound to find that∣∣∣(b ◦ P∞)(α)(x)

∣∣∣ =
∣∣∣(f ◦ g)(α)(x)

∣∣∣
≤

∑
1≤|λ|≤|α|

∣∣∣f (λ)(g(x))
∣∣∣ |α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

∣∣(g(lj)(x))kj
∣∣

kj !(lj !)|kj |

≤
∑

1≤|λ|≤|α|

|f(g(x))|
|α|∑
s=1

∑
ps(α,λ)

α!x−(α+κλ)
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |

=
∑

1≤|λ|≤|α|

x−(α+κλ) |f(g(x))|
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |
, (2.5)

where we have used the relations between α, λ, k1, . . . , ks and l1, . . . , ls to obtain
the factor x−(α+κλ), and where c(κ) is κ if κ ≥ 1 and c(κ) is 1 if κ < 1.

Let k ∈ {1, . . . ,m} be such that xk = mini(xi). Then we have that

x−(α+κλ) ≤ x−(|α|+κ|λ|)
k .

Note that it might be possible that xk does not occur in the left hand side of
this inequality or there might not even be differentiation with respect to xk,
but that is not important here.

Next, define µ′ ∈ Rm by µ′i = µi if i 6= k and µ′k = µk − 1, then we have that
µkx

µ′ = (∂b/∂xk)(x). We now rewrite f ◦ g as follows.

f(g(x)) = e
∑m

i=1
µi(1−1/xκi )

= eµk(1−1/xκk)e
∑m

i=1
µ′i(1−1/xκi )

= eµk(1−1/xκk)
((

1
µk

(∂b/∂xk)
)
◦ P∞

)
(x)
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Since P∞(x) ∈ U and b(β) is bounded for all β ∈ Nm with |β| ≤ 1, we have that
(1/µk)(∂b/∂xk)(P∞(x)) ≤ N . We can now further bound 2.5:

∑
1≤|λ|≤|α|

x−(α+κλ) |f(g(x))|
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |

≤
∑

1≤|λ|≤|α|

x
−(|α|+κ|λ|)
k Neµk(1−1/xκk)

|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |

≤ NeMx−|α|k e−1/(2xκk)
∑

1≤|λ|≤|α|

x
−κ|λ|
k e−1/(2xκk)


|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |

 . (2.6)

The proof now follows the last part of Section 2.3. First one checks that

x−|α|e−1/(2xκk) ≤
(

2 |α|
eκ

)|α|/κ
≤
(

2
κ

)|α|/κ
(|α|!)1/κ

x−κ|λ|e−1/(2xκk) ≤
(

2 |λ|
e

)κ|λ|/κ
≤ 2|λ| |λ|!

and plugs this into 2.6:

NeM
(

2
κ

)|α|/κ
(|α|!)1/κ

∑
1≤|λ|≤|α|

2|λ| |λ|!
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |
.

Now apply Lemma 2.2.6 to get that

∑
1≤|λ|≤|α|

2|λ| |λ|!
|α|∑
s=1

∑
ps(α,λ)

α!
s∏
j=1

(Mc(κ)|lj | |lj |!)|kj |

kj !(lj !)|kj |
≤ (c(κ)(2mM + 1))|α| |α|!

Putting everything together we find that

∣∣∣(b ◦ P∞)(α)(x)
∣∣∣ ≤

NeM (c(κ)
(

2
κ

)1/κ
(2mM + 1)

)|α|
|α|!

1+1/κ

.
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Finally, if κ ≥ 1, we have that

c(κ)
(

2
κ

)1/κ
≤ 2κ

and if κ < 1 we have that

c(κ)
(

2
κ

)1/κ
≤
(

2
κ

)1/κ
.

Remark 2.5.11. Unless stated otherwise, we will always use κ ≥ 1 from now
on, since the mildness parameters A and C are large if κ < 1.

Example 2.5.12. Consider the function of Example 2.5.5, which was f(x, y) =
x2y−1 on the domain U = {(x, y) ∈ (0, 1)2 | x < y}. Using this proposition, we
find that f ◦ P∞ is (26κ, 2e3, 1/κ)-mild up to order +∞.

Now this example might make you wonder: if I want to use a substitution
to improve the derivatives of a weakly (A,B,C)-mild function up to order
+∞ (or suitably large r ∈ N), with regard to obtaining the smallest mildness
parameters A, B and C, should I use the power substitution or the exponential
substitution?

Let us give some answer in the case that f(x) = xµ with bounded first order
derivatives. In that case we can use the stronger result of Proposition 2.5.10
instead of Proposition 2.5.7 for the exponential substitution, which makes a
difference of a factor |α|!. Using a power substitution, the function becomes
(rA,B, 0)-mild up to order r and using the exponential substitution, it becomes
(κA,B, 1/κ)-mild up to order +∞ for some A,B > 0, which we assume to be
the same in both cases for simplicity. Thus, the bounds on the derivatives are

B(rA)|α| |α|!

for the power substitution, and

(B(κA)|α| |α|!)1+1/κ

for the exponential substitution. Now let us assume that A ≥ 1 such that the
bounds increase as |α| increases. We have that rr ≥ r!. Therefore, if r is large,
it seems slightly better to use the exponential substitution for some κ > 1, from
this point of view.

The mildness parameters A and B have a significant impact if the order of the
derivatives is small. The formulas from Proposition 2.5.3 (or 2.5.6) seem better
than in Proposition 2.5.10 (in terms of A and B, if not assumed equal) in that
case.
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2.6 Additional results

We generalize or improve some results on (A,B,C)-mild functions up to order
r, introduce a variant that allows more flexibility and discuss a more general
class of functions.

Improving Example 2.5.9

We will improve the mildness parameter C from 1 + 1/κ to 1/κ in Example
2.5.9, as we have mentioned there. To achieve this, we first show the following
lemma.

Lemma 2.6.1. Suppose f : U → R is (A,B,C)-mild up to order r ≥ 1. Then
for all β ∈ Nm with |β| = 1, f (β) is (2A,AB,C)-mild up to order r − 1.

Proof. Let α ∈ Nm with |α| ≤ r − 1 and x ∈ U . Then we have that∣∣∣(f (β))(α)(x)
∣∣∣ =

∣∣∣f (α+β)(x)
∣∣∣ ≤ (BAA|α|(|α|+ 1) |α|!)1+C ,

where we used that |β| = 1. One finishes the proof using that for all n ∈ N :
n+ 1 ≤ 2n.

We now use this lemma to show that f ◦ P∞ is (A,B, 1/κ)-mild up to order
+∞, where f : U → R is given by x2 ln(x), with U = {(x, y) ∈ (0, 1)2 | x < y}.
Note that f ◦ P∞ is given by

e2(1−1/xκ)
(

1− 1
xκ

)
.

Recall from Section 2.3 that the function exp(1−1/xκ) is (6κ, e, 1/κ)-mild up to
order +∞ if κ ≥ 1. By the lemma above, we have that its first order derivative
is (12κ, 6eκ, 1/κ)-mild up to order +∞. Using Proposition 2.2.2, we conclude
that the function

e1−1/xκ x

κ

(
∂

∂x
e1−1/xκ

)
= 1
xκ
e2(1−1/xκ)

is (36κ, (6eκ)3, 1/κ)-mild up to order +∞. Using Proposition 2.2.1, we conclude
that f ◦ P∞ is (36κ, 2(6eκ)3, 1/κ)-mild up to order +∞.

This computation shows that in Example 2.5.9, one could indeed improve the
mildness parameter C from 1 + 1/κ to 1/κ (possibly enlarging the mildness
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parameters A and B) if one does not appeal to Proposition 2.5.7. Indeed, in that
example we considered the function x4y−1 ln(x) defined on the same domain U .
We have that x4y−1 ln(x) = (x2y−1)(x2 ln(x)). The factor x2y−1 satisfies the
conditions of Proposition 2.5.3. Together with the above computations, this
shows the claim on the mildness parameter C of the composition with P∞.

Remark 2.6.2. Consider the function x ln(x) on (0, 1). Its first order derivative,
ln(x) + 1, is unbounded. However, the computations above show that its
composition with P∞, given by:

e1− 1
xκ

(
1− 1

xκ

)
,

is (A,B, 1/κ)-mild up to order +∞ for some A,B > 0. Of course, the monomial
appearing in front of ln(x), just x in this case, does obviously have bounded
first order derivative.

In this way, it seems that the exponential substitution for monomials, i.e.,
Proposition 2.5.10, can be extend to some class of functions where logarithms
are involved.

Non-examples

Firstly, if f ∈ C∞(U) has bounded derivatives, this does not imply that f is
(A,B,C)-mild up to order +∞ for some A,B > 0 and C ≥ 0. To construct an
example of such a function, consider the sequence ((i!)i)i and fix some x ∈ U .
By Borel’s Theorem (see for instance [Bes14]), there is some smooth function f ,
defined on an open neighborhood of x, whose i-th order derivative at x is given
by (i!)i. For any choice of A,B > 0 and C ≥ 0, (BAii!)1+C will eventually be
smaller than (i!)i, thus this function f cannot be (A,B,C)-mild up to order
+∞ for any A,B > 0 and C ≥ 0.

While I am not aware of an “easy example” of a smooth function that has
bounded derivatives, but that is not (A,B,C)-mild up to order +∞ for some
A,B > 0 and C, let me mention a function that I have in mind and an
indication why I think so. Consider the function f : (0, 1) → (0, 1) given by
f(x) = x− ln(x) = e− ln(x)2 . One can check that the derivatives of − ln(x)2 are
given by: (

− ln(x)2)(k) = −ak + bk ln(x)
xk

,

with bk+1 = −kbk, ak+1 = bk−kak, b1 = 2 and a1 = 0. After some computations
using the Faà di Bruno formula FdB for the functions ex and − ln(x)2, one
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finds that the derivative of order α is a sum over λ, where each summand has a
factor of the form

ln(x)λ

xα
e− ln(x)2

.

These functions have a critical point at x = e(−α−
√
α2+8λ)/4. In this way, we

end up with a factor of order eα2 , which cannot be bounded by (α!)1+C . While
this does not yet prove that this sum could not be bounded in a suitable way
such that f is (A,B,C)-mild up to order +∞, I think it seems rather unlikely
for this reason. Finally, note that all derivatives of f vanish at 0 and that it is
a bijection (0, 1) → (0, 1). Therefore it, could potentially be used as another
type of exponential substitution.

More on power substitutions

Let P : U ⊂ (0, 1)2 → Im(P ) be given by

P (x, y) = (x4, x3y−1),

where U = {(x, y) ∈ (0, 1)2 | x < y}. This map is (4, 1, 0)-mild up to order
2. Now let r ∈ N and recall that the map Pr : (0, 1)2 → (0, 1)2 is given by
Pr(x, y) = (xr, yr). Clearly, we have that (P ◦ Pr)(x, y) = (x4r, x3ry−r), which
is (4r, 1, 0)-mild up to order r by Proposition 2.5.6. In fact, the mildness is up
to order 2r here.

Now let f : V ⊂ Im(P ) → R be such that for all β ∈ N2 with |β| ≤ 1 the
function f (β) is weakly (A,B,C)-mild up to order +∞. Then f ◦ (P ◦ Pr) is
(A′, B′, C)-mild up to order 2r for some A′, B′ > 0. To show this, one has to
slightly modify the proof of Proposition 2.5.3. More precisely, let α ∈ N2 with
|α| ≤ 2r and (x, y) ∈ U . As usual, we fix a term in the Faà di Bruno formula
FdB. We now have∣∣∣(f ◦ (P ◦ Pr))(λ)(x)

∣∣∣ ≤ (P ◦ Pr)(x)−λ
′
((B/A)A|λ| |λ|!)1+C ,

where λ′ ∈ N2 such that λ = λ′ + β for some β ∈ N2 with |β| = 1, which we
can pick later. One checks that∣∣∣∣∣∣

s∏
j=1

((P ◦ Pr)(lj)(x))kj

∣∣∣∣∣∣ ≤ (P ◦ Pr)λ(x, y)−α((4r)|α| |α|!).

We now have to choose β such that (P ◦ Pr)β(x, y)−α is bounded. If α2 6= 0,
then we may suppose λ2 6= 0. Indeed, if λ2 = 0 and α2 6= 0, this term will be
zero. Thus in this case, α2 6= 0, we pick β = (0, 1). Then we obtain a factor
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x3ry−r which can be used to bound (x, y)−α since the derivatives up to order
2r of x3ry−r are bounded. If α2 = 0, the choice of β doesn’t matter since both
x4r and x3ry−r can be used to bound (x, y)−α. We conclude that in each term,
we can bound all powers of (x, y) independent of (x, y) and then we can apply
Lemma 2.2.6 to find an expression for A′ and B′.

In this way, one can come up with more maps P that could be used as a power
substitution. More precisely, one could look at maps whose component functions
are of the form

xµF (x)
for some µ ∈ R such that all derivatives up to order r of xµ are bounded and
where F is non-vanishing and (A,B,C)-mild up to order r for some A,B > 0
and C ≥ 0. Since F is non-vanishing, it will only contribute to the mildness
parameters of the composition, it is the factor xµ that makes it, possibly, a
power substitution. Indeed, if P is of this form, it might not be completely
clear that it is suitable to be a power substitution. One sees that, in order
to be able to argue as above, one should be able to do the following. For all
x in the domain of P , all α ∈ Nm with |α| ≤ r, λ ∈ Nm with 1 ≤ |λ| ≤ |α|,
s ∈ {1, . . . , |α|} and k1, . . . , ks, l1, . . . , ls ∈ ps(α, λ), if the corresponding term
in the Faà di Bruno formula is non-zero, there should be a component function
Pi, with λi 6= 0, such that

Pi(x)x−α

is bounded independently of x. A stronger condition, but that is easier to see, is
that for all monomials in the component functions, “all derivatives up to order
r correspond (up to a nonzero factor) to division by variables” or, equivalently,
“is of order r”. Let us put this in a formal definition.
Definition 2.6.3. Let b : U ⊂ (0, 1)m → R be a function of the form b(x) = xµ

for some µ ∈ Rm. Then we say that b has order r ∈ N if for all α ∈ Nm with
|α| ≤ r such that αi = 0 if µi = 0 (i = 1, . . . ,m), and x ∈ U :

b(α)(x) = c(α, µ)x−αb(x),
for some nonzero constant c(α, µ) that depends on α and µ and there exists a
B > 0 such that for all α ∈ Nm with |α| ≤ r:

∣∣b(α)(x)
∣∣ ≤ B.

So to obtain a power map, we need a map, all of whose component functions
have order r, and that is bijective.

