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Abstract

Recycling of Krylov subspaces is often used to obtain an augmentation sub-

space in the context of iterative algorithms for the solution of sequences of linear

systems. However, it still remains difficult to quantify the effect of subspaces

recycling and thus to determine the dimension of the subspaces to be recycled

targeting a specific accuracy. In that context, this work proposes the Automatic

Krylov subspaces Recycling algorithm (AKR) that automates the selection of

Krylov subspaces to be recycled and generates a basis that can provide suffi-

ciently accurate approximations of the solution for a parametric system on a

predefined interval Ψ. The constructed basis is employed as a Galerkin projec-

tion basis for a model order reduction (MOR) scheme in the context of non-affine

parametric systems. In the offline phase of the MOR scheme, AKR constructs a

projection subspace W by sampling Krylov subspaces at an iteratively built set

of parameter values Ω. Keeping a balance between the solution accuracy and the

memory required, the algorithm, apart from guaranteeing a predefined residual

level rtol, also permits the predetermination of a threshold regarding the max-

imum memory employed. Nevertheless, following the unpreconditioned Krylov

methods effectiveness criteria, the proposed technique proves to be efficient for

systems with relatively clustered eigenvalues such as the ones encountered in
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the conventional Boundary Element Method. The performance of the proposed

AKR algorithm is assessed in comparison with an alternative version of the re-

duced basis method, which is based on the same assumptions as the AKR and

is specifically designed to provide a good benchmark. These techniques are de-

ployed for a randomly generated complex system and an acoustic BEM system.

The advantage of employing AKR is demonstrated as fewer system assemblies

are required for the construction of the projection basis.

Keywords: Krylov subspaces recycling, Automatic procedure, Memory

efficient, Model Order Reduction, BEM

1. Introduction

Solving mechanical problems modelled with partial differential equations

(PDE) often results in linear parameter dependent systems, where the solution

is required in a multiresolution context, i.e. for multiple values of a single di-

mension parameter ω ∈ Ψ, where Ψ := [ωmin, ωmax] is an interval in a single5

dimensional parameter space. Such systems can be written as

A(ω)x(ω) = b(ω), ω ∈ Ψ (1)

where A : Ψ → CN×N and b,x : Ψ → CN . With increasing complexity

of the mechanical problems, the corresponding linear systems and solution in-

tervals increase in size, rendering the system solution in such a multiresolu-

tion context quite computationally demanding. Dealing with systems that in-10

volve a non-affine parameter dependency, i.e. A and b are not of the form

A(ω) =
∑K
k=1 Θk(ω)Ak with Ak ∈ CN×N and Θk : Ψ → C, elevates also the

assembly costs of the multiresolution analysis, as the assembly of the system for

each ω ∈ Ψ is required. Such systems arise for instance in an acoustic Boundary

Element Method (BEM) [1] analysis where the system matrices are non-affinely15

dependent from frequency. In that context, this work proposes an algorithm

to efficiently construct a subspace W, on which approximate solutions x̂(ω) for

2



ω ∈ Ψ can be found, given a target required accuracy rtol and avoiding numerous

system assemblies and full solutions.

Accelerating the solution of sequences of linear systems has been the ob-20

jective of multiple works. Approaching the problem from the perspective of

individual linear systems for each ω ∈ Ψ, iterative methods offer significant

acceleration not only for the solution of linear systems [2, 3] but also for the ap-

proximation of their eigenvalues and eigenvectors. Among the iterative solution

methods, Krylov subspaces play a significant role as several algorithms, such as25

the conjugate gradient method [4] and GMRES [5], are based on the iterative

expansion of some kind of Krylov subspaces. As their efficiency depends on the

distribution of the eigenvalues of the considered system, improvements of these

methods have been proposed including deflation and augmentation strategies

as described in [6, 7, 8, 9], demonstrating the great advantage offered by the30

reuse of Krylov subspaces. Most of the techniques related to the reuse of Krylov

subspaces concern the solution of an identical linear system for a sequence of

varying right-hand sides, see e.g. [10]. However, certain techniques have been

proposed including recycling of vectors as well among slowly varying systems

[11, 12, 13, 14]. Specifically, Risler and Rey in [11] propose to augment the35

projection space by all the Krylov subspaces of the previous iterations while

Gosselet et al. in [12] make a step further proposing a selective reuse of Krylov

subspaces. Finally, Parks et al. in [14] generalize the GMRES-DR algorithm by

Morgan [7] that recycles approximate invariant subspaces, by allowing the recy-

cling of any subspace and thus proposing the GCRO-DR algorithm for sequences40

of linear systems.

Dealing with sequences of linear systems renders the connection of Krylov

solvers with model order reduction (MOR) techniques attainable and straight-

forward. Originating from the model order reduction perspective, Ryckelynck

derived the a-priori hyperreduction method [15, 16], which combines an incre-45

mental proper orthogonal decomposition (POD) [17] with the addition of few

Krylov subspaces for time dependent non-linear problems. Another similar ap-

proach was proposed by Kerfriden et al. [18], where the augmented conjugate
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gradient method (AugCG) [8] is deployed to obtain an approximate solution,

which is then also appended to the reduction basis. Krylov subspaces in MOR50

are also usually employed for linear time invariant systems [19] or the linearized

counterparts of non-linear systems to match the subspace of the moments of a

Padé approximation of the transfer function of a system [20].

Other common model order reduction approaches are also based on the con-

cept of finding an appropriate basis for the reduction of (multi-)parameter de-55

pendent systems. Although modal truncation methods [21] constitute popular

techniques of reducing the order of the model, the calculation of the eigenvec-

tors in problems with non-affine parameter dependency might not be a simple

task. POD methods [17, 22] are frequently employed in the context of com-

plicated non-linear problems to construct some empirical eigenvectors. Hav-60

ing a similar objective to the POD, the reduced basis method [23, 24] consti-

tutes one of the most efficient approaches to construct a representative basis for

affinely parametrized partial differential equations as it involves a greedy sam-

pling scheme. It iteratively enriches the reduced basis with x(ωm), where ωm is

the parameter value with the highest residual, and thus it succeeds in guaran-65

teeing a predefined residual level for all ω ∈ Ψ. Nevertheless as it relies upon

full system solutions and a residual based error estimator, the cost of the offline

procedure for building the reduced basis can be considerable. Specifically, it

strongly depends on the cost of solving the full system for each newly appended

x(ωm) and the cost of assembling the system and computing the residual for70

ω ∈ Φ within each iteration, where Φ ⊂ Ψ consists of values Ψ on a dense grid.

Thus, in the case of non-affine parametric systems with complex responses, the

use of the reduced basis algorithm is hindered as a high number of iterations,

involving an increased number of system assemblies and full solutions might be

required. Recovering affinity before creating the reduced basis as discussed in75

[25] might cause memory excess especially in case of non-sparse systems. These

issues are illustrated in [26] for systems arising in BEM for acoustic problems.

In that context, this work proposes a new algorithm to assemble a reduced

basis W for systems of type (1), where W = span{W}, employing the concept
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of Krylov subspaces recycling that aims to reduce the system assemblies and80

full solutions required in the offline phase of a respective MOR technique. It

constitutes a reduced basis method that utilizes as input, instead of the full

solutions, the Arnoldi vectors assembled for the calculation of approximate so-

lutions through a full orthogonalization method (FOM) scheme [27, 28, 29] at

an ordered set of parameter values Ω ⊂ Ψ. The dimension s(ω) of the respective85

Krylov subspace Kωs(ω) employed for each ω ∈ Ω as well as Ω itself are determined

iteratively through an automated procedure. In detail, in the construction stage

of W the residual

ri(ωm) := b(ωm)−A(ωm)x̂i(ωm) ⊥W, (2)

is built for each iteration i, where

x̂i(ωm) ∈ x0(ω) +W, (3)

where x̂i(ωm) is the ith approximation of the true solution x(ωm) at a parameter

value ωm ∈ Ψ\Ω and x0 : Ψ → CN is an initial guess for the approximated90

solution. By deploying a stagnation criterion, it is decided whether to enrichW

by increasing the dimension s(ωa), s(ωb) of Kωa

s(ωa),K
ωb

s(ωb), where ωa, ωb ∈ Ω the

elements of Ω closest to ωm, or in case of stagnation, to enrich W with Kωm

s(ωm),

thus Ω ← Ω ∪ {ωm}, increasing s(ωm) until ‖ri(ωm)‖ ≤ rtol is satisfied, where

rtol is a preselected residual tolerance and ‖ri(ωm)‖ is the Euclidean norm of95

the respective residual.

As subspaces recycling is more efficient for closely related systems [14], the

method is based on an residual based error indicator that enforces rtol only at

ωm := 0.5(ωa + ωb), where ωa, ωb are two consecutive elements of Ω. Although

the error indicator builds and checks only ‖ri(ωm)‖ and consequently rtol can100

be mathematically guaranteed only for ωm, given the nature of subspace recy-

cling, in practice, the method succeeds in achieving ‖r(ω)‖ ≤ rtol ∀ ω ∈ Ψ.

