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Abstract. Programs for multiprocessor machines commonly perform
busy waiting for synchronization. We propose the first separation logic
for modularly verifying termination of such programs under fair schedul-
ing. Our logic requires the proof author to associate a ghost signal with
each busy-waiting loop and allows such loops to iterate while their cor-
responding signal s is not set. The proof author further has to define
a well-founded order on signals and to prove that if the looping thread
holds an obligation to set a signal s′, then s′ is ordered above s. By
using conventional shared state invariants to associate the state of ghost
signals with the state of data structures, programs busy-waiting for ar-
bitrary conditions over arbitrary data structures can be verified.

1 Introduction

Programs for multiprocessor machines commonly perform busy waiting for syn-
chronization [22,23]. In this paper, we propose a separation logic [24,31] to mod-
ularly verify termination of such programs under fair scheduling. Specifically, we
consider programs where some threads busy-wait for a certain condition C over
a shared data structure to hold, e.g., a memory flag being set by other threads.
By modularly, we mean that we reason about each thread and each function in
isolation. That is, we do not reason about thread scheduling or interleavings. We
only consider these issues when proving the soundness of our logic. Assuming
fair scheduling is necessary since busy-waiting for a condition C only termi-
nates if the thread responsible for establishing the condition is sufficiently often
scheduled to establish C.

Busy waiting is an example of blocking behaviour, where a thread’s progress
requires interference from other threads. This is not to be confused with non-
blocking concurrency, where a thread’s progress does not rely on—and may in
fact be impeded by—interference from other threads. Existing proposed ap-
proaches for verifying termination of concurrent programs consider only pro-
grams that only involve non-blocking concurrent objects [32], or primitive block-
ing constructs of the programming language, such as acquiring built-in mutexes,
receiving from built-in channels, joining threads, or waiting for built-in monitor
condition variables [2, 5, 19], or both [11]. Existing techniques that do support
busy waiting are not Hoare logics; instead, they verify termination-preserving
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contextual refinements between more concrete and more abstract implementa-
tions of busy-waiting concurrent objects [15, 21]. In contrast, we here propose
the first conventional program logic for modular verification of termination of
programs involving busy waiting, using Hoare triples as module specifications.

In order to prove that a busy-waiting loop terminates, we have to prove that
it performs only finitely many iterations. To do this we introduce a special form
of ghost resources [13] which we call ghost signals. As ghost resources they only
exist on the verification level and hence do not affect the program’s runtime
behaviour. Signals are initially unset and come with an obligation to set them.
Setting a signal does not by definition correspond to any runtime condition. So,
in order to use a signal s effectively, anyone using our approach has to prove an
invariant stating that s is set if and only if the condition of interest holds. Further,
the proof author must prove that every thread discharges all its obligations by
performing the corresponding actions, e.g., by setting a signal and establishing
the corresponding condition by setting the memory flag.

In our verification approach we tie every busy-waiting loop to a finite set of
ghost signals S that correspond to the set of conditions the loop is waiting for.
Every iteration that does not terminate the loop must be justified by the proof
author proving that some signal s ∈ S has indeed not been set, yet. This way,
we reduce proving termination to proving that no signal is waited for infinitely
often.

Our approach ensures that no thread directly or indirectly waits for itself by
requiring the proof author (i) to choose a well-founded and partially ordered set
of levels Levs and (ii) to assign a level to every signal and by (iii) only allowing
a thread to wait for a signal if the signal’s level is lower than the level of each
held obligation. This guarantees that every signal is waited for only finitely often
and hence that every busy-waiting loop terminates. We use this to prove that
every program that is verified using our approach indeed terminates.

We start by gradually introducing the intuition behind our verification ap-
proach and the concepts we use. In § 2.1 and § 2.2 we present the main aspects of
using signals to verify termination. We start by treating them as physical thread-
safe resources and only consider busy waiting for a signal to be set. Then, we
drop thread-safety and explain how to prove data-race- and deadlock-freedom.
In § 2.3 and § 2.4 we generalize our approach to busy waiting for arbitrary condi-
tions over arbitrary data structures and then lift signals to the verification level
by introducing ghost signals.

In § 3 we sketch the verification of a realistic producer-consumer example
involving a bounded FIFO to demonstrate our approach’s usability and address
fine-grained concurrency in § 4. Further, we describe the available tool support
in § 5 and discuss integrating higher-order features in § 6. We conclude by com-
paring our approach to related work and reflecting on it in § 7 and § 8.

We formally define our logic and prove its soundness in the extended version
of this paper [28]. To keep the presentation in this paper simple, we assume busy-
waiting loops to have a certain syntactical form. In our technical report [29] we
present a generalised version of our logic and its soundness proof. Further, we
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verify the realistic example presented in § 3 in full detail in the extended version
of this paper and in the technical report, using the respective version of our logic.
We used our tool support to verify C versions of the bounded FIFO example
and the CLH lock. The tool we used and the annotated .c files can be found
at [10,26,27].

2 A Guide on Verifying Termination of Busy Waiting

When we try to verify termination of busy-waiting programs, multiple challenges
arise. Throughout this section, we describe these challenges and our approach to
overcome them. In § 2.1 we start by discussing the core ideas of our logic. In order
to simplify the presentation we initially consider a simple language with built-in
thread-safe signals and a corresponding minimal example where one thread busy-
waits for such a signal. Signals are heap cells containing boolean values that are
specially marked as being solely used for busy waiting. Throughout this section,
we generalize our setting as well as our example towards one that allows to
verify programs with busy waiting for arbitrary conditions over arbitrary shared
data structures. In § 2.2 we present the concepts necessary to verify data-race-,
deadlock-freedom and termination in the presence of built-in signals that are
not thread safe. In § 2.3 we explain how to use these non-thread-safe signals to
verify programs that wait for arbitrary conditions over shared data structures.
We illustrate this by an example waiting for a shared heap cell to be set. In § 2.4
we erase the signals from our program and lift them to the verification level in
the form of a concept we call ghost signals.

2.1 Simplest Setting: Thread-Safe Physical Signals

We want to verify programs that busy-wait for arbitrary conditions over ar-
bitrary shared data structures. As a first step towards achieving this, we first
consider programs that busy-wait for simple boolean flags, specially marked as
being used for the purpose of busy waiting. We call these flags signals. For now,
we assume that read and write operations on signals are thread-safe. Consider a
simple programming language with built-in signals and with the following com-
mands: (i) new signal for creating a new unset signal, (ii) set signal(x) for
setting x and (iii) await is set(x) for busy-waiting until x is set. Fig. 1 presents
a minimal example where two threads communicate via a shared signal sig. The
main thread creates the signal sig and forks a new thread that busy-waits for sig
to be set. Then, the main thread sets the signal. As we assume signal operations
to be thread-safe in this example, we do not have to care about potential data
races. Notice that like all busy-waiting programs, this program is guaranteed to
terminate only under fair thread scheduling: Indeed, it does not terminate if the
main thread is never scheduled after it forks the new thread. In this paper we
verify termination under fair scheduling.



