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Autosomal recessive polycystic kidney disease (ARPKD) is
a severe disease of early childhood that is clinically
characterized by fibrocystic changes of the kidneys and the
liver. The main cause of ARPKD are variants in the PKHD1
gene encoding the large transmembrane protein
fibrocystin. The mechanisms underlying the observed
clinical heterogeneity in ARPKD remain incompletely
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understood, partly due to the fact that genotype-
phenotype correlations have been limited to the
association of biallelic null variants in PKHD1 with the most
severe phenotypes. In this observational study we analyzed
a deep clinical dataset of 304 patients with ARPKD from
two independent cohorts and identified novel genotype-
phenotype correlations during childhood and adolescence.
Biallelic null variants frequently show severe courses.
Additionally, our data suggest that the affected region in
PKHD1 is important in determining the phenotype. Patients
with two missense variants affecting amino acids 709-1837
of fibrocystin or a missense variant in this region and a null
variant less frequently developed chronic kidney failure,
and patients with missense variants affecting amino acids
1
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1838-2624 showed better hepatic outcome. Variants
affecting amino acids 2625-4074 of fibrocystin were
associated with poorer hepatic outcome. Thus, our data
expand the understanding of genotype-phenotype
correlations in pediatric ARPKD patients and can lay the
foundation for more precise and personalized counselling
and treatment approaches.
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A utosomal recessive polycystic kidney disease (ARPKD)
is a hepatorenal disorder with tremendous burden for
affected children and their families. It represents one

of the most common indications for kidney replacement
therapy (KRT) and combined or sequential liver and kidney
transplantation (CLKTx, SLKTx) in childhood. Variants in
the PKHD1 gene have been identified as the main genetic
basis of the disease.1,2 Additionally, variants in DZIP1L have
been reported in 7 patients from 4 families so far with a
moderate renal phenotype.3 PKHD1, with the longest open
reading frame of 67 exons, encodes the cilia-associated protein
fibrocystin. Fibrocystin’s cellular function is very poorly un-
derstood.2,4 Fibrocystin consists of 4074 amino acids with a
large extracellular part containing various domain structures, a
single transmembrane part, and a short cytoplasmic tail.1

Genotype–phenotype association studies in ARPKD so far
have been restricted largely to the type of PKHD1 variants.
Severe affection with perinatal demise was shown in patients
with 2 truncating variants,5–7 and it was concluded that at
least 1 missense variant was required for survival beyond the
neonatal period. Recently, however, first case reports and data
collections have described patients with biallelic null variants
surviving the perinatal period.8–10 In addition, 2 missense
variants do not preclude a severe perinatal course with
demise.5,6 Utmost caution is therefore needed in the setting of
prenatal and/or genetic counselling with the intention of
deducing or predicting the clinical course based on the type of
variants.11,12

With respect to the localization of variants, Furu et al.
reported 9 of 17 missense variants, observed exclusively in the
patients surviving the neonatal period, residing between the
amino acids (AAs) 1000 and 2000, with 6 of these between
AAs 1600 and 2000.5 Bergmann et al. reported a cluster of
variants around AAs 2831-2840 and AAs 3051-3209 in 15
patients with a liver-predominant phenotype.6 Further de-
scriptions of associations between variant localizations and
phenotype were hampered by a large number of detected,
often private, variants in PKHD1 and the challenges of
merging patient cohorts from multiple sources into a repre-
sentative and substantial patient cohort of this rare disease. To
address these challenges, we recently established the mainly
European clinical ARPKD registry study ARegPKD13,14 to
complement the existing work of the ARPKD Qmutation
database.15In the current analysis, we evaluated the hep-
atorenal disease courses in ARPKD to identify potential
genotype–phenotype correlations.
209
210
211
212
213
214
215
216
217
218
METHODS
The final cohort of 304 patients analyzed here is derived from 2
sources: the ARegPKD registry study cohort (209 patients included
in analysis) and a large collection of ARPKD patients submitted for
genetic testing to the Department of Human Genetics, RWTH
Aachen University, Germany (95 patients included in analysis;
Supplementary Figure S1). In the international cohort study,
ARegPKD patients with the clinical diagnosis of ARPKD are followed
according to the previously described protocol.13,14 In summary,
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basic data and regular follow-up datasets including the hepatorenal
aspects analyzed in ARegPKD are collected by the participating sites
prospectively and retrospectively and are subject to regular data
quality control. For the Aachen cohort, clinical data were obtained
mainly from available clinical reports at the time of genetic analysis,
resulting in more retrospective data and a shorter follow-up period.
Details of both subcohorts can be found in Supplementary Table S1.
The ARegPKD study protocol was approved by the Ethics Com-
mittee of the Faculty of Medicine of Cologne University and the
institutional review boards of participating sites. Regarding the pa-
tients’ data deriving from Aachen, the study falls under previous
local institutional review board approval of genotype/phenotype
studies in cystic kidney disease by the Ethics Committee of the
University Hospital Aachen. Both projects are in accordance with the
ethical standards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards. Data of both subcohorts
Figure 1 | Scheme of fibrocystin/polyductin with depiction of corres
into 4 amino acid domains (1–708, 709–1837, 1838–2624, 2625–4074
bars, with the bar length representing the number of observations of a sp
Ig-like, plexins, transcription factors; PA14, PbH1, parallel beta-helix repe
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were checked for potential double reporting of specific patients. Due
to an assumed reporting bias of early deceased and/or palliatively
managed neonates, we restricted the analysis to survivors of the
neonatal period (surviving the first 30 days of life).