Starting from that, the basis can be employed as an augmentation space in

the augmented conjugate gradient algorithm [12] having quantified the effect

of recycling and guaranteeing that an approximate solution is close to the true105

5



solution. However, in this work, the basis is deployed in a model order re-

duction context for the Galerkin projection of non-affine parametric algebraic

systems that result from a discretized PDE. To enable an offline projection of

the respective algebraic system, first the given non-affine parameter dependency

can be lifted with a polynomial approximation of the system matrix coefficients110

without inflicting memory excess as described in [30]. Nevertheless, to alleviate

any concerns about the memory required either by the projected polynomial

approximation of the system or the basis W itself, a memory constrained ver-

sion of the algorithm is also proposed. This version accepts as input a positive

integer ` ∈ N, which determines the maximum dimension of the subspace to115

be recycled. Given this setting, the algorithm yields the maximum interval

Ψ` ⊆ Ψ such that ‖r(ω)‖ ≤ rtol ∀ ω ∈ Ψ`. This leads to an adaptive win-

dowing technique that outputs different bases W1, . . . ,WQ always respecting

the predefined maximum dimension, that are efficient for dedicated parameter

subintervals Ψ`1 ∪· · ·∪Ψ`Q = Ψ, with Q being the total number of subintervals.120

The automatic recycling method presented here does not include any system

preconditioning technique. This implies that it works more efficiently for sys-

tems with relatively clustered eigenvalues that promote fast convergence with

iterative solution algorithms [31]. Non-affine parametric systems with such an

eigenvalue distribution are usually encountered in case of the conventional BEM125

for the Helmholtz equation [32, 33] and thus the use of iterative solution tech-

niques is facilitated as shown in [34, 35, 36]. Consequently, the method proposed

in this work can be deployed as an automation step of the model reduction tech-

nique for BEM proposed in [30]. Specifically, in contrast to the proposed AKR

algorithm, in [30] the elements of Ω and the dimension of the respective Krylov130

subspaces s(ω) are defined as user inputs resulting in a basis that might not be

effective for the full parameter range Ψ.

The paper is organized as follows. In section 2 the full orthogonalization

method including an extension with an augmentation strategy is introduced.

In section 3, based on the augmented FOM, the Automatic Krylov subspaces135

Recycling (AKR) technique is presented and then the alternative memory effi-

6



cient version is demonstrated. Section 4 enables the combination of AKR with

a model reduction framework for BEM, introducing also a windowing technique

based on the memory constrained algorithm. In addition, an especially designed

for benchmarking purposes version of the reduced basis algorithm is presented140

that employs the same assumptions as AKR. In section 5 the proposed tech-

niques are assessed on selected numerical examples. First the AKR is deployed

on a random system and then the combined AKR with MOR is employed for

an academic BEM model case. Comparing both examples to the alternative

reduced basis approach, the advantage of employing AKR is evident necessitat-145

ing fewer system assemblies and in general inducing lower computational cost.

Finally, section 6 summarizes and concludes the paper.

2. Full Orthogonalization Method

The deployment of Krylov subspaces is widely used for the iterative solution

of linear systems and several methods are based on Krylov subspaces constructed150

through the Arnoldi [37] or Lanczos [38] algorithm. An iterative method suitable

for dealing with generally unsymmetric systems is termed as the full orthogo-

nalization method (FOM), which in case of Hermitian positive definite systems

matrices coincides with the well-known conjugate gradient method [39, Chap-

ter 10]. The name of the method stems from the fact that it demands that the155

residual be orthogonal to the projection basis in each iteration. This section

presents the basic principles of the method and an augmentation strategy that

will be employed in section 3 for the assembly of a global reduction basis. De-

tailed information about the characteristics of the method can be found in the

seminal works of Axelsson [27] and Saad [28].160

2.1. The original method

The method considers a linear system of equations

Ax = b, (4)

7



Algorithm 1 Full orthogonalization method

1: Input: system A ∈ CN×N ,b ∈ CN , initial guess x0 ∈ CN and residual

tolerance rtol ∈ R;

2: r0 ← b−Ax0; v1 ← r0
‖r0‖ ;

3: V1 ← [v1]; m← 1;

4: while ‖rm−1‖ ≥ rtol do

5: vm+1 ← Avm; vm+1 ← vm+1

‖vm+1‖ ;

6: for p← 1 : m do

7: hp,m ← vHp vm+1; vm+1 ← vm+1 − hp,mvp;

8: end for

9: hm+1,m ← ‖vm+1‖; vm+1 ← vm+1

‖vm+1‖ ; Vm+1 ← [Vm vm+1];

10: x̂m ← Vm(Hm)−1VH
mr0;

11: rm ← r0 −Ax̂m; m← m+ 1;

12: end while

13: Output: Approximation basis V ∈ CN×m−1 and solution approximation

x̂m−1 ∈ CN

where A ∈ CN×N and b,x ∈ CN . As outlined in Algorithm 1, the FOM

computes, within each iteration m, approximate solutions

x̂m ∈ x0 +Km, (5)

where Km(A, r0) := span{r0,Ar0, . . . ,A
m−2r0,A

m−1r0} is the Krylov sub-165

space produced by the initial residual r0 := b−Ax0 and x0 is an initial guess.

The dimension of the subspace is increased in each iteration until ‖rm‖ ≤ rtol,

where

rm := b−Ax̂m ⊥ vj , j := 1, . . . ,m. (6)

is the residual after each iteration. The rm remains orthogonal with respect

to the Hermitian inner product to the linearly independent Arnoldi vectors vj170

composing the basis Vm := [v1 v2 . . .vm], where Km(A, r0) = span{V},
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and rtol is a predefined target residual. The basis V is commonly produced

by an Arnoldi algorithm [37] in combination with a modified Gram-Schmidt

orthogonalization procedure [40] given in Algorithm 1 lines 5-9. In Algorithm 1

hij are the entries of the Hessenberg matrix Hm, which represents the projection175

of A on Km, and VH is the conjugate transpose of V.

The cost of repeatedly calculating the residual is not considered significant.

In detail, since the projection of the system is already computed in the Hes-

senberg matrix Hm the procedure only consists of solving the reduced system

and the computing the residual rm corresponding to lines 10-11 in Algorithm 1.180

The cost of calculating the residual scales with O(N2), while the solution of the

reduced system with O(m3). Adding multiple vectors per iteration can alleviate

the cost of the procedure by limiting the number of iterations and consequently

the number of reduced solutions and residuals computed.

2.2. An augmentation strategy185

Augmentation strategies to enrich the generated Krylov subspaces can be

proven useful and speed up significantly the convergence of the iterative proce-

dure approximating the solution of (4) [6]. Reusing subspaces can also provide

a great advantage in the context of the consecutive solution of related systems

[8, 13]. Thus, aiming for a multiresolution analysis of parameter dependent sys-190

tems as given in (1), it is beneficial to define an augmentation strategy to recycle

information obtained from the sequential deployment of the FOM presented in

Algorithm 1.

The augmentation strategy employed in this work constitutes a slightly mod-

ified version of the augmented Arnoldi – modified Gram-Schmidt algorithm in-195

troduced in [41]. Namely, the newly generated Arnoldi vectors vj by Algorithm

1 are orthogonalized with respect to a given orthonormal augmentation basis

W, with W = span{W}, to yield v⊥Wj . This comes in contrast to the pro-

cedure followed in [41], where the column vectors wj of W are orthogonalized

with respect to V. The required orthogonalization is conducted with a modi-200

fied Gram-Schmidt procedure. The Arnoldi basis of a related system is often
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Algorithm 2 Augmented full orthogonalization method

1: Input: system A ∈ CN×N ,b ∈ CN , initial guess x0 ∈ CN , residual tolerance

rtol ∈ R and augmentation basis W ∈ CN×`;

2: r0 ← b−Ax0;

3: x̂1 ←W(WHAW)−1WHr0; r1 ← r0 −Ax̂1; v1 ← r1
‖r1‖ ;

4: V1 ← [v1]; m← 1; `← rank(W)

5: while ‖rm‖ ≥ rtol do

6: vm+1 ← Avm; vm+1 ← vm+1

‖vm+1‖ ;

7: for p← 1 : m do

8: hp,m ← vHp vm+1; vm+1 ← vm+1 − hp,mvl;

9: end for

10: v⊥Wm+1 ← vm+1; Vm+1 ← [Vm vm+1]

11: for i← 1 : ` do

12: βi ← wH
i vm+1; v⊥Wm+1 ← v⊥Wm+1 − βiwi;

13: end for

14: v⊥Wm+1 ←
v⊥W
m+1

‖v⊥W
m+1‖

; W← [W v⊥Wm+1];

15: x̂m+1 ←W(WHAW)−1WHr0; rm+1 ← r0 −Ax̂m+1;

16: `← `+ 1; m← m+ 1

17: end while

18: Output: Approximation basis W ∈ CN×`−1, Arnoldi basis V ∈ CN×m−1

and solution approximation x̂m−1 ∈ CN

employed as an augmentation basis in Algorithm 2. The procedure for electing

an efficient augmentation basis in the context of parametric systems is demon-

strated in section 3. The augmented FOM outlined in Algorithm 2, proceeds

to the iterative assessment of the produced residual rm and halts when the205

predefined residual tolerance rtol is reached.