4 Tobias Reinhard and Bart Jacobs

let sig := new signal in
fork await is set(sig);
set signal(sig)

Fig. 1: Minimal example with two threads communicating via a physical thread-
safe signal.

Augmented Semantics

Obligations The only construct in our language that can lead to non-termination
are busy-waiting loops of the form await is set(sig). In order to prove that
programs terminate it is therefore sufficient to prove that all created signals are
eventually set. We use so-called obligations [5,6,16,19] to ensure this. These are
ghost resources [13], i.e., resources that do not exist during runtime and can hence
not influence a program’s runtime behaviour. They carry, however, information
relevant to the program’s verification. Generally, holding an obligation requires
a thread to discharge it by performing a certain action. For instance, when
the main thread in our example creates signal sig, it simultaneously creates an
obligation to set it. The only way to discharge this obligation is to set sig.

We denote thread IDs by θ and describe which obligations a thread θ holds
by bundling them into an obligations chunk θ.obs(O), where O is a multiset of
signals. We denote multisets by double braces {[. . .]} and multiset union by ].
Each occurrence of a signal s in O corresponds to an obligation by thread θ to
set s. Consequently, θ.obs(∅) asserts that thread θ does not hold any obligations.

Augmented Semantics In the real semantics of the programming language we
consider here, ghost resources such as obligations do not exist during runtime.
To prove termination, we consider an augmented version of it that keeps track
of ghost resources during runtime. In this semantics, we maintain the invariant
that every thread holds exactly one obs chunk. That is, for every running thread
θ, our heap contains a unique heap cell θ.obs that stores the thread’s bag of
obligations. Further, we let a thread get stuck if it tries to finish while it still holds
undischarged obligations. Note that we use the term finish to refer to thread-
local behaviour while we write termination to refer to program-global behaviour,
i.e., meaning that every thread finishes. For every augmented execution there
trivially exists a corresponding execution in the real semantics.

Fig. 2 presents some of the reduction rules we use to define the augmented
semantics. We use ĥ to refer to augmented heaps, i.e., heaps that can contain

ghost resources. A reduction step has the form ĥ, c
θ
 aug ĥ

′, c′, T expresses that

thread θ reduces heap ĥ (which is shared by all threads) and command c to heap

ĥ′ and command c′. Further, T represents the set of threads forked during this
step. It is either empty or a singleton containing the new thread’s ID and the
command it is going to execute, i.e., {(θf , cf )}. We omit it whenever it is clear
from the context that no thread is forked. Further, we denote disjoint union of
sets by t.

Our reduction rules comply with the intuition behind obligations we outlined
above. Aug-Red-NewSignal creates a new signal and simultaneously a corre-
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sponding obligation. The only way to discharge it is by setting the signal using
Aug-Red-SetSignal.

Aug-Red-NewSignal
id 6∈ ids(ĥ) L ∈ Levs

ĥ t {θ.obs(O)},new signal
θ
 aug ĥ t {θ.obs(O ] {[(id, L)]}), signal((id, L))}, id

Aug-Red-SetSignal

ĥ t {θ.obs(O ] {[s]})}, set signal(s.id)
θ
 aug ĥ t {θ.obs(O), signalSet(s)}, tt

Aug-Red-Fork
θf 6∈ thIds(ĥ)

ĥ t {θ.obs(O ]Of )}, fork c
θ
 aug ĥ t {θ.obs(O), θf .obs(Of )}, tt, {(θf , c)}

Aug-Red-Await
θ.obs(O) ∈ ĥ signal(s) ∈ ĥ signalSet(s) 6∈ ĥ s.lev ≺L O

ĥ,await is set(s.id)
θ
 aug ĥ,await is set(s.id)

Fig. 2: Reduction rules for augmented semantics.

Forking Whenever a thread forks a new thread, it can pass some of its obliga-
tions to the newly forked thread, cf. Aug-Red-Fork. Forking a new thread with
ID θf also allocates a new heap cell θf .obs to store its bag of obligations. Since
this is the only way to allocate a new obs heap cell, we will never run into a heap
ĥ t {θ.obs(O)} t {θ.obs′(O′)} that contains multiple obligations chunks belong-
ing to the same thread θ. Remember that threads cannot finish while holding
obligations. This prevents them from dropping obligations via dummy forks.

Levels In order to prove that a busy-waiting loop await is set(sig) terminates,
we must ensure that the waiting thread does not directly or indirectly wait for
itself. We could just check that it does not hold an obligation for the signal it
is waiting for, but that is not sufficient as the following example demonstrates:
Consider a program with two signals sig1, sig2 and two threads. Let one thread
hold the obligation for sig2 and execute await is set(sig1); set signal(sig2).
Likewise, let the other thread hold the obligation for sig1 and let it execute
await is set(sig2); set signal(sig1).

To prevent such wait cycles modularly, we apply the usual approach [3,4,19].
For every program that we want to execute in our augmented semantics, we
choose a partially ordered set of levels Levs. Further, during every reduction
step in the augmented semantics that creates a signal s, we pick a level L ∈
Levs and associate it with s. Note that much like obligations, levels do not exit
during runtime in the real semantics. Signal chunks in the augmented semantics
have the form signal((id, L)) where id is the unique signal identifier returned
by new signal. The level assigned to any signal can be chosen freely, cf. Aug-
Red-NewSignal. In practice, determining levels boils down to solving a set of
constraints that reflect the dependencies. In our example, however, the choice
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is trivial as it only involves a single signal. We choose Levs = {0} and 0 as
level for sig and thereby get signal((sig, 0)). Generally, we denote signal tuples
by s = (id, L). Now we can rule out cyclic wait dependencies by only allowing
a thread to busy-wait for a signal s if its level s.lev is smaller than the level of
each held obligation, cf. Aug-Red-Await 1. Given a bag of obligations O, we
denote this by s.lev ≺L O.

Proving Termination As we will explain below, the augmented semantics has
no fair infinite executions. We can use this as follows to prove that a program
c terminates under fair scheduling: For every fair infinite execution of c, show
that we can construct a corresponding augmented execution. (This requires that
each step’s side conditions in the augmented semantics are satisfied. Note that
we thereby prove certain properties for the real execution, like absence of cyclic
wait dependencies.) As there are no fair infinite executions in the augmented
semantics, we get a contradiction. It follows that c has no fair infinite executions
in the real semantics.

