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Abstract We propose one general hyperheuristic approach for addressing two time-

tabling problems in the health care domain: the patient admission scheduling and

the nurse rostering problem. The complex combinatorial problem of patient admission

scheduling has only recently been introduced to the research community. In addition

to the benchmark instance that was recently introduced, we present six new bench-

mark instances. A comparison between the hyperheuristic and previously developed

approaches reveals a significant outperformance of the new solution method. Nurse

rostering, on the other hand, is a well studied health care operation research problem.

Until now, not many nurse rostering benchmark instances existed. Only very recently,

several nurse rostering data sets were introduced during the First Nurse Rostering

Competition. We show that one hyperheuristic can tackle both health care timetabling

problems with good results.

1 Introduction

Hyperheuristics were introduced to obtain solutions for problems in a ‘good enough -

soon enough - cheap enough’ fashion [6]. Compared to metaheuristics, hyperheuristics

are high level search and optimization methods [6]. Instead of operating directly on
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a set of candidate solutions, like metaheuristics do, they operate on a set of (meta-)

heuristics. This property allows developers to easily deploy various heuristics at hand.

Another objective of hyperheuristics research is to generate synergy between heuristics

involved in the search, by making use of their strengths, avoiding their weaknesses, and

taking advantage of their combined capabilities [6].

Most hyperheuristic approaches select every iteration a (low-level) heuristic according

to a certain method, and a move according to a so-called move acceptance criterion.

The selected heuristic will be applied in that iteration, and according to the move ac-

ceptance criterion, the proposed move will be executed or not. The heuristic selection

mechanism as well as the move acceptance criterion can be based on (meta)-heuristics.

Dowsland et al. [12], for example, present a hyperheuristic that uses tabu search as

heuristic selection method and simulated annealing as move acceptance criterion. They

deploy the approach to determine shipper sizes for storage and transportation. Kendall

and Mohamad [18] introduce a great deluge metaheuristic as acceptance criterion in

their hyperheuristic, and apply the resulting solution method to the channel assign-

ment problem in cellular communication. Ayob and Kendall [1] utilize three different

Monte Carlo strategies as acceptance criteria in a hyperheuristic to optimize compo-

nent placement sequencing for multi head machine. Hyperheuristics have been also

successfully applied to several health care problems. Tabu search has been used as a

heuristic selection method to tackle timetabling and rostering problems including nurse

rostering in [7]. Bilgin et al. [2] apply a hyperheuristic to generate rosters for nurses in

a Belgian hospital.

In this paper we apply one general hyperheuristic approach to solve two health

care timetabling problems. We report on experiments with different heuristic selection

mechanisms and move acceptance criteria. Although the proposed approach is rather

general and widely applicable, it obtains competitive results.

The first problem is the patient admission scheduling problem, that is gaining in-

creasing attention in health care practice. Hospitals experience more and more pressure

to maximize their bed occupancy and at the same time minimize the duration of each

patient stay. These may result in poor conditions for the patients such as unplanned

transfers from one room to another, assignments to rooms that do not match the pa-

tients’ preference, etc. The goal of the patient admission scheduling problem is on the

one hand increasing the patients’ comfort while at the same time assisting the ad-

mission scheduler with the execution of his/her task. The problem involves a hospital

with several organizational units, e.g. wards, and a number of patients with given ar-

rival dates and expected departure dates. Patient assignments (to a particular bed in

a room of a ward) are subject to constraints concerning the medical equipment in the

room, the medical skills of the personnel who belong to that ward, the patient’s room

preference, etc. Although the need for improved efficiency is high, we notice that the

problem has not yet attracted the interest of a large group of researchers yet. The bed

assignment problem is described in detail in [11], in which one problem instance is

introduced and solved with a token-ring tabu search approach and some metaheuristic

variants. Integer programming has also been applied to solve the problem instance, but

no optimal solution could be obtained even after a week of computation. That paper

sets a benchmark that enables comparison and evaluation of new algorithms.

Nurse rostering is the second health care problem that is studied in this paper. It

is the process of assigning nurses to shifts, taking into account coverage constraints,

or personal and legal constraints. Coverage constraints express the number of nurses

needed per shift and per day to satisfy the daily demand of the department. This
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number depends, amongst other things, on the bed capacity of the department. Typi-

cally, the coverage constraint is formulated as a number of nurses with a certain skill

type that need to be present on a particular shift of a day. For example, a coverage

constraint can express that for every early shift, five nurses should be present, while

during the night shifts only 2 nurses should be available. Next to the general coverage

constraint, also some legal constraints should be taken into account. Of course, these

depend on the country. In Belgium, for example, there should be at least 11 hours of

rest between two consecutive appearances. This is colloquially translated into the con-

straint that no nurse should be assigned to more than one shift per day. The coverage

and the single shift per day constraint could be modelled as conditions that need to

be satisfied in order to obtain a feasible solution. Nurse rostering is in contrast to the

patient admission scheduling problem a well-studied problem in operation research (see

Section 3.3).

The contribution of this paper is one hyperheuristic approach to solve the patient

admission scheduling problem and the nurse rostering problem. The outline of the paper

is as follows. First, we present a detailed problem description of the patient admission

scheduling problem in Section 2, and compare with other problems described in the

literature. Following, we describe the nurse rostering problem in Section 3, and review

the corresponding literature. In Section 4, the hyperheuristic approach is introduced.

The stress is both on the high level selection strategy and on the low level heuristics.

We describe the experimental setup for both health care problems and discuss the

results in Section 5. Regarding the patient admission scheduling problem, the results

are compared against previously generated results for the same benchmark problems.

Regarding the nurse rostering problem, we compare with the results obtained with an

integer linear programming approach. In Section 6, we conclude and put forward some

promising directions for future research.