For example, let U be some subset of (0, 1)2 such that x3/2y−1 has bounded
derivatives up to order r, then x3/2y−1 has order r. But for instance, if one
would consider instead the function x2y−1 and r ≥ 3, then (∂/∂x)3(x2y−1)
is not, up to a nonzero factor, equal to x−1y−1. Note that the component
functions of the power substitution Pr satisfy this condition, thus Pr is a power
map in this more general sense.
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More on compositions

One can prove a result similar to Proposition 2.2.5, where there is a separate
mildness parameter A for each variable xi. This idea is also in the paper of
Gevrey [Gev18]. To this end, we slightly adjust the definition of these functions.

Definition 2.6.4. Let A1, . . . , Am, B > 0 and C ≥ 0 be real numbers, denote
A = (A1, . . . , Am) and let r ∈ N ∪ {+∞}. A function f : U → R is (A,B,C)-
mild up to order r if f ∈ Cr(U) and if for all α ∈ Nm with |α| ≤ r and
x ∈ U : ∣∣∣f (α)(x)

∣∣∣ ≤ (BAα |α|!)1+C .

A map f : U → Rn is (A,B,C)-mild up to order r if all of its component
functions are.

We have the following result on compositions of these functions, which is a more
precise version of Proposition 2.2.5.

Proposition 2.6.5. Suppose that f : U → R is (Af , Bf , C)-mild up to order r
and g : V ⊂ Rp → U is (Ag, Bg, C)-mild up to order r. Then their composition
is (A,B,C)-mild up to order r with

Ai = Ag,i(|Af |Bg + 1),

B = |Af |BfBg
|Af |g Bg + 1 < Bf ,

where |Af | = Af,1 + . . .+Af,m.

Proof. We only have to show a refinement of Lemma 2.2.6. Define F and G as
follows:

F (x1, . . . , xm) = b

1 + a1(B − x1) + . . .+ am(B − xm) ,

Gi(x1, . . . , xp) = B

1−A1x1 − . . .−Apxp
(i = 1, . . . ,m).

One checks that for all ν ∈ Nm

F (ν)(B, . . . , B) = F (ν)(G(0, . . . , 0)) = baν |ν|!

and that for all ν ∈ Np

G(ν)(0, . . . , 0) = BAν |ν|!.
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Using that |a| = a1 + . . .+ am, we have that

(F ◦G)(x) = b(1−A1x1 − . . .−Apxp)
(1 + |a|B)(1−A1x1 − . . .−Apxp)− |a|B

.

One then computes directly that for all α ∈ Np

(F ◦G)(α)(0, . . . , 0) = |a| bB
|a|B + 1 Ã

α |α|!,

with Ãi = Ai(|a|B + 1).

Our last result is a refinement of Lemma 2.5.1, which now rescales the variable
xi with respect to the mildness parameter Ai of that variable. The proof is
completely analogous.

Lemma 2.6.6. Suppose f : U → R is (A,B,C)-mild up to order r ∈ N. Let
P` : Rm → Rm be the map given coordinatewise by

xi 7→
1

(Air)1+C xi.

Then for all α ∈ Nm with |α| ≤ r and x ∈ P−1
` (U):

∣∣(f ◦ P`)(α)(x)
∣∣ ≤ B1+C .

Denjoy-Carleman classes

The (A,B,C)-mild functions up to order +∞ are part of a more general class of
functions studied by Denjoy [Den21] and Carleman [Car26]. They are defined
as follows.

Definition 2.6.7. Let M = (Mn)n be a sequence of positive real numbers and
suppose U is open in Rm. The Denjoy-Carleman class C(M,U) associated
to M is the set of all functions f such that f ∈ C∞(U) and there exist A,B > 0
such that for all x ∈ U and α ∈ Nm:∣∣∣f (α)(x)

∣∣∣ ≤ BA|α|M|α|.
Remark 2.6.8. Sometimes A and B are “absorbed” into Mn and one could
say we have absorbed |α|! into M|α| already.

For example, ifMn = n!, then f ∈ C(M,U) if and only if f is (A,B, 0)-mild up to
order +∞ for some A,B > 0, in particular it is analytic. Note that for functions
in more variables, it is also natural to consider a sequence indexed over α ∈ Nm,
this is called “G-mild” in [Tho11], where G is a function Nm → (0,+∞).
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In general, a Denjoy-Carleman class is not closed under, for instance, composition
and differentiation. One has to put some conditions on the sequence M to
obtain stability under these operations. In particular, in [RS14] they show
that these are closed under composition if and only if M “satisfies the Faà di
Bruno Property”, say a stability property for sums as in Lemma 2.2.6. Clearly,
(A,B,C)-mild functions up to order r satisfy this property, whatever it precisely
means.

If one takes Mn = (n!)α, one obtains the Gevrey functions of class α.
Clearly, if α ≥ 1, the function is (A,B,C)-mild up to order +∞ for some
A,B, where C = α− 1, this is [VH21b, Proposition 2.4]. We have also briefly
mentioned this in the introduction of this chapter. It was already indicated by
Gevrey in [Gev18] that if α ∈ (0, 1), this class of functions is not closed under
composition.





Chapter 3

Parametrizations

In this chapter, sections 3.3 and 3.4 correspond to the results in [VH21b, Section
3]. Section 3.5 corresponds to the proof of [VH21a, Theorem 4.7].

In this chapter we prove the main results of this thesis. More precisely, we
construct two kinds of parametrizations of a bounded power-subanalytic set
X ⊂ Rn. A parametrization is a finite set of functions such that the union of
their images cover X. There are different types of parametrizations, depending
on the conditions you put on the functions that parametrize X. The main
results are a Cr-parametrization theorem (Theorem 3.3.1), where the functions
are r times continuously differentiable for some r ∈ N and where we also bound
the Cr-norm, and a mild parametrization theorem (Theorem 3.5.1), where we
parametrize curves with C∞-functions with a bound on all their derivatives.

Cr-parametrizations

In [Yom87b], Yomdin sketched a proof of a Cr-parametrization theorem for
semi-algebraic sets, which he made more explicit in an addendum to this article
[Yom87a]. The relevance of the work by Yomdin, in smooth dynamics, has been
elaborated on and further refined by Gromov in [Gro87]. In that paper, the
Cr-parametrization theorem of Yomdin, now often referred to as an “Algebraic
Lemma”, is further elaborated on. While the proofs by Yomdin and Gromov
are correct, a complete proof of the Algebraic Lemma has been written down
two decades later by Burguet in [Bur08]. The precise statement is given in
Theorem 3.2.1 in Section 3.2, where we will apply this construction to a simple
example of algebraic curves by Yomdin.

49
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Around the same time, Pila and Bombieri developed in [BP89] the so-called
“determinant method”, which requires a suitable parametrization theorem as
an input. This suitable parametrization theorem did not exist at that time
and therefore, to apply this method, an ad hoc parametrization was considered
(for instance in [Pil10]) or it was stated as a conjecture ([Pil06a]). We further
discuss these results and the determinant method in Chapter 4.

Note that in the same period, o-minimality was developed in the series of
papers [vdD84, PS86, KPS86, PS88]. Definable sets in o-minimal structures
share many of the properties of semi-algebraic sets. Hence, this had lead to a
Cr-parametrization theorem (see Theorem 3.2.2) for definable sets in o-minimal
structures in the well celebrated work of Pila and Wilkie [PW06]. While
some model theory is used to prove the existence of Cr-parametrizations in
arbitrary o-minimal structures, the techniques to construct the parametrization
are essentially the same as the methods of Yomdin and Gromov. I try to
indicate this in Section 3.2, while working through the example. Coupling this
parametrization result with the determinant method, yields the fundamental
Pila-Wilkie Counting Theorem, which is the main result of [PW06].

The results by Pila, Wilkie and Yomdin are existence results. For the
applications, namely in smooth dynamics and number theory, it is interesting
to know how many functions their method constructs, i.e., what is the number
of charts that are used to parametrize a set X, as we have briefly mentioned in
the introduction, more on this is also in Chapter 4. This number may of course
be expected to depend on the required differentiability order r, but also on the
dimension m of X and the dimension of the ambient space Rn. Moreover, if X
is semi-algebraic, it comes with a natural notion of “complexity” (think about
the degree of an algebraic curve, see also below Theorem 3.2.1), and thus one
might wonder how the construction depends on the complexity of X. None of
these have been studied in the work by Yomdin or Pila and Wilkie.

For general o-minimal structures this question is, as far as I know, widely
open. However, recently some results were obtained for subanalytic and power-
subanalytic sets. In [BN19], Binyamini and Novikov prove a C r -parametrization
theorem for subanalytic sets. Their construction yields crm functions for some
constant c > 0. Thus, polynomial in r, where the degree is the dimension m of
the parametrized set X. Moreover, if X is semi-algebraic, they show that c is
polynomial in the complexity of X. In [CPW20], there is a Cr-parametrization
theorem for power-subanalytic sets, which also achieves polynomial dependence
on r. However, the degree of this polynomial is not known, and they did not
deduce an additional result on the constant c in the particular case that X is
semi-algebraic.

The initial goal of my PhD was to make this polynomial dependence in the
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result in [CPW20] more explicit. This has been achieved in my paper [VH21b],
where I show that the degree is m3, where m is the dimension of the considered
set X.

Mild parametrizations

The mild parametrizations have already been in the story of the C r -
parametrizations. More precisely, the parametrizations considered by Pila in
[Pil06a, Pil10], are actually mild parametrizations, i.e., the set is parametrized
with maps that are (A,B,C)-mild up to order +∞, as defined in Chapter 2.
From now on, I will call them C-mild parametrizations, where C should be
understood as the mildness parameter C. If a set X is parametrized by a
C-mild parametrization, one can deduce a Cr-parametrization from it, after a
linear reparametrization, see Corollary 3.1.7. From this point of view, a C-mild
parametrization is a Cr-parametrization for all r ∈ N.

In [JMT11], Jones, D. Miller and Thomas show that any subanalytic set has
a 0-mild parametrization. However, their result is not uniform. Indeed, there
is a counter example by Yomdin [Yom08], the family of algebraic curves we
have mentioned before, that does not have a uniform 0-mild parametrization.
In the recent result [BN19] it is also shown that any family of subanalytic sets
has a 2-mild parametrization. Very recently I have shown that any family of
power-subanalytic curves has a C-mild parametrization for all C > 0 [VH21a].

Remark that there is a small catch in the recent C-mild parametrization results.
In all Cr-parametrization results X is definable in some o-minimal structure,
and so are the maps of the constructed Cr-parametrization of X. This also
holds for the 0-mild parametrization result of [JMT11]. But this is not the
case for the 2-mild parametrization in [BN19] and neither for my result in
[VH21a] on curves. In the latter, the maps are definable in Ran,exp. This
definability is an issue if one wants to use tools from model theory to construct
uniform parametrizations “automatically”. For instance, the Cr-parametrization
theorem for general o-minimal structures in [PW06] uses such a model theoretic
argument instead of carefully treating the parameters.

Finally, let us mention that there is another type of parametrizations that deals
with the issue that there is no uniform 0-mild parametrization result. The idea
is to exclude some small set, where small depends on some parameter δ > 0,
which then resolves the obstruction. This has been suggested by Yomdin in
[Yom08], see also [Yom15, Section 3.3]. This type of parametrizations are called
“analytic-δ-parametrizations” and are extended to the power-subanalytic setting
in [CFY21]. The charts of this type of parametrizations are called “analytic
K-charts”, or simply a-charts, and are automatically 0-mild due to their nature.



52 PARAMETRIZATIONS

Overview of this chapter

The chapter is organized as follows. We first introduce some additional notation,
in particular the Cr-norm is defined. Most importantly, we will work with
families of sets X instead of a single set X. Therefore, we have to introduce
parameters, and the necessary conventions with respect to this are made in
Section 3.1.

The next three sections are devoted to Cr-parametrizations, which we defined
in the introduction and roughly in the previous paragraph. In Section 3.2, we
explain the classical construction using a well known example by Yomdin, which
is a family of algebraic curves. This should make the reader familiar with some
concepts that will be generalized in sections 3.3 and 3.4. In Section 3.3 the
Cr-parametrization theorem, using a so-called “pre-parametrization” and results
of chapters 1 and 2. This pre-parametrization theorem is proved in Section 3.4.
Finally, in Section 3.5, we prove Theorem 3.5.1, a mild parametrization theorem
for curves. The main ingredient is also the pre-parametrization theorem of
Section 3.4.

The pre-parametrization theorem (Theorem 3.3.4), is a key ingredient in the
proof of the two main results. As its name suggests, it is some kind of
parametrization. More precisely, the functions are continuously differentiable
and have bounded first order derivatives. Moreover, these functions have
a specific form, they are essentially monomials. This allows us to use the
substitutions that we have studied in Chapter 2. For the Cr-parametrizations,
this will be a power substitution, and for the mild parametrization, this will be
the exponential substitution.

3.1 Notation and definitions

Throughout this chapter, X denotes an m-dimensional subset of Rn. If m = 1,
i.e., X is a curve, we denote C instead. We will study families of such sets, which
are denoted by X = {Xt | t ∈ T}, where T ⊂ Rk is some space of parameters.
The dimension of a family X is the maximum of the dimension of its family
members.

We will frequently work with families of maps f : U ⊂ T × Rm → Rn. We
denote a family member of f by ft, which is by definition

ft : Ut → Rn : x 7→ f(t, x),
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where Ut = {x ∈ Rm | (t, x) ∈ U} is the corresponding family member of U .
When we have to write more indices, we will write the parameter last. For
instance, fi,t for the i-th component function of ft, instead of ft,i.

We will study two types of parametrizations: Cr-parametrizations and mild
parametrizations. For the first one, we introduce the following norm.

Definition 3.1.1. Let r ∈ N and suppose that f : U ⊂ Rm → Rn is Cr. Then
we define its Cr-norm by

|f |r = nmax
i=1

sup
x∈U

{α∈Nm||α|≤r}

∣∣∣f (α)
i (x)

∣∣∣
|α|! .

Remark 3.1.2.

1. Note that |f |r can be +∞, for example, consider |
√
x|1 for U = (0, 1).

Thus, in the strict sense, it is not a norm.

2. If 1 < |α| ≤ r, then |f |r ≤ 1 does not imply that
∣∣f (α)

∣∣
0 ≤ 1, due to the

division by |α|! in the definition. Consider the Cr-norm as a weighted
version of the Cr supremum norm.

3. We define the Cr-norm for a family of functions f : U ⊂ T × Rm → Rn
as follows:

|f |r = sup
t∈T
|ft|r .