Soundness In order to prove soundness of our approach, we must prove that
there indeed are no fair infinite executions in the augmented semantics. This
boils down to proving that no signal can be waited for infinitely often. Consider
any program and any fair augmented execution of it. Consider the execution’s
program order graph, (i) whose nodes are the execution steps and (ii) which has
an edge from a step to the next step of the same thread and to the first step
of the forked thread, if it is a fork step. Notice that for each obligation created
during the execution, the set of nodes corresponding to a step made by a thread
while that thread holds the obligation constitutes a path that ends when the
obligation is discharged. We say that this path carries the obligation.

It is not possible that a signal is waited for infinitely often. Indeed, suppose
some signals S∞ are. Take smin ∈ S∞ with minimal level. Since smin is never
set, the path in the program order graph that carries the obligation must be
infinite as well. Indeed, suppose it is finite. The final node N of the path cannot
discharge the obligation without setting the signal, so it must pass the obligation
on either to the next step of the same thread or to a newly forked thread. By
fairness of the scheduler, both of these threads will eventually be scheduled. This
contradicts N being the final node of the path.

The path carrying the obligation for smin waits only for signals that are
waited for finitely often. (Remember that Aug-Red-Await requires the signal
waited for to be of a lower level than all held obligations, i.e., a lower level than
that of smin.) It is therefore a finite path. A contradiction.

Notice that the above argument relies on the property that every non-empty
set of levels has a minimal element. For this reason, for termination verification
we require that Levs is not just partially ordered, but also well-founded.

1 For simplicity, our augmented semantics assumes that the level order and the level
associated with any object remains fixed for the entire execution. However, following
the approach presented in [18], it would be sound to add a step rule that allows a
thread to change the level of an object it has exclusive access to (cf. § 2.2).
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Program Logic

Directly using the augmented semantics to prove that our example program
terminates is cumbersome. In the following, we present a separation logic that
simplifies this task.

Safety We call a program c safe under a (partial) heap ĥ if it provides all the
resources necessary such that both c and any threads it forks can execute without
getting stuck in the augmented semantics. (This depends on the angelic choices.)

We denote this by safe(ĥ, c) [33] 2.

Consider a program c that is safe under an augmented heap ĥ. Let h be
the real heap that matches ĥ apart from the ghost resources. Then, for every
real execution that starts with h we can construct a corresponding augmented
execution.

Specifications We use Hoare triples {A} c {λr.B(r)} [8] to specify the behaviour
of a program c. Such a triple expresses the following: Consider any evaluation
context E, such that for every return value v, running E[v] from a state that
satisfies B(v) is safe. Then, running E[c] from a state that satisfies A is safe.

Proof System We define a proof relation ` which ensures that whenever we can
prove `{A} c{λr.B(r)}, then c complies with the specification {A} c{λr.B(r)}.
Fig. 3b presents some of the proof rules we use to define `. As we evolve our
setting throughout this section, we also adapt our proof rules. Rules that will
be changed later are marked with a prime in their name. The full set of rules
is presented in the extended version of this paper [28]. Our proof rules PR-
SetSignal’ and PR-Await’ are similar to the rules for sending and receiving
on a channel presented in [19].

Notice how the proof rules enforce the side-conditions of the augmented se-
mantics. Hence, all we have to do to prove that a program c terminates is to
prove that every thread eventually discharges all its obligations. That is, we have
to prove ` {obs(∅)} c {obs(∅)}. Fig. 3a illustrates how we can apply our rules
to verify that our minimal example terminates.

2.2 Non-Thread-Safe Physical Signals

As a step towards supporting waiting for arbitrary conditions over shared data
structures, including non-thread-safe ones, we now move to non-thread-safe sig-
nals. For simplicity, in this paper we consider programs that use mutexes to syn-
chronize concurrent accesses to shared data structures. (Our ideas apply equally
to programs that use other constructs, such as atomic machine instructions.)
Fig. 4 presents our updated example.

2 For a formal definition see this paper’s extended version [28] and the technical re-
port [29].
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{obs(∅)}
let sig := new signal in PR-NewSignal’ with L = 0
{obs({[(sig, 0)]}) ∗ signal((sig, 0))} s := (sig, 0)
fork ({obs(∅) ∗ signal(s)}

await is set(sig) s.lev = 0 ≺L ∅
{obs(∅) ∗ signal(s)});

{obs({[s]})}
set signal(sig)
{obs(∅)}

(a) Proof outline for program from Fig. 1. Applied proof rule marked in purple. Abbre-
viation marked in brown. General hint marked in red.

PR-NewSignal’
L ∈ Levs

` {obs(O)} new signal {λr. obs(O ] {[(r, L)]}) ∗ signal((r, L))}

PR-SetSignal’
` {obs(O ] {[s]})} set signal(s.id) {obs(O)}

PR-Fork’
` {obs(Of ) ∗A} c {obs(∅) ∗B}

` {obs(Om ]Of ) ∗A} fork c {obs(Om)}

PR-Await’
s.lev ≺L O

` {obs(O) ∗ signal(s)} await is set(s.id) {obs(O) ∗ signal(s)}

PR-Let
` {A} c {λr. C(r)} ∀v. ` {C(v)} c′[v/x] {B}

` {A} let x := c in c′ {B}

(b) Proof rules. Rules only used in this section marked with ’.

Fig. 3: Verifying termination of minimal example with physical thread-safe signal.

let sig := new signal in
let mut := new mutex in
fork with mut await is set(sig);
acquire mut;
set signal(sig);
release mut

(a) Code.

with mut await c := (while acquire mut;
let r := c in
release mut;
¬r

do skip)

(b) Syntactic sugar. r not free in mut.

Fig. 4: Minimal example with two threads communicating via a physical non-
thread-safe signal protected by a mutex.
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As signal sig is no longer thread-safe, the two threads can no longer use it
directly to communicate. Instead, we have to synchronize accesses to avoid data
races. Hence, we protect the signal by a mutex mut created by the main thread.
In each iteration, the forked thread acquires the mutex, checks whether sig has
been set and releases it again. After forking, the main thread acquires the mutex,
sets the signal and releases it again.

Exposing Signal Values Signals are specially marked heap cells storing boolean
values. We make this explicit by extending our signal chunks from signal(s) to
signal(s, b) where b is the current value of s and by updating our proof rules
accordingly. Upon creation, signals are unset. Hence, creating a signal sig now
spawns an unset signal chunk signal((sig, L),False) for some freely chosen level L
and an obligation for (sig, L), cf. PR-NewSignal”. We present our new proof
rules in Fig. 6 and demonstrate their application in Fig. 5.

