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Random Features for Kernel Approximation: A
Survey on Algorithms, Theory, and Beyond

Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan A.K. Suykens

Abstract—Random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works
have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random
features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among
various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years.
First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according
to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review
theoretical results that center around the following key question: how many random features are needed to ensure a high approximation
quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular
random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction
performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural
networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current
theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users’ guide for practitioners
interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope
that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions.

Index Terms—random features, kernel approximation, generalization properties, over-parameterized models
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1 INTRODUCTION

K ERNEL methods [1], [2], [3] are one of the most powerful
techniques for nonlinear statistical learning problems with

a wide range of successful applications. Let x,x′ ∈ X ⊆ Rd
be two samples and φ : X → H be a nonlinear feature map
transforming each element in X into a reproducing kernel Hilbert
space (RKHS) H, in which the inner product between φ(x) and
φ(x′) endowed by H can be computed using a kernel function
k(·, ·) : Rd×Rd → R as 〈φ(x), φ(x′)〉H = k(x,x′). In practice,
the kernel function k is directly given to obtain the inner product
〈φ(x), φ(x′)〉H instead of finding the explicit expression of φ,
which is known as the kernel trick. Benefiting from this scheme,
kernel methods are effective for learning nonlinear structures but
often suffer from scalability issues in large-scale problems due to
high space and time complexities. For instance, given n samples in
the original d-dimensional space X , kernel ridge regression (KRR)
requires O(n3) training time and O(n2) space to store the kernel
matrix, which is often computationally infeasible when n is large.

To overcome the poor scalability of kernel methods, kernel
approximation is an effective technique by constructing an explicit
mapping Ψ : Rd → Rs such that k(x,y) ≈ Ψ(x)>Ψ(y). By
doing so, an efficient linear model can be well learned in the
transformed space with O(ns2) time and O(ns) memory while
retaining the expressive power of nonlinear methods. A series of
kernel approximation algorithms have been developed in the past
years, including divide-and-conquer approaches [4], [5], [6], greedy
basis selection techniques [7] and Nyström methods [8]. These
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methods provide a data dependent vector representation of the
kernel. Random Fourier features (RFF) [9], on the other hand, is
a typical data-independent technique to approximate the kernel
function using an explicit feature mapping. This survey focuses
on RFF and its variants for kernel approximation. RFF applies in
particular to shift-invariant (also called “stationary”) kernels that
satisfy k(x,x′) = k(x − x′). By virtue of the correspondence
between a shift-invariant kernel and its Fourier spectral density, the
kernel can be approximated by k(x,x′) ≈ 〈ϕ(x), ϕ(x′)〉, where
the explicit mapping ϕ : Rd → Rs is obtained by sampling from a
distribution defined by the inverse Fourier transform of k. To scale
kernel methods in the large sample case (e.g., n� d), the number
of random features s is often taken to be larger than the original
sample dimension d but much smaller than the sample size n to
achieve computational efficiency in practice.1

Interestingly, the random features model can be viewed as a
class of two-layer neural networks with fixed weights in the first
layer. This connection has important theoretical and algorithmic
implications. On the one hand, in the over-parameterized regime
with s ≥ n, it has been observed that these neural networks
exhibit certain intriguing phenomena such as the ability to fit
random labels [10] and double descent [11]. Theoretical results
[12], [13], [14], [15] for random features can be leveraged to
explain these phenomena and provide an analysis of two-layer over-
parameterized neural networks. On the other hand, the random
features model is a powerful tool for scaling up traditional kernel
methods [16], [17], neural tangent kernel [12], [18], [19], graph
neural networks [20], [21], and attention in Transformers [22],
[23]. Besides, network pruning (as manifested in the lottery ticket
hypothesis [24]) can also benefit from the use of random features.

1. Random features model can be regarded as an over-parameterized model
allowing for s� n, refer to Section 7 for details.
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Partly due to its far-reaching repercussions, the seminal work by
Rahimi and Recht on RFF [9] won the Test-of-Time Award in the
Thirty-first Advances in Neural Information Processing Systems
(NeurIPS 2017).

RFF spawns a new direction for kernel approximation, and
the past ten years has witnessed a flurry of research papers
devoted to this topic. On the algorithmic side, subsequent work
has focused on improving the kernel approximation quality [25],
[26] and decreasing the time and space complexities [27], [28].
Implementation of RFF has in fact been taken to the hardware level
[29], [30]. On the theoretical side, a series of works aim to address
the following two key questions:

1) Approximation: how many random features are needed to
ensure high quality of kernel approximation?

2) Generalization: how many random features are needed to
incur no loss in the expected risk of a learned estimator?

Here “no loss” means how large s should be for the (approximated)
kernel estimator with s random features to be almost as good as
the exact one. Much research effort has been devoted to this
direction, including analyzing the kernel approximation error
(the first question above) [9], [31], and studying the risk and
generalization properties (the second question above) [17], [32].
Increasingly refined and general results have been obtained over
the years. In the Thirty-sixth International Conference on Machine
Learning (ICML 2019), Li et al. [32] were recognized by the
Honorable Mentions (best paper finalist) for their unified theoretical
analysis of RFF.

RFF has proved effective in a broad range of machine learning
tasks. Given its remarkable empirical success and the rapid growth
of the related literature, we believe it is desirable to have a
comprehensive overview on this topic summarizing the progress
in algorithm design and applications, and elucidating existing
theoretical results and their underlying assumptions. With this goal
in mind, in this survey we systematically review the work from
the past ten years on the algorithms, theory and applications of
random features methods. Figure 1 shows a schematic overview
of the history of the work on random features in recent years. The
main contributions of this survey include:

1) We provide an overview of a wide range of random
features based algorithms, re-organize the formulation of
representative approaches under a unifying framework for
a direct understanding and comparison.

2) We summarize existing theoretical results on the kernel
approximation error measured in various metrics, as well
as results on generalization risk of kernel estimators. The
underlying assumptions in these results are discussed in detail.
In particular, we (partly) answer an open question in this topic:
why good kernel approximation performance cannot lead to
good generalization performance?

3) We systematically evaluate and compare the empirical per-
formance of representative random features based algorithms
under different experimental settings.

4) We discuss recent research trends on (high dimensional)
random features in over-parameterized settings for understand-
ing generalization properties of over-parameterized neural
networks as well as the gaps in existing theoretical analysis.
We view this topic as a promising research direction.

The remainder of this paper is organized as follows. Section 2
presents the preliminaries and a taxonomy of random features
based algorithms. We review data-independent algorithms in

Table 1
Commonly used parameters and symbols.

Notation Definition Notation Definition

n number of samples d feature dimension
s number of random features λ regularization parameter
k (original) kernel function k̃ (approximated) kernel function
ωi random feature βλ optimization variable
x data point y label vector
ς Gaussian kernel width σ activation function
ei standard basis vector u u := 〈x,x′〉/(‖x‖‖x′‖)
K (original) kernel matrix K̃ (approximated) kernel matrix
τ τ := x− x′ τ τ := ‖τ‖2
Z random feature matrix W transformation matrix
fρ target function ` loss function
fz,λ (original) empirical functional f̃z,λ (approximated) functional
Ez empirical risk E expected risk
lλ(ω) ridge leverage function dλK effective dimension (matrix)
Σ integral operator N (λ) effective dimension (operator)
⊗ tensor product . ≤ with a constant C times
α convergence rate for λ γ rate for effective dimension

Section 3 and data-dependent approaches in Section 4. In Section 5,
we survey existing theoretical results on kernel approximation
and generalization performance. Experimental comparisons of
representative random features based methods are given in
Section 6. In Section 7, we discuss recent results on random
features in over-parameterized regimes. The paper is concluded in
Section 8 with a discussion on future directions.

2 PRELIMINARIES AND TAXONOMIES

In this section, we introduce preliminaries on the problem setting
and theoretical foundation of random features. We then present a
taxonomy of existing random features based algorithms, which sets
the stage for the subsequent discussion. A set of commonly used
parameters is summarized in Table 1.

2.1 Problem Settings
Consider the following standard supervised learning setup. Let
X ⊂ Rd be a compact metric space of samples, and Y = {−1, 1}
(in classification) or Y ⊆ R (in regression) be the label space.
We assume that a sample set {zi = (xi, yi)}ni=1 is drawn from
a non-degenerate unknown Borel probability measure ρ on X ×
Y . Let H be a RKHS endowed with a positive definite kernel
function k(·, ·), and K = [k(xi,xj)]

n
i,j=1 be the kernel matrix

associated with the samples. The target function of ρ is defined as
fρ(x) =

∫
Y ydρ(y|x) for x ∈ X , where ρ(·|x) is the conditional

distribution of y given x. The typical empirical risk minimization
problem is considered as

fz,λ := argmin
f∈H

{
1

n

n∑
i=1

`
(
yi, f(xi)

)
+ λ‖f‖2H

}
, (1)

where ` : Y × Y → R is a loss function and λ ≡ λ(n) > 0 is a
regularization parameter. In learning theory, one typically assumes
that limn→∞ λ(n) = 0 and adopts λ := n−α with α ∈ (0, 1].

The loss function `(y, f(x)) in Eq. (1) measures the quality
of the prediction f(x) at x ∈ X with respect to the observed
response y. Popular choices of ` include the squared loss
`(y, f(x)) = (y − f(x))2 in kernel ridge regression (KRR)
and the hinge loss `(y, f(x)) = max(0, 1 − yf(x)) in support
vector machines (SVM), etc. For a given `, the empirical
risk functional on the sample set is defined as Ez(f) =
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RFF [9]: Test-of-Time award in
NeurIPS2017

weighted RFF: [33]

histogram
kernels: [34]

poly kernel [35], addtive kernel [36]

structural: Fastfood [37]

quasi-Monte Carlo: QMC [38]

doubly stochastic [39]

sperical poly kernel [40]

circulant: SCRF [41]

orthogonality: ORF, SORF [25],P-model [42]

denisty transformation: MM [43], SSF [44]

deterministic quadratures: GQ, SGQ [27]

stochastic quadratures: SSR [28]

kernel alignment: KP-RFF [45]

quantization [46], [47]

leverage score: LS-RFF [32]

surrogate leverage score: [48], [49]

kernel learning with RFF

‖k − k̃‖∞:
[9]

Lipschitz conutinous:
ω ∼ p(·) [33]

‖k − k̃‖∞: [31], [50]

‖k − k̃‖Lr : [50]

‖k − k̃‖∞: [51]

∆-spectral approximation and empirical risk: [52]

excess risk: ω ∼ q(·) [53]

KRR: Ω(
√
n logn) [54]

SVM: ≤ Ω(n) [17]

(∆1,∆2)-spectral approximation: [46]

KRR, SVM: ω ∼ p(·), ω ∼ q(·) [32] (best paper
finalist in ICML2019)

RFF in DNNs: double descent [11],
NTK [18], lottery ticket hypothesis
[24]

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 future

Algorithm

Theory

Figure 1. Timeline of representative work on the algorithms and theory of random features.

1
n

∑n
i=1 `(yi, f(xi)), and the corresponding expected risk is

defined as E(f) =
∫
X×Y `(y, f(x))dρ. The statistical theory

of supervised learning in an approximation theory view aims to
understand the generalization property of fz,λ as an approximation
of the true target function fρ, which can be quantified by the excess
risk E(fz,λ)− E(fρ), or the estimation error ‖fz,λ − fρ‖2 in an
appropriate norm ‖ · ‖.

Using an explicit randomized feature mapping ϕ : Rd → Rs,
one may approximate the kernel function k(x,x′) by k̃(x,x′) =
〈ϕ(x), ϕ(x′)〉. In this case, the approximate kernel k̃(·, ·) defines
an RKHS H̃ (not necessarily contained in the RKHS H associated
with the original kernel function k). With the above approximation,

one solves the following approximate version of problem (1):

f̃z,λ := argmin
f∈H̃

{
1

n

n∑
i=1

`
(
yi, f(xi)

)
+ λ‖f‖2H̃

}
. (2)

By the representer theorem [1], the above problem can be rewritten
as a finite-dimensional empirical risk minimization problem

βλ := argmin
β∈Rs

1

n

n∑
i=1

`
(
yi,β

>ϕ(xi)
)

+ λ‖β‖22 . (3)

For example, in least squares regression where ` is the squared
loss, the first term in problem (3) is equivalent to ‖y −Zβ‖22,
where y = [y1, y2, · · · , yn]> is the label vector and Z =
[ϕ(x1), · · · , ϕ(xn)]> ∈ Rn×s is the random feature matrix.
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This is a linear ridge regression problem in the space spanned
by the random features, with the optimal prediction given by
f̃z,λ(x′) = β>λϕ(x′) for a new data point x′, where βλ has the
explicit expression βλ = (Z>Z+nλI)−1Z>y. For classification,
one may take the sign to output the binary classification labels. Note
that problem (3) also corresponds to fixed-size kernel methods with
feature map approximation (related to Nyström approximation) and
estimation in the primal [2].

2.2 Theoretical Foundation of Random Features

The theoretical foundation of RFF builds on Bochner’s celebrated
characterization of positive definite functions.

Theorem 1 (Bochner’s Theorem [55]). A continuous and shift-
invariant function k : Rd×Rd → R is positive definite if and only
if it can be represented as

k(x− x′) =

∫
Rd

exp
(

iω>(x− x′)
)
µk(dω) ,

where µk is a positive finite measure on the frequencies ω.

According to Bochner’s theorem, the spectral distribution µk
of a stationary kernel k is the finite measure induced by a Fourier
transform. By setting k(0) = 1, we may normalize µk to a
probability density p (the Fourier transform associated with k),
hence

k(x− x′) =

∫
Rd

exp
(
iω>(x− x′)

)
µ(dω)

= Eω∼p(·)
[

exp(iω>x) exp(iω>x′)∗
]
,

(4)

where the symbol z∗ denotes the complex conjugate of z. The
kernels used in practice are typically real-valued and thus the
imaginary part in Eq. (4) can be discarded. According to Eq. (4),
RFF makes use of the standard Monte Carlo sampling scheme to
approximate k(x,x′). In particular, one uses the approximation

k(x,x′)=Eω∼p[ϕp(x)>ϕp(x
′)] ≈ k̃p(x,x′) :=ϕp(x)>ϕp(x

′)

with the explicit feature mapping2

ϕp(x) :=
1√
s

[
exp(−iω>1x), · · · , exp(−iω>s x)]> , (5)

where {ωi}si=1 are sampled from p(·) independently of the
training set. Consequently, the original kernel matrix K =
[k(xi,xj)]n×n can be approximated by K ≈ K̃p = ZpZ

>
p

with Zp = [ϕp(x1), · · · , ϕp(xn)]> ∈ Rn×s. It is convenient
to introduce the shorthand zp(ωi,xj) := exp(−iω>i xj) such
that ϕp(x) = 1/

√
s[zp(ω1,x), · · · , zp(ωs,x)]>. With this

notation, the approximate kernel k̃p(x,x′) can be rewritten as
k̃p(x,x

′) = 1
s

∑s
i=1 zp(ωi,x)zp(ωi,x

′).
A similar characterization in Eq. (4) is available for rotation-

invariant kernels, where the Fourier basis functions are spherical
harmonics [56], [57]. Here rotation-invariant kernels are dot-
product kernels defined on the unit sphere X = Sd−1 := {x ∈
Rd : ‖x‖2 = 1}, and can be represented as a non-negative
expansion with spherical harmonics, refer to the book [58] for
details.

Theorem 2 ([56]). A rotation-invariant continuous function k :
Sd−1 × Sd−1 → R is positive definite if and only if it has a

2. The subscript in ϕp, Zp, kp (and other symbols) emphasizes the
dependence on the distribution p(·) but can be omitted for notational simplicity.

symmetric non-negative expansion into spherical harmonics Y d`,m,
that is

k(x,x′) ≡ k(〈x,x′〉) =
∞∑
i=0

Λi

N(d,i)∑
j=1

Yi,j(x)Yi,j(x
′) ,

where Λi ≥ 0 are the Fourier coefficients, Yi,j is the spherical

harmonics, and N(d, i) = 2i+d−2
i

(
i+ d− 3
d− 2

)
.

Note that, dot product kernels defined in Rd do not belong
to the rotation-invariant class. Nevertheless, by virtue of the
neural network structure under Gaussian initialization, some dot
product kernels defined on Rd are able to benefit from the sampling
framework behind RFF. Given a two-layer network of the form
f(x;θ) =

√
2
s

∑s
j=1 ajσ(ω>j x) with s neurons (notation chosen

to be consistent with the number of random features), for some
activation function σ and x ∈ Rd, when ω ∼ N (0, Id) are fixed
and only the second layer (parameters a) are optimized3, this
actually corresponds to random features approximation

k (x,x′) = Eω∼N (0,Id)[σ(ω>x)σ(ω>x′)] , (6)

where the nonlinear activation function σ(·) depends on the
kernel type such that ϕ(xi) := σ(Wxi) in Eq. (5), by denoting
the transformation matrix W := [ω1,ω2, · · · ,ωs]> ∈ Rs×d.
The formulation in (6) is quite general to cover a series of
kernels by various activation functions. For example, if we
take σ(x) = [cos(x), sin(x)]>, Eq. (6) corresponds to the
Gaussian kernel, which is the standard RFF model [9] for
Gaussian kernel approximation. If we consider the commonly
used ReLU activation σ(x) = max{0, x} in neural networks,
Eq. (6) corresponds to the first order arc-cosine kernel, termed as
k(x,x′) ≡ κ1(u) = 1

π (u(π−arccos(u))+
√

1− u2) by setting
u := 〈x,x′〉/(‖x‖‖x′‖). If the Heaviside step function σ(x) =
1
2 (1 + sign(x)) is used, Eq. (6) corresponds to the zeroth order
arc-cosine kernel, termed as k(x,x′) ≡ κ0(u) = 1− 1

π arccos(u)
by setting u := 〈x,x′〉/(‖x‖‖x′‖), refer to arc-cosine kernels
[60] for details. If we take other activation functions used in neural
networks, e.g., erf activations [61], GELU [62] in Eq. (6), such
two-layer neural network also corresponds to a kernel. In this case,
the standard RFF model is still valid (via Monte Carlo sampling
from a Gaussian distribution) for these non-stationary kernels.

