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Abstract

Variance-based sensitivity indices play an important role in scientific computation and data mining, thus
the significance of developing numerical methods for efficient and reliable estimation of these sensitivity
indices based on (expensive) computer simulators and/or data cannot be emphasized too much. In this
article, the estimation of these sensitivity indices is treated as a statistical inference problem. Two principle
lemmas are first proposed as rules of thumb for making the inference. After that, the posterior features
for all the (partial) variance terms involved in the main and total effect indices are analytically derived
(not in closed form) based on Bayesian Probabilistic Integration (BPI). This forms a data-driven method
for estimating the sensitivity indices as well as the involved discretization errors. Further, to improve
the efficiency of the developed method for expensive simulators, an acquisition function, named Posterior
Variance Contribution (PVC), is utilized for realizing optimal designs of experiments, based on which an
adaptive BPI method is established. The application of this framework is illustrated for the calculation of
the main and total effect indices, but the proposed two principle lemmas also apply to the calculation of
interaction effect indices. The performance of the development is demonstrated by a illustrative numerical
example and three engineering benchmarks with finite element models.

Keywords: Variance-based sensitivity; Gaussian process regression; Bayesian probabilistic integration;
Data-driven; Adaptive experiment design; Posterior variance contribution.

1. Introduction

Nowadays, owing to the rapid development of computation power, scientific computation based on com-

puter simulators (e.g., finite element models) has been widely utilized in both academic research and engi-

neering practice for predicting the behavior of complex systems or structures and aiding the design of new

products. However, due to the uncertainties of various sources, the researchers and practitioners have found
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it difficult to achieve accurate and robust predictions with the deterministic simulators, and performing

uncertainty quantification to properly incorporate those uncertainties in the model predictions has been a

common trend in scientific computing [1, 2], and especially, in structural dynamics. As an important sub-

task of uncertainty quantification, Sensitivity Analysis (SA) plays an important role in model developments

and refinement as it informs the main sources of model prediction uncertainties [3, 4, 5]. This information

is extremely useful for directing the future data collection (with the target of effectively reducing the model

prediction uncertainty), and for specifying the subset of influential model parameters to be calibrated in

finite element (FE) model updating [6].

Specifically, SA aims at attributing the uncertainty present in the model output to the input variables,

and this way to measure the contribution of each input variable to the uncertainty of model outputs [7].

Three groups of SA methods have been developed, i.e., local SA, regional SA, and Global SA (GSA), one

can refer to Refs.[4] and [5] for comprehensive reviews and comparisons of these methods. The local method

measures the sensitivity of each input variable using the local partial derivatives, and it is widely used in the

area of structural reliability for measuring the effects of the distribution parameters of input variables on

the failure probability [8, 9]. The regional SA aims at quantifying the effects/contributions of the subregions

of the distribution support of each input variables to the uncertainty of model outputs, and it can be

especially useful for reduction of epistemic uncertainty [10]. The GSA indices are usually defined as the

expected change of the statistical features (e.g., variance and density function) of model response when the

input variables are fixed over their full supports, thus summarize the overall contribution of the uncertainty

present in the input variables to those of the model outputs.

Among the above three groups of methods, the GSA has received the greatest attention during the

past few decades, and a plenty of GSA techniques/indices have been developed for different purposes. The

screening methods have been developed for screening the non-influential variables in moderate to high

dimensional problems [11, 12]. The variance-based sensitivity indices [13, 14, 15], rooted in the Random

sampling-high dimensional model representation (RS-HDMR) [16], aim at measuring the relative importance

of the input variables by attributing the model response variance to each input variable and their interactions.

Considering the setting of uncertainty reduction, a modified versions of the variance-based sensitivity indices,

called W-indices, has also been developed for quantifying the effects of reducing the input uncertainty on that

of model output [17]. Given that the variance is not sufficient for characterizing the uncertainty, the moment-

independent sensitivity indices have also been devised for investigating the effect of each input variable on the

full probability distribution of the model response [18, 19, 20]. The derivative-based sensitivity indices have

also been established to realize variable screening with lower computational cost than the variance-based

ones [21, 22, 23]. The global reliability sensitivity indices have been developed in the area of structural

reliability, based on the variance-based indices, for measuring the contribution of input variables to the

failure probability of structures [24, 25, 26]. Despite the extensive GSA indices that have been developed,
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the variance-based ones continue to receive the greatest concerns of both researchers and practitioners

owing to the elegant mathematical interpretations for both independent and dependent variables, as well

as their ability of capturing different types of effects [7, 27, 28]. Developing efficient and robust algorithms

for estimating variance-based indices is then one of the most relevant challenges for performing the GSA

analysis.

The past few decades have witnessed a rapid development of numerical algorithms for variance-based

sensitivity indices, and one can refer to Ref. [29] for a comprehensive review on these related developments.

Generally, these methods can be divided into three classes, i.e., Fourier amplitude sensitivity test (FAST),

(quasi-) Monte Carlo simulation (MCS), and surrogate models. The FAST method, developed in the area of

computational chemistry [30], estimates the partial variance terms involved in the variance-based sensitivity

indices based on periodic sampling and Fourier transformation, and it has been widely studied and sub-

stantially improved since its development (see e.g., Refs. [31, 32, 33, 34]). The MCS method involves first

formulating the partial variance terms with multi-dimensional integrals, and then utilizing MCS, driven by

simple random sampling or Latin Hypercube Sampling (LHS) [35] or Sobol’s low-discrepancy sequence [36],

to estimate these integrals. Following this scheme, a multitude of MCS estimators have been developed (see

e.g., Refs. [37, 38, 39, 40]). The surrogate models, such as state dependent regression [41], polynomial chaos

expansion [42], support vector regression [43] and Kriging, also called Gaussian Process Regression (GPR)

[44, 45, 46, 47], have also been investigated for estimating the sensitivity indices. In terms of reliability of

estimation, MCS is the most competitive scheme as confidence intervals can be computed for the sensitivity

indices from the MCS estimators, but it also suffers from the large number of required simulator calls, which

make it not applicable to computationally expensive simulators.

In recent years, Bayesian numerical analysis [48] with its different variants, such as Bayesian probabilis-

tic optimization [49], Bayesian Probabilistic Integration (BPI) [50, 51], and Bayesian probabilistic Partial

Differential Equation (PDE) solution [52], has emerged as a cutting-edge method in scientific computation.

The aim of this work is therefore to extend the BPI methods for inferring the variance-based sensitivity in-

dices from data and computer simulators. This topic has also been investigated in Ref.[46] in a full Bayesian

scheme and in Ref.[53] with the so-called Bayesian MCS scheme, but in both papers, only the posterior

mean and the main effect indices are investigated. In this work, both the posterior means and posterior

variances will be first investigated for both the main and total variance-based indices based on BPI, fol-

lowing which, a data-driven BPI approach and an adaptive BPI approach will be developed for efficiently

estimating the sensitivity indices. To achieve this goal, two principle lemmas are first developed for realizing

the Bayesian inference, and then the posterior means and variances are both analytically derived for the

sensitivity indices, where the posterior variances summarize the discretization errors for estimating these

sensitivity indices. These analytical results form the basis of the data-driven BPI approach, with which the

posterior features of the sensitivity indices can be inferred from any supervised learning data. To further
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improve the efficiency of the algorithm for computationally expensive simulators, an adaptive experiment

design strategy is ultimately introduced. The effectiveness of the proposed methods are demonstrated by

numerical examples, and their applicability to real-world engineering problems as well as their engineering

significance are illustrated by three engineering benchmarks with FE simulators.

The rest of this paper is organized as follows. Section 2 briefly reviews the variance-based sensitivity

indices and the BPI approach, followed by the core developments in section 3, which includes the Bayesian

inference of the sensitivity indices and the data-driven BPI. The adaptive BPI approach is then developed

in section 4, followed by the numerical and engineering test examples in section 5. Section 6 closes the paper

with conclusions.

2. Brief Review of Related Topics

Before the introduction of the main developments, it is helpful to briefly review two important topics to

be studied/utilized in this article, i.e., the variance-based sensitivity indices and the BPI. The expectation

and variance operators utilized in this paper are declared in Table 1 for avoiding confusion.

Table 1: Explanations of operators utilized in this paper.

Operators Explanations

ED [·], VD [·], covD [·, ·] Posterior expectation, variance and covariance operators with respect to the
GPR model trained based on the data set D.

EI [·], VI [·] Expectation and variance operators with respect to any subset xI of x, where
I ⊆ {1, 2, · · · , n}.

E−I [·], V−I [·] Expectation and variance operators with respect to the complementary set
x−I = x⧹xI , where (·) \ (·) indicates set subtraction.

E′
I [·], V′

I [·] Expectation and variance operators with respect to any subset x′
I of x′, where

x′ is an element-by-element independent replicate of x.

EI1E′
I2 [·], VI1V′

I2 [·] Expectation and variance operators with respect to two random vectors xI1 and
x′

I2
, where I1, I2 ⊆ {1, 2, · · · , n}.

2.1. Variance-based sensitivity indices

In this paper, only the sensitivity indices for independent input variables are investigated. Let y = M (x)

denote the deterministic computer simulator, where y is the one-dimensional model output of interest, and

x = (x1, x2, · · · , xn) denotes the n-dimensional vector of random input variables assumed to follow inde-

pendent standard normal distribution for ease of description. For a non-Gaussian random variable, the

iso-probabilistic transformation can be utilized to transform it into standard normal [54]. For example, sup-

pose the cumulative distribution function (CDF) of x is F (x), then the mapping u = Φ−1 (F (x)) transforms
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it into a standard normal variable u, where Φ−1 (·) denotes the inverse CDF of standard normal distribution.