Definition 3.1.3. A Cr-parametrization of a set X is a finite collection of
maps

{fj : (0, 1)m → X | j ∈ {1, . . . , N}}

such that
N⋃
j=1

Im(fj) = X

and |fj |r ≤ 1 for all j ∈ {1, . . . , N}. If X is an m-dimensional family of subsets
of Rn, a uniform Cr-parametrization is a finite collection of families of
maps

{fj : T × (0, 1)m → X | j ∈ {1, . . . , N}}

such that for all j ∈ {1, . . . , N} we have that |fj |r is at most 1 and for all t ∈ T
the set {fj,t | j ∈ {1, . . . , N}} is a Cr-parametrization of Xt.
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Remark 3.1.4.

1. Since we require that |fj |r ≤ 1, it follows that X ⊂ [−1, 1]n. This is no
obstruction for the applications in Chapter 4, where we will map X into
[−1, 1]n if necessary. In general, if X is bounded, one can also cover X
with finitely many images of (0, 1)m and then Cr-parametrize each of
those pieces.

2. The number of maps N , which we also call charts, may be expected
to depend on r. It is an important part of this thesis to study how a
construction of a Cr-parametrization depends on r. It also depends on
the chosen Cr-norm, see (2) of Remark 3.1.2.

3. We only impose an upper bound on the derivatives of the family members
of fj , so there is no condition with respect to partial differentiation with
respect to parameter variables. Moreover, it is not required that fj
continuously depends on t.

4. It is not necessary that the family of functions fj is defined for all t ∈ T .
If not, one can trivially extend them or use the “empty function”.

Convention. Recall from Chapter 2, Definition 2.1.1, that a map f is (A,B,C)-
mild up to order r ∈ N ∪ {+∞} if it is C∞ on U and if for all i ∈ {1, . . . ,m},
x ∈ U and α ∈ Nm with |α| ≤ r:∣∣∣f (α)

i (x)
∣∣∣ ≤ (BA|α| |α|!)1+C .

If f is a family of maps, we say that it is (A,B,C)-mild up to order r if ft is
(A,B,C)-mild up to order r for all t ∈ T , i.e., the same A, B and C hold for
all t ∈ T .

Definition 3.1.5. Let C > 0. A C-mild parametrization of a set X is a
finite collection of maps

{fj : (0, 1)m → X | j ∈ {1, . . . , N}}

such that
N⋃
j=1

Im(fj) = X

and there exist A,B > 0 such that fj is (A,B,C)-mild up to order +∞ for all
j ∈ {1, . . . , N}. If X is an m-dimensional family of subsets of Rn, a uniform
C-mild parametrization is a finite collection of families of maps

{fj : T × (0, 1)m → X | j ∈ {1, . . . , N}}
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such that there exist A,B > 0 such that fj is (A,B,C)-mild up to order +∞
for all j ∈ {1, . . . , N} and for all t ∈ T , the set {fj,t | j ∈ {1, . . . , N}} is a
C-mild parametrization of Xt.

Using a suitable linear substitution, as in Lemma 2.5.1, one can derive for all
r ∈ N a Cr-parametrization from a C-mild parametrization, see Corollary 3.1.7
below. Wel call this a linear reparametrization.

Lemma 3.1.6. Suppose f : U ⊂ T × Rm → R is (A,B,C)-mild up to order
r < +∞. Let P` : T × Rm → T × Rm be the map defined by by

(t, x1, . . . , xm) 7→
(
t,

1
A1+CrC

x1, . . . ,
1

A1+CrC
xm

)
.

Then we have that |f ◦ P`|r ≤ B1+C on P−1
` (U).

The proof is completely analogous to the proof of Lemma 2.5.1. Now suppose
that in this lemma U = T×(0, 1)m. It follows that P−1

` (U) = T×(0, A1+CrC)m.
Clearly this set can be covered by at most (A′1+CrC)m translates of T × (0, 1)m
for some A′ slightly larger than A. In this way, we obtain the following result.

Corollary 3.1.7. Suppose X ⊂ T × [−1, 1]n has a C-mild parametrization, say
every chart is (A, 1, C)-mild up to order +∞ for some A > 0. Then for every
r ∈ N, this C-mild parametrization induces via a linear reparametrization a
Cr-parametrization consisting of crCm charts for some constant c > 0 that only
depends on A,C and m.

Note that we may assume B = 1, after possibly enlarging A, since X ⊂
T × [−1, 1]n, see Remark 3.1.4 (1).

Remark 3.1.8. Clearly, if one is only interested in some particular r ∈ N, then
it is not necessary that X is parametrized with charts that are mild up to order
+∞, instead, it suffices that X is parametrized by charts that are mild up to
order r.

Finally we make the following convention regarding operations with (weakly)
(A,B,C)-mild functions up to order r.

Convention. We will frequently use the formulas for addition (2.2.1),
multiplication (2.2.2) and composition (2.2.5) of (A,B,C)-mild functions up to
order r. When performing these operations via these results, we will only keep
track of the dependence on r, and, by abuse of notation, use the same A, B
and C again, even tough they might be different. For instance, the addition
of two (Ar,B,C)-mild functions up to order r is then again (Ar,B,C)-mild
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up to order r, and the composition of these functions is (Ar2, B,C)-mild up
to order r. We make the same convention for weakly (A,B,C)-mild functions
up to order r, including the use of Proposition 2.4.5 on the composition of an
(A,B,C)-mild function up to order r with a weakly (A′, B′, C)-mild function
up to order r. In the examples, the constants A, B and C will be computed
more explicitly.

3.2 Yomdin-Gromov parametrizations

In this section we explain some classical techniques that were used by Yomdin
and Gromov to construct Cr-parametrizations by working through a simple and
well known example of algebraic curves C, following the exposition in [Yom15,
Section 4.3]. Throughout, we roughly explain how this can be achieved “in
general”, which means for any X that is definable in an o-minimal structure on
R, as defined in Chapter 1.

The Yomdin-Gromov parametrizations are Cr-parametrizations of semi-
algebraic sets. Their result is frequently referred to as the Yomdin-Gromov
Algebraic Lemma, which states the following.

Theorem 3.2.1 ([Bur08, Theorem 1]). Let A ⊂ [0, 1]n be a compact semi-
algebraic set of dimension m. There exist an integer N and continuous semi-
algebraic maps φ1, . . . , φN : [0, 1]m → [0, 1]n such that

1. φi is analytic on (0, 1)m;

2. maxβ:|β|≤r

∣∣∣∣∣∣∣∣φ(β)
i

∣∣∣
(0,1)m

∣∣∣∣∣∣∣∣
∞
≤ 1;

3.
⋃N
i=1 Im(φi) = A.

Moreover, N and deg(φi) are bounded by a function of deg(A), n and r.

Here, the degree deg(A) of a semi-algebraic set A is by definition the sum of
the total degrees of all polynomials that are used to define A. Together with n,
this is usually called the complexity of A. We will show that for our example,
the construction leads to N = 2 + 4r charts. Therefore, we conclude that the
number of charts N in this construction depends at least exponentially on r.

There is also a recent proof of the Yomdin-Gromov Algebraic Lemma by
Binyamini and Novikov [BN20], using the methods of their paper [BN19]. The
Algebraic Lemma has been generalized to sets definable in an o-minimal structure
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by Pila and Wilkie [PW06], with a small loss of some properties. In particular,
there is no information on the number of charts N , it is just finitely many, and
one cannot expect that the charts are analytic on (0, 1)m, see Remark 1.3.7.
The version below is formulated for o-minimal structures on R, as defined in
Chapter 1, but their result holds for so-called “o-minimal expansions of the real
field”.
Theorem 3.2.2 ([PW06, Theorem 2.3]). For all r ∈ N and bounded, definable
set X, there exists a Cr-parametrization of X.

Let us now focus on the example that will highlight many of the important
tools in the proofs of these results. Consider the family of algebraic curves

C = {(t, x, y) ∈ (0, 1)× (−1, 1)2 | xy = t},

where t ∈ T = (0, 1). This is basically the example by Yomdin in [Yom08,
Proposition 3.3] that we have mentioned in the introduction. Clearly, C is a
family of hyperbolas Ct given by y = t/x, intersected with (−1, 1)2. You can
see some of the family members in Figure 3.1.

Figure 3.1: Some family members of C.1

A C0-parametrization of C

We start with constructing a uniform C0-parametrization of C. We see that for
all t ∈ T = (0, 1), Ct is the graph of the function ft : Ut → (−1, 1) : x 7→ t/x,
where

Ut = {x ∈ (−1, 1) | t < |x| < 1}.
Thus, we consider f as a family of functions U → R defined by (t, x) 7→ t/x,
where U = {(t, x) ∈ T × (−1, 1) | t < |x| < 1}. We split U into the two parts

U− = {(t, x) ∈ T × (−1, 1) | −1 < x < −t}
1Copyright c© International GeoGebra Institute, 2021
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and
U+ = {(t, x) ∈ T × (−1, 1) | t < x < 1}.

We now have two families of functions, namely the restriction f− of f to U−
and the restriction f+ of f to U+, such that Ct is the union of the graphs of
f+,t and f−,t. Moreover, the domain of f+,t and f−,t are intervals. This can
be achieved in general using the cell decomposition theorem. In that case, we
obtain finitely many families of functions f : U → (−1, 1)n−m such that for all
t ∈ T , Xt is the union of the graphs of ft and where the domain Ut of ft is a
cell in (−1, 1)m.

Our final step to construct the C0-parametrization is to map (0, 1) onto the
domain. To this end, consider the following maps:

Φ+ :T × (0, 1)→ U+ : (t, x) 7→ (t, t+ (1− t)x),

Φ− :T × (0, 1)→ U− : (t, x) 7→ (t,−1 + (−t+ 1)x).

We then obtain a C0-parametrization {f1, f2}, with

f1(t, x) = (Φ+(t, x), (f ◦ Φ+)(t, x))

and
f2(t, x) = (Φ−(t, x), (f ◦ Φ−)(t, x)).

In general, one maps (0, 1)m onto a cell D using a composition of linear
homotopies, more precisely, maps of the form

αi + (βi − αi)xi,

where αi and βi are the walls of the cell bounding the variables xi form below
and from above respectively. (If xi = αi(x1, . . . , xi−1), it is simply αi.) The map
Φ : (0, 1)m → D constructed in this way is of course bounded since D ⊂ [−1, 1]n.
However, there is no guarantee that this map has bounded derivatives and
therefore should be treated as well in the following computations. We will not
make this more precise in this section. Let us remark that these homotopies
have bounded derivatives if the walls have bounded derivatives, but these walls
depend on fewer variables than the map f , thus one can apply an induction
argument.

A C1-parametrization of C

We will improve, or rather say refine, the C0-parametrization to a uniform
C1- parametrization. In general, this requires an application of the inverse
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function theorem, but in this example, it immediately clear how to invert the
function. Let us focus on the map f+,t, the operation that should be applied
to f−,t is completely analogous. Recall that f+,t : U+,t → (−1, 1) is given by
f+,t(x) = t/x. We decompose U+ into three parts, depending on the first order
derivative of f+ with respect to x.

Figure 3.2: A C1-parametrization of C.2

1. We have that ∣∣∣∣ ∂∂xf+(t, x)
∣∣∣∣ = t

x2 ,

therefore ∣∣∣∣ ∂∂xf+(t, x)
∣∣∣∣ < 1 ⇐⇒

√
t < x < 1.

We then uniformly C1-parametrize this part of the curve by setting

Φ1 : T × (0, 1)→ T × (
√
t, 1) : (t, x) 7→ (t,

√
t+ (1−

√
t)x)

and
f1(t, x) = (Φ1(t, x), (f ◦ Φ1)(t, x)).

2Copyright c© International GeoGebra Institute, 2021
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2. We have that ∣∣∣∣ ∂∂xf+(t, x)
∣∣∣∣ > 1 ⇐⇒ t < x <

√
t.

We will invert f+,t on this domain. In this case, we end up in the previous
case, namely we have that x = t/y, where

√
t < y < 1. This is also clear

on Figure 3.2. Therefore, we can C1-parametrize this part of the curve by
f2, which is obtained by composing f1 with the map (t, x, y) 7→ (t, y, x).

3. Finally, we have to consider the case∣∣∣∣ ∂∂xf+(t, x)
∣∣∣∣ = 1.

This occurs exactly once at x =
√
t. This point can be parametrized by a

family of constant functions:

f3 : T × (0, 1)→ T × (−1, 1)2 : (t, x) 7→ (t,
√
t,
√
t).

The collection {f1, f2, f3} is a uniform C1-parametrization of C ∩ (T × (0, 1)2),
i.e., the upper right hand side in Figure 3.2. Thus in total, we will end up with 6
charts. In general, due to the cell decomposition theorem, we know that we can
decompose the domain into finitely many pieces, each of which belongs to one of
the three cases above. To apply the inverse function theorem, we have to further
decompose that part such that the conditions (in particular injectivity) are
satisfied. This eventually boils down to the Monotonicity Theorem (Theorem
1.3.2). This method is more explicit in the proof of the pre-parametrization
theorem in Section 3.4.

Higher order Cr-parametrizations of C

Using the C1-parametrization, we will now construct a uniform C2- parametri-
zation. To do so, we will use the power substitution given by

P2 : T × (0, 1)→ T × (0, 1) : (t, x) 7→ (t, x2),

which is a family version of the power substitution P2 in Proposition 2.5.3. In
this simple example, the maps f1 and f2 of the C1-parametrization constructed
above already satisfy the assumptions of Proposition 2.5.3. In general, one
should further decompose the domain such that the conditions of the following
lemma (or suitable analogues) are satisfied. It is [Yom15, Lemma 4.1], where
we have used the Cr-norm in the formulation instead.
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Lemma 3.2.3. Suppose that f : (0, 1) → (0, 1) with |f |l−1 ≤ 1 for some
l ≥ 2. Suppose moreover that f (l) is positive and decreasing on (0, 1). Then
f (l)(x) ≤ l

x .

To study the upper bounds on the derivatives of this substitution, we will use
the results of Chapter 2. We have that

f1 : T × (0, 1)→ Ct : (t, x) 7→ t√
t+ (1−

√
t)x

is weakly (1, 1, 0)-mild up to order +∞. For its first order derivative (with
respect to x) we may take the same mildness parameters to apply Proposition
2.5.3 by Remark 2.5.4. It follows that f1 ◦ P2 is (3, 1, 0)-mild up to order 2, if
you use that P2 is (1, 2, 0)-mild up to order 2 and that m = 1 in our example.

Now we use a linear reparametrization (3.1.7) to obtain that the C2-norm is at
most 1. In this way, we obtain 4 charts that have C2-norm at most 1. Since
we apply this procedure to 4 of the 6 charts of the C1-parametrization, our
C2-parametrization consists of 18 charts.