{obs(∅)}
let sig := new signal in PR-NewSignal” with L = 1
{obs({[(sig, 1)]}) ∗ signal((sig, 1),False)} PR-ViewShift & VS-SemImp
{obs({[(sig, 1)]}) ∗ ∃b. signal((sig, 1), b)} s := (sig, 1), P := ∃b. signal(s, b)
let mut := new mutex in PR-NewMutex” with L = 0
{obs({[s]}) ∗mutex(m,P )} PR-ViewShift{
obs({[s]}) ∗mutex(m,P ) ∗mutex(m,P )

}
& VS-CloneMut”

fork ({obs(∅) ∗mutex(m,P )}
with m await m.lev, s.lev ≺L ∅
{obs({[m]}) ∗ P} PR-Exists
∀b. {obs({[m]}) ∗ signal(s, b)}

is set(sig)
{λr. obs({[m]}) ∗ signal(s, b) ∧ r = b} PR-ViewShift & VS-SemImp{
λr. obs({[m]})
∗ if r then P else signal(s,False)

}
{obs(∅) ∗mutex(m,P )} PR-ViewShift & VS-SemImp
{obs(∅)});

{obs({[s]}) ∗mutex(m,P )}
acquire mut; m.lev = 0 < 1 = s.lev
{obs({[s,m]}) ∗ locked(m,P ) ∗ ∃b. signal(s, b)} PR-Exists
∀b. {obs({[s,m]}) ∗ locked(m,P ) ∗ signal(s, b)}

set signal(sig);
{obs({[m]}) ∗ locked(m,P ) ∗ signal(s,True)} PR-ViewShift & VS-SemImp
{obs({[m]}) ∗ locked(m,P ) ∗ P}
release mut
{obs(∅) ∗mutex(m,P )} PR-ViewShift & VS-SemImp
{obs(∅)}

Fig. 5: Proof outline for program 4, verifying termination with mutexes & non-
thread safe signals. Applied proof and view shift rules marked in purple. Abbre-
viations marked in brown. General hints marked in red.
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Data Races As read and write operations on signals are no longer thread-safe,
our logic has to ensure that two threads never try to access sig at the same time.
Hence, in our logic possession of a signal chunk signal(s, b) expresses (temporary)
exclusive ownership of s. Further, our logic requires threads to own any signal
they are trying to access. Specifically, when a thread wants to set sig, it must hold
a chunk of the form signal((sig, L), b), cf. PR-SetSignal”. The same holds for
reading a signal’s value, cf. PR-IsSignalSet”. Note that signal chunks are not
duplicable and only created upon creation of the signal they refer to. Therefore,
holding a signal chunk for sig indeed guarantees that the holding thread has the
exclusive right to access sig (while holding the signal chunk).

Synchronization & Lock Invariants After the main thread creates sig, it exclu-
sively owns the signal. The main thread can transfer ownership of this resource
during forking, cf. PR-Fork’, and thereby allow the forked thread to busy-wait
for sig. This would, however, leave the main thread without any permission to
set the signal and thereby discharge its obligation.

We use mutexes to let multiple threads share ownership of a common set of
resources in a synchronized fashion. Every mutex is associated with a lock in-
variant P , an assertion chosen by the proof author that specifies which resources
the mutex protects. In our example, we want both threads to share sig. To reflect
the fact that the signal’s value changes over time, we choose a lock invariant that
abstracts over its concrete value. We choose P := ∃b. signal((sig, L), b). Let us ig-
nore the chosen signal level L for now. Creating the mutex mut consumes this lock
invariant and binds it to mut by creating a mutex chunk mutex((mut, . . . ), P ),
cf. PR-NewMutex”. Thereby, the main thread loses access to sig. The only
way to regain access is by acquiring mut, cf. PR-Acquire”. Once the thread
releases mut, it again loses access to all resources protected by the mutex, cf. PR-
Release”.

Deadlocks We have to ensure that any acquired mutex is eventually released,
again. Hence, acquiring a mutex spawns a release obligation for this mutex
and the only way to discharge this obligation is indeed by releasing it, cf. PR-
Acquire” and PR-Release”.

Any attempt to acquire a mutex will block until the mutex becomes available.
In order to prove that our program terminates, we have to prove that it does
not get stuck during an acquisition attempt. To prevent wait cycles involving
mutexes, we require the proof author to associate every mutex as well (just like
signals) with a level L. This level can be freely chosen during the mutex’ creation,
cf. PR-NewMutex”. Mutex chunks therefore have the form mutex((`, L), P )
where ` is the heap location the mutex is stored at. Their only purpose is to
record the level and lock invariant a mutex is associated with. Hence, these
chunks can be freely duplicated as we will see later. Generally, we denote mutex
tuples by m = (`, L). We only allow to acquire a mutex if its level is lower than
the level of each held obligation, cf. PR-Acquire”. This also prevents any thread
from attempting to acquire mutexes twice, e.g., acquire mut;acquire mut or
with mut await acquire mut.
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PR-NewSignal”
L ∈ Levs

` {obs(O)} new signal {λid. obs(O ] {[(id, L)]}) ∗ signal((id, L),False)}

PR-SetSignal”
` {obs(O ] {[s]}) ∗ signal(s, )} set signal(s.id) {obs(O) ∗ signal(s,True)}

PR-IsSignalSet”
` {signal(s, b)} is set(s.id) {λr. signal(s, b) ∧ r = b}

PR-Await”
m.lev, s.lev ≺L O signal(s,False) ∗RV P

` {obs(O ] {[m]}) ∗ P} c {λr. obs(O ] {[m]}) ∗ if r then P else signal(s,False) ∗R}
` {obs(O) ∗mutex(m,P )} with m.loc await c {obs(O) ∗mutex(m,P )}

(a) Signals & busy waiting.

PR-NewMutex”
L ∈ Levs

` {P} new mutex {λ`.mutex((`, L), P )}

PR-Acquire”

`
{obs(O) ∗mutex(m,P ) ∧m.lev ≺L O}
acquire m.loc
{obs(O ] {[m]}) ∗ locked(m,P ) ∗ P}

PR-Release”

`
{obs(O ] {[m]}) ∗ locked(m,P ) ∗ P}
release m.loc
{obs(O) ∗mutex(m,P )}

(b) Mutexes.