With the above setting, the HDMR decomposition (also known as functional ANOVA decomposition) of the

model function is formulated as

y = M (x) = M0 +

n∑
i=1

Mi (xi) +

n−1∑
i=1

n∑
j=i+1

Mij (xij) + · · ·+M12···n (x) (1)

where xij = (xi, xj), and

M0 = E1:n [M (x)]

Mi (xi) = E−i [M (x) |xi]−M0

Mij (xij) = E−ij [M (x) |xij ]−Mi (xi)−Mj (xj)−M0

(2)

with E1:n [·] indicating the expectation operator taken with respect to all the n input variables, E−i [·|xi]

referring to the conditional expectation taken with respect to x−i = x \ xi, and E−ij [·|xij ] denoting the

conditional expectation taken with respect to x−ij = x \ xij .

On the premise that M (x) is square-integrable and the input variables are independent with each other,

all the HDMR components are orthogonal, and thus have zero covariance. Taking variance to both sides of

Eq. (1) yields [37]:

Vy = V1:n [M (x)] =

n∑
i=1

Vi +

n−1∑
i=1

n∑
j=i+1

Vij + · · ·+ V12···n (3)

where V1:n [·] indicates the variance operator taken with respect to all the elements of x, the first- and

second- order partial variances are defined as:

Vi = Vi [Mi (xi)] = Vi [E−i [M (x) |xi]]

Vij = Vij [Mij (xij)] = Vij [E−ij [M (x) |xij ]]− Vi − Vj

(4)

and the higher-order partial variances are similarly defined.

Based on the variance decomposition in Eq. (3), the normalized main effect index Si and total effect

index STi for xi are defined by:

Si =
Vi

Vy
, and STi =

VTi

Vy
(5)

respectively, where VTi equals to the summation of all the partial variance terms in Eq. (3) with subscript

containing i, and it can be further derived as VTi = E−i [Vi [M (x) |x−i]] [7, 14]. Higher-order normalized

sensitivity indices can be similarly defined, however, these two are usually of most concern to analysts. The

main effect index Si, also called the first-order effect index, measures the percentage of the model response

variance contributed by xi individually; the total effect index summarizes the overall contribution of xi,
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which includes the individual contribution of xi and all of its interaction contributions with the other input

variables. By subtracting the main effect index Si from the total effect index STi, we can generate the

interaction sensitivity index SIi = STi − Si which measures the total interaction contribution of xi.

The aim this paper is to develop Bayesian inference methods for inferring the values of the sensitivity

indices based on a set of arbitrary supervised training data, and specifically, the main and total effect indices

are examplified. To achieve this target, we need to develop Bayesian inference formulas for the first-order

(or main) partial variance Vi, the total partial variance VTi, and the total variance Vy.

2.2. Bayesian probabilistic integration

We review the BPI method by taking the inference of the constant HDMR component M0 in Eq. (1)

as an example. Let D = {X ,Y} denote a set of supervised training data, where X is a (N × n)-dimensional

sample matrix with each row being a sample of x, and Y is the corresponding N -dimensional column vector

of model response values. Then the inference task can be described as follows: given the training data D,

what can we infer about the value of M0?

In most BPI practices, the model response function M (x) is approximated by a GPR model M̂ (x) ∼

GP (µM (x) , covM (x,x′)) trained based on the data set D, where µM (x) is the posterior mean prediction

at point x, and covM (x,x′) is the posterior covariance at the two points x and x′, which represents the

spatial correlation of the GPR model. Making x = x′ yields the posterior variance σ2
M (x) = covM (x,x),

which measures the discretization error of the GPR prediction at the point x. The training of the GPR

model is also a Bayesian inference process. Let b (x) denote the prior assumption of the mean of the GPR

model, which can be assumed to be zero, constant, or polynomials. The prior information on the covariance

of the GPR model is characterized by a kernel function κ (x,x′), which may be of various types [55, 56]. In

this paper, we utilize the squared exponential kernel with distinct length scale parameter for each dimension,

which is formulated as:

κ (x,x′) = σ2
0 exp

(
− (x− x′)Σ−1 (x− x′)

⊤

2

)
(6)

where σ2
0 is the variance parameter describing the variation of the GPR model, Σ = diag

(
σ2
1 , σ

2
2 , · · · , σ2

n

)
is

a diagonal matrix, and σi indicates the length scale of the i-th dimension, which describes the strength of

correlation of the GPR model along this dimension. The hyper-parameters involved in the prior mean and

prior covariance can be calculated by maximizing the logarithm of the likelihood function formulated based

on D. One can refer to Ref. [55] for more details. With these hyper-parameters having been computed, the

posterior mean µM (x) and posterior covariance covM (x,x′) of the GPR model are inferred as:

µM (x) = ED

[
M̂ (x)

]
= b (x) + κ (x,X )

⊤ K−1 (Y − b (X )) (7)
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and

covM (x,x′) = covD

[
M̂ (x) ,M̂ (x′)

]
= κ (x,x′)− κ (x,X )

⊤ K−1κ (x′,X ) (8)

respectively, where κ (x,X ) indicates the prior covariance between x and X (for a fixed x, it is a column

vector), K is a (N ×N)-dimensional positive definite matrix with its (i, j)-th element being the prior co-

variance of the i-th row Xi and j-th row Xj of X . Given the GPR model M̂ (x) for approximating M (x),

the induced random variable M̂0 = E1:n

[
M̂ (x)

]
for approximating M0 is a Gaussian random variable,

and its posterior mean µM0 and posterior variance σ2
M0 can be explicitly inferred as [51, 50, 57]:

µM0 = E1:n [µM (x)] = E1:n [b (x)] + E1:n [κ (x,X )]
⊤ K−1 (Y − b (X )) (9)

and

σ2
M0 = E1:nE′

1:n [covM (x,x′)]

= E1:nE′
1:n [κ (x,x′)] + E1:n [κ (x,X )]

⊤ K−1E′
1:n [κ (x′,X )] .

(10)

The closed-form expression for E1:n [b (x)] is trivial, and those for the kernel means E1:n [κ (x,X )] and

E1:nE′
1:n [κ (x,x′)] are formulated as [51, 57]:

E1:n [κ (x,X )] = σ2
0

∣∣Σ−1 + In
∣∣−1/2

exp

(
−1

2
vec
[
diag

(
X (Σ + In)

−1 X⊤
]))

E1:nE
′

1:n [κ (x,x
′)] = σ2

0

∣∣2Σ−1 + In
∣∣−1/2

(11)

where In indicates the identity matrix of n× n dimensions, vec [diag ( · )] indicates a column vector created

with the diagonal elements of the argument. One notes that the formulations in Eqs. (9) and (10) hold

for any kinds of kernels, whereas, the closed-form expressions in Eq. (11) are derived from the squared

exponential kernel. For other kinds of kernel such as Matérn kernel 3/2 and 5/2, the closed-form expressions

for E1:n [κ (x,X )] and E1:nE
′

1:n [κ (x,x
′)] are also available in Ref. [50] for a summary.

Given the above results, we can now answer the question raised in the first paragraph of this subsection,

i.e., the exact value of M0 may not be learned from the limited volume of data D, but we can infer a Gaussian

probability distribution N
(
uM0, σ

2
M0

)
for describing its deterministic value, where the variation of this dis-

tribution summarizes the epistemic (or discretization) uncertainty on this deterministic value. Based on this,

a 100 (Φ (α)− Φ(−α))% posterior credibility interval can be generated as [µM0 − ασM0, µM0 + ασM0],

where α ∈ [0, 1]. With the increase of the data volume, it is expected that this credibility interval shrinks to

the true value of M0. In the next section, we will show how to infer the posterior features for the sensitivity

indices based on the GPR model M̂ (x).
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3. Bayesian inference of sensitivity indices

In the previous section, the details of the BPI approach for estimating M0 have been reviewed, and it

is concluded that, given the GPR representation of the model function M (x), the posterior distribution of

M0 is also Gaussian. Indeed, the induced probabilistic models for any orders of HDMR components (e.g.,

Mi (xi) and Mij (xij)) are Gaussian as well [46, 58]. This provides a basis to infer the posterior features

of the first-order partial variances Vi, the total partial variance VTi, and the total Vy in this section. Before

this, two lemmas are proposed as the cornerstone of all the subsequent inferences.