Remark 3.2.4. Below Lemma 3.1.6, we create maps that slightly overlap.
That is why we slightly enlarge A there. One could also work in a different way.
In this example, define the maps Li for i = 0, 1, 2 by

Li : T × (0, 1)→ Im(Li) ⊂ P−1
` (T × (0, 1)) : (t, x) 7→ (t, i+ x).

In that case there is no overlap, but the points (t, 1) and (t, 2) are not in the
image of any of the Li. Therefore, one will obtain 5 charts for 4 of the charts of
the C1-parametrization and thus end up with 22 charts. The images of these
charts can be seen in Figure 3.3.

Finally, we explain how to proceed to higher order parametrizations, that
is how to construct a uniform Cr+1-parametrization, starting with a Cr-
parametrization with r ≥ 1. Let f be a chart of the uniform Cr-parametrization
of C. Therefore |f |r ≤ 1 and thus f is (1, 1, 0)-mild up to order r.

Next, one further decomposes the domain of f , if necessary, such that for each
t ∈ T the function f (r+1)

t does not change signs. In the example here, this is
not necessary, in general one uses the cell decomposition theorem. This implies
that one can use a suitable analogue of Lemma 3.2.3. Consequently, one uses
the power substitution P2. We now have that the family of functions f ◦ P2 is
(3, 1, 0)-mild up to order r + 1. Finally, one uses a linear reparametrization to
obtain that |f |r+1 ≤ 1.

In this way we see that the amount of charts N that is obtained via this inductive
method depends on r as follows. In our example, except for the two points
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Figure 3.3: A C2-parametrization of C.3

(−
√
t,
√
t) and (

√
t,
√
t) that are parametrized by a family of constant functions,

for each chart, one will construct 4 in the next stage. Therefore N = 2 + 4r. In
the next section, we will show that we can construct a Cr-parametrization of
size 2 + 4(r + 1) (for r ≥ 2), see Example 3.3.10.

3.3 Cr-parametrization of power-subanalytic sets

One of the main results of [CPW20] is the following Cr-parametrization
theorem for power-subanalytic sets (see Section 1.2 for the definition of power-
subanalytic).

Theorem 3.3.1 ([CPW20, Theorem 2.1.3]). Let n, k be positive integers and
m be a nonnegative integer with m ≤ n. Let X be a power-subanalytic family
of m-dimensional subsets of [−1, 1]n, where T is some power-subanalytic subset
of Rk. Then there exist positive numbers c and d, depending only on the family
X , such that for each positive integer r, and for each t ∈ T , there exist analytic
maps

φr,i,t : (0, 1)m → Xt

3Copyright c© International GeoGebra Institute, 2021
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for i = 1, . . . , crd, whose Cr-norms are bounded by 1 and whose ranges cover
Xt. Moreover, for each i and r, {φi,r,t | t ∈ T} is a power-subanalytic family of
maps.

Remark 3.3.2. Recall from Section 1.2 that X is power-subanalytic if it is
LKF -definable, where we assume that F and K are fixed. More precisely, in the
theorem above, if X is LKF -definable, then the maps φr,i,t are LKF -definable for
the same F and K.

In [VH21b], I show that their construction yields d = m3. In this section, we
will derive the Cr-parametrization theorem, using the material of Chapter 2
and given a so-called “pre-parametrization”. The pre-parametrization allows us
to just use one power substitution to construct a Cr-parametrization, instead
of the r − 1 power substitutions in the construction of the previous section
(for r ≥ 2). This power substitution will be a good choice of exponents Ni in
Proposition 2.5.3. In order to state the pre-parametrization theorem, we first
need to give the following definition.

Definition 3.3.3. Call a family of functions f : U ⊂ T×(0, 1)m → R prepared
in x if it is of the form

f(t, x) = bj(t, x)F (b(t, x)),

where bj is a component function of b : U → RN (for some N ∈ N), which has
bounded range and each component function of b is of the form

a(t)xµ

for some µ ∈ Rm and power-subanalytic function a, and where F is an analytic
and non-vanishing function on an open neighborhood of Im(b). We call b the
associated bounded monomial map of f . A map f : U ⊂ T×(0, 1)m → Rn
is prepared in x if all of its component functions are.

In particular, b is also a family of functions. Recall that in that case |b|r ≤ 1
implies that for all t ∈ T : |bt|r ≤ 1. We can now state the pre-parametrization
theorem. The version below is from my work [VH21b], it is a small modification
of the original statement in [CPW20, Theorem 4.3.1].

Theorem 3.3.4 ([VH21b, Theorem 3.11]). Suppose that X is the graph of a
family of functions ϕ : U ⊂ T × (0, 1)m → [−1, 1]n. Then there exist finitely
many power-subanalytic maps

fl : Cl → X

such that:
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1. for each t ∈ T :
⋃
l Im(fl,t) = Xt;

2. for each l, Cl is an open cell in Tl × (0, 1)m, where Tl ⊂ T ;

3. for each l, fl is prepared in x and its associated bounded monomial map
has bounded C1-norm;

4. for each l, the walls of Cl are prepared in x and their associated bounded
monomial map have bounded C1-norm.

The proof of this theorem will be given in the next section. It tells us that
X can be uniformly parametrized by functions that are prepared in x whose
associated bounded monomial maps have bounded C1-norm. By the form of
these functions, this is some way of “reducing to monomials”.

We will now start working towards a proof of Theorem 3.3.1. First, we analyse
the mildness of functions that are prepared in x.

Lemma 3.3.5. Suppose f : U ⊂ T × (0, 1)m → R is prepared in x. Then there
exist A,B > 0 such that f is weakly (A,B, 0)-mild up to order +∞.

Proof. Since f is prepared in x, ft is given by

ft(x) = bj,t(x)F (bt(x))

as in Definition 3.3.3. By Proposition 2.4.4, it suffices to show that bt and F ◦ bt
are weakly (A,B, 0)-mild up to order +∞ for some A,B > 0 that do no depend
on t. Because F is analytic and non-vanishing on an open neighborhood of Im(b),
it is (A,B, 0)-mild for some A,B > 0 (see Remark 2.1.4). By Proposition 2.4.5
it follows that F ◦ bt is weakly (A,B, 0)-mild for some A,B > 0 independent of
t if bt is so.

Since b has bounded range, there exists some B′ such that |b|0 ≤ B′. The proof
of Lemma 2.4.2 shows that bt is weakly (A′, B′, 0)-mild up to order +∞ for
all t ∈ T , where A′ is the maximum of 1 and the largest absolute value of the
powers of x in the component functions of b.

By the chain rule and Proposition 2.4.4, one immediately deduces the following
corollary.

Corollary 3.3.6. Suppose f : U ⊂ T × (0, 1)m → R is prepared in x and that
its associated bounded monomial map has bounded C1-norm. Then there exist
A,B > 0 such that for all β ∈ Nm with |β| ≤ 1 and t ∈ T the function f (β)

t is
weakly (A,B, 0)-mild up to order +∞.
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We conclude that the functions from the pre-parametrization theorem “uniformly”
satisfy the conditions of Proposition 2.5.3. As stated before, one has to make a
good choice of powers Ni in this proposition in order to deal with a problem
that we will make clear with the following example.
Example 3.3.7. Consider the function f : U ⊂ (0, 1)2 → R given by

f(x, y) = y2
√
x
,

where U is given by {
0 < x < 1,
0 < y < x3/2.

Clearly, f is prepared in x and so are the walls of U . Moreover, they have
bounded C1-norm. Now let Pr be the map (0, 1)2 → (0, 1)2 given by (x1, x2) 7→
(xr1, xr2) as in Proposition 2.5.3. By Proposition 2.5.6, we know that f ◦ Pr :
P−1
r (U)→ R is (2r, 1, 0)-mild up to order r.

However, the function x 7→ x3/2 is not (A,B,C)-mild up to order r on (0,1)
for any A,B > 0 and C ≥ 0 for r > 1 on P−1

r (U) = U . Therefore the linear
map (0, 1)2 → P−1

r (U) is not (A,B,C)-mild up to order r for any A,B > 0
and C ≥ 0. This problem can be solved as follows. Consider the the map
P : (0, 1)2 → (0, 1)2 given by (x1, x2) 7→ (xr1, x2). Then P−1(U) is given by{

0 < xr < 1
0 < y < (xr)3/2 ⇐⇒

{
0 < x < 1
0 < y < x3r/2.

We see that P−1(U) is a cell and that its walls are also (2r, 1, 0)-mild up to
order r. Therefore, instead of f ◦ Pr, we will consider f ◦ Pr ◦ P . Note that
Pr ◦ P : (0, 1)2 → (0, 1)2 is given by (x1, x2) 7→ (xr2

1 , x
r
2), thus f ◦ Pr ◦ P is

(2r2, 1, 0)-mild up to order r. The linear map (0, 1)2 → U is (2r, 1, 0)-mild up
to order r.

We now generalize this example to the functions given by Theorem 3.3.4. The
proof is long and technical, but it just proves the above example in general
using the results of Chapter 2.
Proposition 3.3.8 ([VH21b, Proposition 3.10]). Suppose f : C ⊂ T×(0, 1)m →
R is a function defined on a cell C, where Ct is an open cell for each t ∈ T , such
that f and all walls of C are prepared in x and all of their associated bounded
monomial maps have bounded C1-norm. Let P be the power map defined by

P : T × (0, 1)m → T × (0, 1)m : (t, x1, . . . , xm) 7→ (t, xr
m

1 , xr
m−1

2 , . . . , xrm).

Then there exist A,B > 0 such that f ◦ P : P−1(C) → R and all walls of the
cell P−1(C) are (Arm, B, 0)-mild up to order r.
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Proof. The claim on f ◦ P follows immediately by Proposition 2.5.3. We do
not have to consider the walls of the t variables, since they are families of
constant functions. Denote αi and βi for the walls of the cell C bounding the
variable xi from below and from above respectively. Then we extend these walls
trivially to functions C → (0, 1), i.e., αi(t, x1, . . . , xm) = αi(t, x1, . . . , xi−1). For
i = 1, . . . ,m, we have that P−1(C) is given by inequalities

αi(P (t, x)) < xr
m−i+1

i < βi(P (t, x)),

which we rewrite as
rm−i+1√

αi(P (t, x)) < xi <
rm−i+1√

βi(P (t, x))

to obtain the proper form of a cell. In particular, this shows that it actually
is a cell. We have to show that these walls are (Arm, B, 0)-mild up to order r
for some A,B > 0. It suffices to show the claim for the wall of the cell P−1(C)
bounding xi form below.

Since αi is prepared in x, it is of the form

αi(t, x) = bj(t, x)F (b(t, x))

as in Definition 3.3.3. Since F is analytic and non-vanishing on an open
neighborhood of Im(b), there exists some S ∈ (0, 1) such that Im(F ) ⊂ (S, 1/S)
(we may suppose that F is positive). Moreover, it is (A,B, 0)-mild up to order
+∞ for some A,B > 0 (see Example 2.1.4). On (S, 1/S) the function xrm−i+1

is (1/S, 1/S, 0)-mild up to order +∞ (see Example 2.1.4). Finally, since b(t, x)
has bounded C1-norm, it is (Arm, B, 0)-mild up to order r by Corollary 3.3.6,
and Proposition 2.5.3 for some A,B > 0. Therefore

rm−i+1√
F (b(P (t, x)))

is (Arm, B, 0)-mild up to order r by Proposition 2.2.5 for some A,B > 0. Thus,
to show that rm−i+1√

αi(P (t, x)) is (Arm, B, 0)-mild up to order r for some
A,B > 0, it suffices to show that

rm−i+1
√
bj(P (t, x))

is (Arm, B, 0)-mild up to order r for some A,B > 0. By Definition 3.3.3, bj(t, x)
is of the form

bj(t, x) = a(t)xµ

for some power-subanalytic function a and µ ∈ Rm, and has bounded C1-norm.
We write

rm−i+1
√
bj(P (t, x)) = ã(t)xµ

′
,
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where ã = rm−i+1√
a and µ′` = ri−`µ`. Note that µi = µi+1 = . . . = µm = 0,

since the wall αi does not depend on xi, . . . , xm. Now let α ∈ Nm with |α| ≤ r
and let (t, x) ∈ P−1(C) ⊂ T × (0, 1)m be fixed but arbitrary. We will express
the derivative of rm−i+1√

bj(P (t, x)) with respect to α in terms of a first order
derivative of bj in P (t, x) ∈ C, from which we know that it is bounded on C.
The idea of the proof is similar to the proof of Proposition 2.5.10 and a slightly
more explicit version of [VH21b, Proposition 3.9].

We have that∣∣∣∣∣
(

rm−i+1
√
bj(P (t, x))

)(α)
∣∣∣∣∣ =

∣∣∣∣(ã(t)xµ
′
)(α)

∣∣∣∣ ≤ |c(α, µ′)| ∣∣∣ã(t)xµ
′−α
∣∣∣ , (3.1)

where c(α, µ′) is a constant that depends on α and µ′ (as in Lemma 2.4.2). Now
let I be such that xI = min{x` | α` 6= 0}. Then we may assume µ′I 6= 0, since
if not, the derivative with respect to α is zero and therefore can trivially be
bounded in absolute value by the upper bound we will compute now. For the
same reason, we may also suppose that 1 ≤ I < i. We now further bound 3.1:

|c(α, µ′)|
∣∣∣ã(t)xµ

′−α
∣∣∣ ≤ |c(α, µ′)| ∣∣∣ã(t)xµ

′
x
−|α|
I

∣∣∣
≤ |c(α, µ′)|

∣∣∣ã(t)xµ
′
x−rI

∣∣∣
≤ |c(α, µ′)|

∣∣∣∣ rm−i+1
√
bj(P (t, x))x−rm−i+2

I

∣∣∣∣
≤ |c(α, µ′)|

∣∣∣∣ rm−i+1
√
bj(P (t, x))x−rm−I+1

I

∣∣∣∣ . (3.2)

Now, write bj(P (t, x)) = a(t)xν with ν` = rm−`+1µ`. Then we have that

bj(P (t, x))x−r
m−I+1

I = a(t)xνx−r
m−I+1

I .

The power of xI is: rm−I+1µI − rm−I+1 = rm−I+1(µI − 1). It follows that

bj(P (t, x))x−r
m−I+1

I = µ−1
I

(
∂

∂xI
bj

)
(P (t, x)).