2 Patient admission scheduling

2.1 Problem description

The objectives and constraints of the patient admission scheduling problem have been

formalized after extensive discussions with decision makers in hospitals and with people

who are informed about the hospital occupancy rates that are enforced by the govern-

ment. The problem that we delineated for this research does not consider intensive care

units nor day clinics. Also, we suppose that every patient is attributed an admission

and discharge date in advance. In other words, we do not consider patients on waiting

lists.

The basic elements of the problem at hand are patients, wards, rooms and timeslots.

Associated with a patient are: his/her treatment requirements (in terms of nursing and

medical equipment), gender, age category, room preference and the first day and the

duration of his/her stay (this is called the length-of-stay of the patient). Similarly,

some characteristics are related to rooms, e.g. existing medical equipment, the number

of beds and the ward to which they belong. A ward defines the possible treatments

that the rooms are equipped for. A time slot corresponds to a night. The occupation

of one bed during one time slot by a patient is called a patient stay unit. The time

horizon that we look at equals T , which corresponds to the set of all timeslots. We

consider that the patients’ stay durations over that period are known in advance and
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do not change during the stay. The model captures the knowledge of a decision maker

at time 0.

The objective is to optimize the overall patient assignment, i.e. satisfy the patients’

preferences, while respecting all the hard constraints to the problem. Hard constraints

need to be satisfied in any solution that the algorithm comes up with. The hard con-

straints are:

1. Maximum one patient per bed and time slot;

2. The admission and discharge dates are fixed. In other words, these dates cannot be

changed by the algorithm;

3. For each time slot during the length-of-stay of a patient, s/he must be assigned to

a bed;

The quality of a solution is determined by the soft constraints. Soft constraints are

applied either to patients, or to rooms, to patients and rooms at the same time. The

objective function is the weighted sum of all the violations of the soft constraints. The

optimization problem is a minimization problem.

1. Patients in the same room-time slot should have the same gender;

2. The number of room transfers should be minimized;

3. The ward of the patient should satisfy the requirement of his/her pathology;

4. The room of the patient should satisfy the mandatory/preferred requirements of

his/her pathology;

5. The room of the patient should satisfy the specialism of his/her pathology;

6. The room preference type of the patient should be satisfied.

2.1.1 Mathematical model

Sets and constants definitions

– Let P be the set of all patients;

– Let B be the set of all beds;

– Let R be the set of all rooms;

– Let T be the set of all timeslots;

– Each patient is either male or female:

gp =

{
0 if patient p is female

1 if patient p is male

– Let fr,t be the number of female patients in room r at time slot t, then

fr,t =
∑
p∈P

(1− gp).rsp,r,t;

– Let mr,t be the number of male patients in room r at time slot t, then

mr,t =
∑
p∈P

gp.rsp,r,t;
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– Set of patient stays:

PSp = {t ∈ T | t ≥ ts,p ∧ t < ts,p + dp} ,

where ts,p is the start day of the stay of patient p, and dp is the duration of the

patient’s stay;

– Let rpp,r be the total room penalty of the soft constraints 3, 4, 5, and 6 in case

the patient p is assigned to room r. These penalties are known in advance, since

for every patient assigned to a room, one can calculate the corresponding penalty,

based on the soft constraints 3, 4, 5, and 6.

Decision variables

– Bed schedule

bsp,b,t =

{
1 if patient p is assigned to bed b on timeslot t,

0 otherwise

– Room schedule

rsp,r,t =

{
1 if patient p is assigned to room r on timeslot t,

0 otherwise

– Transfer

trp,t =

{
1 if t ∈ PSp ∧ t+ 1 ∈ PSp ∧ ∃r ∈ R | rsp,r,t 6= rsp,r,t+1,

0 otherwise

Hard constraints

∀b ∈ B,∀t ∈ T,
∑
p∈P

bsp,b,t ≤ 1 (1)

Equation 1 corresponds to the first hard constraint.

∀p ∈ P,∀t ∈ PSp,
∑
b∈B

bsp,b,t = 1 (2)

Equation 2 corresponds to hard constraints 2 and 3.

Soft constraints

– Gender penalties:

GP =
∑
r∈R

∑
t∈T

min(fr,t,mr,t) (3)

Equation 3 corresponds to the first soft constraint.

– The total number of transfers:

TR =
∑
p∈P

∑
t∈T

trp,t (4)

Equation 4 corresponds to the second soft constraint.
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– Room penalty:

RP =
∑

p

∑
r

∑
t

rsp,r,trpp,r (5)

Equation 5 corresponds to remaining soft constraints.

Objective function

MinObj = wg.GP + wt.TR+ wr.RP ,

with wg the weight of the violation of the gender constraint, wt the weight of the

violation of the transfer constraint, and wr the weight of the violation of the room

constraints.

2.2 Related literature

We refer to Gemmel and Van Dierdonck [14] for a comprehensive study about the

patient admission scheduling problem. It is noted that the problem should not be solved

without taking surgery capacity and availability of nurses into account. Smith-Daniels

et al. [24] too identify concerns that should be taken into account when optimizing

bed occupancy. Similar problems to patient admission scheduling are addressed with

mathematical programming [22], local search [15] and a multi agent system [20].

Vermeulen et al. [27] describe a CT-scan scheduling problem, which will - when

solved to optimality - contribute to efficient patient scheduling. Central diagnostic re-

sources such as CT-scans are often bottlenecks in a hospital environment and the goal

is to minimize the patients’ waiting time and to maximize the resources’ utilization.

Patients are scheduled according to their arrival order. For every patient a random

free time slot is selected that fits into the patient’s time window. The goal in the re-

habilitation patient scheduling paper of Chien et al. [8] is similar: reduce the patients’

waiting times and increase the equipment usage. Since some of the rehabilitation ther-

apies require a specific order of execution, this problem can be seen as a hybrid shop

scheduling problem in which the medical resources correspond to the machines and the

patients to the jobs. Chien et al. solve the problem with a genetic algorithm.