3.1. First principle for inference

Lemma 1. Let Ĝ (u) ∼ GP
(
µG (u) , σ2

G (u)
)

indicate a GPR model for approximating the deterministic func-

tion G (u) with random arguments u of arbitrary dimension, and assume that the induced Gaussian variable

Eu

[
Ĝ (u)

]
≡ 0. The induced variance Vu

[
Ĝ (u)

]
for approximating the variance Vu [G (u)] is a (non-

Gaussian) random variable with the posterior mean ED

[
Vu

[
Ĝ (u)

]]
and posterior variance VD

[
Vu

[
Ĝ (u)

]]
being formulated as:

ED

[
Vu

[
Ĝ (u)

]]
= Vu [µG (u)]︸ ︷︷ ︸

ϑ1

+ Eu

[
σ2
G (u)

]︸ ︷︷ ︸
ϑ2

(12)

and

VD

[
Vu

[
Ĝ (u)

]]
= EuE

′

u

[
covD

[
Ĝ2 (u) , Ĝ2 (u′)

]]
(13)

respectively, where covD

[
Ĝ2 (u) , Ĝ2 (u′)

]
is the covariance of the squared GPR model Ĝ2 (u). The posterior

variance in Eq. (13) is further derived as:

VD

[
Vu

[
Ĝ (u)

]]
=

γ1︷ ︸︸ ︷
2EuE′

u

[
cov2

D

[
Ĝ (u) , Ĝ (u′)

]]
+ 4EuE′

u

[
µG (u)µG (u′) covD

[
Ĝ (u) , Ĝ (u′)

]]
︸ ︷︷ ︸

γ2

.
(14)

The proof of Lemma 1 is presented in Appendix A. As can be seen from Eq. (12), the posterior

mean of Vu

[
Ĝ (u)

]
consists of two parts, i.e., ϑ1 and ϑ2, where ϑ1 is the variance of the posterior mean

µG (u), and ϑ2 refers to the expectation of the posterior variance σ2
G (u), indicating that, as long as the

closed-form expressions of the posterior mean and variance of the GPR model Ĝ (u) are available, the

analytical expression (not in closed form) of the posterior mean of Vu

[
Ĝ (u)

]
can be generated. Eq. (13)

indicates that the posterior variance of Vu

[
Ĝ (u)

]
equals to the expectation of the posterior covariance of

the induced stochastic process model Ĝ2 (u) (not Gaussian). The posterior covariance of Ĝ2 (u) is uniquely

determined by the posterior mean and covariance of the GPR model Ĝ (u), whose closed-form expression can

be analogously formulated with Eq. (7) and (8). Thereof, once the closed-form expressions of the posterior
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mean and variance of Ĝ (u) is known, the analytical expression (not in closed form) of the posterior variance

of Vu

[
Ĝ (u)

]
can be obtained based on Eq. (14). Thus, although Vu

[
Ĝ (u)

]
is no longer Gaussian, we can

still compute its posterior mean and variance based on Lemma 1, where the posterior variance summarizes

the discretization error for Bayesian inference of the deterministic variance Vu [G (u)]. One notes that a

similar result with Eq. (12) for deriving the closed-form expression of the posterior mean of Vi in a full

Bayesian setting has been reported in Ref. [46].

Lemma 2. For the posterior variance VD

[
Vu

[
Ĝ (u)

]]
in Eq. (14), an upper bound can be further derived

as:

VD

[
Vu

[
Ĝ (u)

]]
⩽ 2E2

u

[
σ2
G (u)

]
+ 4E2

u [|µG (u) |σG (u)] . (15)

The proof of Lemma 2 is also presented in Appendix A. This lemma provides a simpler way to measure

the discretization error for inferring the value of Vu [G (u)] as it only requires the expressions of the posterior

mean and posterior variance of Ĝ (u) without knowing that of the posterior covariance, and the dimension

of the integral involved in Eq. (15) is half of that involved in Eq. (14).

It should be noted that Lemma 1 and Lemma 2 hold for any types of kernels. Inspired by these two

lemmas, the remaining task is to formulate each of the three (partial) variance terms as the variance of

a function (with zero expectation) approximated by a GPR model that can be derived from the properly

trained one M̂ (x), and then derive the posterior mean, posterior variance and posterior covariance of this

GPR model. The dimension of arguments of this function can be arbitrary. To do this, two basic rules

needs to be clarified before inferring the posterior features of the (partial) variance terms, which are, i) any

linear combination of a set of GPR models is still a Gaussian Process, and ii) the linear projection of a GPR

model on any direction of the subset of its arguments (defined by the inner product of this GPR model with

the density of these subset of arguments) is also a Gaussian process or a Gaussian random variable [50]. We

try to avoid arcane mathematical concepts in this article, but these two rules are critical for understanding

some of the results below. From the next subsection on, we start to derive the analytical expressions for all

the three (partial) variance terms based on the two lemmas and the two rules given in this paragraph.

3.2. Inference of first-order partial variance

From the definition of the first-order HDMR components and the first-order partial variance, it is known

that Vi = Vi [Mi (xi)], where Ei [Mi (xi)] = 0, indicating that the induced GPR derived from M̂ (x) can

be formulated as M̂i (xi) = E−i

[
M̂ (x)

]
− M̂0, as E−i

[
M̂ (x)

]
is a linear projection of M̂ (x) along the

direction of xi, and M̂0 = E1:n

[
M̂ (x)

]
is a linear projection of M̂ (x) along the direction of x. Then

based on Lemma 1 and Lemma 2, to make a Bayesian inference for Vi, we need only to derive the posterior

mean and posterior covariance of the one-dimensional GPR model M̂i (xi), whose results are given by the

following corollary.
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Corollary 1. Both the posterior mean and posterior covariance of M̂i (xi) have closed-form expressions,

which are formulated as:

µMi (xi) = ED

[
M̂i (xi)

]
= bi (xi) + ζi (xi)

⊤ K−1 (Y − b (X ))− µM0 (16)

and

covMi (xi, x
′
i) = covD

[
M̂i (xi) ,M̂i (x

′
i)
]
= ci,i′ (xi, x

′
i)− ci (xi)− ci (x

′
i) + c0 (17)

where

bi (xi) = E−i [b (x)]

ζi (xi) = E−i [κ (x,X )]

ci,i′ (xi, x
′
i) = E−iE′

−i [covM (x,x′)]

ci (xi) = E−iE′
1:n [covM (x,x′)] .

(18)

The proof of Corollary 1 as well as the closed-form expressions for the four terms in Eq. (18) are presented

in Appendix B. One may note that the results given in Eqs. (16)-(17) hold for any form of kernels, but

the closed-form expressions for the four terms in Eq. (18) differ from kernel to kernel. This is also true for

the following two corollaries. The posterior variance of M̂i (xi) can be simply generated by Eq. (17) as

σ2
Mi (xi) = covMi (xi, xi). With the closed-form expressions of the posterior mean µMi (xi), the posterior

variance σ2
Mi (xi) and the posterior covariance covMi (xi, x

′
i), it is then trivial to generate the analytical

expressions for the posterior mean and posterior variance (also the upper bound) of the first-order partial

variance Vi. For simplicity, we do not repeat it. One notes that the estimation of the posterior mean of Vi

following the Bayesian scheme has also been investigated by Ref. [53], however, what exactly was estimated

in that paper is actually the first term ϑ1 of Eq. (12), thus is a biased estimate of the posterior mean of

Vi. This bias unquestionably decreases with the increment of training data, but it hardly vanishes. The

posterior variance of Vi as well as total effect indices were not investigated by Ref. [53], and are both treated

in this work.

3.3. Inference of total partial variance

With simple mathematical derivation, the total partial variance can be formulated as:

VTi = V1:n [M (x)− Ei [M (x)]] . (19)

One can refer to Appendix C for proof of Eq. (19). Let MTi (x) = M (x)−Ei [M (x)], then it is apparently

that E1:n [MTi (x)] = 0. Thus the underlying GPR model for inferring the total partial variance can be

10



formulated as:

M̂Ti (x) = M̂ (x)− Ei

[
M̂ (x)

]
. (20)

Another feasible choice of the underlying GPR model for inferring the total partial variance is M̂Ti (x, x
′
i) =

M̂ (x)−M̂ (x−i, x
′
i) since 2VTi = V1:nV′

i [M (x)−M (x−i, x
′
i)] [39]. In this paper, the formula given by Eq.

(20) is utilized as the dimension of its arguments is lower. Based on Lemma 1 and Lemma 2, the following

corollary for deriving the posterior mean and variance of the total partial variance can be generated.

Corollary 2. The posterior mean and covariance of the underlying GPR model M̂Ti (x) are formulated as:

µMTi (x) = ED

[
M̂Ti (x)

]
= µM (x)− b−i (x−i)− ζ−i (x−i)

⊤ K−1 (Y − b (X )) (21)

and

covMTi (x,x
′) = covD

[
M̂Ti (x) ,M̂Ti (x

′)
]

= covM (x,x′)− c−i

(
x,x′

−i

)
− c−i (x

′,x−i) + c−ii

(
x−i,x

′
−i

) (22)

respectively, where

b−i (x−i) = Ei [b (x)]

ζ−i (x−i) = Ei [κ (x,X )]

c−i

(
x,x′

−i

)
= E

′

i [covM (x,x′)]

c−ii

(
x−i,x

′
−i

)
= EiE

′

i [covM (x,x′)]

(23)

The proof of Corollary 2 as well as the closed-form expressions for the four terms in Eq. (23) can be

found in Appendix C. By substituting the expression of posterior mean in Eq. (21) and that of the posterior

covariance in Eq. (22) into Lemma 1, one can generate the analytical formulations of the posterior mean

and posterior variance of the total partial variance V̂Ti, and similarly by substituting the posterior mean

and variance of M̂Ti (x) (see Eq. (C.10)) in Appendix C) into Lemma 2, a conservative estimator can be

generated as an upper bound of the posterior variance of V̂Ti.