Since P (t, x) ∈ C and the C1-norm of b is bounded on C, this can be bounded
independent of t, x and I. Clearly, the rm−i+1-th root of this upper bound can
be further bounded such that it does not depend on r, i and m. Finally, similar
to the proof of Lemma 2.4.2, it is clear that

|c(α, µ′)| ≤ (Arm)|α| |α|!



68 PARAMETRIZATIONS

for some A that only depends on µ′.

Putting everything together, we conclude that there exist A,B > 0 such that∣∣∣∣∣
(

rm−i+1
√
bj(P (t, x))

)(α)
∣∣∣∣∣ ≤ B(Arm)|α| |α|!

for all α ∈ Nm with |α| ≤ r, i.e., this function is (Arm, B, 0)-mild up to order r.
Together with the same result on the other factor (containing the root of the
analytic function F ) of the wall bounding xi from below, this finishes the proof
by Proposition 2.2.2.

Remark 3.3.9. Note that P can be seen as a composition of power maps of
the form

(x1, . . . , xm) 7→ (xr1, . . . , xri , xi+1, . . . , xm)
as explained in Example 3.3.7. More precisely, after the power substitution
Pr, we obtain a domain P−1

r (C) that is of the same form as C. Then we can
proceed by induction, so we then apply the power substitution defined by

(x1, . . . , xm) 7→ (xr1, . . . , xrm−1, xm),

which now ensures that the walls αm and βm of the cell will be (Ar2, B, 0)-mild
up to order r. This iteration of power maps yields the power map P in the
proposition, and will ensure that all the walls will become (Arm, B, 0)-mild up
to order r. In fact, from this point of view, one can deduce another proof of this
proposition. In the proof above, we considered P as a single power substitution,
not as a composition.

This proposition, together with the pre-parametrization theorem 3.3.4, yields
the uniform Cr-parametrization theorem (Theorem 3.3.1) for power-subanalytic
sets. Before we show this, let us return to the example of the previous section
to show how this works and to compare the amount of charts that are obtained
via this construction.
Example 3.3.10. Let C be the family of algebraic curves of Section 3.2. We
have deduced there that it suffices to reparametrize the graph of the family
of functions f : U ⊂ (0, 1)2 → R given by f(t, x) = t/x, where U = {(t, x) ∈
(0, 1)2 |

√
t < x < 1}. In particular, f could be a potential outcome of the

pre-parametrization theorem.

With the notation of Proposition 3.3.8, we have that f ◦ P : P−1(U) → R is
(Ar,B, 0)-mild up to order r for some A,B > 0. By Proposition 2.5.6, it follows
that f ◦ P is (r, 1, 0)-mild up to order r. The cell P−1(U) is given by{

0 < t < 1,
t1/(2r) < x < 1.
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Let Φ : (0, 1)2 → P−1(U) be defined by

(t, x) 7→ (t, t1/(2r) + (1− t1/(2r))x).

Therefore, a Cr-parametrization of this part of the family C is given by the map

(0, 1)2 → C : (t, x) 7→ (Φ(t, x), (f ◦ P ◦ Φ)(t, x)).

In this case, one can compute directly that this map is (r, 1, 0)-mild. Finally,
by a linear reparametrization (3.1.7), we obtain r + 1 Cr-charts for this part of
the family C. It follows that we obtain 2 + 4(r + 1) charts in total (for r ≥ 2),
which is significantly better than the 2 + 4r charts obtained by the construction
of Section 3.2.

Finally, we conclude this section with a proof of Theorem 3.3.1.

Proof. By the cell decomposition theorem (Theorem 1.3.6), we may suppose
that X is the graph of a power-subanalytic function ϕ : T×(0, 1)m → [−1, 1]n−m
such that ϕ(t, x) ∈ Xt for each (t, x) ∈ T × (0, 1)m.

By the pre-parametrization theorem (Theorem 3.3.4), we obtain finitely many
power-subanalytic charts fl : Cl → X that satisfy the conditions of Proposition
3.3.8. Thus, applying this proposition to each of these charts, we obtain finitely
many charts, which we will also denote by fl : Cl → X , satisfying the following
properties:

1. for each t ∈ T :
⋃
l Im(fl,t) = Xt;

2. for each l, Cl is an open cell in Tl × (0, 1)m, where Tl ⊂ T ;

3. there exist A,B > 0 such that for each l, fl is (Arm, B, 0)-mild up to
order r, moreover the walls of Cl are (Arm, B, 0)-mild up to order r.

Since fl : Cl → X ⊂ T × (0, 1)n and Cl ⊂ Tl × (0, 1)m, we may suppose that
B = 1, after possibly enlarging A. Finally, we have to study the mildness of
the linear map Φ : Tl × (0, 1)m → Cl.

Denote αm and βm for the walls of Cl bounding the variable xm from below and
above respectively. Denote π<m : Tl×(0, 1)m → Tl×(0, 1)m−1 for the projection
on the first m− 1 coordinates of (0, 1)m. Denote x<m = (x1, . . . , xm−1). Let
Φm : π<m(Cl)× (0, 1)→ Cl be given by

Φm(t, x) = (t, x<m, αm(t, x<m) + (βm − αm)(t, x<m)xm).
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Since αm and βm are (Arm, 1, 0)-mild up to order r for some A > 0, it follows
by propositions 2.2.1 and 2.2.2 that Φm is (Arm, 1, 0)-mild up to order r for
some A > 0. Note that for the addition, we use that the image is contained in
Tl × (0, 1)m, such that B can be taken equal to 1, after possibly enlarging A.

By Proposition 2.2.5, we have that fl ◦ Φm is (Ar2m, 1, 0)-mild up to order r
for some A > 0. Repeating this proces, we obtain the map Φ = Φ1 ◦ . . . ◦ Φm :
Tl × (0, 1)m → Cl and we have that f ◦Φl is (Arm2

, 1, 0)-mild up to order r for
some A > 0. (Note that Φ1 is always (1, 1, 0)-mild up to order +∞.)

After we have treated every fl in this way, and after applying a linear
reparametrization (3.1.7) to each of them, this yields a Cr-parametrization of X
with crm3 charts for some c > 0. Finally, since each fl was power-subanalytic,
it follows by this construction that all charts are power-subanalytic. Indeed, we
have only composed with power functions with natural exponents and made
linear combinations of these functions. By the form of functions that are
prepared in x, each family member is indeed analytic. This concludes the
proof.

3.4 Pre-parametrization

This section in entirely devoted to a proof of the pre-parametrization theorem
(Theorem 3.3.4). Recall that X is an m-dimensional family of power-subanalytic
sets in [−1, 1]n. The proof uses induction on m. By the cell decomposition
theorem, we may suppose X is the union of images of finitely many families of
maps fl : T × (0, 1)m → X . If m = 0, there is nothing to show. In that case, Xt

is a finite union of points and there is a uniform upper bound on the amount of
points (see Lemma 1.3.3).

Suppose the theorem holds for families of dimension at most m− 1 for some
m ∈ N. We will (possibly) use the cell decomposition theorem multiple times.
Each time, by induction, it suffices to consider the open cells of the partition.

Convention. In this section, a cell C ⊂ T × (0, 1)m is open if it is a family of
open cells in (0, 1)m.

Throughout the proof, divided into three parts below, we will focus on one map
fl : T × (0, 1)m → X . Therefore, we will drop the index l.
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Preparation with center zero

To ensure that f is prepared in x, we will use the following preparation theorem.

Theorem 3.4.1 ([Mil06, Main theorem]). Suppose f : U ⊂ T × (0, 1)m →
[−1, 1]n is power-subanalytic. Then U can be partitioned into finitely many cells
Ci such that the restriction of f to each Ci is prepared with some center θi.

We first have to explain what it means to be prepared on a cell with some
center. Since we are only interested in the open cells of this partition, we will
only explain it for open cells, as explained in the introduction of this section.
This avoids some unnecessary extra definitions or terminology from [Mil06].

Definition 3.4.2 ([CPW20, Definition 4.4.1]). A function f : C ⊂ T ×
(0, 1)m+1 → [−1, 1], where C is an open cell, is prepared with center θ
if f is of the form

f(t, x, xm+1) = bj(t, x, xm+1)F (b(t, x, xm+1)),

where bj is a component function of b : C → RN (for some N ∈ N), which has
bounded range, each component function of b is of the form

a(t, x) |xm+1 − θ(t, x)|r

for some power-subanalytic a and r ∈ R, F is an analytic and non-vanishing
function on an open neighborhood of Im(b) and θ is either identically zero
or a continuous power-subanalytic function, whose graph is disjoint of C̄ or
contained in C̄ \ C, such that there exists an ε ∈ (0, 1) such that for all
(t, x, xm+1) ∈ C : εxm+1 < θ(t, x) < (1/ε)xm+1.

We call b the associated bounded range map of f . A map f : C → [−1, 1]n is
prepared with center θ if all of its component functions are (with the same θ).

The main idea of the proof of the pre-parametrization theorem is to redefine
f such that θ = 0, and then bound the partial derivative with respect to xm.
Consequently, we iteratively use Theorem 3.4.1 to achieve that f is prepared in
x. We start with showing that we may assume that θ = 0.

After applying Theorem 3.4.1 to f : T × (0, 1)m → X , we obtain finitely many
maps Ci ⊂ T × (0, 1)m → X that are prepared with center θi. Now, by abuse
of notation, fix one such map f : C ⊂ T × (0, 1)m → X that is prepared with
center θ and suppose that θ is not identically zero.

Since θ is continuous, and f is prepared with center θ on C, we may suppose
that either xm < θ(t, x<m) for all (t, x) ∈ C, where x<m denotes (x1, . . . , xm−1),
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or θ(t, x<m) < xm for all (t, x) ∈ C. Suppose that we are in the first case, the
other one is similar. Consider the set

C̃ = {(t, x) ∈ T × (0, 1)m | (t, x<m, Sxm + θ(t, x)) ∈ C},

where we want to find a suitable choice of S such that C̃ is a cell in T × (0, 1)m.
Denote αm and βm for the walls of C bounding the variable xm from below
and above respectively. Then (t, x) ∈ C̃ if and only if

αm(t, x<m) < Sxm + θ(t, x<m) < βm(t, x<m).

Since we supposed that xm < θ(t, x<m) for all (t, x) ∈ C, it follows that
βm(t, x<m)− θ(t, x<m) ≤ 0. Therefore, we should pick some negative S, and
we rewrite the inequality above in the form of a cell as follows:

(1/S)(βm(t, x<m)− θ(t, x<m)) < xm < (1/S)(αm(t, x<m)− θ(t, x<m)).

We should now determine S such that (1/S)(αm(t, x<m)− θ(t, x<m)) < 1. By
Definition 3.4.2, there exists some ε ∈ (0, 1) such that for all (t, x) ∈ C : εxm <
θ(t, x<m) < (1/ε)xm, which implies that

0 < εαm(t, x<m) < θ(t, x<m) < (1/ε)βm(t, x<m) < (1/ε).

It follows that |α(t, x<m)− θ(t, x<m)| < 1/ε. Therefore, we pick S = −ε.

The composition of f : C → X with the map C̃ → C given by

(t, x) 7→ (t, x<m, Sxm + θ(t, x<m)),

is now prepared with center zero.

To summarize this part of the proof, we may replace each f : T×(0, 1)m → X by
finitely many maps C ⊂ T × (0, 1)m, such that the union of their images covers
Im(f). Moreover, each of these maps is either defined on a lower dimensional
cell, thus can be treated by induction, or if it is defined on an open cell, then it
is prepared with center zero.

Bounding the first order derivative with respect to xm

We only consider f : C ⊂ T × (0, 1)m → X that are defined on an open cell and
are prepared with center zero, as obtained at the end of the previous part of
the proof.

Let b be the associated bounded range map of f , thus we have that

f(t, x) = bj(t, x)F (b(t, x))
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where bj is a component function of b, and b and F are as in Definition 3.4.2.
Adjusting b and F if necessary, we may assume that Im(b) ⊂ [−1, 1]N . Using cell
decomposition, we may suppose that b is continuously differentiable and that
there is some i such that |∂bi/∂xm| ≥ |∂bi′/∂xm| for all component functions
bi′ of b. Then further decompose such that |∂bi/∂xm| ≤ 1, in that case we are
done, or |∂bi/∂xm| > 1 on C.

Suppose |∂bi/∂xm| > 1 on C. In that case, using o-minimality, further adjust
bi and F such that Im(bi) ⊂ (0, 1). Using cell decomposition once more, we
may assume that for fixed (t, x1, . . . , xm−1), the map

xm 7→ bi(t, x1, . . . , xm)

is injective. Now let C̃ be the image of C under the map

φ : C → Im(φ) : (t, x) 7→ (t, x<m, bi(t, x)).

It is again a cell in T × (0, 1)m. It follows that f ◦ φ−1 : C̃ → X has the same
image as f , is prepared with center 0 and moreover, |∂bi/∂xm| ≤ 1. Note that
f ◦φ−1 remains prepared with center 0 due to the specific form of b. With more
details, write (t, x1, . . . , x<m, y) for coordinates in C̃. Then we have that

y = bi(t, x) = a(t, x<m)xrm

for some power-subanalytic function a and r ∈ R (see Definition 3.4.2).
Therefore one can express xm as a function of t, x1, . . . , xm−1 and y in the
same form.

Thus, the conclusion of this part of the proof is that we may assume that f
is prepared with center 0 and that the associated bounded range map b of f
satisfies |∂bj/∂xm| ≤ 1 for all component functions bj of b.

The induction argument

Let f : C ⊂ T × (0, 1)m → [−1, 1]n be prepared on an open cell C with center 0
and suppose that its associated bounded range map b satisfies |∂bj/∂xm| ≤ 1
for all component functions bj of b, i.e., the outcome of the previous part of the
proof. Each component function bj of b is of the form

aj(t, x<m)xrjm (3.3)

for some power-subanalytic function aj and rj ∈ R.

Denote by αm and βm the walls of C bounding the variable xm from below
and above respectively. Up to further partitioning, using the cell decomposition
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theorem, we may suppose αm is either identically zero, or non-zero on C. If
αm is identically zero, this will force r ≥ 1 in the computations below, since
|∂bj/∂xm| ≤ 1. Moreover, in that case αm is prepared in x.

We will now construct a map F : π<m(C) → [−1, 1]M for some M ∈ N that
is constructed out of the component functions bj of b, where π<m(C) denotes
the image of C under the projection map T × (0, 1)m → T × (0, 1)m−1 onto the
first m− 1 coordinates. Since the domain has dimension m− 1, the graph Γ(F )
of this function F is a family of m − 1 dimensional subsets of [−1, 1]M+m−1,
and therefore we can apply the induction hypothesis to it. Essentially, this
parametrizes the domain π<m(C) and reparametrizes F . We will show that
after this reparametrization, each component function bj of b is prepared in x
and their associated bounded monomial maps have bounded C1-norm.