Vermeulen et al. [28] apply agent technology is applied to solve the patient appoint-

ment exchanging problem. Patients are represented by agents that try to decrease the

patients’ waiting time. Initially, patients are assigned to a schedule that consists of

several small appointments which are attributed a time slot. Each agent will try to ex-

change appointments with other agents in order to obtain a better schedule. An agent

accepts an exchange only if it does not worsen its schedule. Vermeulen et al. [26] de-

scribe the on line scheduling of outpatients that have a combination of appointments

in different wards. The goal is to optimize the appointments of the outpatients and

the wards’ efficiency. This is a complex problem since it needs a lot of collaboration

between the wards of the hospital. Similar to [28], agent technology is applied to model

the wards and the outpatients. The agents communicate with each other to find the

best time slot for each party involved.

The objective of the problems presented in the papers above is to assign patients

to timeslots in which they can be examined or diagnosed. The smallest timeslots are

15 minutes. In this paper; timeslots correspond to an overnight stay. However, the

major difference between the problem described in this paper and the other problems

in the literature, is that we are also confronted with the problem of consecutiveness.
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This means that patients who have been admitted to the hospital for multiple nights,

should preferably be assigned to the same bed during their stay. This constraint adds

considerable complexity to the problem.

Hutzschenreuter et al. [17] describe an agent-based patient admission scheduling

application for a highly decentralized problem. In order to analyse and evaluate dif-

ferent policies concerning bed scheduling, what-if scenario’s are applied. Patients are

automatically assigned to beds with a brute-force optimizer. The time needed to assign

patients to a small number of beds in a planning horizon of one year was 12.8 hours.

No further details are given about the brute-force algorithm. From all the problems

that we came across in the literature, it bears the closest resemblance to the one that

we address in this paper.

3 Nurse rostering

3.1 Problem description

The specific nurse rostering problem that is described, modeled, and solved in this

paper is the one that is the subject of the Nurse Rostering Competition [16]. The goal

of the organizers of this competition is to attract researchers from other disciplines,

so that this problem is tackled with new approaches. Next, the competition organizers

also want to close the gap between theory and practice and to stimulate debate in

the timetabling community (see [16]). Competitions like this should be encouraged,

since by introducing benchmark instances for nurse rostering different approaches can

be compared in an objective manner. We are aware of some assumptions in the nurse

rostering benchmarks that do not fully correspond to the real world situation. For ex-

ample, the problems do not take any previous assignments into account. They also limit

the number of assignments per nurse per day to one shift. Anyway, for investigating

the performance of the hyperheuristic, they are perfectly suitable.

Nurse rostering is the process of assigning nurses to shifts taking into account the

coverage, personal and legal constraints. A roster consists of several days, that are

further divided into shifts. For every shift of a day, there is a corresponding number

of required nurses. This is called the coverage. The coverage constraint is the first

hard constraint of the problem. The other hard constraint is that nurses can only be

assigned at most to one shift per day. Each nurse is assigned exactly one contract,

which provides the following information:

– the maximum and minimum number of assignments per planning period and per

nurse;

– the maximum and minimum number of consecutive working days;

– the maximum and minimum number of consecutive free days;

– the maximum number of consecutive working weekends;

– whether the nurse needs two free days after being assigned to a night shift;

– whether a nurse has to work all days of the weekend (so-called complete weekends);

– whether a nurse has to work the same shift types during a working weekend;

– which combination of shift types are unwanted. For example, do not assign a nurse

to the late shift of the first day, the early shift of the second day and the late shift

of the following day;

– the shifts and days on/off requests of the nurses. These are requests of the nurses

(not) to be assigned on certain shifts or days.
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The elements of these contract can be considered as the soft constraints of the

problem. For all data instances of the Nurse Rostering Competition the planning period

is 4 weeks, which includes 4 weekends, and the number of shifts per days ranges from

4 to 5.

For the full problem description of the Nurse Rostering Competition instances, we

refer to [16].

3.2 Mathematical model

The mathematical model for this specific nurse rostering problem is influenced by

the one of Burke et al. [4]. For the interested reader we have added the complete

mathematical model for this specific problem in the Appendix.

3.3 Related literature

TODO: Greet

4 Solution methods

4.1 Overview

A local search neighbourhood corresponds to the set of all candidate solutions that can

be reached from one solution by carrying out a specific move. A local search algorithm

searches for a good quality solution by traversing the neighbourhoods of a single can-

didate solution. Tabu search, for example, adds some memory to the local search by

applying a finite tabu list. Elements of every accepted modification are added at the

start of the tabu list replacing the oldest item in the tabu list. If the quality of the can-

didate solution is better than the previous best solution, the modification is executed.

If the modification does not lead to a better solution, the best move is accepted if that

is not prohibited by the tabu list. This mechanism helps escaping from local optima

and forces the algorithm to explore new regions of the solution space. In [11] the patient

admission scheduling problem is tackled with a tabu search algorithm hybridized with

a token-ring approach. This mechanism deploys several neighbourhoods, and carries

out the search by switching between them in a circular fashion.

Hyperheuristics are solution methods that deploy a set of heuristics. This way

they are distinguished from the metaheuristics approaches that operate directly on the

solution space. Several classes of hyperheuristics have been developed: ‘heuristics to

choose heuristics’ [7] or ‘heuristics to generate heuristics’ [5]. In this work, we consider

hyperheuristics that choose heuristics. This mechanism iteratively selects a heuristic

and applies it to a single candidate solution. After the selection step, the resulting

candidate solution is either accepted or rejected. The hyperheuristic framework that is

used in this article is based on the one described in [23]. It consists of two main parts:

the heuristic selection mechanism and the move acceptance criterion.