For genetic analyses, all reported PKHD1 variants were classified
according to the revised criteria of the American College of Medical
Genetics (ACMG).16 Patients with $1 PKHD1 variant classified as a
variant of unknown clinical significance, likely pathogenic or path-
ogenic (ACMG classes 3 to 5), were included in further analyses.
Functional consequences of variants were categorized as truncating
(nonsense and frameshift variants), missense, splicing, exon deletion
or duplication, in-frame, or synonymous, based on the predicted
cDNA and amino acid changes (Figure 1). Variants with an a priori
assumed missense effect were classified as splice variants if functional
evidence exists to prove a significant splice effect, or if they affect the
first/last exonic nucleotide, and a splice site loss is strongly predicted
($75% loss of MaxEntScan splice site prediction score17). Synonymous
ponding exons (1–67), functional domains, and categorization
). Variants occurring$3 times in the studied cohorts are indicated as
ecific variant in this study. G8, named for 8 conserved glycines; IPT,
ats; TIG Q27, transcription factor immunoglobin.
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variants were classified as variants of unknown significance in case of
positive prediction of splice site involvement or for highly conserved
nucleotides. All variants were checked by Alamut Visual software. The
genotypes of each patient were additionally assigned to functional
classes termed 2 null variants (Null/Null), 2 missense variants (Mis/
Mis), 1 null and 1 missense (Null/Mis), only 1 variant (Single variant)
and 1 group containing all other combinations (Others; this group
contains multiple subgroups, e.g., truncating and 2 missense variants,
truncating and in-frame variant, missense and in-frame variant, 2 in-
frame variants, missense and synonymous variants, noncanonical
splice-site variants). For the purposes of this genotype-based grouping,
canonical splice-site variants (�1–2 intronic bases from the exon/intron
boundary) were included in the “null variant” group in accordance with
ACMG criteria. Furthermore, nonsense variants, frameshift variants,
and whole exon or gene deletions were also included in the “null
variant” group. Patients were additionally subgrouped according to
molecular genetic diagnostic certainty, that is, “Confirmed” ($2
PKHD1 variants detected, with $2 classified as likely pathogenic or
pathogenic), “Probable” ($2 PKHD1 variants detected, with only 1
classified as likely pathogenic or pathogenic), and “Unknown” ($2
PKHD1 variants of unknown clinical significance detected or only 1
PKHD1 variant detected, classified as a variant of unknown clinical
significance, likely pathogenic or pathogenic; Figure 2). Localization of
missense variants was categorized according to exons (PKHD1 tran-
script NM_138694.3, segmentation via integrative genomics viewer
Broad institute, IGV) and functional domains and repeats (segmenta-
tion via www.uniprot.org). Provided domains and repeats encompassed
the Ig-like, plexins, transcription factors/transcription factor immuno-
globin (IPT/TIG), PA14, G8 (named for 8 conserved glycines), and
PbH1 (parallel beta-helix repeats) domains in the extracellular part of
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fibrocystin. The distribution of the exons and domains, as well as
previously published data on the low frequency of variants in the
transmembrane and cytoplasmic domains, served as the basis for our
categorization of variants into 4 protein regions (amino acids (AAs) 1–
708, 709–1837, 1838–2624, 2625–4074; Figure 1; Supplementary
Figures S2 and S3). Categorization into 1 of the 4 groups AA1–708,
AA709–1837, AA1838–2624, or AA2625–4074, or into the groups of
exon segments as well as amino acid functional domains and repeats,
took place if the patient carried either 2 missense variants in this specific
area of the protein or a single missense variant in this specific area and a
null variant (Figure 3; Supplementary Figures S4 and S5).