The motivation for reversing the bases in Algorithm 2 as compared to the

one presented in [41] lies on the global intended use of the output basis W,

the construction of which will be described further in chapter 3. In detail, in a

multiresolution context i.e. Aixi = bi, where i := 1, . . . , Ntot and Ntot the total210
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number of systems to be resolved, the basis W needs to be able to simultaneously

provide quality approximations x̂i for all i := 1, . . . , Ntot to achieve a global

character. This cannot be guaranteed with the algorithm presented in [41]. On

the contrary, sequential deployment of Algorithm 2 for all i := 1, . . . , Ntot will

result in an augmentation basis for the system with i := Ntot that will also215

constitute a high quality projection basis for systems with i := 1, . . . , Ntot − 1.

The above scheme is quite similar to the total reuse of Krylov subspaces (TRKS)

reported by Gosselet et al. in [12], which recycles all the Krylov subspaces for

all Ntot systems.

The presented augmentation strategy scores lower in terms of efficiency with220

respect to other documented augmentation strategies such as the AugCG, pre-

sented in [8] regarding the required dimension of Krylov subspaces to be as-

sembled. This comes naturally as a consequence of the fact that the Krylov

sequence Km does not exploit a projector which would inherently take into ac-

count the information contained in the subspaceW. Nevertheless, it is preferred225

as following a similar procedure to AugCG would incur in different subspaces

for each system i, disrupting the global character of the basis. Hence, it proves

more beneficial for a multiresolution context where the basis is assembled only

in advance and not for each system individually.

3. Automatic Krylov recycling technique230

In this section the proposed automatic techniques for the recycling of Krylov

subspaces are introduced. In the first part the AKR algorithm is demonstrated

and the basic tools and limitations are presented. In the second part a memory

efficient alternative is introduced, where the parameter interval for which the

produced projection basis is able to sufficiently approximate the solution, is235

yielded adaptively leveraging a memory constraint.
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3.1. Basic approach

Consider a parametric linear system of the form (1), which is restated here

for reasons of completeness

A(ω)x(ω) = b(ω), (7)

where ω ∈ Ψ is a single dimension parameter, A : Ψ→ CN×N ,b : Ψ→ CN and240

Ψ := [ωmin, ωmax] ⊂ R a parameter interval. Demanding the solution x(ω) for

each ω ∈ Φ ⊂ Ψ, where Φ is a discrete set with cardinality |Φ| = Ntot results in

dealing with a sequence of linear systems for which a basis W = span{W} can

be constructed using the procedure outlined in Algorithm 2. Namely, Algorithm

2 can be sequentially deployed for all ω ∈ Ψ resulting in the basis W ∈ CN×`245

that leads to approximate solutions x̂(ω) from which the residual

r(ω) = r0(ω)−A(ω)x̂(ω) ⊥W (8)

satisfies ‖r(ω)‖ ≤ rtol ∀ω ∈ Φ, where rtol is the residual tolerance and

x̂(ω) ∈ x0(ω) +W, (9)

with x0 : Ψ → CN an initial guess of the solution and r0(ω) the correspond-

ing residual. Nevertheless, sequentially deploying Algorithm 2 will require the

assembly and construction of Krylov subspaces Kωs(ω) of dimension s(ω) of the

system (7) for all ω ∈ Φ which in case of non-affine parametric systems can be a250

time consuming task. Therefore, in this section the algorithm AKR is presented

that allows the construction of the basis W by deploying Algorithm 2, and thus

leveraging only the Krylov subspaces Kωs(ω), for ω ∈ Ω, a discrete ordered set,

where Ω ⊂ Φ and |Ω| � |Φ|.

The AKR algorithm automates the construction of Ω as well as the selection

of the dimension s(ω) of the subspaces Kωs(ω), ω ∈ Ω. It involves an adaptive

procedure, which is based on the assumption that given a basis W,

r(ω) := ‖b(ω)−A(ω)W(WHA(ω)W)−1WHb(ω)‖, (10)
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r : Ψ → R+ is C0(Ψ), implying that Krylov subspaces recycling is more ef-255

ficient for neighbouring systems in the parameter interval Ψ. Leveraging this

assumption, the algorithm commences by deploying Algorithm 1 having as in-

puts the systems at ωa := ωmin and ωb := ωmax, the extremes of the interval Ψ,

rtol1 := rtol and rtol2 := αrtol, where α ≤ 1, resulting in the augmentation bases

Vωa,rtol1
=[vωa,1 . . .vωa,s(ωa)],

Vωb,rtol1
=[vωb,1 . . .vωb,s(ωb)]

(11)

and enrichment bases

Vωa,rtol2
=[Vωa,rtol1

vωa,s(ωa)+1 . . .vωa,p(ωa)],

Vωb,rtol2
=[Vωb,rtol1

vωb,s(ωb)+1 . . .vωb,p(ωb)].
(12)

Then, it continues with the creation of an initial orthonormal augmentation260

basis W by employing a QR decomposition on [Vωa,rtol1
Vωb,rtol1

]. Having

created W, the algorithm follows a bisection strategy that iteratively checks

the residual ri(ωm) for each iteration i, where ωm := 0.5(ωa + ωb). In case

‖ri(ωm)‖ > rtol, the augmentation basis is further enriched iteratively by the

vectors v⊥Wωa,s(ωa)+i and v⊥Wωb,s(ωb)+i, which are vωa,s(ωa)+i and vωb,s(ωb)+i orthog-265

onalized to W with a modified Gram-Schmidt procedure. The enrichment with

additional Arnoldi vectors produced at ωa and ωb is stopped in case either stag-

nation occurs or s(ωa) + i = p(ωa) and s(ωb) + i = p(ωb), i.e. all the additional

Arnoldi vectors stored in Vωa,rtol2
and Vωb,rtol2

are employed. The stagnation

criterion is defined by270

|‖ri(ωm)‖ − ‖ri+S(ωm)‖|
‖ri+S(ωm)‖

< εstag (13)

where S ∈ N and εstag ∈ (0, 1). For this case, Algorithm 2 is deployed to achieve

‖r(ωm)‖ ≤ rtol, having as input the system at ωm, rtol1 and rtol2 and outputs

Wωm,tol1 , Wωm,tol2 , Vωm,tol1 ,Vωm,tol2 . Subsequently the sampling information

is updated by Ω ← Ω ∪ {ωm}, the new augmentation basis becomes W ←

Wωm,tol1 and the additional enrichment basis holds as Vωm,tol2 . The same275

bisection procedure continues by defining a new ωm := 0.5(ωa + ωb) for all
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systems at ωa, ωb ∈ Ω, any two consecutive elements of Ω, until ‖ri(ωm)‖ ≤ rtol

without any occurrence of stagnation. Finally, having ensured the residual

criterion for all ωm without employing any of the Krylov subspaces Kωm

s(ωm), a

basis W is assembled that, in practice, fulfils the objective of being able to280

produce approximate solutions x̂(ω) such that ‖r(ω)‖ ≤ rtol ∀ ω ∈ Ψ ⊃ Φ

assembling (7) only at a limited number of ω ∈ Ψ. The AKR algorithm is

outlined in Algorithm 3.

In the above, the user defined parameters S, α and εstag appear to play a

role in the creation of the basis. Selecting a lower α leads to obtaining more285

Arnoldi vectors for the enrichment procedure, namely Wωm,rtol2
, however re-

quiring larger memory for the storage of these vectors. Assembling these ad-

ditional vectors does not significantly increase the computational cost, as it

amounts only to a few additional iterations in Algorithm 1 or 2. Regarding the

stagnation parameters S and εstag, higher S or lower εstag leads to a more diffi-290

cult to satisfy stagnation criterion and thus to the addition of a larger number

of enrichment vectors to W before stagnation occurs. These two parameters

affect mostly the construction of Ω and s(ω), ω ∈ Ω but not the quality of the

output basis W.