– The heuristic selection mechanism selects every iteration one heuristic from the set

of low-level heuristics.
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– The move acceptance criterion decides every iteration which move is accepted.

Several well-known metaheuristic methods can be applied as a move acceptance

criterion.

The hyperheuristic framework is the same for both health care problems. The

followed approach for both problems only differs in the solution representation, the

construction of the initial solution, and the low-level heuristics. These parts contain

information specific to each of the problems.

4.2 Modeling approach

For both health care problems, we describe in the following sections the solution rep-

resentation and the objective function.

4.2.1 Patient admission scheduling

Since the modeling approach of the patient admission scheduling problem is fully de-

scribed elsewhere (see [11]), only a brief model description is provided. A solution is

represented as a set of matrices, each representing a ward of the hospital. The rows of

an individual matrix correspond to the available beds in the ward, while the columns

correspond to the timeslots. In the solution representation, a patient assignment is

represented as a contiguous set of patient stay parts. There are as many patient stay

parts as the length-of-stay of the corresponding patient. By choosing this particular

representation, violations of the first hard constraint (assigning more than one patient

to a bed) are automatically excluded.

The initial solution is constructed such that all patients are assigned to beds as

long as there are free beds available. This automatically leads to satisfaction of the last

hard constraint. The second hard constraint will always be fulfilled by only allowing

low level heuristics that do not violate this constraint (see Section 4.3.1).

4.2.2 Nurse rostering

A solution for the nurse rostering problem is modeled as a 0-1 matrix, in which the

columns represent the shifts arranged per day, and the rows represent the nurses. A

nurse is assigned to a shift on a particular day if the value of the corresponding matrix

element is 1. Although the initial solution is randomly constructed, the initialization

algorithm makes sure that the solution is feasible. This means that the coverage is met

and that no nurse works more than one shift in the same day. Feasibility is maintained

during the subsequent search by only considering assignment moves within the same

column. No assignment can be removed without making a new one within the column.

This means that the coverage constraint and the single shift per day constraint will

always be satisfied.

In both problem cases the evaluation of the soft constraints will be included in the

objective function, which is the weighted sum of their violations.
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4.3 Low-level heuristics

The heuristics that are called by the hyperheuristic are inspired by the mechanism of

tournament selection in genetic algorithms. At each iteration, the selected heuristic

creates a number of moves and returns the move that results in the best value of the

objective function. The number of moves considered per iteration is a parameter of the

search algorithm that we call the tournament size.

4.3.1 Patient admission scheduling

The heuristics only consider moves that do not change the admission and the discharge

dates of the patients:

1. Swap two patients’ assignments in the same ward. The ward and the patients are

selected randomly.

2. Swap two patients’ assignments in different wards. The wards and the patients are

selected randomly.

3. Transfer all the assignments of a patient to (an) empty bed(s) in another ward. The

source and destination wards, the patient, and the destination bed(s) are selected

randomly.

4. Transfer all the assignments of a patient to (an) empty bed(s) in the same ward.

The ward, the patient, and the destination bed(s) are selected randomly.

The source and destination beds in the first and the second heuristic can either be

empty or assigned to a patient.

4.3.2 Nurse rostering

We present a sample of the low-level heuristics in the hyper-heuristic approach: in all

the low-level heuristics, the first step is to randomly select two nurses n1, n2, (n1 6=
n2, and n1, n2 ∈ N , with N the set of nurses)

– randomly select a subset d ⊂ D, with D the set of all days:

swap(roster(n1, d), roster(n2, d))

– randomly select a subset w ⊂W , with W the set of all weekends:

swap(roster(n1, w), roster(n2, w))

– randomly select a subset v ⊂ V , with V the set of all work days (or V = D\W ):

swap(roster(n1, v), roster(n2, v))

In fact, we have a dozen low-level heuristics, which are all based on these three

abstract heuristics. For example, we use a heuristic that selects the even or odd week-

ends (or work weeks) of two randomly chosen nurse rosters. Another low-level heuristic

swaps one, two, three, four or five (non-)contiguous days of two randomly chosen nurses.

4.4 Hyperheuristic framework

As mentioned in Section 4.1, the hyperheuristic framework that is employed in this

paper consists of two main parts: a mechanism to select one of the low-level heuristics

during the search, and a criterion to accept moves.
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4.4.1 Heuristic selection method

The heuristic selection methods are simple random, choice function, and a dynamic

heuristic set strategy with simple random.

– Simple random randomly selects a heuristic from a list of heuristics at each itera-

tion.

– Choice function [9] considers a number of criteria: the performance of each heuristic

and each pair of heuristics when called consecutively, and the elapsed time since

the last call of a heuristic. The choice function consists of a linear combination of

the following components (see [25] for more details):

– f1(hj), which is the current performance of every heuristic hj . This is expressed

as f1(hj) =
∑

n α
n−1(

In(hj)
Tn(hj)

), where In(hj) corresponds to the change in the

evaluation function of the heuristic hj , and Tn(hj) corresponds to the amount

of CPU time taken in heuristic hj , and where α ∈ [0, 1].

– f2(hk, hj), which is the joint performance of couples of heuristics (hk, hj).

This is expressed as f2(hk, hj) =
∑

n β
n−1(

In(hk,hj)
Tn(hk,hj)

), where In(hk, hj) is the

change in the evaluation function since the last time heuristic hj was called im-

mediately after heuristic hk, and where Tn(hk, hj) is the amount of CPU time

taken since the last time heuristic hj was called immediately after heuristic hk,

with β ∈ [0, 1].

– f3(hj) which is the elapsed time since the last execution of heuristic hj .

The resulting choice function can then be expressed as f(hj) = αf1(hj)+βf2(hk, hj)+

δf3(hj).