Further, for a fully-connected deep neural network (more than
two layers) and fixed random weights before the output layer,
if the hidden layers are wide enough, one can still approach a
kernel obtained by letting the widths tend to infinity [63], [64].
If both intermediate layers and the output layer are trained by
(stochastic) gradient descent, for the network f(x;θ) with large
enough s, the model remains close to its linearization around its
random initialization throughout training, known as lazy training
regime [65]. Learning is then equivalent to a kernel method with
another architecture-specific kernel, known as neural tangent kernel
(NTK, [18]). Interestingly, NTK for two-layer ReLU networks
[66] can be constructed by arc-cosine kernels, i.e., k (x,x′) =
‖x‖‖x′‖[uκ0(u) + κ1(u)]. In fact, there is an interesting line of
work showing insightful connections between kernel methods and
(over-parameterized) neural networks, but this is out of scope of
this survey on random features. We suggest the readers refer to
some recent literature [12], [67], [68] for details.

3. Extreme learning machine [59] is another structure in a two-layer
feedforward neural network by randomly hidden nodes.
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Further, if we consider the general non-stationary kernels [69],
[70], the spectral representation can be generalized by introducing
two random variables ω and ω′.

Theorem 3. ( [70], [71], [72]) A non-stationary kernel k is
positive definite if and only if it admits

k(x,x′) =

∫
Rd×Rd

exp
(

i
(
ω>x− ω′>x′

))
µΨk(dω,dω′) ,

where µΨk is the Lebesgue-Stieltjes measure on the product space
Rd × Rd associated to some positive definite function Ψk(ω,ω′)
with bounded variations.

2.3 Commonly used kernels in Random Features
Random features based algorithms often consider the following
kernels:

i) Gaussian kernel: Arguably the most important member of
shift-invariant kernels, the Gaussian kernel is given by

k(x,x′) = exp

(
−‖x− x

′‖22
2ς2

)
,

where ς > 0 is the kernel width. The density (see Theorem 1
or Eq. (6)) associated with the Gaussian kernel is Gaussian ω ∼
N (0, ς−2Id).

ii) arc-cosine kernels: This class admits Eq. (6) by sampling
from the Gaussian distribution N (0, Id), that can be connected
to a two-layer neural networks with various activation functions.
Following [60], we define the b-order arc-cosine kernel by

k(x,x′) =
1

π
‖x‖b2‖x′‖b2Jb(θ) ,

where θ = cos−1
(

x>x′

‖x‖2‖x′‖2

)
and

Jb(θ) = (−1)b(sin θ)2b+1

(
1

sin θ

∂

∂θ

)b (π − θ
sin θ

)
.

Most common in practice are the zeroth order (b = 0) and first
order (b = 1) arc-cosine kernels. The zeroth order kernel is given
explicitly by

k(x,x′) = 1− θ

π
,

and the first order kernel is

k(x,x′) =
1

π
‖x‖2‖x′‖2 (sin θ + (π − θ) cos θ) .

iii) Polynomial kernel: This is a widely used family of non-
stationary kernels given by

k(x,x′) = (1 + 〈x,x′〉)b ,

where b is the order of the polynomial.
Note that, dot-product kernel defined in Rd admit neither

spherical harmonics nor Eq. (6). As a result, random features
for polynomial kernels work in different theoretical foundations
and settings, and have been studied in a smaller number of
papers, including Maclaurin expansion [35], the tensor sketch
technique [73], [74], and oblivious subspace embedding [75], [76].
Interestingly, if the data are `2 normalized, dot product kernels
defined in Rd can be transformed as stationary but indefinite (real,
symmetric, but not positive definite) on the unit sphere4. The related
random features based algorithms under this setting provide biased
estimators [40], [77], or unbiased estimation [78].

4. This setting cannot ensure the data are i.i.d on the unit sphere, which is
different from the setting of previously discussed rotation invariant kernels.

2.4 Taxonomy of random features based algorithms
The key step in random features based algorithms is constructing
the following random feature mapping

ϕ(x) :=
1√
s

[
a1 exp(−iω>1x), · · · , as exp(−iω>s x)]> (7)

so as to approximate the integral (4). Random features {ωi}si=1 can
be formulated as the feature matrix W = [ω1, · · · ,ωs]> ∈ Rs×d
in a compact form. Existing algorithms differ in how they select
the points ωi (the transformation matrix W ) and weights ai.
Figure 2 presents a taxonomy of some representative random
features based algorithms. They can be grouped into two categories,
data-independent algorithms and data-dependent algorithms, based
on whether or not the selection of ωi and ai is independent of the
training data.

Data-independent random features based algorithms can be
further categorized into three classes according to their sampling
strategy:

i) Monte Carlo sampling: The points {ωi}si=1 are sampled
from p(·) in Eq. (4) (see the red box in Figure 2). In particular,
to approximate the Gaussian kernel by RFF [9], these points are
sampled from the Gaussian distribution p = N (0, ς−2Id), with
the weights being equal, i.e., ai ≡ 1 in Eq. (7). To reduce the
storage and time complexity, one may replace the dense Gaussian
matrix in RFF by structural matrices; see, e.g., Fastfood [37]
using Hadamard matrices as well as its general version P-model
[42]. An alternative approach is using circulant matrices; see,
e.g., Signed Circulant Random Features (SCRF) [41]. To improve
the approximation quality, a simple and effective approach is to
use an `2-normalization scheme, which leads to Normalized RFF
(NRFF) [79]. Another powerful technique for variance reduction
is orthogonalization to decrease the randomness in Monte Carlo
sampling. Typical algorithms include Orthogonal Random Features
(ORF) [25] by employing an orthogonality constraint to the random
Gaussian matrix, Structural ORF (SORF) [25], [91], and Random
Orthogonal Embeddings (ROM) [80].

ii) Quasi-Monte Carlo sampling: This is a typical sampling
scheme in sampling theory [92] to reduce the randomness in
Monte Carlo sampling for variance reduction. It can significantly
improve the convergence of Monte Carlo sampling by virtue of
a low-discrepancy sequence t1, t2, · · · , ts ∈ [0, 1]d instead of
a uniform sampling sequence over the unit cube to construct
the sample points; see the integral representation in the green
box in Figure 2. Based on this representation, it can be used
for kernel approximation, as conducted by [26]. Subsequently,
Lyu [44] proposes Spherical Structural Features (SSF), which
generates asymptotically uniformly distributed points on Sd−1

to achieve better convergence rate and approximation quality.
The Moment Matching (MM) scheme [43] is based on the same
integral representation but uses a d-dimensional refined uniform
sampling sequence {ti}si=1 instead of a low discrepancy sequence.
Strictly speaking, SSF and MM go beyond the QMC framework.
Nevertheless, these methods share the same integration formulation
with QMC over the unit cube and thus we include them here for a
streamlined presentation.

iii) Quadrature based methods: Numerical integration tech-
niques can be also used to approximate the integral representation
in Eq. (4). These techniques may involve deterministic selection of
the points and weights, e.g., by using Gaussian Quadrature (GQ)
[27] or Sparse Grids Quadrature (SGQ) [27] over each dimension
(their integration formulation can be found in the first blue box in
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data-independent



i) Monte Carlo sampling


acceleration

{
structural: Fastfood [37], P-model [42], SORF [25]
circulant: SCRF [41]

variance reduction

{
`2 normalization: NRFF [79]
orthogonal constraint: ORF [25], ROM [80]

ii) Quasi-Monte Carlo sampling


QMC [38]
structural spherical feature: SSF [44]
moment matching: MM [43]

iii) Quadrature rules

{
deterministic quadrature rules: GQ, SGQ [27]
stochastic spherical-radial rule: SSR [28]

data-dependent



leverage score sampling: LSS-RFF [32], fast leverage score approximation [48], [49], [81]

re-weighted random features


weighted random features: [33], [82] for RFF, [26] for QMC, [27] for GQ
kernel alignment: KA-RFF [83] and KP-RFF [45]
compressed low-rank approximation: CLR-RFF [47]

kernel learning by random features


one-stage: [84] via generative models

two-stage

{
joint optimization: [85], [86]
spectral learning in mixture models: [87], [88], [89], [90]

others: quantization [46]; doubly stochastic [39]

k(x− x′) =
∫
Rd p(ω) exp

(
iω>(x− x′)

)
dω

k(x− x′) =
∫
[0,1]dexp

(
i(x−x′)>Φ−1(t)

)
dt

k(x−x′) =
∏d
j=1

(∫∞
−∞ pj

(
ω(j)

)
exp

(
iω(j)(x(j) − x′(j))

)
dω(j)

)
k(x− x′) = (2π)−d/2

∫
Ud

∫∞
0 e−

r2

2 |r|d−1g(ru)drdu

k(x,x′) =
∫
Rd q(ω)p(ω)

q(ω) exp
(

iω>(x− x′)
)

dw

i) Monte Carlo sampling
• variance reduction
• acceleration

ii) Quasi-Monte Carlo sampling
• QMC
• SSF
• MM

iii) Quadrature rules
• GQ, SGQ
• SSR

data-dependent
• random features

selection/learning
• leverage score

Figure 2. A taxonomy of representative random features based algorithms.

Figure 2). The selection can also be randomized. For example, in the
work [28], the d-dimensional integration in Eq. (4) is transformed
to a double integral, and then approximated by using the Stochastic
Spherical-Radial (SSR) rule (see the second blue box in Figure 2).

Data-dependent algorithms use the training data to guide the
selection of points and weights in the random features for better
approximation quality and/or generalization performance. These
algorithms can be grouped into three classes according to how the
random features are generated.

i) Leverage score sampling: Built upon the importance sampling
framework, this class of algorithm replaces the original distribution
p(ω) by a carefully chosen distribution q(ω) constructed using
leverage scores [52], [53] (see the yellow box in Figure 2). The
representative approach in this class is Leverage Score based RFF
(LS-RFF) [32], and its accelerated version [48], [81].

ii) Re-weighted random feature selection: Here the basic idea
is to re-weight the random features by solving a constrained
optimization problem. Examples of this approach include weighted
RFF [33], [82], weighted QMC [26], and weighted GQ [27]. Note
that these algorithms directly learn the weights of pre-given random
features. Another line of methods re-weight the random features

using a two-step procedure: i) “up-projection”: first generate a
large set of random features {ωi}Ji=1 ; ii) “compression”: then
reduce these features to a small number (e.g., 102 ∼ 103) in a
data-dependent manner, e.g., by using kernel alignment [83], kernel
polarization [45], or compressed low-rank approximation [47].

iii) Kernel learning by random features: This class of methods
aim to learn the spectral distribution of kernel from the data so as
to achieve better similarity representation and prediction. Note that
these methods learn both the weights and the distribution of the
features, and hence differ from the other random features selection
methods mentioned above, which assume that the candidate features
are generated from a pre-given distribution and only learn the
weights of these features. Representative approaches for kernel
learning involve a one-stage [84] or two-stage procedure [85], [86],
[87], [88], [89], [90]. From a more general point of view, the
aforementioned re-weighted random features selection methods
can also be classified into this class. Since these methods belong to
the broad area of kernel learning instead of kernel approximation,
we do not detail them in this survey.

Besides the above three main categories, other data-dependent
approaches include the following. i) Quantization random features
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[46]: Given a memory budget, this method quantizes RFF for
Gaussian kernel approximation. A key observation from this work
is that random features achieve better generalization performance
than Nyström approximation [93] under the same memory space.
ii) Doubly stochastic random features [39]: This method uses
two sources of stochasticity, one from sampling data points by
stochastic gradient descent (SGD), and the other from using RFF
to approximate the kernel. This scheme has been used for Kernel
PCA approximation [94], and can be further extended to triply
stochastic scheme for multiple kernel approximation [95].

3 DATA-INDEPENDENT ALGORITHMS

In this section, we discuss data-independent algorithms in a
unified framework based on the transformation matrix W , that
plays an important role in constructing the mapping ϕ(·) in
Eq. (7) and determining how well the estimated kernel converges
to the actual kernel. Table 2 reports various random features
based algorithms in terms of the class of kernels they apply
to (in theory) as well as their space and time complexities for
computing the feature mapping Wx for a given x ∈ X . In
Table 2, we also summarize the variance reduction properties of
these algorithms, i.e., whether the variance of the resulting kernel
estimator is smaller than the standard RFF. Before proceeding,
we introduce some notations and definitions. When discussing
a stationary kernel function k(x,x′) = k(x − x′), we use
the convenient shorthands τ := x − x′ and τ := ‖τ‖2.
For a random features algorithm A with frequencies {ωi}si=1

sampled from a distribution µ(·), we define its expectation
E(A) := E[k(τ )] = Eω∼µ

[
1/s

∑s
i=1 cos(ω>i τ )

]
and variance

V[A] := V[k(τ )] = V
[

1
s

∑s
i=1 cos(ω>τ )

]
.

3.1 Monte Carlo sampling based approaches

We describe several representative data-independent algorithms
based on Monte Carlo sampling, using the Gaussian kernel
k(x,x′) = k(τ ) = exp(−‖τ‖22/2ς2) as an example. Note that
these algorithms often apply to more general classes of kernels, as
summarized in Table 2.

RFF [9]: For Gaussian kernels, RFF directly samples the
random features from a Gaussian distribution (corresponds to
the inverse Fourier transform): {ω}si=1 ∼ p(ω). In particular, the
corresponding transformation matrix is given by

WRFF =
1

ς
G , (8)

where G ∈ Rs×d is a (dense) Gaussian matrix with Gij ∼
N (0, 1). For other stationary kernels, the associated p(·) corre-
sponds to the specific distribution given by the Bochner’s Theorem.
For example, the Laplacian kernel k(τ ) = exp(−‖τ‖1/ς) is
associated with a Cauchy distribution. RFF is unbiased, i.e.,
E[RFF] = exp(−‖τ‖22/2ς2), and the corresponding variance is
V[RFF] = (1− e−τ2

)2/2s.
Fastfood [37]: By observing the similarity between the dense

Gaussian matrix and Hadamard matrices with diagonal Gaussian
matrices, Le et al. [37] firstly introduce Hadamard and diagonal
matrices to speed up the construction of dense Gaussian matrices in
RFF, especially in high dimensions (e.g., d ≥ 1000). In particular,
W used in Eq. (8) is substituted by

WFastfood =
1

ς
B1HGΓHB2 , (9)

where H is the Walsh-Hadamard matrix admitting fast multiplica-
tion in O(d log d) time, and Γ ∈ {0, 1}d×d is a permutation
matrix that decorrelates the eigen-systems of two Hadamard
matrices. The three diagonal random matrices G, B1 and B2

are specified as follows: G has independent Gaussian entries
drawn from N (0, 1); B1 is a random scaling matrix with
(B1)ii = ‖ωi‖2/‖G‖F, which encodes the spectral properties
of the associated kernel; B2 is a binary decorrelation matrix
with independent random {±1} entries. FastFood is an unbiased
estimator, but may have a larger variance than RFF:

V[Fastfood]− V[RFF] ≤ 6τ4

s

(
e−τ

2

+
τ2

3

)
,

which converges at an O(1/s) rate.
P-model [42]: A general version of Fastfood, the P-model

constructs the transformation matrix as

WP = [g>P1, g
>P2, · · · , g>Ps]> ∈ Rs×d ,

where g is a Gaussian random vector of length a and P = {Pi}si=1

is a sequence of a-by-d matrices each with unit `2 norm columns.
Fastfood can viewed as a special case of the P-model: the matrix
HG in Eq. (9) can be constructed by using a fixed budget of
randomness in g and letting each Pi be a random diagonal matrix
with diagonal entries of the formHi1, Hi2, . . . ,Hid. The P-model
is unbiased and its variance is close to that of RFF with an O(1/d)
convergence rate∣∣∣V[P-model]− V[RFF]

∣∣∣ = O (1/d) .

SCRF [41]: It accelerates the construction of random features
by using circulant matrices. The transformation matrix is

WSCRF = [ν ⊗ C(ω1),ν ⊗ C(ω2), · · · ,ν ⊗ C(ωt)]> ∈ Rtd×d ,

where ⊗ denotes the tensor product, ν = [ν1, ν2, . . . , νd] is a
Rademacher vector with P(νi = ±1) = 1/2, and C(wi) ∈ Rd×d
is a circulant matrix generated by the vector ωi ∼ N (0, ς−2Id).
Thanks to the circulant structure, we only need O(s) space to store
the feature mapping matrix WSCRF with s = td. Note that C(wi)
can be diagonalized using the Discrete Fourier Transform for ωi.
SCRF is unbiased and has the same variance as RFF.

The above three approaches are designed to accelerate the
computation of RFF. We next overview representative methods that
aim for better approximation performance than RFF.

NRFF [79]: It normalizes the input data to have unit `2 norm
before constructing the random Fourier features. With normalized
data, the Gaussian kernel can be computed as

k(x,x′) = exp

(
− 1

ς2

(
1− x>x′

‖x‖2‖x′‖2

))
,

which is related to the normalized linear kernel [40], [79]. Albeit
simple, NRFF is effective in variance reduction and in particular
satisfies

V[NRFF] = V[RFF]− 1

4s
e−τ

2

(3− e−2τ2

) .