The start of KRTwas defined by the documentation of any type of
dialysis or kidney transplantation (either isolated kidney trans-
plantation or CLKTx), whichever occurred first. Sonographic
splenomegaly was diagnosed according to the upper limits of normal
as defined in pediatric and adult reference studies,18–20 using a
uniform definition of splenomegaly (spleen length >mean þ 2SD in
pediatric patients, and $13.0 cm in adult patients). Portal hyper-
tension was diagnosed in cases of documentation of thrombocyto-
penia (platelet count <150.000/ml), sonographic splenomegaly,
collateral blood flow (varices, variceal bleeding), portosystemic
shunt, or liver transplantation (isolated liver transplantation [LTx] or
CLKTx). Substantial hepatic complication was defined as occurrence
of variceal bleeding, portosystemic shunt, or LTx/CLKTx.

Statistics
All statistical analyses were performed using SPSS 25 (IBM Corp.,
Armonk, NY). Data analysis was performed on the ARegPKD dataset
available in April 2019; the Aachen dataset was accessed in December
2017. Individual genetic findings were added during the revision of
out portal hypertension
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Figure 3 | Kaplan–Meier survival without (a) kidney replacement therapy (KRT), (b) portal hypertension, and (c) substantial hepatic
complication, by functional classes categorized according to the localization of affected amino acids (AAs) of the corresponding
missense variants in patients with Null/Missense or Missense/Missense variants. In the case of Null/Missense variants, localization of
affected amino acids of the missense variant is decisive; in the case of Missense/Missense variants, localizations of the affected amino acids
have to be within the same localization group for both variants. No., number.
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Table 1 | Characteristics of 304 analyzed patients with ‡1
PKHD1 variant that is either pathogenic, likely pathogenic, or
of unknown clinical significance

Total (n [ 304 Q25)

Sex
Male 166 Q26(54.6)
Female 138 (45.4)

Age at last visit, yr 8.21 (4.12–14.87)
Age at last visit, yr, mean (SD) 9.82 (8.21)
Follow-up time, yr 2.92 (0.00–7.25)
Follow-up time, yr, mean (SD) 4.74 (5.72)

Geographic region of parental origin
Europe 201 (66.1)
Asia 29 (9.5)
Africa 8 (2.6)
North America 2 (0.7)
South America 1 (0.3)
Europe/North America 3 (1.0)
Europe/Asia 2 (0.7)
Unknown 58 (19.1)

Genetic testing and information
Date of PKHD1 testing; min–max 12/2010 (09/2004–12/2015);

11/2002–12/2018
Molecular genetic diagnostic certainty
Confirmed 186 (61.2)
Probable 45 (14.8)
Unknown 73 (24.0)

Functional genotype groups
Null/Null variant 13 (4.3)
Missense/Missense variant 123 (40.5)
Null/Missense variant 87 (28.6)
Others 28 (9.2)
Single variant 53 (17.4)

Localization of affected amino acid in Null/
Missense or Missense/Missense variants

n ¼ 138

AA 1–708 44
AA 709–1837 51
AA 1838–2624 22
AA 2625–4074 21

Specification of variants Total variant number: 563
ACMG classification
Pathogenic 340 (60.4)
Likely pathogenic 120 (21.3)
Variant of unknown significance 103 (18.3)

Predicted translation impact
Truncating 120 (21.3)
Missense 389 (69.1)
Splicing 33 (5.9)
Exon deletion/duplication 8 (1.4)
In-frame 8 (1.4)
Synonymous 5 (0.9)

Five most-frequent variants
c.107C>T (Thr36Met) 74 (13.1)
c.4870C>T (Arg1624Trp) 20 (3.6)
c.664A>G (Ile222Val) 18 (3.2)
c.6992T>A (Ile2331Lys) 15 (2.7)
c.10444C>T (Arg3482Cys) 13 (2.3)

Values are n (%), or median (interquartile range), unless otherwise indicated.
AA, amino acid; ACMG, American College of Medical Genetics; max, maximum/latest;
min, minimum/earliest.
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the article. Data completeness varied by variable. Continuous variables
were described using the number of non-missing values, mean, and
SD, as well as median and interquartile range (IQR). For binary or
categorical variables, absolute and relative frequencies were provided.
Event-free survival rates were estimated by the Kaplan–Meier method
and compared using the log-rank test over the entire follow-up period.
The statistical tests did not adjust formally for multiplicity due to the
exploratory nature of the analysis. No imputation was performed. All
analyses are exploratory, and P values of <0.05 were considered sig-
nificant in a descriptive manner in distinguishing between the groups.