– The motivation behind the dynamic heuristic set strategy with simple random

[21] approach is to determine the best heuristic subsets for the different phases

of a search. Each phase refers to a predefined number of iterations in which the

performance, based on performance metric, of the available n heuristics is measured.

The lesser performing heuristics are excluded for a number of phases. The number

of phases for the exclusion process is called the tabu duration.

In this study, we employ the following performance metric:

pi = M1(i)w1 +M2(i)w2 +M3(i)w3 (6)

– M1(i) denotes the total number of new best solutions found by the heuristic i,

– M2(i) denotes the fitness improvement per execution time during the current

phase by the heuristic i,

– M3(i) denotes the total fitness improvement per execution time by the heuristic

i.

w1, w2 and w3 are the weights for each sub performance metric and their values

are assigned as w1 � w2 � w3. This way, some kind of priority between these

three sub performance metrics is provided.

The tabu duration value and phase length are determined based on the size of the

heuristic set. The tabu duration is d =
√

2n and the phase length is pl = d ∗ 1000

iterations. At the end of each phase, each heuristic gets a quality index (QI ) value

which can range between 1 to n. The best performing heuristic gets n′ which is the
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number of heuristics in the current heuristic subset and the worst one gets 1 as its

QI. The excluded heuristics are considered as heuristics with QI = 1. Then, the

average of the QIs is calculated :

avg =

⌊( n∑
i

QIi

)
/n

⌋
(7)

The heuristics with QI < avg are excluded from the heuristic set for d number of

phases.

4.4.2 Move acceptance criteria

Algorithm 1 Pseudo code of the simulated annealing acceptance criterion

Ci = objective function value at ith iteration
δ = Ci+1 − Ci

T = total execution time
R = remaining execution time
Pi = random variable between [0,1[ at ith iteration
if δ ≤ 0 then

Accept
else

if Pi < exp (−δ ∗ T/R) then
Accept

else
Reject

end if
end if

We have experimented with four acceptance criteria. The acceptance criteria are

only improving, improving and equal, simulated annealing [19], and great deluge [13].

– Only the moves leading to solutions that are better than the current solution are

accepted by the only improving acceptance criterion.

– The improving and equal acceptance criterion works similarly, except that it also

accepts moves that result in solutions that are as good as the current solution.

– The simulated annealing algorithm accepts all improving and equal moves. The

moves that result in solutions that are not at least as good as the current solution

are carried out with a probability, which is decreased throughout the execution.

This acceptance criterion is presented in Algorithm 1.

– The great deluge acceptance criterion maintains a deluge level throughout the exe-

cution. The initial value of the deluge level is set equal to the cost value. Throughout

the search, this level is reduced at each iteration. The criterion accepts all improv-

ing and equal moves and the moves that result in a cost value below the deluge

level. This acceptance criterion is explained in Algorithm 2.

5 Experiments

All experiments were performed on Intel Core2Duo (3 GHz) PCs running Windows

XP Professional SP3, with a Java 1.6 JRE configured to run in server mode with a

heap size of 128 MB.
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Algorithm 2 Pseudo code of the great deluge acceptance criterion

Ci = Cost value of candidate solution at ith iteration
T = total execution time
R = remaining execution time
C0 = initial cost
D = C0 * R / T
if Ci+1 ≤ Ci then

Accept
else

if Ci+1 < D then
Accept

else
Reject

end if
end if

We experiment with the four different acceptance criteria: simulated annealing

(SA), great deluge (GD), improving and equal (IE), and only improving (OI), and with

the three heuristic selection mechanisms: simple random (SR), choice function (CH),

and the dynamic heuristic set strategy with simple random (DHS). Three different tour-

nament sizes are explored: 4, 16, and 64. As a result, 36 hyperheuristic variations are

tested on each patient admission scheduling and nurse rostering benchmark instance.

5.1 Patient admission scheduling problem

Fig. 1 Example of the occupancy rate over the planning horizon (benchmark instance 3).

The experiments are carried out on one existing and six new benchmark instances.

The existing dataset (dataset 0) was first introduced in [11]. All instances are auto-
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Property / Benchmark Instances 0 1 2 3 4 5 6

Number of departments 6 4 6 5 6 4 4
Number of rooms 150 98 151 131 155 102 104
Number of beds 447 286 465 395 471 325 313
Number of female patients 339 315 359 365 361 279 349
Number of male patients 321 337 396 343 385 308 336
Maximum occupancy 0.69 0.77 0.79 0.82 0.75 0.73 0.91
Average occupancy 0.50 0.60 0.60 0.57 0.54 0.49 0.64

Table 1 The characteristics of the benchmark instances

matically generated based on several interviews with people responsible for scheduling

patients in Belgium. Obtaining real-world data about patients turned out to be diffi-

cult, due to privacy issues. Although automatically generated, we are convinced that

the datasets are realistic. Each benchmark instance has a planning horizon of two

weeks. The properties of the benchmark instances are given in Table 1. For the new

instances the length of stay of every patient (expressed in nights) is presented in Fig.

2(a), 2(b), 2(c), 2(d), 2(e), 2(f). The occupancy rate varies over the planning horizon.

The rate is higher during the week than in the weekend. The occupancy rate is also

higher in the first week than in the second week. That resembles the real world sit-

uation in which patients’ medical treatments are not always scheduled two weeks in

advance. In Figure 1, the occupancy rate of benchmark instance 3 is depicted over

the planning horizon as an example. In Table 2 the distribution of the room types is

depicted. There are more quadruple rooms than double rooms, and more double rooms

than single rooms. This is in correspondence with the situation in Belgian hospitals.

The benchmark instances and the weights of the objective function can be found on

the Patient Admission Scheduling website [10].