3.4. Inference of total variance

Based on the definition of the total variance, it is formulated as:

Vy = V1:n [M (x)−M0] (24)

, indicating that the underlying GPR model is M̂y (x) = M̂ (x)−M̂0, which obviously satisfies E1:n

[
M̂y (x)

]
=

0. Thus, the following corollary is presented for the total variance term Vy.

11



Corollary 3. The posterior mean µMy (x) and the posterior covariance covy (x,x
′) of the induced GPR

model M̂y (x) is formulated in closed form as:

µMy (x) = ED

[
M̂y (x)

]
= µM (x)− µM0 (25)

and

covMy (x,x
′) = covD

[
M̂y (x) ,M̂y (x

′)
]

= covM (x,x′)− covD

[
M̂ (x) ,M̂0

]
− covD

[
M̂ (x′) ,M̂0

]
+ σ2

M0.
(26)

The mathematical derivations of Corollary 3 as well as the closed-form expression for the posterior

covariance terms in Eq. (26) are presented in Appendix D. Similarly, by substituting the results in Corollary

3 into Lemma 1 and Lemma 2, we can generate the analytical expressions of the posterior mean ED

[
V̂y

]
and

posterior variance VD

[
V̂y

]
for the total variance term Vy as well as an upper bound serves as a conservative

estimate of the posterior variance VD

[
V̂y

]
. In the next subsection, we summarize the above Bayesian

inference and show the details for numerical implementation.

3.5. Summary of Inference and Numerical Implementation

Until now, we have generated the analytical formulations of the posterior mean and the posterior variance

for the first-order partial variance V̂i, the total partial variance V̂Ti and the total variance V̂y via Subsections

3.1∼3.4, which are sufficiently useful for estimating the main and total effect indices. However, if required,

we can also infer the posterior features for the interaction partial variance terms as long as they can be

formulated as the variance of an underlying GPR model induced from the properly trained one M̂ (x). For

example, for the second-order partial variance Vij , since Vij = Vij [E−ij [M (x)]−Mi (xi)−Mj (xj)−M0],

the underlying GPR model is given as:

M̂ij (xij) = E−ij

[
M̂ (x)

]
− M̂i (xi)− M̂j (xj)− M̂0. (27)

Then, one needs only to derive the closed-form expressions for the posterior mean and covariance of M̂ij (xij)

from the GPR model M̂ (x). For simplicity, we do not repeat them. The posterior mean provides a mean

estimate of the corresponding (partial) variance terms, while the posterior variance, as a measure of epistemic

uncertainty, summarizes the corresponding discretization error for this estimate resulting from the limited

volume of training data. Thus, for all the (partial) variance terms, these two posterior characters are of

special concern. Next, we show how to compute these two characters numerically for all the (partial) variance

terms based on the theoretical results in Subsections 3.1∼3.4.

From Corollary 1, it is known that the posterior mean µMi (xi) and the posterior variance σ2
Mi (xi)

12



are both univariate functions of xi in closed form, thus by substituting them to Eq. (12) in Lemma 1,

the posterior mean ED

[
V̂i

]
for the first-order partial variance Vi can be computed numerically by using

any univariate numerical integration rule such as Gaussian-Hermite integration. Similarly, as the posterior

covariance covMi (xi, x
′
i) is a bivariate function in closed form, thus by substituting it together with the pos-

terior mean µMi (xi) to Eq. (14), the posterior variance VD

[
V̂i

]
can be computed by any two-dimensional

numerical integration algorithm. Besides, by substituting the posterior variance σ2
Mi (xi), which is a uni-

variate function in close form, together with that of µMi (xi) into Eq. (15) in Lemma 2, an upper bound

for the posterior variance VD

[
V̂i

]
can be computed by any univariate numerical integration algorithm.

For total partial variance VTi, univariate/bivariate numerical integration is not sufficient for estimating

the posterior mean and variance. As shown by Eq. (21), the posterior mean µMTi (x) of the underlying

GPR model owns n arguments, thus the dimension of the involved integral for estimating the posterior mean

ED

[
V̂Ti

]
is n. Further, from Eq. (22), the dimension of the integral for the posterior variance VD

[
V̂Ti

]
is

2n. We suggest to use MCS and/or Sparse Grid Integration (SGI) [59] for estimating these integrals. To

implement MCS, two sample matrix A and A′ of dimension (N × n) needs first to be produced following

standard normal distribution, where A can be regarded as the sample matrix of x, and A′ is the sample

matrix of x′. Then the corresponding sample values of µMy (x) and covy (x,x
′) can be computed by calling

their closed-form expressions. These sample values can be used for estimating the posterior mean and

variance of ED

[
V̂Ti

]
and VD

[
V̂Ti

]
. The upper bound of VD

[
V̂Ti

]
can also be estimated by using only

the sample matrix A. While the SGI is utilized, the Gaussian-Hermite one-dimensional integration rule is

recommended as the weight of the integrals are all standard Gaussian density, and then, based on these

one-dimensional design points, the multi-dimensional collocation points as well as the corresponding weights

are produced using the Smolyak algorithm [60]. One notes that both the implementation of MCS and SGI do

not require any call of the model function, and the integrands are all infinitely smooth, thus these integrals

can be accurately estimated with low computational cost.

From Corollary 3 it is known that the dimension of the induced GPR model for the total variance Vy is

n, indicating that the dimensions of the integrals for computing the posterior mean and variance of Vy are

n and 2n respectively. These two integrals can be similarly computed by using MCS based on the sample

matrices A and A′ or using SGI with Gaussian-Hermite one-dimensional integration rule.

One can also use the BPI to compute the integrals involved in Lemma 1 and Lemma 2 to any extent

of accuracy, just like estimating M0 (see Eqs. (9) and (10)), as the integrands are all in closed form and

infinitely smooth, whose values can be precisely computed without calling the model function. With this

scheme, a posterior mean and a posterior variance will be generated for each of the posterior mean and

variance of the (partial) variance terms. To avoid confusing the reader, we use MCS and/or SGI instead of

BPI in this paper.

The numerical implementation introduced in this subsection is applicable when an arbitrary training
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data set D is given, thus it is named as data-driven BPI. Note that in some publications (e.g., Ref. [20]),

the terminology ‘data-driven’ refers to methods that require only measured data. However, in this work,

the development is not directly applicable to this case as the probability distribution functions of model

inputs are required for transforming them into the standard normal space. The terminology ‘data-driven’

used here is for making a difference with the adaptive design strategy introduced in the next section. If

the users would like to apply the above data-driven BPI procedure to measured data, an additional step for

statistically inferring the probability distribution functions of the input variables from the measured data is

required before using the data-driven BPI approach.

It should be furthermore noted that, although the BPI approach is established based on GPR model,

it is philosophically different with the standard GPR framework coupled with standard MCS, which is

implemented in Refs. [47, 61]. The MCS estimators, based on model response samples, are computed by

calling the GPR model. This procedure as such introduces statistical errors caused by the limited sample

size, as well as numerical errors due to the general lack of fit of the GPR model to the true model function.

The statistical errors can be measured by the COVs of the MCS estimates, but the second kind of errors

cannot be properly measured. In the BPI framework, the second kind of errors is summarized by the

posterior COVs of the HDMR components and those of the (partial) variance terms. Another superiority

of the BPI procedure is that the spatial correlation information characterized by the posterior covariance of

the GPR model is integrated to the cubature rules for improving the integration accuracy. This is also the

philosophical difference between the Bayesian numerical analysis and the stochastic simulation for multi-

dimensional integration. One can refer to the state-of-the-art developments of BPI in Refs. [48, 50, 51]

for more detailed discussions and numerical demonstrations of the above superiority of BPI. It is also the

above feature of BPI that enables us to develop an adaptive experiment design strategy for improving the

convergence rate of the method, which is presented in the next section.

4. Adaptive Experiment Design

Until now, we have generated the analytical expressions of the posterior means and posterior variances

for all the (partial) variance terms following the Bayesian inference scheme based on the training data D.

Based on these results, a data-driven method is established for estimating the variance-based sensitivity

indices. However, in real-world applications, the sensitivity analysis may also be implemented for computer

simulators such as finite element models, which makes it possible to design the training data D. With this

scheme, the algorithm is no longer data-driven, but it allows us to achieve the accurate estimation of the

sensitivity indices with less data, and thus less model function calls, which can be of great significance if

the simulators are expensive to evaluate. Inspired by this, an adaptive experiment design strategy originally

developed by some of the authors in Ref. [51] is introduced here for active learning of the sensitivity indices.
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The core of an adaptive design strategy is the so-called learning function or acquisition function, as it

serves as the engine of the algorithm and determines the speed of convergence. The learning function utilized

in this work is the weighted Posterior Variance Contribution (PVC) function [51], which is defined as:

LPVC (x) = ϕn (x)E′
1:n [covM (x,x′)]

= ϕn (x)
(
E′
1:n [κ (x,x′)]− κ (x,X )

⊤ K−1E′
1:n [κ (x′,X )]

)
.