RESULTS
Patients
Patients�characteristics are displayed in Table 1. We restricted
the analysis to survivors of the neonatal period and patients
with one or more PKHD1 variant of unknown significance or
a likely pathogenic or pathogenic (LP/P) variant, resulting in
a cohort of 209 ARegPKD patients with sufficient clinical data
for further analysis of renal and hepatic phenotypes. In the
Aachen cohort, 95 subjects had sufficient clinical documen-
tation available for further analysis. Comparative character-
istics of the 2 subcohorts are presented in Supplementary
Table S1. Adult patients were not excluded per se, and 36
patients were followed-up into adulthood ($18.0 years of
age). Yet, pediatric patients were by far more common, and
suitable follow-up visits of most patients were mainly avail-
able for childhood and adolescence.

Deaths
Six patients of the reported 304 neonatal survivors died at a
median (IQR) age of 0.32 (0.14–0.98) years. All patients
started peritoneal dialysis (PD) prior to their death
(Supplementary Table S2).

PKHD1 variants
PKHD1 variants classified as ACMG classes 3 to 5 were
detected in 304 patients from 277 families (Figure 1;
Supplementary Table S3). A total of 53 patients carried a
single variant, 243 patients carried 2 variants, and 8 patients
carried 3 variants (total variant number: 563). Data on
documented parental segregation of PKHD1 variants were
available for 113 patients (Supplementary Table S3). We
identified 98 PKHD1 variants that to our knowledge had not
been published previously (Supplementary Table S4).

Kidney phenotype
KRT-free survival did not differ by either sex (15-year sur-
vival: male 75%, female 70%; data not shown) or molecular
genetic diagnostic certainty—that is, “confirmed,” “probable,”
and “unknown” genetic ARPKD disease status (Figure 2a).
However, renal outcome was significantly inferior in patients
with Null/Null variants compared to all other groups of
variant type combinations (Null/Null vs. all other groups by
pairwise comparison, P < 0.001; Figure 2d). Furthermore,
patients with 2 variants classified as “Others” showed better
renal survival (Others vs. Mis/Mis P ¼ 0.034; Others vs.
Single variant P ¼ 0.075 by pairwise comparison each).
FLA 5.6.0 DTD � KINT2590_proof �
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In a next step, patients were grouped into functional
classes of Mis/Mis and Null/Mis variants according to the
localization of the affected amino acids (AA; 1–708, 709–
1837, 1838–2624, 2625–4074). We chose 4 sections to allow
applicability in daily clinical work. We speculated that in
12 May 2021 � 2:14 pm � ce
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patients with a Null/Mis combination, the missense variant
might determine the clinical phenotype. Little is known about
the cellular function of the ARPKD protein fibrocystin, but
we hypothesized that a hypomorphic allele might result in
impaired function, as for example, by altered trafficking, with
residual activity. We observed better kidney survival in pa-
tients with variant combinations affecting AAs 709–1837
(pairwise comparison: AAs 709–1837 vs. AAs 1–708, P ¼
0.001; AAs 709–1837 vs. AAs 1838–2624, P ¼ 0.012; AAs
709–1837 vs. AAs 2625–4074, P ¼ 0.080; Figure 3a). The
Kaplan–Meier survival curves and corresponding numbers of
all observed subgroups of Mis/Mis and Null/Mis allelic
variant combinations, including small subgroups, are shown
in Supplementary Figure S2 and Supplementary Table S5.
Particular additional subgroups of allelic combinations did
not show an event of KRT during the period of up to 18 years,
but numbers were small (Supplementary Figure S2A and B;
Supplementary Table S5). The categorization into exon seg-
ments or AA domain groups did not show relevant differences
between the groups (Supplementary Figure S4, A and D).
Analyses of subgroups suggest a possible association of vari-
ants in specific regions, with more rapid deterioration in renal
phenotype, such as in IPT/TIG 1 (Supplementary Figure S5,
A and D).