% of single rooms % of double rooms % of quadruple rooms
testdata 0 12% 32% 55%
testdata 1 16% 29% 54%
testdata 2 12% 26% 60%
testdata 3 13% 30% 57%
testdata 4 12% 30% 58%
testdata 5 8% 27% 64%
testdata 6 10% 34% 56%

Table 2 Distribution of single, double and quadruple rooms

In total, 36 different solution methods are tested for each of the patient admission

scheduling benchmark instances. Each solution method is run 10 times for each bench-

mark instance. The termination criterion is the computation time, which is set to 3000

seconds for each run. In order to have an objective means of comparison with other

researchers we opt to apply the same benchmark method as in the Second Interna-

tional Timetabling Competition1. They provide a benchmark program that calculates

the maximum allowed computation time based on the specifications of each individual

PC. We multiply the resulting computation time by 10.

1 http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm

http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm
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(a) Histogram of the durations in dataset 1 (b) Histogram of the durations in dataset 2

(c) Histogram of the durations in dataset 3 (d) Histogram of the durations in dataset 4

(e) Histogram of the durations in dataset 5 (f) Histogram of the durations in dataset 6

Fig. 2 Histogram of length of stays for every instance.

5.2 Nurse Rostering Competition

In the Nurse Rostering Competition two types of data instances are distinguished,

called sprint, and medium. The names refer to the available computation time for

the particular data instance types. As in the International Timetabling Competition,

the organizers of the Nurse Rostering Competition have provided a benchmark tool2,

2 http://www.kuleuven-kortrijk.be/nrpcompetition/benchmarking

http://www.kuleuven-kortrijk.be/nrpcompetition/benchmarking
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that decides based on the specifications of the user’s PC what the maximum allowed

computation time per data instance type is.

– The simplest type of data instances (sprint) consists of 10 nurses. For these in-

stances the computation time is on an average desktop PC about 10 seconds.

– The second type of data instances (medium) consists of around 30 nurses. The

computation time is on an average desktop PC about 10 minutes.

Due to the inherent randomness of the approach, each solution method is run 10 times

for every benchmark instance.

5.3 Results

5.3.1 Patient admission scheduling

The minimum, average, and standard deviation of the objective function over 10 runs

for each benchmark instance are presented in Tables 3, 4, and 5. The results of the ex-

periments have been statistically processed for detecting significant differences with the

Wilcoxon test. The best solution methods for each benchmark instance are indicated

in bold. We call the set of solutions that perform statistically significant better than

the others the best performing group. The hyperheuristics in Tables 3, 4, and 5 are

first ranked according to the number of times their results are in the best performing

group. If there is a tie, the hyperheuristics are further ordered according to the best

total average value over all instances.

For the patient admission scheduling problem the results show that the DHS heuris-

tic selection mechanism combined with the great deluge move acceptance criterion and

tournament factor 4 is the best performing hyperheuristic. There is however no sta-

tistical evidence that this combination (DHS-GD-4 ) performs statistically significant

better than SR-GD-16, CF-GD-4, DHS-GD-64, and SR-GD-4. From the results it is

clear that the hyperheuristics based on the great deluge move acceptance criterion

are the best performers. The only improving move acceptance criterion results in the

worst performing hyperheuristics. There is no statistical evidence to conclude that one

of the heuristic selection criteria outperforms the others. Actually, this shows that the

performance of the hyperheuristic depends largely on the performance of the move

acceptance criteria.

Analyzing for example the best solution obtained for benchmark instance 1 (with a

cost equal to 672.80) in more detail reveals that all hard constraints are satisfied, and

that only the room type preference soft constraint is violated. This is a consequence of

the fact that the demand of single and double rooms exceeds the supply.

The tabu search method that was applied on testdata 0 in [11] is outperformed

by the current hyperheuristics approach. Even the worst performing hyperheuristic

approach (DHS-OI-64) still finds better solutions for testdata0 than the token-ring

tabu search algorithm.

5.3.2 Nurse rostering

We first have tried to solve the nurse rostering data sets exactly with an ILP solver

(CPLEX). The ILP solver was interrupted when the available computation time was

consumed. In some occasions, that was before the algorithm found the optimal solution.
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SR-OI-64 DHS-OI-16
min. avg. st. dev. min. avg. st. dev.

testdata0 1174,80 1223,76 30,10 1135,40 1220,98 49,04
testdata1 937,00 987,12 35,26 888,20 982,72 60,02
testdata2 1583,60 1613,54 24,00 1519,80 1606,82 53,26
testdata3 1154,00 1208,54 41,85 1099,00 1204,88 56,08
testdata4 1595,40 1716,48 53,72 1642,80 1744,38 75,77
testdata5 739,20 768,16 19,18 746,40 768,56 17,70
testdata6 1090,80 1129,90 39,77 1108,20 1138,94 20,33

CF-OI-64 DHS-OI-64
min. avg. st. dev. min. avg. st. dev.

testdata0 1140,20 1243,52 64,21 1179,00 1219,30 22,12
testdata1 892,00 951,16 36,27 946,60 992,80 29,26
testdata2 1532,20 1632,74 64,24 1550,80 1632,28 56,85
testdata3 1159,60 1198,52 31,33 1143,40 1209,32 41,64
testdata4 1660,40 1751,72 53,03 1664,80 1733,82 50,43
testdata5 743,20 771,44 19,10 754,00 788,04 21,43
testdata6 1063,20 1122,46 38,08 1068,80 1118,62 33,50

Table 5 Last set of results for the patient admission scheduling problem. Results that are
significantly better are marked in bold. The solution methods are ordered from left to right,
top to bottom, according to the best total average value over all instances.

medium medium hint medium late
1 2 3 4 5 1 2 3 1 2 3 4 5

240 240 236 237 303 84 119 14750 179 59 32 48 147

sprint sprint hint
1 2 3 4 5 6 7 8 9 10 1 2 3
56 58 51 59 58 54 56 56 55 52 74 43 63

sprint late
1 2 3 4 5 6 7 8 9 10
39 43 54 124 45 42 42 27 28 43

Table 6 ILP solutions for the nurse rostering problem data set. Values indicated in bold are
optimal values.