(28)

where ϕn(x) denotes the standard Gaussian probability function in n dimensions. Based on the second row

of Eq. (28), the closed-form expressions of the PVC function can be easily derived. In (28), the expectation

E′
1:n [κ (x′,X )] has been explicitly formulated in Eq. (11), and the second expectation E′

1:n [κ (x,x′)] is

expressed as:

E′
1:n [κ (x,x′)] = σ2

0

∣∣Σ−1 + I
∣∣−1/2

exp

[
−1

2
x (Σ + I)

−1
x⊤
]
. (29)

It is shown by the first row of Eq. (28) that the PVC function accumulates the correlation information of

the GPR prediction at the arbitrary point x with those at all the other points across the full support of the

input variables. It can also be found that the integral of the PVC function over the support of x equals

to the posterior variance σ2
M0 of the constant HDMR component M̂0. Therefore, the PVC function can

be interpreted a measure of the contribution of the GPR predictor error at the point x to the posterior

covariance σ2
M0 with the consideration of its correlation information with all the other points across the

whole support of the input variables. Accordingly, by adding the point of x with the largest PVC value

to the training data set D, it is expected that the most reduction of the posterior variance σ2
M0 (thus the

discretization error) can be achieved. One notes that the PVC function is in closed form and infinitely

smooth, thus its global maximum is easy to compute. However, in most cases, the PVC function shows

multimodal behavior (see the results of example 1 in Ref. [51] for detail), thus the global optimization

algorithms, such as particle swarm [62], is recommended in order to avoid local convergence. Note that the

behavior of the PVC function changes at each iteration, as shown in the results of example 1 in Ref. [51]

for the evolution of a one-dimensional PVC function.

The other acquisition functions, e.g., those reviewed by Ref. [63], can also be used, but the comparison

of their relative merits is not the focus of this work. It should also be noted that the definition of PVC in

Eq. (28) applies for any form of kernels, but the closed-form expression given in Eq. (29) is derived based

on the squared exponential kernel. For other type of kernels, the corresponding closed-form expressions can

be obtained from Ref. [50].

Following the PVC acquisition function, an active learning algorithm is developed for adaptively inferring

the sensitivity indices as follows:
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Step 1. Create an initial training sample matrix of size N0×n for the input variables by using simple random

sampling or Latin-hypercube Sampling (LHS) design. Compute the corresponding model function

values at these initial design points, and initialize the training data set D with these sample points.

Record the number of model function calls as N = N0.

Step 2. Train or update the GPR model with D.

Step 3. Evaluate the posterior mean µM0 and posterior variance σ2
M0 of the constant HDMR component

M̂0 using the closed-form expressions presented in Section 3.

Step 4. Judge whether the stopping criteria is satisfied or not by examining the posterior coefficient variation

(COV) of M̂0. If it is not satisfied, compute the next optimal design point by maximizing the PVC

function, evaluate the corresponding model function value, add it to the training data set D, let

N = N + 1, and go to Step 2; otherwise go to Step 5.

Step 5. Compute the posterior means and variances for (partial) variance terms Vy, Vi and VTi. If necessary,

check if the accuracy for estimating these (partial) variance terms is satisfied. If not, one can continue

the active learning process by searching the global maxima of the PVC function; Otherwise, end

the algorithm.

In Step 1, the initial samples can be generated following either uniform distribution within the support

[−3, 3] or standard Gaussian distribution. The posterior COV utilized in Step 4 is computed by σM0/µM0.

The stopping threshold can be identified by the analysts based on their requirement of accuracy. Following

our previous work [51], it is suggested to use a delayed analysis scheme, which means ending the algorithm

only when the stopping criteria is satisfied for several times (e.g., twice) in succession, in order to avoid

pseudo convergence which may appear during the early stage of active learning when the rough behavior of

model function is not well captured by the GPR model.

5. Test Examples and Applications

5.1. An Illustrative Example

Considering a two-dimensional model with g-function formulated as:

g (x1, x2) =

4∑
i=1

ci exp
[
−αi1 (x1 − βi1)

2 − αi2 (x2 − βi2)
2
]

(30)

where α = ( 2 3 1 4
3 2 4 1 )

⊤, β =
(−0.5 0.5 −0.5 0.5
−0.5 −0.5 0.5 0.5

)⊤, c = ( 1 −1.5 −1.5 2 )
⊤, x1 and x2 are independent standard

normal random variables. This is a highly nonlinear model with large interaction effects, and the variance-

based sensitivity indices can be analytically derived to provide comparison.

For implementing the adaptive BPI, the stopping criteria is set to be σM0/µM0 ≤ 0.2, and the algorithm

stops only when this criteria is satisfied for two times in succession. For illustrating the superiority of the
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adaptive experiment design, we use N0 = 10 initial samples to initialize both data-driven and adaptive

BPI algorithms, where for data-driven BPI, the training data set is enriched by random sampling, while

for adaptive BPI, it is enriched by searching the maximum point of the PVC function. The integrals (see

Lemma 1 and Lemma 2) for estimating the posterior means and variances for each (partial) variance terms

are numerically computed by MCS with 104 samples.
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Figure 1: Point-wise evolution of the posterior features for the constant component M0 and the total variance Vy against
the training data size for the illustrative example, where the vertical sections of the filled areas indicate the interval

[µM0 − 2σM0, µM0 + 2σM0] (left) and
[
ED

[
V̂y

]
− 2

√
VD

[
V̂y

]
,ED

[
V̂y

]
+ 2

√
VD

[
V̂y

]]
(right).

With the initial 10 training points, 69 more training points are produced adaptively by maximizing the

PVC function before reaching the stopping criteria. Similarly, for data-driven BPI, 69 more training points

are generated by random sampling without adaptive design. For each iteration step, the posterior characters

of the model response expectation M̂0 and the variance V̂y are recorded, and compared in Figure 1. One

notes that, given the GPR model M̂ (x), M̂0 is a Gaussian variable, while V̂y is also a random variable,

but not Gaussian. Thus, the interval [µM0 − 2σM0, µM0 + 2σM0] shown in Figure 1 is a 95.45% confidence

interval, but
[
ED

[
V̂y

]
− 2

√
VD

[
V̂y

]
,ED

[
V̂y

]
+ 2

√
VD

[
V̂y

]]
is not. In any case, this posterior interval can

be used to monitor the convergence of results. It is also noticed that the posterior confidence interval of the

variance term Vy shows more bias than that of the constant HDMR component M0. This is also caused

by the fact that, under the GPR approximation of M (x), M̂0 follows a Gaussian distribution, whereas V̂y

follows a non-Gaussian distribution, which is also non-symmetric. In this paper, we don’t investigate the

exact posterior distribution of the variance and the partial variance terms as their posterior variances are

sufficient for summarizing the numerical errors involved in their posterior mean estimates.

Figure 1 shows that the posterior distribution supports of both M̂0 and V̂y generated by data-driven
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and adaptive BPI contain the corresponding true values with high probability, indicating the correctness of

the Bayesian inference. It is also shown that the posterior distributions generated by both data-driven and

adaptive BPI converge to the true values as the training data size increases, but the adaptive BPI shows

much higher speed of convergence than the data-driven BPI, implying that the BPI is effective for inferring

the model response expectation and variance, and with the adaptive experiment design driven by the PVC

function, the convergence rate can be further improved. The above features make the BPI appealing for

uncertainty quantification in both data-driven scenario and that of scientific computation involving expensive

simulators. Although searching the global maximum point of the PVC function involves computational cost,

it is much cheaper than that of evaluating the response value of the expensive simulator, thus is negligible.

Take the first adaptively designed point as an example: using a personal laptop, the time consumed for

computing the global maxima of the PVC function is only 0.103 second.
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Figure 2: Evolution of the posterior features of the first-order partial variance Vi against the training data size for the illustrative

example, where the vertical sections of the filled areas indicate the interval
[
ED
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V̂i

]
− 2

√
VD

[
V̂i

]
,ED

[
V̂i

]
+ 2

√
VD

[
V̂i

]]
.

We then discuss the results of the first-order partial variances, for which the evolution of the posterior

features against the training data size is shown in Figure 2. As can be seen from the results generated by

the data-driven BPI, when the training data size exceeds 50, the posterior distributions of both V̂1 and V̂2

shrinks to the true values. It is also shown that the adaptive BPI shows a much better convergence than the

data-driven BPI, thus is more applicable to expensive simulators. The results generated by both methods

with 77 training points show perfect agreements with the analytical solutions.

Next, let’s focus on the posterior features of the first-order HDMR component functions, whose posterior

intervals generated by both data-driven and adaptive BPI with all the 79 training points are shown in Figure
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Figure 3: The 95.45% posterior confidence intervals of the first-order HDMR component functions of the illustrative example
computed by data-driven and adaptive BPI algorithms, both of which with 79 training points.

3, together with the analytical results for comparison. Reminding that, given the GPR model M̂ (x), M̂i (xi)

is a univariate GPR model, the intervals given in Figure 3 are actually 95.45% confidence intervals. As can

be seen, the confidence intervals generated by both data-driven and adaptive BPI contain the true results

across the full support of xi, indicating the correctness of the Bayesian inference. It is also shown that,

with adaptive experiment design, the quality of inference for the HDMR component functions has also been

largely improved.

The evolution of the posterior intervals for the total partial variances is schematically shown in Figure

4. As can be seen, although the posterior intervals in this figure are not as smooth as those in Figure 1

and Figure 2, but the posterior intervals generated by both methods approach the true value robustly and

accurately, demonstrating the correctness and effectiveness of the Bayesian inference for total effect indices.

The converged results generated by both the data-driven and adaptive BPI are summarized in Table

2, together with the reference solutions. As can be seen, the upper bounds generated in Lemma 1 provide

conservative estimations of the posterior variances (thus the discretization errors) for those (partial) variance

terms. With the same number of training points, the adaptive BPI provides much accurate estimations for

all the variance terms, and thus the sensitivity indices. Therefore, the data-driven is recommended when only

supervised data is available or when the computer simulators are extremely cheap to compute; otherwise, if

the simulators are computationally expensive, the adaptive BPI is recommended.
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Figure 4: Evolution of the posterior features of the total partial variance VTi against the training data size for the illustrative ex-

ample, where the vertical sections of the filled areas indicate the interval
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.