The function F has as component functions the walls αm and βm, and also
the following functions for each component function bj of b, depending on the
exponent rj of xm (see 3.3):

1. If rj = 0, it is just bj ;

2. If rj > 0, it is

gβm,j : π<m(C)→ [−1, 1] : (t, x<m) 7→ lim
xm→βm(t,x<m)

bj(t, x<m, xm),

3. if rj < 0, it is

gαm,j : π<m(C)→ [−1, 1] : (t, x<m) 7→ lim
xm→αm(t,x<m)

bj(t, x<m, xm).

Note that the limits are power-subanalytic functions (by general theory of
o-minimality).

We now apply the induction hypothesis to the graph Γ(F ) of F . This yields
finitely many maps ϕi : Di → Γ(F ) that are prepared in x<m and their
associated bounded monomial maps have bounded C1-norm. This also holds
for the walls of Di.

For each i, consider the cell

Ei = {(t, x) ∈ Di × (0, 1) | (ϕi(t, x<m)<m, xm) ∈ C}.

The walls bounding the variables x1, . . . , xm−1 are clearly as desired, since these
are just the walls of Di. The condition on xm is given by the inequalities

αm((ϕi(t, x<m)<m)) < xm < βm(ϕi(t, x<m)<m).
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Since ϕi(t, x<m) ∈ Γ(F ) it follows that αm(ϕi(t, x<m)<m) is prepared in x and
its associated bounded monomial map has bounded C1-norm. Indeed, just
explicitly write down the image of ϕi:

ϕi(t, x<m) = (t, ϕi(t, x<m)1, . . . , ϕi(t, x<m)m−1︸ ︷︷ ︸
∈ π<m(C)

,

ϕi(t, x<m)m, ϕi(t, x<m)m+1︸ ︷︷ ︸
αm and βm

, . . .) ∈ Γ(F ), (3.4)

which indeed shows that αm(ϕi(t, x<m)<m) = ϕi(t, x<m)m is prepared in x
and its associated bounded monomial map has bounded C1-norm. The result
on βm(ϕi(t, x<m)<m) is analogous. Note that the “. . .” represent the functions
we have added for each bj . It follows immediately that if bj had rj = 0, then
bj(ϕi(t, x<m)<m) is as desired.

Finally, it remains to show that the composition of f with the maps

ψi : Ei → C : (t, x) 7→ (ϕi(t, x<m)<m, xm)

are prepared in x and their associated bounded monomial map have bounded
C1-norm. It is sufficient to show this for the bounded range map b of f . The
proof is rather technical and I decided that it is more clear to explain it using a
slight simplification that actually does not harm the generality of the proof.

For simplicity, we will assume that all analytic and non-vanishing functions F
from definitions 3.3.3 and 3.4.2 that arise from this construction, are identically
1. For instance, this implies f = b. Fix some component function bj of b. Recall
that it is of the form

aj(t, x<m)xrjm
for some power-subanalytic function aj and rj ∈ R (see 3.3). We assume rj > 0.
If rj < 0, one should replace βm with αm. We have already explained that if
rj = 0, the composition bj ◦ ψi = bj(ϕi(t, x<m)<m) is as desired.

Since βm(ϕi(t, x<m)<m) is prepared in x, it is of the form

aβm(t)xµ<m

for some power-subanalytic function aβm and µ ∈ Rm−1. Now, we have that

gβm,j(ψi(t, x)<m) = lim
xm→βm(ψi(t,xm)<m)

bj(ψi(t, x))

= aj(ψi(t, x)<m) (aβm(t)xµ<m)rj ,
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but gβm,j(ψi(t, x<m)<m) = gβm,j(ϕi(t, x<m)<m) is also prepared in x (see 3.4),
hence it is of the form

cβm(t)xν<m
for some power-subanalytic function cβm and ν ∈ Rm−1. We conclude that

aj(ψi(t, x)<m) =
cβm(t)xν<m
aβm(t)rjxrjµ<m

, (3.5)

which shows that bj ◦ ψi is indeed prepared in x.

Example. Suppose b : U → R is given on a cell C defined by{
0 < x1 < 1,

x
1/2
1 < x2 < 1,

that b is of the form a(x1)x−1
2 and lim

x2→x1/2
1

= 1. Then clearly, a(x1) = x
1/2
1 .

Finally, we have to show that bj ◦ ψi has bounded C1-norm. Since we already
bounded ∂bj/∂xm and by the form of the map ψi, there is nothing to show
anymore for the first order derivative with respect to xm.

Let ` ∈ {1, . . . ,m − 1}. If bj ◦ ψi does not depend on x`, there is nothing to
show. Suppose it does depend on x`. Because of the form of bj ◦ ψi, partial
differentiation with respect to x` is (up to a constant) the same as division by
x`. By 3.5, we see that bj ◦ ψi depends on x` if and only if gβm(ψi(t, x<m)<m)
does, βm(ψi(t, x<m)<m) does or both. Since they are prepared in x and have
bounded C1-norm, they can absorb the division by x`, if they depend on x`.

More precisely, suppose gβm(ψi(t, x<m)<m) depends on x`, equivalently: ν` 6= 0.
Then we see that (∂/∂x`)(bj ◦ ψi) is bounded since:∣∣∣∣ 1

x`
(bj ◦ ψi)(t, x)

∣∣∣∣ =
∣∣∣∣ 1
x`
cβm(t)xν<m

x
rj
m

aβm(t)rjxrjµ<m

∣∣∣∣
≤
∣∣∣∣ 1
x`
gβm(ψi(t, x<m)<m)

∣∣∣∣ ∣∣∣∣βm(ψi(t, x<m)<m)rj
βm(ψi(t, x<m)<m)rj

∣∣∣∣ .
The first factor is bounded by our assumptions on gβm(ψi(t, x<m)<m).

Finally, suppose gβm(ψi(t, x<m)<m) does not depend on x`, then the wall
βm(ψi(t, x<m)<m) does (if not bj ◦ψi does not depend on x` and we were done).
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We see that (∂/∂x`)(bj ◦ ψi) is bounded since:∣∣∣∣ 1
x`

(bj ◦ ψi)(t, x)
∣∣∣∣ =

∣∣∣∣ cβm(t)xν<m
aβm(t)xµ<m

1
x`

x
rj
m

(aβm(t)xµ<m)rj−1

∣∣∣∣
≤
∣∣∣∣gβm(ψi(t, x<m)<m)
βm(ψi(t, x<m)<m)

∣∣∣∣ ∣∣∣∣ 1
x`

βm(ψi(t, x<m)<m)rj
βm(ψi(t, x<m))rj−1

∣∣∣∣ .
By our assumption on βm(ψi(t, x<m)<m), it follows that the second factor is
bounded. The first factor is bounded since (∂/∂xm)(bj) is bounded. Indeed,
up to a constant, we have that (∂/∂xm)(bj) = bj/xm since rj 6= 0. Taking the
limit for xm → βm(ψi(t, x<m)<m) yields that the first factor above is bounded.

Example. Let us also consider an example of the last part of the proof. It will
show that it is crucial that (∂/∂xm)(bj) has to be bounded. Consider the cell
C defined by 

0 < x1 < 1,
x1 < x2 < 1,

x2
1x
−1
2 < x3 < 1,

suppose that b(x) is of the form a(x1, x2)x−2
3 and that gα3(x1, x2) = x2. It

follows that a(x1, x2) = x4
1x
−1
2 , thus b(x) = x4

1x
−1
2 x−2

3 . We see that

|∂b/∂x2| = x4
1x
−2
2 x−2

3 = (α3(x1, x2)/x3)2 < 1.

However, we see that

|∂b/∂x1| = 4x3
1x
−1
2 x−2

3 < 4x3
1x
−1
2 (x2

1x
−1
2 )−2 = 4x2

x1
.

It follows that |∂b/∂x1| is unbounded. Note that x2/x1 = gα3(x1, x2)/x1, which
is unbounded because

|∂b/∂x3| = 2x4
1x
−1
2 x−3

3 < 2x−2
1 x2

2

is not bounded.

3.5 C-Mild parametrization of power-subanalytic
curves

In this section we show the following C-mild parametrization theorem for power-
subanalytic curves for some arbitrary C > 0. The proof strategy is analogous
to the proof of the Cr-parametrization theorem, one just has to replace the
power substitution by an exponential substitution. We will see that this causes
problems in higher dimensions.
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Theorem 3.5.1 ([VH21a, Theorem 4.7]). Let C be a power-subanalytic family
of curves in [−1, 1]n, then for all C > 0, there exists a uniform C-mild
parametrization of C.

Proof. By the cell decomposition theorem, we may suppose that C is the graph of
a power-subanalytic function ϕ : T × (0, 1)→ [−1, 1]n−1 such that ϕ(t, x) ∈ Ct
for each (t, x) ∈ T × (0, 1)m.

By the pre-parametrization theorem, we obtain finitely many charts fl : Cl → C,
where Cl is an open cell in Tl × (0, 1) for some Tl ⊂ T , that are prepared in x.
Let P be the exponential substitution Tl × (0, 1)→ Tl × (0, 1) given by

(t, x) 7→ (t, e1−1/x1/C
).

Let bl be the associated bounded monomial map of fl, which has bounded
C1-norm (as a result of the pre-parametrization theorem). By Proposition
2.5.10, it follows that bl ◦ P is (A,B,C)-mild up to order +∞ on P−1(Cl), for
some A,B > 0 (note that A depends on C). Since fl is prepared in x with
associated bounded monomial map bl, we have that fl ◦ P : P−1(C) → C is
given by

(fl ◦ P )(t, x) = bl,j(P (t, x))Fl(bl(P (t, x)),

where bl,j is a component function of bl and Fl is analytic and non-vanishing on
an open neighborhood of Im(bl). Then Fl is (A′, B′, 0)-mild up to order +∞
for some A′, B′. Clearly, adjusting A′ and B′ if necessary, we may suppose Fl
is (A′, B′, C)-mild up to order +∞. Since bl ◦ P is (A,B,C)-mild up to order
+∞, it follows by Proposition 2.2.5 that Fl ◦ bl ◦P is (A,B,C)-mild up to order
+∞ for some larger A,B > 0. By Proposition 2.2.2, it follows that fl ◦ P is
(A,B,C)-mild up to order +∞, for possibly larger A,B. Finally, linearly map
Tl × (0, 1) onto Cl to finish the proof.

Remark 3.5.2.

1. Note that we use Proposition 2.5.10 for the choice κ = 1/C. Therefore,
if 0 < C ≤ 1, we have κ ≥ 1 and we may assume that the C-mild
parametrization consists of functions that are (A/C,B,C)-mild for some
A,B > 0 that only depend on C.

2. Since the map P makes use of the unrestricted exponential function, it
is not power-subanalytic. As a consequence, the charts in the theorem
are not power-subanalytic. Moreover, it follows that also P−1(Cl) is
not power-subanalytic. This is the main obstacle in higher dimensions.
Additionally, the power substitution has a good interaction with functions
that are prepared in x, since they are essentially monomials, but this is
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not the case for the exponential substitution, which will be more clear in
Example 3.5.3 below.

We conclude this section with applying this method to the family of hyperbolas
of Section 3.2.

Example 3.5.3. Let C be the family of algebraic curves

{(t, x, y) ∈ (0, 1)× (−1, 1)2 | xy = t}

as in Section 3.2. In that section we have seen that is suffices to reparametrize
the function f : U = (0, 1)× (

√
t, 1)→ R given by

f(t, x) = t/x.

Clearly, f is prepared in x and its associated bounded monomial map has
C1-norm 1. Let C > 0 and let P be defined as in the proof of Theorem 3.5.1.
We have that f ◦ P is given by

(f ◦ P )(t, x) = te1/x1/C−1

on P−1(U). Since the inverse of e1−1/x1/C is given by (1− ln(x))−C , P−1(U)
is equal to (0, 1)× ((1− ln(

√
t))−C , 1). As we have mentioned in Remark 3.5.2,

we see that the interaction of P with the walls of the cell is rather complicated.

To finish the C-mild parametrization of C, consider the map Φ : (0, 1)× (0, 1)→
P−1(U) defined by

Φ(t, x) = (t, (1− ln(
√
t))−C + (1− (1− ln(

√
t))−C)x).

Now f ◦ P ◦Φ is the desired reparametrization of f , i.e., the map (Φ, f ◦ P ◦Φ)
is a C-mild chart of the curve C and the others are obtained by symmetry or
were trivial. More precisely, two charts of the C1-parametrization were families
of constant functions and therefore are already as desired. The other 4 charts
are reparametrized as above and become (A,B,C)-mild up to order +∞ for
some A,B > 0.
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3.6 Remarks

We speculate on generalizations of the results of this section and give some ad-
ditional remarks on the definability issues concerning C-mild parametrizations.

Preparation theorems

It is clear that the preparation theorem (Theorem 3.4.1) is the key ingredient
of the pre-parametrization theorem. Theorem 3.4.1 is a strong result, because
there is some information on the unit, that is the non-vanishing function F
(hence a unit), as in Definition 3.4.2, that is analytic on an open neighborhood
of Im(b), equivalently it is (A,B, 0)-mild up to order +∞ for some A,B > 0.

For so-called “polynomially bounded” o-minimal structures, there is a general
preparation theorem.

Theorem ([vdDS02, Theorem 2.1]). Suppose that S is a polynomially bounded
o-minimal structure on R and that f : Rm+1 → R is definable. Then there is
a finite covering C of Rm+1 by definable sets, and for each set S ∈ C, there is
some λ ∈ R and functions θ, a : Rm → R and u : Rm+1 → R, all definable, such
that the graph of θ is disjoint from S and for all (x, xm+1) ∈ S, we have that

f(x, xm+1) = |xm+1 − θ(x)|λ a(x)u(x, xm+1)

with |u(x, xm+1)− 1| < 1/2.

The function u in this theorem is the unit. Since it is just definable, we cannot
say anything about its derivatives, in particular they could be unbounded or
not (A,B,C)-mild up to order +∞ for any A,B > 0 and C ≥ 0. However the
latter is not really an issue, as we have mentioned below Lemma 2.5.1.