The automatic procedure of Algorithm 3 resembles the reduced basis method295

in the way that it enriches the global basis by information extracted from the

system that, based on the assumption made, yields the highest residual within a

given interval, i.e. at ωm in [ωa, ωb]. However, the enrichment is conducted either

by including additional Arnoldi vectors for ωa, ωb ∈ Ω or by sampling new points

Ω← Ω ∪ {ωm}, starting by default and without loss of generality by the upper300

end of Ω. Instead of using the full solutions x(ω) of the system to construct the

projection subspace W, it employs the components of the full solutions i.e. the

Arnoldi vectors Vω, thus facilitating convergence of the solution for ω ∈ Ψ\Ω.

This implies that the Arnoldi vectors Vω for ω ∈ Ψ\Ω are approximated on an

iteratively built subspace based on Vω for ω ∈ Ω. Nevertheless, although the305

basis consists of information on the level of the Arnoldi vectors, the criterion

utilized to control the quality of the basis does not concern the similarity of the

14



Algorithm 3 Automatic Krylov recycling (AKR)

1: Input: Ψ ← [ωmin, ωmax], stagnation parameters εstag, α ∈ R and S ∈ N,

residual tolerance rtol ∈ R and an initial guess of the solution x0(ω) : Ψ→

CN ;

2: ωa ← ωmin; ωb ← ωmax; Ω← {ωa} ∪ {ωb};

3: Deploy Algorithm 1 for ωa and ωb with settings rtol1 ← rtol and

rtol2 ← αrtol to construct Vωa,rtol1
← [vωa,1 . . .vωa,s(ωa)],Vωb,rtol1

←

[ωa,ωb,1
. . .vωb,s(ωb)] and Vωa,rtol2

← [Vωa,rtol1
vωa,s(ωa)+1 . . .vωa,p(ωa)],

Vωb,rtol2
← [Vωb,rtol1

vωb,s(ωb)+1 . . .vωb,p(ωb)] respectively;

4: Construct the initial orthogonal augmentation basis W by QR decomposi-

tion on [Vωa,rtol1
Vωb,rtol1

];

5: for all ωm ← 0.5(ωa + ωb), where ωa, ωb consecutive values of Ω do

6: i← 1; r0(ωm)← b(ωm)−A(ωm)x0(ωm);

7: x̂i(ωm)←W(WHA(ωm)W)−1WHr0(ωm);

ri(ωm)← r0(ωm)−A(ωm)x̂i(ωm);

8: while ‖ri(ωm)‖ > rtol do

9: if Stagnation 6= 1 then

10: i← i+ 1

11: Orthogonalize vωa,s(ωa)+1,vωb,s(ωb)+1 to W to obtain

v⊥Wωa,s(ωa)+1,v
⊥W
ωb,s(ωb)+1

12: Enrich augmentation basis: W← [W v⊥Wωa,s(ωa)+1 v⊥Wωb,s(ωb)+1]

13: x̂i(ωm)←W(WHA(ωm)W)−1WHr0(ωm);

ri(ωm)← r0(ωm)−A(ωm)x̂i(ωm);

14: s(ωa)← s(ωa) + 1; s(ωb)← s(ωb) + 1;

15: else

16: Run Algorithm 2 with ω ← ωm, rtol1 , rtol2 to obtain

Wωm,tol1 ,Wωm,tol2 ,Vωm,tol1 ,Vωm,tol2 ;

17: W←Wωm,tol1 ; Ω← Ω ∪ {ωm};

18: end if

19: end while

20: end for

21: Output: global basis W ∈ CN×`
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true Arnoldi vectors Vωm for ωm ∈ Ψ\Ω to the potentially approximated ones,

but rather the distance of the true solution x(ωm) to the approximated x̂(ωm).

Since the objective of the algorithm is to define a projection basis W that310

is able to provide an approximation of the solution x̂(ω), ω ∈ Ψ of sufficient

quality dictated by rtol, it is not useful to employ techniques that potentially

accelerate the convergence of the solution approximations of single systems. As

implied by (9), leveraging a good initial guess can lead to faster convergence of

the approximated solution, however this would undermine the global character315

of the basis as x0(ω) takes a different value for each ω ∈ Ψ. Therefore, since

guaranteeing the quality of x0(ω) for all ω ∈ Ψ is not straightforward, it is

important that the basis is built with the most conservative approach of not

having any good initial guess available, thus selecting x0(ω) := 0 for all ω ∈ Ψ.

However, Algorithm 3 is expressed in the general form including an initial guess320

x0(ω) to accommodate cases such as parametrizations in boundary conditions

as reported in [42].

Attempting to approximate x(ω) for all ω ∈ Ψ leaves the method vulnerable

to memory excess while the augmentation basis W becomes larger. Although

restarting techniques could arise as a potential option to alleviate any memory325

concerns, losing certain information after each restart ruins the global character

of the basis and thus is not desirable. Alleviating potential memory concerns, a

memory constrained alternative of the proposed AKR algorithm is introduced

in section 3.2. Finally, as AKR is based on a FOM procedure, the efficiency be-

comes greater for systems that demonstrate good clustering of their eigenvalues330

as a lower number of Arnoldi vectors is required. Increasing the efficiency of the

presented technique also for systems that do not fulfil the above requirement

could occur by the combination with a suitable parameter dependent precondi-

tioner, which nonetheless is not examined in this work.

3.2. Memory constrained automatic Krylov recycling335

As the required memory can prove to be the bottleneck for the Automatic

Krylov Recycling algorithm, it is useful to define an alternative that takes into
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consideration a memory constraint and sets a maximum dimension of the global

projection basis. The constraint is applied by the means of an integer ` ∈ N that

indicates the maximum vectors allowed in a projection basis W = span{W}.340

Thus, the objective of the memory constrained algorithm is the construction of

W to ensure the residual

r(ω) = b(ω)−A(ω)x̂(ω) ⊥W, (14)

x̂(ω) ∈ x0(ω) +W, (15)

satisfies ‖r(ω)‖ ≤ rtol ∀ω ∈ Ψ` ⊆ Ψ, where Ψ` is determined by the algorithm

such that

rank(W) ≤ `. (16)

Deploying this constraint, the memory requirement ` is linked to the parameter

interval Ψ` for which W provides sufficiently accurate approximations of the

solutions x(ω). The algorithm is outlined in Algorithm 4345

Algorithm 4 initiates with the same steps as Algorithm 3. The augmentation

basis is iteratively enriched until either condition (16) is violated or ‖r(ωm)‖ ≤

rtol, where ωm is defined by any two consecutive elements ωa, ωb ∈ Ω by ωm :=

0.5(ωa + ωb). In the former case, Ω is truncated by its lower end min(Ω),

i.e. Ω ← Ω\{min(Ω)}, and the basis W is reassembled by orthogonalizing the350

Arnoldi vectors Vω,rtol1
= span{Kωs(ω)} of the remaining ω ∈ Ω. Then, after

executing Algorithm 2 for the new ωmin := min(Ω) for settings rtol1 and rtol2 to

ensure ‖r(ωmin)‖ ≤ rtol, the enrichment proceeds for the newly determined Ω

and Ψ` := [ωmin, ωmax]. Proceeding to the truncation of the interval Ψ from its

lower end is justified as by default defining ωm starts for the upper end of Ω.355

In case condition (16) is fulfilled for the preselected parameter range Ψ,

either the algorithm is ceased having ensured that the basis is valid for the

whole Ψ, or the basis can be further enriched with additional Arnoldi vectors

and extend Ψ in a forward manner. In detail, the algorithm proceeds by checking
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ωm := ωmin − ∆ω, where ∆ω := min(Ω\{ωmin}) − ωmin being the distance of360

the two smallest elements of Ω.

Algorithm 4 Memory constrained automatic Krylov recycling

1: Input: Ψ ← [ωmin, ωmax], stagnation parameters εstag, α ∈ R and S ∈ N,

residual tolerance rtol ∈ R, an initial guess of the solution x0(ω) : Ψ→ CN

and memory parameter ` ∈ N ;365

2: ωa ← ωmin; ωb ← ωmax; Ω← {ωa} ∪ {ωb};

3: Deploy Algorithm 1 for ωa and ωb with settings rtol1 ← rtol and rtol2 ← αrtol

to construct Vωa,rtol1
← [vωa,1 . . .vωa,s(ωa)],Vωb,rtol1

← [ωa,ωb,1
. . .vωb,s(ωb)]

and Vωa,rtol2
← [Vωa,rtol1

vωa,s(ωa)+1 . . .vωa,p(ωa)],

Vωb,rtol2
← [Vωb,rtol1

vωb,s(ωb)+1 . . .vωb,p(ωb)] respectively;370

4: Construct the initial orthogonal augmentation basis W by QR decomposi-

tion on [Vωa,rtol1
Vωb,rtol1

];

5: for all ωm ← 0.5(ωa + ωb), where ωa, ωb consecutive values of Ω do

6: i← 1; r0(ωm)← b(ωm)−A(ωm)x0(ωm);

7: x̂i(ωm)←W(WHA(ωm)W)−1WHr0(ωm);375

ri(ωm)← r0(ωm)−A(ωm)x̂i(ωm);