ORF [25]: It imposes orthogonality on random features for the
Gaussian kernel and has the transformation matrix

WORF =
1

ς
SQ ,

where Q is a uniformly distributed random orthogonal matrix, and
S is a diagonal matrix with diagonal entries sampled i.i.d from
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Table 2
Comparison of different kernel approximation methods on space and time complexities to obtain Wx.

Method Kernels (in theory) Extra Memory Time Lower variance than RFF

Random Fourier Features (RFF) [9] shift-invariant kernels O(sd) O(sd) -

Quasi-Monte Carlo (QMC) [38] shift-invariant kernels O(sd) O(sd) Yes

Normalized RFF (NRFF) [79] Gaussian kernel O(sd) O(sd) Yes

Moment matching (MM) [43] shift-invariant kernels O(sd) O(sd) Yes

Orthogonal Random Feature (ORF) [25] Gaussian kernel O(sd) O(sd) Yes

Fastfood [37] Gaussian kernel O(s) O(s log d) No

Spherical Structured Features (SSF) [44] shift and rotation-invariant kernels O(s) O(s log d) Yes

Structured ORF (SORF) [25], [91] shift and rotation-invariant kernels O(s) O(s log d) Unknown

Signed Circulant (SCRF) [41] shift-invariant kernels O(s) O(s log d) The same

P-model [42] shift and rotation-invariant kernels O(s) O(s log d) No

Random Orthogonal Embeddings (ROM) [80] rotation-invariant kernels O(d) O(d log d) Yes

Gaussian Quadrature (GQ), Sparse Grids Quadrature (SGQ) [27] shift invariant kernels O(d) O(d log d) Yes

Stochastic Spherical-Radial rules (SSR) [28] shift and rotation-invariant kernels O(d) O(d log d) Yes

the χ-distribution with d degrees of freedom. This orthogonality
constraint is useful in reducing the approximation error in random
features. It is also considered in [96] for unifying orthogonal Monte
Carlo methods. ORF is unbiased and with variance bounded by

V[ORF]− V[RFF] ≤ 1

s

(
g(τ)

d
− (d− 1)e−τ

2

τ4

2d

)
,

where we have g(τ) = eτ
2 (
τ8 + 6τ6 + 7τ4 + τ2

)
/4

+eτ
2

τ4
(
τ6 + 2τ4

)
/2d. It can be seen that the variance

reduction property Var[ORF] < Var[RFF] holds under some
conditions, e.g., when d is large and τ is small. For a large d, the
ratio of the variances of ORF and RFF can be approximated by

V[ORF]

V[RFF]
≈ 1− (s− 1)e−τ

2

τ4

d
(
1− e−τ2

)2 . (10)

Choromanski et al. [97] further improve the variance bound to

V[RFF]−V[ORF] =

s− 1

s
ER1,R2

[
J d

2−1(
√
R2

1 +R2
2τ)Γ(d/2)

(
√
R2

1 +R2
2τ/2)

d
2−1

]

− s− 1

s
ER1

[
J d

2−1 (R1τ) Γ(d/2)

(R1τ/2)
d
2−1

]2

,

(11)

where Jd is the Bessel function of the first kind of degree d, and
R1 and R2 are two independent scalar random variables satisfying
ω1 = R1v and ω2 = R2v with ω1,ω2 ∼ N (0, ς−2Id) and
v ∼ Unif(Sd−1). According to Eq. (11), the property V[ORF] <
V[RFF] holds asymptotically in cases: i) a fixed d and a small
enough τ with E[‖ω‖42] ≤ ∞; ii) a fixed τ < 1

4
√
c

with some
constant c and a large d, in which case we have

V[RFF]− V[ORF] =
s− 1

s

(
1

2d

τ4

ς2
e−

τ2

ς2 +O
(1

d

))
.

SORF [25], [91]: It replaces the random orthogonal matrices
used in ORF by a class of structured matrices akin to those in
Fastfood. The transformation matrix of SORF is given by

WSORF =

√
d

ς
HD1HD2HD3 , (12)

where H is the normalized Walsh-Hadamard matrix and Di ∈
Rd×d, i = 1, 2, 3 are diagonal “sign-flipping” matrices, of
which each diagonal entry is sampled from the Rademacher
distribution. Bojarski et al. [91] consider more general structures
for the three blocks of matrices HDi in Eq. (12). Note that
each block plays a different role. The first block HD1 satisfies
Pr
[
‖HD1x‖∞ > log d√

d

]
≤ 2de−

log2 d
8 for any x ∈ Rd with

‖x‖2 = 1, termed as (log d, 2de−
log2 d

8 )-balanced, hence no
dimension carries too much of the `2 norm of the vector x. The
second block HD2 ensures that vectors are close to orthogonal.
The third block HD3 controls the capacity of the entire structured
transform by providing a vector of parameters. SORF is not an
unbiased estimator of the Gaussian kernel, but it satisfies an
asymptotic unbiased property∣∣∣E [SORF]− e−τ

2/2
∣∣∣ ≤ 6τ√

d
.

ROM [80]: It generalizes SORF to the form

WROM =

√
d

ς

t∏
i=1

HDi ,

where H can be the normalized Hadamard matrix or the Walsh
matrix, and Di is the Rademacher matrix as defined in SORF.
Theoretical results in [80] show that the ROM estimator achieves
variance reduction compared to RFF. Interestingly, odd values of t
yield better results than even t. This provides an explanation for
why SORF chooses t = 3.
LP-RFF [46]: It attempts to quantize RFF with the Gaussian kernel
under a memory budget, i.e., mapping each s-dimensional random
feature zp(x) =

√
2/s cos(WRFFx) ∈ [−

√
2/s,

√
2/s] to an

s-dimensional low precision vector with b bits via a stochastic
rounding scheme. They divide the interval [−

√
2/s,

√
2/s] into

2b − 1 equal-sized sub-intervals and randomly round each value√
2/s cos(ωix) to either the top or bottom of the corresponding

sub-interval. Strictly speaking, this method does not belong to data-
independent algorithms. But we put it here for ease of description
as this approach directly quantizes RFF. More importantly, a
new insight demonstrated by this method is that, under the same
memory budget, random features based algorithms achieve better
generalization performance than Nyström approximation [93].
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From the above description, one can find that orthogonalization
is a typical operation for variance reduction, e.g., ORF/SORF/ROM.
Here we take the Gaussian kernel as an example to illustrate
insights of such scheme. By sampling {ωi}si=1 ∼ N (0, ς−2Id),
the used Gaussian distribution is isotropic and only depends on the
norm ‖ω‖2 instead of ω. The used orthogonal operator makes the
direction of ωi orthogonal to each other (that means more uniform)
while retaining its norm unchanged5, which leads to decrease the
randomness in Monte Carlo sampling, and thus achieve variance
reduction effect. If we attempt to directly decrease the randomness
in Monte Carlo sampling, QMC is a powerful way to achieve this
goal and can then be used to kernel approximation. This is another
line of random features with variance reduction illustrated as below.

3.2 Quasi-Monte Carlo Sampling

Here we briefly review methods based on quasi-Monte Carlo
sampling (QMC) [38], spherical structured feature (SSF) [44],
and moment matching (MM) [43]. These three methods achieve a
lower variance or approximation error than RFF. Strictly speaking,
the later two algorithms do not belong to the quasi-Monte Carlo
sampling framework. However, SSF and MM share the same
integration formulation with QMC and thus we introduce them
here for simplicity.

Classical Monte Carlo sampling generates a sequence of
samples randomly and independently, which may lead to an
undesired clustering effect and empty spaces between the samples
[92]. Instead of fully random samples, QMC [38] outputs low-
discrepancy sequences. A typical QMC sequence has a hierarchical
structure: the initial points are sampled on a coarse scale whereas
the subsequent points are sampled more finely. For approximating
a high-dimensional integral, QMC achieves an asymptotic error
convergence rate of ε = O((log s)d/s), which is faster than the
O(s−1/2) rate of Monte Carlo. Note however that QMC often
requires s to be exponential in d for the improvement to manifest.

QMC [38]: It assumes that p(·) factorizes with respect to the
dimensions, i.e., p(x) =

∏d
j=1 pj (xj), where each pj(·) is a

univariate density function. QMC generally transforms an integral
on Rd in Eq. (4) to one on the unit cube [0, 1]d as

k(x− x′) =

∫
[0,1]d

exp
(
i(x− x′)>Φ−1(t)

)
dt , (13)

where Φ−1(t) =
(
Φ−1

1 (t1) , · · · ,Φ−1
d (td)

)
∈ Rd with Φj being

the cumulative distribution function (CDF) of pj . Accordingly, by
generating a low discrepancy sequence t1, t2, · · · , ts ∈ [0, 1]d,
the random frequencies can be constructed by ωi = Φ−1(ti). The
corresponding transformation matrix for QMC is

WQMC = [Φ−1(t1),Φ−1(t2), · · · ,Φ−1(ts)]
> ∈ Rs×d . (14)

SSF [44]: It improves the space and time complexities of
QMC for approximating shift- and rotation-invariant kernels.
SSF generates points {v1,v2, · · · ,vs} asymptotically uniformly
distributed on the sphere Sd−1, and construct the transformation
matrix as

WSSF = [Φ−1(t)v1,Φ
−1(t)v2, · · · ,Φ−1(t)vs]

> ∈ Rs×d ,

5. In fact, while orthogonalization only makes the direction of {ωi}si=1
more uniform, one can make the length ‖ωi‖2 uniform by sampling from the
cumulative distribution function of ‖ω‖2.

where Φ−1(t) uses the one-dimensional QMC point. The structure
matrix V := [v1,v2, · · · ,vs] ∈ S(d−1)×s has the form

V =
1√
d/2

[
ReFΛ − ImFΛ

ImFΛ ReFΛ

]
∈ Rd×s ,

where FΛ ∈ C d
2×

s
2 consists of a subset of the rows of the discrete

Fourier matrix F ∈ C s
2×

s
2 . The selection of d

2 rows from F is
done by minimizing the discrete Riesz 0-energy [98] such that the
points spread as evenly as possible on the sphere.

MM [43]: It also uses the transformation matrix in Eq. (14),
but generates a d-dimensional uniform sampling sequence {ti}si=1

by a moment matching scheme instead of using a low discrepancy
sequence as in QMC. In particular, the transformation matrix is

WMM = [Φ̃−1(t1), Φ̃−1(t2), · · · , Φ̃−1(ts)]
> ∈ Rs×d , (15)

where one uses moment matching to construct the vectors
Φ̃−1(ti) = Ã−1(Φ−1(ti) − µ̃) with the sample mean µ̃ =
1
s

∑s
i=1 Φ−1(ti) and the square root of the sample covariance

matrix Ã satisfying ÃÃ> = Cov(Φ−1(ti)− µ̃).
To achieve the target of variance reduction, both orthogonaliza-

tion in Monte Carlo sampling and QMC based algorithms share
the similar principle, namely, generating random features that
are as independent/uniform as possible. To be specific, QMC
and MM are able to generate more uniform data points to avoid
undesirable clustering effect, see Figure 1 in [38]. Likewise, SSF
aims to generate asymptotically uniformly distributed points on
the sphere Sd−1, which attempts to encode more information
with fewer random features, and thus allows for variance
reduction. In sampling theory, QMC can be further improved
by an sub-grouped based rank-one lattice construction [99] for
computational efficiency, which can be used for the subsequent
kernel approximation.

3.3 Quadrature based Methods
Quadrature based methods build on a long line of work on
numerical quadrature for estimating integrals. In quadrature
methods, the weights are often non-uniform, and the points are
usually selected using deterministic rules including Gaussian
quadrature (GQ) [27], [100] and sparse grids quadrature (SGQ) [27].
Deterministic rules can be extended to their stochastic versions. For
example, Munkhoeva et al. [28] explore the stochastic spherical-
radial (SSR) rule [101], [102] in kernel approximation. Below we
briefly review these methods.

GQ [27]: It assumes that the kernel function k factorizes
with respect to the dimensions and the corresponding distribution
p(ω) = p([ω(1), ω(2), . . . , ω(d)]>) in Eq. (4) is sub-Gaussian.
Therefore, the d-dimenionsal integral in Eq. (4) can be factorized
as

k(x−x′)=
d∏
j=1

(∫ ∞
−∞

pj
(
ω(j)

)
exp

(
iω(j)(x(j) − x′(j))

)
dω(j)

)
.

(16)

Since each of the factors is a one-dimensional integral, we can
approximate them using a one-dimensional quadrature rule. For
example, one may use Gaussian quadrature [100] with orthogonal
polynomials:∫ ∞
−∞

p(ω) exp(iω(x− x′))dω ≈
L∑
j=1

aj exp
(
iγ>j (x− x′)

)
,

(17)
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where L is the accuracy level and each γj is a univariate point
associated with the weight aj . For a third-point rule with the
points {−p̂1, 0, p̂1} and their associated weights (â1, â0, â1), the
transformation matrixWGQ ∈ Rs×d has entries Wij following the
distribution

Pr (Wij=±p̂1)= â1, Pr (Wij=0)= â0, ∀i ∈ [s], j ∈ [d] .

In general, the univariate Gaussian quadrature with L quadrature
points is exact for polynomials up to (2L − 1) degrees. The
multivariate Gaussian quadrature is exact for all polynomials of
the form ωi11 ω

i2
2 · · ·ω

id
d with 1 ≤ ij ≤ 2L− 1; however the total

number of points s = Ld scales exponentially with the dimension
d and thus this method suffers from the curse of dimensionality.

SGQ [27]: To alleviate the curse of dimensionality, SGQ
uses the Smolyak rule [103] to decrease the needed number
of points. Here we consider the third-degree SGQ using the
symmetric univariate quadrature points {−p̂1, 0, p̂1} with weights
(â1, â0, â1):

k(x,x′)≈(1−d+dâ0) g(0) + â1

d∑
j=1

[
g (p̂1ej)+g (−p̂1ej)

]
,

where the function g(ω) := σ(ω>x)σ(ω>x′) is given by Eq. (6),
and ei is the d-dimensional standard basis vector with the i-th
element being 1. The corresponding transformation matrix is

WSGQ =[0d, p̂1e1, · · · , p̂1ed,−p̂1e1, · · · ,−p̂1ed]
>∈R(2d+1)×d,

which leads to the explicit feature mapping

ϕ(x) = [â0g(0), â1g(w>2x), · · · , g(w>2d+1x)] ,

where wi is the i-th row of WSGQ. Note that SGQ generates
2d + 1 points. To obtain a dimension-adaptive feature mapping,
Dao et al. [27] propose to subsample the points according to the
distribution determined by their weights such that the mapping
feature dimension is equal to s.

SSR [28]: It transforms Eq. (6) (actually a d-dimensional
integral) to a double integral over a hyper-sphere and the real line.
Let ω = ru with u>u = 1 for r ∈ [0,∞), we have

k(x− x′) =
Cd
2

∫
Sd−1

∫ ∞
−∞

e−
r2

2 |r|d−1g(ru)drdu , (18)

where the integrand is g(ω) := σ(ω>x)σ(ω>x′) given in
Eq. (6) and Cd := (2π)−d/2. The inner integral in Eq. (18)
can be approximated by stochastic radial rules of degree 2l + 1,
i.e., R(g) =

∑l
i=0 ŵi

g(ρi)+g(−ρi)
2 . The outer integral over

the d-sphere in Eq. (18) can be approximated by stochastic
spherical rules: SQ(g) =

∑q
j=1 w̃jg (Quj), where Q is a

random orthogonal matrix and w̃j are stochastic weights whose
distributions are such that the rule is exact for polynomials of degree
q and gives unbiased estimate for other functions. Combining
the above two rules, we have the SSR rule. Accordingly, the
transformation matrix of SSR is

WSSR = ϑ⊗
[

(QV )>

−(QV )>

]
∈ R2(d+1)×d ,

with ϑ = [ϑ1, ϑ2, · · · , ϑs] and V = [v1,v2, · · · ,vd+1], where
ϑ ∼ χ(d + 2) and {vi}d+1

i=1 are the vertices of a unit regular
d-simplex, which is randomly rotated by Q. To get s features, one
may stack s/(2d+ 3) independent copies of W as suggested by
[28]. Finally, the feature mapping by SSR is given by

ϕ(x) = [a0g(0), a1g(w>1x), · · · , asg(w>sx)] ,

where a0 =

√
1−

∑d+1
j=1

d
ρ2j

, aj = 1
ρj

√
d

2(d+1) for j ∈ [s], and

wj is the j-th element of the stacked W .
In general, according to Eq. (6), kernel approximation

by random features is actually a d-dimensional integration
approximation problem in mathematics. Sampling methods and
quadrature based rules are two typical classes of approaches for
high-dimensional integration approximation. Efforts on quadrature
based methods focus on developing a high-accuracy, mesh-free,
efficiency rule, e.g., [104], [105]. Note that, if the integrand
g(ω) := σ(ω>x)σ(ω>x′) in the integration representation (6)
belongs to a RKHS, the above quadrature rules can be termed as
kernel-based quadrature, e.g., Bayesian quadrature [106], [107]
and leverage-score quadrature [53]. This approach is in essence
different from the previously studied quadrature rules in functional
spaces, model formulation, and scope of application.

4 DATA-DEPENDENT ALGORITHMS

Data-dependent approaches aim to design/learn the random features
using the training data so as to achieve better approximation quality
or generalization performance. Based on how the random features
are generated, we can group these algorithms into three classes:
leverage score sampling, random features selection, and kernel
learning by random features.

4.1 Leverage score based sampling
Leverage score based approaches [32], [48], [108] are built on the
importance sampling framework. Here one samples {wi}si=1 from
a distribution q(w) that needs to be designed, and then uses the
following feature mapping in Eq. (5):

ϕq(x) =
1√
s

(√
p (w1)

q (w1)
e−iw>1x, · · · ,

√
p (ws)

q (ws)
e−iw>sx

)>
.