PR-Frame
` {A} c {B}

` {A ∗ F} c {B ∗ F}

PR-Exists
∀a ∈ A. ` {a} c {B}
` {

∨
A} c {B}

PR-Fork
` {obs(Of ) ∗A} c {obs(∅)}

` {obs(Om ]Of ) ∗A} fork c {obs(Om)}

PR-ViewShift
AV A′ ` {A′} c {B′} B′ V B

` {A} c {B}

(c) Standard rules.

VS-SemImp
∀H. consistentlh(H) ∧H �A A⇒ H �A B

AV B

VS-Trans
AV C C V B

AV B

VS-CloneMut”
mutex(m,P )V mutex(m,P ) ∗mutex(m,P )

(d) View shifts.

Fig. 6: Proof rules & view shift rules for mutexes & non-thread safe signals. Rules
only used in this section marked with ”.
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View Shifts When verifying a program, it can be necessary to reformulate the
proof state and to draw semantic conclusions. To allow this we introduce a so-
called view shift relationV [14]. By applying proof rule PR-ViewShift and VS-
SemImp we can strengthen the precondition and weaken the postcondition. In
our example, we use this to convert the unset signal chunk into the lock invariant
which abstracts over the signal’s value, i.e., signal(s,False)V ∃b. signal(s, b).

The logic we present in this work is an intuitionistic separation logic that
allows us to drop chunks. 3 This allows us to simplify the postcondition of our
fork proof rule’s premise from obs(∅) ∗ B to obs(∅), cf. PR-Fork, and drop all
unneeded chunks via a semantic implication obs(∅) ∗B V obs(∅).

We also allow to clone mutex chunks via view shifts, cf. VS-CloneMut”.
In our example, this is necessary to inform both threads which level and lock
invariant mutex mut is associated with. That is, the main thread clones the
mutex chunk mutex(m,P ) and passes one chunk on when it forks the busy-
waiting thread.

In § 2.4 we extend our view shift relation and revisit our interpretation of
what a view shift expresses. The full set of rules we use to define V is presented
in the extended version of this paper [28].

Busy Waiting In the approach presented in this paper, for simplicity we only
support busy-waiting loops of the form with mut await c, which is syntactic
sugar for while acquire mut; let r := c in release mut;¬r do skip where r de-
notes a fresh variable. 4 In each iteration, the loop tries to acquire mut, executes
c, releases mut again and lets the result returned by c determine whether the
loop continues. Such loops can fail to terminate for two reasons: (i) Acquiring
mut can get stuck and (ii) the loop could diverge.

We prevent the loop from getting stuck by requiring mut’s level to be lower
than the level of each held obligation, cf. PR-Await”. Further, we enforce ter-
mination by requiring the loop to wait for a signal. That is, when verifying a
busy-waiting loop using our approach, the proof author must choose a fixed sig-
nal and prove that this signal remains unset at the end of every non-finishing
iteration. This way, we can prove that the loop terminates by proving that every
signal is eventually set, just as in § 2.1. And just as before, our logic requires the
level of the waited-for signal to be lower than the level of each held obligation.

Acquiring the mutex in every iteration makes the lock invariant available
during the verification of the loop body c. This lock invariant has to be restored
at the end of the iteration such that it can be consumed during the mutex’s
release. PR-Await” allows for an additional view shift to restore the invariant.
In our example, we end our busy-waiting loop’s non-finishing iterations with the

3 This allows a thread to drop its obligations chunk obs(O). Note, however, that by
dropping this chunk the thread does not drop its obligations, but only its ability to
show what its obligations are. In particular the thread would be unable to present
an empty obligations chunk upon termination.

4 As we discuss in § 5, in the technical report accompanying this paper we present a
more general logic that imposes no such syntactic restrictions.
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assertion signal(s,False). We use a semantic implication view shift to convert the
signal chunk into the mutex invariant ∃b. signal(s, b).

Choosing Levels In our example, we have to assign levels to the mutex mut and
to the signal sig. Our proof rules for mutex acquisition and busy waiting impose
some restrictions on the levels of the involved mutexes and signals. By analysing
the corresponding rule applications that occur in our proof, we can derive which
constraints our level choice must comply with. Our example’s verification in-
volves one application of PR-Acquire” and one application of PR-Await”:
(i) Our main thread tries to acquire mut while holding an obligation to set sig.
(ii) The forked thread busy-waits for sig while not holding any obligations. Our
assignment of levels must therefore satisfy the single constraint m.lev <L s.lev.
So, we choose Levs = {0, 1}, m.lev = 0 and s.lev = 1.

2.3 Arbitrary Data Structures

The proof rules we introduced in § 2.2 allow us to verify programs busy-waiting
for arbitrary conditions over arbitrary shared data structures as follows: For
every condition C the program waits for, the proof author inserts a signal s into
the program. They ensure that s is set at the same time the program establishes
C and prove an invariant stating that the signal’s value expresses whether C
holds. Then, the waiting thread can use s to wait for C. We illustrate this here
for the simplest case of setting a single heap cell in Fig. 7a.

let x := cons(0) in
let mut := new mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;
release mut

(a) Example program with busy wait-
ing for heap cell x to be set.

let x := cons(0) in

let sig := new signal in

let mut := new mutex in
fork with mut await [x] = 1;
acquire mut;
[x] := 1;

set signal(sig);

release mut

(b) Example program 7a with addi-
tional signal sig inserted, marked in
green . sig and x are kept in sync.

[e] = e′ := (let r :=[e] in r = e′)

(c) Syntactic sugar. r free in e′.

Fig. 7: Minimal example illustrating busy waiting for condition over heap cell.

The program involves three new non-thread-safe commands: (i) cons(v) for
allocating a new heap cell and initializing it with value v, (ii) [`] := v for assigning
value v to heap location `, (iii) [`] for reading the value stored in heap location `.
We use [`] = v as syntactic sugar for let r :=[e] in r = e′.
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In our example, the main thread allocates x, initializes it with the value 0 and
protects it using mutex mut. It forks a new thread busy-waiting for x to be set.
Afterwards, the main thread sets x. As explained above, we verify the program
by inserting a signal sig that reflects whether x has been set, yet. Fig. 7b presents
the resulting code. The main thread creates the signal and sets it when it sets x.