8: while ‖ri(ωm)‖ > rtol do

9: if Stagnation 6= 1 then

10: i← i+ 1

11: Orthogonalize vωa,s(ωa)+1,vωb,s(ωb)+1 to W to obtain380

v⊥Wωa,s(ωa)+1,v
⊥W
ωb,s(ωb)+1

12: Enrich augmentation basis: W← [W v⊥Wωa,s(ωa)+1 v⊥Wωb,s(ωb)+1]

13: x̂i(ωm)←W(WHA(ωm)W)−1WHr0(ωm);

ri(ωm)← r0(ωm)−A(ωm)x̂i(ωm);

14: s(ωa)← s(ωa) + 1; s(ωb)← s(ωb) + 1;385

15: else

16: Run Algorithm 2 with ω ← ωm, rtol1 , rtol2 to obtain

Wωm,tol1 ,Wωm,tol2 ,Vωm,tol1 ,Vωm,tol2 ;

17: W←Wωm,tol1 ; Ω← Ω ∪ {ωm};

18: end if390
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19: end while

20: if rank(W) > ` then

21: Ω← Ω\{ωmin}; ωmin ← min(Ω);

22: Reassemble W with W ← Kω1

s(ω1) ∪ · · · ∪ K
ωmax

s(ωmax), with

ω1, . . . , ωmax ∈ Ω;395

23: Run Algorithm 2 with ω ← ωmin, rtol1 , rtol2 to obtain

Wωm,tol1 ,Wωm,tol2 ,Vωm,tol1 ,Vωm,tol2 ;

24: Ψ` ← [ωmin, ωmax]

25: else

26: ∆ω ← min(Ω\{ωmin})− ωmin400

27: Repeat 6- 19 setting ωm ← ωmin −∆ω until rank(W) ≥ `

28: ωmin ← ωmin −∆ω; Ψ` ← [min(Ω),max(Ω)];

29: end if

30: end for

31: Output: global basis W ∈ CN×` and validity range Ψ`405

As seen in Step 22 of the algorithm, in case rank(W) > `, W is reassem-

bled eliminating the components associated with ωmin which is also removed

from Ω. This procedure implies that the respective Arnoldi vectors for ω ∈ Ω

need to be stored along with the order of vectors s(ω), ω ∈ Ω to enable their

later reutilization in the reassembly step. At this step, a QR decomposition410

is employed to create an orthonormal basis by these Arnoldi vectors. As this

reinitialization only occurs for a moderate amount of times, the accompanying

cost is not considered significant.

4. Combination of the AKR with model order reduction

Guaranteeing rtol for ω ∈ Ψ of (7) can be either leveraged in a computational415

scheme or in combination with a model order reduction scheme. In the first case,

the approximate solution obtained by a projection on the reduction basis W can

be employed as the initial guess for an iterative solution scheme, while in the

latter the sequence of linear systems is reduced to a reduced-order parametric
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system, gaining significantly in the computational cost required both for the as-420

sembly and solution of each individual system. In this section the combination of

the automatic Krylov recycling technique with a model order reduction scheme

for non-affine parametric systems is elaborated. First, a Galerkin projection

is demonstrated in combination with an appropriate polynomial approximation

of the system. Subsequently, the proposed model order reduction technique is425

reviewed in the context of Boundary Elements.

4.1. Galerkin Projection of non-affine parametric linear systems

Deploying the Galerkin projection to a linear system is based on the approx-

imation of the true solution x as a linear combination of the basis vectors of W

to yield an approximated solution430

x(ω) ≈ x̂(ω) = x0(ω) + Wy(ω), (17)

where y(ω) are the degrees of freedom of the reduced system and x0(ω) an

initial guess for the solution. Since, often in MOR the initial guess is elected as

x0(ω) = 0, in the following expressions x0(ω) is omitted. Substituting (17) in

(7) and multiplying from the left with the conjugate transpose of the projection

matrix WH , yields the reduced system435

WHA(ω)Wy(ω) = WHb(ω), (18)

which can be solved more efficiently than the full system. This definition of

the reduced system in (18) and approximate solution x̂ is similar to the one

introduced in (8) and (9) employed as the objectives of AKR in section 3. Thus,

AKR can be leveraged in the offline stage of a MOR technique to obtain the

reduction basis W.440

Nevertheless, having W does not lead to a straightforward projection pro-

cedure, since as demonstrated also in [30] the sequence of system assembly

and projection is algorithmically quite important. This holds especially re-

garding non-affine parametric systems, where A and b are not of the form
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A(ω) =
∑K
k=1 Θk(ω)Ak with Ak ∈ CN×N and Θk : Ψ → C, implying that

each system needs first to be assembled and then projected, thus requiring a

full system assembly for each ω ∈ Ψ. Instead, in case the projection basis W

is already constructed, it is possible to reverse this sequence by first leveraging

a polynomial approximation of the system so that it is expressed in an affine

way. Given that A(ω),b(ω) are analytic functions of ω in Ψ, the system can

be approximated by polynomial expansions of orders Mmax and qmax, rendering

the parametric dependency affine as(Mmax∑
i=0

ci(ω)Ai

)
x(ω) =

qmax∑
q=0

gq(ω)bq, (19)

where Ai ∈ CN×N ,bq ∈ CN are the parameter-independent system coefficients

and ci, gq the scalar polynomial functions of ω. The type of the selected polyno-

mial approximations depends on the analytic functions that are approximated

and the respective orders Mmax and qmax can be determined a-priori in many

cases [30, 43]. Reversing the order of assembling and projecting is conducted by

replacing (19) in (18) and shifting the summation operation to obtain a Galerkin

projected matrix polynomial as

Mmax∑
i=0

ci(ω)WHAiWy(ω) =

qmax∑
q=0

gq(ω)WHbq ⇔

Mmax∑
i=0

ci(ω)Ai,redy(ω) =

qmax∑
q=0

gq(ω)bq,red,

(20)

where Ai,red ∈ C`×` and bq,red ∈ C` are the coefficients of the reduced polyno-

mial system and ` := rank(W). In such a manner, only assembly and projection

of the reduced system takes place, avoiding the assembly of the full system for

each ω ∈ Ψ. Finally, in case W is not available beforehand, the polynomial

expansion of the system might inflict memory excess as all Ai need to be stored445

simultaneously.

4.2. Memory constrained MOR for a broad parameter domain

Transforming the system of (7) in a matrix polynomial as in equation (19)

requires storing all the matrix coefficients of the system. Although the storage
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Algorithm 5 Memory constrained MOR for non-affine parametric systems with

analytic matrix entries

1: Input Ψtot ← [ωmin, ωmax], memory parameter ` ∈ N, residual tolerance

rtol ∈ R, stagnation parameters α, εstag ∈ R and S ∈ N;

2: Ψ← Ψtot;

3: Run Algorithm 4 with input Ψ, rtol, α, S, εstag to obtain Ψ`1 ,W1;

4: i← 1;

5: while Ψ`i ⊂ Ψ do

6: Ψ← Ψ\Ψ`i ; i← i+ 1;

7: Run Algorithm 4 with input Ψ, rtol, α, S, εstag to obtain Ψ`i ,Wi;

8: end while

9: Q← i;

10: Output W1 ∈ CN×`1 , . . . ,WQ ∈ CN×`Q and Ψ`1 , . . . ,Ψ`Q where Ψtot =

Ψ`1 ∪ · · · ∪Ψ`Q

requirements are considerably relaxed by exploiting a projection of the coef-450

ficient matrices Ai, they might still prove to be the bottleneck regarding the

proposed AKR-MOR technique. In this case the memory constrained alterna-

tive of AKR in combination with a windowing technique can prove beneficial

to alleviate and control the memory required for the simultaneous storage the

projected matrices.455

The proposed technique accepts as input the target interval Ψtot, for which

the model reduction scheme needs to provide high quality approximations, and

a maximum dimension of the reduction basis `. After executing Algorithm 4,

a truncated parameter interval Ψ` is yielded for which the memory constrained

basis ensures a predefined residual tolerance rtol. The same procedure is sequen-460

tially deployed for the remaining interval Ψ ← Ψ\Ψ` until the whole interval

Ψtot is covered, namely until Ψtot = Ψ`1 ∪ · · · ∪Ψ`Q , where Q is the number of

subintervals. This procedure is outlined in Algorithm 5.
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4.3. The AKR for model reduction of acoustic BEM problems

The above technique can be utilized in the context of the conventional acous-465

tic Boundary Element Method. The linear system that is yielded as a result of

a Boundary Element approximation takes the form of

H(k)p(k) = G(k)u(k), k ∈ Ψ, (21)

where p,u are the pressure and normal velocity respectively, k the wavenumber

related to frequency f with the speed of sound in the medium c as k = 2πf
c

and Ψ := [kmin, kmax] ⊂ R a user input interval. G,H : Ψ → CN×N are the470

non-affine parametric BEM system matrices arising from the discretization of

the single and double layer potentials [33, 44]. After application of the known

boundary conditions, equation (21) is transformed to a linear system

A(k)x(k) = b(k), (22)

where A : Ψ → CN×N ,b : Ψ → CN , which is similar to equation (7). Being a

non-affine parametric system, the deployment of the proposed AKR-MOR tech-475

nique is suitable. Additionally, as illustrated in [30] and [43] the BEM system

matrices can be efficiently approximated by a matrix polynomial rendering the

frequency dependency affine. This allows reversing the procedures of assem-

bling and projection of the system on a representative basis enabling efficient

frequency sweep analyses.480

Furthermore, the deployment of the developed AKR-MOR technique is facil-

itated by the BEM system matrices that demonstrate well-clustered eigenvalues

as shown in [32]. Thus, a potential deployment of the full orthogonalization

method or GMRES converges within a moderate number of iterations even

without preconditioning [35]. Thus, employing the AKR the dimension of the485

resulting final global projection basis will remain within reasonable extents.