(19)
Consequently, we have the approximation k(x,x′) =
Ew∼q[ϕq(x)>ϕq(x

′)] ≈
∑s
i=1 zq(wi,x)zq(wi,x

′), where
zq(wi,xj) :=

√
p(wi)/q(wi)zp(wi,xj). Thus, the

kernel matrix K can be approximated by Kq = ZqZ
>
q ,

where Zq := [ϕq(x1), · · · , ϕq(xn)]> ∈ Rn×s.
Denoting by zq,wi(X) the i-th column of Zq , we have
K = Ew∼p[zp,w(X)z>p,w(X)] = Ew∼q[zq,w(X)z>q,w(X)].

To design the distribution q, one makes use of the ridge leverage
function [52], [53] in KRR:

lλ(ωi) = p(ωi)z
>
p,ωi(X)(K + nλI)−1zp,ωi(X) , (20)

where λ is the KRR regularization parameter. Define

dλK :=

∫
Rd
lλ(ω)dω = tr

[
K(K + nλI)−1

]
. (21)

The quantity dλK � n determines the number of independent
parameters in a learning problem and hence is referred to as the
number of effective degrees of freedom [109], [110]. With the above
notation, the distribution q designed in [52] is given by

q(ω) :=
lλ(ω)∫
lλ(ω)dω

=
lλ(ω)

dλK
. (22)

Compared to standard Monte Carlo sampling for RFF, leverage
score sampling requires fewer Fourier features and enjoys nice
theoretical guarantees [32], [52] (see the next section for details).
Note that q(ω) can be also defined by the integral operator [53],
[111] rather than the Gram matrix used above, but we do not
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strictly distinguish these two cases. The typical leverage score
based sampling algorithm for RFF is illustrated in [32] as below.

LS-RFF (Leverage Score-RFF) [32]: It uses a subset of data to
approximate the matrix K in Eq. (21) so as to compute dλK . LS-
RFF needs O(ns2 + s3) time to generate refined random features,
which can be used in KRR [32] and SVM [17] for prediction.

SLS-RFF (Surrogate Leverage Score-RFF) [48]: To avoid
inverting an s× s matrix in LS-RFF, SLS-RFF designs a simple
but effective surrogate leverage function

Lλ(w) = p(w)z>p,w(X)

(
1

n2λ

(
yy> + nI

))
zp,w(X) ,

(23)
where the additional term nI and the coefficient 1/(n2λ) in
Eq. (23) ensure that Lλ is a surrogate function that upper bounds
the function lλ in Eq. (20). One then samples random features
from the surrogate distribution Q(w) = Lλ(ω)∫

Lλ(ω)dω , which has
the same time complexity O(ns2) as RFF. SLS-RFF and can be
applied to KRR [48] and Canonical Correlation Analysis [108].

Note that leverage scores sampling is a powerful tool used in
sub-sampling algorithms for approximating large kernel matrices
with theoretical guarantees, in particular in Nyström approximation.
Research on this topic mainly focuses on obtaining fast leverage
score approximation due to inversion of an n-by-n kernel matrix,
e.g., two-pass sampling [112] (LS-RFF belongs to this), online
setting [113], path-following algorithm [81], or developing various
surrogate leverage score sampling based algorithms [48], [49],
[108].

4.2 Re-weighted random features
Here we briefly review three re-weighted methods: KA-RFF [83]
by kernel alignment, KP-RFF [45] by kernel polarization, and
CLR-RFF [47] by compressed low-rank approximation.

KA-RFF (Kernel Alignment-RFF) [83]: It pre-computes a large
number of random features that are generated by RFF, and then
select a subset of them by solving a simple optimization problem
based on kernel alignment [114]. In particular, the optimization
problem is

max
a∈PJ

n∑
i,j=1

yiyj

J∑
t=1

atzp (xi,ωt) zp (xj ,ωt) , (24)

where J > s is the number of the candidate random features by
RFF, and a is the weight vector. Here the maximization is over the
set of distributions PJ := {a : Df (a‖1/J) ≤ c}, where c > 0
is a pre-specified constant and Df (P‖Q) :=

∫
f( dP

dQ )dQ with
f(t) = t2 − 1 is the χ2-divergence between the distributions
P and Q (a special case of the f -divergence). Solving the
problem (24) learns a (sparse) weight vector a of the candidate
random features, so that the kernel matrix matches the target kernel
yy>. Problem (24) can be efficiently solved via bisection over a
scalar dual variable, and an ε-suboptimal solution can be found in
O(J log(1/ε)) time.

KP-RFF (Kernel Polarization-RFF) [45]: It first generates a
large number of random features by RFF and then selects a subset
from them using an energy-based scheme

S̃(ω) =
1

n

n∑
i=1

yizp(xi,ω) .

Further, the quantity (1/J)
∑J
i=1 S̃

2(ωj) can be associated with
kernel polarization for {wi}Ji=1 sampled from p(ω). Accordingly,

the top s random features with the top |S̃(·)| values are selected as
the refined random features. This algorithm can in fact be regarded
as a version of the kernel alignment method for generating random
features.

CLR-RFF (Compression Low Rank-RFF) [47]: It first gener-
ates a large number of random features and then selects a subset
from them by approximately solving the optimization problem

min
a∈RJ :‖a‖0≤s

1

n2

∥∥∥ZJZ>J − Z̃J(a)Z̃J(a)>
∥∥∥2

F
=

E
i,j

i.i.d.∼ [J]

[
ϕp(xi)

>ϕp(xj)− ϕ̃p(xi)>ϕ̃p(xj)
]
,

(25)

where ϕp(x) ∈ RJ uses J random features, and ϕ̃p(x) is

ϕ̃p(x) :=
1√
J

[
a1 exp(−iω>1x), · · · , aJ exp(−iω>Jx)

]>
,

which leads to Z̃J(a) = [ϕ̃p(x1), ϕ̃p(x2), · · · , ϕ̃p(xn)] ∈
Rn×J . We can construct a Monte-Carlo estimate of the opti-
mization objective function in Eq. (25) by sampling some pairs
i, j

i.i.d.∼ [J ]. Therefore, this scheme focuses on a subset of pairs,
instead of the all data pairs, by seeking a sparse weight vector a
with only s nonzero elements. The problem of building a small,
weighted subset of the data that approximates the full dataset,
is known as the Hilbert coreset construction problem. It can be
approximately solved by greedy iterative geodesic ascent [115]
or Frank-Wolfe based methods [116]. Another way to obtain the
compact random features is using Johnson-Lindenstrauss random
projection [117] instead of the above data-dependent optimization
scheme.

4.3 Kernel learning by random features

This class of approaches construct random features using sophisti-
cated learning techniques, e.g., by learning the spectral distribution
of kernel from the data.

Representative approaches in this class often involve a one-
stage or two-stage process. The two-stage scheme is common when
using random features. It first learns the random features, and then
incorporates them into kernel methods for prediction. Actually, the
above-mentioned leverage sampling and random features selection
based algorithms employ this scheme. The algorithm proposed in
[84] is a typical method for kernel learning by random features.
This method first learns a spectral distribution of a kernel via an
implicit generative model, and then trains a linear model by these
learned features.

One-stage algorithms aim to simultaneously learn the spectral
distribution of a kernel and the prediction model by solving a
single joint optimization problem or using a spectral inference
scheme. For example, Yu et al. [85] propose to jointly optimize
the nonlinear feature mapping matrix W and the linear model
with the hinge loss. The associated optimization problem can be
solved in an alternating fashion with SGD. In [86], the kernel
alignment approach in the Fourier domain and SVM are combined
into a unified framework, which can be also solved using an
alternating scheme by Langevin dynamics and projection gradient
descent. Wilson and Adams [87] construct stationary kernels as the
Fourier transform of a Gaussian mixture based on Gaussian process
frequency functions. This approach can be extended to learning
with Fastfood [88], non-stationary spectral kernel generalization
[70], [71], and the harmonizable mixture kernel [89]. Moreover,
Oliva et al. [90] propose a nonparametric Bayesian model, in
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approximation error


‖k − k̃‖∞: [9], [31], [50], [51]
‖k − k̃‖Lr : [50]
∆-spectral approximation: [52], [97]
(∆1,∆2)-spectral approximation: [46]

empirical risk: [46], [52]

expected risk


squared loss

{
ω∼p(ω): [32], [54]
ω∼q(ω): [32]

Lipschitz continuous

{
ω∼p(ω): [32], [118]
ω∼q(ω): [17], [32], [53]

Figure 3. Taxonomy of theoretical results on random features.

which p(ω) is modeled as a mixture of Gaussians with a Dirichlet
process prior. The parameters of the Gaussian mixture and the
classifier/regressor model are inferred using MCMC.

5 THEORETICAL ANALYSIS

In this section, we review a range of theoretical results that center
around the two questions mentioned in the introduction and restated
below:

1) Approximation: how many random features are needed to
ensure a high quality estimator in kernel approximation?

2) Generalization: how many random features are needed to
incur no loss of empirical risk and expected risk in a learning
estimator?

Figure 3 provides a taxonomy of representative work on these two
questions.

For the approximation error, existing work focuses on ‖k−k̃‖∞
[9], [31], [50], ‖k − k̃‖Lr with 1 ≤ r < ∞ [50], ∆-spectral
approximation [52], [97], and (∆1,∆2)-spectral approximation
[46]. For the empirical risk under the fixed design setting, existing
work provides guarantees on the expected in-sample predication
error of the KRR estimator based on ∆-spectral approximation
bounds [52] and (∆1,∆2)-spectral approximation bounds [46]. For
the expected risk, a series of works investigate the generalization
properties of methods based on p(ω)-sampling or q(ω)-sampling.
These results cover loss functions with/without Lipschitz continuity
and apply to e.g. KRR [32], [54] and SVM [17], [33], [53] under
different assumptions.

More specifically, Rahimi and Recht [33] provide the earliest
result on learning with RFF with Lipschitz continuous loss
functions. Their results imply that Ω(n) random features are
sufficient to incur no loss of learning accuracy. This result is
improved in [32], which shows that Ω(

√
n log n) random features

or even less suffice for the Gaussian kernel. When using the data-
dependent sampling {ωi}si=1 ∼ q(ω), the above results are further
improved in [17], [32], [53] under various settings. Note that some
results above do not directly apply to the squared loss in KRR,
whose Lipschitz parameter is unbounded. For squared losses, Rudi
et al. [54] show that Ω(

√
n log n) random features by RFF suffice

to achieve a minimax optimal learning rate O(1/
√
n). A more

refined analysis is given in [32] under the p(ω)-sampling and
q(ω)-sampling settings.

Below we discuss the above theoretical work in more details.

5.1 Approximation error
Table 3 summarizes representative theoretical results on the
convergence rates, the upper bound of the growing diameter, and the

resulting sample complexity under different metrics. Here sample
complexity means the number of random features sufficient for
achieving a maximum approximation error at most ε.

The first result of this kind is given by Rahimi and Recht
[9], who use a covering number argument to derive a uniform
convergence guarantee as follows. For a compact subset S of Rd,
let |S| := supx,x′∈S ‖x− x′‖2 be its diameter and consider the
L∞ error ‖k − k̃‖∞ := supx,x′∈S |k(x,x′)− k̃(x,x′)|.

Theorem 4. [Uniform convergence of RFF [9], [31]] Let S be
a compact subset of Rd with diameter |S|. Then, for a stationary
kernel k and its approximated kernel k̃ obtained by RFF, we have

Pr
[
‖k − k̃‖∞ ≥ ε

]
≤ Cd

(
ςp|S|
ε

) 2d
d+2

exp

(
− sε2

4(d+ 2)

)
,

where ς2p = Ep[ω>ω] = tr∇2k(0) ∈ O(d), and Cd :=

2
6d+2
d+2

((
2
d

) d
d+2 +

(
d
2

) 2
d+2

)
satisfies Cd ≤ 256 in [9] and is

further improved to Cd ≤ 66 in [31] by optimization balls of
radius in covering number.

According to the above theorem by covering number, with
s := Ω(ε−2d log(1/εδ)) random features, one can ensure an ε
uniform approximation error with probability greater than 1− δ.
This result also applies to dot-product kernels by random Maclaurin
feature maps (see [35, Theorem 8]). The quadrature based algorithm
[28] follows this proof framework, and achieves the same error
bound with a smaller constant than RFF in Theorem 4 by an
extra boundedness assumption. Instead, Fastfood [37] on Gaussian
kernels achieves O(

√
log(d/δ)) times approximation error than

RFF due to estimates for ΓHB2 in Eq. (9), which is based on
concentration inequalities for Lipschitz continuous functions under
the Gaussian distribution.

Different from the above results using Hoeffding’s inequality
for the covering number bound in their proof, Sriperumbudur
and Szabó [50] revisit the above bound by refined technique of
McDiarmid’s inequality, symmetrization and bound the expectation
of Rademacher average by Dudley entropy bound.

Theorem 5 (Theorem 1 in [50]). Under the same assumption of
Theorem 4, we have

Pr

[
‖k − k̃‖∞ ≥

h(d, |S|, σp) +
√

2ε√
s

]
≤ e−ε ,

where h(d, |S|, σp) is an appropriately defined function of d,
|S|, and σp. For better comparison, the above inequality can
be rewritten as [51]

Pr
[
‖k − k̃‖∞ ≥ ε

]
≤ [(σp + 1)(2|S|+ 1)]1024d

exp

(
−sε

2

2
+

256d

log(2|S|+ 1)

)
.

Theorem 5 shows that k̃ is a consistent estimator of k in the
topology of compact convergence as s→∞ with the convergence
rate Op(

√
s−1 log |S|). Consequently, O(ε−2 log |S|) random

features suffice to achieve an ε approximation accuracy. This
sample complexity bound scales logarithmically with |S|, which
improves upon the O(ε−2|S|2 log(|S|/ε)) bound that follows
from [9], [31] (cf. Theorem 4). Apart from the L∞ error
bound, the authors of [50] further derive bounds on the Lr

error ‖k − k̃‖Lr :=
(∫
S
∫
S |k(x,x′)− k̃(x,x′)|rdxdx′

)1/r

for 1 ≤ r <∞; see Table 3 for a summary.
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For the Gaussian kernel, the approximation guarantee can be
further improved. In particular, the following theorem gives a
probability bound independent of d.

Theorem 6 (Theorem 1 in [51]). Under the same assumption of
Theorem 4, for the Gaussian kernel k and its approximation k̃ by
RFF, we have

Pr
[
‖k − k̃‖∞ ≥ ε

]
≤ 3

s1/3

( |S|
ε

)2/3

exp

(
−sε

2

12

)
.

Avron et al. [52] argue that the above point-wise distances
‖k − k̃‖∞ or ‖k − k̃‖Lr are not sufficient to accurately measure
the approximation quality. Instead, they focus on the following
spectral approximation criterion.

Definition 1. [∆-spectral approximation [52]] For 0 ≤ ∆ < 1,
a symmetric matrix A is a ∆-spectral approximation of another
symmetric matrix B, if (1 − ∆)B � A � (1 + ∆)B, where
A � B indicates that B −A is a semi-positive definite matrix.

According to this definition, ZZ> + λIn is ∆-spectral
approximation of K + λIn if

(1−∆) (K + λIn) � ZZ> + λIn � (1 + ∆) (K + λIn) .

The follow theorem gives the number of random features s that
are sufficient to guarantee ∆-spectral approximation.

Theorem 7 (Theorem 7 in [52]). Let k be a shift-invariant kernel
and its associated probability distribution p(ω) (i.e., the Fourier
transform of k), ∆ ≤ 1/2, δ ∈ (0, 1), and nλ := n/λ. Assume
that ‖K‖2 ≥ λ and {ωi}si=1 ∼ p(ω). If the total number of
random features satisfies

s ≥ 8

3
∆−2nλ log

(
16dλK/δ

)
,

then

Pr
[
(1−∆) (K+λIn) � ZZ>+λIn � (1 + ∆) (K + λIn)

]
≥ 1− 16dλK exp

(−3s∆2

8nλ

)
≥ 1− δ .

Theorem 7 states that Ω(nλ log dλK) random features are
sufficient to guarantee ∆-spectral approximation by the matrix
Bernstein concentration inequality and effective degree of freedom,
where nλ := n/λ. Under this framework, Choromanski et al. [97,
Theorem 5.4] present a non-asymptotic comparison result between
RFF and ORF for spectral approximation by virtue of the smallest
singular value of K + nλI .

Theorem 8 (Theorem 5.4 in [97]). For the Gaussian kernel, let
∆̃ be the smallest positive number such that K̃ + λnIn is a ∆̃-
spectral approximation ofK+λnIn, where K̃ is an approximate
kernel matrix obtained by RFF or ORF. Then, for any ε > 0 we
have

Pr[∆̃ > ε] ≤ B

ε2σ2
min

,

where B := E[‖K̃ −K‖2F] and σ2
min is the smallest singular

value of K + λnIn. In particular, letting BORF denotes the value
of B for the estimator ORF and BRFF for RFF, we have

BRFF−BORF =
s− 1

s

 1

2d

n∑
i,j=1

‖xi−xj‖42
ς2

e−
‖xi−xj‖

2
2

ς2 +O
(1

d

).

Theorem 8 shows that BRFF > BORF always holds for the
Gaussian kernel. To better understand the above upper bound on
Pr[∆̃ > ε], we note that both V[RFF] and V[ORF] are O(1/s),
hence B = O(n2/s). Moreover, since the Gaussian kernel has
exponentially decaying eigenvalues (see Assumption 4), we have
σ2

min = Ω(n2λ2). Therefore, the upper bound of Pr[∆̃ > ε] is on
the order ofO( 1

sλ2 ). With the standard scaling of the regularization
parameter λ = n−α, α ∈ (0, 1], we need s := Ω(n2α) to get a
non-trivial upper bound on the probability. When α = 1/2, these
results for RFF and ORF require Ω(n) random Fourier features,
which is somewhat unsatisfactory [32].