5.2. A Dam Seepage Model

Consider a dam seepage model which has been utilized by some of the authors for demonstrating reliability

sensitivity analysis [9] and the effectiveness of the PVC function for integration [51]. The layout of the

structure is shown in Figure 5. The model output of interest is the confined seepage under a dam, which

rests over a soil foundation consisting of two permeable layers and one impermeable layer. Denote the

permeability of the silty sand layer along the vertical and horizontal directions as kyy,1 and kxx,1 respectively

and those f the silty gravel layers as kyy,2 and kxx,2 respectively. The water depth in denoted by hD. All these

five parameters are assumed to be input random variables, and their distribution information is reported in

Table 2: Results of the illustrative example.

Methods Indices Vy V1 V2 VT1 VT2 N

Data-driven BPI
Posterior means 0.2936 0.0254 0.0193 0.2740 0.2682

10 + 69 = 79
Posterior COVs 0.0245 0.1311 0.1087 0.0324 0.0310

Upper bounds of Pos-
terior COVs

0.0765 0.1874 0.2371 0.0850 0.0931

Adaptive BPI
Posterior means 0.2858 0.0247 0.0178 0.2678 0.2612

10 + 69 = 79
Posterior COVs 0.0051 0.0227 0.0272 0.0045 0.0070

Upper bounds of Pos-
terior COVs

0.0401 0.0706 0.0830 0.0470 0.0473

Analytical − 0.2841 0.0245 0.0179 0.2662 0.2596 −
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Table 3. The model is governed by a PDE formulated as:

kxx,1
∂2hW

∂x2
+ kyy,i

∂2hW

∂2y
= 0, i = 1, 2 (31)

with hW indicating the hydraulic head segment. A detailed description of the model as well as the boundary

conditions can be found in Ref. [9]. A FE model is built with 1628 quadratic triangular elements to solve

the PDE, and predict the value of hW . The seepage p is then computed from the value of hW . For example,

the seepage among the CD segment is computed as:

q = −
∫

CD
kyy,2

∂hW

∂y
dx. (32)

The response concerned here is exactly q multiplied by 106.
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Figure 5: Sketch of a dam seepage model.

Table 3: Probability distribution information of the five random input variables of the dam seepage model.

Input variables x1 = kxx,1 x2 = kyy,1 x3 = kxx,2 x4 = kyy,2 x5 = hD

Distribution type Lognormal Lognormal Lognormal Lognormal Uniform

Distribution Pa-
rameters

µ = σ = 5× 10−7 µ = σ = 2× 10−7 µ = σ = 5× 10−6 µ = σ = 2× 10−6 [7, 10]

Units [m/s] [m/s] [m/s] [m/s] [m]

The stopping threshold is set to be 0.15%, and 10 samples generated by LHS design are used to initialize

the adaptive BPI. The algorithm adaptively produces 38 more training points before reaching the stopping

criteria, thus the total number of model function calls is 48. The data-driven BPI is also implemented with

48 training data generated by LHS design. For comparison, we also compute the (partial) variance terms
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with the MCS estimators reported in Ref. [39]. The results computed by the three algorithms are then

compared in Table 4. It is shown that the posterior means of all terms produced by both data-driven BPI

and adaptive BPI match well with the reference solutions generated by MCS, but the results of adaptive BPI

show smaller posterior COVs, indicating that, with the same number of model function calls, the adaptive

BPI produces more robust inference for the sensitivity indices. It can also be seen that, for this model, the

first input parameter, i.e. kxx,1 accounts for the most contribution to model response variance, followed by

kyy,1, and then kxx,2. It is also seen that the interaction contributions among these five variables are much

smaller than their respective individual contribution.

Table 4: Results for the dam seepage model.

Indices
Data-driven BPI Adaptive BPI MCS [39]

Posterior means Posterior COVs Posterior means Posterior COVs Mean estimates COVs

Vy 1.380 0.0304 1.335 0.0150 1.346 0.0144

V1 0.8988 0.0356 0.8623 0.0148 0.8863 0.0359

V2 0.1716 0.0581 0.1932 0.0387 0.1969 0.0638

V3 0.0718 0.0644 0.0833 0.0726 0.0705 0.1139

V4 0.0410 0.0992 0.0417 0.0946 0.0535 0.1300

V5 0.0635 0.0630 0.0539 0.0871 0.0480 0.1284

VT1 1.003 0.0412 0.9407 0.0171 0.9618 0.0156

VT2 0.2270 0.0593 0.2523 0.0319 0.2549 0.0189

VT3 0.1005 0.0584 0.1144 0.0573 0.1044 0.0179

VT4 0.0623 0.0887 0.0639 0.0961 0.0776 0.0334

VT5 0.0903 0.0703 0.0705 0.0895 0.0630 0.0150

N 10+38=48 10+38=48 1.4× 105

5.3. A turbine blade model

Consider a jet turbine blade model adapted from the Matlab PDE toolbox. The FE model is shown in

Figure 6(a). The blades are of vital importance for a jet engine as the failure (usually caused by fatigue)

often results in fatal accidents. The computation of the thermal stress and the deformation of the blade is

thus of vital importance. However, due to the uncertainties presented in the material parameters as well as

loads and working temperature, these two important quantities often show large dispersion. Then the aim of

this application is to investigate the effects of these input uncertainties on the maximal stress. The blades are

usually made of nickel-based alloy (e.g., NIMONIC 90) as they must resist the extremely high temperature

of the gasses. Working in such high temperature, the material will expand significantly, and thus large

mechanical stress and deformation are inevitable. The FE model in Figure 6(a), with tetrahedral mesh, is

then developed for simulating these two responses of the structures. There are three steps of implementation
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for the deterministic numerical simulation. First, perform structural analysis with the consideration of

only the pressure loads; second, perform thermal stress analysis accounting only the thermal effects; third,

combine the structural analysis and thermal analysis to compute the maximum stress. The results of the

these three steps performed at the mean values of the input parameters are shown in Figure 6(b)-(d). The

model output of concern here is the maximum stress, as can be seen in Figure 6(d). The Young’s modulus

(denoted as x1) is assumed to be Gaussian random variable with mean values 227 [GPa]; the coefficient of

thermal expansion (denoted as x2) follows Gaussian distribution with mean 12.7× 10−6[1/K]; the Poisson’s

ratio (denoted as x3) also follows Gaussian distribution with mean 0.27; the thermal conductivity (denoted

as x4) follows a Gaussian distribution with mean 11.5 [W/m/K]; the pressure loads on the pressure and

suction sides of the blade (denoted as x5 and x6 respectively) follow Gaussian distribution with means 800

[KPa] and 600 [KPa] respectively. The COVs of all the above six random variables are assumed to be 0.1.

One notes that above assumption of probability distribution is subjective, which means that the uncertainty

is epistemic, and comes from the lack of data on these input variables. Then, the target is to find which

variables are responsible for the uncertainty of model output. With a personal laptop, each call of the FE

model consumes about 11 seconds, which is computationally more expensive than the numerical example

reported previously. Therefore, we use the data-driven BPI and adaptive BPI to estimate the sensitivity

indices.

The stopping threshold for implementing the adaptive BPI is set to be 0.1%, and the prior mean of the

GPR model is set to be constant. With six samples generated by LHS design as initial training points, the

adaptive BPI produces sixteen more design points before fulfilling the stopping criteria twice in succession.

Thus the total number of model function calls for implementing the adaptive BPI procedure is twenty-two.

For comparison, the data-driven BPI is implemented with 40 random training points generated by LHS

design. The results are then reported in Table 5. As can be seen, the results produced by the two methods

match well, but those computed with adaptive BPI procedure show smaller posterior variance, thus are

more accurate.

It can be seen from Table 5 that, the summation of the main partial variance almost equal to the total

variance, and the total partial variance of each input variable almost equal to its main partial variance. The

above two phenomenons both indicate that the model function is additive, i.e., no interaction effect exists

among input variables. It can also be concluded that, among the six input variables, the Young’s modulus

x1 and the coefficient x2 of thermal expansion make the largest contribution to the model output variance,

followed by the pressure load x5. All the other three variables almost have no contribution to the model

output uncertainty. Therefore, for reducing the epistemic uncertainty of model output, one needs to collect

information on x1 and x2.
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Figure 6: The FE model and the deterministic analysis results of the turbine blade.

5.4. Dynamic analysis of a satellite

Consider the FE model of a satellite as shown in Figure 7, which has been taken from Refs. [64, 65].

The satellite is composed of a cubic core, which is reinforced by internal stiffening beams. Reflectors and

photovoltaic panels are linked to this cubic core by means of connecting beams. The finite element model

comprises beam and shell elements, leading to a total of 1262 elements and 7146 degrees-of-freedom. It

is considered that the Young’s moduli associated with the different parts of the satellite are uncertain and

modeled as log-normal random variables. The mean value of the Young’s moduli for the different parts of the

satellite are as follows: cubic core (µE1) and photovoltaic panels (µE2) µE1 = µE2 = 6.89×109[Pa]; reflectors

µE3
= 8 × 1010[Pa]; connecting beams µE4

= 8 × 1010[Pa]; and stiffening beams µE5
= 8 × 1011[Pa]. The

coefficient of variation associated with each random variable is equal to 20%. The computation of the first

natural frequency of the satellite is of vital importance as its value should be kept away from the frequency

of ambient vibration. However, due to the randomness of the above-mentioned material properties, the
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Table 5: Results for the turbine blade model.