Finally, concerning the deployment of the method for interior undamped

BEM problems that normally include resonances, it is more appropriate to

utilise a residual measure normalized against a quantity, which is also affected
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by the existence of resonances. Using the common normalized residual might490

inflict a local excess of the residual tolerance, which normally would not ap-

pear employing the true relative error, which is normalized with the true or

approximated solution. For that reason, it is decided to proceed with a residual

quantity normalized against the approximated solution instead of the respective

right hand-side as495

rnorm(k) :=
r(k)

‖x̂(k)‖
, (23)

with x̂(k) being the approximated solution and r(k) the respective residual.

4.4. An alternative reduced basis method for the assessment of the AKR-MOR

As elaborated in section 3, AKR can be seen as an alternative to the reduced

basis method. The basic difference lies on the input taken for the construction

of the projection basis, as the latter utilizes the full solutions at an ordered set of500

parameter values Ω, whereas the former employs vectors that lead to sufficient

approximations of the full solution i.e. the Arnoldi vectors at Ω. This implies

on the one hand that the yielded basis will span a larger set of directions but

on the other hand, employing the same Ω, it will be more efficient for a broader

interval.505

The second difference can be located in the error estimator that the two

techniques employ. Although they both leverage a residual based error estima-

tor, the reduced basis method necessitates the calculation of the residual for

a fine grid of parameter values Φ ⊃ Ω, with |Φ| � |Ω| to pinpoint the pa-

rameter value for which the worst approximated solution is yielded, while the510

AKR assumes that the highest error lies at ωm and thus enforces the desired

residual accuracy rtol at ωm, where ωm := 0.5(ωa + ωb) with ωa and ωb being

two consecutive elements of Ω. Computing the residual on Φ can be relatively

simple for parametric systems with affine dependency, but in case of non-affine

parametric dependencies, full system assemblies are required for all the values515

of Φ, inducing a high cost for each iteration of the reduced basis method.
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Algorithm 6 Alternative reduced basis method

1: Input Ψ← [ωmin, ωmax] and rtol ∈ R

2: ωa ← ωmin and ωb ← ωmax;

3: Construct full solutions at ωa, ωb, x(ωa) and x(ωb);

4: Construct an orthogonal basis W by a QR decomposition on [x(ωa) x(ωb)];

5: ΩRBM ← {ωa} ∪ {ωb};

6: for all ωm ← 0.5(ωa + ωb), where ωa, ωb consecutive values of ΩRBM do

7: x̂(ωm)←W(WHA(ωm)W)−1WHb(ωm);

r(ωm)← b(ωm)−A(ωm)x̂(ωm);

8: if ‖r(ωm)‖ > rtol then

9: x(ωm)← A−1(ωm)b(ωm)

10: Orthogonalize x(ωm) to W to obtain x⊥W(ωm)

11: W← [W x⊥W(ωm)]; ΩRBM ← ΩRBM ∪ {ωm};

12: end if

13: end for

14: Output global basis W ∈ CN×`

The assumption made in the AKR is valid due to the broadband conver-

gence behaviour offered by the recycling of the components of the full solutions.

Making the same assumption in the context of the reduced basis approach, an

alternative Reduced Basis Method (RBM) can be devised that constructs a re-520

duced basis W = span{W} to ensure that approximate solutions x̂(ω) ∈ W of

the system satisfy ‖r(ω)‖ ≤ rtol ∀ ω ∈ Φ ⊂ Ψ, where Φ is a discrete set with

|Φ| = Ntot. Attempting to keep the number of systems assembled to a min-

imum, the basis W is constructed by checking the residual condition only at

ωm := 0.5(ωa + ωb), where ωa, ωb ∈ ΩRBM ⊂ Ψ and ΩRBM is a discrete ordered525

set with |ΩRBM| � |Φ|. In case this condition is not satisfied, it appends the full

solution of the system x(ωm) to the reduction subspace, i.e.W ←W∪{x(ωm)}.

In that way, each system is constructed only once and only if ‖r(ωm)‖ ≤ rtol,

x(ωm) is evaluated. However, given the relatively narrowband influence of ap-

pending x(ωm) to the reduction subspace W, ‖r(ω)‖ ≤ rtol is satisfied only in530
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the direct vicinity of ω ∈ ΩRBM. Thus, deploying both the alternative RBM and

the AKR, it is expected that |ΩAKR| < |ΩRBM|. This implies that in comparison

with the AKR, the alternative RBM requires not only the full assembly but also

the full solution for a larger number of systems, consequently inducing a higher

computational cost in the offline phase of a corresponding MOR technique. The535

procedure followed by the alternative RBM is presented in Algorithm 6.

5. Numerical Assessment

In this section the performance of the proposed AKR algorithm and the re-

spective MOR techniques are investigated in terms of the quality of the yielded

bases and the accompanying cost induced. The assessment is conducted by540

employing the full solutions as well as the alternative RBM for benchmarking

purposes. The latter is utilised to bring AKR in the right context and to as-

sess its performance with respect to a comparable competitive technique. The

comparison is performed by evaluating the performance of both techniques on

two numerical multiresolution parametric examples. All computations are per-545

formed on a single machine of 32GB RAM and 2.9GHz processing power.

5.1. AKR on a random system

In order to demonstrate the general applicability of the method, the first

example constitutes a random system with a given single parameter non-affine

dependency and predefined eigenvalue distribution. It is treated solely with the550

AKR technique, as the assumed parametric dependency is not analytic for each

matrix entry. Since the model reduction is considered only after the assem-

bly of the system, AKR is compared with other conventional system solution

techniques as well as with an approximation yielded by a projection on an al-

ternative RBM produced basis. The efficiency of the technique is assessed in555

terms of the resulting residual as well as the wall-clock time required for each

method.
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5.1.1. Construction and solution of the system

A random densely populated square system comprising of 2500 equations is

constructed as560

Arand := rand(2500) + j · rand(2500), (24)

where Arand ∈ C2500×2500, j is the imaginary unit and rand(N) constitutes

the Matlab R© function that generates an N ×N array of uniformly distributed

values. As documented in section 3, AKR is more efficient for systems with

good clustering of their eigenvalues. Thus, in order to obtain such a system,

the eigenvalues of the matrix are manipulated accordingly. In detail, assuming565

Arand is diagonalizable, after deploying the eigendecomposition

Λ = Θ−1ArandΘ (25)

the diagonal matrix Λ = diag(λ1, . . . , λN ) containing the eigenvalues of the

matrix λi, as well as the corresponding eigenvector matrix Θ are obtained.

The eigenvalues of the matrix are shifted by the highest eigenvalue magnitude

as Λwc := Λ + I max(‖λi‖), i := 1, . . . , N , where I is the identity matrix, to570

guarantee that a reconstructed matrix Awc is well-conditioned. To induce a non-

affine parametric dependency to the system both eigenvectors Θ and eigenvalues

Λwc are perturbed with an analytic function of a parameter ω as

Λpert(ω) :=Λwc + Y(ω),

Θpert(ω) :=Θ + Φ(ω).
(26)

where Y(ω) : R → CN×N is a diagonal matrix and Φ(ω) : R → CN×N . The

diagonal entry λi,pert(ω) of Λpert(ω) depends on the diagonal entry yi of Y by575

the analytic function

λi,pert(ω) := λi,wc + ejyiω, (27)

where λi,wc is the diagonal entry of Λwc and ω a single dimension parameter in

R. The perturbed eigenvector θi,pert is the ith column of Θpert and is defined
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as

θi,pert(ω) := θi + ejφiω (28)

where θi is the respective unperturbed eigenvector, φi is the ith column of Φ580

and

ejφiω :=


ejφ1,iω

...

ejφN,iω

 . (29)

In order to create different clusters of eigenvalues a monotonically increasing

function ξ(ω) : R→ R is employed and bξ(ω)c number of eigenvalues are scaled

as

λi,recon(ω) :=

103 · λi,pert(ω) i ≤ ξ(ω)

λi,pert(ω) i > ξ(ω),

(30)

where λi,recon(ω) is the ith entry of the diagonal matrix Λrecon(ω). Finally, the585

system matrix is reconstructed as

Arecon(ω) = Θpert(ω)Λrecon(ω)Θ−1
pert(ω). (31)

The system is completed by electing a random parameter dependent right

hand-side as

brand(ω) :=


cos(b1ω)

...

cos(bNω)

 , (32)

where bi is the ith component of a vector b of uniformly distributed random

values. The final parametric system is590

Arecon(ω)x(ω) = brand(ω), ω ∈ Ψ (33)
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Figure 1: Eigenvalue distribution for random complex matrix of size 2500

where Ψ := [1, 10]. In Figure 1 the real and imaginary part of the eigenvalues

λi,recon, i := 1, . . . , 100 are depicted for three values of ω ∈ Ψ. One main cluster

of eigenvalues appears to be dominant, while increasing the value of ω induces

a more complicated spectrum with more eigenvalue clusters.