The results in Theorem 7 can be improved if we consider data-
dependent sampling, i.e., {ωi}si=1 are sampled from the empirical
ridge leverage score distribution q(ω) = lλ(ω)/dλK in Eq. (22)
instead of the standard p(ω).

Theorem 9 (Lemma 6 in [52]). Let k be a shift-invariant kernel
associated with the empirical ridge leverage score distribution q(ω)
in Eq. (22), ∆ ≤ 1/2 and δ ∈ (0, 1). Assume that ‖K‖2 ≥ λ and
{ωi}si=1 ∼ q(ω). If the total number of random features satisfies

s ≥ 8

3
∆−2dλK log

(
16dλK/δ

)
,

then

Pr
[
(1−∆) (K + λIn) � ZZ> + λIn � (1 + ∆) (K + λIn)

]
≥ 1− 16dλK exp

(−3s∆2

8dλK

)
≥ 1− δ .

Theorem 9 shows that if we sample using the ridge leverage
function, then Ω(dλK log dλK) random features, which is less than
Ω(nλ log dλK), suffice for spectral approximation of K.

The authors of [46] generalize the notion of ∆-spectral
approximation to (∆1,∆2)-spectral approximation.

Definition 2 ((∆1,∆2)-spectral approximation [46]). For
∆1,∆2 ≥ 0, a symmetric matrix A is a (∆1,∆2)-
spectral approximation of another symmetric matrix B, if
(1−∆1)B � A � (1 + ∆2)B.

This definition is motivation by the argument that the quantities
∆1 and ∆2 in the upper and lower bounds may have different
impact on the generalization performance. Using this definition,
Zhang et al. [46] derive the following approximation guarantees
when one quantizes each random Fourier feature ωi to a low-
precision b-bit representation, which allows more features to be
stored in the same amount of space.

Theorem 10 (Theorem 2 in [46]). Let K̃ be an s-features b-bit
LP-RFF approximation of a kernel matrix K and δ ∈ (0, 1).
Assume that ‖K‖2 ≥ λ ≥ δ2

b = 2/(2b − 1)2 and define a :=

8 Tr(K+λIn)−1(K+δ2
bIn). For ∆1 ≤ 3/2 and ∆2 ∈ [

δ2b
λ ,

3
2 ],

if the total number of random features satisfies

s ≥ 8

3
nλ max

{
2

∆1
,

2

∆2 − δ2
b/λ

}
log
(a
δ

)
,

then

Pr
[
(1−∆1) (K+λIn)�K̃+λIn � (1 + ∆2) (K+λIn)

]
≥ 1− a

[
exp

( −3s∆2
1

4nλ(1+2/3∆1)

)
+ exp

( −3s(∆2−δ2
b/λ)2

4nλ(1 + 2/3(∆2−δ2
b/λ))

)]
.
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Table 3
Comparison of convergence rates and required random features for kernel approximation error.

Metric Results Convergence rate Upper bound of |S| Required random features s

‖k − k̃‖∞

Theorem 4 ( [9], [31]) Op
(
|S|
√

log s
s

)
|S| ≤ Ω

(√
s

log s

)
s ≥ Ω

(
dε−2 log

|S|
ε

)
Theorem 1 in [50] Op

(√
log |S|
s

)
|S| ≤ Ω(sc)1 s ≥ Ω

(
dε−2 log |S|

)
Theorem 1 in [51] (Gaussian kernels) Op

(√
log |S|
s

)
|S| ≤ Ω(sc) s ≥ Ω

(
ε−2 log |S|

)
‖k − k̃‖Lr (1 ≤ r <∞) Corollary 2 in [50] Op

(
|S|

2d
r

√
log |S|
s

)
|S| ≤ Ω

(
( s
log s )

r
4d

)
s ≥ Ω

(
dε−2 log |S|

)
‖k − k̃‖Lr (2 ≤ r <∞) Theorem 3 in [50] Op

(
|S|

2d
r

√
1
s

)
|S| ≤ Ω

(
s
r
4d

)
s ≥ Ω

(
dε−2 log |S|

)

∆-spectral approximation

Theorem 7 in [52] Op
(√

nλ
s

)
- s ≥ Ω(nλ log dλK)

Theorem 5.4 in [97] (Gaussian kernels) ORFF/ORF

(
1
sλ2

)
- s ≥ Ω(n2α)

Lemma 6 in [52] Oq

(√
dλ
K
s

)
- s ≥ Ω(dλK log dλK)

(∆1,∆2)-spectral approximation Theorem 2 in [46] OLP

(√
nλ
s

)
2 - s ≥ Ω(nλ log dλK)

1 c is some constant satisfying 0 < c < 1.

2 LP denotes that {ωi}si=1 are obtained by RFF and then are quantized to a Low-Precision b-bit representation; see [46].

Theorem 10 shows that when the quantization noise is small
relative to the regularization parameter, using low precision has
minimal impact on the number of features required for the
(∆1,∆2)-spectral approximation. In particular, as s → ∞, ∆1

converges to zero for any precision b, whereas ∆2 converges to a
value upper bounded by δ2

b/λ. If δ2
b/λ� ∆2, using b-bit precision

has negligible effect on the number of features required to attain
this ∆2 see Table 3 for a summary.

5.2 Risk and generalization property

The above results on approximation error are a means to an end.
More directly related to the learning performance is understanding
generalization properties of random features based algorithms. To
this end, a series of work study the generalization properties of
algorithms based on p(ω)-sampling and q(ω)-sampling. Under
different assumptions, theoretical results have been obtained for loss
functions with/without Lipschitz continuity and for learning tasks
including KRR [32], [54] and SVM [17], [33], [53]. Apart from
supervised learning with random features, results on randomized
nonlinear component analysis refer to [16], random features with
matrix sketching [119], doubly stochastic gradients scheme [94],
statistical consistency [120], [121].

5.2.1 Assumptions
Before we detail these theoretical results, we summarize the
standard assumptions imposed in existing work. Some assumptions
are technical, and thus familiarity with statistical learning theory
(see Section 2.1) would be helpful. We organize these assumptions
in four categories as shown in Figure 4, including i) the existence
of fρ (Assumption 1) and its stronger version (Assumption 8);
ii) quality of random features (Assumptions 2, 6, 7); iii)
noise conditions (Assumptions 3, 9, 10); iv) eigenvalue decay
(Assumptions 4, 5).

We first state three basic assumptions, which are needed in all
of the (regression) results to be presented.

Assumption 1 (Existence [54], [122]). In regression task, we
assume fρ ∈ H.

Note that since we consider a potentially infinite dimensional
RKHS H, possibly universal [123], the existence of the target
function fρ is not automatic. However, if we restrict to a bounded
subspace of H, i.e., HR = {f ∈ H : ‖f‖ ≤ R} with R < ∞
fixed a prior, then a minimizer of the risk E(f) always exists as
long as HR is not universal. If fρ exists, then it must lie in a ball
of some radius Rρ,H. The results in this section do not require
prior knowledge of Rρ,H and they hold for any finite radius.

Assumption 2 (Random features are bounded and continuous [54]).
For the shift-invariant kernel k, we assume that ϕ(ω>x) in Eq. (6)
is continuous in both variables and bounded, i.e., there exists κ ≥ 1
such that |ϕ(ω>x)| < κ for all x ∈ X and ω ∈ Rd.

Assumption 3 (Bernstein’s condition [123], [124]). For any x ∈
X , we assume E

[
|y|b | x

]
≤ 1

2b!ς
2Bb−2 when b ≥ 2 .

This noise condition is weaker than the boundedness on y. It
is satisfied when y is bounded, sub-Gaussian, or sub-exponential.
In particular, if y ∈ [− b

2 ,
b
2 ] almost surely with b > 0, then

Assumption 3 is satisfied with ς = B = b.
The above three assumptions are needed in all theoretical

results for regression presented in this section, so we omit them
when stating these results. We next introduce several additional
assumptions, which are needed in some of the theoretical results.

Eigenvalue Decay Assumptions: The following assumption,
which characterizes the “size” of the RKHS H of interest, is often
discussed in learning theory.

Assumption 4 (Eigenvalue decays [110]). A kernel matrix
K admit the following three types of eigenvalue decays: 1)
Geometric/exponential decay: λi(K) ∝ n exp(−i1/c), which
leads to dλK . log(R0/λ); 2) Polynomial decay: λi(K) ∝
ni−2a, which implies dλK . (1/λ)1/2a; 3) Harmonic decay:
λi(K) ∝ n/i, which results in dλK . (1/λ).
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i) regression: fρ ∈ H (Ass. 1)⇐ source condition (Ass. 8)

ii) quality of random features

{
bounded and continuous (Ass. 2)
q(ω)-sampling: compatibility condition (Ass. 6)⇐ optimized distribution (Ass. 7)

iii) noise condition

{
regression: boundedness on y (Ass. 3)
classification: Massart’s low noise condition (Ass. 9)⇐ separation condition (Ass. 10)

iv) eigenvalue decays assumption (Ass. 4)

{
exponential decay
polynomial decay and harmonic decay⇔ capacity condition (Ass. 5)

Figure 4. Relationship between the needed assumptions. The notation A⇐ B means that B is a stronger assumption than A.

X H

H̃ L2
ρX

ϕ(·)

k(x, ·)

A

I

Figure 5. Maps between various spaces.

We give some remarks on the above assumption. For shift-
invariant kernels, if the RKHS is small, the eigenvalues of the
kernel matrix K often admit a fast decay. Consequently, functions
in the RKHS are smooth enough that a good prediction performance
can be achieved. On the other hand, if the RKHS is large and the
eigenvalues decay slowly, then functions in the RKHS are not
smooth, which would lead to a sub-optimal error rate for prediction.
It can be linked to the integral operator [122], [123] characterizing
the hypothesis space, defined as Σ : L2

ρX → L2
ρX such that

(Σg)(x) =

∫
X
k(x,x′)g(x′)dρX (x′), ∀g ∈ L2

ρX .

It is clear that the operator Σ is self-adjoint, positive definite,
and trace-class when k(·, ·) is continuous. This operator can be
represented as Σ = II∗ in terms of the inclusion operator I :
H → L2

ρX , (If) = f . Here I∗ is the adjoint of I and is given by

I∗ : L2
ρX → H, (I∗f)(·) =

∫
X
k(x, ·)f(x)dρX ,

due to the self-adjoint property of the Hilbert spaces L2
ρX and

H [121]. With s random features, the inclusion operator I can
be approximated by the operator A : H̃ → L2

ρX , (Aβ) =
〈ϕ(·),β〉H̃, ∀β ∈ Rs. Figure 5 presents the relationship between
various spaces under different operators.

The integral operator Σ plays a significant role in characterizing
the hypothesis space. In particular, the decay rate of the spectrum
of Σ quantifies the capacity of the hypothesis space in which
we search for the solution. This capacity in turn determines the
number of random features required for accurate learning. Rudi
and Rosasco [54] consider the following assumption on Σ.

Assumption 5 (Capacity condition [122], [125]). There exist Q >
0 and γ ∈ [0, 1] such that for any λ > 0, we have

N (λ) := tr
(
(Σ + λI)−1Σ

)
≤ Q2λ−γ . (26)

The effective dimension N (λ) [109] measures the “size” of
the RKHS, and is in fact the operator form of dλK in Eq. (21).
Assumption 5 holds if the eigenvalues λi of Σ decay as i−1/γ ,
which corresponds to the eigenvalue decay of K in Assumption 4

with γ := 1/(2a) [126]. The case γ = 0 is the more benign
situation, whereas γ = 1 is the worst case.

Quality of Random Features: Here we introduce several
technical assumptions on the quality of random features. The
leverage score in Eq. (20) admits the operator form

F∞(λ) := sup
ω

∥∥∥(Σ + λI)−1/2ϕ(x)
∥∥∥2

L2
ρX

, ∀λ > 0 ,

which is also called as the maximum random features dimension
[54]. By defintion we always have N (λ) ≤ F∞(λ). Roughly
speaking, when the random features are “good”, it is easy to
control their leverage scores in terms of the decay of the spectrum
of Σ. Further, fast learning rates using fewer random features can
be achieved if the features are compatible with the data distribution
in the following sense.

Assumption 6 (Compatibility condition [54]). With the above
definition of F∞(λ), assume that there exist % ∈ [0, 1], and F > 0
such that F∞(λ) ≤ Fλ−%,∀λ > 0.

It always holds that F∞(λ) ≤ κ2λ−1 when z is uniformly
bounded by κ. So the worst case is % = 1, which means that the
random features are sampled in a problem independent way. The
favorable case is % = γ, which means that N (λ) ≤ F∞(λ) ≤
O(n−αγ). In [17], the authors consider the following assumption.

Assumption 7 (Optimized distribution [17]). The feature mapping
z(ω,x) is called optimized if there is a small constant λ0 such
that for any λ ≤ λ0, F∞(λ) ≤ N (λ) =

∑∞
i=1

λi(Σ)
λi(Σ)+λ .

Under the previous definitions, Assumption 7 holds only
when F∞(λ) = N (λ). This assumption is stronger than the
compatibility condition in Assumption 6. Note that Assumption 7
is satisfied when sampling from q(ω).

Source condition on fρ: The following assumption states that
fρ has some desirable regularity properties.

Assumption 8 (Source condition [54], [127]). There exist 1/2 ≤
r ≤ 1 and g ∈ L2

ρX such that fρ(x) = (Σrg)(x) almost surely.

Since Σ is a compact positive operator on L2
ρX , its r-th power

Σr is well defined for any r > 0.6 Assumption 8 imposes a form of
regularity/sparsity of fρ, which requires the expansion of fρ on the
basis given by the integral operator Σ. Note that this assumption
is more stringent than the existence of fρ in H. The latter is
equivalent to Assumption 8 with r = 1

2 (the worst case), in which
case fρ ∈ H need not have much regularity/sparsity.

Noise Condition: The following two assumptions on noise are
considered in random features for classification.

6. A more general condition (r > 0) is often considered in approximation
theory; see [128], [129].
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Table 4
Comparison of learning rates and required random features for expected risk with the squared loss function.

sampling scheme Results key assumptions eigenvalue decays λ learning rates required s

{ωi}si=1 ∼ p(ω)

[54, Theorem 1] - - n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

[54, Theorem 2] source condition

i−2t n
− 2t

1+4rt Op
(
n
− 4rt

1+4rt

)
s ≥ Ω( 2t+2r−1

1+4rt logn)

1/i n
− 1

2r+1 Op
(
n
− 2r

2r+1

)
s ≥ Ω(n

2r
2r+1 logn)

[32, Corollary 2] -

e−
1
c
i n−

1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n log logn)

i−2t n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

1/i n−
1
2 Op

(
n−

1
2

)
s ≥ Ω(

√
n logn)

{ωi}si=1 ∼ q(ω)

[54, Theorem 3]
source condition;
compatibility condition

i−2t n
− 2t

1+4rt Oq
(
n
− 4rt

1+4rt

)
s ≥ Ω(

%+(2r−1)(2t+1−2t%)
1+4rt logn)

1/i n
− 1

2r+1 Oq
(
n
− 2r

2r+1

)
s ≥ Ω(n

2r
2r+1 logn)

[32, Corollary 1] optimized distribution

e−
1
c
i n−

1
2 Oq

(
n−

1
2

)
s ≥ Ω(log2 n)

i−2t n−
1
2 Oq

(
n−

1
2

)
s ≥ Ω(n1/(4t) logn)

1/i n−
1
2 Oq

(
n−

1
2

)
s ≥ Ω(

√
n logn)

Assumption 9 (Massart’s low noise condition [17]). There exists
V ≥ 2 such that ∣∣E(x,y)∼ρ[y|x]

∣∣ ≥ 2/V .

Assumption 10 (Separation condition [17]). The points in X can
be collected into two sets according to their labels as follows

X1 := {x ∈ X : E[y|x] > 0} ,
X−1 := {x ∈ X : E[y|x] < 0} .

For i ∈ {±1}, the distance of a point x ∈ Xi to the set X−i
is denoted by ∆(x). We say that the data distribution satisfies a
separation condition if there exists ∆ > 0 such that ρX(∆(x) <
c) = 0.

The above two assumptions, both controlling the noise level
in the labels, can be cast under into a unified framework [130] as
follows. Define the regression function η(x) = E[y|X = x] in
binary classification problems. The Massart’s low noise condition
means that there exists h ∈ (0, 1] such that for |η(x)| ≥ h for all
x ∈ X . Here h characterizes the level of noise in classification
problems. If small h is small, then η(x) is close to zero, in
which case correct classification is difficult. Massart’s condition
can be extended to the following more flexible condition known as
Tsybakov’s low noise assumption [130]. This assumption stipulates
that there exists a constant C > 0 such that for all sufficiently
small t > 0, we have

Pr
(
{x ∈ X : |2η(x)− 1| ≤ t}

)
≤ C · tq ,

for some q > 0. The separation condition in Assumption 10 is an
extreme case of the Tsybakov’s noise assumption with q =∞. It is
clear that noise-free distributions satisfy this separation assumption,
since the conditional probability η is bounded away from 1/2.

5.2.2 Squared loss in KRR
In this section, we review theoretical results on the generalization
properties of KRR with squared loss and random features, for
both the p(ω)-sampling (data-independent) and q(ω)-sampling

(data-dependent) settings. Table 4 summarizes these results for the
excess risk in terms of the key assumptions imposed, the learning
rates, and the required number of random features.

We begin with the remarkable result by Rudi and Rosasco
[54]. They are among the first to show that under some mild
assumptions and appropriately chosen parameters, Ω(

√
n log n)

random features suffice for KRR to achieve minimax optimal rates.