Indices
Data-driven BPI Adaptive BPI

Posterior means Posterior COVs Posterior means Posterior COVs

Vy 1.4037 0.0130 1.4114 0.0097

V1 0.6352 0.0212 0.6229 0.0121

V2 0.6820 0.0172 0.7009 0.0176

V3 0.0103 0.1205 0.0122 0.0568

V4 0.0053 0.1055 0.0068 0.0893

V5 0.0528 0.1465 0.0357 0.0436

V6 0.0139 0.1305 0.0188 0.0652

VT1 0.6443 0.0199 0.6282 0.0103

VT2 0.6948 0.0174 0.7138 0.0176

VT3 0.0110 0.2367 0.0128 0.0540

VT4 0.0056 0.4951 0.0078 0.0966

VT5 0.0614 0.1568 0.0354 0.0325

VT6 0.0163 0.1626 0.0192 0.0556

N 40 6+16=22

first natural frequency of the structure also involves uncertainty. It is therefore necessary to quantify this

uncertainty, and measure the contribution of each input uncertainty on the output uncertainty. For this

purpose, we estimate the variance of the first natural frequency as well as Sobol’ main and total effect indices

with respect to each uncertain input variable. The computational cost of each FE model call is definitely

more expensive than the first numerical example, but less expensive than the blade model, thus the MCS is

also implemented as reference solutions.

Figure 7: The FE model of a satellite.

For this example, it is found that the data-driven BPI can accurately estimate all the (partial) variance

terms with small number of training points, thus there is no need to implement the adaptive BPI. The results
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by data-driven BPI with twenty training points are reported in Table 6, together with the MCS estimates

for comparison. It should be noted that, as the MCS estimators are unbiased, the small values of COVs

reported in the last column of Table 6 indicates that the MCS estimates are all accurate and can be served as

reference solutions. As can be seen, the posterior mean estimates generated by BPI show good agreements

with the reference solutions, and the posterior COVs reported in the third column of Table 6 are all small

enough, proving the accuracy of the BPI approach for this example. Although for the very small partial

variances, such as V3, the posterior COV is large, considering its posterior mean estimate (3.4376× 10−9),

the errors can be omitted.

It is also shown that, the Young’s modulus of the connecting beams (E4) is one affecting the most for the

model output variance, followed by that of photovoltaic panel (E2), and those of the other three components

are not influential. This conclusion matches well with the physical intuition when examining the first mode

shape, as it comprises translation of the photovoltaic panel.

Table 6: Results for the satellite model.

Indices
Data-driven BPI MCS [39]

Posterior means Posterior COVs Mean estimates COVs

Vy 0.0254 0.0009 0.0249 0.0200

V1 0.0000 0.7943 0.0000 14.495

V2 0.0017 0.0024 0.0029 0.5651

V3 0.0000 31.509 0.0000 9.6961

V4 0.0237 0.0010 0.0227 0.2928

V5 0.0000 0.8758 0.0000 17.801

VT1 0.0000 1.5425 0.0000 0.0256

VT2 0.0018 0.0032 0.0017 0.0229

VT3 0.0000 69.174 0.0000 0.0230

VT4 0.0238 0.0009 0.0234 0.0201

VT5 0.0000 1.6575 0.0000 0.0250

N 20 3.5× 104

6. Conclusions and discussions

The estimation of the variance-based sensitivity indices is regarded as an statistical inference problem

in this work, and based on a set of supervised training data, the posterior features (including means and

variances) for all the (partial) variance terms involved in the sensitivity indices are analytically derived

following two newly developed first principles and the rationale of BPI. Although the posterior distributions

of these (partial) variance terms are no longer Gaussian, these inferred posterior features provide sufficient
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information on the values of the sensitivity indices as well as the related discretization errors. Based on

those posterior features, two BPI strategies are then developed for estimating the sensitivity indices. The

first strategy, i.e., the data-driven BPI, is applicable to data, and does not require any design of experiments

and computer simulators. This strategy is also recommended if the computer simulators are very cheap

to evaluate. The second strategy, i.e., the adaptive BPI, is especially developed for computer simulators,

where the training data used for inference can be designed, and this strategy is strongly recommended if

the simulators are expensive to evaluate as it can apparently reduce the required number of model function

calls to achieve estimates of same accuracy.

The results of the numerical and engineering examples, on the one hand, demonstrated the correctness

of the analytical expressions of all the posterior features, and on the other hand, proved the effectiveness of

the two strategies. It is also shown that the quality of the estimates of both methods relies on that of the

trained GPR model. With the adaptive experiment design, the adaptive BPI strategy can not only improve

the convergence rates of the sensitivity indices, but also that of the GPR model, as revealed by the results

for first-order HDMR component functions. It is also noted that, for different examples, different values of

stopping criteria are specified. For real-world applications, this threshold value can be determined based on

the users’ error tolerance on the estimated sensitivity indices.

The main and total effect indices have been treated in this work, however, if required, other sensitivity

indices such as the second-order partial variance Vij can be similarly inferred following the two principles

and two operating rules of the GPR model reported in subsection 3.1. It needs to be emphasized that

the two BPI approaches cannot be directly applied to high-dimensional cases (e.g., with n > 30). This is

mainly because the Euclidean distance used in the kernel function of the GPR model is not informative

in high-dimensional space [66]. This is left for future research. Besides, the source codes of the two BPI

algorithms are available upon reasonable request to the corresponding author.
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Appendix A. Proof of Lemma 1 and Lemma 2

Based on the total variance law, the posterior mean ED

[
Vu

[
Ĝ (u)

]]
can be decomposed as:

ED

[
Vu

[
Ĝ (u)

]]
= VD,u

[
Ĝ (u)

]
− VD

[
Eu

[
Ĝ (u)

]]
= Vu

[
ED

[
Ĝ (u)

]]
+ Eu

[
VD

[
Ĝ (u)

]]
− VD

[
Eu

[
Ĝ (u)

]]
.

(A.1)

Noting that in the last term Eu

[
Ĝ (u)

]
= 0, Eq. (A.1) can be further derived as:

ED

[
Vu

[
Ĝ (u)

]]
= Vu [µG (u)] + Eu

[
σ2
G (u)

]
(A.2)

which is exactly Eq. (12).

The posterior variance VD

[
Vu

[
Ĝ (u)

]]
is then derived as:

VD

[
Vu

[
Ĝ (u)

]]
=

∫ [∫
Ĝ2 (u)ϕ (u) du−

∫
ED

[
Ĝ2 (u)

]
ϕ (u)du

]2
f
(
Ĝ |D

)
dĜ

=

∫ [∫ (
Ĝ2 (u)− ED

[
Ĝ2 (u)

])
ϕ (u)du

] [∫ (
Ĝ2 (u′)− ED

[
Ĝ2 (u′)

])
ϕ (u′)du′

]
f
(
Ĝ |D

)
dĜ

=

∫ ∫ ∫ (
Ĝ2 (u)− ED

[
Ĝ2 (u)

])(
Ĝ2 (u′)− ED

[
Ĝ2 (u′)

])
f
(
Ĝ |D

)
dĜϕ (u)duϕ (u′)du′

=

∫ ∫
covD

[
Ĝ2 (u) , Ĝ2 (u′)

]
ϕ (u)duϕ (u′)du′

= EuE′
u

[
covD

[
Ĝ2 (u) , Ĝ2 (u′)

]]

(A.3)

the last row of which is exactly Eq. (13). The posterior covariance covD

[
Ĝ2 (u) , Ĝ2 (u′)

]
in Eq. (13)

can be formulated explicitly with the posterior mean and posterior covariance of the GPR model Ĝ2 (u).

Consider two correlated normal variables v1 ∼ N
(
u1, σ

2
1

)
and v2 ∼ N

(
u2, σ

2
2

)
with covariance σ2

12, then the

covariance of x2
1 and x2

2 is derived as cov
[
x2
1, x

2
2

]
= 2σ4

12 + 4µ1µ2σ
2
12. Thus, by regarding Ĝ (u) and Ĝ (u′)

as two correlated normal variables, the posterior covariance covD

[
Ĝ2 (u) , Ĝ2 (u′)

]
can be expressed as:

covD

[
Ĝ2 (u) , Ĝ2 (u′)

]
= 2cov2

D

[
Ĝ (u) , Ĝ (u′)

]
+ 4µG (u)µG (u′) covD

[
Ĝ (u) , Ĝ (u′)

]
(A.4)

substituting which into Eq. (13) yields Eq. (14).

We start from Eq. (14) to prove Lemma 2. By using the Cauchy-Schwarz inequality, the following
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inequality holds for the posterior covariance covD

[
Ĝ (u) , Ĝ (u′)

]
:

cov2
D

[
Ĝ (u) , Ĝ (u′)

]
⩽ VD

[
Ĝ (u)

]
VD

[
Ĝ (u′)

]
= σ2

G (u)σ2
G (u′) . (A.5)

Substituting Eq. (A.5) to Eq. (14) yields:

VD

[
Vu

[
Ĝ (u)

]]
⩽ 2EuE′

u

[
σ2
G (u)σ2

G (u′)
]
+ 4EuE′

u [|µG (u) ||µG (u′) |σG (u)σG (u′)]

= 2E2
u

[
σ2
G (u)

]
+ 4E2

u [|µG (u) |σG (u)]

(A.6)

which is exactly (15) and concludes the proof.