{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x 7→ 0}
let sig := new signal in PR-NewSignal” with L = 1
let mut := new mutex in PR-NewMutex” with L = 0
s := (sig, 1), m := (mut, 0)
P := ∃v. x 7→ v ∗ signal(s, v = 1)
{obs({[s]}) ∗mutex(m,P ) ∗mutex(m,P )}
fork ({obs(∅) ∗mutex(m,P )}

with m await m.lev, s.lev ≺L ∅
{obs({[m]}) ∗ P}
∀v. {obs({[m]}) ∗ x 7→ v ∗ signal(s, v = 1)}

[x] = 1
λr. obs({[m]})
∗ if r then P

else x 7→ v ∧ v 6= 1 ∗ signal(s,False)


{obs(∅)});

{obs({[s]}) ∗mutex(m,P )}
acquire mut; m.lev = 0 < 1 = s.lev
∀v. {obs({[s,m]}) ∗ locked(m,P ) ∗ x 7→ v ∗ signal(s, v = 1)}

[x] := 1;
{obs({[s,m]}) ∗ locked(m,P ) ∗ x 7→ 1 ∗ signal(s, v = 1)}
set signal(sig);
{obs({[m]}) ∗ locked(m,P ) ∗ x 7→ 1 ∗ signal(s,True)}
release mut
{obs(∅)}

(a) Proof outline for program 7b. Applied proof rules marked in purple. Abbreviations
marked in brown. General hints marked in red.

PR-Cons
` {True} cons(v) {λ`. ` 7→ v}

PR-AssignToHeap
` {` 7→ } [`] := v {` 7→ v}

PR-ReadHeapLoc”’
` {` 7→ v} [`] {λr. r = v ∗ ` 7→ v}

PR-Exp
[[e]] ∈ Values

` {True} e {λr. r = [[e]]}
(b) Proof rules. Evaluation function [[·]]. Rules only used in this section marked with ”’.

Fig. 8: Verifying termination of busy waiting for condition over heap cell.

Heap Cells Verifying this example does not conceptually differ from the example
we presented in § 2.2. Fig. 8b presents the new proof rules we need and Fig. 8a
sketches our example’s verification. As with non-thread-safe signals, we have
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to prevent multiple threads from trying to access x at the same time in order
to prevent data races. For this we use so-called points-to chunks [24, 31]. They
have the form ` 7→ v and express that heap location ` stores the value v. When a
thread holds such a chunk, it exclusively owns the right to access heap location `.

Heap locations are unique and the only way to create a new points-to chunk
is to allocate and initialize a new heap cell via cons(v), cf. PR-Cons. Hence,
there will never be two points-to chunks involving the same heap location. In
order to read or write a heap cell via [`] or [`] := e, the acting thread must first
acquire possession of the corresponding points-to chunk, cf. PR-AssignToHeap
and PR-ReadHeapLoc”’.

Relating Signals to Conditions In our example, the forked thread busy-waits for
x to be set while our proof rules require us to justify each iteration by showing
an unset signal. That is, we must prove an invariant stating that the value of x
matches sig. As this invariant must be shared between both threads, we encode
it in the lock invariant: P := ∃v. x 7→ v ∗ signal(s, v = 1). This does not only
allow both threads to share the heap cell and the signal but it also automatically
enforces that they maintain the invariant whenever they acquire and release the
mutex.

2.4 Signal Erasure

In the program from Fig. 7b signal sig is never read and does hence not influence
the waiting thread’s runtime behaviour. Therefore, we can verify the original
program presented in Fig. 7a by erasing the physical signal and treating it as
ghost code.

Ghost Signals Central aspects of the proof sketch we presented in Fig. 8a are
that (i) the main thread was obliged to set sig and that (ii) the value of sig re-
flected whether x was already set. Ghost signals allow us to keep this information
but at the same to remove the physical signals from the code. Ghost signals are
essentially identical to the physical non-thread-safe signals we used so far. How-
ever, as ghost resources they cannot influence the program’s runtime behaviour.
They merely carry information we can use during the verification process.

View Shifts Revisited We implement ghost signals by extending our view shift
relation. In particular, we introduce two new view shift rules: VS-NewSignal
and VS-SetSignal presented in Fig. 9b. The former creates a new unset signal
and simultaneously spawns an obligation to set it. The latter can be used to set
a signal and thereby discharge a corresponding obligation. We say that these
rules change the ghost state and therefore call their application a ghost proof
step. With this extension, a view shift A V B expresses that we can reach
postcondition B from precondition A by (i) drawing semantic conclusions or by
(ii) manipulating the ghost state. In Fig. 9a we use ghost signals to verify the
program from 7a.
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Note that lifting signals to the verification level does not affect the soundness
of our approach. The argument we presented in § 2.1 still holds. We formalize
our logic and provide a formal soundness proof in the extended version of this
paper [28] and in the technical report [29]. The latter contains a more general
version of the presented logic that (i) is not restricted to busy-waiting loops of
the form with mut await c and that (ii) is easier to integrate into existing tools
like VeriFast [12], as explained in § 5.

{obs(∅)}
let x := cons(0) in
{obs(∅) ∗ x 7→ 0}
new ghost signal; VS-NewSignal with L = 1.
{∃sig. obs({[(sig, 1)]}) ∗ x 7→ 0 ∗ signal((sig, 1),False)} s := (sig, 1)
∀sig. {obs({[s]}) ∗ x 7→ 0 ∗ signal(s,False)} P := ∃v. x 7→ v ∗ signal(s, v = 1)

let mut := new mutex in PR-NewMutex” with L = 0{
obs({[s]}) ∗mutex((mut, 0), P )
∗mutex((mut, 0), P )

}
m := (mut, 0)

fork ({obs(∅) ∗mutex(m,P )}
with m await m.lev, s.lev ≺L ∅
{obs({[m]}) ∗ P}
∀v. {obs({[m]}) ∗ x 7→ v ∗ signal(s, v = 1)}

[x] = 1
λr. obs({[m]}) ∗

if r then P
else x 7→ v ∧ v 6= 1 ∗ signal(s,False)


{obs(∅)});

{obs({[s]}) ∗mutex(m,P )}
acquire mut; m.lev = 0 < 1 = s.lev

∀v.
{

obs({[s,m]}) ∗ locked(m,P )
∗ x 7→ v ∗ signal(s, v = 1)

}
[x] := 1;
set ghost signal(s);{

obs({[m]}) ∗ locked(m,P )
∗ x 7→ 1 ∗ signal(s,True)

}
release mut
{obs(∅)}

(a) Proof outline for the program presented in Fig. 7a. Auxiliary commands hinting at
view shifts and general hints marked in red. Applied proof and view shift rules marked
in purple. Abbreviations marked in brown.

VS-NewSignal
L ∈ Levs

obs(O)V ∃id. obs(O ] {[(id, L)]}) ∗ signal((id, L),False)

VS-SetSignal
obs(O ] {[s]}) ∗ signal(s, )V obs(O) ∗ signal(s,True)

(b) Proof rules.