The parametric system of (33) is resolved by constructing reduction bases595

WAKR and WRBM, leveraging AKR and the alternative RBM respectively with

a residual tolerance rtol := 10−2. The system is subsequently projected on the

constructed bases and solved to obtain the approximate solutions x̂AKR(ω) and

x̂RBM(ω) for all ω ∈ Φ. The set Φ is defined by discretizing Ψ with ∆ω = 0.05,

resulting in |Φ| = 181.600

In Figure 2a the normalized residuals corresponding to x̂AKR(ω) and x̂RBM(ω)

are shown. Alongside, an additional residual curve is plotted to indicate the

quality of approximation, utilizing the full solutions at ω ∈ ΩAKR, which is

the AKR sampled parameter values, in an RBM approach. In Figure 2b the

sampled parameter values ΩAKR, ΩAKR are shown combined with the subspace605

dimension that is contributing to the reduction basis. While in the case of the

AKR the respective subspace dimension indicates the number of orthogonal-

ized Arnoldi vectors employed at each ω ∈ ΩAKR, the one-dimensional subspace

involved in the two remaining procedures at each ω ∈ ΩRBM and ω ∈ ΩAKR im-

plies that only the full solutions are inserted in the respective RBM approaches.610

Inspecting Figure 2, AKR outperforms the two RBM approaches with re-

spect to the level of residual achieved for the corresponding Ω employed. On
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(a) Normalized residuals employing alternative RBM, AKR and and RBM with x(ω), ω ∈ ΩAKR.

(b) Configurations for alternative RBM, AKR and RBM with x(ω), ω ∈ ΩAKR.

Figure 2: Solution of random complex system of size 2500

the one hand, concerning the construction of the reduction basis, the alternative

RBM approach necessitates full solutions at an ΩRBM, with |ΩRBM| � |ΩAKR|

to yield a residual that lies below the predefined rtol. In detail, the alternative615

RBM employs 57 full assemblies and 29 full solutions, while the AKR neces-

sitates only 19 full assemblies and 10 partial solutions. Hence, not only does

it result into assembling and solving more full systems than AKR, but it also

offers an approximation that largely over-achieves the preselected residual level

rtol. On the other hand, constructing the reduction basis with an RBM proce-620

dure employing only the full solutions x(ω), ω ∈ ΩAKR provides approximations

of considerably lower quality than the AKR. On the contrary, the AKR algo-

rithm yields a residual curve that follows closely rtol. Nevertheless, it cannot be

overlooked that including subspaces of higher dimension at each ω ∈ ΩAKR as

proposed by AKR, leads to a reduced basis which is larger than the one created625

in both RBM configurations. As presented in section 3.2, the efficient splitting
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of Ψ can be the remedy against a potentially high dimensionality of the reduced

basis.

Due to the increasing complexity of the system at higher parameter values

corresponding to additional eigenvalue clusters, both the alternative RBM and630

AKR generate a finer sampling grid Ω for ω > 5.5. However, although both

algorithms initiate their bisection procedure by default from the upper end of Ω,

only in the RBM case the subspaces sampled at ΩRBM, ω < 5.5 are increasingly

influencing the accuracy of x̂RBM(ω) for ω > 5.5. This leads to the conclusion

that splitting Ψ to several subintervals can be more efficient in case of the AKR,635

where iteratively adding the Arnoldi vectors at ωm ∈ ΩAKR affects the accuracy

of x̂(ω) only in the direct vicinity of ωm.

5.1.2. Computational cost assessment

Apart from the efficiency of the proposed method with respect to the quality

of the resulting approximations, its computational performance is examined.640

In Table 1 the computational costs of solving the system with the different

methods are given in terms of the wall-clock time. Overall, the system assembly

requires the highest amount of time and thus it follows that the cost for the

construction of the projection bases WAKR and WRBM is lower for the AKR

than leveraging the alternative RBM approach, as a result of |ΩRBM| � |ΩAKR|.645

This implies that AKR is also more computationally advantageous comparing

to the conventional RBM. Although in that case a fewer number of full solutions

might be required, as the construction of ΩRBM is optimized, residuals for all

ω ∈ Φ are computed in each iteration, leading to multiple system assemblies per

iteration.650

Additionally, given the already constructed bases, a reduction of the cost

is also apparent regarding the solution time per system comparing both to a

direct solution scheme and the iterative solution strategy. Nevertheless, given

the Φ under consideration and the fixed system assembly cost, which is identical

for all solution methods, the overhead offline cost needed for the RBM and655

the AKR methods is not compensated. Thus, the sequential solution for each
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Operation

Iterative

solution

(GMRES)

Direct

solution

Alternative

RBM

solution

AKR

solution

Total assembly time 13m 13m 13m 13m

Construction of

projection basis
- - 6m 4m

Solution per system 0.25s 0.65s 0.04s 0.12s

Total wall-clock time 13m 45s 15m 19m 7s 17m 22s

Table 1: Computational costs of different operations included in the solution of the

complex random system of 2500 unknowns.

ω ∈ Φ with an iterative method (GMRES) is the most economical strategy.

Selecting a finer resolution grid Φ could lead in a straightforward manner to

a clear computational advantage of the AKR. However, the gain can be more

pronounced speeding up not only the solution time but also the system assembly660

time as proposed with the combination of AKR with MOR and demonstrated

in the following example.

5.2. The AKR for the model reduction of an acoustic BEM system

In the second example AKR and the alternative RBM approaches are lever-

aged in the offline phase of a MOR technique, thus speeding up both the as-665

sembly and the solution of the corresponding systems. The parametric problem

under consideration arises by requiring a frequency sweep analysis for a BEM

academic test case. AKR is benchmarked against the alternative RBM and the

full solution. Finally, this example is also solved with the proposed memory

constrained AKR-MOR technique introducing a constraint regarding the max-670

imum dimension of the projection basis. The assessment of the technique is

conducted both in terms of the resulting residuals and the total wall clock time

required.

32



5.2.1. Construction and solution of system

In this section AKR and the alternative RBM are leveraged to automatically675

produce the projection bases WAKR and WRBM, utilized in a Galerkin model

reduction scheme to reduce the cost of a multiresolution BEM simulation of an

academic example. The model considered is the interior Helmholtz problem of

a cube with a vibrating cap as in Figure 3a. Positioning the unit cube at the

start of the axes O := [0, 0, 0] and towards their positive direction, the receiver680

is located at R1 := [0.75, 0.75, 0.75]. The cube consists of 2606 Degrees of

Freedom (DOF), which is a discretization that, considering the requirement of

6 elements per wavelength [45], yields an accurate response for the wavenumber

range of krange := [0, 22]m−1. The assembly and solution of BEM matrices is

conducted in a Matlab environment by the OpenBEM code [46]. The spectrum685

of the resulting BEM system matrix for k := 2, 10, 20 is given in Figure 3b and

consists of one big cluster of eigenvalues and an increasing number of additional

clusters for an increasing value of k.

un = 1ms

100cm

vibrating cap

R1

O x
y

z

(a) Cube model (b) Eigenvalue distribution

Figure 3: Cube model and spectral properties of system matrices

The frequency sweep is conducted for a Ψ := [50, 1000]Hz and taking a

∆f := 1Hz, it results in a grid of values Φ ⊂ Ψ with |Φ| = 951, thus requiring690

the solution of 951 systems. The desired sweep is performed by employing

both AKR and the alternative RBM for the offline phase of the MOR strategy

and by the conventional BEM approach. In the offline phase of both MOR
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Figure 4: Response at R1; Cube with vibrating cap

techniques the normalized residual for resonant problems (section 4.3) is used

as error indicator and the residual tolerance is set at rtol := 10−2. Comparing695

the resulting response on R1 for the AKR-MOR to the response acquired by a

conventional BEM approach in Figure 4, no differences are discernible proving

that the considered rtol is sufficient.