Theorem 11 (Generalization bound; Theorem 3 in [54]). Suppose
that Assumption 8 (source condition) holds with r ∈ [ 1

2 , 1], As-
sumption 6 (compatibility) holds with % ∈ [0, 1], and Assumption 5
(capacity) holds with γ ∈ [0, 1]. Assume that n ≥ n0 and choose
λ := n

1
2r+γ . If the number of random features satisfies

s ≥ c0n
α+(2r−1)(1+γ−α)

2r+γ log
108κ2

λδ
,

then the excess risk of f̃z,λ can be upper bounded as

E
(
f̃z,λ

)
− E (fρ) =

∥∥∥f̃z,λ − fρ∥∥∥2

L2
ρX

≤ c1 log2 18

δ
n−

2r
2r+γ ,

where c0, c1 are constants independent of (n, λ, δ), and n0 does
not depends on n, λ, fρ, or ρ.

Theorem 11 unifies several results in [54] that impose different
assumptions. The simplest result is Theorem 1 in [54], which only
requires the three basic Assumptions 1–3 on existence, boundedness
and continuity, corresponding to the the worst case of Theorem 11
with % = γ = 1 and r = 1/2. In this case, by choosing λ =
n−1/2, we require Ω(

√
n log n) random features to achieve the

minimax convergence rate O(n−1/2); also see Table 4.
A more refined result is given in Theorem 2 in [54], which

accounts for the capacity of the RKHS and the regularity of fρ,
as quantified by the parameters γ ∈ [0, 1] (Assumption 5) and
r ∈ [ 1

2 , 1] (Assumption 8), respectively. Under these conditions

and choosing λ := n−
1

2r+γ , we require Ω
(
n

1+γ(2r−1)
2r+γ log n

)
random features to achieve the convergence rate O

(
n−

2r
2r+γ

)
.

Note that γ = 1 is the worst case, where the eigenvalues of



17

K have the slowest decay, and γ = 1/(2a) ∈ (0, 1) means that
the eigenvalues follow a polynomial decay λi ∝ ni−2a. Table 4
presents this result with γ := 1/(2a) for better comparison with
the other results.

The above two results apply to the standard RFF setting with
data-independent sampling. When {ωi}si=1 are sampled from a
data-dependent distribution satisfying the compatibility condition
in Assumption 6 with % ∈ [0, 1], then Theorem 3 in [54] provide
an improved result. In this case, by choosing λ := n−

1
2r+γ , we

require Ω
(
n
%+(1+γ−%)(2r−1)

2r+γ log n
)

random features to achieve the
convergence rate O

(
n−

2r
2r+γ

)
.

If the compatibility condition is replaced by the stronger
Assumption 7 (optimized distribution), satisfied by q(ω)-sampling,
the work [32] derives an improved bound that is the sharpest to
date. Below we state a general result from [32] that covers both
p(ω)- and q(ω)-sampling.

Theorem 12 (Theorem 1 in [32]). Suppose that the regularization
parameter λ satisfies 0 ≤ nλ ≤ λ1. We consider two sampling
schemes.
• {ωi}si=1 ∼ p(ω): if s ≥ (5z2

0/λ) log(16dλK/δ) and
|z(ω,x)| ≤ z0,

• {ωi}si=1 ∼ q(ω): if s ≥ 5dλK log
(
16dλK/δ

)
,

then for 0 < δ < 1, with probability 1− δ, the excess risk of f̃z,λ
can be upper bounded as∥∥∥f̃z,λ − fρ∥∥∥2

L2
ρX

≤ 2λ+O(1/
√
n) + E

(
fz,λ

)
−E (fρ) , (27)

where we recall that E
(
fz,λ

)
−E (fρ) is the excess risk of standard

KRR with an exact kernel (see Section 2).

For p(ω)-sampling, Theorem 12 improves on the results of
[54] under the exponential and polynomial decays. Specifically,
if {ωi}si=1 ∼ p(ω), Theorem 12 requires s ∝ 1/λ log dλK .
Specialized to the exponential decay case, this result requires
Ω(
√
n log log n) random features to achieve an O(n−1/2) learn-

ing rate, which is an improvement compared to [54] with
Ω(
√
n log n) random features.

For q(ω)-sampling, Theorem 12 shows that if λ = n−1/2,
then s ∝ dλK log dλK random features is sufficient to incurs no
loss in the expected risk if KRR, with a minimax learning rate
O(n−1/2). Corollaries of this result under three different regimes
of eigenvalue decay are summarized in Table 4.

Carratino et al. [131] extend the result of [54] to the setting
where KRR is solved by stochastic gradient descent (SGD). They
show that under the basic Assumptions 1–3 and some mild
conditions for SGD, Ω(

√
n) random features suffice to achieve

the minimax learning rate O(n−1/2). This result matches those
for standard KRR with an exact kernel [132]. The above results
can be improved if in addition the source condition in Assumption
8 holds, in which case Ω(n

1+α(2r−1)
2r+α ) random features suffice to

achieve an O(n−
2r

2r+α ) learning rate.
The work in [133] shows that if the randomized feature map is

bounded (which is weaker than Assumption 2), then we have the
following out-of-sample bound

E(f̃z,λ)− E(fz,λ) ≤ O
(

1

sλ

)
.

If we choose λ := n−1/2, then Ω(n) random features are sufficient
to ensure an O(n−1/2) rate in the out-of-sample bound.

5.2.3 Lipschitz continuous loss function

In this section, we consider loss functions ` that are Lipschitz
continuous. Examples include the hinge loss in SVM and the
cross-entropy loss in kernel logistic regression. Table 5 summarizes
several existing results for such loss functions in terms of the
learning rate and the required number of random features. We
briefly discuss these results below and refer the readers to the cited
work for the precise theorem statements.

If {ωi}si=1 ∼ p(ω), i.e., under the standard RFF setting with
data-independent sampling, we have the following results.

• Theorem 1 in [33] shows that the excess risk converges at a
certain O(n−1/2) rate with Ω(n log n) random features.

• Corollary 4 in [32] shows that with λ ∈ O(1/n) and
Ω
(
(1/λ) log dλK

)
random features, the excess risk of f̃z,λ

can be upper bounded by

E(f̃z,λ)− E (fρ) ≤ O
(
1/
√
n
)

+O(
√
λ) .

The above bound scales with
√
λ, which is different from

the bound in Eq. (27) for the squared loss. Therefore, for
Lipschitiz continuous loss functions, we need to choose a
smaller regularization parameter λ ∈ O(1/n) to achieve the
same O(n−1/2) convergence rate. Also note that as before
we can bound dλK under the three types of eigenvalue decay.

If {ωi}si=1 ∼ q(ω), i.e., under the data-dependent sampling
setting, we have the following results.

• For SVM with random features, under the optimized dis-
tribution in Assumption 7 and the low noise condition in
Assumption 9, Theorem 1 in [17] provides bounds on the
learning rates and the required number of random features.
This result is improved in [17, Theorem 2] if we consider the
stronger separation condition in Assumption 10. Details can
be found in Table 5.

• In Section 4.5 in [53] and Corollary 3 in [32], it is shown that
if Assumption 7 holds, then the excess risk of f̃z,λ converges
at an O(n−1/2) rate with Ω(dλK log dλK) random features, if
we choose λ ∈ O(1/n).

There is an abnormal but common experiment phenomenon
on kernel approximation and risk generalization, that is, a higher
kernel approximation quality does not always translate to better
generalization performance, see the discussion in [28], [46], [52].
Understanding this inconsistency between approximation quality
and generalization performance is an important open problem in
this topic. Here we present a preliminary result for KRR: a better
approximation quality cannot guarantee a lower generalization risk,
see Proposition 1 as below, with proof deferred to Appendix A.

Proposition 1. Given the target function fρ and the original kernel
matrix K, consider two random features based algorithms A1 and
A2 yielding two approximated kernel matrices K̃1 and K̃2, and
their respective KRR estimators f̃ (A1)

z,λ and f̃ (A2)
z,λ . Then for a new

sample x, even if ‖K − K̃1‖ ≤ ‖K − K̃2‖ holds in some norm
metric, there exists one case for the excess risk such that

E [f̃
(A1)
z,λ (x)]− E [fρ(x)] ≥ E [f̃

(A2)
z,λ (x)]− E [fρ(x)] .

Remark: Our proof is geometric by constructing a counter-
example. It requires that the kernel admits (at least) polynomial
decay, which holds for the common-used Gaussian kernel and
could be further relaxed for the existence of the proof.
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Table 5
Comparison of learning rates and required random features for expected risk with a Lipschitz continuous loss function.

sampling scheme Results key assumptions eigenvalue decay λ learning rates required s

{ωi}si=1 ∼ p(ω)

[33, Theorem 1] - - - Op
(
n−

1
2

)
s ≥ Ω(n logn)

[32, Corollary 4] -

e−
1
c
i 1

n Op
(
n−

1
2

)
s ≥ Ω(n log logn)

i−2t 1
n Op

(
n−

1
2

)
s ≥ Ω(n logn)

1/i 1
n Op

(
n−

1
2

)
s ≥ Ω(n logn)

{ωi}si=1 ∼ q(ω)

[17, Theorem 1]
optimized distribution

e−
1
c
i 1

n Oq
(

1
n logc+2 n

)
s ≥ Ω(logc n log logc n)

low noise condition

i−2t n
− t

1+t Oq
(
n
− t

1+t logn

)
s ≥ Ω(n

1
1+t logn)

1/i 1
n Oq

(
n−

1
2

)
s ≥ Ω(n logn)

[17, Theorem 2] separation condition
e−

1
c
i n−2c2 Oq

(
1
n log2c+1 n log logn

)
s ≥ Ω(log2c n log logn)optimized distribution

[53, Section 4.5]
[32, Corollary 3] optimized distribution

e−
1
c
i 1

n Oq
(
n−

1
2

)
s ≥ Ω(log2 n)

i−2t 1
n Oq

(
n−

1
2

)
s ≥ Ω(n1/(2t) logn)

1/i 1
n Oq

(
n−

1
2

)
s ≥ Ω(n logn)

5.3 Results for nonlinear component analysis

In addition to supervised learning problems such as classification
and regression, random features can also be used in unsupervised
learning, e.g., randomized nonlinear component analysis. Here we
give an overview of the results for this problem.

The authors of [16] propose to use random features to
approximate the kernel matrix in kernel Principal Component
Analysis (KPCA) and kernel Canonical Correlation Analysis
(KCCA). They show that the approximate kernel matrix converges
to the true one in operator norm at a rate of O(n

√
log n/s).

More precisely, s = O((log n)2/ε2) suffices to ensure that
‖K̃ −K‖2 ≤ εn with the probability 1− 1/n. Their algorithm
takes O(ns2 + nsd) time to construct feature functions and
O(s2 + sd) space to store the feature functions and covariance
matrix. Ghashami et al. [119] combine random features with matrix
sketching for KPCA. For finding the top-` principal components,
they improve the time and space complexities toO(nsd+n`s) and
O(sd+ `s), respectively. Xie et al. [94] propose to use the doubly
stochastic gradients scheme to accelerate KPCA. The authors of
[120] investigate the statistical consistency of KPCA with random
features. They show that the top-` eigenspace of the empirical
covariance matrix in H̃ converges to the covariance operator in
H at the rate of O(1/

√
n + 1/

√
s). Therefore, Ω(n) random

features are required to guarantee a O(1/
√
n) rate. Ullah et al.

[121] instead pose KPCA as a stochastic optimization problem
and show that the empirical risk minimizer (ERM) in the random
feature space converges in objective value at an O(1/

√
n) with

Ω(`
√
n log n) random features.

6 EXPERIMENTS

In this section, we empirically evaluate the kernel approximation
and classification performance of representative random features
algorithms on several benchmark datasets. All experiments are
implemented in MATLAB and carried out on a PC with Intelr

i7-8700K CPU (3.70 GHz) and 64 GB RAM. The source code of
our implementation can be found in http://www.lfhsgre.org.

Table 6
Dataset statistics.

datasets d #traing #test random split scaling

ijcnn1 22 49,990 91,701 no -
EEG 14 7,490 7,490 yes mapstd

cod-RNA 8 59,535 157,413 no mapstd
covtype 54 290,506 290,506 yes minmax
magic04 10 9,510 9,510 yes minmax

letter 16 12,000 6,000 no minmax
skin 3 122,529 122,529 yes minmax
a8a 123 22,696 9,865 no -

MNIST 784 60,000 10,000 no minmax
CIFAR-10 3072 50,000 10,000 no -
MNIST-8M 784 8,100,000 10,000 no -

6.1 Experimental settings

Kernel: We choose the popular Gaussian kernel, zero/first-order
arc-cosine kernels, and polynomial kernels for experiments.

i) Gaussian kernel:

k(x,x′) = exp

(
−‖x− x

′‖22
2ς2

)
, (28)

where the kernel width parameter ς is tuned via 5-fold inner cross
validation over a grid of {0.01, 0.1, 1, 10, 100}.

To evaluate the Gaussian kernel, we conduct the following
representative algorithms for comparison: RFF [9], ORF [25],
SORF [25], ROM [80], Fastfood [37], QMC [38], SSF [44],
GQ [27], and LS-RFF [32]. These algorithms include both data-
independent and data-dependent approaches and involve a variety of
techniques including Monte Carlo and quasi-Monte Carlo sampling,
quadrature rules, variance reduction, and computational speedup
using structural/circulant matrices.

ii) arc-cosine kernels: Different from Gaussian kernels and
polynomial kernels, the designed arc-cosine kernels [60] can be
closely connected to neural networks, which include feature spaces
that mimic the sparse, nonnegative, distributed representations of

http://www.lfhsgre.org
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single-layer threshold networks. The used zeroth order kernel is
given explicitly by

k(x,x′) = 1− θ

π
,

which corresponds to the Heaviside step function σ(ω>x) =
1
2 (1 + sign(ω>x)) in Eq. (6). The first order kernel is

k(x,x′) =
1

π
‖x‖2‖x′‖2 (sin θ + (π − θ) cos θ) ,

which corresponds to the ReLU activation function σ(ω>x) =
max{0,ω>x} in Eq. (6).

Here we consider the zero/first-order arc-cosine kernel and
compare these ten algorithms (used for Gaussian kernel approx-
imation) as well. Note that, the theoretical foundation behind
random features, Bocher’s theorem, is invalid to arc-cosine kernels.
Thankfully, according to the formulation of arc-cosine kernels
admitting in Eq. (6), the Monte Carlo sampling (e.g., RFF) is
able to used for arc-cosine kernel approximation. In this case, the
remaining algorithms, e.g., ORF, QMC, and Fastfood, on various
sampling strategies, can be still applicable to arc-cosine kernels, at
least in the algorithmic aspect.

iii) Polynomial kernel: This is a widely used family of dot
product kernels given by

k(x,x′) = (1 + 〈x,x′〉)b ,

where b is the order. In our experiments, the order is set to b = 2.
Note that, different from Gaussian kernels and arc-cosine kernels,
polynomial kernels admit neither the Bochner’s theorem nor the
sampling formulation in Eq. (6), so classical random features based
algorithms are applicable to arc-cosine kernels but still invalid to
polynomial kernels even though both of them are dot-product. As
a result, algorithms for polynomial kernel approximation are often
totally different. In this survey, we include three representative
approaches for evaluation, including Random Maclaurin (RM) [35],
Tensor Sketch (TS) [73], and Tensorized Random Projection (TRP)
[74].
Datasets: We consider eight non-image benchmark datasets, two
representative image datasets, and a ultra-large scale dataset
for evaluation. Table 6 gives an overview of these datasets
including the number of feature dimension, training samples,
test data, training/test split, and the normalization scheme.
These eight non-image benchmark datasets can be downloaded
from https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ or
the UCI Machine Learning Repository7. Some datasets include a
training/test partition, denoted as “no” in the random split column.
For the other datasets, we randomly pick half of the data for training
and the rest for testing, denoted as “yes” in the random split column.
There are two typical normalization schemes used in these datasets:
“mapstd” and “minmax”. The “mapstd” scheme sets each sample’s
mean to 0 and deviation to 1, while the “minmax” scheme is a
standard min-max scaling operation mapping the samples to the
bounded set [0, 1]d. Two representative image datasets are the
MNIST handwritten digits dataset [134] and the CIFAR10 natural
image classification dataset [135], summarized in the last two rows
in Table 6. The MNIST dataset contains 60,000 training samples
and 10,000 test samples, each of which is a 28 × 28 gray-scale
image of a handwritten digit from 0 to 9. Here the “minmax”
normalization scheme means that each pixel value is divided by

7. https://archive.ics.uci.edu/ml/datasets.html.

255. The CIFAR10 dataset consists of 60,000 color images of
size 32 × 32 × 3 in 10 categories, with 50,000 for training and
10,000 for test. Besides, apart from medium/large scale datasets in
our experiments, we also evaluate the compared approaches on a
ultra-large scale dataset MNIST 8M [136], which is derived from
the MNIST dataset by random deformations and translations. It
shares the same number of feature dimension and test data with the
MNIST dataset, but has 8,100,000 training data.
Evaluation metrics: We evaluate the performance of all the
compared algorithms in terms of approximation error, time
cost, and test accuracy. We use ‖K − K̃‖F/‖K‖F as the
error metric for kernel approximation. A small error indicates
a high approximation quality. To compute the approximation
error, we randomly sample 1,000 data points to construct the
sub-feature matrix and the sub-kernel matrix. We record the
time cost of each algorithm on generating feature mappings. The
kernel width ς in the Gaussian kernel is tuned by five-fold cross
validation over the grid {0.01, 0.1, 1, 10, 100}. The regularization
parameter λ in ridge linear regression and the balance parameter in
liblinear are tuned via 5-fold inner cross validation on a grid
of {10−8, 10−6, 10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 5, 10} and
{0.01, 0.1, 1, 10, 100}, respectively. For the sake of computational
efficiency, we conduct a relatively coarse hyper-parameter tuning.
Nevertheless, a refined hyper-parameter search might result in better
classification performance. The random features dimension s in our
experiments takes value in {2d, 4d, 8d, 16d, 32d}. All experiments
are repeated 10 times and we report the average approximation
error, average classification accuracy with their respective standard
deviations as well as the time cost for generating random features.