Note that Theorem 3.4.1 holds for the structure of (globally) subanalytic sets.
Its language, the subanalytic language, contains symbols for functions that are
analytic on an open neighborhood of a compact domain. Therefore, each of
them is (A,B, 0)-mild up to order +∞ for some A,B > 0. Therefore one might
ask: if the o-minimal structure is obtained from the semi-algebraic sets by
adding function symbols for the restriction of functions that are (A,B,C)-mild
up to order +∞ for some A,B > 0 and C ≥ 0, can we say the same about
the unit? An example of such an o-minimal structure is the structure RG , see
[vdDS00] for the details. It is “generated” by some “Gevrey functions”, as
mentioned in the introduction of Chapter 2. As far as I know, the preparation
theorem that I would claim in this case, is not known (or published) yet.
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Another example of an o-minimal structure, rather say a class of o-minimal
structures, that arises by adding functions with bounds on the derivatives is
the structure RC(M), where C(M) is a Denjoy-Carleman class (see Definition
2.6.7). Recall that if Mn = n!, this is the same as (A,B, 0)-mild functions up
to order +∞ for some A,B > 0, and that additional assumptions are required
on M such that it is closed under compositions. This structure is studied in
[RSW03]. To show that RC(M) is o-minimal, they suppose additionally that
C(M) is quasi-analytic, i.e., the map sending a function to its Taylor series (as
formal power series) is injective. In fact, this technique is also used to show
that RG is o-minimal and this approach is described in general in [RS15].

For the structure RC(M), it is natural to ask: is there a preparation theorem for
this structure, where the unit belongs to C(M)? The answer seems negative due
to the fact that this is not true on the level of germs, see [ABB+14]. However,
this obstacle could perhaps be overcome. Indeed, the fact that these classes are
not closed under Weierstrass preparation, does not mean that nothing could be
said about the unit. Perhaps in belongs to some different class? Note that the
class of C-mild functions with C > 0 is not quasi-analytic due to the Denjoy-
Carleman Theorem (see for instance [KP02, Theorem 4.1.15]). Therefore, the
result of [ABB+14] does not apply to the C-mild functions with C > 0.

Suppose that in the preparation theorem above, the unit u is (A,B,C)-mild
for some A,B > 0 and C ≥ 0. Then it seems that one can deduce an analogue
of the pre-parametrization theorem for that o-minimal structure and thus also
deduce a uniform Cr-parametrization theorem as Theorem 3.3.1 and uniform
C-mild parametrization theorem as Theorem 3.5.1.

More about definability

We have already mentioned in the introduction that for the C-mild parametri-
zation theorem, there are some definability issues. If X is power-subanalytic,
one obtains power-subanalytic charts by the pre-parametrization theorem. The
composition with the power substitutions remains power-subanalytic. Clearly,
this is not the case for the exponential substitution (see Remark 3.5.2).

It seems that for uniform C-mild parametrizations, one requires the exponential
function or, more generally, the charts will be definable in an o-minimal
structure that is not polynomially bounded. For instance, it follows from
[BN19, Proposition 2] that the family of curves C in Section 3.2 cannot be
uniformly parametrized with subanalytic functions that are (A,B,C)-mild up
to order +∞.

By work of Thomas in [Tho11], it follows that for all C ≥ 0, there is a set X
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definable in some polynomially bounded o-minimal structure on R that does
not have a definable C-mild parametrization. Moreover, one can find such a set
X in an o-minimal structure that has analytic cell decomposition (this is not
the case in general, see Remark 1.3.7). In fact, she considers the more general
setting of G-mild functions, as mentioned below Definition 2.6.7.

In light of these two results, it seems indeed required to study C-mild
parametrizations in structures that are not polynomially bounded. In that case,
we lose the preparation theorem in general. However, if a function is constructed
using functions that are definable in some polynomially bounded o-minimal
structure and compositions of the entire exponential function or logarithm,
there is a preparation theorem for these type of functions in [vdDS02]. If in
particular one takes the structure of subanalytic sets, this generalizes a result by
Lion and Rolin [LR97]. In the latter case, the unit is analytic. Note that [Mil06]
generalizes the result of [LR97] for subanalytic functions to power-subanalytic
functions in the sense that one may use some subclass of the analytic functions
rather than all analytic functions.



Chapter 4

Rational points on definable
sets

In Chapters 2 and 3, we have mentioned that mild functions and parame-
trizations are used in diophantine geometry. In this chapter we make these
statements more precise.

Most notably is a precise statement of the main result by Pila and Wilkie in
[PW06], now well known as the Counting Theorem, in Section 4.1. Roughly
speaking the theorem says that there are few rational points on transcendental
sets. In that section we also provide some history of the results and more recent
developments and applications. Furthermore, we discuss a conjecture by Wilkie
that strengthens the Counting Theorem in the o-minimal structure Rexp.

Section 4.2 contains the key ingredients of the proof of the Counting Theorem,
most importantly the determinant method. It is this method that requires a
suitable parametrization theorem as an input. A complete proof of the Counting
Theorem can be found in the original article [PW06]. Finally in Section 4.3 we
give some more recent related results.

Nothing in this chapter is my work and there are several other articles or surveys
that also provide on overview of this field. These will be clearly indicated in
the text. There is one exception: I make a constant in Theorem 4.3.1, which is
[CPW20, Theorem 2.3.1], more explicit using that we know how many charts
their method yields by my work.

83
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4.1 The Pila-Wilkie Counting Theorem

This section provides an overview of the developments towards the Counting
Theorem and its applications afterwards. A lot of this information can also be
found in the original article [PW06] by Pila and Wilkie and in the introduction
of several articles, for instance [Pil10], [BN19] or [CPW20].

Some older results

Together with Bombieri, Pila started studying rational points on curves in
[BP89]. They have two main results in that paper. Let y = f(x) define a plane
curve Γ. Firstly, if f ∈ CD([0, N ]), |f |0 ≤ N , |f ′|0 ≤ 1 and f (D) 6= 0 on [0, N ],
then there are at most

c(εD)N 1
2 +εD

integer points on the curve, where εD → 0 if D → ∞. Secondly, if f is a
transcendental analytic function, then∣∣tΓ ∩ Z2∣∣ ≤ c(f, ε)tε
for every ε > 0, where tΓ = {(x, y) ∈ R2 | ty = tf(x)} for some t ∈ N and c(f, ε)
is some constant that depends on f and ε. These type of results were studied
earlier by Schmidt [Sch85], who improved earlier work by several other authors.

Note that in the first result, the exponent 1/2 is the best possible, consider for
example f(x) =

√
x. It seems that if a curve is transcendental, this phenomenon

does not occur and thus one can obtain the better upper bound in the second
result.

Pila has improved this work in several ways over the following two decades.
[Pil91] and [Pil96] further refine the first result for plane curves. [Pil95] studies
rational points on varieties, i.e., extends the work to higher dimensions. The
results have been generalized to subanalytic surfaces in [Pil04] and [Pil05].

The Counting Theorem

In [Wil04], Wilkie showed similar results as in [BP89], for curves definable in
an o-minimal structure. His method differs from the Bombieri-Pila strategy, he
instead uses Siegel’s Lemma. This method is also used to prove Theorem 4.3.3,
one of the recent results in Section 4.3.
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In [PW06] Pila and Wilkie proved a result that holds for a large class of sets,
now known as the Counting Theorem. In order to precisely formulate this
theorem, we need to introduce some notation.

Definition 4.1.1. Let q = a/b ∈ Q with gcd(a, b) = 1. The height of q is
given by:

h(q) = max(|a| , |b|).
If q ∈ Qn, then h(q) = max(h(q1), . . . , h(qn)).

The notion of height measures the complexity of a rational number. There are
several heights, we consider here the “multiplicative height”. It can be extended
to number fields and algebraic numbers, see [BG06]. The idea is that if we
put some threshold H ∈ N on the height of the points of a set, there are only
finitely many. More precisely, we study the set of rational points of height
at most H on a set X:

X(Q, H) = {x ∈ X ∩Qn | h(x) ≤ H}.

Clearly, this set is finite for every H ∈ N. The idea is that these sets approximate
X as H tends to infinity, and that the cardinality of these sets yield information
about X. The Counting Theorem is such a result. We need one more definition.

Definition 4.1.2. The algebraic part Xalg of X is the union of all semi-
algebraic sets contained in X of dimension at least one. Its complement in X is
called the transcendental part Xtrans of X.

Note that Xalg might not be (semi-) algebraic. Actually, if X is definable in
an o-minimal structure, then Xalg might not be definable. Moreover, it is in
general not easy to compute Xalg. In [PW06] they consider as an example the
set

X = {(x, y, z) ∈ R3 | z = xy, x, y ∈ [1, 2]}.
If y ∈ Q, then the equation z = xy yields a semi-algebraic curve contained in X,
thus is part of Xalg. It is claimed that this is exactly the algebraic part of X.
While X is subanalytic, Xalg is not definable in an o-minimal structure since it
has infinitely many connected components. However, for some sets, X = Xalg,
for example, if X is open in Rn. This shows that Xalg might be definable, but
not semi-algebraic. The precise statement of the Counting Theorem deals with
these complications.

Theorem 4.1.3 (Pila-Wilkie Counting Theorem, [PW06, Theorem 1.10]). Let
X ⊂ T × Rn be a definable family, where T ⊂ Rk, and ε > 0. There is a
definable family W (X , ε) ⊂ X and a constant c(X , ε) with the following property.
For every t ∈ T , we have that Wt ⊂ Xalg

t , and

|(Xt \Wt)(Q, H)| ≤ c(X , ε)Hε.
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This theorem generalizes the result above on curves defined by transcendental
analytic functions to a much larger class of objects. Note that when X contains
a semi-algebraic curve, one cannot expect such a result to hold since in the
first result above, the exponent 1/2 is sharp. This is the main reason why one
considers the transcendental part of X.

A similar result on counting algebraic points has been proved by Pila in [Pil09].
In that case, the constant c(X , ε) also depends on a threshold on the degree of
the algebraic extension.

Wilkie’s Conjecture

In [Pil04], Pila explains how he and Bombieri constructed examples to show that
the upper bound of the Counting Theorem is the best possible for subanalytic
curves, thus also for higher dimensional subanalytic sets. However, Wilkie
conjectured that it can be improved for sets defined by “nice” analytic functions.

Conjecture (Wilkie, [PW06, Conjecture 1.11]). Suppose that X is definable
in Rexp. Then there are constants c1(X), c2(X) such that (for T ≥ e)∣∣Xtrans(Q, H)

∣∣ ≤ c1(X) log(H)c2(X).

One could study Wilkie’s Conjecture more generally in the structure RPfaff of
Pfaffian sets, which is contained in the “Pfaffian closure” of Rexp, see [Spe99].
There is a proof of this conjecture for the structure on R generated by the
restricted exponential and restricted sine function by Binyamini and Novikov
in [BN17]. They also show it in the more general setting of counting algebraic
points over number fields. However, this does not deal with the unrestricted
exponential function. One might consider more generally the o-minimal structure
RresPfaff. This structure is constructed similar to Ran, but adding restricted
Pfaffian functions instead of restricted analytic functions (see Section 1.2). I
am not aware of a proof of Wilkie’s Conjecture in this setting, but it seems that
it should hold there in view of the result of [BN17] and the result in [JMT11],
which we will mention below.

The conjecture has been shown for Pfaffian curves in R2 by Pila in [Pil06a],
under the assumption that these curves have a C-mild parametrization. We
have seen in Chapter 3, that this conjecture is true for power-subanalytic
curves in Rn. However Wilkie’s Conjecture is not true for subanalytic curves in
general, as we have mentioned before. The reason for this is that they may have
“oscillation” (see [Pil06a, Section 4.3]). More precisely, Pfaffian curves do not
have many intersections with algebraic curves, while subanalytic function can
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have many intersections. This result by Pila has been generalized to functions
definable in RresPfaff in [JMT11], using a 0-mild parametrization theorem.

In [Pil10], Pila considers the following surface in R3:

{(x, y, z) ∈ (0,+∞)3 | log(x) log(y) = log(z)}.

He constructs an explicit C-mild parametrization of this surface (intersected
with (0, 1)3) and thus was able to use the methods he had developed before. In
particular, it follows that Wilkie’s Conjecture is true for this surface, which is
definable in Rexp. This result was generalized by Butler in [But12] to surfaces
of the form

{(x, y, z) ∈ (0,+∞)3 | log(x)a log(y)b log(z)c = 1}

for some a, b, c ∈ Q.

Independently, it is shown in [But12] and [JT12] that Wilkie’s Conjecture holds
for plane curves definable in Rexp. Moreover, in [JT12] the conjecture is shown
for a curve defined by a function that is “existentially definable” in RPfaff, which
is more general than Pfaffian, and for surfaces definable in RresPfaff. Note that
this does not include the surfaces in R3 above.

Consequences of the Counting Theorem

In [PZ08] Pila and Zannier gave another proof of the Manin-Mumford conjecture.
Roughly speaking this result says that if a curve has infinitely many torsion
points, then it is equal to its Jacobian variety. Their proof strategy consists of
creating a contradiction between the upper bound on rational points on a set,
coming from the Counting Theorem, and a lower bound coming from Galois
theory based on the work of Masser [Mas84]. The torsion points are translated
to rational points by a function that is definable in an o-minimal structure
(usually Ran,exp), called the uniformization map.

This strategy has successfully been applied to other settings. Most notably, an
unconditional proof of the André-Oort conjecture for the product of modular
curves in [Pil11], for which Pila has received the Clay Research Award in 2011.
A nice survey on this proof strategy, including the basics of o-minimality, can
be found in [Sca17]. For more details, see the book [JW15].

In [PT14], together with Tsimerman, Pila showed the Ax-Lindemann Theorem
for Ag and in [PT16] Ax-Schanuel for the j-function. Together with Mok
and Tsimerman [MPT19], he proved the Ax-Schanuel conjecture for Shimura
varieties. These results are expected to work in other similar settings as well. For
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instance the recent developments by Bakker, Klingler and Tsimerman [BKT20]
and the consequences in Hodge theory in [BBKT20, BBT20].

The lower bounds that are used in the Pila-Zannier strategy, are hard to
establish. The idea is that if Wilkie’s Conjecture would be true for the considered
application, then the desired lower bound can be relaxed. However, in the
applications, one is often not working in Rexp. Therefore it would be required
that the conjecture holds for an o-minimal structure containing Rexp, such
that the maps involved in the application are definable in this structure. I am
currently not aware of examples of such a structure, even in the case of curves.

4.2 The determinant method

The goal of this section is to explain the key ingredients in the proof of
the Counting Theorem (Theorem 4.1.3). The proof consists of two main
ingredients. Firstly, one requires a parametrization theorem, where the charts
of the parametrization have bounded Cr-norm up to some order r. This order
r depends on the choice of ε > 0 in the statement of the Counting Theorem.
Secondly, on each of these charts, one finds “few” hypersurfaces of degree d,
such that all rational points of height at most H on X lie on at least one of
these hypersurfaces. Here, “few” means that for d → ∞, it is equal to cHε

for some constant c > 0. This constant c depends on the parametrization of
the considered set X. The proof of this second statement is often called the
determinant method due to some determinant appearing in the proof.