Appendix B. Mathematical proofs for main partial variance

The definition of the induced univariate GPR model M̂i (xi) can be reformulated as:

M̂i (xi) = E−i

[
M̂ (x)

]
− E1:n

[
M̂ (x)

]
. (B.1)

Then the posterior mean of M̂i (xi) can be expressed as:

µMi (xi) = ED

[
M̂i (xi)

]
= E−i

[
ED

[
M̂ (x)

]]
− µM0

= E−i [b (x)] + E−i [κ (x,U)]⊤ K−1 (Y − b (X ))− µM0

= bi (xi) + ζi (xi)
⊤ K−1 (Y − b (X ))− µM0

(B.2)

which is exactly Eq. (16). For the commonly used prior mean functions, the closed-form expression for

bi (xi) is easy to derive , and we don’t give more details. The closed-form expression of ζi (xi) formulated

as:

ζi (xi) = σ2
0

∣∣Σ−1
−i + I

∣∣−1/2
exp

(
−1

2
vec
[
diag

[
X,−i (Σ−i + In−1)

−1 X⊤
,−i

]]
− 1

2σ2
i

(xi −X,i)
2

)
. (B.3)
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Next, we derive the closed-form expressions for the posterior variance of M̂i (xi). By definition,

covMi (xi, x
′
i) = covD

[
M̂i (xi) ,M̂i (x

′
i)
]

= ED

[(
M̂i (xi)− µMi (xi)

)(
M̂i (x

′
i)− µMi (x

′
i)
)]

= ED


(
E′′
1:n

[
M̂
(
x′′
−i, xi

)
− M̂ (x′′)

]
− E′′

1:n

[
µM

(
x′′
−i, xi

)
− µM (x′′)

])
·
(
E′′′
1:n

[
M̂
(
x′′′
−i, x

′
i

)
− M̂ (x′′′)

]
− E′′′

1:n

[
µM

(
x′′′
−i, x

′
i

)
− µM (x′′′)

])


= E′′
1:nE′′′

1:n

[
covD

[
M̂
(
x′′
−i, xi

)
− M̂ (x′′) ,M̂

(
x′′′
−i, x

′
i

)
− M̂ (x′′′)

]]
= ci,i′ (xi, x

′
i)− ci (xi)− ci (x

′
i) + c0

(B.4)

which is exactly Eq. (17). In the last row of Eq. (B.4), only the first two terms need to be further derived

to closed-form expressions. The first term is formulated as:

ci,i′ (xi, x
′
i) = E−iE′

−i [κ (x,x
′)]− ζi (xi)

⊤ K−1ζi (x
′
i) (B.5)

where ζi (xi) is formulated in Eq. (B.3), and

E−iE′
−i [κ (x,x

′)] = σ2
0

∣∣2Σ−1
−i + In−1

∣∣−1/2
exp

(
− (xi − x′

i)
2

σ2
i

)
. (B.6)

The term ci (xi) in Eq. (B.4) is formulated as:

ci (xi) = E−iE′
1:n [κ (x,x

′)]− ζi (xi)
⊤ K−1E1:n [κ (x,X )] (B.7)

where the closed-form expression for E1:n [κ (x,X )] is in Eq. (11), and

E−iE′
1:n [κ (x,x

′)] = σ2
0

∣∣2Σ−1
−i + I

∣∣−1/2 (
σ−2
i + 1

)−1/2
exp

(
− 1

2 (σ2
i + 1)

x2
i

)
. (B.8)

Appendix C. Mathematical proofs for total partial variance

We first prove Eq. (19). The variance of MTi (x) = M (x)− Ei [M (x)] can be derived as:

V1:n [M (x)− Ei [M (x)]] =

∫
Rn

(M (x)−M0 +M0 − Ei [M (x)])
2
ϕn (x)dx

= Vy − 2

∫
Rn

(M (x)−M0) (Ei [M (x)]−M0)ϕn (x)dx+ V−i [Ei [M (x)]] .

(C.1)
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By integrating xi out, the n-dimensional integral in the second term of the last line of Eq. (C.1) can be

further derived as:∫
Rn

(M (x)−M0) (Ei [M (x)]−M0)ϕn (x)dx =

∫
Rn−1

(Ei [M (x)]−M0)
2
ϕn−1 (x−i)dx−i

= V−i [Ei [M (x)]]

(C.2)

by substituting which into Eq. (C.1) yields Eq. (19).

Next we derive the closed-form expression for the posterior mean of M̂Ti (x). Obviously

µMTi (x) = µM (x)− Ei [µM (x)] = µM (x)− b−i (x−i)− ζ−i (x−i)
⊤ K−1 (Y − b (X )) (C.3)

where b−i (x−i) = Ei [b (x)] is easy to derive, and we skip the details. The term ζ−i (x−i) in Eq. (C.3) can

be expressed in closed form as:

ζ−i (x−i) = Ei [κ (x,X )]

= σ2
0

(
σ−2
i + 1

)−1/2
exp

(
− 1

2 (σ2
i + 1)

X 2
,i −

1

2
(x−i −X,−i)Σ

−1
−i (x−i −X,−i)

⊤
)
.

(C.4)

The posterior covariance of M̂Ti (x) is formulated as:

covMTi (x,x
′) = covD

[
M̂Ti (x) ,M̂Ti (x

′)
]

= covD

[
M̂ (x) ,M̂ (x′)

]
− covD

[
M̂ (x) ,E

′

i

[
M̂ (x′)

]]
︸ ︷︷ ︸

c−i(x,x′
−i)

− covD

[
M̂ (x′) ,Ei

[
M̂ (x)

]]
︸ ︷︷ ︸

c−i(x′,x−i)

+ covD

[
Ei

[
M̂ (x)

]
,E

′

i

[
M̂ (x′)

]]
︸ ︷︷ ︸

c−ii(x−i,x
′
−i)

(C.5)

where the first term is exactly the posterior covariance covM (x) of the GPR model M̂ (x). To achieve the

closed-form expression for covMTi (x), we need to derive the closed-form expressions for the two posterior

covariance terms c−i

(
x,x′

−i

)
and c−ii

(
x−i,x

′
−i

)
. The term c−i

(
x,x′

−i

)
is derived as:

c−i

(
x,x′

−i

)
= E′

i

[
covD

[
M̂ (x) ,M̂ (x′)

]]
= E′

i [κ (x,x
′)]− κ (x,X )

⊤ K−1ζ−i

(
x′
−i

)
(C.6)

where ζ−i

(
x′
−i

)
is given in Eq. (C.4), and E′

i [κ (x,x
′)] is formulated as:

E′
i [κ (x,x

′)] = σ2
0

(
σ−2
i + 1

)−1/2
exp

(
− 1

2 (σ2
i + 1)

x2
i −

1

2

(
x−i − x′

−i

)
Σ−1

−i

(
x−i − x′
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)⊤)
. (C.7)
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The term c−ii

(
x−i,x

′
−i

)
is derived as:

c−ii

(
x−i,x

′
−i

)
= EiE′

i

[
covD

[
M̂ (x) ,M̂ (x′)

]]
= EiE′

i [κ (x,x
′)]− ζ−i (x−i)

⊤ K−1ζ−i

(
x

′

−i

)
(C.8)

where

EiE′
i [κ (x,x

′)] = σ2
0

(
2σ−2

i + 1
)−1/2

exp

(
−1

2

(
x−i − x′

−i

)
Σ−1

−i

(
x−i − x′

−i

)⊤)
. (C.9)

Although the closed-form expression of the posterior variance of M̂Ti (x) can be easily derived from that

of covMTi (x,x
′), we still give the details here for ease of understanding. From Eq. (C.5), the posterior

variance of M̂Ti (x) degrades into:

σ2
MTi (x) = covD

[
M̂Ti (x) ,M̂Ti (x

′)
]

= σ2
M (x)− 2covD

[
M̂ (x) ,Ei

[
M̂ (x)

]]
+ VD

[
Ei

[
M̂ (x)

]] (C.10)

where

covD

[
M̂ (x) ,Ei

[
M̂ (x)

]]
= E′

i

[
covD

[
M̂ (x) ,M̂ (x−i, x

′
i)
]]

= σ2
0

(
σ−2
i + 1

)−1/2
exp

(
− 1

2 (σ2
i + 1)

x2
i

)
− κ (x,X )

⊤ K−1ζ−i (x−i)
(C.11)

and

VD

[
Ei

[
M̂ (x)

]]
= EiE′

i

[
covD

[
M̂ (x) ,M̂ (x−i,x

′
i)
]]

= σ2
0

(
2σ−2

i + 1
)−1/2 − ζ−i (x−i)

⊤ K−1ζ−i (x−i) .

(C.12)

Appendix D. Mathematical proofs for total variance

The underlying GPR model for infering the total variance is M̂y (x) = M̂ (x)−M̂0, thus the posterior

mean is

µMy (x) = µM (x)− µM0 (D.1)

and the posterior covariance is:

covy (x,x
′) = covM (x,x′)− covD

[
M̂ (x) ,M̂0

]
− covD

[
M̂ (x′) ,M̂0

]
+ σ2

M0 (D.2)

where

covD

[
M̂ (x) ,M̂0

]
= E′

1:n [covM (x,x′)]

= E′
1:n [κ (x,x

′)]− κ (x,X )
⊤ K−1E′

1:n [κ (x
′,X )] .

(D.3)
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