6.2 Results for the Gaussian Kernel

(a) MNIST (b) CIFAR10

Figure 6. Approximation error, time cost, and test accuracy of various
algorithms with liblinear on two image classification datasets.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets.html.
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Table 7
Results statistics on twelve classification datasets. The best algorithm on each dataset is given in two cases: low dimensional (i.e., s = 2d, 4d) and
high dimensional (i.e., s = 16d, 32d) according to approximation quality, test accuracy in linear regression or liblinear. The notation “-” means that

there is no statistically significant difference in the performance of most algorithms.

datasets approximation lr liblinear

small s large s small s large s small s large s

ijcnn1 SSF SORF, QMC, ORF - - Fastfood -
EEG SSF ORF - - - -

cod-RNA SSF - - - - -
covtype ORF - - - - -
magic04 SSF SSF, ORF, QMC, ROM - - - -

letter SSF SSF, ORF - - - -
skin SSF, ROM QMC - - - -
a8a - - - - SSF -

6.2.1 Results on non-image benchmark datasets

Here we test various random features based algorithms, including
RFF [9], ORF [25], SORF [25], ROM [80], Fastfood [37], QMC
[38], SSF [44], GQ [27], LS-RFF [32] for kernel approximation and
then combine these algorithms with lr/liblinear for classification
on eight non-image benchmark datasets, refer to Appendix B.1 for
details. Here we summarize the best performing algorithm on each
dataset in terms of the approximation quality and classification
accuracy in Table 7, where we distinguish the small s case (i.e.,
s = 2d or s = 4d) and the large s case (i.e., s = 16d or s =
32d). The notation “-” therein means that there is no statistically
significant difference in the performance of most algorithms.

In terms of approximation error, we find that SSF, ORF, and
QMC achieve promising approximation performance in most
cases. Recall that the goal of using random features is to find
a finite-dimensional (embedding) Hilbert space to approximate the
original infinite-dimensional RKHS so as to preserve the inner
product. To achieve this goal, SSF, QMC, and ORF are based on
a similar principle, namely, generating random features that are
as independent/complete as possible to reduce the randomness in
sampling. Regarding to SSF, we find that SSF performs well under
the small s case, but the significant improvement does not hold
for the large s case. This might be because, a few points can be
adequate in SSF, additional points (i.e., a larger s) may have a small
marginal benefit in variance reduction under the large s setting.
Consequently, the approximation error of SSF sometimes stays
almost the same with a larger number of random features. QMC and
ORF seek for variance reduction on random features. Nevertheless,
they often work well in the large s case. As demonstrated by
the expression for variance of ORF [25] and convergence rate in
QMC [38], this theoretical result is consistent with the numerical
performance of ORF and QMC, which may explain the reason why
they work better in a large s setting than a small s case.

Results on arc-cosine kernels and polynomial kernels can be
in Appendix B. Besides, apart from the above used medium/large
scale datasets in our experiments, we also evaluate the compared
approaches on a ultra-large scale dataset MNIST 8M [136] with
millions of data. Due to the memory limit, following the doubly
stochastic framework [39], we incorporate these random features
based approaches under the data streaming setting for the reduction
of time and space complexity.

6.2.2 Classification results on MNIST and CIFAR10
Here we consider the MNIST and CIFAR10 datasets, on which
we test these random features based algorithms for kernel
approximation and then combine these algorithms with liblinear
for image classification. In our experiment, we use the Gaussian
kernel8, whose kernel width ς is tuned by 5-fold cross validation
over the grid ς = [0.01, 0.1, 1, 10, 100]. For the MNIST database,
we directly use the original 784-dimensional feature as the data.
For better performance on the CIFAR10 dataset, we use VGG16
with batch normalization [138] pre-trained on ImageNet [139] as a
feature extractor. We fine-tune this model on the CIFAR10 dataset
with 240 epochs and a mini-batch size 64. The learning rate is
initialized at 0.1 and then divided by 10 at the 120-th, 160-th, and
200-th epochs. For each color image, a 4096 dimensional feature
vector is obtained from the output of the first fully-connected layer
in this fine-tuned neural network.

Figure 6(a) shows the approximation error, the time cost, and
the classification accuracy by liblinear across a range of s = 1000
to s = 10, 000 random features on the MNIST database. We find
that ORF and SSF yield the best approximation quality. Despite that
most algorithms achieve different approximation errors, there is
no significant difference in the test accuracy, which corresponds to
the results on non-image datasets. Similar results are observed on
the CIFAR10 dataset with s = 5000 to s = 12, 000 random
features; see Figure 6(b). Note that most algorithms take the
similar time cost on generating random features except for the data-
dependent algorithm LS-RFF. Several structured based approaches
(e.g., Fastfood, SORF, ROM) do not achieve significant reduction
on time cost due to the relatively inefficient Matlab built-in function
to implement the Walsh-Hadamard transform.

7 TRENDS: HIGH-DIMENSIONAL RANDOM FEA-
TURES IN OVER-PARAMETERIZED SETTINGS

In the previous sections, we review random features based
algorithms and their theoretical results, that works under a fixed d
setting with s� n. Random features based approaches are simple
in formulation but enjoy nice empirical validations and theoretical
guarantees in kernel approximation and generalization properties.
Recently, analysis of over-parameterized models [14], [140], [141],
[142], [143] has attracted a lot of attention in learning theory,

8. As indicated by [12], [137], (convolutional) NTK generally performs
better than Gaussian kernel but it is still non-trivial to obtain a efficient random
features mapping for (convolutional) NTK without much loss on prediction.
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(a) sonar (low-dimensioanl) (b) MNIST (high-dimensional)

Figure 7. Training error, test error, and approximation error of random
features regression with λ = 10−8 on the sonar dataset with n =
208, d = 60 and the sub-set of MNIST (class 1 versus class 2) with
n = 200, d = 784.

partly due to the observation of several intriguing phenomena,
including capability of fitting random labels, strong generalization
performance of overfitted classifiers [10] and double descent in the
test error curve [11], [144]. Moreover, Belkin et al. [11], [145] point
out that the above phenomena are not unique to deep networks but
also exist in random features and random forests. In Figure 7, we
report the empirical training error, the test error, and the kernel
approximation error of random features regression as a function
of s/n on the sonar dataset and the MNIST dataset [134]. Even
with n, d, s only in the hundreds, we can still observe that as s
increases, the training error reduces to zero and the approximation
error monotonously decreases. However, the test error exhibits
double descent, i.e., a phase transition at the interpolation threshold:
moving away from this threshold on both sides trends to reduce the
generalization error. This is somewhat striking as it goes against the
conventional wisdom on bias-variance trade-off [146]: predictors
that generalize well should trade off the model complexity against
training data fitting.

The above observations have motivated researchers to build on
the elegant theory of random features to provide an analysis of
neural networks in the over-parameterized regime. To be specific,
RFF can be regarded as a two-layer (large-width) neural network,
where the weights in the first layer are chosen randomly/fixed
and only the output layer is optimized. This is a typical over-
parameterized model if we take s� n. As such, two-layer neural
networks in this regime are more amenable to theoretical analysis as
compared to general arbitrary deep networks. This is a potentially
fruitful research direction, and one hand, the optimization and
generalization of such model have been studied in [14], [147] in
deep learning theory. On the other hand, in order to explain the
double descent curve of random features in over-parameterized
regimes, we often work in a high dimensional setting, which is
more subtle than classical results in standard settings, as indicated
by recent random matrix theory (RMT) [148], [149], [150]. An
intuitive example [151] is, ‖K − ZZ>‖F → 0 always hold in
low/high dimensions as s→∞ but ‖K −ZZ>‖2 → 0 does not
hold for n, d, s → ∞. Accordingly, in this section, we provide
an overview on analysis of (high dimensional) random features
in over-parameterized setting, especially on double descent. We
remark upfront that the random features model on double descent is
not the only way for analyzing DNNs. Many other approaches, with
different points of views, have been proposed for deep learning
theory, but they are out of scope of this survey.

7.1 Results on High Dimensional Random Features in
Over-parameterized Setting

Here we briefly introduce the problem setting of high dimensional
random features in over-parameterized regimes, and then discuss
the techniques used in various studies.

In the basic setting, high dimensional random features often
work with least squares regression setting in an asymptotic
viewpoint, i.e., n, d, s → ∞ with d/n → ψ1 ∈ (0,∞) and
s/n→ ψ2 ∈ (0,∞), in which overparameterization corresponds
to ψ2 ≥ 1. The considered data generation model in the basic
setting is quite simple. To be specific, the training data is collected
in a matrixX ∈ Rn×d, the rows of which are assumed to be drawn
i.i.d from N (0, 1) or Sd−1(

√
d). The labels are given by a linear

ground truth corrupted by some independent additive Gaussian
noise: yi = fρ(xi) + εi, where fρ(x) = 〈x, ζ〉 for a fixed but
unknown ζ and εi ∼ N (0, 1). The transformation matrix under
this setting is often taken as the random Gaussian matrix with the
ReLU activitation function (recall Eq. (6)). Current approaches
employ various data generation schemes and assumptions to obtain
a refined analysis beyond double descent under the basic setting.
According to these criteria, we summarize the problem setting of
various representative approaches in Table 8. In the next, we briefly
review the conceptual and technical contributions of underlying
approaches on high dimensional random features.

Belkin et al. [159] begin with an one-dimensional (noise-
free) version of the random features model, and provide an
asymptotic analysis to explain the double descent phenomenon.
The subsequent work focuses on the standard random features
model under different settings and assumptions. It is clear that,
the presence of the nonlinear activation function σ(·) makes the
random features model intractable to study the related (limiting)
spectral distribution. Accordingly, the key issue in this topic mainly
focuses on studying random matrices with nonlinear dependencies,
e.g., how to disentangle the nonlinear function σ(·) by Gaussian
equivalence conjecture. Hastie et al. [140] consider the basic setting
endowed by a bounded activation function with a standardization
condition, i.e., E[σ(t)] = 0 and E[σ(t)2] = 1 for t ∼ N(0, 1).
By establishing asymptotic results on resolvents of random block
matrices from RMT, the limiting of the variance is theoretically
demonstrated to be increasing for ψ2 ∈ (0, 1), decreasing for
ψ2 ∈ (1,∞), and diverging as ψ2 → 1.

In a similar spirit, Mei and Montanari [141] use RMT
to study the spectral distribution of the Gram matrix Z =
σ(XW>/

√
d)/
√
d by considering the Stieltjes transform of a

related random block matrix, and show that, under least squares
regression setting in an asymptotic viewpoint, both the bias and
variance have a peak at the interpolation threshold ψ2 = 1 and
diverge there when λ→ 0. Under this framework, according to the
randomness stemming from label noise, initialization, and training
features, a refined bias-variance decomposition is conducted by
[153], [160] and further improved by [155], [161] using the analysis
of variance. Apart from refined error decomposition schemes, the
authors of [152], [154], [156] consider a general setting on convex
loss functions, transformation matrix, and activation functions for
regression and classification. Here the techniques used for analysis
are not limited to RMT. Instead, replica method [162] (a non-
rigorous heuristic method from statistical physics) used in [153],
[154], [160] and the convex Gaussian min-max (CGMM) theorem
[163] used in [156] are two alternative way to derive the desired
results. Note that, CGMM requires the data to be Gaussian, which
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Table 8
Comparison of problem settings on analysis of high dimensional random features on double descent.

studies metric data generation asymptotic? result
{xi}ni=1 fρ activation function W

[140, Theorem 7] population risk N (0, Id) 〈x, ζ〉 normalized N (0, 1/d) 3 variance↗↘

[152, Theorem 4] population risk N (0, Id) 〈x, ζ〉 bounded N (0, 1/d) 3 variance↗↘

[141, Theorem 2] expected excess risk Sd−1(
√
d) 〈x, ζ〉+ nonlinear 1 bounded Unif(Sd−1(

√
d)) 3 variance, bias↗↘

[153] expected excess risk N (0, Id) 〈x, ζ〉 ReLU N (0, 1) 3 refined 2

[154] generalization error N (0, Id) f(〈x, ζ〉) general general 3 ↗↘

[155, Theorem 1] generalization error N (0, Id) 〈x, ζ〉 normalized N (0, 1) 3 refined 2

[156, Theorem 1] generalization error N (0, Id) 〈x, ζ〉 general general 3 ↗↘

[157, Proposition 1] generalization error N (0, Id) 〈x, ζ〉 odd, bounded sub-Gaussian 3 ↗↘

[158, Theorem 5.1] expected excess risk Gaussian general [cos(·), sin(·)] N (0, 1) 7 ↗↘

[151, Theorem 3] generalization error general - 3 [cos(·), sin(·)] N (0, 1) 3 ↗↘
1 The nonlinear component is a centered isotropic Gaussian process indexed by x ∈ Sd−1(

√
d).

2 A refined decomposition on variance is conducted by sources of randomness: “noise variance”, “initialization variance”, and “sampling variance” to
possess each term [153] or their interpretations [155].

3 It makes no assumptions on fρ but requires that test data “behave” statistically like the training data by concentrated random vectors.

might restrict the application scope of their results but is still
a common-used technical tool for max-margin linear classifier
[164], boosting classifiers [165], and adversarial training for linear
regression [166] in over-parameterized regimes. Admittedly, the
applied replica method in statistical physics is quite different from
[141] for tackling inverse random matrices in RMT. However,
most of the above methods admit the equivalence between the
considered data model and the Gaussian covariate model. That
means, problem (3) with Gaussian data can be asymptotically
equivalent to

min
β∈Rs

1

n

n∑
i=1

`
(
yi,β

> (µ01k + µ1Wxi + µ?ti)
)

+ λ‖β‖22 ,

where {ti}ni=1 ∼ N (0, Id), µ0 = E[σ(t)], µ1 = E[tσ(t)] and
µ? = E[σ(t)2]− µ2

0− µ2
1 for a standard Gaussian variable t. This

equivalence on generalization error in an asymptotic viewpoint is
proved in [157].

Different from the above results in an asymptotic view,
Jacot et al. [158] present a non-asymptotic result by taking finite-
size Stieltjes transform of generalized Wishart matrix, and further
argue that random feature models can be close to KRR with an
additional regularization. The used technical tool is related to the
“calculus of deterministic equivalents” for random matrices [167].
This technique is also used in [151] to derive the exact asymptotic
deterministic equivalent of EW [(ZZ>+nλI)−1], which captures
the asymptotic behavior on double descent. Note that, this work
makes no data assumption to match real-world data, which is
different from previous work relying on specific data distribution.

7.2 Discussion on Random Features and DNNs

As mentioned, random features models have been fruitfully used to
analyze the double descent phenomenon. However, it is non-trivial
to transfer results for these models to practical neural networks,
which are typically deep but not too wide. There is still a substantial
gap between existing theory based on random features and the
modern practice of DNNs in approximation ability. For example,
under the spherical data setting, Ghorbani et al. [67] (a more general
version in [168] on data distribution) point out that as n → ∞,

a random features regression model can only fit the projection
of the target function onto the space of degree-` polynomials
when s = Ω(d`+1−δ) random features are used for some δ > 0.
More importantly, if s, d are taken as large with s = Ω(d), then the
function space by random features can only capture linear functions.
Even if we consider the NTK model, it can just capture quadratic
functions. That means, both random features and NTK have limited
approximation power in the lazy training scheme [65]. In addition,
Yehudai and Shamir [169] show that the random features model
cannot efficiently approximate a single ReLU neuron as it requires
the number of random features to be exponentially large in the
feature dimension d. This is consistent with the classical result
for kernel approximation in the under-parameterized regime: the
random features model, QMC, and quadrature based methods
require s = Ω(exp(d)) to achieve an ε approximation error [27].

Admittedly, the above results may appear pessimistic due to
the simple architecture. Nevertheless, random features is still an
effective tool, at least the first step, for analyzing and understanding
DNNs in certain regimes, and we believe its potential has yet to
be fully exploited. Note that the random features model is still
a strong and universal approximator [170] in the sense that the
RKHSs induced by a broad class of random features are dense in
the space of continuous functions. While the aforementioned results
show that the number of required features may be exponential in the
worst case, a more refined analysis can still provide useful insights
for DNNs. One potential way forward in deep learning theory is
to use the random features model to analyze DNNs with pruning.
For example, the best paper [171] in the Seventh International
Conference on Learning Representations (ICLR2019) put forward
the following Lottery Ticket Hypothesis: a deep neural network
with random initialization contains a small sub-network which,
when trained in isolation, can compete with the performance of
the original one. Malach et al. [24] provide a stronger claim that
a randomly-initialized and sufficiently over-parameterized neural
network contains a sub-network with nearly the same accuracy as
the original one, without any further training. Their analysis points
to the equivalence between random features and the sub-network
model. As such, the random features model is potentially useful
for network pruning [172] in terms of, e.g., guiding the design of
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neurons pruning for accelerating computations, and understanding
network pruning and the full DNNs.

8 CONCLUSION

In this survey, we systematically review random features based
algorithms and their associated theoretical results. We also give an
overview on generalization properties of high dimensional random
features in over-parameterized regimes on double descent, and
discuss the limitations and potential of random features in the theory
development for neural networks. Below we provide additional
remarks and discuss several open problems that are of interest for
future research.