Liver phenotype
For the hepatic phenotype, we subclassified the clinical pre-
sentation and describe survival without any “signs of portal
hypertension” (thrombocytopenia, splenomegaly, collateral
blood flow [varices, variceal bleeding], portosystemic shunt,
or LTx/CLKTx) and survival without signs of “substantial
hepatic complication” (variceal bleeding, portosystemic
shunt, or LTx/CLKTx).

Portal hypertension-free survival did not differ by sex (15-
year survival male 40%, female 35%; not shown), but it was
slightly better in patients with the diagnosis confirmation
status of Probable (pairwise comparison: Probable vs.
Confirmed, P ¼ 0.016; Probable vs. Unknown, P ¼ 0.014;
Figure 2b). Portal hypertension-free survival was significantly
lower in patients with Null/Null variants compared to all
other variant type combinations (pairwise comparison: Null/
Null vs. Mis/Mis, P < 0.001; Null/Null vs. Null/Mis, P <
0.001; Null/Null vs. Others, P ¼ 0.01; Null/Null vs. Single
PKHD1 variant, P ¼ 0.001; Figure 2e). Patients with 2
missense variants showed poorer hepatic survival than the
groups Null/Mis and Others (Mis/Mis vs. Null/Mis, P ¼
0.032; Mis/Mis vs. Others, P ¼ 0.022, by pairwise comparison
for each). Differentiating the functional classes of Mis/Mis
and Null/Mis combinations according to AA groups as
described above revealed inferior outcomes for patients with
missense variant combinations affecting AAs 2625–4074 (AAs
2625–4074 vs. AAs 1–708, P ¼ 0.074; AAs 2625–4074 vs. AAs
709–1837, P ¼ 0.001; AAs 2625–4074 vs. AAs 1838–2624,
P ¼ 0.006; Figure 3b).

The patient subgroups Mis1–708/Mis2625–4074 (n ¼ 17),
Mis2625–4074/Mis2625–4074 (n ¼ 12), and Null/Mis2625–
FLA 5.6.0 DTD � KINT2590_proof �
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4074 (n ¼ 9) showed 10-year portal hypertension-free sur-
vival rates that appeared comparable to the course of Null/
Null patients. In contrast, patients in the group Mis1838–
2624/Mis2625–4074 (n ¼ 8) did not show an event of portal
hypertension during the period of up to 18 years
(Supplementary Figure S3, A and C; Supplementary
Table S5). When categorizing into exon segments, portal
hypertension-free survival was best with missense variant
combinations affecting exons 41–50 and was poorest in pa-
tients with missense variant combinations affecting exons 51–
60. Combinations of missense variants affecting G8 domains
and the IPT/TIG1 and IPT/TIG9 domains were associated
with a substantially lower survival free of portal hypertension
(Supplementary Figures S4E and S5, B and E).

Survival without substantial hepatic complication was
similar in the 3 groups of molecular genetic diagnostic cer-
tainty and lower in the Null/Null group compared to all other
functional classes (Null/Null vs. Mis/Mis, P ¼ 0.015; Null/
Null vs. Null/Mis, P ¼ 0.015; Null/Null vs. Others, P ¼ 0.056;
Null/Null vs. Single PKHD1 variant, P ¼ 0.076 in pairwise
comparison for each; Figure 2c and f). Again, there was no
relevant difference between male and female patients (15-year
substantial hepatic complication-free survival: male 80%, fe-
male 70%; not shown). The trend toward a difference be-
tween the functional AA groups concerning portal
hypertension-free survival was even more pronounced with
regard to the survival time without substantial hepatic
complication: Null/Mis or Mis/Mis variant combinations
affecting AAs 2625–4074 showed the poorest outcome (AAs
2625–4074 vs. AAs 1–708, P ¼ 0.025; AAs 2625–4074 vs. AAs
709–1837, P ¼ 0.001; AAs 2625–4074 vs. AAs 1838–2624,
P ¼ 0.019 in pairwise comparison for each; Figure 3c). Again,
patients classified into Mis1-708/Mis2625–4074 (n ¼ 17) and
Mis2625–4074/Mis2625–4074 (n ¼ 12) showed 10-year
substantial hepatic complication-free survival, appearing
comparable to Null/Null patients. Patients with missense
variants corresponding to Null/Mis2625–4074 (n ¼ 9)
appeared to have the poorest hepatic outcome.