This means that the optimal solution could not be obtained for all data sets. The results

obtained with the ILP solver are presented in Table 6. Values indicated in bold are

optimal solutions.

As for the patient admission scheduling problem we also applied the hyperheuristic

approach on these data sets. The eight best performing hyperheuristics 3 are presented

in Table 7 and 8. In contrast to the patient admission scheduling problem, there is

no hyperheuristic that is in the best performing group for all data instances. The

hyperheuristic that is ranked first (CF-GD-4 ) is for 30 out of 36 instances in the

best performing group. The predominance of the great deluge based hyperheuristics

is not as big as it was the case in the patient admission scheduling problem. Again,

the hyperheuristics based on the only improving move acceptance criterion lead to

the worst results. Also, there is no statical evidence that one of heuristic selection

mechanisms outperforms the others.

3 The results for all 36 hyperheuristic variants can be found at
http://allserv.kahosl.be/∼peter/pas/JOH/results-nrc.xls
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Bilgin et al. [3] conclude after numerous experiments on benchmarks with different

combinations of move acceptance criteria and heuristic selection methods that there is

not any combination of acceptance criteria and selection methods that dominates any

other combination on all benchmarks. In their experiments, improving equal resulted

in the best average performance, while choice function was on average slightly better

than the other heuristic selection mechanisms. Our experiments show that the great

deluge move acceptance criterion with tournament size 4 results in the best average

performance. However, the heuristic selection mechanism is in both occasions different.

Although simple random is the easiest heuristic selection mechanism, it does not

perform worse than the more ‘intelligent’ selection mechanisms. It is always good to

compare as a first test a newly developed heuristic selection method with simple ran-

dom.

6 Conclusion

We have introduced a general hyperheuristic approach for solving two operation re-

search problems in health care. Regarding the first problem, the patient admission

scheduling problem, we also provide the research community with new benchmark

problems for the patient admission problem and a validation tool to compare algo-

rithm performance. Other researchers are invited to address the problem instances and

we will keep track of the best solutions on the Patient Admission Scheduling website

[10]. Within the problem settings of this paper, it is not possible to largely increase

the bed occupancy rate in the hospital. That is due to the assumption of a fixed pa-

tient list and fixed patient stays over the considered time horizon. Assigning patients

as much as possible to the room type of their choice increases their satisfaction dur-

ing their stay. As a consequence it can also increase the income of the hospital, since,

for example, Belgian doctors (can) demand a higher fee for treating patients assigned

to a single room. The potential of the presented approach is to serve as an instru-

ment for optimizing patient assignments each time new information becomes available

(e.g. adjustment to the patient stay duration, additional patients on the list, canceled

treatments, etc.) in a real world setting. It serves as an aid for the human admission

scheduler to help him/her quickly decide to which room a patient should be assigned.

Although not discussed in the paper, provisions have been made to fix patients that

are already have been assigned and should not be moved during the search for a free

bed for a new patient. The hyperheuristic approach significantly outperforms a tabu

search algorithm that was previously applied to one of the instances.

Concerning the nurse rostering problem, we obtain with the same hyperheuristic

approach results that are close to the solution obtained by an ILP approach in the

same computation time. In fact, the hyperheuristic was first applied to the patient ad-

mission scheduling problem, and later adapted to tackle the nurse rostering problem.

The only parts of the algorithm that were changed are the solution representation, the

construction of the initial solution and the low-level heuristics. In a short software de-

velopment cycle competitive results for the nurse rostering problem could be obtained.

This paper shows that it is possible to obtain results in a ‘good enough - soon enough

- cheap enough’ manner.

We advocate applying existing local search neighbourhoods, as heuristics within a

hyperheuristic framework for general application. The implementation effort is limited

compared to the experienced performance increase for the patient admission scheduling
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problem. As we have shown, the effect in performance is not limited to one problem

only, and one can expect that this will be the case for different problems.

Directions for future research include 1) expanding the model for intensive care

and day clinic units, adding extra real world constraints such as age compatibility,

quarantine, and workload balance of the health care professionals, 2) developing new

stochastic benchmark instances taking into account patients on waiting lists, 3) dy-

namic rescheduling in case of small changes to the data, and 4) tackling both problems

as one integrated problem. The latter future research proposition can be clarified by

the following reflection: the number of nurses needed per shift (the coverage) depends

on the occupancy of the beds. The more patients that are assigned to beds, the more

nurses will be needed. Both problems are actually intertwined.
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7 Appendix

7.1 Mathematical model

The ILP model consists of the objective function to be minimized, the hard and soft

constraints, the decision variables and the auxiliary variables. Let N be the set of all

nurses, D the set of all days in the schedule period, and S the set of all shift types.

The Decision Variables

xn,d,s =

{
1 if nurse n is assigned on day d and shift type s

0 otherwise
(8)

The Auxiliary Variables

Let |S| be the number of shift types.

− |S|pn,d +
∑

j

xn,d,j ≤ 0 (9)
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− pn,d +
∑

j

xn,d,j ≥ 0 (10)

Equations 9 and 10 imply equation 11.

pn,d =

{
1 if nurse n is assigned on day d

0 otherwise
(11)

Hard Constraints

– Coverage constraint. Let cd,s be the number of assignments required on day d and

shift type s.

∀d ∈ D,∀s ∈ S,
∑

n

xn,d,s = cd,s (12)

– Single assignment per day.

∀n ∈ N,∀d ∈ D
∑

s

xn,d,s ≤ 1 (13)

Soft Constraints

– Maximum days worked. Let M be the constraint parameter, the maximum number

of days a nurse is allowed to work.

vn denotes the number of violations to this constraint for nurse n.