More precisely, the second ingredient is the following proposition.

Proposition 4.2.1 ([PW06, Proposition 6.1]). Suppose that m < n. Then
there are, for each d ∈ N, d ≥ 1, a nonnegative integer r(m,n, d) and positive
constants ε(m,n, d), C(m,n, d) with the following property.

Suppose that φ : (0, 1)m → Rn is a Cr(m,n,d)-map with |φ|r(m,n,d) ≤ 1. Let
X = Im(φ) and H ≥ 1. Then X(Q, H) is contained in the union of at most

C(m,n, d)Hε(m,n,d)

hypersurfaces of degree d. Furthermore, ε(m,n, d)→ 0 as d→∞.

The additional assumption m < n ensures that ε(m,n, d) → 0 for d → ∞.
If m = n, the statement still holds, without that last assertion. This is not
a problem to prove the Counting Theorem, since if X is open in Rn, then
Xalg = X. Removing the interior of a set yields a lower dimensional set (by
o-minimality), without the loss of rational points on the transcendental part.
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This proposition gives the aforementioned result on “few” hypersurfaces for
sets X such that X = Im(φ), for some sufficiently differentiable map φ that
has bounded derivatives up to order r. Therefore, to apply this proposition
to a general set X, one requires a parametrization result of this type. It
is not necessary that |φ|r(m,n,d) ≤ 1, but imposing so masks the fact that
C(m,n, d) depends on the parametrization. For instance, if one has a C-mild
parametrization, one can obtain a more explicit formula for C(m,n, d) in terms
of the mildness parameters A,B and C, see [Pil10, Corollary 3.3]. Also the
functions that belong to some Denjoy-Carleman class (see Definition 2.6.7)
could be considered, although I have not seen this in literature yet.

Combining a suitable parametrization result with Proposition 4.2.1 yields the
following result.

Proposition 4.2.2 ([PW06, Main Lemma]). Let X be a definable set of
dimension m < n and ε > 0. There exists a constant d(ε,m, n) and a constant
c(X, ε) with the following property. For all H ≥ 1, the set X(Q, H) is contained
in the union of a most

c(X, ε)Hε

hypersurfaces of degree d.

It is easily verified that this proposition holds uniform for a family X if one
has a uniform parametrization. The constant c(X, ε) is obtained by multiplying
C(m,n, d) of Proposition 4.2.1 with the amount of charts of the parametrization.
The required differentiability is also computed via Proposition 4.2.1, where one
should pick d such that ε(m,n, d) < ε.

Finally, remark that the parametrization result required for Proposition 4.2.1
implies that X ⊂ [−1, 1]n. Now since rational points are mapped to rational
points under the map x 7→ 1/x, and because this map also preserves the height
of a rational number, this is not an issue to prove the Counting Theorem. In
fact, this is the first step of its proof.

Let us now give a sketch of the proof of Proposition 4.2.1, or stated differently:
explain the determinant method. Precise details can be found in [PW06], [Pil10]
or [CPW20].

Sketch of proof. Assume X = Im(φ) for some Cr-map φ : (0, 1)m → Rn, where
the required differentiability on φ will be determined later. Let d,H ∈ N. The
goal is to cover (0, 1)m with balls BR of some radius R, also to be determined,
such that Im(φ|BR)(Q, H) is contained in a single algebraic hypersurface of
degree d. Therefore, if we know R, we know how many hypersurfaces we will
need at most.
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If q ∈ Im(φ)(Q, H), it yields a linear equation on the coefficients of the
hypersurface: ∑

aνq
ν = 0, (4.1)

where the sum runs over all monomials with natural exponents in n variables of
degree at most d. Denote the cardinality of this set by Dn(d). Clearly, if there
are less than Dn(d) points in Im(φ)(Q, H), there is nothing to be done.

Suppose that there are more equations than variables. Consider any Dn(d)×
Dn(d) subdeterminant ∆ of the system 4.1. We will show that if R is sufficiently
small, they are all zero, hence the system has a solution. (This explains the
name determinant method.) We will use that q = φ(p) for some p ∈ (0, 1)m and
then use the Taylor approximation of φν for each ν to reduce to monomials in
m variables. We want a Taylor approximation of order b+ 1, where b is uniquely
determined by:

Dm(b) ≤ Dn(d) < Dm(b+ 1).

This number b + 1, that depends on m,n and d, is the required order of
differentiability r(m,n, d) in Proposition 4.2.1. It does not depend on φ. Note
that since m < n, we have that b is larger than d.

Now apply Taylor approximation to φν with remainder term of degree b + 1
and use linearity in columns to write the determinant in the same form of
the system of equation 4.1. More precisely, for each column, we pick some
exponent and split the determinant linearly accordingly. In this way, the original
subdeterminant ∆ becomes a sum of many determinants ∆′. Many of these
determinants ∆′ are automatically zero (for instance if one picks many terms of
low degree, then the determinant will be zero as the columns will be linearly
dependent since Dm(b) ≤ Dn(d)).

A nonzero contribution ∆′ can then be estimated (in absolute value) in terms of
the derivatives of φν , which can be bounded by some suitable power of R times
a constant that depends on m,n, d and the upper bounds on the derivatives of
φ. The estimate on the power of R uses the assumption that ∆′ was nonzero.
Since the amount of ∆′ is also a constant depending on m,n and d, we have
found an upper bound for |∆|, which is some constant times a power of R.

However, since ∆ is a determinant with coefficients in Q, one can find some
integer Z such that Z∆ ∈ Z. Moreover, since we consider rational points up to
height H, this Z can be bounded in terms of a power of H. This power depends
on n and d. This yields a lower bound on ∆, in terms of a power of H. This
lower bound is nonzero if ∆ was nonzero.

Finally, if one chooses R small enough such that the upper bound is smaller
than the lower bound, the determinant must be zero.
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Remark 4.2.3.

1. This method only depends on the type of the parametrization in the step
where the nonzero determinants ∆′ are bounded in terms of the Taylor
approximation of φν . If the upper bounds are not too bad, for instance if
the parametrization is C-mild, one can also use the method (see [Pil10,
Corollary 3.3]).

2. To use Taylors theorem, it is required that the domain of φ, in this case
(0, 1)m, is convex. Therefore, to use this method, it is not necessary that
the domain of the charts of a parametrization is (0, 1)m, but they should
have some convex domain.

3. For a precise analysis of the constants appearing in the proof, especially
the part where some upper bound on the nonzero contribution ∆′ is
claimed (which is the most technical part of the proof), see [Pil10] and
also [CPW20, p. 10-12].

4.3 Some recent results

In [Pil10] and [CPW20], Pila makes a particular choice of d, to achieve an
upper bound on the amount of hypersurfaces that resembles the upper bound
in Wilkie’s Conjecture. More precisely, he picks d = [log(H)m/(n−m)], where [·]
denotes the unique integer such that [x] ≤ x < [x] + 1. Using this particular
choice of d, one deduces the following result.

Theorem 4.3.1 ([CPW20, Theorem 2.3.1]). Suppose that X is an m-
dimensional subset of (0, 1)n with m < n. Then there exist positive constants
c1(X), c2(X) such that, for H ≥ e, X(Q, H) is contained in the union of at
most

c1(X) log(H)c2(X)

algebraic hypersurfaces of degree at most [log(H)m/(n−m)].

This result, and also its consequence below, actually hold for families X if
the parametrization is uniform in families. But this is not important for the
discussion here.

Let us make the constant c2(X) more explicit, using that I have shown that
their construction leads to crm3 charts for some constant c that depends on
X (see Theorem 3.3.1 and below). It is tempting to just follow the proof in
[CPW20], but there is a catch. In [CPW20], the Cr supremum norm is used,
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not the weighted version that is defined in Definition 3.1.1, see (2) of Remark
3.1.4.

A first way to solve this problem is to improve the linear reparametrization
method (Corollary 3.1.7), such that it bounds the Cr supremum norm by 1
instead of the Cr-norm. Recall that in the end of the proof of Theorem 3.3.1,
we obtain a finite amount of charts (0, 1)m → X, that are (Arm2

, 1, 0)-mild up
to order r. To bound the Cr supremum norm, apply Lemma 2.5.1 instead of
Lemma 3.1.6 in the proof of the linear reparametrization method. In that case,
one should cover the hypercube

(0, Arm
2
r)m

with translates of (0, 1)m. This yields crm3+m charts for some c > 0 that only
depends on A and m.

Now the norm coincides with the norm in [CPW20], one has to use that

b+ 1 ≤ 2
(
m!dn

n!

)1/m

for sufficiently large d, see [CPW20, p. 9]. Note that this means that H also has
to be sufficiently large since d = [log(H)m/(n−m)]. Since b+ 1 is the required
differentiability of the parametrization, the method will yield

c1(X) log(H)n(m3+m)/(n−m)

algebraic hypersurfaces of degree at most [log(H)m/(n−m)], see [CPW20, p. 12]
the end of the proof. We see that polynomial dependence in r for the amount
of charts implies polynomial dependence in log(H) for the amount of algebraic
hypersurfaces.

A second way to solve this problem caused by the use of two different norms,
would be to go through the computations of [Pil10, Section 3], eventually ending
up with a formula as in [Pil10, Corollary 3.3], which is more precise in the
mildness parameters A and C, as we have mentioned in Remark 4.2.3.

In the end of Section 2.5, we have indicated that a C-mild parametrization,
where C ≤ 1 might be more suitable. Therefore, suppose that X is a curve.
By the C-mild parametrization theorem (Theorem 3.5.1), there is some A > 0
such that for all C ∈ (0, 1), X has a (A(1/C), 1, C)-mild parametrization. Now
perform a linear reparametrization to bound the Cr supremum norm as above.
This yields (A

′

C r)
1+C charts, thus c1(X)C−(1+C) log(H)n(1+C)/(n−1) algebraic

hypersurfaces of degree at most [log(H)1/(n−1)]. In this case that doesn’t really
improve a lot, but if Theorem 3.5.1 were extended to higher dimensions, that
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would be a significant improvement, more precisely a linear dependence on m
in the exponent instead of the polynomial of degree 3.

In [CPW20] they have deduced the following result from Theorem 4.3.1.

Proposition 4.3.2 ([CPW20, Proposition 2.3.6]). Let r be a nonnegative
integer and α, β positive integers. Let X ⊂ (0, 1)3 be a power-subanalytic
surface, that is the intersection of (0, 1)3 with a Pfaffian surface of complexity
(at most) (r, α, β). Then there are c3(X) and c4(X) such that for H ≥ e∣∣Xtrans(Q, H)

∣∣ ≤ c3(X) log(H)c4(X).

We refer to [CPW20] for the precise definition of a Pfaffian surface of complexity
(r, α, β). The result follows by following the paper [Pil10], using results on the
amount intersections of such a surface with algebraic hypersurfaces by Gabrielov
and Vorobjov [GV04].

Binyamini and Novikov also obtain results of this fashion in their paper [BN19].
Their methods allow to express this constants more explicitly if X is semi-
algebraic. They also prove a “log” version of the Counting Theorem, see [BN19,
Proposition 5], where one is allowed to take the unrestricted logarithm of a
bounded subanalytic set. Their paper also contains more references on recent
results of this type.

Finally, let us mention the following theorem by Habegger that is similar to the
Counting Theorem, but counts rational points that are close to a set X, but not
too close to Xalg. We state it here for rational points, the original statements
allows algebraic points.

Theorem 4.3.3 ([Hab18, Theorem 2]). Let X ⊂ Rn be closed and definable in
a polynomially bounded o-minimal structure. Let ε > 0. There exist c(X, ε) ≥ 1,
λ(X, ε) > 0 and θ(X, ε) ∈ (0, 1] such that for all H ≥ 1, we have

∣∣∣{q ∈ Rn(Q, H) | there is x ∈ X with |x− q| ≤ H−λ(X,ε)

and q /∈ N (Xalg, |x− q|θ(X,ε))
}∣∣∣ ≤ c(X, ε)Hε

for all H ≥ 1, where N (Xalg, |x − q|θ(X,ε)) = {z ∈ Rn | ∃y ∈ Xalg : |z − y| ≤
|x− q|θ(X,ε)} is the |x− q|θ(X,ε)-neighborhood of Xalg.

The statement is simpler if Xalg = ∅, in the sense that no “neighborhood of the
empty set” has to be removed, see [Hab18, Corollary 3]. In fact, this theorem
follows from a more general statement in the paper. Many technical details are
also explained with helpful examples in the introduction of the article.
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The proof of the statement uses similar techniques as the proof of the Counting
Theorem. However, the determinant method is replaced by the Siegel’s Lemma,
that Wilkie had proposed in [JW15], and which he had already used in [Wil04].



Conclusion

The two main results in this thesis were deduced from a pre-parametrization
theorem by Cluckers, Pila and Wilkie in [CPW20]. Using precise results on mild
functions and carefully analyzing the construction of the Cr-parametrization
in their work, I have showed that the degree of the amount of charts, that
was already known to be polynomial in the order of differentiability r, is itself
polynomial in the dimension m of the parametrized set. More precisely, it is
crm

3 , for some constant c. This answers a question raised by them in light of
the applications in smooth dynamics.

Purely for the sake of parametrizations, it would be interesting to optimize this
construction of the Cr-parametrization to obtain crm charts. Furthermore, to
express the constant c in terms of the complexity of the set if it is semi-algebraic,
as in [BN19].

Using an exponential substitution, it is possible to deduce a mild parametrization
theorem from the pre-parametrization theorem. However, due to definability
issues, it currently only holds for curves. I expect that it also holds for higher
dimensional sets. If so, it would be at least as good as the Cr-parametrizations
with regard to the applications, especially with the added flexibility in the
mildness parameter C.

The definability issue might lead to the following question: which sets, say
definable in Ran,exp, can be parametrized using the exponential substitution?
An example of such a set, definable in the smaller structure Rexp, was given by
Pila [Pil10], namely:

{(x, y, z) ∈ (0, 1)3 | log(x) log(y) = log(z)}.

Maybe all sets in Ran,exp have a uniform C-mild parametrization? Or some
sufficiently interesting (for the applications in diophantine geometry) subclass?
As far as I know, there are currently no results answering these questions.

95
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Of course, one should not restrict to the exponential substitution, but perhaps
some structural result for Ran,exp, that can play the role of the preparation
Theorem 3.4.1, together with the exponential substitution could be sufficient.
Such a theorem is available for certain functions definable in Ran,exp [LR97],
but it is rather complicated.
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