In contrast, patients with various combinations of 2 in-
dependent missense variants did not show any events of
substantial hepatic complication during up to 18 years of
observation (Supplementary Figure S3B and D;
Supplementary Table S5). Strikingly, this included the sub-
groups with 2 missense variants involving at least 1 variant in
AAs 1838–2624, although overall numbers in these subgroups
remained small. The categorization into exon segments
showed worst survival in patients whose missense variants
corresponded to exons 51–60 and 61–67 (Supplementary
Figure S4C). Grouping by affected amino acid domains
highlights the hypothesis of a relevant role of variants
affecting the second G8 domain for development of liver
disease (Supplementary Figures S4F and S5, C and F).

Patients with late diagnosis
A subanalysis of the data evaluated a patient subcohort of 29
patients with late presentation, which we defined as diagnosis
12 May 2021 � 2:14 pm � ce
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of ARPKD at the age of $5.0 years. In this subcohort, no
patient with biallelic null variants was identified. Nine pa-
tients had a Null/Mis combination, 11 showed a Mis/Mis
combination, 5 were in the category “Others,” and 4 had a
single PKHD1 variant (Supplementary Figure S6A). Variants
were distributed all over the gene, but 6 of 11 truncating
variant alleles showed a localization of this variant in the 3’
part of PKHD1 corresponding to AAs 2625–4074
(Supplementary Figure S6B).

Data on modifying factors
A subset of patients had available data on the analysis of additional
known PKD genes, including, for example, PKD1, PKD2, HNF1B,
and DZIP1L. We identified information on PKD1 testing in 55
patients, PKD2 testing in 54 patients,HNF1B testing in 56 patients,
GANAB testing in 15 patients, and DZIP1L testing in 15 patients.
Only a single additional PKD1 ACMG class 3 variant was identi-
fied. Details are presented in Supplementary Table S3. Multiple
sibling pairs are included in this study, with mostly comparable
disease courses. Examples of partly discordant phenotypes include
the families F60 or F82 (Supplementary Table S3).

DISCUSSION
We present data on clinical outcomes during childhood and
adolescence of a genotyped cohort of 304 ARPKD patients
surviving the neonatal period. To our knowledge, this is the
largest cohort with detailed clinical and genetic data analyzed
to date. We focused on the 2 main affected organs in
ARPKD—the kidney and the liver—and on hard endpoints
that may also become relevant for future clinical trials.

The criterion of diagnostic confirmation of ARPKD based
on the ACMG criteria is not suitable to deduce the severity of
the further course of the disease. Instead, categorization ac-
cording to variant types yielded a clearer picture: patients
with 2 variants leading to chain termination, so-called null
variants, showed the poorest overall, renal, and hepatic out-
comes. Nonetheless, 13 patients with Null/Null variants sur-
vived the perinatal period, adding to a published small case
series9 and a case report8 that previously described 1 of these
patients in detail. Two of these 13 patients died within the
further disease course, but 11 patients with Null/Null variants
survived even during the median (IQR) observation period of
6.17 (4.42–9.08) years. Furthermore, 2 patients with Null/
Null variants died postnatally, due to respiratory failure, but
they were not included in the presented analysis of neonatal
survivors. It appears that the number of patients in our
datasets with Null/Null variants surviving the neonatal period
is more frequently reported in recent years. One might
speculate that advances in neonatal and pediatric intensive
care medicine, as well as pediatric nephrology, over the past 2
decades have a relevant positive impact on the survival of the
most severely affected infants. However, as patients with se-
vere disease manifestations dying in the neonatal period and
prenatally, severely affected fetuses from terminated preg-
nancies were not included; these numbers are not represen-
tative for all patients with Null/Null genotypes.
FLA 5.6.0 DTD � KINT2590_proof �
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Endpoints of both kidney and liver phenotype exhibited
overall similar courses of functional survival in patients with
Mis/Mis and Null/Mis variants, respectively. Carrying 1 null
variant did not generally result in a poorer outcome than
carrying no null variant. This may suggest that, in cases with
Null/Mis variants, the respective missense variant determines
the phenotype. The null variants detected in our patients were
distributed throughout the part of the gene encoding the
extracellular regions of the protein. We did not see differences
in our patients in comparison to previously reported patients
with null variants. In accordance with previous findings,6 we
speculate that null variants in the sequence encoding extra-
cellular parts of the protein will result in complete and uni-
form loss-of-function. Missense variants, however, may act as
a hypomorphic allele and show more clinical variability. Two
missense variants also can be associated with severe pheno-
types. We therefore chose to apply an additional categoriza-
tion based on the localization of Missense variants. Such
categorization will to a certain extent always remain arbitrary,
but it may still be very helpful for daily clinical life. Our data
on the affected regions of PKHD1 are in accordance with
previous findings from smaller cohorts.5,6