• As a typical data independent method, random features are
simpler to implement, easy to parallelize, and naturally apply
to streaming or dynamic data. Current efforts on Nyström
approximation by a preconditioned gradient solver parallelized
with multiple GPUs [173] and quantum algorithms [111]
can guide us to design powerful implementation for random
features to handling millions/billions data.

• Experimental comparisons show that better kernel approxima-
tion does not directly translate to lower generalization errors.
We partly answer this question in the current survey but it
may be not sufficient to explain this phenomenon. We believe
this issue deserves further in-depth study.

• Kernel learning via the spectral density is a popular direction
[87], [89], which can be naturally combined with Generative
Adversarial Networks (GANs); see [84] for details. In
this setting, one may associate the learned model with an
implicit probability density that is flexible to characterize the
relationships and similarities in the data. This is an interesting
area for further research.

• The double descent phenomenon has been observed and
studied in random features model by various technical tools
under different settings. Current theoretical results, such as
those in [141], [151], may be extended to a more general
setting with less restricted assumptions on data generation,
model formulation, and the target function. Besides, more
refined analysis and delicate phenomena beyond double
descent have been investigated on the linear model, e.g.,
multiple descent phenomena [174] and optimal (negative)
regularization [175], [176]. Understanding these more delicate
phenomena for random features requires further investigation
and refined analysis.

• There exist significant gaps between the random features
model and practical neural networks, both in theory and
empirically. Even for fitting simple quadratic or mixture
models, the random features model cannot achieve a zero
error with a finite number of neurons in general, while NTK
and fully trained networks can [177]. Numerical experiments
indicate that the prediction performance of NTK and CNTK
may significantly degrade if the random features are generated
from practically sized nets [12].

• Despite the limitations of existing theory, random features
models are still useful for understanding and improving DNNs.
For example, understanding the equivalence between the
random features model and weight pruning in the Lottery
Ticket Hypothesis [24], may be promising future directions.

We hope that this survey will stimulate further research on the
above open problems.
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APPENDIX A
PROOF OF PROPOSITION 1
Proof. It is clear that an exact KRR estimator is fz,λ(x) = k(x,X)(K + nλI)−1y and its random features based version is
f̃z,λ(x) = k̃(x,X)(K̃ + nλI)−1y, where K̃ = ZZ> with Z ∈ Rn×s. The definition of the excess risk for least squares implies

E(f̃z,λ)− E(fρ) =
[
E(f̃z,λ)− E(fz,λ)

]
+ [E(fz,λ)− E(fρ)] = ‖f̃z,λ − fz,λ‖2 + ‖fz,λ − fρ‖2 ,

where the first term in the right hand is the expected error difference between the original KRR and its random features approximation
version. The second term in the right hand is the excess risk of KRR, which is independent of the quality of kernel approximation.
Specifically, the first term can be further expressed by the representer theorem

‖f̃z,λ − fz,λ‖2 = Ex[f̃z,λ(x)− fz,λ(x)]2 = Ex

(
n∑
i=1

[
α̃ik̃(xi,x)− αik(xi,x)

])2

. (29)

Intuitively speaking, kernel approximation aims to preserve the inner product in two Hilbert spaces, i.e., 〈k(x, ·), k(x′, ·)〉H ≈
〈k̃(x, ·), k̃(x′, ·)〉H̃. Nevertheless, the preservation of the inner-product does not immediately guarantee a small value of
α̃i〈k̃(x, ·), k̃(x′, ·)〉H̃ − αi〈k(x, ·), k(x′, ·)〉H in Eq. (29).

Formally, define K̃ = K +E and k̃(x,X) = k(x,X) + ε̃ with the residual error matrix E ∈ Rn×n and the residual error vector
ε̃ ∈ R1×n such that k̃(x,X) ∈ R1×n. Generally, the residual error E and ε̃ show the consistency, that is, a small kernel approximation
error ‖E‖ implies a small ‖ε̃‖. Consider two random features based algorithms A1 and A2 yielding two approximated kernel matrices
K̃1 and K̃2, and their respective KRR estimators f̃ (A1)

z,λ and f̃ (A2)
z,λ . The corresponding residual error matrices/vectors are defined as

(E1, ε̃1) and (E2, ε̃2) such that K̃1 := K +E1 and K̃2 := K +E2. Without loss of generality, we assume ‖E1‖ ≤ ‖E2‖ and
‖ε̃1‖ ≤ ‖ε̃2‖. In this case, our target is to prove that, there exists one case such that |f̃ (A1)

z,λ (x)−fz,λ(x)| ≥ |f̃ (A2)
z,λ (x)−fz,λ(x)|. For

notational simplicity, denote T (E, ε̃) := 〈y>, k(x,X)(K + nλI)−1E − ε̃〉, T1(E1, ε̃1) := 〈y>, k(x,X)(K + nλI)−1E1 − ε̃1〉,
and T2(E2, ε̃2) := 〈y>, k(x,X)(K + nλI)−1E2 − ε̃2〉. To prove our result, we make the following three assumptions:

• I. the residual matrix E is semi-positive definite and K̃1, K̃2 are non-singular.
• II. nλ ≤ λ1(K̃1) ≤ λ1(K̃2), and K̃2 admits (at least) polynomial decay.
• III. the inner product 〈y>, k(x,X)(K + nλI)−1E − ε̃〉 =: T (E, ε̃) is non-negative.

The above three assumptions are mild, common-used and can be easily achieved, see in [32]. Specifically, we only need to prove
the existence of our claim: there exists one case such that |f̃ (A1)

z,λ (x)− fz,λ(x)| ≥ |f̃ (A2)
z,λ (x)− fz,λ(x)| under ‖E1‖ ≤ ‖E2‖ and

‖ε̃1‖ ≤ ‖ε̃2‖. Therefore, the above assumptions could be further relaxed.
According to Eq. (29), for a new sample x, we in turn focus on |f̃z,λ(x)− fz,λ(x)|, which can be upper bounded by

|f̃z,λ(x)− fz,λ(x)| = |k(x,X)(K + nλI)−1y − [k(x,X) + ε̃](K +E + nλI)−1y|
= |k(x,X)[(K + nλI)−1 − (K + nλI +E)−1]y − ε̃(K + nλI +E)−1y|
= |[k(x,X)(K + nλI)−1E − ε̃](K + nλI +E)−1y|

≤ [k(x,X)(K + nλI)−1E − ε̃]y
n∑
i=1

1

λi(K +E) + nλ

= 〈y>, (k(x,X)(K + nλI)−1E − ε̃〉
n∑
i=1

1

λi(K +E) + nλ
=:

n∑
i=1

T (E, ε̃)

λi(K +E) + nλ

(30)

where the third equality holds byA−1−B−1 = A−1(B−A)B−1. The first inequality derives from a>Ab ≤ a>b tr(A) for two semi-
positive definite matrix A and b>a (which can be derived from the used assumptions). Further, by virtue of a>Ab ≥ λn(A) tr(a>b),
the error |f̃z,λ(x)− fz,λ(x)| can be lower bounded by

|f̃z,λ(x)− fz,λ(x)| = |[k(x,X)(K + nλI)−1E − ε̃](K + nλI +E)−1y|

≥ 〈y
>, [k(x,X)(K + nλI)−1E − ε̃]〉

λ1(K +E) + nλ
=:

T (E, ε̃)

λ1(K +E) + nλ

(31)

Combining Eqs. (30) and (31), we have

0 ≤ T (E, ε̃)

λ1(K +E) + nλ
≤ |f̃z,λ(x)− fz,λ(x)| ≤

n∑
i=1

T (E, ε̃)

λi(K +E) + nλ
. (32)

Considering such two algorithms A1 and A2, under the condition of ‖E1‖ ≤ ‖E2‖ and ‖ε̃1‖ ≤ ‖ε̃2‖, there exists one case such
that T1(E1, ε̃1) ≥ T2(E2, ε̃2), i.e.,

〈y>, (k(x,X)(K + nλI)−1E1 − ε̃1〉 ≥ 〈y>, (k(x,X)(K + nλI)−1E2 − ε̃2〉 , (33)



25

y

ε̃1

k(x,X)(K + nλI)−1E1

ε̃2

k(x,X)(K + nλI)−1E2

T1(E1, ε̃1) T2(E2, ε̃2)

Figure 8. Illustration of the geometric proof for one case such that T1(E1, ε̃1) ≥ cT2(E2, ε̃2) under the condition of ‖E1‖ ≤ ‖E2‖ and ‖ε̃1‖ ≤ ‖ε̃2‖,
where c is some constant.

which can be achieved by a geometry explanation in Figure 8. By virtue of Eq. (33) and Assumption II, we have

T1(E1, ε̃1)

λ1(K +E1) + nλ
− T2(E2, ε̃2)

λ1(K +E2) + nλ
=: C̃ ≥ 0 .

The above inequality implies

C̃ −
n∑
i=2

T2(E2, ε̃2)

λi(K +E2) + nλ
≤
∣∣∣f̃ (A1)
z,λ (x)− fz,λ(x)

∣∣∣− ∣∣∣f̃ (A2)
z,λ (x)− fz,λ(x)

∣∣∣ ≤ C̃ +
n∑
i=2

T1(E1, ε̃1)

λi(K +E1) + nλ
.

The left-hand of the above inequality can be further improved as∣∣∣f̃ (A1)
z,λ (x)− fz,λ(x)

∣∣∣− ∣∣∣f̃ (A2)
z,λ (x)− fz,λ(x)

∣∣∣ ≥ C̃ − n∑
i=2

T2(E2, ε̃2)

λi(K +E2) + nλ

≥ T1(E1, ε̃1)

λ1(K +E2) + nλ
−

n∑
i=1

T2(E2, ε̃2)

λi(K +E2) + nλ

≥ T1(E1, ε̃1)

λ1(K +E2) + nλ
− T2(E2, ε̃2)

λn(K +E2)

n∑
i=1

λi(K +E2)

λi(K +E2) + nλ

≥ T1(E1, ε̃1)

2λ1(K̃2)
− T2(E2, ε̃2)

λn(K̃2)
dλ
K̃2

,

where dλ
K̃2

is the “effective dimension” of K̃2 defined in Eq. (21) and the last inequality follows from Assumption II.

According to the above result,
∣∣∣f̃ (A1)
z,λ (x)− fz,λ(x)

∣∣∣− ∣∣∣f̃ (A2)
z,λ (x)− fz,λ(x)

∣∣∣ ≥ 0 holds by the following condition

T1(E1, ε̃1) ≥ 2

[
λ1(K̃2)

λn(K̃2)

]
dλ
K̃2︸ ︷︷ ︸

=O(1)

T2(E2, ε̃2) .

We observe that, an invertible matrix K̃2 admits a finite condition number λ1(K̃2)/λn(K̃2) <∞. Besides, a fast polynomial eigenvalue
decay of K̃2 ensures the effective dimension dλ

K̃2
to be finite, which can be obtained by Assumption 5 with γ = 0. Accordingly, in

this case, when these condition are satisfied, T1(E1, ε̃1) ≥ cT2(E2, ε̃2) can be achieved for some constant c, which can be intuitively
observed by Figure 8. Finally, we conclude the proof for existence.

APPENDIX B
EXPERIMENTS

In this section, we detail the experimental settings and present the comparison results on the compared approaches on several benchmark
datasets across various kernels. This part is organized as follows.
• In Section B.1, we present experimental results across the Gaussian kernel on eight non-image datasets in terms of approximation

error, the time cost for generating random features mappings, classification accuracy by linear regression and liblinear.
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(a) letter

(b) ijcnn1

(c) covtype

(d) cod-RNA

Figure 9. Results of various algorithms across the Gaussian kernel on the letter, ijcnn1, covtype, cod-RNA datasets.

• Results on approximation error and test accuracy (by linear regression) across arc-cosine kernels and polynomial kernels are
presented in Sections B.2 and B.3, respectively.

• In Section B.4, a ultra-large scale dataset is applied to further validate the related algorithms.

B.1 Results on Gaussian kernels

Figures 9, 10 show the approximation error for the Gaussian kernel, the time cost of generating randomized feature mappings, and
the test accuracy yielded by linear regression and liblinear on the eight datasets, respectively. We see that as the number of random
features increases, these algorithms achieve a smaller approximation error and a higher classification accuracy for both classifiers. We
notice some interesting phenomena in terms of the relation between approximation quality and prediction performance, depending on
whether the feature dimension is low (i.e., s = 2d or s = 4d) or high (i.e., s = 16d or s = 32d). In particular, the algorithms with the
best kernel approximation performance are often different in the low-dimensional case and the high dimensional case. Therefore, no
algorithm always dominate the others. On the other hand, while the approximation quality of these algorithms varies, their prediction
performance are often similar. Further, to better understand the above observations, we summarize the best performing algorithm on each
dataset in terms of the approximation quality and classification accuracy in Table 7, as illustrated in our main text (refer to Section 6.2.1).

Regarding to computational efficiency, most algorithms achieve the similar time cost on generating random features except SSF
and LS-RFF. SSF requires constructing the transformation matrix by minimizing the discrete Riesz 0-energy in advance; LS-RFF is a
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(a) EEG

(b) magic04

(c) skin

(d) a8a

Figure 10. Results of various algorithms across the Gaussian kernel on the EEG, magic04, skin, a8a datasets.

data-dependent algorithm that needs to calculate the approximated ridge leverage score. Nevertheless, Fastfood/SORF/ROM does not
achieve the reduction on time cost, which appears contradictory to the underlying theoretical result on time complexity. This might be
because, one hand, the feature dimension of the used datasets in our experiments often ranges from 10 to 100, except for the image
datasets. In this case, it appears difficult to observe the computational saving from O(sd) to O(s log d) or O(d log d). On the other
hand, in our experiments, due to the relatively inefficient Matlab implementation of Fast Discrete Walsh-Hadamard Transform, typical
algorithms (e.g., Fastfood/SORF/ROM) do not show a significant reduction on computational efficiency than RFF.

B.2 Results on Arc-cosine kernels
As mentioned before, according to Eq. (6), various algorithms based on different sampling strategies can be still applicable to arc-cosine
kernels, e.g., ORF, QMC, and Fastfood. Accordingly, eight representative algorithms are taken into comparison on arc-cosine kernels,
including RFF, ORF, SORF, ROM, Fastfood, QMC, SSF, and GQ.

Figures 11, 12 show the approximation error and test accuracy across the zero/first-order arc-cosine kernels, respectively. It can
be observed that in most cases SSF and QMC achieve a lower approximation error than the other approaches, which corresponds to
the theoretical findings. However, there is no distinct difference on approximation between RFF and ORF/SORF. In fact, the current
theoretical results on ORF/SORF for variance reduction are only valid to the Gaussian kernel. Whether such results can be transferred
to arc-cosine kernels are still unclear. In general, the approximation performance and time cost (see Figure 14(a) and 14(b)) of these
algorithms on arc-cosine kernels are similar to that on the Gaussian kernel, though the approximation error value is often larger than
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(c) covtype (d) cod-RNA
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Figure 11. Results on eight datasets across the zero-order arc-cosine kernel.

that for the Gaussian kernel. This is because, according to Eq. (6), we actually conduct a d-dimensional integration approximation,
the smoothness of the integrand σ(ω>x)σ(ω>x′) would significantly effect the approximation performance as indicated by sampling
theory. In the term of classification performance, the difference in test accuracy of most algorithms is relatively small, which shows the
similar tendency with that of the Gaussian kernel.

B.3 Results on Polynomial kernels
For polynomial kernel approximation, we include three representative approaches, tensorized random projections (TRP) [74], TensorSketch
(TS) [73], and random Maclaurin (RM) [35] sketch evaluated on eight datasets for approximation and prediction. Since the polynomial
kernel can be written as a special type of tensor product, TS and TRP work in this setting by sketching a tensor product of arbitrary
vectors, which is different from RM using Maclaurin expansion. Figure 13 shows that, TS and TRP have the similar test accuracy, but
significantly perform better than RM, as RM’s generality is not required for the polynomial kernel. Besides, Figure 14(c) shows that RM
is quite computational efficient due to its Maclaurin expansion scheme; while TS takes much time on generating random features since it
utilizes a fixed sampling probability to compute the tensor sketch; while TRP works in a flexible sampling strategy proportional to its
Maclaurin coefficient.

B.4 Results on the MNIST-8M dataset
Here we evaluate the compared ten algorithms across the Gaussian kernel and arc-cosine kernels on the MNIST-8M dataset [136]. Due
to the memory limit, following the doubly stochastic framework [39], we incorporate these random features based approaches under
the data streaming setting for the reduction of time and space complexity. The experimental setting on this dataset follows with [39]:
the feature dimension d = 784 is reduced to 100 by PCA; the number of random features s is set to 4096; the used Gaussian RBF



29

(a) letter (b) ijcnn1

(c) covtype (d) cod-RNA

(e) EEG (f) magic04

(g) skin (h) a8a

Figure 12. Results on eight datasets across the first-order arc-cosine kernel.

kernel with kernel bandwidth ς equaling to four times the median pairwise distance; logistic regression with the regularization parameter
λ = 0.0005 for this multi-class classification task; the batch size is set to be 220 and feature block to be 215. Besides, we report the total
time cost of each algorithm on generating feature mapping, training process and test process for evaluation.

Table 9 reports the approximation error, training error, test error, and the total time cost of each algorithm across the Gaussian kernel
and the zero/first-order arc-cosine kernels under s = 4096. It can be found that, ORF/SORF and SSF achieve the best approximation
performance on the Gaussian kernel, but ORF fails to significantly improve the approximation ability on arc-cosine kernels. This is
consistent with previous discussion on medium datasets in Section B.2.
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multiple optical scattering: Approximating kernels at the speed of light,” in Proceedings og IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2016, pp. 6215–6219.
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[153] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala, “Double trouble in double descent: Bias and variance(s) in the lazy regime,” arXiv

preprint arXiv:2003.01054, 2020.
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