Fig. 9: Verifying termination with ghost signals.
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3 A Realistic Example

To demonstrate the expressiveness of the presented verification approach, we
verified the termination of the program presented in Fig. 10a. It involves two
threads, a consumer and a producer, communicating via a shared bounded FIFO
with a maximal capacity of 10. The producer enqueues numbers 100, . . . , 1 into
the FIFO and the consumer dequeues those. Whenever the queue is full, the
producer busy-waits for the consumer to dequeue an element. Likewise, whenever
the queue is empty, the consumer busy-waits for the producer to enqueue the
next element. Each thread’s finishing depends on the other thread’s productivity.
This is, however, no cyclic dependency. For instance, in order to prove that the
producer eventually pushes number i into the queue, we only need to rely on the
consumer to pop i+ 10. A similar property holds for the consumer.

alloc ghost signal IDs(idipop, idipush) for 1 ≤ i ≤ 100;
Lipop := 102− i, Lipush := 101− i, six := (idix, L

i
x) for 1 ≤ i ≤ 100

init ghost signals(s100pop, s100push);
{obs({[s100pop, s

100
push]}) ∗ . . .}

let fifo10 := cons(nil) in let mut := new mutex in
let cp := cons(100) in let cc := cons(100) in
fork (while ( cp decreases in each iteration.

with mut await ( Busy-wait for fifo10 not being full.
{obs({[scppush, (mut, 0)]}) ∗ . . .} →Wait for consumer to pop.

let f := [fifo10] in
if size(f) < 10 then ( If fifo10 not full, push next element.

let c := [cp] in [fifo10] := f ·〈c〉; [cp] := c− 1;
set ghost signal(scpush);
if c− 1 6= 0 then init ghost signal(sc−1

push));

size(f) 6= 10); if size(f) = 10 then wait for s
cp+10
pop

[cp] 6= 0) L
cp+10
pop = 92− cp < 101− cp = L

cp
push

do skip);
while ( cc decreases in each iteration.

with mut await ( Busy-wait for fifo10 not being empty.
{obs({[sccpop, (mut, 0)]}) ∗ . . .} →Wait for producer to push.
let f := [fifo10] in
if size(f) > 0 then ( If fifo10 not empty, pop next element.

let c := [cc] in [fifo10] := tail(f); [cc] := c− 1;
set ghost signal(scpop);
if c− 1 6= 0 then init ghost signal(sc−1

pop));
size(f) > 0); if size(f) = 0 then wait for sccpush

[cc] 6= 0) Lcc
push = 101− cc < 102− cc = Lcc

push

do skip);

(a) Example program with two threads communicating via a shared bounded FIFO
with maximal size 10. Auxiliary commands hinting at view shifts and general hints
marked in red. Abbreviations marked in brown. Hints on proof state marked in blue.

VS-AllocSigID
TrueV ∃id. uninitSig(id)

VS-SigInit
obs(O) ∗ uninitSig(id)
V obs(O ] {[(id, L)]}) ∗ signal((id, L),False)

(b) Fine-grained view shift rules for signal creation.

Fig. 10: Realistic example program.
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Fine-Tuning Signal Creation To simplify complex proofs involving many signals
we refine the process of creating a new ghost signal. For simplicity, we combined
the allocation of a new signal ID and its association with a level and a boolean
in one step. For some proofs, such as the one we outline in this section, it
can be helpful to fix the IDs of all signals that will be created throughout the
proof already at the beginning. To realize this, we replace view shift rule VS-
NewSignal by the rules presented in Fig. 10b and adapt our signal chunks
accordingly. With these more fine-grained view shifts, we start by allocating
a signal ID, cf. VS-AllocSigID. Thereby we obtain an uninitialized signal
uninitSig(id) that is not associated with any level or boolean, yet. Also, allocating
a signal ID does not create any obligation because threads can only wait for
initialized (and unset) signals. When we initialize a signal, we bind its already
allocated ID to a level of our choice and associate the signal with False, cf. VS-
SigInit. This creates an obligation to set the signal.

Loops & Signals In our program, both threads have a local counter initially set
to 100 and run a nested loop. The outer loops are controlled by their thread’s
counter, which is decreased in each iteration until it reaches 0 and the loop stops.
For such loops, we introduce a conventional proof rule for total correctness of
loops, cf. this paper’s extended version [28]. Verifying termination of the inner
loops is a bit more tricky and requires the use of ghost signals.

So far, we had to fix a single signal for the verification of every await loop.
We can relax this restriction to considering a finite set of signals the loop may
wait for, cf. PR-Await presented in [28]. Apart from being a generalisation, this
rule does not differ from PR-Await” introduced in § 2.2.

Initially, we allocate 200 signal IDs id100push, . . . , id
1
push, id

100
pop, . . . , id

1
pop. We are

going to ensure that always at most one push signal and at most one pop signal
are initialized and unset. The producer and consumer are going to hold the
obligation for the push and pop signal, respectively. The producer will hold the
obligation for sipush while i is the next number to be pushed into the FIFO and

it will set sipush when it pushes the number i into the FIFO. Meanwhile, the

consumer will use sipush to wait for the number i to arrive in the queue when it

is empty. Similarly, the consumer will hold the obligation for sipop while number

i is the next number to be popped from the FIFO and will set sipop when it pops

the number i. The producer uses sipop to wait for the consumer to pop i from
the queue when it is full. At any time, we let the mutex mut protect the two
active signals and thereby make them accessible to both threads.

Choosing the Levels Note that we ignored the levels so far. The producer and the
consumer both acquire the mutex while holding an obligation for a signal. Hence,
we choose Levs = N, m.lev = 0 and s.lev > 0 for every signal s. Both threads will
justify iterations of their respective await loop by using an unset signal at the
end of such an iteration. Our proof rules allow us to ignore the mutex obligation
during this step. Hence, the mutex level does not interfere with the level of the
unset signal. Whenever the queue is full, the producer waits for the consumer
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to pop an element and whenever the queue is empty, the consumer waits for
the producer to push. That is, the producer waits for si+10

pop while holding an

obligation for sipush and the consumer waits for sipush while holding an obligation

for sipop. So, we have to choose the signal levels such that si+10
pop .lev < sipush.lev

and sipush.lev < sipop.lev hold. We solve this by choosing sipop.lev = 102 − i and

sipush.lev = 101− i.

Verifying Termination This setup suffices to verify the example program. Via
the lock invariant, each thread has access to both active signals. Whenever the
producer pushes a number i into the queue, it sets sipush which discharges the held
obligation and decreases its counter. Afterwards, if i > 1, it uses the uninitialized
signal chunk uninitSig(idi−1push) to initialize si−1push = (idi−1push, 101 − (i − 1)) and

replaces sipush in the lock invariant by si−1push before it releases the lock. If i = 1,
the counter reached 0 and the loop ends. In this case, the producer holds no
obligation. The consumer behaves similarly. Since we proved that each thread
discharged all its obligations, we proved that the program terminates. Fig. 10a
illustrates the most important proof steps. We present the program’s verification
in full detail in the extended version of this paper [28] and in the technical
report [29]. Furthermore, we encoded [27] the proof in VeriFast [12].