For the primary endpoint of renal survival, we identified 3
subgroups of patients with 2 missense variants that did not
require KRT during up to 18 years of observation. The largest
subgroup consists of 16 patients with 2 missense variants
corresponding to AAs 709–1837, suggesting that combined
variants in this region are associated with a slower loss of
kidney function. Further straightforward genotype–
phenotype correlations could not be established for the
renal phenotype.

For the hepatic phenotype, especially for the primary
endpoint of survival without substantial hepatic complica-
tions, we were able to identify enhancing and mitigating
PKHD1 variants. Despite a low patient number in the sub-
group (n ¼ 9), patients with variants corresponding to Null/
AA2625–4074 showed even poorer hepatic outcomes than
patients in the Null/Null subgroup. Furthermore, patients in
the Mis1–708/Mis2625–4074 group showed poorer hepatic 5-
and 10-year event-free survival than Null/Mis1–708 patients.
We cannot exclude a selection bias, but the data may also
point to at least partial dominant negative effects of variants
in this area on the liver phenotype. Mis/Mis variant combi-
nations in this region were also associated with very poor
hepatic survival curves. In contrast, missense variants
affecting AAs 1838–2624 seem to “protect” from substantial
hepatic complications, as patients with Mis/Mis variant
combinations carrying at least 1 variant affecting this region
did not show any hepatic event during up to 18 years of
follow-up. The beneficial effect of variants affecting AAs
1838–2624 seemed to outweigh the heightened hepatic
complication risk associated with variants in AAs 2625–4074,
at least in our small subgroup of 8 patients. However, the
genotype group most commonly associated with the absence
of substantial hepatic complications during childhood was
Null/AA709–1837 (n ¼ 35).
12 May 2021 � 2:14 pm � ce
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We saw the same tendency for the endpoint of portal
hypertension, which includes all criteria of substantial hepatic
complications plus less severe criteria such as documentation
of thrombocytopenia (platelet count <150.000/ml), sono-
graphic splenomegaly, or collateral blood flow (detection of
varices). As a consequence, survival without signs of portal
hypertension in general is lower than survival without sub-
stantial hepatic complications.

Although the categorization of missense variants according
to exon segment or amino acid functional domains and re-
peats yielded some interesting insights regarding hepatic
outcomes, these categorizations proved inferior to amino acid
localization–based grouping in predicting clinical outcomes.
The data suggest a functional relevance for variants in the 3’
area of PKHD1 and partly within the G8 domains for hepatic
complications. Little is known about the function of this part
of the protein and this domain that contains 8 conserved
glycines. Direct reliable inferences from the localization of the
defect to specific functions of the fibrocystin protein do not
yet appear feasible. More functional work is required.

Previous work discussed potential correlations between the
kidney and liver phenotypes versus potential organ-specific
courses in ARPKD.6,21 A study on fetuses and severely
affected neonates found evidence for parallel severity of
ARPKD.22 Our data may shed some light on this area. Biallelic
null variants seem to be associated with severe phenotypes in
both organs, whereas the localization of the variants may in-
fluence the phenotype in patients with at least 1 missense
variant. The role of modifier genes, which has been discussed
previously,4 cannot be elucidated from our data.