∀n ∈ N, vn ≥
∑

d

∑
s

xn,d,s −M (14)

The total number of violations to this constraint is calculated with equation 15.

TMax =
∑

n

vn (15)

– Minimum days worked. Let M be the constraint parameter, the minimum number

of days a nurse is allowed to work.

vn denotes the number of violations to this constraint for nurse n.

∀n ∈ N,−vn +
∑

d

∑
s

xn,d,s ≥M (16)

The total number of violations to this constraint is calculated with equation 17.

TMin =
∑

n

vn (17)

– Unwanted Patterns

Let N = {n |days where the pattern entry is “None”}.
Let A = {a |days where the pattern entry is “Any”}.
Let S = {s |shift types where a pattern entry is defined}.
Let Ds = {d |days where a pattern entry is the shift type with the index s}.
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v +
∑
n∈N

pe,n −
∑
a∈A

pe,a −
∑
s∈S

∑
d∈Ds

xe,d,s ≥ 1− |A| −
∑
s∈S

|Ds| (18)

Equation 18 implies equation 19

v =

{
1 if the assignment sequence satisfies the pattern.

0 otherwise
(19)

– Complete identical weekends. Let W be the set of all Saturdays in the schedule

period.

vn,d,s,1 and vn,d,s,2 denote the number of violations to this constraint for nurse n,

the weekend that starts with day d, and shift type s.

∀n ∈ N, ∀d ∈W, ∀s ∈ S, vn,d,s,1 − xn,d,s + xn,d+1,s ≥ 0 (20)

∀n ∈ N, ∀d ∈W, ∀s ∈ S, vn,d,s,2 + xn,d,s − xn,d+1,s ≥ 0 (21)

The total number of violations to this constraint is calculated with equation 22.

CIW =
∑

n

∑
d

∑
s

vn,d,s,1 + vn,d,s,2 (22)

– The succession of shift types. Let S′ be the set of shift type pairs (sk, sl) such that

sl is not allowed to be assigned the day after sk is assigned.

Let D′ = {d |d ≥ 1 ∧ d < |D|}.
vn,d,(sk,sl) denotes the number of violations to this constraint for nurse n, day d,

and shift type succession (sk, sl).

∀n ∈ N,∀d ∈ D′,∀(sk, sl) ∈ S′,−vn,d,(sk,sl) + xn,d,sk
+ xn,d+1,sl

≤ 1 (23)

The total number of violations to this constraint is calculated with equation 24.

SNA =
∑

n

∑
d

∑
(sk,sl)

vn,d,(sk,sl) (24)

– Maximum consecutive working days. Let M be the constraint parameter, the max-

imum number of consecutive working days for a nurse.

Let D′ = {d |d ≥ 1 ∧ d ≤ |D| −M}.
vn,d denotes the number of violations to this constraint for nurse n, and the day

series that starts at day d.

∀n ∈ N,∀d ∈ D′,−vn,d +

M∑
k=0

pn,d+k ≤ M (25)

The total number of violations to this constraint is calculated with equation 26.

MaxCon =
∑

n

∑
d

vn,d (26)
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– Minimum consecutive working days. Let |M | be the constraint parameter, the min-

imum number of consecutive working days for a nurse.

Let D′ = {d |d ≥ 1 ∧ d ≤ |D| −M}.
Let L = {l|l ≥ 2 ∧ l ≤ M}.
vn,d,l denotes the number of violations to this constraint for nurse n, and the period

between days d and d+ l. vn,0,l denotes the number of violations to this constraint

for nurse n, and the period between schedule period start and day l.

∀n ∈ N,∀d ∈ D′, ∀l ∈ L,−
vn,d,l

M − l + 1
+ pn,d − pn,d+1 + pn,d+l ≥ 0 (27)

∀n ∈ N,∀l ∈ L,−
vn,0,l

M − l + 1
− pn,1 + pn,l ≥ 0 (28)

The total number of violations to this constraint is calculated with equation 29.

MinCon =
∑

n

∑
l

vn,0,l +
∑

n

∑
d

∑
l

vn,d,l (29)

– Maximum consecutive free days. Let |M | be the constraint parameter, the maxi-

mum number of consecutive free days for a nurse.

Let D′ = {d|d ≥ 1 ∧ d ≤ |D| −M}.
vn,d denotes the number of violations to this constraint for nurse n, and the day

series that starts at day d.

∀n ∈ N,∀d ∈ D′, vn,d +

M∑
j=0

∑
s

xn,d+j,s ≥ 1 (30)

The total number of violations to this constraint is calculated with equation 31.

MaxFree =
∑

n

∑
d

vn,d (31)

– Minimum consecutive free days.

Let |M | be the constraint parameter, the minimum number of consecutive free days

for a nurse.

Let D = {d|d ≥ 1 ∧ d ≤ |D| −m}.
Let K = {k|k ≥ 2 ∧ k ≤ M}.
vn,d,k denotes the number of violations to this constraint for nurse n, and the

period between days d and d + k. vn,0,k denotes the number of violations to this

constraint for nurse n, and the period between schedule period start and day k.

∀n ∈ N,∀d ∈ D,∀k ∈ K, vn,d,k − pn,d + pn,d+1 − pn,d+k ≥ −1 (32)

∀n ∈ N,∀k ∈ K, vn,0,k + pn,1 − pn,k ≥ 0 (33)

The total number of violations to this constraint is calculated with equation 34.

MinFree =
∑

n

∑
k

vn,0,k +
∑

n

∑
d

∑
k

vn,d,k (34)
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The Objective Function

The objective of the optimization is to minimize F , which equals to the number of

all violations of the soft constraints (Equation 35).

F = TMax+TMin+CIW+SNA+MaxCon+MinCon+MaxFree+MinFree+SAD

(35)
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