The number of threads in this program is fixed. However, our approach also
supports the verification of programs where the number of threads is not even
statically bounded. In [28] we present and verify such a program. It involves N
producer and N consumer threads that communicate via a shared buffer of size
1, for a random number N > 0 determined during runtime.

4 Specifying Busy-Waiting Concurrent Objects

Our approach can be used to verify busy-waiting concurrent objects with respect
to abstract specifications. For example, we have verified [26] the CLH lock [7]
against a specification that is very similar to our proof rules for built-in mutexes
shown in Fig. 6. The main difference is that it is slightly more abstract: when a
lock is initialized, it is associated with a bounded infinite set of levels rather than
with a single particular level. (To make this possible, an appropriate universe
of levels should be used, such as the set of lists of natural numbers, ordered
lexicographically.) To acquire a lock, the levels of the obligations held by the
thread must be above the elements of the set; the new obligation’s level is an
element of the set.

5 Tool Support

We have extended the VeriFast tool [10] for separation logic-based modular ver-
ification of C and Java programs so that it supports verifying termination of
busy-waiting C or Java programs. When verifying termination, VeriFast con-
sumes a call permission at each recursive call or loop iteration. In the technical
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report [29] we define a generalised version of our logic that instead of providing
a special proof rule for busy-waiting loops, provides wait permissions and a wait
view shift. A call permission of a degree δ can be turned into a wait permission
of a degree δ′ < δ for a given signal s. A wait view shift for an unset signal s for
which a wait permission of degree δ exists produces a call permission of degree
δ, which can be used to fuel a busy-waiting loop. When busy-waiting for some
signal s, we can generate new permissions to justify each iteration as long as s
remains unset.

VeriFast allows threads to freely exchange permissions. This is useful to verify
termination of non-blocking algorithms involving compare-and-swap loops [11].
However, we must be careful to prevent self-fueling busy-waiting loops. Hence,
we restrict where a permission can be consumed based on the thread phase it
was created in. The main thread’s initial phase is ε. When a thread in phase p
forks a new thread, its phase changes to p.Forker and the new thread starts in
phase p.Forkee. We allow a thread in phase p to consume a permission only if it
was produced in an ancestor thread phase p′ v p.

The only change we had to make to VeriFast’s symbolic execution engine was
to enforce the thread phase rule. We encoded the other aspects of the logic simply
as axioms in a trusted header file. We used this tool support to verify the bounded
FIFO (§ 3) and the CLH lock (§ 4). The bounded FIFO proof [27] contains
160 lines of proof annotations for 37 lines of code (an annotation overhead of
435%) and takes 0.08s to verify. The CLH lock proof [26] contains 343 lines of
annotations for 49 lines of code (an overhead of 700%) and takes 0.1s to verify.

6 Integrating Higher-Order Features

The logic we presented in this paper does not support higher-order features such
as assertions that quantify over assertions, or storing assertions in the (logical)
heap as the values of ghost cells. While we did not need such features to carry
out our example proofs, they are generally useful to verify higher-order program
modules against abstract specifications. The typical way to support such features
in a program logic is by applying step indexing [1,17], where the domain of logical
heaps is indexed by the number of execution steps left in the (partial) program
trace under consideration. Assertions stored in a logical heap at index n+ 1 talk
about logical heaps at index n; i.e., they are meaningful only later, after at least
one more execution step has been performed.

It follows that such logics apply directly only to partial correctness prop-
erties. Fortunately, we can reduce a termination property to a safety property
by writing our program in a programming language instrumented with runtime
checks that guarantee termination. Specifically, we can write our program in a
programming language that fulfils the following criteria: It tracks signals, obliga-
tions and permissions at runtime and has constructs for signal creation, waiting
and setting a signal. The fork command takes as an extra operand the list of
obligations to be transferred to the new thread (and the other constructs simi-
larly take sufficient operands to eliminate any need for angelic choice). Threads
get stuck when these constructs’ preconditions are not satisfied, such as when a
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thread waits for a signal while holding the obligation for that signal. We can then
use a step-indexing-based higher-order logic such as Iris [14] to verify that no
thread in our program ever gets stuck. Once we established this, we know none
of the instrumentation has any effect and can be safely erased from the program.

7 Related & Future Work

In recent work [30] we propose a separation logic to verify termination of pro-
grams where threads busy-wait to be abruptly terminated. We generalize this
work to support busy waiting for arbitrary conditions.

In [11] we propose an approach based on call permissions to verify termi-
nation of single- and multithreaded programs that involve loops and recursion.
However, that work does not consider busy-waiting loops. In the technical report,
we present a generalised logic that uses call permissions and allows busy waiting
to be implemented using arbitrary looping and/or recursion. Furthermore, the
use of call permissions allowed us to encode our case studies in our VeriFast tool
which also uses call permissions for termination verification.

Liang and Feng [20, 21] propose LiLi, a separation logic to verify liveness of
blocking constructs implemented via busy waiting. In contrast to our verification
approach, theirs is based on the idea of contextual refinement. In their approach,
client code involving calls of blocking methods of the concurrent object is verified
by first applying the contextual refinement result to replace these calls by code
involving primitive blocking operations and then verifying the resulting client
code using some other approach. In contrast, specifications in our approach are
regular Hoare-style triples and proofs are regular Hoare-style proofs.

In [9] we propose a Hoare logic to verify liveness properties of the I/O be-
haviour of programs that do not perform busy waiting. By combining that ap-
proach with the one we proposed in this paper, we expect to be able to verify I/O
liveness of realistic concurrent programs involving both I/O and busy waiting,
such as a server where one thread receives requests and enqueues them into a
bounded FIFO, and another one dequeues them and responds. To support this
claim, we encoded the combined logic in VeriFast and verified a simple server
application where the receiver and responder thread communicate via a shared
buffer [25].

8 Conclusion

We propose what is to the best of our knowledge the first separation logic for
verifying termination of programs with busy waiting. We offer a soundness proof
of the system of the paper in its extended version [28], and of a more general
system in the technical report [29]. Further, we demonstrated its usability by
verifying a realistic example. We encoded our logic and the realistic example in
VeriFast [27] and used this encoding also to verify the CLH lock [26]. Moreover,
we expect that our approach can be integrated into other existing concurrent
separation logics such as Iris [14].
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