Some limitations of our study deserve mention. The majority
of the patients studied are participants in the ARegPKD registry
study, where some degree of inclusion bias due to the limited
availability of very severely ill patients or those who died early,
and of patients with late, atypical, or liver-predominant disease
presentation, cannot be excluded. Furthermore, it is mainly
pediatric nephrology centers that are contributing to ARegPKD,
which may lead to a bias toward more complete description of
the renal as compared to the hepatic phenotype and may have
enhanced the expected predominance of pediatric findings.
Most of the centers are in Europe, and data from other parts of
the world are needed to confirm the findings. Due to the
structure of the registry, PKHD1 testing was performed in
multiple international genetic laboratories between 2002 and
2018. One-third of patients derive from the patient pool of the
Department of Human Genetics, RWTH Aachen University
(Aachen, Germany) with PKHD1 testing performed between
2003 and 2015. Although structured clinical data were acquired,
follow-up time was substantially shorter than that for ARegPKD
patients, and for almost half of the cohort, only cross-sectional
clinical information was available. Therefore, the detection of
hepatic complications especially, which typically occur later than
the decline of kidney function, may have been incomplete in this
subcohort. We therefore also analyzed the ARegPKD dataset
separately, confirming the main findings on the liver and kidney
genotype–phenotype correlations (data not shown). A substantial
FLA 5.6.0 DTD � KINT2590_proof �
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proportion of the total cohort (53 of 304; 17%) carried only a
single detectable PKHD1 variant, meaning that these patients’
respective disease status could not be genetically confirmed. It
should be noted that the mutation detection rate in ARPKD,
even in clinically diagnosed cases, is not complete and is usually
in the range of 75%–85%.23,24 As such, the non-detection of a
putative second PKHD1 variant in 17% of patients in this cohort
would not be unexpected. A subcohort of patients who received
genetic analysis in the years 2002–2006 showed the highest
percentage of patients with a single detectable variant, suggesting
that technical aspects may be relevant in this cohort
(Supplementary Figure S7).

We cannot exclude the possibility that there has been
insufficient coverage of intronic hotspots including regulatory
regions in these patients. Furthermore, deleterious variants
were not uniformly distributed throughout the PKHD1 gene.
It is to be expected that common disease-causing missense
variants in our cohort (such as c.107C>T (T36M); 13% of all
variants) more strongly affected the analysis results than rare
disease-causing missense variants. Given that this prepon-
derance of certain variants is a result of the de facto wildly
unequal frequencies of deleterious PKHD1 variants in the
general population, however, this does not invalidate our
observations or their generalizability. The same holds true for
rare variants that were subsumed in the group “Others.”

Further limitations are as follows: potential modifier genes
or variants in other PKD genes were not systematically
analyzed; segregation analysis and hence the proof of bial-
lelism was only available for w37% of patients; our study
does not include individuals with terminated pregnancy or
patients that did not survive the first 30 days of life; and the
number of patients followed into adulthood remains small.
We have previously reported descriptive findings of an
ARegPKD subcohort of young adult ARPKD patients.25

In summary, we are able to give important descriptive
insights into the genotype–phenotype correlations of ARPKD
patients with PKHD1 variants during childhood and adoles-
cence. Although Null/Null variants are associated with the
poorest renal and hepatic outcome, they are not predictive of
neonatal demise in all cases. Biallelic missense variants
affecting amino acids 709–1837 seem to be associated with a
milder renal phenotype, and missense variants affecting
amino acids 2625–4074 of fibrocystin were associated with a
higher risk of substantial hepatic complications.
APPENDIX
List of additional ARegPKD Consortium collaborators (ordered
according to countries and centers in alphabetical order)

Loai Akram Eid (Dubai, United Arab Emirates), Klaus Arbeiter (Vienna, Austria),
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Aurélie De Mul (Geneva, Switzerland), Markus Feldkoetter (Zurich, Switzerland),
Jakub Zieg (Prague, Czech Republic), Franziska Grundmann (Cologne,
Germany), Matthias Galiano (Erlangen, Germany), Björn Buchholz (Erlangen,
Germany), Anja Buescher (Essen, Germany), Karsten Häffner (Freiburg,
Germany), Oliver Gross (Göttingen, Germany), Ludwig Patzer (Halle/Saale,
Germany), Jun Oh (Hamburg, Germany), Dieter Haffner (Hannover, Germany),
Wanja Bernhardt (Hannover, Germany), Susanne Schaefer (Heidelberg,
Germany), Simone Wygoda (Leipzig, Germany), Jan Halbritter (Leipzig,
12 May 2021 � 2:14 pm � ce

9



Q20

Q21

Q22

Q23

Q28

c l i n i ca l i nves t iga t i on K Burgmaier et al.: Genotype–phenotype correlations in ARPKD

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
Germany), Ute Derichs (Mainz, Germany), Günter Klaus (Marburg, Germany),
Felix Lechner (Memmingen, Germany), Sabine Ponsel (München, Germany),
Jens König (Münster, Germany), Hagen Staude (Rostock, Germany), Donald
Wurm (Saarbrücken, Germany), Martin Bald (Stuttgart, Germany), Michaela
Gessner (Tübingen, Germany), Neveen A. Soliman (Cairo, Egypt), Gema Ariceta
(Barcelona, Spain), Juan David Gonzalez Rodriguez (Murcia, Spain), Francisco
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