In Figure 5 the residuals produced by the approximated solutions are shown

together with their respective sampling patterns used for the construction of700

ΩAKR and ΩRBM. Comparing the AKR with the alternative RBM, although

the approximated solutions x̂AKR and x̂RBM yield residuals of approximately

the same quality, |ΩRBM| � |ΩAKR| holds, denoting a computational advantage

of AKR. Specifically, the alternative RBM requires 44 full solutions to assem-

ble a basis WRBM, which can provide approximate solutions that satisfy rtol,705

while the AKR requires only 9 partial solves to construct WAKR. Furthermore,

inspecting the number of full assemblies, the alternative RBM requires 87 full

assemblies, while the AKR requires only 17. Nevertheless, comparing the di-

mensions of the subspaces employed at ΩAKR and ΩRBM, AKR produces a basis

spanning a subspace of 157 dimensions while the alternative RBM basis spans710

a subspace of only 44 dimensions, which is identical to the number of the full

solutions required.

The advantage of using the Arnoldi vectors instead of the full solutions is

evident in the comparison of the AKR with an RBM approach taking only the

x(ω), ω ∈ ΩAKR. Using the full solutions guarantees a low residual only in the715
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(a) Normalized residuals employing alternative RBM, AKR and RBM with x(ω), ω ∈ ΩAKR.

(b) Configurations for alternative RBM, AKR and RBM with x(ω), ω ∈ ΩAKR.

Figure 5: Residuals and sampling patterns fro the reduction of a BEM model of a cube with

a vibrating cap

neighbourhood of the parameter ω ∈ ΩAKR, while using the associated Arnoldi

vectors leads to a satisfactory residual for all ω ∈ Ψ. Of course, the difference in

the size of the reduction basis between AKR and both RBM approaches cannot

be disregarded. Nevertheless, this can be remedied by imposing a memory

constraint as proposed in section 4.2 linking the maximum size of the basis with720

a frequency interval as is demonstrated in section 5.2.3.

5.2.2. Computational cost assessment

Similarly to the random system, the computational cost is also examined for

the BEM system under consideration. As elaborated in section 4.3, the model

reduction approach reduces the assembly time by first projecting a polynomial725

matrix approximating the system. On the contrary, the conventional BEM

approach necessitates sequential assemblies for each individual ω ∈ Φ. The ad-

vantage of leveraging a MOR technique in combination with a kernel polynomial
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expansion has been demonstrated in [30], leading to significant acceleration in

both the assembly and the solution of the system. Since AKR and RBM can730

be utilised as a technique to construct the projection basis WAKR and WRBM

respectively, the focus here will be given to the cost related to the offline phase

of the respective MOR techniques.

Operation
Alternative RBM

solution
AKR solution BEM

Construction of

projection basis
12h 36m 2h 33m -

Construction of Matrix

Polynomial
7h 13m 7h 13m -

Total Assembly time 2s 15s 137h 22m

Total Solution Time 1s 4s 19m

Total Time 19h 49m 9h 46m 137h 41m

Table 2: Computational costs of different operations included in the solution of the

BEM system of the interior Cube problem.

In Table 2 the wall-clock times required by both the AKR and the alterna-

tive RBM are given in comparison with the respective cost of the conventional735

BEM. Due to the use of Matlab as the development environment, the cost of

the system assembly ranks as the highest cost, associating approximately 9 min-

utes for a single BEM matrix. Simulating larger problems could lead to a more

pronounced cost for solving the system than assembling due to the correspond-

ing algorithmic complexities scaling with O(N2) for assembling and O(N3) for740

solving. Comparing the cost of the two methods employed for the construction

of the projection bases WAKR and WRBM, AKR necessitates only 20% of the

time required in the alternative RBM. In effect, as the cost of solving the sys-

tem is almost negligible to the one of the assembly phase, the advantage of the

AKR is linked with the smaller number of systems that are assembled in the745

offline stage. Investigating larger systems, the computational advantage would

also incorporate the gain of avoiding to fully solve the system at ω ∈ ΩAKR.

36



5.2.3. Memory constrained AKR for the MOR of an acoustic BEM system

Constructing the reduction basis with the AKR leads to reduced order mod-750

els that combined with a kernel polynomial expansion might inflict a memory

excess. Although in this case, the corresponding reduced order model (ROM)

is composed of 157 DOFs, which can be easily handled, for larger models this

can prove critical and thus using the memory constrained AKR can be benefi-

cial. In this section, the same internal cube (2606 DOFs) Helmholtz problem755

is reduced with the memory constrained AKR to approximate the solution of

the same interval Ψtot := Ψ employing only 80 DOFs. The number of DOFs in

this case is selected as approximately 50% of the reduced DOFs resulted by the

basic AKR approach, i.e. ` := 80, to demonstrate the capability of the algorithm

to impose a size constraint. However, in case of larger models the number of760

reduced DOFs can be effectively linked to the system memory.

Subinterval Ψ`1 Ψ`2 Ψ`3 Ψ`4 Ψ`5

Frequency [Hz] 50 − 300 300 − 560 560 − 730 730 − 880 880 − 1000

Basis size 45 79 80 79 79

Table 3: Frequency subintervals yielded by Algorithm 5

Deploying Algorithm 5 results in a separation of the initial parameter interval

Ψtot into 5 smaller subintervals with Ψtot = Ψ`1∪· · ·∪Ψ`5 and to the correspond-

ing projection bases W1, . . . ,W5. The frequency intervals Ψ`i , i := 1, . . . , 5 and

the dimension of the basis Wi corresponding to each Ψ`i is given in Table 3.765

Furthermore, in Figure 6a and Figure 6b the normalized residuals yielded by the

deployment of the reduction bases Wi to the whole Ψtot and the corresponding

sampling within each Ψ`i are demonstrated respectively.

As expected, the residuals originating from the individual approximations

employing Wi satisfy the predefined residual tolerance of rtol := 10−2 within770

the respective Ψ`i , while they fail to satisfy rtol outside the interval. Judg-

ing from the sampling occurring within the subintervals, the subspace of the
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(a) Normalized residuals of response for different bases for individual intervals resulting from Algo-

rithm 5.

(b) Sampling within the windows of memory constrained AKR configuration.

Figure 6: Cube with vibrating cap

highest dimension is required at the upper end of the subinterval. This can be

explained as, on the one hand, the procedure starts ensuring convergence from

the higher part of the interval, while on the other hand, physically, it signifies775

an increased influence of the subspaces assembled at higher frequencies to the

solution of the lower frequency systems as reported previously in [30]. Based on

the residual curves as well as on the respective validity intervals, it follows that

higher frequencies with more complex resonant behaviours, as expected, neces-

sitate recycling of subspaces of higher dimension to achieve the predefined rtol.780

This implies that setting a memory constraint results in narrower subintervals

for higher frequencies and broader for the lower frequency bands.

6. Conclusion

In this work a novel method for automatically recycling Krylov subspaces

across a predefined parameter interval for parametric linear systems is intro-785

duced. The method proposes selective sampling of Krylov subspaces on an
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automatically produced set of parameter values to construct a global projection

basis, such that the approximate solution yielded by projection on the created

basis satisfies a predefined residual tolerance for the interval considered. The

proposed method is employed in the context of model order reduction of non-790

affine systems in combination with a matrix polynomial expansion to render

the parametric dependency affine and alleviate the cost of parametric sweeps.

It aims at minimizing the number of systems that need to be assembled and

solved in the offline phase of the MOR strategy. Due to the polynomial ap-

proximation of the system, even the reduced model can be prone to memory795

excess motivating the development of a memory constrained model reduction

technique. The technique proposed accepts a maximum size for the produced

basis leading to a truncated parametric region of validity. Sequential deploy-

ment of the memory constrained algorithm leads to a windowing technique to

cover the full parameter space required.800

Since the AKR algorithms are based on a Krylov based iterative solution pro-

cedure, their applicability is limited to systems with rather clustered eigenvalues

that facilitate fast convergence. System preconditioning that can potentially

improve the spectral properties of the examined system is not considered. The

techniques are tested on a randomly generated system that demonstrates the805

desired eigenvalue clustering properties and on a BEM system. The approxima-

tion and the efficiency of the method is compared to an alternative version of the

reduced basis method that employs only a small number of system assemblies.

Comparing the wall-clock times and the accuracy of the methods, the AKR

method significantly speeds up the solution of the system in a parameter sweep810

calculation and in comparison to the alternative RBM method employs fewer

systems assemblies. The acceleration offered becomes more pronounced in case

the AKR method is used in a MOR context as the cost of the system assembly

is decreased. Finally, the proposed windowing technique is employed to split

the parameter interval into different regions which also correspond to different815

reduction bases.
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